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Preface

The Brazilian Conference on Intelligent Systems (BRACIS) is one of Brazil’s
most meaningful events for students and researchers in artificial and computational
intelligence. Currently in its 10th edition, BRACIS originated from the combination of
the two most important scientific events in Brazil in artificial intelligence (AI) and
computational intelligence (CI): the Brazilian Symposium on Artificial Intelligence
(SBIA), with 21 editions, and the Brazilian Symposium on Neural Networks (SBRN),
with 12 editions. The conference aims to promote theory and applications of artifi-
cial and computational intelligence. BRACIS also aims to promote international-level
research by exchanging scientific ideas among researchers, practitioners, scientists, and
engineers.

BRACIS 2021 received 192 submissions. All papers were rigorously double-blind
peer reviewed by an international Program Committee (with an average of three reviews
per submission), which was followed by a discussion phase for conflicting reports. At
the end of the reviewing process, 77 papers were selected for publication in two volumes
of the Lecture Notes in Artificial Intelligence series, an acceptance rate of 40%.

We are very grateful to Program Committee members and reviewers for their
volunteered contribution in the reviewing process. We would also like to express our
gratitude to all the authors who submitted their papers, the general chairs, and the Local
Organization Committee for supporting the conference during the COVID-19 pandemic.
Wewant to thank theArtificial Intelligence andComputational Intelligence commissions
from the Brazilian Computer Society for the confidence they placed in us serving as
program chairs for BRACIS 2021.

We are confident that these proceedings reflect the excellent work in the artificial
and computation intelligence communities.

November 2021 André Britto
Karina Valdivia Delgado
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Abstract. Bed allocation in hospitals is a critical and important prob-
lem, and it has become even more important since last year because of
the COVID-19 pandemic. In this paper, we present an approach based
on intelligent-agent technologies to assist hospital staff in charge of bed
allocation. As part of this work, we developed a web-based simulation of
hospital bed allocation system integrated with a chatbot for interaction
with the user. As a core component in our approach, an intelligent agent
uses the feedback of a plan validator to check if there are any flaws in a
user-made allocation, communicating any detected problems to the user
using natural language through the chatbot. Thus, our resulting applica-
tion not only validates bed allocation plans but also interacts with hos-
pital professionals using natural language communication, including giv-
ing explainable suggestions of better alternative allocations. We evaluated
our approach with professionals responsible for bed allocation in two local
hospitals and a doctor who provides consultancy to another local hospi-
tal. The version of the system reported in this paper addresses all the
suggestions made by the specialists who evaluated its previous version.

Keywords: Hospital bed allocation · Intelligent agent · PDDL plan
validation · Linear programming · Chatbot

1 Introduction

Bed allocation is a challenge faced by hospitals because hospital beds are scarce,
and when poorly managed, it can lead to long queues or chaos in emergency
rooms [9]. This is even more critical considering that developing countries face
growing financial constraints making planning and efficient allocation of hospital
beds increasingly difficult [11,20]. Also, the area responsible for bed allocation
needs to be concerned with several restrictions during bed allocation, such as
the type of medical speciality, whether the patient is surgical or clinical, gender,
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and age of the patient [17]. This makes bed management an essential part of
the planning and controlling of the operational capacity, and an activity that
demands the efficient use of available resources [18].

Effective management of hospital beds has been the focus of much research
such as the IMBEDS model that uses artificial neural networks and multi-
attribute value theory for decision making [9]; statistical and data mining
approaches [19]; an optimisation model based on evolutionary algorithms is used
for bed allocation in [13]; and also literature reviews have been carried out [2,11].
Although all that work seeks to improve bed management, they do not provide
easy interaction nor decision support so that the professional in charge retains
full control over allocations.

Keeping professionals in charge is important, given that this is a domain
of sensitive decision-making, hence there is much resistance to replacing human
operators with automated systems. In domains like healthcare, a mixed-initiative
system, which supports human-computer interaction, becomes not just use-
ful [10] but essential. In this domain, wrong decisions can lead to the loss of
lives. That is why it is important that intelligent systems can support the deci-
sions being made, but a human must make the final decisions.

We have developed an intelligent agent to validate bed allocation plans and
to communicate with hospital professionals using natural language. Although
humans still make the final decisions, an intelligent agent checks if all alloca-
tion rules are being complied with and warn the user if they are not. To make
this possible, we use plan validation techniques and a chatbot that provides the
agent with the ability to communicate with the human operator through natural
language. Our approach performs the validation of the bed allocation plan using
a planning domain built based on the allocation rules used in each of the local
hospitals that cooperated with our work. To use different rules for other hospi-
tals, it is only necessary to adapt the planning domain and the way the planning
problem is generated. We developed our own PDDL plan validator in Java, so
that it interacts better with the chatbot developed using the Jason platform [4].
We also created an automated generator of linear programming models for gen-
erating optimal bed allocations, which we can be used to provide suggestions of
better alternative allocations when requested by the human operators, for exam-
ple when the chatbot detected errors in the allocations they created themselves.
We can generate optimal allocations much quicker with a solver such as GLPK
than with a PDDL planner.

We have evaluated our approach with professionals responsible for bed allo-
cation in two local hospitals. Also, the approach was evaluated by a doctor who
provides consultancy to a local hospital. With their feedback, we were able to
assess the efficacy and acceptance of our approach by those professionals; they
considered our approach extremely useful and usable in the daily routine of the
hospital. The version of the chatbot described in this paper in fact addresses
all the suggestions made by those professionals to increase the usefulness of the
chatbot for their work.
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Fig. 1. Bed allocation rules.

The remainder of this paper is structured as follows. Section 2 shows the bed
allocation scenario and our approach. Section 3 presents the results obtained
in the evaluation of our approach. Section 4 explains the improvements made.
Section 6 provides some conclusions.

2 Materials and Methods

2.1 Eliciting Bed Allocation Rules

We interviewed a person responsible for bed allocation at Hospital Conceição in
Porto Alegre - RS, Brazil. This professional (referred to as BA1) has more than
seven years experience in this work. Our objective was to understand the real
scenario of hospital bed allocation.

Hospital Conceição is the largest unit of the Conceição Hospital Group
(GHC). It offers all the specialities of a general hospital in its outpatient clinic,
as well as an emergency room and inpatients. It maintains a medical emergency
service with doors open 24 h a day and has 784 beds [8].

For contextualisation, in Brazil there are three types of health systems: pri-
vate, where the patient pays; private health insurance, where the patient pays
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Fig. 2. Bed allocation approach.

monthly and this plan covers the costs of the hospital; and SUS is the national
healthcare system that is funded by the federal government. 80% of the popula-
tion uses SUS [17]. The Hospital Conceição only receives SUS patients.

BA1 is part of a department of the hospital called NIR (Portuguese acronym
for Internal Regulation Centre). NIR is an administrative unit that monitors
the patient from arrival at the hospital, during the hospitalisation process, and
internal and external movement until discharge from the hospital. NIR has a
manual created in cooperation with the Health Ministry to guide SUS managers
and better conduct the process of creation and running of NIR units [12].

The NIR has full control over hospital beds. The function of the operational
nurse (BA1) is the real-time management of free beds. BA1 is responsible for
authorising new admissions from the requested reservations, the exchanges, and
the blocking required according to the demand and availability.

BA1 currently uses a locally developed system that has a feature for bed
management. This system only shows which patients need hospitalisation and
which beds are currently available. The rules for bed allocation are in a document
outside the system, so the person responsible for allocation needs to look at the
document, or in case of BA1, memorised all those rules. Bed allocation errors
often occur because some rule is overlooked. Some errors can cause delays in
a patient’s accommodation since it is necessary to wait for a new allocation,
besides all the unnecessary patient movement.

Based on the information obtained from BA1 and the NIR manual [12], we
created a diagram with the main bed allocation rules (see Fig. 1). The diagram
shows a large number of rules that need to be considered for an adequate allo-
cation, prioritising good care, privacy, and the psychological state of patients.
When there is overcrowding in the hospital, some rules may be ignored. In con-
trast, others can never be relaxed – for example, placing a patient who needs
isolation in a non-isolation area.
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Fig. 3. Web simulator – bed allocation screen.

2.2 Developing an Approach to Bed Allocation

We propose an approach for helping the professionals ensure that all bed alloca-
tion rules have been followed (see Fig. 2). In our approach, healthcare profession-
als inform which patient and which bed they want to allocate the patient for the
system to validate the allocation in accordance to a particular set of rules. This
is done as follows: our system, based on the allocation information (bed and
patient), automatically generates a PDDL (Planning Domain Definition Lan-
guage) [1] problem file and a PDDL plan file; the particular hospital rules in
question are represented as a PDDL domain specification. The part of the sys-
tem with patient and hospital information we call “web simulator”,1 because it
is implemented as a web system to simulate a hospital information system. Our
web simulator was developed to facilitate interaction with the user when testing
our approach. Figure 3 shows the simulator bed-allocation screen.

Our approach also has an intelligent BDI agent constructed with Jason [4],
which has access to the PDDL problem file and a PDDL plan file and uses them
to validate the allocation, checking if any rules are being broken.2

To do this validation, the Jason agent originally used the VAL validator [7,
10], which outputs a LaTeX report saved to a folder that will be analysed by the
agent; we later mention how this has been reworked to improve performance.
After the report is saved, the agent reads and processes that file. VAL is a plan
validator that in our case checks if any bed allocation rule has been broken in the
1 The web simulator code is available at https://github.com/smart-pucrs/bed-

allocation-simulator.
2 The agent code is available at https://github.com/smart-pucrs/jason assistant

to bed allocation.

https://github.com/smart-pucrs/bed-allocation-simulator
https://github.com/smart-pucrs/bed-allocation-simulator
https://github.com/smart-pucrs/jason_assistant_to_bed_allocation
https://github.com/smart-pucrs/jason_assistant_to_bed_allocation
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Fig. 4. Web simulator – bed allocation screen with chatbot.

user allocation. VAL receives three files as input: 1) the plan file containing the
information of the allocation made; 2) the problem file contains the current world
state and the goals that should be achieved; 3) the domain file3 that describes
the rules that must be followed to perform the allocation.

This domain file has predicates that describe the characteristics of beds and
patients. The actions contained in the domain file are responsible for determining
the behaviour according to the real hospital rules.

After analysing the validation report, our agent creates the response to the
user, saying whether or not the plan is valid, and if it is not valid, it also tells the
user which rule was being broken. One of the limitation of VAL, which led to the
development we explain later, is that it stops the validation as soon as a broken
rule is found, so if there are more broken rules, our agent would still report only
the first one found. This response is sent to the user through a chatbot using
the DialogFlow platform,4 which in addition to responding, asks whether the
user wants to confirm the allocation (see Fig. 4). If the answer is positive, the
chatbot itself triggers the routine on the system responsible for completing the
allocation. If the answer is no, the chatbot just cancels the allocation, leaving
the system’s validation history saved.

When the user requests the chatbot to “check if my allocation is valid”, an
intention is triggered on DialogFlow; we call it “Get Validation Result”. This
intention calls through the webhook a function in Cloud Functions that searches
in the database the last validation carried out by our Jason intelligent agent and

3 The domain file with plans and problems examples are available at https://github.
com/smart-pucrs/hospital-domain-PDDL.

4 https://dialogflow.com/.

https://github.com/smart-pucrs/hospital-domain-PDDL
https://github.com/smart-pucrs/hospital-domain-PDDL
https://dialogflow.com/
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returns to Dialogflow the answer elaborated by it. In addition to answering, the
chatbot also asks if the user wants to “confirm the allocation”. For the chatbot
to wait for the user’s response, we use Dialogflow contexts.

For the integration between the web simulator, Dialogflow, and Firestore, we
use Cloud Functions5 that runs on a NodeJs platform. Furthermore, to integrate
the intelligent agent with Cloud Functions, we use an API developed in Asp.Net
Core.6 The information returned by the API, as well as the representation of the
plan and problem, are saved in the database so that the chatbot can access it
when prompted. Once this data is saved, the simulator issues a warning informing
the user that it can already request the validation results to the chatbot.

3 Evaluation

We evaluated our approach in three phases. The first phase was carried out with
two professionals responsible for bed allocation at Hospital Conceição; one is
the same professional who previously informed us of the bed allocation rules.
The second phase was with two professionals also responsible for bed allocation
but at Hospital São Lucas da PUCRS (HSL). Finally, we evaluated our chatbot
with the help of one of the doctors who assisted in the construction of the NIR
manual [12].

For all evaluations, we fed the system with simulated data about beds, doc-
tors, and patients. Based on the data in the system, we asked that professionals
use the simulator to check out the simulated hospital situation and ask the chat-
bot to validate the bed allocation they created and then evaluate the feedback
that the chatbot gave. Furthermore, we performed a semi-structured interview in
order to collect the feedback of these professionals about the use of the system.
All professionals signed a consent form for participation.

3.1 First Phase

We evaluated the approach with each professional individually. The first profes-
sional (BD1), who informed us about the allocation rules, has 7 years of experi-
ence in bed allocation. The second professional has more than 4 years experience
in bed allocation. We highlight some points reported by those professionals:

– Chatbot and allocation rules:
• Interaction with chatbot is extremely easy.
• The information about bed allocation problems that the chatbot points

out are very useful and really what they use in practice.
• They agree that it is not viable a system that allocates alone without a

final decision made by a human operator.
• They would be willing to use our system in their daily activities.

5 https://cloud.google.com/functions/.
6 https://www.asp.net/core/overview/aspnet-vnext.

https://cloud.google.com/functions/
https://www.asp.net/core/overview/aspnet-vnext
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– Suggestions:
• Consider patients’ priorities.
• The validation performed by the system is useful, but it would be even

more valuable if it suggested how to correct the allocation if any rules were
broken, providing allocation suggestions that do not break the rules.

3.2 Second Phase

We then evaluated our approach with two professionals at the same time. Both
professionals have more than one year of experience in the bed allocation func-
tion. We also asked questions related to the allocation process to understand
the differences between the reality of this hospital and Hospital Conceição. The
main difference is that HSL serves the three types of health systems. We highlight
some important considerations reported in this interview:

– Chatbot and allocation rules:
• They would not like a system that allocates beds autonomously, and prefer

one that only make recommendations when requested.
• They believe that the agent can help them in the daily routine.
• They are willing to use our system in their daily activities if it remains

not necessary to talk much to the robot or chatbot.
– Suggestions:

• Their current system does not distinguish between SUS beds, private
health insurance, and private; it would be important that the chatbot
had this knowledge.

• Considering the rules of patient prioritisation is extremely important to
them.

• They suggested that the system should give priority to the relocation of
a patient released from the ICU rather than other patients who need a
bed of that type.

• Interpret natural language written texts in the patient’s evolution to
retrieve relevant information.

• Generate warnings when a patient has been in the ICU more than 8 days
or more than 30 days in the same bed.

• Based on the patients’ discharge plan for the following day and the
scheduling of procedures, the agent could advise if beds will be missing.

• Tell when a patient was discharged for more than 30 min but the bed has
not yet been vacated.

• Tell when a bed is interdicted for more than 24 h.
• The agent should also knows the business rules (regarding private health

insurance) so that it can validate them too.

3.3 Third Phase

We performed an evaluation with the doctor who graduated over 10 years ago
and has more than a year of experience as Consultant Medical Doctor. We
highlight some important considerations reported in this interview:
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– Chatbot and allocation rules:
• The rules are well in line with what are current practices.
• It is feasible, and it is even necessary to reduce the variability in the

conduction of bed allocation processes.
• They informed us that they would use our system, because this type of

software would make the process very fast, in addition to the accuracy
and availability to work 24 h a day, seven days a week.

– Suggestions:
• Define the bed typology and not ask the doctor to define it, but validate

the typology.
• Suggest an allocation to the user. Not that the agent should make an

allocation alone, but it would be good to give suggestions that someone
would confirm.

• Offer options of frequent-asked questions, instead of user typing or talking
to the chatbot all the time.

• When there is a list of patients in the emergency room waiting for a bed
and a bed that is suitable for any of these emergency patients becomes
vacant, the system should warn the operator.

• Generate a bed availability forecast, for example, for the next six hours
according to the discharge forecasts contained in the system.

4 Improvements Based on the Evaluation

Some suggestions made during the evaluation were considered of major impor-
tance and, in order to achieve them, we have carried out some improve-
ments in our system. To facilitate communication between the Jason agent and
Dialogflow, we started using Dial4JaCa7 [5,6], a general integration between
JaCaMo and Dialogflow that has recently become available. To solve the limi-
tation imposed by the VAL validator, which did not return a complete list with
all the allocation problems that the plan has, we implemented a new PDDL
validator that will be presented next. Moreover, to enable our agent to make
optimised suggestions for bed allocations, we implemented an optimal bed allo-
cation technique using linear programming, which will also be presented in more
detail below.

4.1 Bed Allocation Optimisation

In order to allow our agent to make optimal suggestions, we developed an app-
roach to bed allocation based on linear programming. After a linear program-
ming problem is generated for a particular bed allocation instance, we use the
GLPK solver to find an optimal solution.8 The optimisation tries to allocate as
many patients as possible while attempting to decrease as much as possible the
distance of critical patients to the office where nurses are based.
7 https://github.com/smart-pucrs/Dial4JaCa.
8 https://en.wikibooks.org/wiki/GLPK.

https://github.com/smart-pucrs/Dial4JaCa
https://en.wikibooks.org/wiki/GLPK
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The bed allocation optimisation program takes the database’s restrictions
and converts them into three types of linear restrictions: equality, relative equal-
ity, and negation. Consider for example the following constraint.

(2*Q112[p])+(abs(speciality[p]-2)/2) <= 2;

The equality constraint above requires that every patient allocated to the
bedroom has a specific characteristic. In this case, we want the patient to have the
speciality 2. Q112[p] is a Boolean value equal to 1 if patient p is in the bedroom;
gender [p] is an integer value referring to the patient’s speciality, hospitals will
usually have specific rooms for specific types of specialities. The left side of the
sum results in 2 if the patient has been allocated to that bedroom; otherwise,
it results in 0. The right-hand side results in 0 if the patient’s speciality is 2;
otherwise, it results in some number greater than zero. The result of the sum
must be less than or equal to 2, being the only case in which this does not happen
when the patient is allocated to the bedroom, but the speciality is not 2.

(Q112[p1]+Q112[p2])+(abs(gender[p1]-gender[p2])/2) <= 2;

Relative equality is used to require, for example, that if two patients are
allocated to the same bedroom, they must have the same characteristic (in the
case above, the same gender). The sum’s left-hand side has a maximum value of
2 when the two patients are in room 112. The right-hand side results in a value
greater than 0 when the two patients’ genders are different. The restriction would
only be violated when the two patients are in the same bedroom, but the genders
are different, which must not be allowed.

(Q112[p]) - abs(isolation[p]-1) <= 0;

Negation is used for example when we require that every patient allocated
to the room does not have a specific characteristic. If the patient is in the room,
but the isolation characteristic is 1, this will result in 1 − 0 = 1, which does
not comply with the restriction. If the patient is not allocated to the room or
the isolation value is not 1, the result is less than or equal to zero, according to
the bed rules. If the room is not designed for isolation, it will not allow patients
that must be isolated under the normal circumstances under which the optimiser
normally operates.

In this work, we used the GLPSol solver of GLPK9 (GNU Linear Program-
ming Kit), which is a free open source software for solving linear programming
problems. One of the implemented algorithms is the simplex method where, after
assembling a geometrical figure, the program chooses a point and recursively
chooses the relative maximum (or minimum) point, approaching the global opti-
mal result at each iteration. GLPSol allows the user to set certain limits, such
as a time limit. When the limit is reached, the process returns the best result

9 http://winglpk.sourceforge.net/.

http://winglpk.sourceforge.net/
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Fig. 5. Optimiser output in web simulator

found so far. This allows the program to generate some possibly useful alloca-
tion suggestions without having to arrive at the optimal result, which can be an
extremely time-consuming process in some instances.

We have already integrated the optimiser with Jason Platform, allowing us
to execute tests with our complete structure. Figure 5 presents the result of an
allocation made using the optimiser.10

4.2 Plan Validator

When real-world problems can be modelled in a planning language, it is possible
to use a plan validator for example to tell the human operator whether a given
plan is feasible or not [10]. Behnke et al. [3] define plan validation as “the task
of determining whether a plan is a solution to a given planning problem”. A
plan validator can be used in a wide range of applications. The application that
interests us is the validation of bed allocation plans prepared by the user.

We developed a new plan validator11 using Java to facilitate the integration
with Jason. Like VAL, our plan validator also receives three PDDL files as input:
a file containing the domain, a file containing the problem, and a file containing
the plan to be validated.

The domain file establishes some basic rules, such as the types of objects
and possible actions. The actions are generally divided into three parts, the
10 All patient data in our tests are fictitious.
11 The validator code is available at https://github.com/smart-pucrs/PDDL-plan-

validator.

https://github.com/smart-pucrs/PDDL-plan-validator
https://github.com/smart-pucrs/PDDL-plan-validator
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parameters, the preconditions, and the effects. In this case, the action of allocat-
ing a patient to a bed requires that the patient is not allocated to another bed
and that the bed is empty. All other bed allocation constraints are also mod-
elled as preconditions. The effects generated by applying this action are that the
patient is now allocated, the room occupied, and the patient is allocated in that
room. Problem files use domain rules to determine a particular problem, mak-
ing all objects (e.g., patients and beds) and objectives explicit (e.g., all patients
must be allocated).

For validators, a plan file is also necessary, which is simply a set of actions
to be applied sequentially, which lead to the objective of the problem. Given
these files, the validation process is straightforward, checking if each action is
applicable and then apply its effects. An action is only applicable if the types
of the parameters are correct (e.g., the action “aloc bed3” does not work if the
action aloc requires a patient type) and if the preconditions have been met. If any
action is not applicable, the plan is considered flawed. If all actions are applicable,
but the problem’s objective is not satisfied, then the plan is also considered to
be flawed. The plan only satisfies the problem if all actions are applicable and
the objective is satisfied after applying the last action. A characteristic of the
hospital domain is that the actions are not ordered. Given a suitable set of
allocations, any order of execution will solve the problem, which, in general,
would not be the case in other domains. This means that for us it is particularly
useful to detect all errors in the plan and not just the first.

In our plan validator, the user has the possibility of printing the plan and
the validation result in the terminal through the planTest function. The user
still has the possibility, through the valOut(“filename”) function, to obtain a
LaTeX file that generates a PDF with the validation report,12 the result can
also be analysed by our intelligent agent to give an answer to the user in natural
language.

As the validator was designed so far thinking about a specific type of problem,
we have made, for now, certain restrictions to facilitate the implementation of
an initial version of the software. In our initial version, we have some limitations
that do not negatively affect the results of the tasks for which we are using the
validator, but that need to be resolved to make our validator available to the
research community to use it. Although the PDDL language is modular, some
specific options are practically universally accepted, however not all of them have
been implemented yet. In total, our validator currently supports three options:

– “STRIPS”, which allows for actions to add or remove effects, and is required
in our validator;

– “typing”, which allows the use of types and sub-types; and
– “equality”, which allows the use of equality comparisons.

Another actual limitation is that the plan validator was made to be used
in automatically generated problems. It considers that the PDDL files are
12 https://github.com/smart-pucrs/PDDL-plan-validator/blob/main/latexOutput

Validator.pdf.

https://github.com/smart-pucrs/PDDL-plan-validator/blob/main/latexOutputValidator.pdf
https://github.com/smart-pucrs/PDDL-plan-validator/blob/main/latexOutputValidator.pdf
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semantically and syntactically correct. We have not yet implemented any pre-
processing to look for errors automatically, but we developed a callable method
to perform this check. The current version of our plan validator is available on
GitHub.13

5 Related Work

Oliveira et al. [13] developed an iterative Simulation-Optimisation approach
using an evolutionary algorithm to optimise hospital-bed allocation. They
applied their approach using datasets from DATASUS of Minas Gerais, Brazil,
where the public health system assists nearly 80% of the patients.

Grübler et al. [9] proposed a model called IMBEDS to allocate patients
to beds. IMBEDS is a hybrid model that aids in the bed selection process,
using some techniques that work together to manage a waiting list of emergency
patients and scheduled patients. The model uses an artificial neural network
(ANN) and multiattribute value theory (MAVT), a technique used for decision
making and conflict resolution in projects with multiple criteria, using contextual
information about patients and beds. They evaluated the model in a Hospital in
Porto Alegre, Brazil, that receives only patients from private insurance plans.

In Teow et al. [19], the authors extracted data from a hospital in Singa-
pore and applied statistical and data mining approaches to identify the patterns
behind bed overflow. Their main objective was to help the hospital devise strate-
gies to reduce bed overflow and improve patient care.

Differently from the work described above, not only does our approach sug-
gest and validate bed allocations through optimisation techniques but it also
supports natural language communication using chatbots to interact with the
users. We believe our application makes progress towards existing needs in the
application of AI systems in domains like healthcare, in which agents provide
natural language explanations, e.g., allocation failure in our scenario, supporting
users’ decision making rather than being the decision makers.

6 Conclusions

This paper presented an approach to support hospital staff during the process
of bed allocation. Although there is some work in the literature that intends to
make completely automated allocations, this area of application has resistance to
replacing human operators with automated systems. Therefore, in our approach,
we only seek to support the decision-making of human professionals.

Our approach was built based on the expertise of professionals in the field,
mainly based on an interview we conducted with a professional responsible for
bed allocation in a local hospital. We evaluated our approach at Hospital Con-
ceição and HSL, the latter having practices with significant differences since it
serves not only SUS but also private patients. Also, we interviewed a doctor that
provides consultancy to a local hospital in the area of bed allocation.

13 https://github.com/smart-pucrs/PDDL-plan-validator.

https://github.com/smart-pucrs/PDDL-plan-validator
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Among the points highlighted by the professionals about our approach, it has
been mentioned that it is easy to interact with the chatbot and the information
contained in the validation of allocation are very useful for their routine. Some
good ideas have also been raised to improve our system so that it performs
useful tasks in the bed-allocation routine. As our approach was developed based
only on the existing practices at Hospital Conceição, the analysis made by the
professionals of HSL yielded many ideas for our agent to be more useful in its
planned use in those hospitals.

Through this research, we created a domain knowledge and developed a plan-
ning domain for PDDL and HTN planners that can also be useful for other
projects that involve automated planning and plan validation.

As future work, we intend to investigate argumentation techniques [14–16]
to implement more interactive agents and explain the allocation suggestions as
requested by the interviewees. We believe that with the use of argumentation
techniques, intelligent agents will be able to reason about beds and patients’
relations, thus providing useful explanations that will help the users by saying
why a particular suggestion is being made. We intend to integrate our approach
with the Hospitals’ information systems, which will allow us to make several
queries as suggested by the experts during the evaluation phase. Moreover, we
aim to use natural language models to allow the chatbot to answer questions
about a patient’s evolution.

Acknowledgements. This research was partially funded by CNPq and CAPES –
Finance Code 001.
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Abstract. Argumentation-based persuasive negotiation is a form of
negotiation dialogue in which agents, with different interests and goals,
exchange proposals that are supported by rhetorical arguments such as
threats, rewards, or appeals. Besides rhetorical arguments, additional
kinds of illocutions may also be exchanged during the dialogue, for
instance, agents may ask for explanations, give explanations, or attack
(or contradict) previous arguments. This paper presents a formal pro-
tocol for argumentation-based persuasive negotiation dialogues in which
a proponent agent tries to persuade his opponent to perform a given
action and the opponent tries to maintain his position. The protocol is
modelled as a dialogue game (i.e. the interactions between the propo-
nent and the opponent are governed by a set of rules) and the outcome
of the dialogue is determined by applying an argumentation semantics.
We prove the soundness and completeness of our proposal and illustrate
the proposed protocol by using an example.

Keywords: Persuasive negotiation · Intelligent agents · Dialogue
protocol · Argumentation-based dialogues · Rhetorical arguments

1 Introduction

Negotiation is a key form of interaction among agents that can be used for
resolving conflicts and reaching agreements. Formal argumentation is a process
based on the construction and comparison of arguments considering the con-
flicts that may emerge among them. Such conflict are called attacks. The idea
is to determine set(s) of non-conflicting arguments (called extensions), which
are considered acceptable or justified. The function in charge of calculating the
extensions is called semantics [13].

Some works on negotiation argue that argumentation – using explanatory
arguments – allows that an agent acquire additional information about his oppo-
nents, which can be used for attacking his opponent’s proposals or justifying his
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own proposals (e.g., [3,12,26,29]). Besides explanatory arguments, there exist
other kinds of arguments that can be used in negotiation dialogues and act as
persuasive elements aiming to force or convince an opponent to accept readily a
given proposal, these are called rhetorical arguments (e.g., in [20–22]). Accord-
ing to Ramchurn et al. [27], a negotiation involving these kinds of arguments is
called persuasive negotiation.

We can describe the rhetorical arguments as follows: (i) threats, which try to
persuade an opponent agent by using the argument that something negative will
happen to him if he does not accept to do the requirement sent by the proponent;
(ii) rewards, which try to persuade an opponent by using the argument that
something positive will happen to him if he accepts to do the requirement sent
by the proponent; and (iii) appeals, which try to persuade an opponent in the
same form than rewards, but this positive event will depend on the opponent;
hence, appeals can be seen as self-rewards [4].

Rhetorical arguments have been studied in terms of speech acts (e.g., [27])
and in other articles, a logical formalization has been given (e.g., [5,6]). It was
also studied how to evaluate their strength values (e.g., [6,21,22]). However, to
the best of our knowledge, no study about a protocol involving these arguments
has been proposed.

In order to better understand the problem, imagine a scenario where two
agents, Maria (M) and Carlos (C), are discussing about household chores. Maria
is trying to persuade Carlos to do the cleaning of their apartment. The following
dialogue shows how agreement is reached:
(1) M: Carlos, could you please do the cleaning?
(2) C: No, I can not, I have to work.
(3) M: If you do the cleaning, I could help you with your reports and you can
finish your work early.
(4) C: You can not help me.
(5) M: Why?
(6) C: Because these reports are about a topic you do not know.
(7) M: Well, if you do not do the cleaning, I will not go to your mother’s house
on Saturday.
(8) C: If you will not go to my mother’s house, I will not talk to her about the
work for your brother.
(9) M: That is not longer necessary, my brother got a job yesterday.
(10) C: OK. You win!

In this example, Maria succeeds in persuading her husband Carlos to do the
cleaning of their apartment. On the first attempt to persuade Carlos, Maria uses
a reward (line 3), which is not accepted, resulting in an attack to her reward (line
4). In this settings, an attack is a contradictory statement. Since her reward was
not successful, she uses a more powerful argument, i.e. a threat(line 7), and then
he also answers with another threat (line 8), which we can call a counter-threat.
She answers attacking Carlos’ counter-threat (line 9). Notice that this attack is
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not a counter-threat, which indicates that there is more than one way to attack
a rhetorical argument. Finally, Carlos accepts to do the cleaning.

Besides rhetorical arguments and their corresponding attacks, we can notice
that an explanation is required during the conversation (line 5), this means that
agents can make questions to each other and can use explanatory arguments
to justify their opinions. Figure 1 shows the outline of the dialogue in terms of
rhetorical arguments, attacks, and other illocutions.

Maria   Carlos

(1)                                         REQUEST (Cleaning)

REJECT (Cleaning)                           (2)

(3)                                         REWARD

ATTACK TO REWARD                                  (4)

(5)                             ASK FOR EXPLANATION

EXPLANATORY ARGUMENT                         (6)

(7)                                           THREAT

COUNTER-THREAT                                 (8)

(9)                        ATTACK TO COUNTER-THREAT

ACCEPT (Cleaning)                              (10)

Fig. 1. Outline of the dialogue between Maria and Carlos, which ends successfully for
Maria.

From this scenario, we can observe that during a persuasive negotiation dia-
logue agents can exchange rhetorical arguments, attacks to rhetorical arguments,
questions, explanatory arguments, and attacks to explanatory arguments.

Most of the research about protocols in literature is focused on negotiation
(e,g., [1,11,16,28]), some others on persuasion (e.g., [10,17]), and some others
on argumentation-based dialogues (e.g., [8,9,14,23,25,30,31]). Although some
of these protocols take into account explanatory arguments and attacks among
them, these are not embedded in a persuasive negotiation dialogue (according
to the definition of [27]) and do not interact with other kinds of arguments.

Thus, the research questions that are addressed in this paper are:

1. How can rhetorical arguments, explanatory arguments, attacks, and other
illocutions be combined in a coherent dialogue?

2. How can argumentation techniques be used in this kind of dialogue?
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In order to address the first question, we propose a protocol that has a
dialogue game form where utterances are viewed as moves in a game, which is
guided according to a defined set of rules. According McBurney and Parsons
[18], formal dialogue games allow sufficient flexibility of expression while avoid
state-space explosion. Regarding the second question, an important part of a
dialogue is the outcome. In this case, the outcome has to determine the final
status of the dialogue (that is, it ends with an agreement or not), the winner
(if there is an agreement), and the set of commitments the winner agent has to
fulfil after the dialogue, for example, Maria will go to the house of the mother-
in-law since Carlos will do the cleaning. We will use argumentation semantics to
determine the outcome of the dialogue.

Next section presents the main concepts about argumentation and argumen-
tation semantics. Section 3 concerns with the type of arguments and attacks.
Section 4 presents the proposed protocol, that is, the rules that govern the inter-
actions among the agents, the argumentation framework that determines the
outcome of the dialogue and the main properties of the approach. In Sect. 5, we
illustrate our new protocol by applying it to the example given in Introduction.
Finally, Sect. 6 is devoted to conclusions and future work.

2 Background

In this section, we present the concepts of argumentation framework and the
acceptability semantics for linear dialogues.

An argumentation framework consists of a set of arguments and a attack
relation between them. The following definitions were extracted from [2] and
[13].

Definition 1. (Argumentation framework) An argumentation framework is
an ordered pair AF = 〈ARG, R〉, where ARG is a finite set of arguments and R a
binary relation on ARG (i.e., R ⊆ ARG× ARG). We call R an attack relation and
(A,B) means that argument A attacks argument B.

Before presenting the acceptability notion, it is important to study linear dis-
cussions. A linear discussion is a sequence of arguments such that each argument
attacks the argument preceding it in the sequence. This sequence will determine
which arguments can be considered acceptable and which cannot.

Definition 2. (Linear discussions) Let AF = 〈ARG, R〉 be an argumentation
framework and A ∈ ARG. A linear discussion for A in ARG is a sequence s =
〈A1, ..., An〉 of elements of ARG (where n is a positive integer) such that A1 = A
and ∀i ∈ {2, 3, ..., n} (Ai, Ai−1) ∈ R.

Next we present the semantics, which determines what arguments are consid-
ered acceptable or justified. First, it is necessary the notion of supporters. Given
three arguments A1, A2, and A3. If (A2, A1) ∈ R and (A3, A2) ∈ R, then A3

supports A1. The acceptability notion is directly related to argument A because
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it represents the central point of the discussion. Thus, given a sequence s, we
can say that ∀Ai ∈ s, Ai supports A if i is odd and it attacks A if i is even. Let
sup(A) return all the supporters of A1 and att(A) return all its attackers.

Definition 3. (Semantics) Let AF = 〈ARG, R〉 be an argumentation frame-
work, A ∈ ARG, s a sequence for A, and n the length of s. It holds that (i) if
n is odd, then A ∪ sup(A) are acceptable, or (ii) if n is even, then att(A) are
acceptable.

Let SEM(AF) be a semantics function that returns the set of acceptable argu-
ments.

3 Building Blocks

In this section, we present the topic language used to represent the content of
illocutions exchanged by agents. We also present the definitions of the kinds of
arguments that can be exchanged and study the possible attacks to each of them.

According to Van Veenen and Prakken [30], formal dialogue games have a
topic language Lt, expressed in a certain logic, and a communication language
Lc with a protocol P , which specifies the allowed moves at each point in a
dialogue. We can say that a persuasive negotiation dialogue happens between
a proponent agent P and an opponent agent O about a topic t ∈ Lt. In this
work, the topic language Lt is specified using the classical logical language.
Symbols ∧,∨ and ¬ denote the logical connectives conjunction, disjunction, and
negation, respectively. Besides, 
 stands for the classical inference and ≡ logical
equivalence. From Lt we can distinguish the three following sets of formulas:

– G contains the goals the agent pursues;
– GO contains what the agent believes the goals of the other agent are (that

is, his opponent’s goals); and
– K is the knowledge base of the agent, which gathers the information the agent

has about the environment.

Goals and opponent’s goals are represented with positive literals1 from Lt.
Besides, G and GO are finite sets such that G ∩ GO = ∅.

Now, let us present the definitions of arguments, explanatory arguments,
rhetorical arguments, and attacks involved during a persuasive negotiation dia-
logue. In what follows, for a given argument, the function SUPP returns all the
beliefs of K (called support) used to build the argument and CONC returns its
conclusion. The first one is a basic definition where any element of K can be an
argument whereas explanatory and rhetorical arguments have a deductive form.
Indeed, a fact or a goal is entailed from the support.

1 A literal is either an atomic formula or the negation of an atomic formula. When a
literal is an atomic formula, we say that it is a positive literal, and when a literal is
the negation of an atomic formula, we say it is a negative literal.
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Definition 4. (Argument [19]) Let K be a knowledge base. An argument A is
ϕ if ϕ ∈ K with SUPP(A) = {ϕ}, CONC(A) = ϕ.

Explanations are the most common category of arguments. They represent
the reasons to believe in a fact.

Definition 5. (Explanatory argument [7]) Let K be the knowledge base of
an agent. An explanatory argument is a tuple A = 〈S , h〉 such that (i) S ⊆ K,
(ii) S 
 h, and (iii) S is consistent and minimal.2 With: SUPP(A) = S and
CONC(A) = h.

Unlike explanatory arguments, rhetorical arguments are also made up by
goals and opponent’s goals.

Definition 6. (Rhetorical arguments [7]) Let K be the knowledge base of
an agent, G be his goals base, and GO be his opponent’s goals base. A threat,
reward, or appeal is a triple A = 〈S , g, go〉 such that (i) S ⊆ K, (ii) g ∈ G,
(iii) go ∈ GO, and (iv) S is consistent and minimal. Besides:

– In the case of threats, it holds that S ∪ {¬g} 
 ¬go
– In the case of rewards and appeals, it holds that S ∪ {g} 
 go.

With: SUPP(A) = S, CONC(A) = g, and OPGOAL(A) = go returns the goal that is
being threatened, rewarded, or appealed.

It is also necessary to define the attacks each kind of argument may receive.
An attack relation between two arguments A and B denotes the fact that these
arguments cannot be accepted simultaneously since they contradict each other.
In the case of explanatory arguments, two kinds of attacks can be determined,
undercuts and rebuttals. An undercutting argument is an argument whose con-
clusion contradicts some of the elements of the support of another argument,
and a rebutting argument is an argument whose conclusion is the negation of
the conclusion of another argument. Formally:

Definition 7. (Attacks to explanatory arguments [7]) Let 〈S , h〉 and
〈S ′, h′〉 be two explanatory arguments:

– 〈S ′, h′〉 undercuts 〈S , h〉 iff ∃h′′ ∈ S such that h′ ≡ ¬h′′.
– 〈S ′, h′〉 rebuts 〈S , h〉 iff h ≡ ¬h′.

Regarding attacks to rhetorical arguments, we have distinguished three types
of attacks. The first one occurs when a threat is attacked by another threat (we
can call it a counter-threat). In this case, there is no a logical contradiction but
we can notice that the goal threatened by an agent is used by the opponent to
construct another threat as can be observed in lines (7) and (8) of the example
given in Introduction.

2 Minimal means that there is no S ′ ⊂ S such that S � h and consistent means that
it is not the case that S � h and S � ¬h, for any h [15].



24 M. Morveli-Espinoza et al.

Definition 8. (Counter-threat) Let G be the set of goals of an proponent
agent P , thP = 〈S , g, go〉 be a threat of P , and thO = 〈S ′, g′, go′〉 be a threat
of opponent agent O. We say that thO counter-threatens thP when g′ = go and
go′ ∈ G.

The second type of attack occurs when the opponent answers disesteeming
his threatened/rewarded/appealed goal and denies his interest in achieving it.
For example, line (9) of the example given in Introduction. In line (8), Carlos
threatens Maria with not talking with his mother about a job for Maria’s brother
and in line (9), she says that her brother already got a job. This attack has the
form of an explanatory argument.

Definition 9. (Disesteemation) Let A = 〈S , g, go〉 be a rhetorical argument.
An argument 〈S ′, g′〉 disesteems A when g′ = ¬go.

To the best of our knowledge, the two previous types of attacks were not
studied before. On the other hand, a rhetorical argument can also be undercut.

4 The Proposal

In this section, we present the language and the rules for the dialogue game.
Besides, we present the argumentation framework that represents the dialogue
and determines its outcome.

4.1 The Proposed Protocol

The game is mainly based on the following ideas. Each move in the dialogue,
except the initial one, replies to the previous move of the other agent (we refer to
the previous move as its target). In [24], the author proposes the idea of attack
and surrender as a categorization of the possible replies to previous moves during
the dialogue. A reply is a surrender when it is not against the previous move;
otherwise, it is an attack. In summary, a reply can either be an attack or a
surrender.

Table 1 presents the persuasion communication language Lc, which takes
into account the attacks and the surrenders. In this table, A, B, C, D, E and
C ′ are arguments. Let us recall that an attack relation between two arguments
denotes the fact that these arguments cannot be accepted simultaneously since
they contradict each other. Following this idea, we can say that rejecting a
request is an attack because it is a contradiction. We can also say that a rhetorical
argument attacks a rejection because it defends a different position. Thus, we will
consider an attack those defined in previous section – which are more related to
logical inconsistency – and also those that support a different position during the
dialogue. It is reasonable to think that all the illocutions used by the proponent
P aim to support his position, which is contrary to the position of the opponent
O. In the attack column, besides the possible attacks, the conditions that relate
the attacked with its attacker are stated. In order to standardize the content of
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speech acts, all of them are arguments; whether they are explanatory, rhetorical,
or the basic ones according to Definition 4.

The idea is that the proponent agent uses rhetorical arguments to try to con-
vince his opponent. Thus, in this first version of the protocol only the proponent
can use rhetorical arguments, that is threats, rewards, and appeals. Counter-
threats act as attacks, in this sense, these can be used by the opponent. After a
rhetorical argument, the opponent can accept the proposal, send an attack, or
withdraw from the dialogue. The last case, may happen when he has no attack to
send but does not want to accept the proposal or when he has an explanation for
a questioning. Note that attacks can also be attacked and can be questioned in
an element of their support. Only counter-threats cannot be questioned because
it is based on goals and not in beliefs.

Table 1. Speech acts and possible replies in Lc

Speech act Attack Surrender

request(A) reject(A) accept(ϕ)

(ϕ = CONC(A))

reject(A) threat(B), reward(B), or appeal(B) withdraw

(CONC(B) = CONC(A))

threat(B) counter-threat(C) | CONC(C) = OPGOAL(B) accept(ϕ)

undercut(C) | ¬CONC(C) ∈ SUPP(B) (ϕ = CONC(B))

disesteemate(C) | CONC(C) = ¬OPGOAL(B) withdraw

reward(B) undercut(C) | ¬CONC(C) ∈ SUPP(B) accept(ϕ)

appeal(B) disesteemate(C) | CONC(C) = ¬OPGOAL(B) (ϕ = CONC(B))

withdraw

counter-threat(C) counter-threat(C′) | CONC(C′) = OPGOAL(C) accept(ϕ)

undercut(C′) | ¬CONC(C′) ∈ SUPP(C) (ϕ = CONC(C))

disesteemate(C′) | CONC(C′) = ¬OPGOAL(C)

threat(B), reward(B), appeal(B) withdraw

undercut(C) undercut(C′) | ¬CONC(C′) ∈ SUPP(C)) withdraw or

rebuttal(C) rebuttal(C′) | ¬CONC(C′) ≡ ¬CONC(C)) concede(ϕ)

disesteemate(C) why(D) | CONC(D) ∈ SUPP(C)) (ϕ = CONC(C))

threat(B), reward(B), appeal(B)

why(D) explanation(E) | CONC(E) = CONC(D) withdraw

undercut(C) | ¬CONC(C) ∈ SUPP(E))

rebuttal(C) | ¬CONC(C) ≡ ¬CONC(E))

explanation(E) why(D) | CONC(D) ∈ SUPP(E)) concede(ϕ)

threat(B), reward(B), appeal(B) | (ϕ = CONC(E))

(CONC(B) = CONC(A)) withdraw

accept(ϕ)

concede(ϕ) end of dialogue

withdraw



26 M. Morveli-Espinoza et al.

The third component of a dialogue game is the protocol, which specifies the
allowed moves at each point in a dialogue. Thus, let us define first of all what a
move is.

Definition 10. (Move) A move is a tuple m = 〈id, sd, tg, sp〉 where:

– id ∈ N is the identifier of the move;
– sd ∈ {P,O} is the sender of the message, i.e. the agent that makes the move;
– tg ∈ N is target of the move, i.e. a previous move to which it is directed. The

target of a move is the identifier of some earlier move in the dialogue;
– sp ∈ Lc is an speech act.

Let M be a set of moves. As for notation, we use id(m), sd(m), tg(m), and
sp(m) to refer to each of the components of a given move m. For the sake of
simplicity, when we want to refer to the i-th move in a sequence, we use mi.
Besides, we use ARGUM(sp(m)) to refer to the argument associated to a given
speech act.

A dialogue can be seen as a set of moves, which fulfil some conditions. Let
us now present the formal definition of dialogue.

Definition 11. (Dialogue) A dialogue D between two agents P and O is a
finite sequence 〈m1, ...,mn〉, such that:

– m1 = 〈1, P,−, request(A)〉. It means that the first utterance is sent by the
proponent agent and has to be a request;

– The content of mk is request(A) iff k = 1. It means that a request can only
be sent in the first move;

– tg(m1) = 0. It means that the first utterance has no target;
– ∀k > 1, it holds that tg(mk) = j, for j = k − 1. It means that the target of a

move is always the previous move.

Let D stand for the set of all dialogues.

In the illustrative example, we can see that the proponent and the opponent
agents take the turn to speak one after another. These moves are controlled by a
function that determines which of the agents will make the next move. Take into
account that such move must agree with the possible replies defined in Table 1.
Thus, a turn-taking function is a mapping T : D → {P,O}, such that given a
dialogue D = 〈m1, ...,mi〉, it holds that (i) T (∅) = P , (ii) T (D) = P if i is even,
and (iii) T (D) = O if i is odd. We can notice that our definition of turn-taking
forces a strict interleaving between agents P and O.

Next, we define our protocol in terms of legal moves the agents can perform.
In Table 1, we can notice that the answer for a speech act why(A) is an explana-
tion for it; however, there is a need for a stop condition COND in order to avoid
infinite questioning. This condition can be a maximum number of rounds.

Definition 12. (Legal-move function) A legal-move function is a mapping
P : D → 2M such that, given D = 〈m1, ...,mn〉 ∈ D, for all m ∈ P(D), the
following rules must be satisfied:
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– R1 : sd(m) = T (D);
– R2 : sp(m) is a legal speech act after D (considering Table 1);
– R3 : If ∃mi|tg(mi) = mk – for 1 < i ≤ n, k < i – then �mj |tg(mj) = mk,

for i �= j;
– R4 : If sp(m) = threat(A), sp(m) = reward(A), or sp(m) = appeal(A), then

sd(m) = P ;
– R5 : If sp(m) = why(A) AND COND == true, then the sender agent has to

change his move and use another speech act.

Rule 1 says that the sender of a move has to obey the turn-taking function.
Rule 2 has to do with the valid answers to speech acts. Rule 3 means that
there is no move with the same target in a dialogue. Rule 4 ensures that only
the proponent can send a rhetorical argument. Finally, rule 5 concerns with
avoiding infinite questions.

Besides the rules related to legal moves, it is important to define some rules
about the beginning and the end of the dialogue.

– R6 : If id(m) = 1, then sd(m) = P ;
– R7 : If id(m) = 1, then sp(m) = request(A);
– R8 : If sp(m) = accept(ϕ), then D ends with an agreement;
– R9 : If sp(m) = concede(ϕ), then D ends with an agreement
– R10 If P(D) = withdraw, then D ends without an agreement;

Rule 6 says that the proponent agent always begins the dialogue and rule 7
asserts that the first movement is a request. Rules 8, 9, and 10 have to do with
the termination of a dialogue.

A dialogue system also has effect or commitment rules, which specify
the effects of moves on the participants’ commitments. A commitment store
gathers the statements each agent have made and the challenges they have issued.
Commitment rules define how these commitment stores have to be updated and
whether particular illocutions can be uttered at a particular time.

Let CS(P ) and CS(O) be the commitment stores of the proponent and the
opponent agent, respectively. The set CR of commitment rules is the followings:

1. CR1 : If sp(mi) = why(A) and sd(mi) = P then CSi(P ) = CSi−1(P )
2. CR2 : If sp(mi) = reward(A) and sd(mi) = P then CSi(P ) = CSi−1(P ) ∪

SUPP(A) ∪ {CONC(A)} ∪ {OPGOAL(A)}
3. CR3 : If sp(mi) = threat(A) and sd(mi) = P then CSi(P ) = CSi−1(P ) ∪

SUPP(A) ∪ {CONC(A)} ∪ {¬OPGOAL(A)}
4. CR4 : If sp(mi) = explanation(A) and sd(mi) = P then CSi(P ) =

CSi−1(P ) ∪ SUPPORT(A) ∪ {CONC(A)}
5. CR5 : If sp(mi) = accept(ϕ) and sd(mi) = P then CSi(P ) = CSi−1(P )∪{ϕ}

It also holds that: (i) CR2 also holds appeal(A) (ii) CR2 also holds
counter-threat(B); (iii) CR4 also holds for undercut(B), rebuttal(B), and
disesteemate(B); (iv) CR5 also holds for concede(ϕ); and (v) these rules hold
for CS(O). Finally, it holds that both CS(O) and CS(P ) are consistent.
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4.2 Argumentation Framework and Dialogue Outcome

In this subsection, we present the argumentation framework for a persuasive
negotiation dialogue and how to determine the outcome of the dialogue based
on the semantics defined in Sect. 2.

Definition 13. (Dialogue Argumentation Framework) An AF for a nego-
tiation persuasive dialogue is a tuple DAF = 〈ARG, R,D, CS(P ), CS(O)〉 such
that:

– D ∈ D is a dialogue constructed under the rules of protocol P and the com-
mitment rules CR;

– CS(P ) and CS(O) are the commitments sets of the proponent and the oppo-
nent, respectively;

– ARG = {ARGUM(sp(mi)) | mi ∈ D, for 1 ≤ i < n};
– R = {(B,A) | A = ARGUM(sp(mj−1)) and B = ARGUM(sp(mj)), for 2 ≤ j ≤

n − 1};

Recall that the speech acts that end a dialogue are not associated with an
argument, which is reflected in the set of arguments. We can notice that ARG and
R form a linear discussion with a sequence s = 〈A1, ..., An−1〉 where n is the
number of movements of D, and A1 = ARGUM(sp(m1)). This means that we can
apply the semantics given in Definition 14 in order to define the acceptable argu-
ments and based on these arguments, we can define the outcome of the dialogue,
that is, the winner of the dialogue. If the proponent wins the dialogue (that
is, he persuades his opponent), then the opponent has to perform the required
action and the proposed threat, reward, or appeal has to be fulfilled. Note that
the proponent can send more than one rhetorical argument, in this case, the
last rhetorical argument sent during the dialogue is the one that has to be ful-
filled. On the other hand, when the proponent loses the dialogue, the opponent
does not have to perform the required action and no offer has to be fulfilled.
Before define the outcome of the dialogue, we have to make a modification on
the semantics due to the condition of the last movement.

Definition 14. (DAF Semantics) Let DAF = 〈ARG, R,D, CS(P ), CS(O)〉
be a dialogue argumentation framework, A ∈ ARG, s a sequence for A, and n =
|ARG| + 1:

– If n is odd and sp(mn) = accept(ϕ) (or sp(mn) = concede(ϕ)), then att(A)
are acceptable.

– If n is even and sp(mn) = accept(ϕ) (or sp(mn) = concede(ϕ)), then A ∪
sup(A) are acceptable.

– If sp(mn) = withdraw, then there are no acceptable arguments.

Let SEMDAF(DAF) be a semantics function that returns the set of acceptable
arguments.

We can now define the outcome of the dialogue.
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Definition 15. (Dialogue Outcome) Let DAF = 〈ARG, R,D, CS(P ), CS(O)〉
be a dialogue argumentation framework, A ∈ ARG is an argument that represents a
required action, and P and O the proponent and the opponent agent, respectively:

– If A ∈ SEMDAF(DAF) then P wins the dialogue, and O has to perform CONC(A).
– If A /∈ SEMDAF(DAF) then P loses the dialogue.

4.3 Properties of the Proposal

In this section, we will study some properties of our proposal. The aim is to
evaluate its legality in the sense of fulfillment of the rules and the soundness and
completeness of the argumentation process.

The first proposition concerns with the legality of the moves exchanged
during the dialogue.

Proposition 1. Given D = 〈m1, ...,mn〉, and D′ = 〈m1, ..., nm〉, where 1 ≤
m ≤ n and considering that P(〈m1, ...,mm〉) = mm+1 is compatible with T and
fulfils all of the previously established rules. We can say that if ∀m, D′ is a legal
dialogue, then D is also a legal dialogue.

Next propositions concerns with the soundness and completeness of the
argumentation process.

Proposition 2. DAF = 〈ARG, R,D, CS(P ), CS(O)〉 be a dialogue argumenta-
tion framework:

– If ∀A ∈ ARG, if A ∈ SEM(DAF), then ∀A′ such that A′ = ARGUS(sp(m′)),
A = ARGUS(sp(m)), and sd(m) = sd(m′), A′ ∈ SEM(DAF).

– ∀A,A′ ∈ SEM(DAF) such that A′ = ARGUS(sp(m′)) and A = ARGUS(sp(m)),
sd(m) = sd(m′).

The first item say that if an argument sent by one the agents is acceptable, then
all the arguments sent by the same agent have to be acceptable as well. The
second item says that all acceptable arguments were sent by the same agent.

5 Applying the Proposal to the Illustrative Example

In this section, we evaluate if the example given in Introduction fulfills the rules
of the protocol. Besides, we determine the outcome of the dialogue.

We use P to refer to Maria because her role in the dialogue is to be the
proponent and O to refer to Carlos because his role in the dialogue is to be the
opponent. Next, we have the set of moves:

m1: 〈1, P, 0, request(〈{cleaning}, cleaning〉)〉
m2: 〈2, O, 1, reject(〈{cleaning}, cleaning〉)〉
m3: 〈3, P, 2, reward(〈{cleaning → can help, can help → finish work},

cleaning, finish work〉)〉
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m4: 〈4, O, 3, undercut(〈{¬can help},¬can help〉)〉
m5: 〈5, P, 4, why(〈{¬can help},¬can help)〉
m6: 〈6, O, 5, explanation(〈{work,work → ¬cleaning},¬cleaning〉)〉
m7: 〈7, P, 6, threat(〈{¬cleaning → ¬going mother house}, cleaning, going

mother house〉)〉
m8: 〈8, O, 7, counte-threat(〈{¬going mother house → ¬talking about

brother work}, going mother house, talking about brother work〉)〉
m9: 〈9, P, 8, disesteemate(〈{brother has work → ¬talking about brother

work},¬talking about brother work〉)〉
m10: 〈10, O, 9, concede(¬talking about brother work)〉

We have a dialogue D = {m1,m2,m3,m4,m5,m6,m7,m8,m9,m10} where
the request is the first move and the target of every move is the previous move.
Regarding the rules of the legal-move function, we can say that all the moves of
D follow these rules.

Let us now present the commitments sets:

– CS(P ) = {cleaning → can help, can help → finish work, cleaning,
finish work, ¬cleaning → ¬going mother house,¬going mother house,
brother has work → ¬talking about brother work, ¬talking about brother
work}.

– CS(O) = {¬can help, work,work → ¬cleaning,¬cleaning,¬going mother
house → ¬talking about brother work, ¬talking about brother work}

We can notice that both commitment sets are consistent. Note also that
CS(P ) includes the requested action as a positive literal (cleaning) whereas
CS(O) includes the requested action as a negative literal (¬cleaning).

Now, let us define the dialogue argumentation framework: DAF =
〈ARG, R,D, CS(P ), CS(O)〉 where ARG = {A1, A2, A3, A4, A5, A6, A7, A8, A9}
such that each argument is associated to the number of the move in
the dialogue D; R = {(A2, A1), (A3, A2), (A4, A3), (A5, A4), (A6, A5), (A7, A6),
(A8, A7), (A9, A8)}; and D and the commitment sets were presented above.

The result of applying the semantics is: SEMDAF(DAF) = {A1, A3, A5, A7,
A9}. We can now determine the outcome of the dialogue. We can notice that
A1 ∈ SEMDAF(DAF), this means that P (Maria) wins the dialogue and O (Carlos)
has to do the cleaning of the apartment (cleaning).

6 Conclusions and Future Work

In this paper, we have presented a protocol for a persuasive negotiation dialogue.
In the resulting dialogue game, agents can exchange rhetorical and explanatory
arguments, can utter attacks for such arguments, can question an element of
explanatory arguments, and also can use negotiation speech acts to request,
reject, and finish the dialogue. The use of additional kinds of illocutions enriches
the dialogue and allows the agents to not only try to persuade the other party but
to defend their positions. The proposed protocol is also flexible since it allows for
different alternative replies, which were categorized as attacks and surrenders.
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For future research, we propose two possible directions: (i) the first one is to
improve the protocol itself, for example, allowing that the target of an utterance
to be any of the earlier moves and (ii) the second one is extending the protocol
for more than two agents, which also has consequences on the possible attacks
for arguments.
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Abstract. Stochastic Value Gradient (SVG) methods underlie many
recent achievements of model-based Reinforcement Learning agents in
continuous state-action spaces. Despite their practical significance, many
algorithm design choices still lack rigorous theoretical or empirical jus-
tification. In this work, we analyze one such design choice: the gradi-
ent estimator formula. We conduct our analysis on randomized Linear
Quadratic Gaussian environments, allowing us to empirically assess gra-
dient estimation quality relative to the actual SVG. Our results justify
a widely used gradient estimator by showing it induces a favorable bias-
variance tradeoff, which could explain the lower sample complexity of
recent SVG methods.

Keywords: Reinforcement learning · Model-based · Machine learning

1 Introduction

Model-Based Reinforcement Learning (MBRL) [16,20] is a promising framework
for developing intelligent systems for sequential decision-making from limited
data. Unlike in model-free Reinforcement Learning (RL) methods, MBRL agents
use collected experiences to fit a predictive model of the environment. The agent
can use the model to evaluate potential action sequences, saving costly trial-
and-error experimentation in the real world, or to estimate quantities useful
for improving its learned behavior. Stochastic Value Gradient (SVG) methods
belong to the latter category, using the model to estimate the value gradient.
While model-free methods use the score-function estimator of the value gradient,
SVG methods can leverage the model to produce gradients via the pathwise
derivative estimator, usually found to be more stable in practice [23]. Recently
proposed RL agents using the SVG approach have demonstrated its effectiveness
in learning robotic locomotion from data with unprecedented sample-efficiency
[1,4,8], i.e. with few collected experiences.

Although SVG methods have been validated empirically, some of the algo-
rithm design choices still lack rigorous theoretical or empirical justification. As
recent work on model-free methods has shown, there can be a gap between the
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theoretical underpinnings of RL methods and their behavior in practice, often
due to code-level optimizations [6,11,13]. Moreover, it is common for theoret-
ically promising MBRL algorithms to fail in practice [14], although negative
results are not often publicized.

In this work, we take a step towards a better understanding of the core
tenets behind SVG methods by analyzing an important algorithm design choice:
the gradient estimator computation [17,23]. We aim to identify the key practi-
cal differences between the theoretically sound, unbiased formulation from the
Deterministic Policy Gradient (DPG) framework [24] and an estimator more
often used in SVG methods [1,4,8] that deviates from traditional policy gradi-
ent theory. The former represents an approach that’s theoretically sound, but
lacks empirical validation, while the latter generalizes the methods that devi-
ate from the theory, but achieve state-of-the-art results in continuous control
benchmarks.

We evaluate gradient estimation quality and policy optimization performance
on Linear Quadratic Gaussian (LQG) regulator environments. The LQG frame-
work is extensively studied in the Optimal Control literature and is a special class
of RL with continuous actions (a.k.a. continuous control), where SVG methods
seem to excel. LQG has been proposed as a simple, yet nontrivial class of continu-
ous control problems to help distinguish the various approaches to RL [21]. More
importantly, LQG has a simple environment formulation, allowing us to com-
pute the ground-truth policy performance and gradient, an ability not present in
more complicated, nonlinear benchmarks for continuous control [28]. Thus, we
can perform a more rigorous empirical assessment of gradient estimation quality
and policy optimization performance within the LQG framework.

Therefore, our main contribution in this paper is a careful empirical analysis,
using the LQG framework, of the practical differences between gradient estima-
tors for SVG methods. The rest of this paper is organized as follows. Section 2
outlines related work on SVG methods and the gap between theory and prac-
tice of RL. Section 3 introduces the reader to the minimal technical background
on RL, LQG and SVG, required to follow our analysis. Section 4 describes the
scope of the empirical analysis and the experimental setup developed accord-
ingly. Section 5 contains the main experiments, results, and our analysis thereof.
Finally, we summarize our observations in Sect. 6 and point to possible future
work to explore remaining gaps in our knowledge of the core tenets of SVG
methods.

2 Related Work

Model-based policy gradients have been recently used in a variety of RL algo-
rithms for continuous control. The PILCO algorithm is one of the first to leverage
a learned model’s derivatives to compute the policy gradient with few samples,
but its use of Gaussian processes hinders scalability to larger problems [5]. The
original SVG paper introduced gradient estimation with stochastic neural net-
work models using the reparameterization trick, an approach scalable to higher-
dimensional problems [9]. Dreamer and Imagined Value Gradients explore SVGs
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with latent-space models [2,8]. Model-Augmented Actor-Critic (MAAC) and
SAC-SVG extend the SVG framework to that of maximum-entropy RL to incen-
tivize exploration and stabilize optimization [1,4]. However, the computation of
the gradient is not studied in isolation or contrasted with other gradient estima-
tion methods. Our work analyses, in detail, the gradient computation used in
recent SVG-style algorithms that show a high level of performance with efficient
use of data [1,4,8].

A few recent works have analyzed the gap between theory and practice in dif-
ferent areas of RL, highlighting our poor understanding of current methods. Reli-
ability and reproducibility concerns regarding modern RL methods have been
raised by several works [3,10,12], indicating a disconnect between the theory
motivating these algorithms and their behavior in practice. Code-level optimiza-
tions have been found to contribute more to successful policy gradient methods
than the choice of general training algorithm [6]. Closest to our work is that of
Ilyas et al. [11], which shows that model-free policy gradient algorithms succeed
in optimizing the policy despite having poor gradient estimation quality metrics
in the relevant sample regime. Our work is, to the best of our knowledge, the
first to propose a fine-grained analysis of gradient estimation in SVG methods
using LQGs to provide solid references of their expected behavior.

3 Background

3.1 A Brief Introduction to RL

We consider the agent-environment interaction modeled as a continuous Markov
Decision Process (MDP) [25], defined as the tuple (S,A, R, p∗, ρ,H), with each
component described in what follows. Interaction with the environment occurs
in a sequence of discrete timesteps t ∈ T = {0, . . . , H −1}, where H ∈ N denotes
the time horizon, after which an episode of interaction is over. At every timestep
t, the agent observes the current state st ∈ S ⊆ R

n from the set of possible states
of the environment. It must then select an action at ∈ A ⊆ R

d from the set of
possible actions to be executed. The environment then transitions to the next
state by sampling from the transition probability kernel, st+1 ∼ p∗(· | st,at),
and emits a reward signal using its reward function, rt+1 = R(st,at). The initial
state is sampled from the initial state distribution, s0 ∼ ρ(·).

A policy defines a mapping from environment states to actions, at = μ(st).
The objective of an RL agent is to find a policy that produces the highest cumu-
lative reward, or return, from the initial state: J(μ) = E[

∑H−1
t=0 R(st,at)]. Here,

the expectation is implicitly w.r.t. the initial state distribution and the sequen-
tial application of st+1 ∼ p∗(· | st, μ(st)). The key difference between Optimal
Control and RL, both frameworks for optimal sequential decision making, is
that in the former the agent has access to the full MDP, while in the latter
the agent only knows the state and action space and has to learn its policy by
trial-and-error in the environment.
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3.2 Linear Quadratic Gaussian Regulator

The LQG is a special class of continuous MDP in which the transition kernel is
linear Gaussian and the reward function is quadratic concave [27]:

p∗(· | st,at) = N (· |Fsst + Faat,Σ) (1)

R(st,at) = − 1
2

(
sᵀ
t Cssst + aᵀ

t Caaat

)
. (2)

LQGs are often used as a discretization of continuous-time dynamics described
as linear differential equations, such as those of physical systems.

An important class of policies in this context is that of time-varying (a.k.a.
nonstationary) linear policies:

μθ(st) = Ktst + kt , (3)

where Kt ∈ R
d×n and kt ∈ R

d, a.k.a. the dynamic and static gains respectively
in the optimal control literature. Here, θ is the flattened parameter vector corre-
sponding to the collection {Kt,kt}t∈T of function coefficients. Given any linear
policy μθ, its state-value function, the expected return from each state, can be
computed recursively via the Bellman equations [25]:

V μθ (st) = R(st, μθ(st)) + Est+1 [V
μθ (st+1)], t ∈ T , (4)

where V μθ (sH) = 0 and the expectation is w.r.t. p∗(· | st, μθ(st)). Since the policy
is linear, rewards are quadratic, and the transitions, Gaussian, the expectations
in Eq. (4) can be computed analytically by iteratively solving Eq. (4) from
timestep H − 1 to 0 (a dynamic programming method). The solution V μθ is
itself quadratic and thus the policy return can be computed analytically:

E

[∑H−1

t=0
R(st,at)

]
= Es0 [V

μθ (s0)] . (5)

Moreover, LQGs can be solved for their optimal policy μ�
θ, which is time-

varying linear, by modifying the dynamic programming method above to solve
for the policy that maximizes the expected value from each timestep based on
Eq. (4) (also computable analytically). Algorithm 1 shows the pseudocode of the
procedure we use to derive the optimal policy, which can be slightly modified to
return the value function for a given policy. LQG is thus one of the few classes of
nontrivial continuous control problems which allows us to evaluate RL methods
against the theoretical best solutions.

3.3 Stochastic Value Gradient Methods

In the broader RL context, methods that learn parameterized policies, often
called policy optimization methods, have gained traction in the recent decade.
As function approximation research, specially on deep learning, has advanced,
parameterized policies were able to unify perception (processing sensorial input
from the environment) and decision-making (choosing actions to maximize
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Algorithm 1: LQG control
Input: LQG parameters (F, f ,Σ,C, c)
Output: Optimal dynamic and static gains

1 Set V �(sH) = 0
2 for t = H − 1, . . . , 0 do

// We solve for all states/actions implicitly

3 Compute Q�(st,at) = R(st,at) + Est+1 [V
�(st+1)] using (F, f ,Σ,C, c)

4 Solve µ�
θ(st) = arg maxa Q

�(st,a), yielding gains Kt,kt

5 Compute V �(st) = Q�(st, µ
�
θ(st))

6 return {Kt,kt}H−1
t=0

return) tasks [15]. To improve such parameterized approximators from data,
the workhorse behind many policy optimization methods is Stochastic Gradi-
ent Descent (SGD) [22]. Thus, it is imperative to estimate the gradient of the
expected return w.r.t. policy parameters, a.k.a. the value gradient, from data
(states, actions and rewards) collected via interaction with the environment.

SVG methods build gradient estimates by first using the available data to
learn a model of the environment, i.e., a function approximator pψ(· | s,a) ≈
p∗(· | s,a). A common approach to leveraging the learned model is as follows.
First, the agent collects B states via interaction with the environment, poten-
tially with an exploratory policy β (we use st ∼ dβ to denote sampling from its
induced state distribution). Then, it generates short model-based trajectories
with the current policy μθ, branching off the states previous collected. Finally,
it computes the average model-based returns and forms an estimate of the value
gradient using backpropagation [7]:

∇J(θ) ≈ ∇θ Est∼dβ

[
K−1∑

l=0

R(st+l, μθ(st+l)) + Q̂μθ (st+K , μθ(st+K))

]

. (6)

Here, Q̂μθ is an approximation (e.g., a learned neural network) of the policy’s
action-value function Qμθ (st,at) = Eμθ

[
∑H−1

l=t R(sl,al)]. We refer to Eq. (6) as
the MAAC(K) estimator, as it uses K steps of simulated interaction and was
featured prominently in the MAAC paper [4].1

We question, however, if Eq. (6) actually provides good empirical estimates
of the true value gradient. To elucidate this matter, we compare MAAC(K) to
the value gradient estimator provided by the DPG theorem [24]:

∇J(θ) = E
st∼dμθ

[
∇θμθ(st)∇a Qμθ (st,a)|a=μθ(st)

]
. (7)

Besides the fact that Eq. (7) requires us to use the on-policy distribution of
states dμθ , more subtle differences with Eq. (6) can be seen by expanding the
1 Our formula differs slightly from the original in that it considers a deterministic

policy instead of a stochastic one.
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definition of the action-value function to form a K-step version of Eq. (7), which
we call the DPG(K) estimator. Note that DPG(0) is equivalent to Eq. (7).

Figure 1 shows the Stochastic Computation Graphs (SCGs) of the MAAC(K)
and DPG(K) estimators [23]. Here, borderless nodes denote input variables; cir-
cles denote stochastic nodes, distributed conditionally on their parents (if any);
and squares denote deterministic nodes, which are functions of their parents.
Because of the ∇a Qμθ (st,a)|a=μθ(st)

term in Eq. (7), we’re not allowed to com-
pute the gradients of future actions w.r.t. policy parameters in DPG(K), hence
why only the first action has a link with θ. On the other hand, MAAC(K) back-
propagates the gradients of the rewards and value-function through all interme-
diate actions. Our work aims at identifying the practical implications of these
differences and perhaps help explain why MAAC(K) has been used in SVG
methods and not DPG(K).

s

μθ

θ

Qμθ

st st+1 st+2 st+3

μθ μθ μθ μθ

θ

rt+1 rt+2 rt+3 Q̂μθ

Fig. 1. Stochastic computation graphs for policy gradients. (Left) Model-free DPG.
(Right) Model-based DPG: the dashed edges represent the K-step deterministic depen-
dencies of the policy parameters in MAAC(K) for K = 3; DPG(K) ignores these
dependencies when backpropagating the action gradients.

4 Methodology

We now turn to our research goals and the methods employed to perform the
proposed empirical analysis.

4.1 Scope of Evaluation

In this work, we propose a fine-grained analysis of the properties of DPG(K) and
MAAC(K) in practice. We simplify our evaluation by using on-policy versions
of the gradient estimators, i.e., by substituting dμθ for dβ where present. We
also opted for using perfect models of the environment dynamics and rewards,
instead of learning them from data, to focus on the differences between gradient
estimators. Thus, we approximate the expectations in Eqs. (6) and (7) via Monte
Carlo sampling, using the actual transition kernel p∗ and reward function R,
to generate (virtual) transitions and compute the bootstrapped returns. One
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can view this setting as the best possible case in an SVG algorithm: when the
model-learning subroutine has perfectly approximated the true MDP, allowing
us to focus on the gradient estimation analysis.

We also compute the true action-value function, required for the K-step
returns in Eqs. (6) and (7), recursively via dynamic programming (analogously to
Eq. (4)). Computing the ground-truth action-value function allows us to further
isolate any observed differences between the estimators as a consequence of their
properties alone.

4.2 Randomized Environments and Policies

To test gradient estimation across a wide variety of scenarios, we define how to
sample LQG instances, M = (S,A, R, p∗, ρ), to run our experiments on. The
main configurations for our procedure are: state dimension (n), action dimension
(d) and time horizon (H). From these parameters we define the state space
S = R

n, action space A = R
d and timesteps t ∈ T = {0, . . . , H − 1}.

The transition dynamics are stationary, sharing F, f ,Σ across all timesteps.
The coefficients Fs and Fa are initialized so that the system may be unstable,
i.e., with some eigenvalues of Fs having magnitude greater or equal to 1, but
always controllable, meaning there is a dynamic gain K such that the eigenvalues
of (Fs + FaK) have magnitude less than 1. This ensures we are able to emulate
real-world scenarios where uncontrolled state variables and costs may diverge to
infinity, while ensuring there exists a policy which can stabilize the system [21].
Finally, we fix the transition bias to f = 0 and the Gaussian covariance to the
identity matrix, Σ = I.

The initial state distribution is always initialized as a standard Gaussian dis-
tribution: ρ(s) = N (s |0, I). As for the reward parameters, we initialize both Css

and Caa (see Eq. (2)) as random symmetric positive definite matrices, sampled
via the scikit-learn library for machine learning in Python [19].2

Since we consider the problem of estimating value gradients for linear policies
in LQGs, we also define a procedure to generate randomized policies. We start
by initializing all dynamic gains Kt = K so that K stabilizes the system. This is
done by first sampling target eigenvalues uniformly in the interval (0, 1) and then
using the scipy library to compute K that places the eigenvalues of (Fs +FaK)
in the desired targets [26,29].3 This process ensures the resulting policy is safe to
collect data in the environment without having state variables and costs diverge
to infinity. The generating procedure also serves to mimic practical situations
where engineers devise a policy which can keep a system stable, but is not able
to optimize running costs, which is where RL can serve to fine-tune it. Finally,
we initialize all static gains as kt = 0.

2 We use the make spd matrix function.
3 We use the scipy.signal.place poles function.
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5 Empirical Analysis

We analyze the behavior of each estimator on two main settings: (I) gradient
estimation for fixed policies and (II) impact of gradient quality on policy opti-
mization.

5.1 Gradient Estimation for Fixed Policies

Following previous work on model-free policy gradients [11], we evaluate the
quality of the gradient estimates, for a given policy, produced by each estimator
using two metrics: (i) the average cosine similarity with the true policy gradient
and (ii) the average pairwise cosine similarity.

The first metric is a measure of gradient accuracy and we denote it as such
in the following plots. For a given minibatch size B and step size K, we compute
10 estimates of the gradient, each using B initial states sampled on-policy (st ∼
dμθ ) and K-step model-based rollouts from each state. Then, we compute the
accuracy as the average cosine similarity of each of the 10 estimates with the
true policy gradient, obtained as follows. We first compute the true expected
return of a policy μθ via dynamic programming, following Eqs. (4) and (5). Our
implementation in PyTorch [18] then allows us to use automatic differentiation
to compute the gradient of the expected return w.r.t. policy parameters.

The second metric is a measure of gradient precision and we denote it as such
in the following plots. Again, we compute 10 estimates of the gradient in the
same manner used in computing the accuracy. Then, we compute the precision
as the average pairwise cosine similarity of the 10 estimates (the higher this
quantity, the lower the variance).

We first analyze the accuracy of each estimator when given enough states
from the policy’s distribution dμθ to approximate their true expected values.
Figure 2 shows the accuracy obtained by DPG and MAAC for different values
of K using 50000 states from the policy’s distribution. The LQGs considered
have state and action spaces of dimension 2 and horizon of length 20. For each
value of K, we initialize 10 different environment-policy pairs and compute the
accuracy for each, denoted as different markers in each vertical line.4 Note how
all but one of the instances using DPG(K) converged to the true value gradient,
indicating that it is indeed an unbiased estimator. On the other hand, MAAC(K)
incurs a larger bias with increasing values of K, indicating that the added action
action-gradient terms (see Fig. 1) influence the final direction.

Although the results above indicate that MAAC(K) is biased at convergence,
most SVG algorithms operate on a much smaller sample regime. Figure 3 shows
the accuracy across 10 different environment-policy pairs; this time, however,
using smaller sample sizes from the policy distribution. Lines denote the average
results and shaded areas, the 95% confidence interval.5 For K = 0, the estimators
are equivalent, which is verified in practice. In this more practical sample regime,

4 We use the same 10 random seeds for experiments across values of K.
5 We use seaborn.lineplot to produce the aggregated curves.
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Fig. 2. Gradient accuracy for each estimator near convergence for different virtual
rollout lengths (K). We used 50000 states sampled from the policy to approximate the
expected value.

we see that MAAC(K) produces more accurate results, specially for larger values
of K.

Similar to Fig. 3, Fig. 4 shows the gradient precision in the same setting. We
see that the variance of MAAC(K) is lower than that of DPG(K) across all
tested values of K > 0. Overall, Figs. 2, 3 and 4 illustrate a classic instance
of the bias-variance tradeoff in machine learning: MAAC(K) introduces bias,
although a small one, in return for a much more stable (less variable) estimate
of the gradient, whereas the unbiased DPG(K) demands much more samples to
justify its use.

Note that the accuracy and precision metrics only account for differences in
gradient direction and orientation. The magnitude may also be important, as it
influences the learning rate when used to update policy parameters. Figure 5
shows that MAAC(K) produces gradients with higher norms compared to
DPG(K). One should keep this in mind when choosing the learning rate for
SGD, as the following experiments show that the gradient norm have a signifi-
cant impact on policy optimization.

5.2 Impact of Gradient Quality on Policy Optimization

Previous work on model-free policy gradients has shown that policy optimization
algorithms can improve a policy despite using poor gradient estimation [11].
It is not clear, however, if better policy gradient estimation translates to more
stability or faster convergence in SVG algorithms. We therefore conduct our next
experiments comparing the MAAC and DPG estimators for policy optimization.
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Fig. 3. Gradient accuracy for each estimator for different minibatch sizes (B = #Sam-
ples) and virtual rollout lengths (K).

Figures 6 and 7 show learning curves as total cost (negative return) against
the number of SGD iterations across several instances of LQGs (dim(S) =
dim(A) = 2 and H = 20). We use the same hyperparameters for both esti-
mators.6 The results in Fig. 6 suggest that the better quality metrics observed
for MAAC(K) in Figs. 3 and 4 do translate to faster and more stable policy opti-
mization. However, if we normalize the gradient estimates before passing them
to SGD, as in Fig. 7, we see that both estimators are evenly matched. These
results suggest that the main advantage of MAAC(K) over DPG(K) is in its
stronger gradient norm (see Fig. 5), which has been alluded to in previous work
as a “strong learning signal” [4], inducing a faster learning rate.

Table 1. Median suboptimality gap, the percentage difference in expected return
against the optimal policy, across 10 seeds. LQG dimension refers to the dimension
of state and action spaces. We use K = 8 and B = 20 for both estimators.

Estimator Time (min) LQG dimension

2 3 4 5 6 7 8 9 10

DPG 1 29.10 218.75 242.94 1730.07 1567.81 4129.88 1100.74 6111.44 7290.04

3 6.32 53.21 138.89 439.54 465.29 3468.03 552.87 277.38 6445.64

5 2.66 27.63 91.20 400.31 241.32 2877.18 263.54 2297.37 4830.16

MAAC 1 2.33 20.31 45.05 302.72 255.53 2065.97 340.63 3477.36 5008.28

3 0.55 3.57 11.28 80.26 38.87 317.76 45.87 1468.44 3568.37

5 0.38 1.92 6.34 40.13 21.23 290.91 23.23 330.21 2004.51

6 Learning rate of 10−2, B = 200, and K = 8.
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Fig. 4. Gradient precision for each estimator for different minibatch sizes (B = #Sam-
ples) and virtual rollout lengths (K).
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Fig. 5. Gradient norm for each estimator for different minibatch sizes (B = #Samples)
and virtual rollout lengths (K).

We also evaluate if our previous findings generalize to higher state-action
space dimensions, where sample-based estimation gets progressively harder. Our
performance metric is the suboptimality gap, i.e., the percentage difference in
expected return between the current policy and the optimal one: 100× (J(μ�

θ)−
J(μθ))/J(μ�

θ).
7 Table 1 summarizes our results with policy optimization with

varying LQG sizes and time budgets.8 We don’t normalize gradients in this

7 Recall from Sect. 3 that LQG allows us to compute the optimal policy analytically.
8 We found that the computation times for both estimators were equivalent.
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algorithm, each with a different random initial policy. Results obtained with the 8-step
versions of each estimator.
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case, as that is not a common practice in SVG algorithms.9 Our findings show
that the performance gap between DPG(K) and MAAC(K) tends to widen with
higher dimensionalities, with policies trained via the latter outperforming those
using the former. These results further emphasize the practicality of MAAC(K)
over DPG(K), justifying the former’s use in recent SVG methods [1,4,8].

6 Conclusions and Future Work

In this work, we take an important step towards a better understanding of cur-
rent SVG methods. Using the LQG framework, we show that the gradient estima-
tion used by MAAC and similar methods induces a slight bias compared to the
true value gradient. On the other hand, using a corresponding unbiased estimator
such as the K-step DPG one increases sample-complexity due to high variance.
Moreover, the MAAC gradient estimates have higher magnitudes, which could
help explain the fast learning performance of current methods. Indeed, we found
that policies trained with MAAC converge faster to the optimal policies than
those using the K-step DPG across several LQG instances.

Future work may further leverage the LQG framework to perform fine-
grained analyses of other important components of SVG algorithms. For exam-
ple, little is known about the interplay between model, value function, and policy
learning from data in practice. A study on model and value function optimization
metrics and their relation to the gradient estimation accuracy and precision can
help in the design of stable and efficient SVG algorithms in the future. Another
direction for investigation is analyzing the impact of off-policy data collection
for model training. Since models have limited representation capacity, learning
the MDP dynamics from the distribution of another policy may not translate to
good gradient estimation of the target policy.

Acknowledgments. This work was partly supported by the CAPES grant
88887.339578/2019-00 (first author), FAPESP grant 2016/22900-1 (second author),
and CNPq scholarship 307979/2018-0 (third author).
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46 Â. G. Lovatto et al.

5. Deisenroth, M.P., Rasmussen, C.E.: PILCO: a model-based and data-efficient app-
roach to policy search. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th
International Conference on Machine Learning, ICML 2011, Bellevue, Washington,
USA, 28 June–2 July 2011, pp. 465–472. Omnipress (2011). https://icml.cc/2011/
papers/323 icmlpaper.pdf

6. Engstrom, L., et al.: Implementation matters in deep RL: a case study on PPO and
TRPO. In: ICLR. OpenReview.net (2020). https://github.com/implementation-
matters/code-for-paper

7. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive Computa-
tion and Machine Learning. MIT Press, Cambridge (2016)

8. Hafner, D., Lillicrap, T.P., Ba, J., Norouzi, M.: Dream to control: learning behav-
iors by latent imagination. In: ICLR. OpenReview.net (2020)

9. Heess, N., Wayne, G., Silver, D., Lillicrap, T.P., Erez, T., Tassa, Y.: Learn-
ing continuous control policies by stochastic value gradients. In: NIPS, pp.
2944–2952 (2015). http://papers.nips.cc/paper/5796-learning-continuous-control-
policies-by-stochastic-value-gradients

10. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. In: AAAI, pp. 3207–3214. AAAI Press (2018)

11. Ilyas, A., et al.: A closer look at deep policy gradients. In: ICLR. OpenReview.net
(2020)

12. Islam, R., Henderson, P., Gomrokchi, M., Precup, D.: Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control. CoRR
arXiv:1708.04133 (2017)

13. Liu, Z., Li, X., Kang, B., Darrell, T.: Regularization matters for policy optimiza-
tion - an empirical study on continuous control. In: International Conference on
Learning Representations (2021). https://github.com/xuanlinli17/iclr2021 rlreg
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Abstract. The problem addressed in this work is an extension of the
Cooperative Multi-Robot Observation of Multiple Moving Targets Prob-
lem (CMOMMT). The scenario remains the same, but the targets are
structured as an organization to achieve the highest possible percentage of
exploration of the environment and avoid robots. Targets can be organized
as hierarchy, holarchy, team, and coalition, but they can also be unorga-
nized. Our work seeks to apply computer vision to assist robots in classify-
ing the target team’s organizational structure faced with a group of mali-
cious target agents. Thus, robots can select the most appropriate strategy
among the containment strategies implemented for each organizational
structure or continue with the method proposed by literature for cases
where the targets are not organized. The results showed that our approach
had satisfactory results since, in luck, robots have a 20% chance of hitting
the structure (hierarchy, holarchy, team, coalition, or random). Our app-
roach had an accuracy of 63.28%. The containment strategies obtained
satisfactory results in the robots’ performance regarding the depreciation
of the Percentage of the Environment Explored by the Targets (PEET)
compared to the previous approach for robots. However, for the Average
Number of Observed Targets (ANOT), the previous strategy was better.
The new organizational approach to targets in CMOMMTwas better than
random in the desired exploration of the desired environment.

Keywords: Multi-agent system · Cooperative Multi-Robot
Observation of Multiple Moving Targets · Organization ·
Computational vision · Containment strategies

1 Introduction

The observation of moving targets is an essential multi-robot application in MAS
that still presents numerous open challenges, including the effective coordination
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of robots [11]. The CMOMMT addresses the scenario where a group of agents,
called robots, seek to retain within an “observation band” a maximum number
of agents from the opposite group, called targets [14,16].

In one of the reformulations of CMOMMT, Cooperative Target Observation
(CTO) [13,18] proposed targeting strategies based on structures to improve the
performance of this team in the CTO. The results showed that the strategies of [18]
were better for target performance compared to the proposed strategy [13]. Thus,
in our approach, we implement four organizational paradigms for multi-agent sys-
tems [10], in the target team in CMOMMT, in a scenario where targets seek not
only to walk randomly but explore the environment while avoiding robots.

Research has shown that it is possible to recognize patterns in images cap-
tured by satellites [21], infrared cameras [6], security cameras [3,4], etc. Further-
more, there are researches in the area of multi-agent simulation that made use of
computer vision in the simulation image to locate agents in the environment [15].
Thus, this research applied computer vision to help classify the four organizational
paradigms modeled for the targets (hierarchy, holarchy, team, and coalition) and
the random model through images captured from the environment.

Thus, if we model the organizational structures in the targets so that com-
munication between them depends on the location of these agents with their
coordinators, sub-coordinators, or group partners, we can apply computer vision
to classify the organizational paradigms present in the targets. With this infor-
mation, robots can now select an appropriate containment approach for each of
the four organizations developed or remain in the strategy proposed by [14] if
the targets are walking randomly.

This article aims to develop a strategy for the decision-making of artificial
robot agents, aiming to maximize the observation metric and minimize the explo-
ration of the environment by target agents organized to explore and perform
malicious actions in the background.

This paper is organized into four more sections. Section 2 presents the lit-
erature review. Section 3 describes the approaches used by targets and robots,
materials, and methods. Section 4 shows the experiment and the results. Finally,
Sect. 5 concludes the paper with final observations and future research.

2 A Literature Review

The CMOMMT Problem, initially described in [14], is defined in a simple, two-
dimensional polyhedral spatial region, with inputs/outputs containing two teams
of agents, the targets and the robots. The team of robots has 360◦ observation
sensors. This team’s objective is to maximize the collective time during which
each target in the environment is monitored by at least one robot during the
simulation time. We say that a robot is tracking a target when the target is
within the robot’s sensory field of observation.

Some reformulations of this problem have been created, such as FCMOMMT
[8], P-CMOMMT [2,9]. The CTO is another reformulation of the CMOMMT
[13]. The main difference between these two problems is that in the CTO, the tar-
gets provide information about their location. The observers’ objectives remain
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the same as that of the robots. The targets were modeled with random move-
ments, the target team being superior in numbers to the observer team, but the
observers are faster.

In [1], it was observed that observers at the CTO work in a hierarchical
structure with the K-means and Fuzzy C-means algorithm. Thus, [18] proposed
three strategies so that the targets were as organized as the observers, hierarchy
with K-means, the hierarchy with Fuzzy C-means, and Holarchy, and a strat-
egy with neural networks. The results showed that the method based on the
organizational paradigms was superior to the CTO literature approach.

[19] proposed an approach to classify the organizational structure of a group
of target mobile agents that are continuously monitored by a smaller group of
mobile observer agents in the CTO problem, a reformulation of the CMOMMT.
The approach considers that the group of target agents can be organized
according to eight different paradigms. These agents communicate through the
exchange of messages whose contents are performative of the speech act.

This approach proved effective in comparison with the Dummy classifier that
simulated human logic based on the frequency strategy. However, it was observed
in this approach that the organizational strategy adopted for the targets, targets,
and observers provided their location information to each other in the CTO.
This type of scenario, where opposing teams exchange information when their
goals neutralize each other, is not a realistic scenario. Thus, in the CMOMMT
scenario, where the environment is partially observable, the targets and robots
(observers) do not contribute with their locations, the simulation becomes more
realistic.

In [5,15], computer vision was applied to the images captured by agents to
help achieve their goals. [5] presented the development of a robotic multi-agent
system, called SMART, in which there are two groups of agents, hardware and
software agents, that work cooperatively. The hardware agents are robots with
three and four legs and an IP camera that captures images of the scene where
the cooperative task takes place. [15] presented a behavior-based approach for
maintaining robot formation. The robot’s objective is to circulate through the
environment, keeping a relative position between them and avoiding shock.

Based on these concepts of an image capture agent, the use of the computer
vision technique, and the limitation of target communication to maintain the
organization in CMOMMT, we can assist robots in classifying target structures
through the application of computer vision in the simulation scenario, such as
[5,15].

3 The Approach for Observing and Containment
of Malicious Targets Organizations

In this article, we present an extension to the CMOMMT problem. The scenario
remains the same, but the targets are structured as an organization aiming to
achieve the highest possible percentage of scenario exploration while avoiding
robots. Robots continue with the surveillance objective, seeking to maximize
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the vision on the targets and minimize the effect of the organized targets on the
environment through strategies to contain the exploration of the targets.

In the original CMOMMT problem, robots were only concerned with observ-
ing targets. However, this approach is not sufficient for robots in this extension
of the CMOMMT problem. The targets are intended to explore the environment,
and they are organized as hierarchy, holarchy, team, or coalition. Therefore, the
proposed approach for robots in this new CMOMMT problem is using image
classification to select the containment strategy to minimize the exploration of
targets organized in the scenario.

Considering the assumption that there is a drone in the scenario capable
of capturing images of both the target team and the robots, it is possible to
generate a set of examples, label them and train a classification system that can
recognize patterns in movement in each organizational paradigm present in the
targets to classify the structure. Thus, through classification, the work proposes
four associated containment strategies to solve the problem.

3.1 Target Strategy

Targets, in this extension of the CMOMMT problem, see the environment in
quadrants. There are four quadrants: upper right, upper left, lower left, and
lower right.

Among the paradigms raised by [10], hierarchy, holarchy, team, and coali-
tion were selected for this work. Because, according to [10], starting from these
four, it is possible to generate the others. The Subsections below detail each
organizational structure modeled on the target team.

Hierarchy. In this organizational structure, only the two-level hierarchy was
considered. At the level above, there is a target responsible for calculating the
quadrant that contains the smallest percentage of exploration closest to it, based
on the information obtained by the targets, to request the movement of this team
to this particular quadrant at each time interval, called of coordinator. The
targets that inform the area explored by them and perform the action requested
by the coordinator are called subordinates. Therefore, subordinates must remain
within the message range to receive the information, as communication is carried
out through the speech act.

The state machine that demonstrates target team communication is shown
in Fig. 1. In the initial state (q0), the coordinator (c), belonging to the target
team (T), requests that all subordinates (s) tell you the coordinates of your
current state. In state q1, subordinates report their status to the coordinator.
Finally, in the state (q2), the coordinator requests all targets to move towards
the goal calculated by it. As the communication is not continuous but occurs
every period after reaching the final state, the state machine will only restart
again in the initial state at the time determined to exchange messages from the
target team.
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Fig. 1. Hierarchy communication state machine.

Holarchy. In holarchy, targets have been separated into two holon structured
as a simple hierarchy, each containing a sub-coordinator who has authority over
the subordinates of his holon. Our approach has only been tested with this
simpler holarchy. There is a general coordinator that performs the same calcu-
lation process as the hierarchy coordinator. However, this one only has access to
the sub-coordinators. Therefore, the coordinator transmits the message to the
sub-coordinators, and these send the message to their subordinates. Hierarchy
Communication State Machine.

At each given time, the coordinator informs the sub-coordinators of
their environment analysis based on information obtained by all members
of this paradigm (coordinator, sub-coordinator, and subordinates). The sub-
coordinators request an action from their subordinates, who are within the sub-
coordinator’s speech act range, based on the analysis of the general coordinator.
The coordinator’s message is only received if the sub-coordinators are within
the coordinator’s message transmission range. Likewise, the subordinates of each
holon must be within range of their sub-coordinator’s message transmission.

Figure 2 shows the state machine of the target team communication in the
holarchy. In the initial state (q0), the coordinator (c), belonging to the target
team (T), requests that all sub-coordinators (sc) ask all their subordinates to
inform them of the coordinates of their current status. In the q1 state, sub-
coordinators request this information from subordinates. In the state q2 and q3,
the subordinates report their status to their sub-coordinators, and these report
the status of their subordinates to the coordinator, respectively. In the next
state, the coordinator asks the sub-coordinators to ask their subordinates to
go towards the goal calculated by the coordinator. Finally, in the q5 state, the
subordinates perform the action forwarded by their sub-coordinator. Finally, in
the final state (q0), the machine is shut down until the next communication
period between the target team.

Team. In this organizational paradigm, all members are at the same level and
divided into four groups containing the same number of members. Each group is
sent to a region of the environment (quadrant) to accomplish its objective. Each
sub-team member must remain within a certain radius to maintain communica-
tion and must stay in the area assigned to their sub-team. As shown in Fig. 3,
in the initial state, (q0), the targets of each sub-team report the exploration
rate around them to their teammates. In the final state, (q1), each sub-team will
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Fig. 2. Holarchy communication state machine.

ask its members to go to the coordinates of the target that obtained the lowest
exploration rate around it in that sub-team.

Fig. 3. Team communication state machine.

Coalition. On our problem, there are two coalitions, the members located on
the right in the scene form a coalition, and those found on the left form another
coalition. As targets are placed randomly in the environment, each coalition can
have a different number of members. Communication, just like in the team, takes
place at a certain point in time, and the members of each coalition must stay
within a certain radius to enable communication.

The two coalitions tend to be separated from each other, as each is allocated
to a specific area. However, the targets of each coalition must be close to each
other to carry out decision-making.

In Fig. 4, the communication state machine is presented. In the initial state
(q0), each target of each coalition informs the exploration state of the region
around them. In the q1 state, coalitions request that targets belonging to their
coalition go to the target coordinates of each coalition that has the lowest
exploitation rate in its surroundings.

3.2 Robots Strategy

Computer Vision. Initially, a survey of classic CNN models was carried out
to evaluate each model for classification of organizational paradigms and the
random model. MobileNetsv2 was selected because it is a simple but efficient
convolutional neural network. In order to carry out the classification in real-
time simulation, a light network is needed for this task.
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Fig. 4. Coalition communication state machine.

Other CNN models can be used. But, as our objective is to evaluate the ben-
efits of using simulation scenario images with CNN for agents’ decision-making,
only MobileNetsv2 was used in this paper.

For our proposed model, which uses Netlogo simulation scenario images, we
train our dataset to 100 epochs using the Adam optimizer and an initial learning
rate of 1e− 3. In this work, we test the lot size valued at 32.

80% from our image bank was used for the training step and 20% for the vali-
dation step. In the training stage, we obtained 74.56% accuracy. In the validation
step, the accuracy of 72.14% was obtained.

During the simulation, images of the scenario are sent to classify the organi-
zational structure of the targets. Four containment strategies for the robot team
are proposed to deal with the organizational structure that targets may adopt.
The following subsections describe these strategies.

Strategy Against Hierarchy. In this type of organization, in which the tar-
gets are submitted to a higher-level agent and where decision-making depends on
the latter’s endorsement, the containment strategy adopted was to disable the
coordinator’s communication with the targets. As only the coordinator requests
an action and the agents’ act of speaking represents in the real world the human
speech itself, as soon as the hierarchical structure is detected, the robots move
between the targets in order to see which one is communicating an action. Thus,
the robots will disable this agent’s communication, and the targets will be inca-
pacitated, as they will not be able to reach their goals because the agent in
charge of transmitting information about their goals has been disabled. How-
ever, robots continue to look for more coordinators, as they do not have the
details on how the hierarchy is structured, two levels or more.

Strategy Against Holarchy. In holarchy, it is necessary to disable the general
coordinator and the sub-coordinators. For however much the sub-coordinators
are submissive to the general coordinator, they have authority over the targets
of their group. If so, the holarchy could turn into coalitions, and targets could
still achieve their goals. Therefore, the containment strategy adopted for this
structure is to disable the communication of all targets that have authority over
other targets.

Strategy Against the Team. In the team’s case, the targets are independent
of each other but cooperate to achieve their goals; that is, they explore the area
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allocated to their team to maximize the percentage of the region explored by
the targets.

As there is no essential agent in this structure that its suppression disables,
as all targets are at the same level, the strategy adopted was an extension of the
approach proposed by [14]. In this extension, robots have two behaviors, that
of seeking sub-times and that of disrupting the communication of targets under
observation. As the targets of each subteam are close to each other, if the force
field proposed by [14] were used to repel all other robots, only four robots would
be trying to disable communication, while the other eight would be idle. Thus, a
conditional was added to this force field. It now allows a maximum of two robots
and repels the others when it exceeds this margin. So, instead of just one robot
trying to disable the communication of six targets, there are now two for this
purpose in each sub-team. The four remaining robots are responsible for looking
for more sub-teams, as the robot team does not know how many sub-teams there
are in the simulation scenario.

Strategy Against the Coalition. As the number of members in each coalition
can be unequal and there are no agents with authority over others, the contain-
ment strategy was an extension of the method proposed by [14] as well. They are
seeking, as well as in the team, to break communication between the coalition
targets, as there are not enough robots to disable all targets to minimize the
exploration of the scenario.

Strategy Overview. Thus, the robot approach consists of them, every 200
steps of time on the Netlogo platform, sending an image of the simulation sce-
nario to the Jupyter Notebook. Then, the classification of the organizational
paradigm by Mobilenetv2 is performed, and the result is returned to the robots
team. Thus, from the returned response, the most suitable containment strategy
is selected. The simulation only returns to processing when the Jupyter Notebook
returns the classification value performed by CNN.

3.3 Materials and Methods

The Netlogo [20] platform was selected for scenario simulation, as [1,18,19] used
to simulate a reformulation of the CMOMMT Problem, the CTO. This platform
was also chosen for its integrality with the Jupyter Notebook [12] platform used
in this research. MobileNetV2 [17] was loaded by Keras [7], an open-source neural
network library written in Python.

In the generation of the image bank, the Data Augmentation technique was
used to supplement our dataset. In addition, the use of this technique simulates
a drone flying over the scene and capturing images of the robot team and targets
from various angles and positions.

Our image bank was generated from the simulation scenario images. The
starting position of each target and robot is random, and the choice of the
following position is based on the strategy adopted by each team.
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Seeking to diversify the image bank, the target communication range sensor
can vary between 5, 10, 15, 20, and 25 Netlogo distance units. Thus, targets can
be further away or closer depending on the communication range setting.

Initially, the image bank contains 750 images of each organizational paradigm
and the random model for [14] targets, in which there are 150 images for each
communication range sensor configuration, totaling 3750 images. The photos
were captured manually in the most diverse positions, rotations, and transitions
from one quadrant to another for better learning of the model.

After capturing the 3750 images of the scenery, the Data Augmentation tech-
nique was applied, which generated our final image bank with 41, 250 images1.

Figure 5 shows the simulation environment with the targets structured as a
hierarchy, where the “arrows” agents are the robots and the “people” agents
are the targets. According to the robot closest to them, the colors of the target
agents are responsible for their observation. There is a quadrant division to aid
in viewing target movements and image processing.

Fig. 5. Netlogo simulation example.

4 Experiments and Results

4.1 Test Settings

The configured parameters were based on the settings used by [13].

– Targets and robots are in a rectangular field with dimensions 150 by 150
units;

– There are 1500 interaction steps per simulation;

1 The dataset is available at the following link: https://drive.google.com/drive/
folders/1PwjDRzP23sT4qZSZF wnYQUEhOT9qcDQ?usp=sharing.

https://drive.google.com/drive/folders/1PwjDRzP23sT4qZSZF_wnYQUEhOT9qcDQ?usp=sharing
https://drive.google.com/drive/folders/1PwjDRzP23sT4qZSZF_wnYQUEhOT9qcDQ?usp=sharing
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– Observer speed is 1 step at each interaction step;
– Target speed is 0.9 steps at each interaction step;
– Sensor range is 25 units;
– Communication range varies between 5, 10, 15, 20 and 25 units;
– 24 targets;
– 12 robots;
– In the case of Hierarchy there is an extra target, called coordinator;
– In the case of Holarchy there are three extra targets, called general coordina-

tor and sub-coordinators.

In order to evaluate the performance of the robots, it was configured for
targets with the highest speed and range of vision defined by [13]. Well, this is
the most challenging scenario for the team of configured robots today. Thus, if
satisfactory results were obtained in this scenario, in better scenes for robots,
the performance tends to be acceptable as well.

4.2 Result of the Classification of Organizational Structures and
the Random Model

For our proposed model, we train our dataset for 1000 epochs with the lot size
value of 32. Our model was tested to classify images that were not included in
training or validation sets. Our test suite consists of 3750 images, with 750 from
each organizational paradigm and random model.

Fig. 6. Confusion matrix.

As we can see in the confusion matrix presented in Fig. 6, our model obtained
an accuracy of 0.6328. If we were to consider robots drawing lots to predict the
paradigms, the probability of getting it right would be 20%, while our model
gets a 63.28% hit odds rate.

Analyzing the classification of each paradigm, we can see that the random
model and the team obtained a considerable rate of false positives between them.
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This could be due to the team paradigm spreading the four subteams across the
four quadrants of the scenario. For high team communication range values (20
or 25), where targets can move further between their sub-team members, the
team structure begins to resemble the random model.

Some images of the organizational paradigm of the hierarchy were classified
as the coalition. As in the coalition, the number of members in each coalition can
be unbalanced, to the point where there are 22 targets in one coalition and only
two in another. Thus, in these cases, the hierarchy can resemble the coalition and
vice versa, especially if the communication range is high, as the targets spread
further across the environment.

Holarchy was also classified as a coalition due to the fact that they have a
common characteristic; there are two target groups in the scenario. However,
while one has the same amount of members, the other may contain unbalanced
values. Therefore, for scenarios where there were the same amount of members
or approximate, the model could misclassify these two paradigms.

Figure 7 presents the test step rating report, which contains the accuracy
and recall for each organizational and random model. The model had the best
accuracy for holarchy; that is, when it predicts that targets are arranged as a
holarchy, it is correct at 93% of the time. In the case of recall, the results were
close, with the exception of the coalition. However, all were above 50%. That is,
our model correctly identifies around 60% most of the target-structured models.

Fig. 7. Test step classification report.

4.3 Results of Achieving Goals for Each Team

One hundred times, the models with the robots were run using or not the clas-
sification approaches for selection of the containment strategy. After that, the
average of their values was calculated. Tables 1, 2, 3, 4, and 5 present the results
of the Percentage of Environment Explored by Targets (PEET) and the Average
Number of Observed Targets (ANOT) with robots using or not the classifications
with the containment strategies for each range of target communication.
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Table 1. Result with communication range equal to 5.

Structures PEET without
the approach

PEET with
the approach

ANOT without
the approach

ANOT with
the approach

Random 33,574 – 23,683 –

Hierarchy 30,437 16,512 23,995 23,996

Holarchy 32,867 17,977 23,994 23,995

Team 52,764 33,163 23,982 23,981

Coalition 55,835 34,051 23,898 23,893

Table 2. Result with communication range equal to 10.

Structures PEET without
the approach

PEET with
the approach

ANOT without
the approach

ANOT with
the approach

Random 34,137 – 23,813 –

Hierarchy 33,255 20,304 23,995 23,995

Holarchy 37,578 22,891 23,995 23,996

Team 55,196 35,285 23,988 23,981

Coalition 57,664 37,224 23,924 23,920

Table 3. Result with communication range equal to 15.

Structures PEET without
the approach

PEET with
the approach

ANOT without
the approach

ANOT with
the approach

Random 35,266 – 23,868 –

Hierarchy 35,704 21,049 23,987 23,991

Holarchy 40,476 25,117 23,994 23,991

Team 58,527 39,581 23,972 23,970

Coalition 59,556 41,033 23,951 23,948

Table 4. Result with communication range equal to 20.

Structures PEET without
the approach

PEET with
the approach

ANOT without
the approach

ANOT with
the approach

Random 34,691 – 23,794 –

Hierarchy 38,348 25,722 23,984 23,989

Holarchy 42,167 27,564 23,984 23,989

Team 60,631 42,813 23,969 23,963

Coalition 60,511 43,097 23,964 23,961
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Table 5. Result with communication range equal to 25.

Structures PEET without
the approach

PEET with
the approach

ANOT without
the approach

ANOT with
the approach

Random 35,482 – 23,762 –

Hierarchy 46,013 29,248 23,981 23,985

Holarchy 57,352 32,173 23,992 23,989

Team 62,409 48,386 23,966 23,962

Coalition 62,393 49,033 23,973 23,969

Note that in scenarios where robots used these strategies, targets had
the lowest PEET for any communication range when compared to scenarios
where robots did not use them. This means that robots that used classification
approaches with containment strategies were more efficient in preventing the
progress of exploration of the environment by the targets.

In hierarchy and holarchy, it was observed in the behavior of the targets that
when agents with authority over them were disqualified, the targets remained
around the last location passed by their coordinators. In the team and coalition,
the behavior of the agents who departed from communication with their team
or coalition was also to walk around the last location where they had commu-
nication with their sub-team or coalition. In some cases, it was possible for this
isolated agent to meet again with his group, while the rest continued with the
objective of exploring the environment.

The results for the ANOT for each strategy are not significantly different.
But, the hierarchy and holarchy were observed because the targets are only
circling in the last location passed by their coordinators or sub-coordinators
when these are disabled by robots, which facilitates the observation of the robot
team. However, in the case of team and coalition, while some robots seek to
break communication, others seek to locate other teams and coalitions across
the scene. Thus, the number of robots for observation of targets is lower than
the scenario where robots did not use classification approaches.

A containment strategy for the random structure was not proposed, as the
movement of targets in this structure is unpredictable. So the robots remained
in the approach proposed by [14]. However, it was evaluated along with the
paradigms in order to compare the achievement of the goals with the targets
being organized or not. Regarding the avoidance of observers, the random strat-
egy was the best since the Average Number of Observed Targets (ANOT) was
lower for this strategy; that is, the targets were a little better at avoiding the
robots since in this strategy, the targets were more spread out, while the orga-
nizational targets are closer to communicate.

For the purpose of exploring the environment, organizational strategies were
better, as they reached higher percentages of exploration, except for hierarchy
and holarchy that obtained better results from a communication reach equal to
or greater than 15 and 10, respectively. Because the targets in these strategies are



Intelligent Agents for Observation and Containment 61

organized for this purpose, as they focus on regions that have not been explored
so far, while the random one can repeat areas already explored more than once.
In addition, team and coalition obtained the best results for exploration, as they
do not have an organizational structure as restricted as hierarchy and holarchy.
Thus, they have more freedom to spread out across the environment in order to
reach their goal. The random model is not affected by the change in communi-
cation range, as this strategy does not use communication; the targets just walk
randomly.

5 Conclusion

The contribution given by this research is to show how the use of computer vision
enables the classification of organizational structures in multi-agent simulations,
which until now had not been proposed. In addition to introducing new strategies
and objectives to targets and robots in the CMOMMT problem.

Our classification approach showed satisfactory results when compared to
drawing lots since the model obtained an accuracy of 63.28%. Our containment
approaches also showed promising results for the robots team in terms of explo-
ration of the environment, allowing them to minimize the percentage of the
territory explored by the targets and thus avoid further damage to the scenarios
that the targets could cause. In the ANOT issue, hierarchy and holarchy had
the best results, while the team and coalition containment strategies performed
less than the performance obtained by robots that did not use the containment
strategies but used the method proposed by [14]. Furthermore, in the case of
targets, our distance-to-target-based organizational approach for communication
was adequate for the targets’ objective of exploring the environment compared
to the random strategy. However, it is not suitable for the targets’ other goal,
avoiding robots.

For future work, we intend to implement other simulation scenarios, for exam-
ple, with obstacles, in order to evaluate our approach, even in the real world. In
addition to implementing more robust frameworks to analyze the performance
of our model in complex environments. We intend to evaluate the approach with
other CNN models to select the best model to be used in terms of accuracy and
processing time. Finally, we want to examine the impact of the wrong choice of
containment approaches, in addition to implementing the containment strategies
for each new organizational paradigm implemented and improving those already
implemented.
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1 Instituto Federal de Braśılia (IFB), Braśılia, Brazil
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Abstract. The coronavirus disease (COVID-19) pandemic has brought
significant challenges worldwide through the consequences of increas-
ing demand for the Intensive Care Unit (ICU) resources. This work
presents the Multi-Agent System for Glycemic Control (MAS4GC) to
assist health professionals leading with critical patients in the ICU. More
specifically, the MAS4GC manages patients’ blood glucose through glyce-
mic predictions, treatment, and monitoring recommendations to health
professionals. Prediction models are applied to monitor patients’ blood
glucose allowing health professionals to carry out preventive treatments.
The glycemic control is included in the FAST HUG mnemonic to remem-
ber the key issues in the supportive care of critically ill patients. The
MAS4GC methodological development process is presented with Tro-
pos modeling, architectural design, and implementation with the PADE
framework. Agents’ inference mechanisms are based on production rules
defined by intensive care physician specialists applying their knowledge
to indicate treatments for patients. Two experiments using patients with
synthetic data were conducted to evaluate the results of the MAS4GC:
(1) the prediction model achieved 90% accuracy in blood glucose predic-
tions for the next 4 h, (2) 84% similarity of treatment recommendations
compared to a human specialist, and 78% in recommendations for mon-
itoring glycemic of critical patients.

Keywords: Agent-based system · Blood glucose · Health care · ICU ·
Rule-based reasoning

1 Introduction

The Intensive Care Unit (ICU) is considered a high-risk care setting where medi-
cal carelessness or errors can cause deaths or complications to patients’ health [1].
In pandemic times, such as that of the coronavirus disease (COVID-19), the
ICU’s importance in the treatment of critically ill patients became even more
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evident. Since patients need special care varying from basic requirements to
the need for equipment for patient monitoring and life support, such as respi-
rators and mechanical ventilators [2,3]. Artificial Intelligence (AI) applications
currently are used in the management of such complex tasks. AI can assist in
the monitoring and treatment of patients with chronic diseases and in critical
conditions hospitalized in the ICU, where these cases occur more frequently [4].

The ICU patient monitoring must rigorously take place. The FAST HUG
- Feeding, Analgesia, Sedation, Thromboembolic prevention, Head of the bed
elevated, stress Ulcer prophylaxis, and Glucose control - is a simple and signif-
icant mnemonic to highlight seven of the main aspects that must be monitored
by health professionals for each patient in the ICU to minimize possible prob-
lems [1].

Focusing in the FAST HUG, glycemic control has the function of checking
the patient’s glucose level in the blood, keeping as long as possible in the target
range [1]. Regardless of which is the ideal target range, it is vital to keep it
monitored. Effective glycemic control in the ICU environment has the potential
to decrease mortality rates and the patient’s length of stay in the ICU, optimizing
hospital resources [5]. The overload of health professionals in pandemic times is
crucial, and factors such as this point out that automated systems to monitor
and assist patients’ treatment can bring benefits. Thus, the FAST HUG, or at
least some of its items, can be improved with process automation combined with
AI techniques.

In the literature review, AI-based works for glycemic control of ICU patients
are presented [5–7], as well as the application of Multi-Agent System (MAS)
for patients glycemic control [8], and MAS in the ICU context [9,10]. However,
none of the works applies MAS for patients’ glycemic control admitted to the
ICU. Some work points to prediction models as good solutions for glycemic
control [11–13].

Considering the cited scenario, the objective of this work is to present a
system to track and monitor the glycemic control of critical patients in the
ICU through a MAS approach. In a previous work [14], the MAS development
process was presented without implementation results. More specifically, the
following hypothesis has to be proven: a MAS can suggest patients’ treatment
recommendations using prediction models and a knowledge base with inference
rules similar to specialist intensive care physicians.

The rest of the manuscript is organized as follows. In Sect. 2 some works
found in the literature are presented. In Sect. 3, the materials and methods are
presented. In Sect. 4 the experiments were carried out with results. Finally, in
Sect. 5 the final considerations and possible future work are indicated.

2 Literature Review

The literature review used the Portal de Periódicos Capes, seeking articles in
English published from 2015 to 2021, with the following combined keywords:
artificial intelligence, multiagent systems, intensive care unit, glucose control.
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The works of DeJournett et al. [6,7] present an autonomous glucose control
system (artificial pancreas) to reduce problems resulting from the glycemia of
patients in the ICU. In the first work [6], the authors perform an insulin test with
simulated patients, using an AI-based glucose controller. As an AI technique,
they used rule-based reasoning (RBR). In the second work [7], the same system
was used, but the objective was to evaluate the system’s safety and performance
by applying simulated tests with swine in a clinical setting.

In Jemal et al. [10], a model was proposed, and a specialized decision support
system was implemented and validated to detect the degree of risk of patients in
the ICU. A MAS was used as the main technology combined with a knowledge
base and Intuitionistic Logic Fuzzy (IFS). In Malak et al. [9] an architecture
based on agents with decision support and in real-time for the management of
high-risk newborns admitted to the ICU-N was presented. Both studies showed
that MAS is a good solution to be used in healthcare systems.

When it comes to glycemic control, studies such as those presented in Vehi
et al. [11], Bertachi et al. [12], and Kim et al. [13] point to prediction models as
interesting solutions, where the prevention of hypo or hyperglycemic events tends
to be more efficient than the correction of these episodes. The solutions presented
in these works include (1) prediction and prevention of hypoglycemic events in
diabetics [11]; (2) a prediction model for episodes of nocturnal hypoglycemia in
diabetics [12]; and (3) a glucose prediction model for hospitalized type 2 diabetic
patients [13].

Table 1 summarizes the qualitative aspects of the related work, limited to
the application context (glycemic control, ICU patients) and technologies used
(agent-based, prediction model). Note that no work presents a solution with
MAS to manage glycemic control with predictions in the ICU setting.

Table 1. Related work overview.

Reference Glycemic ICU Agent- Prediction

control patients based model

Dejournett et al. (2016, 2020) [6,7] – –

Malak et al. (2018) [9] – –

Jemal et al. (2019) [10] – –

Veh́ı et al. (2020) [11] – –

Bertachi et al. (2020) [12] – –

Kim et al. (2020) [13] – –

This work (2021)

3 Materials and Methods

The methodological process used was based on previous work [14] and consists
basically of four steps as presented in Fig. 1 and described in the sequence.
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3.1 Problem Definition

The problem definition is based on the literature review (Sect. 2). The theoretical
foundation includes FAST HUG, glycemic control, and MAS concepts.

Fig. 1. Methodological workflow.

FAST HUG in ICU Management. According to the National Health
Surveillance Agency (Anvisa) [15], ICU is considered a complex unit to be man-
aged in a hospital being the place where critical condition patients deserving
greater care are concentrated. Such patients are very difficult to manage safely
and effectively due to their complex, nonlinear, and highly variable physiology.
Therefore, improving patients care and treatment are the main current challenges
for ICU settings, where personalization and automation of care offer opportuni-
ties to cause significant impacts [16]. Mnemonics are commonly used in medical
procedures as cognitive aids to guide doctors around the world. Thus, Vincent [1]
suggested the simple mnemonic FAST HUG that contains seven essential aspects
to be verified during the care of critical patients in an ICU during medical rounds.
Such checks should take place at least once a day and ideally, whenever any of
the professionals assist the patient.

Glycemic Control. The glycemic control concerns the amount of glucose
(sugar) that the patient has in the blood. Both, high glucose level (hyper-
glycemia), and low blood glucose level (hypoglycemia) are frequent problems in
ICU patients causing damage to health [17]. One of the studies in Vincent’s [1]
highlights the importance of glycemic control in the ICU. The author demon-
strates that maintaining blood glucose levels at approximately 140mg/dL results
in a 29.3% decrease in-hospital mortality rates, and a 10.8% reduction in the ICU
stay.

Hyperglycemia is prevalent in ICU being a good example that the strict
glycemic control of these patients can have a great impact. Such an episode
occurs due to the non-suppressed production of glucose by the body, medica-
tions, suppression of the body’s insulin secretion, among others. All these fac-
tors effectively damage the body’s normal feedback control mechanisms resulting
in less insulin-mediated glucose uptake. Therefore, some type of supplementary
glycemic control is necessary, possibly in a closed circuit and highly personalized
in intensive care [16].
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Table 2 was prepared in conjunction with a specialist doctor and presents, in
addition to the values, what must be done for each glycemic episode. It synthe-
sizes the information necessary to identify the glycemic episode, using a code (in
the system implementation) and blood glucose values. It also presents treatment
suggestions (applying glucose or insulin with the respective dosage), in addi-
tion to monitoring (how long it will be necessary to collect and measure blood
glucose). This table is an adaptation of the previous work [14].

Table 2. Scale of glycemic values related to treatment and monitoring.

Code Episode Values Treatment To monitor

hypoS Severe Hypoglycemia 0–39 Glucose: 4 amp–50% IV 1–2 h

hypoM Mild Hypoglycemia 40–69 Glucose: 2 amp–50% IV 2–4 h

normoG Normoglycemia 70–140 Keep watching 6–8 h

hyperM Mild Hyperglycemia 141–180 Regular Insulin: 2 un SC 4–6 h

hyperS Severe Hyperglycemia 181–250 Regular Insulin: 4 un SC 2–4 h

hyperVS Very Severe Hyperglycemia >251 Regular Insulin: 6 un SC 1 h

MAS Aspects. A MAS is composed of two or more intelligent agents capable
of perceiving events in the environment through sensors, reasoning, and act-
ing in the environment through actuators [18]. According to [8], a MAS has
an intelligent distributed approach suitable for modular, changeable, and com-
plex applications, with characteristics such as autonomy, integration, reactivity,
and flexibility, becoming an interesting solution for modeling large-scale health
systems.

Regarding the agents’ reasoning, different AI techniques can be used includ-
ing the combination of them. In this work, agents should make predictions
according to the patient’s blood glucose and data. Also, to make treatment and
monitoring suggestions for the patients. Regarding predictions, predictive mod-
els can be highlighted, which can assist in decision-making [11–13]. In the case
of monitoring and suggesting treatments, a good solution would be to represent
the knowledge of medical specialists through RBR [6].

– Predictive model: A regression model is based on the correlation between
two (Simple Linear Regression - SLR) or more variables (Multiple Linear
Regression - MLR), where one depends on another or others [19]. The use of
regression models obtained satisfactory results in previous works of [20,21] in
the health area, more specifically, the prediction of new cases of COVID-19
and prediction of glucose levels in critically ill patients, respectively.
An MLR is expressed by the Eq. 1, where y is the dependent variable or the
value to be predicted. The β0 is the constant that represents the intercept of
the line on the y axis, and the independent variables β1xi + β2x2 + ... + βkxk

represent the slope of the line. The x is the independent variable or predictor
variable, this has the power to influence the variable to be found, and ε the
variable that represents the residual factors of the measurement errors [20].
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y = β0 + β1xi + β2x2 + ... + βkxk + ε (1)

– RBR: Dejournett [6] associates systems based on rules or knowledge with AI
controllers that seek to capture the human thought process, creating rules
that mimic the exact reason used by human beings. Such a system is created
when a domain expert joins a knowledge engineer and explains his lines of
reasoning to perform certain functions when trying to control the system in
question. The engineer in turn transforms the lines of reasoning into a series
of if-then rules that mimic the thinking of experts in the field.

Assuming the situation where a patient is in the ICU and the blood glucose
collected value is 60mg/dL, the rule compatible with this case would be:

IF glycemia = hypoM THEN “Glucose: 2 amp - 50% IV”

3.2 Project Design

This step includes the agents’ identification with their respective objectives and
the construction of diagrams that will assist in the implementation step.

Agents Pre-project. A MAS project includes the identification of the per-
ceptions, actions, objectives, performance, and environment of each agent in the
system. The pre-project includes these definitions through the acronym PEAS
(Performance, Environment, Actuators, Sensors). The MAS pre-project serves
to identify in which environment the agent will act and its respective character-
istics. Based on the objectives of each agent, it is also possible to describe what
are the mechanisms by which they will perceive the information and how they
will act in response to such stimuli [18].

Tropos Modeling. The MAS modeling can use Tropos software development
methodology for agent-oriented software systems. Tropos is based on the i*
framework (ISTAR - Intentional STrategic Actor Relationships modeling), mod-
eling the functionality of an application based on objectives using diagrams [22].
Although there are other methodologies for agent modeling, the Tropos was
chosen since it encompasses all five phases of software development supporting
the analysis of initial requirements to implementation with the diagrams: ini-
tial requirements, final requirements, architectural design, detailed design, and
implementation. The five Tropos diagrams of MAS4CG can be found in [14].

Figure 2 presents the diagram of the late requirements of the proposed sys-
tem. Red circles represent MAS external Actors (e.g., people, systems), Yellow
circles with a top straight line illustrate MAS Agents. The green rounded rect-
angles represent the agent Goals that can be understood as the system require-
ments. The purple rectangles represent Resources, a physical or informational
entity needed by the actor or agent to perform a task. The MAS agents are
Patient Analyzing Agent (PAA), Proposed Treatment Agent (PTA), and Adjust-
ment Monitoring Agent (AMA) with functionalities detailed Fig. 3.
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Other diagrams, such as the architecture and UML (Unified Modeling Lan-
guage), can be developed to complement the understanding of the proposed
solution representing details aimed at implementing the solution. In the imple-
mentation stage, details of how all technologies, systems, and agents were imple-
mented are presented.

Fig. 2. Tropos late requirements diagram.

Architecture. Figure 3 presents the MAS4GC architecture. The PAA’s main
objective is to collect the patient’s data and respective glycemia, whenever new
data is inserted or updated in the Glycon Database. Glycon is a web system used
as an interface by healthcare professionals, both for entering information about
the patient and their blood glucose, and for displaying the recommendations
made by agents. This agent should analyze such data and make a report assessing
the patient’s situation in comparison with previous data. This will allow the
agent to calculate and make predictions of how the patient’s next blood glucose
will be. This report will be sent to the PTA and AMA agents, who in turn will
analyze it and propose a treatment (what should be applied, glucose or insulin,
and how much) or adjust the blood glucose monitoring (indicate the appropriate
frequency of blood collection). It will be possible to send an alert containing the
recommendation to health professionals through the Glycon interface.

3.3 MAS4GC Implementation

In this work, we present a MAS developed using objective-oriented agent mod-
eling for glycemic control of patients admitted to the ICU. The three agents
PAA, PTA, and AMA interact with each other and with a Web system called
Glycon, used as an interface for collecting and presenting patient data, including
blood glucose levels. The MAS4GC consists of three integrated systems, one of
which is an interface that serves for the entry and visualization of data through
health professionals. The other is the MAS itself, where, through a framework,
the three agents were implemented. Finally, the agents’ reasoning was built in
the form of a rule base, also with the help of a framework. All source code,
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Fig. 3. MAS4GC architecture.

diagrams, dataset and frameworks used are available in the repository: https://
github.com/tiagosegato/mas4gc.

Fig. 4. Glycon interface

Interface. The interface system called Glycemic Control On-line (Glycon) [14]
is a web system whose main objective is to receive patient data and blood glucose.
Health professionals can maintain this data by inserting, updating, and listing.
However, the two most important tasks of the system are to record blood glu-
cose levels and the possible applications of glucose or insulin that the patient
may have received. Such information is listed and presented using graphics in a
kind of patient’s dashboard and alerts regarding monitoring (time of next blood
collect) and treatment (glucose, keep watching, regular insulin) suggestions are
displayed on the interface’s initial screen, serving as treatment suggestions to
health professionals, as shown in Fig. 4. Glycon was developed in Javascript,

https://github.com/tiagosegato/mas4gc
https://github.com/tiagosegato/mas4gc


72 T. H. F. Segato et al.

more specifically through the frameworks React.js (front-end) and Node.js (back-
end). Its database uses the MongoDB available through the Atlas web tool. It
is currently hosted on the Heroku Cloud Application Platform1.

MAS Framework. The MAS implementation used the Python Agent DEvel-
opment framework (PADE) that allows the development, execution, and man-
agement of MAS in distributed computing environments [23]. PADE was selected
in this work since it is free software that provides resources as a module for pro-
tocols implementation as defined by FIPA to allow the exchange of messages
and collaboration between agents. Listing 1 displays the PTAgent class, where
the PTA agent creates and sends a data request to the PAA agent.

After that, the PAA will prepare the evaluation report that brings, in addition
to patient and blood glucose data, a forecast of the patient’s next blood glucose
after 4 h. The prediction was calculated using an MLR and LinearRegression().
The functions Fit(x, y) and predict() from the Python library scikit-learn were
used [24].

class PTAgent(Agent):

def __init__(self , aid , paa_name):

super(PTAgent , self).__init__(aid=aid)

message = ACLMessage(ACLMessage.REQUEST)

message.set_protocol(ACLMessage.FIPA_REQUEST_PROTOCOL )

message.add_receiver(AID(name=paa_name))

message.set_content(’Do�you�have�a�New�Collection?’)

self.comport_request = CompRequest(self ,message)

self.comport_temp = ComportTemporal (self ,10.0, message)

self.behaviours.append(self.comport_request )

self.behaviours.append(self.comport_temp)

Listing 1. The PTAgent class.

Agents’ RBR. After the PAA agent generates the assessment report containing
the patients’ situation, it sends the report to the PTA and AMA agents, who
in turn consult the knowledge base coded using Experta. Experta is a Python
library that can be used in the development of rule-based systems. A system
developed with Experta can pair a set of facts with a set of rules for those
facts and perform some actions based on the rules of correspondence [25]. With
Experta the specialist’s knowledge was transcribed in a knowledge base to be
used by the MAS4GC agents. At the moment, the rule base has 48 initial rules
that indicate both treatment recommendations and blood glucose collections’
frequency. The rules were defined based on the knowledge of an intensive care
specialist. In addition, new rules may be manually introduced in the rule base
as tests take place in conjunction with specialists.

1 Available at http://glycon.herokuapp.com/.

http://glycon.herokuapp.com/
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Listing 2 presents a rule where a hypoS (Severe Hypoglycemia in Table 2)
situation is received and indicates that the treatment should be “Glucose: 4
amp–50% IV”. Afterward, this information is inserted in the database shared
with Glycon and it will appear on the screen of that interface.

@Rule (AND( BloodGlucose ( g lycemia=’ hipoS ’ ) ,
BloodGlucose ( idPat i en t=MATCH. idPat i en t ) ) )
def bg hipoG ( s e l f , i dPat i en t ) :

tratamento = ”Glucose : 4 AMP − 50% IV”
response = connect ion . c o l l e c t i o n . update one (

{” i d ” : idPat i en t } ,
{” $ s e t ” :{ ” treatment ” : treatment }})

Listing 2. Treatment verification rule.

The Experta syntax does not use if − then for condition and action as other
RBR tools. The condition applies to the @Rule expression and the result of the
action is presented in a specific function in def .

4 Experiments and Results

To evaluate the results of MAS4GC, two experiments were carried out. The first
aimed to identify the regression model to be used to predict patient events, as
well as its accuracy, and the second to compare MAS treatment suggestions with
human physicians.

4.1 Experiment 1

This experiment aims to identify which type of regression is the most appro-
priate one (SLR or MLR) to predict a patient’s next glycemic event, as well
as to gauge whether such a model presents satisfactory results. The experiment
systematization is illustrated in Fig. 5 and described in the sequence.

Fig. 5. Experiment 1 and 2 pipeline.
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1. Dataset used - A dataset was created by an intensive care physician based on
his experience to simulate synthetic data from 50 patients. Each patient has
30 blood glucose collections according to the initial collection plan defined
by the physician, assuming patients are not in treatment. The information
present in the dataset include patient, gender, age, height, weight, BMI2,
diabetes, time, time of day, food, and blood glucose.

2. Data preparation - Some of the values available in the dataset are categori-
cal and have undergone adjustments. From the patient, a sequential numeric
code started at 1 was used, for sex 0 was defined for female and 1 for male.
The values 0, 1, and 2 were used to represent those who do not have dia-
betes, had this information ignored, or have diabetes, respectively. The time
field received a scale of values according to the difference in hours in which
the collections took place and the time of day field received only the value
that represents the hours (discarded minutes, seconds). The rest of the val-
ues are numeric and have been maintained, except in the case of numbers
with decimal places that have been approximated for their correspondents in
integer.

3. Definition of the models used - Simple and multivariate linear regressions
were used (SLR and MLR).

4. Dataset partitioning - In the SLR and MLR, the regressions were subjected
to cross-validation, whose dataset was divided into 10 groups of 5 patients
each, where the accuracy will be measured 10 times between the training and
test sets.

5. Selection of variables - In the case of SLR, only the time variables will be
used, as the independent variable and blood glucose with the dependent one.
In MLR, glycemia is also the dependent variable, as this is the value that is
intended to be predicted and all other variables were used as an independent.
After some significance tests, the p-value was analyzed and only the variables
patient, sex, BMI, diabetes, time, time of day, food (how many hours did the
patient receive food), and the last blood glucose were selected for use.

6. Choice of validation metric - The K-fold method was applied by creating 10
subgroups from the current base. The results will be analyzed using the fol-
lowing measures: coefficient R2, Mean Absolute Error (MAE), Mean Absolute
Percent Error (MAPE), and Root Mean Square Error (RMSE).

7. Experiment execution - The whole process was performed at first using the
SLR and then using the MLR. It was started by calculating the linear regres-
sion and then the predictions were calculated.

8. Results analysis - With the regressions and predictions performed, the results
were analyzed with accuracy (coefficient R2), and error metrics (MAE,
MAPE, RMSE). As shown in Fig. 6, the MLR presents the accuracy of cor-
rect answers 90% of the times that recommend the treatment to the health
professional, against 13% of the SLR. The MLR presents errors inferior com-
pared to SLR. Thus, the MLR is more adequate in the applied context in
accordance with the specialist opinion.

2 BMI is a person’s weight in kilograms divided by the square of height in meters, it
is the adult body mass index.
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Fig. 6. The Experiment 1 result analysis with the R2 coefficiente, and MAE, MAPE,
RMSE error metrics per prediction of next action.

Experiment 1 was useful to assess the accuracy of blood glucose predictions
made by the PAA and consequently enable health professionals to provide pre-
ventive treatment for patients. In Experiment 2, the idea is to verify whether
the treatment and monitoring recommendations made by the PTA and AMA
are similar to real physicians.

4.2 Experiment 2

The objective of Experiment 2 is to compare the treatment and monitoring rec-
ommendations made by the MAS4GC with real health professionals. Six health
professionals contributed to the experiment. Five professionals were from differ-
ent specialties, such as endocrinology, neurology, urology, gastroenterology, and
physiotherapy. In addition, an IUC intensivist contributed with his knowledge in
treating ICU patients. The experiment systematization contains the same eight
steps as in Experiment 1. Steps 1, 2, and 5, that is, dataset, data preparation,
and selection of variables are the same. The other steps will be presented in the
sequence:

– Definition of the models used - the agents’ knowledge used to make the recom-
mendations were RBR, while human health professionals used their knowledge
based on their studies and experience.

– Dataset partitioning - the 29th collection from each of the 50 patients were
used, both by the intensive care physician, who analyzed the 50 cases and by
health professionals from different areas, where each of the five professionals
analyzed 10 cases each.

– Choice of validation metric - the MAS responses compared to the health
professionals and the specialist ones.

– Experiment execution - five spreadsheets were created containing an explana-
tion of the experiment and the 10 cases. It is understood by case the patient’s
data that include blood glucose among other information, described in the
Selection of variables step. For each case, the healthcare professional was
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asked to inform: (1) one treatment based on Table 2; and (2) how many hours
the next collection should be based on Table 2. The ICU specialist received a
similar spreadsheet but containing all the 50 cases.

– Results analysis - after the health professionals filled out the worksheets,
the data were tabulated containing the recommendations of the MAS, the
health professionals’ recommendations, and the ICU specialist for treatment
and monitoring recommendations. First, the MAS treatment recommenda-
tions were matched to the exact health professionals’ recommendations. The
results coincided with 80% of the cases. Comparing the MAS recommen-
dations with those of the specialist physician, the combinations were 84%.
Regarding monitoring, the health professionals’ recommendations coincided
with MAS in 48% of times. Concerning the MAS’ recommendations with the
specialist, the combinations were 78%. The results are presented in Table 3.

Table 3. Comparison of treatment and monitoring recommendations.

Comparison Treatment Monitoring

Health Professionals x MAS 80% 48%

ICU Specialist x MAS 84% 78%

According to the ICU specialist physician, an acceptable hit rate would be
close to 80% of the cases. Experiment 2 shows that the MAS recommendations
were satisfactory in most cases, except for the health professionals’ monitoring
recommendation. Considering Table 2, the divergence of the MAS and health
professionals’ monitoring recommendations was because some professionals use
their frequency parameters to measure blood glucose based on their ICU knowl-
edge or hospital rules (e.g., hourly collections or continuous monitoring stan-
dards). The ICU specialist confirmed this observation.

Although the presented results are promising, other experiments should bet-
ter investigate the parameters used by the software agents’ decisions, perfor-
mance, and usability aspects of the MAS4CG.

5 Conclusion

This work presents a system based on agents capable of performing glycemic
control in ICU patients. For this, predictive models and a knowledge base with
inference rules were used to compose the agents’ intellectual capacity. According
to the literature, such methods are highlighted as viable solutions in healthcare
applications including glycemic control. However, it was not found the combina-
tion of these techniques with MAS to solve the problem in question.

Two experiments were conducted to validate MAS4CG. Experiment 1 shows
that the prediction model has a 90% accuracy rate of blood glucose for the next
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4 h, allowing health professionals to anticipate and perform preventive treat-
ment on their patients. In Experiment 2, the MAS treatment recommendations
coincided in 84% of the cases with those of the specialist and 78% about the
recommendations for monitoring (collection of blood glucose) of the patients,
proving to be a viable solution.

As future work, the rule base might improve the agents’ capacity about the
recommendation, mainly in terms of glycemic monitoring of patients in different
contexts, such as in continuous monitoring environments. The qualitative anal-
ysis on the discrepancy in time predicted for next collection is interesting and
can be quantified using diagnostic test validation. Considering the results as a
whole, the MAS4GC had a good capacity for predictions and recommendations.
The promissing results indicate that the system can be tested in a real clinical
environment.
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Abstract. The recent progress in Reinforcement Learning applications
to Resource Management presents Markov Decision Processes (MDPs)
without a deeper analysis of the impacts of design decisions on agent per-
formance. In this paper, we compare and contrast four different MDP
variations, discussing their computational requirements and impacts on
agent performance by means of an empirical analysis. We conclude by
showing that, in our experiments, when using Multi-Layer Perceptrons as
approximation function, a compact state representation allows transfer
of agents between environments, and that transferred agents have good
performance and outperform specialized agents in 80% of the tested sce-
narios, even without retraining.

Keywords: Reinforcement Learning · Resource management · Markov
Decision Processes

1 Introduction

Deep Reinforcement Learning (DRL) has the potential of finding novel solutions
to complex problems, as outlined by recent progress in diverse areas such as
Control of Gene Regulatory Networks [9], adaptive video acceleration [11], and
management of computational resources [7].

Resource management, the process by which we map computational resources
to the tasks and jobs (programs) that require them, in particular, is an area in
which recent learning approaches have demonstrated superior performance over
classical algorithms and optimization techniques. Still, we see that, in recent
work, each approach defines their own MDP formulations, with different design
decisions. Thus, the literature lacks an analysis of the impact of certain decisions
on agent performance.

In this paper, we investigate what happens to agent performance as we mod-
ify an MDP, observing the impacts when we change the state representation,
the transition function, and when we shape the reward signal, performing an
empirical investigation using open-source software from the deep learning and
Reinforcement Learning (RL) communities.
c© Springer Nature Switzerland AG 2021
A. Britto and K. Valdivia Delgado (Eds.): BRACIS 2021, LNAI 13073, pp. 79–93, 2021.
https://doi.org/10.1007/978-3-030-91702-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91702-9_6&domain=pdf
http://orcid.org/0000-0002-3196-3008
http://orcid.org/0000-0001-8156-9941
https://doi.org/10.1007/978-3-030-91702-9_6


80 R. L. de Freitas Cunha and L. Chaimowicz

Our main contribution is the formulation and analysis of a set of MDPs
derived from one in the literature [7] that allows agents to learn faster, and to
perform transfer learning with various function approximation methods. We also
show that doing so does not degrade performance in the task.

The rest of this paper is organized as follows: In Sect. 2, we describe the
papers that influenced this one, together with other deep RL work for resource
management. In Sect. 3, we describe the theoretical background with an ongoing
example applied to a resource management problem. In Sect. 4, we describe our
methods and the proposed extensions to a base MDP. In Sect. 5, we describe our
experimental framework, along with the experiments designed to evaluate our
MDPs. In Sect. 6 we present our concluding remarks and a brief discussion of
consequences of the work described here.

2 Related Work

In recent years, interest in Deep Reinforcement Learning (RL) applied to exe-
cuting the scheduling of computing jobs was probably inspired by the Deep
Resource Management (DeepRM) [7] agent and environment. DeepRM pre-
sented an approach of using Policy Gradients to schedule jobs based on CPU
and memory requirements. DeepRM’s approach uses images to represent jobs,
and a window of jobs from which it can choose which job to schedule next.
It was shown that DeepRM can learn to schedule based on different metrics.
Domeniconi et al. [3] proposed CuSH, a system that built on DeepRM to sched-
ule for CPUs and GPUs, but proposed a hierarchical agent by introducing an
additional Convolutional Neural Network (cnn) that chooses which job is going
to be scheduled next, and then uses a policy network to choose the scheduling
policy to use with the previously selected job. It is important to highlight a
major difference between DeepRM and CuSH: whereas DeepRM learns the
scheduling policy itself, CuSH is essentially a classifier, which chooses between
two existing policies. This means that, even without training, CuSH’s behavior
is more stable than that of DeepRM, since DeepRM-style schedulers might
get stuck in local minima, as reported by de Freitas Cunha and Chaimowicz [2],
who investigated the behavior of DeepRM-style agents when trained with state-
of-the-art RL algorithms such as Advantage Actor-Critic (A2C) and Proximal
Policy Optimization (ppo), and proposed an OpenAI Gym environment for eas-
ier evaluation of RL agents for job scheduling.

Another agent that has been proposed recently, and that learns the scheduling
policy itself, is RLscheduler [16]. RLscheduler is a ppo-based agent with a
fully convolutional neural network for scoring jobs in a fixed window of size 128.
The major innovation in RLscheduler is in the training setting, in which the
authors combine synthetic workload traces with real workload traces to present
the agent with ever more difficult settings, similar to learning a curriculum of
tasks.

Similarly to CuSH, other agents that use a classification approach have
been proposed. A recent one is the Deep Reinforcement agent for Scheduling
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in HPC (DRaS) [4], which classifies jobs in three categories: ready, reserved,
and backfilled. After this classification step, the cluster scheduler takes the out-
put of this classification and allocates jobs accordingly (for example, by reserving
slots in the future for reserved jobs, scheduling immediately ready jobs, and find-
ing “holes” in the schedule for backfilled jobs). DRaS uses a five-layer cnn that
works in two levels, with the first level selecting jobs for immediate and reserved
execution, and the second layer for backfilled execution.

None of the papers mentioned above discuss the impact of their design deci-
sions, resorting to only comparing their results with existing algorithms. In this
paper, we aim to analyze how decisions in MDP design impact DeepRM-style
algorithms, and how they impact both computational performance and schedul-
ing performance.

3 Background

In this section, we describe the background needed to understand the techniques
and methodology presented in this paper. To help in understanding, we will use
a resource management problem as running example throughout this section.

3.1 Batch Job Scheduling

The primary goal of a job scheduler is to manage the job queue and coordinate
execution of jobs in High Performance Computing (HPC) clusters, while match-
ing jobs to resources in an efficient way. In a discrete time setting, at each time
step, zero or more jobs may arrive in the queue for processing, and the scheduler’s
job is to allocate jobs to resources while satisfying their resource requirements.
The job scheduler guarantees jobs execute when requested resources are avail-
able, and usually guarantee there won’t be oversubscription of resources1. Given
this primary goal, secondary goals vary between schedulers and HPC facilities,
depending on whether the hosting institution prefers to satisfy the needs of
individuals submitting jobs, or the whole group of users [5].

When optimization of response time is a subgoal, it is usually modeled as the
minimization of the average response time, with response time used as a synonym
to turnaround time: the difference between the time a job was submitted to the
time it completed execution. A metric commonly used to evaluate this is the
slowdown of a job, which, for job j is defined as

slowdown(j) =
(tf (j) − ts(j))

te(j)
=

tw(j) + te(j)
te(j)

=
1

te(j)

⎛
⎝

tw(j)∑
i=1

1 +
te(j)∑
i=1

1

⎞
⎠ , (1)

where ts(j) is the time job j was submitted, te(j) is the time it took to execute
job j, and tf (j) is the finish time of job j. The equality in the middle holds
because the wait time, tw, of a job j is defined as tw(j) = tf (j)− (te(j) + ts(j)).
1 Some schedulers allow for oversubscription of memory resources in their default

configuration, inspired by the fact that jobs don’t use peak memory during their
complete lifetimes.
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Fig. 1. A possible schedule when three jobs arrive in a scheduling system at discrete
time step 1 and no more jobs are submitted to the system at least until time step 7,
the last one shown in the figure.

Consider the case of three batch jobs, j1 = , j2 = , and j3 = ,
submitted to a scheduling system with two processors, and that the three jobs
were submitted “between” time step 0 and 1, such that, when transitioning
from the first time step to the second, now there are three jobs waiting. Also
consider that, for these jobs, the generated schedule is the one displayed in
Fig. 1. As shown in the figure, the jobs execute for two, three and four time
steps respectively, and all of them use a single processor.

The reader should observe that different schedules can yield substantially dif-
ferent values of (average) slowdown. For example, the schedule shown in Fig. 1 has
an average slowdown equal to 1/3

∑3
i=1 slowdown(ji) = 1/3(1 + 1 + 3/2) = 7/6,

whereas, if we swapped j3 with j1, and started j1 soon after j2 finished, the slow-
down would be 1/3( 3+2

2 + 1 + 1) = 9/6 = 3/2, a ≈ 29% increase. Therefore, a
scheduler should choose job sequences wisely, otherwise its performance can be
degraded.

In this paper, we will focus our discussion on what happens when an RL system
tries to minimize the average slowdown, but our conclusions are general and apply
to other metrics and problems as well.

3.2 Deep Reinforcement Learning and Job Scheduling

In a Reinforcement Learning (RL) problem, an agent interacts with an unknown
environment in which it attempts to optimize a reward signal by sequentially
observing the environment’s state and taking actions according to its perception.
For each action, the agent receives a reward. Thus, in the end, we want to find the
sequence of actions that maximizes the total reward, as we will detail in the next
paragraphs.

RL formalizes the problem as a Markov Decision Process (MDP) represented
by a tuple M = 〈S,A,R, T , ρ, γ〉2. At each discrete time step t the agent is
in state St ∈ S. From St, the agent takes an action At ∈ A, receives reward

2 Some authors leave the γ component out of the definition of the MDP. Leaving it in the
definition yields a more general formulation, since it allows one to model continuous
(non-ending) learning settings.
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Rt+1 ∈ R and ends up in state St+1 ∈ S. Therefore, when we assume the first
time step is 0, the interaction between agent and environment create a sequence
S0, A0, R1, S1, A1, R2, . . . of states, actions and rewards. To a specific sequence
S0, A0, R1, S1, A1, R2, . . . of states, actions, and rewards we give the name of tra-
jectory, and will denote such sequences by τ . The transition from state St to St+1

follows the probability distribution defined by T : S ×A → S or, in an equivalent
way, T gives the probability of reaching any new state s′ when taking action a
when in state s: p(s′|s, a) = p(St+1 = s′|St = s,At = a). ρ is a distribution of ini-
tial states, and γ is a parameter 0 ≤ γ ≤ 1, called the discount rate. The discount
rate models the present value of future rewards. For example, a reward received
k steps in the future is worth only γk now. This discount factor is added due to
the uncertainty in receiving rewards and is useful for modeling stochastic environ-
ments. In such cases, there is no guarantee an anticipated reward will actually be
received and the discount rate models this uncertainty.

To map our presentation of RL into our problem of job scheduling, we consider
ρ( ) = 1 (the only possible initial state is the empty cluster), with the first state
consisting of the empty cluster, with no jobs in the system, S0 = 〈 〉 and A0 = ∅,
since there is no job to schedule.

Recall our discussion about classifying jobs to be processed by different poli-
cies, versus choosing the next job to enter the system. In this paper, we are model-
ing an MDP in which the next job is chosen by the agent, so the agent is learning
a scheduling policy. In our example, one can obtain a reward function by using
the sequential version of slowdown, shown in the rightmost equality of (1), such
that the reward at each time step is given by the sum of the current slowdown
for all jobs in the system: R = −

∑
j∈J 1/te(j). When the reward function is

such that it computes the online version of slowdown for all jobs in the system,
if A1 = ∅, R2 = 1/2 + 1/3 + 1/4. Moreover, if jobs j1, j2, and j3 are chosen in
sequence, the next state, shown in Fig. 1, will be given by sequentially applying
the transition function T as T ( , )T ( , )T ( , ). If the episode fin-
ished immediately after the state shown in Fig. 1, the trajectory τ1 would be given
by τ1 = 〈S0 = , A0 = , R1 = 0, S1 = , A1 = , R2 = 0, S2 = , . . .〉3.

The reward signal encodes all of the agent’s goals and purposes, and the
agent’s sole objective is to find a policy πθ parameterized by θ that maximizes
the expected return

G(τ) = R1 + γR2 + · · · + γT−1RT =
T−1∑
t=0

γtR(St, At ∼ πθ(St)), (2)

which is the sum of discounted rewards encountered by the agent. When T
is unbounded, γ < 1. Otherwise, Eq. (2) would diverge. In our example,
a deterministic policy that always chose the smallest job first would yield
πθ(〈 , , , 〉) = , while a stochastic policy would assign a probability
to each job, and either choose the one with highest probability or sample from the

3 The value shown for R2 might contradict the previous discussion, but the MDP is set
in a way that, when jobs are scheduled successfully, Rt+1 = 0.
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jobs according to that distribution. In practice, when neural networks are used for
approximation, the last layer of the neural network is usually a softmax, so that
each action gets a number that can be interpreted as a probability. As mentioned
before, in the example in this section, rewards are based on the negative online
slowdown and, therefore, returns will also depend on the slowdown. The policy π
is a mapping from states and actions to a probability of taking an action A when in
state S, and the parameters θ relate to the approximation method used by the pol-
icy4. Popular function approximators include linear combinations of features [6]
and neural networks [13,15].

3.3 Policy Gradients

In this section we present the main optimization method we use to find policies:
policy gradients. As implied by the name, we compute gradients of policy approx-
imations, and use them to find better parameters for those functions.

Formally, we generalize policies to define distributions over trajectories with

φθ(τ) = ρ(S0)
∏

t

πθ(At|St) T (St+1|St, At)︸ ︷︷ ︸
Environment

, (3)

in which πθ is being optimized by the agent, and ρ and T are provided by the
environment. What (3) says is that we can assign probabilities to any trajectory,
since we know the distribution of initial states ρ, and we know that the policy
will assign probabilities to actions given states, and that, when such actions are
taken, the environment will sample a new state for the agent. When we do so, we
can define an optimization objective to find the optimal set of parameters

θ∗ = arg max
θ

J(θ) = arg max
θ

∫

τ

G(τ)φθ(τ)dτ , (4)

where J(θ) is the performance measure given by the expected return of a
trajectory, which can be approximated by a Monte Carlo estimate Ĵ(θ) =
1/N

∑
i G(τi)φθ(τi)5. If we construct Ĵ(θ) such that it is differentiable, we can

approximate θ∗ by gradient ascent in θ, such that θj+1 ← θj + α∇Ĵ(θ), with
α > 0, yielding

∇θJ(θ) ≈ 1
N

∑
i

G(τi)∇θ log φθ(τi); τi ∼ πθ. (5)

By expanding (2) by one time-step, we get the update G(τ) = R1 + γG(τ1)
or, more generally, G(τt) = Rt+1 + γG(τt+1), where τi indicates the trajectory τ

4 In our example, for each job ji, in time step 1, π would give the probabilities of choos-
ing each job given an empty cluster: π( | ), π( | ), and π( | ) such that,
by total probability, π( | ) + π( | ) + π( | ) = 1.

5 Normalization is needed to approximate the average value of ̂J(θ). Otherwise, ̂J(θ) →
∞ as N → ∞.
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starting from offset i. This update is usually written as Gt = Rt+1 + γvπ(St+1),
where Gt is shorthand notation for G(τt), and vπ(St+1) is the return when starting
at state St+1 and following policy π (which generated trajectory τ). Another func-
tion related to vπ(St) is qπ(St, At), which gives the return when starting at state
St and taking action At then following policy π. With these two functions, we can
define a third one, which gives the relative advantage of taking action At when in
state St, defined as aπ(St, At) = qπ(St, At) − vπ(St), and called the advantage
function. As with the policy, qπ, vπ, and aπ can also be approximated and, thus,
learned. When such an approximation is used, the update (5) becomes

∇θJ(θ) ≈ 1
N

∑
i

∇θ log πθ(At|St)âπ(St, At);St, At ∼ πθ, (6)

where âπ is an approximation of aπ, and which can be further split into two estima-
tors as âπ = q̂π − v̂π, with the arguments St and At dropped for better readability.
In this setting, the πθ approximator is called an actor, and the âπ approximator
is called a critic.

In the literature, we find techniques that regularize updates [8,12], but as pre-
sented, Eq. (6) is sufficient for understanding of the techniques discussed in this
paper.

4 Methodology

Although the discussion in the previous section is helpful for conceptualizing the
problem we are interested in, it is not enough to help us implement a solution, since
it does not specify when the agent is invoked for learning, how a state is actually
represented, nor how rewards are computed for each action. In this section, we
will detail our design decisions, and will elaborate on what changes are required
to assess the impact of said decisions in RL performance. We begin by describing
the base MDP, and then we will describe incremental changes that can be made
to the environment so that it may become faster to compute, and easier to learn,
leading to faster convergence.

We implemented the base MDP and each incremental change discussed in this
section. Then, we evaluated all implementations, observing both convergence per-
formance and final agent performance in the task of scheduling HPC jobs.

4.1 The Base, Image-Like MDP

We begin by following the design of DeepRM [7], summarized here, and exempli-
fied in Fig. 2. We start by representing states as images whose height corresponds
to a look to a time horizon of H time-steps “into” the future, and the width com-
prising: the number of processors in the system and their occupancy state, a win-
dow of configurable size W (in the Figure, W = 2) containing the first W jobs in
the wait queue times the number of processors in the system, and a column vector
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indicating jobs in a “backlog”6. If there are more jobs in the system that can fit
the window and the backlog, they are omitted from the state representation7.

Slots
1 2Cluster

Processors
Backlog
Slots

Fig. 2. Dense state representation with
images representing state. In the figure,
there is one job in execution (with two pro-
cessors for the next two time steps), three
waiting jobs in total, two of them within
window W = 2, one using one CPU for
at least five time steps, and another using
three CPUs for four time steps. Details for
the third job, in the backlog are omitted.

For the action, the agent can either
choose to schedule a job from one of
the W slots, or it can refuse to schedule
a job, totalling three possible actions
in the example of Fig. 2. Regarding
when actions are taken, the MDP was
built in such a way that agents see
every simulation time step and “inter-
mediate” time-steps as well: when a
job is scheduled, there is a state change
in the MDP, with the job moving to
the in-use processors, and the queue
being re-organized so that all slots in
window W are filled.

In the base MDP, whenever a job is
scheduled, the agent receives a reward
of zero. In all other cases, the reward
is given by the negative online slow-
down (1): R = −

∑
j∈J

1
te(j)

. For a detailed description of the environment, we
direct the reader to Mao et al. [7], who first introduced it.

4.2 Compact State Representation

The first realization we had was that the state representation in the base MDP
is wasteful, in the sense that one can reduce the size of the state without losing
information. Particularly when working with larger clusters, or with a larger num-
ber of job slots, it may be the case that full trajectories take too much space in
memory, reducing the computational performance of learning agents. Due to that,
and based on a set of features found in the literature for machine learning with
HPC jobs [1], we devised a set of features that can represent states in a compact
way. In our new state representation, jobs in the queue are represented by the
features shown in Table 1, where “work” is computed by multiplying the num-
ber of processors a job requires by the time it is expected to run, and cluster fea-
tures are a pair that indicates the number of processors in use, and the number
of free processors. The features related to the cluster state still use a time hori-
zon H but instead of using a matrix, we used a pair of integers representing how
many processors are in use, and how many processors are free in a given time-
step. As an example, assuming the job in the cluster was submitted at time 1,

6 Jobs in the wait queue that the agent cannot choose to schedule.
7 Truncating the list of jobs violates the Markov property, since once it overflows, the

agent cannot know how many jobs are in the system.
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the job in slot 1 was submitted at time 2, and the job in slot 2 was submitted
in time 3, the state shown in Fig. 2 can be fully described by the concatenation
of vectors with cluster state 〈(2, 1), (2, 1), (0, 3), (0, 3), (0, 3)〉, jobs in window W
〈(1, 5, 1, 0, 0, 1, 6, 0), (2, 4, 3, 1, 5, 1, 4, 0)〉 and backlog 〈1〉8. The features in the jobs
slots are presented in the same order as the ones shown in Table 1.

Table 1. Job features in a compact state representation.

Feature Description

Submission time Time at which the job was submitted

Requested time Amount of time requested to execute the job

Requested processors Number of processors requested at the submission time

Queue size Number of jobs in the wait queue at job submission time

Queued work Amount of work that was in the queue at job submission time

Free processors Amount of free processors when the job was submitted

Remaining work Amount of work remaining to be executed at job submission time

Backlog The number of jobs waiting outside window W

A side-effect of using this new compact state representation is that, when H
and W are fixed between different cluster configurations, learned features are
directly transferable between clusters even when using function approximation
methods that depend on a fixed number of features.

4.3 Sparse State Transitions

Another deficiency we’ve identified in the base MDP is that the agent sees all time-
steps in the simulation, but this causes the agent to have to take an action even
when there is no good action to take. Consider, for example, the case in which
all resources are in use (there are no free resources). In cases such as this, any
action the agent takes will lead to the same outcome: increasing the simulation
clock, receiving negative rewards related to the slowdown of the jobs, and having
no new jobs scheduled. This will be repeated for all time steps between the start
of the last job that exhausted resources until the finish of the first job that frees
them, causing non-negative rewards to be more sparse, making the reinforcement
signal noisier and, therefore, harder to learn. The opposite is also true: if there are
no jobs waiting to be scheduled, no matter what the agent chooses, the outcome
will be the same: no jobs will be scheduled.

Due to that, we updated the environment to only call the agent and, therefore,
to only add states, actions and rewards to a trajectory, when it was possible for
the agent to take an action that could result in a job being scheduled. In short, we

8 Parentheses group elements. In the first vector, there are five parenthesized pairs to
indicate the time horizon of 5, and two parenthesized elements to represent job slows
in window W .
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change the transition function T (St+1 | St, At) so that all state transitions from
St to St+1 will always have at least one job that may be scheduled by the agent
in state St+1. We did not change the initial state, though, so ρ = { } still holds.
This essentially turns the MDP into a semi-MDP [14]. To make our formulation
compatible with a semi-MDP, we extend the reward function to return zero in all
intermediate states after successfully scheduling a job.

4.4 Reducing the Noise of the Reward Signal

Based on the idea of only showing the agent what it can use to learn and act, we
noticed that the reward signal could be further improved by, instead of computing
the online slowdown of all jobs in the system J , considering only the jobs that are
in the waiting queue, and within the job slots window W : the jobs that can be
directly influenced by the agent’s actions. Therefore, we defined the set W that
contains the subset of jobs from J that are within the window W , and the reward
function became R = −

∑
j∈W

1
te(ji)

when the action taken doesn’t schedule a
job, and 0 otherwise.

We evaluate the impact of the various MDPs on agent performance by per-
forming two sets of experiments, one in which we observe the impact of the changes
proposed in Sects. 4.2 through 4.4 (called Compact, Sparse, and Reduced respec-
tively in the experiments) as opposed to the dense MDP, and another in which we
observe the impact of using an event-based simulation and bounded rewards both
in dense and compact MDPs.

5 Experiments

In order to evaluate our methodology, we used open-source libraries to implement
both our agents and environment, with stable-baselines3 [10] providing the
ppo agent and its training loop, and sched-rl-gym [2] providing the simulator
and environment implementation.

Table 2. List of hyper-
parameters used when
training agents.

Hyper-parameter Value

Learning rate 10−4

n steps 50

Batch size 64

Entropy coefficient 10−2

gae λ 0.95

Clipping ε 0.2

Surrogate epochs 10

γ 0.99

Value coefficient 0.5

All our experiments consisted of training a ppo
agent in the different formulations of the previous
section. We also fixed the neural network architecture
used for function approximation, consisting of a two-
layer neural network with 64 units in each layer, and
with parameter sharing between policy and value net-
works. The fixed number of units implies the image-
like representation will use more parameters, as it con-
tains more data than the compact representation. The
hyper-parameters used for training the agent are sum-
marized in Table 2. We performed no hyper-parameter
optimization, and used values found in the literature
when training the image-like agent. For a full descrip-
tion of ppo, we direct the reader to Schulman et al. [12].



On the Impact of MDP Design for Resource Management RL Agents 89

Fig. 3. Learning curves for various scenarios with H = 20 contrasting learning using a
compact representation with learning with an image-like representation. Curves are an
average of six agents, with shaded areas representing one standard deviation, and show
a moving average of total rewards received by the agents during training.

We also maintained the environment specification fixed for all agent evalua-
tions and used W = 10 job slots, with simulations of length T = 100 time-steps
and time horizon H ∈ {20, 60}. These two horizon values enable us to contrast
cases in which agents can see when jobs will complete, or not. Regarding the work-
load, we used a workload generator from the literature [2,7], which submitted a
new job with 30% chance on each time step. Of these, a job had 80% chance of
being a “small” job, and “large” otherwise. The number of processors np was cho-
sen in the set {10, 32, 64}, while the maximum job length (duration) d varied from
{15, 33, 48} and the size of the largest job (number of processors) js came from the
set {10, 32, 64}. In the workload generator, the length of small jobs was sampled
uniformly from [1, d/5], and the length of large jobs was sampled uniformly from
[2d/3, d]. The number of processors used by any job was sampled from [np/2, np].

All agents were trained for three million time-steps as perceived by the agent.
This means that all agents will see the same number of states, and will take the
same number of actions, but the number of time steps in the underlying simulation
will vary, due to the event-based case becoming a semi-MDP. We evaluated agents
with a thousand independent trials, reporting average values.

In Fig. 3 we show a sampling of learning curves comparing the learning per-
formance of agents that were trained using the image-like representation and the
compact representation with rewards computed from all jobs. The compact rep-
resentation converges faster than the image-like representation, probably due to
its smaller number of parameters. We also notice that although convergence is
faster, the compact representation is not necessarily better (Fig. 3c, 3d). There
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Fig. 4. Average slowdown for the various scenarios considered. Each bar represents a
different instantiation of the (semi-)MDPs. Average slowdowns were computed by aver-
aging the slowdown of a thousand independent trials for each agent in each scenario. All
agents were evaluated with same workload and random seed. In the legend, image-like
corresponds to the base MDP, compact to the compact representation, sparse to the
sparse state transitions, and reduced to the reduced set of jobs to compute rewards.

doesn’t seem to be a general rule, but we noticed that when jobs are shorter (the d
parameter is smaller), the compact representation dominates (Fig. 3a, 3b). When
d increases and most jobs use few processors (js � np), the compact represen-
tation tends to have comparable performance with the image-like representation
(Fig. 3c), whereas when jobs use many processors and have a longer duration,
agents using the image-like representation learn the environment better (Fig. 3d).
For this set of experiments, the size of the time horizon (H) doesn’t impact the
learning performance, as curves obtained with H = 60 (not shown) are indistin-
guishable from visual inspection to the ones obtained with H = 20. When eval-
uating agents, we performed t-tests to check whether there was a difference in
agent performance when using these different H values. In other words, the null
hypothesis was that performance was equal, and the alternative hypothesis was
that agent performance varied. In this setting, the null hypothesis was rejected
only 36.6% of the time when considering p-values ≤ 1%.

Table 3. Key to the scenarios presented
in Fig. 4. Procs. refers to the number
of processors in the cluster, Max Length
refers to the maximum job length, and
Max Size refers to the maximum number
of processors used by jobs.

Scenario Procs. Max length Max size

1 10 15 10

2 10 48 10

3 38 15 32

4 38 33 32

5 38 48 32

6 64 15 64

7 64 33 32

8 64 33 64

9 64 48 32

10 64 48 64

When evaluating agents after one
million iterations, scheduling performance
was similar between agents when the
maximum number of processors used by
jobs was smaller (which implies less par-
allelism). Given job submission rates in
all environments was the same, clusters
were less busy in these situations: as long
as jobs are scheduled, there shouldn’t
be significant differences in average slow-
down, due to smaller queues.

In Fig. 4, with key to scenarions
shown in Table 3, we show average slow-
down of the agents for the scenarios in
which there was some variability in per-
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formance between agents. From the figure, we see that, apart from scenarios 2
and 6, agent performance in the “Compact + Sparse + Reduced” MDP is not
worse than that of the image-like MDP. Of these two, only the difference for sce-
nario 6 is statistically significant, with p-value ≤ 5% when performing a t-test with
alternative hypothesis of different distributions. For the cases where “Compact +
Sparse + Reduced” agents are better, the results are statistically significant (p-
value ≤ 5%) in scenarios 3, 4, 5, 7, and 9. Scenarios 2 and 6 are interesting, since
they were configured to have shorter jobs of at most 15 time-steps, with scenario 1
having 10 processors, and scenario 6 having 64, both with jobs with the potential
of using all cluster resources.

Fig. 5. Time needed to train agents
for three million iterations. The shaded
area represents one standard deviation.
Increasing the time horizon increases
the training time of compact agents by
a constant factor, while it adds a linear
factor to the training times of agents that
use an image-like representation.

In Fig. 5 we contrast the training
times for the various agents. As can be
seen, training times for agents based
on the image-like MDP are highly vari-
able, due to the fact that different MDP
configurations result in different sizes
of state representations, which impacts
training performance. As an example,
the image-like agent requires 301068,
1089548, and 1821708 parameters for
the scenarios with 10, 38, and 64 pro-
cessors, while all compact agents require
a fixed number of parameters: 24332.
Times were measured in a Linux 5.10.42
desktop with an NVIDIA GTX 1070
GPU and an i7–8700K processor using
the performance CPU frequency-scaling governor.

The compact MDPs proposed in this paper all have the characteristic of hav-
ing a state representation with a fixed size, which allows for transfer of learned
weights between MDPs. Here, we consider transfer the ability to change cluster
configuration without the need for retraining an agent from scratch, which is sim-
ply not possible when using the image-like representation. In Fig. 6, for example,
we show the performance of an agent trained in the bounded reward, event-based,
compact MDP with 64 processors and with jobs of length 33 (the best agent in
Fig. 4, corresponding to scenario 9) evaluated in a compact environment without
event-based updates. With this same agent, we were able to evaluate its perfor-
mance in all different scenarios, without the need for retraining. We see that, for
the most part, slowdown is kept low, and not only that: this agent outperformed
other agents in 80% of scenarios (differences are statistically significant, with p-
value ≤ 1%, except for scenario 9, since this is the same agent, and scenario 5,
where the test has low power to reject the null hypothesis). This highlights the
advantage of using a representation that allows for easy transfer between agents,
enabling good performance in a variety of cluster settings.



92 R. L. de Freitas Cunha and L. Chaimowicz

Fig. 6. Bar chart contrasting the performance of a transferred agent to agents trained
specifically in their environments.

6 Conclusion

In this paper, we’ve filled a gap in the literature by analyzing the effects of differ-
ent MDP design decisions on the behavior of RL agents. In particular, we exper-
imented with resource management agents for job scheduling in computing clus-
ters, discussing cases in which a compact representation outperforms a dense one,
and vice-versa. We proposed a new state representation, a transition function, and
a reward function for an MDP studied in the literature, and we saw that these envi-
ronments support transferring agents between different cluster settings, while also
keeping agent memory consumption constant, and processing requirements sta-
ble. We also saw that these compact representations are no worse than image-like
ones, and, thus, might be preferable when constant memory usage is a require-
ment. Moreover, our results indicate that transferred agents may outperform spe-
cialized agents in 80% of the tested scenarios without the need for retraining.
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Abstract. Task-oriented dialogue systems are very important due to
their wide range of applications. In particular, those tasks that involve
multiple domains have gained increasing attention in recent years, as the
actual tasks performed by virtual assistants often span multiple domains.
In this work, we propose the Divide-and-Conquer Distributed Architec-
ture with Slot Sharing Mechanism (DCDA-S2M) system, which includes
not only a distributed system aimed at managing dialogues through the
pipeline architecture, but also a slot sharing mechanism that allows the
system to obtain information during a conversation in one domain and
reuse it in another domain, in order to avoid redundant interactions
and make the dialogue more efficient. Results show that the distributed
architecture outperforms the centralized one by 21.51% and that the slot
sharing mechanism improves the system performance both in the success
rate and in the number of turns during the dialogue, demonstrating that
it can prevent the agent from requesting redundant information.

Keywords: Dialogue systems · Reinforcement learning · Transfer

1 Introduction

Dialogue systems aim to interact with humans, employing conversations in nat-
ural language. They can be broadly divided into three categories: socialbots,
question & answering, and task-oriented systems. Socialbots aim to have an
entertaining conversation to keep the user engaged, without having a specific
goal other than being friendly and keeping company. Question & answering sys-
tems aim to provide a concise and straightforward answer to the user’s question,
possibly using information stored in knowledge bases. Finally, task-oriented sys-
tems help users to complete a specific task [6]. These tasks range from simple
tasks, such as setting an alarm and making an appointment, to more complex
tasks, such as finding a tourist attraction, booking a restaurant or taking a taxi.

Due to their wide range of applications, task-oriented systems have been
showing great relevance in recent years, with both academia and industry
drawing their attention to them. There are roughly two types of architectures
to model a task-oriented agent: end-to-end and pipeline (or modular) [24].
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End-to-end approaches consider the system composed of a single component
that maps user input in natural language directly to the system output also in
natural language (see Fig. 1). On the other hand, pipeline architectures comprise
three components: Natural Language Understanding (NLU), Dialogue Manage-
ment (DM) and Natural Language Generation (NLG) (see Fig. 2). NLU extracts
the major information from the user utterance and transforms it in a structured
data known as dialogue act. The dialogue act shows relevant information for
the dialogue comprehension and it is defined by the tuple [domain, intent, slot,
value], encoding the domain of this particular act, the intent, i.e., its broad objec-
tive (inform, request, or thanks, for instance), and the slot and value representing
specific pieces of information in this domain. The example illustrated in Fig. 2
shows that utterance I want a restaurant located in the centre of town would
have the following dialogue act: [restaurant, inform, area, centre]. DM contains
two sub-modules, the Dialogue State Tracking (DST) which keeps track of the
dialogue state and the Policy (POL) which decides the best response to give to
the user. Finally, the NLG component transforms the DM output, which is also
a dialogue act, into natural language to present to the user.

End-to-EndUser

I want a restaurant
located in the centre of

town

What type of food do
you want?

Fig. 1. Illustration of end-to-end
architecture.

User

NLU DST

POLNLG
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state

restaurant-inform(area: centre)

restaurant-request(type)

DM

Fig. 2. Illustration of pipeline architecture.

Early works on task-oriented dialogue systems [9,12,13] focus on problems
with a single domain. However, it is common that real systems such as the
popular virtual assistants span their applications over multiple domains. This
means that a single system must be able to act and complete the user task in more
than one domain, for example, the user first asks to find a tourist attraction for
sightseeing and then, in the same conversation, she requests a restaurant to have
lunch. Dealing with multi-domain dialogue systems is a problem much harder
since the complexity of user goals and conversations increases a lot. Besides the
complexity of the problem, which is already challenging, another issue faced by
multi-domain systems is related to the redundancy of information given by the
user during a conversation [15]. For instance, suppose that the user first reserves
a restaurant table for two people and then she requests to reserve a hotel room
for that night. It is usual that a single-domain dialogue system asks again the
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number of people although this kind of information—that can be shared among
the domains—was already given by the user. These redundant turns make the
conversation longer and are not nice for the user experience [14].

In this paper, we use the pipeline architecture with a focus on the DM com-
ponent and adopt the divide-and-conquer approach, that is, several agents are
trained independently, each one in a specific domain, and aggregate them to
act in the multi-domain scenario. We show that this approach leads to better
results when compared to the same algorithm trained in all domains at once.
Furthermore, we propose the use of a mechanism that enables the system to
reuse some shareable slots among the domains, avoiding the agent to ask for
redundant information.

The remainder of this paper is organized as follows: Sect. 2 shows some related
work, Sect. 3 describes our methods and proposal, Sect. 4 shows our experiments
and results obtained, and finally Sect. 5 highlights our conclusions and directions
for further work.

2 Related Work

There have been some efforts in the past that focused on multi-domain task-
oriented dialogue systems. Komatani et al. [11] proposed a distributed architec-
ture to integrate expert dialogue systems in different domains using a domain
selector trained with a decision tree classifier. Further works employed tradi-
tional reinforcement learning to learn the domain selector [23]. However, these
systems require manual feature engineering for their building. Finally [4] pro-
posed to use deep reinforcement learning to allow training the system using raw
data, without the manual feature engineering.

More recent works give a great attention to centralized systems, i.e., a unique
system capable of handling multiple-domains instead of having multiple agents,
each one specialized for each domain. One reason for this is the increase in
the power processing in modern computers. Traditional works using the end-
to-end architectures rely on the use of recurrent neural networks (RNN) with
a sequence-to-sequence approach [2,19]. Recurrent Embedding Dialogue Policy
(REDP) [21] learns vector embeddings for dialogue acts and states showing it can
adapt better to new domains than the usual RNNs. Vlasov et al. [22] proposed to
use a transformer architecture [20] with the self-attention mechanism operating
over the sequence of dialogue turns outperforming previous models based on
RNNs.

Another line of research focus on the DM module using the pipeline archi-
tecture. There are some attempts to use supervised learning to learn a policy
for the DM, but as it can be seen as a sequential decision making problem, RL
is more used [5]. However, RL algorithms are too slow in general when trained
from scratch. Many works attempt to include some expert knowledge either by
supervised pre-training or by warm-up, i.e., pre-filling the replay buffer with rule
agents in DQN algorithms. DQfD (Deep Q-learning from Demonstrations) uses
the expert demonstrations to guide the learning and encourages the agent to
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explore in high reward areas, avoiding random exploration [7,8]. Redundancy
with respect to the overlapping slots between domains is another issue in dia-
logue systems. Chen et al. [3] address this problem by implementing the policy
with a graph neural network where the nodes can communicate to each other to
share information but they assume the adjacency matrix for this communication
is known.

Although recent work on multi-domain settings does not consider a dis-
tributed architecture, it is relevant for two reasons: it can reuse well-established
algorithms for a single domain and, in the need to add a new domain to the
system – which is common for real applications such as virtual assistants – it
is unnecessary to retrain the entire system. Therefore, we adopted a distributed
architecture using the divide-and-conquer approach. Furthermore, to the best
of our knowledge, it is the first work that focuses on learning this slot-sharing
mechanism.

3 Proposal

In this work we propose the Divide-and-Conquer Distributed Architecture with
Slot Sharing Mechanism (DCDA-S2M) showed in Fig. 3, which uses the pipeline
architecture (Fig. 2) primarily focusing on the DM component.

The dialogue state must encode all useful information collected during inter-
actions. The MultiWOZ1 annotated states basically comprise the slots informed,
and the ones that are required to complete the task in each domain. For example,
the hotel domain requires, among others, the area of the city where the hotel is
located, the number of stars it has been rated, as well as its price range.

Our proposal to train POL is divided into two steps. The first step is to use
a distributed architecture in a divide-and-conquer approach to build a system
capable of interacting in a multi-domain environment. The second stage consists
of a mechanism that shares slots between domains. In the following sections
we detail each component of DCDA-S2M, the Divide-and-Conquer Distributed
Architecture (DCDA) and the Slot Sharing Mechanism (S2M).

3.1 Divide-and-Conquer Distributed Architecture

We implemented seven agents, each one specifically trained for a domain of
the MultiWOZ dataset (attraction, hospital, hotel, police, restaurant, taxi, and
train), as illustrated in Fig. 3. The idea is that, using a simple reinforcement
learning algorithm, we can have a multi-domain system with better performance
than if we had a single agent trained in all domains at once.

However, just having multiple agents, each one for each domain, is not
enough. We need a controller capable of perceiving when there is a domain
change and selecting the right agent to collect the right response. The controller
1 MultiWOZ is a fully-labeled collection of human-human written conversations

spanning over multiple domains and topics – https://github.com/budzianowski/
multiwoz.

https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz
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Restaurant Train Attraction Hospital

Controller

state
features

HotelPoliceTaxi Police

restaurant-inform(area: centre)

people: 2

restaurant-confirm(people: 2)
restaurant-request(foodtype: ?)

hotel-people

restaurant-people

Slot Sharing Mechanism

Fig. 3. Illustrative figure of our proposed architecture.

keeps track of all state features from all agents allowing it to know the past and
current domains.

As mentioned before, in multi-domain systems the dialogue act is defined by
the tuple [domain, intent, slot, value], i.e., it already includes the domain of the
conversation [10]. Therefore, the controller simply observes the domain element
of the dialogue act. If it is a new domain (different from the current one) it
checks with S2M (detailed in Sect. 3.2) the slots from past domains that can
share values with the new domain, and it copies the values of these shareable
slots. Given this, the controller sends the state features to the corresponding
agent of the current domain. Each agent is trained using reinforcement learning
to learn an optimal policy (POL component of DM) in each domain.

Reinforcement Learning. In reinforcement learning problems there is an
agent that learns by interacting with an environment through the Markov Deci-
sion Process (MDP) framework defined as a tuple (S,A,R, T , γ), where S is
the set of possible states, A is the set of actions, R is the reward function, T is
the state transition function, and γ ∈ [0, 1] is the discount factor that balances
the trade-off between immediate rewards and future rewards. In the context of
dialogue systems, the state represents the dialogue state. The actions are the set
of dialogue acts of the agent, and the reward is +R if the dialogue succeeds, i.e.,
the agent achieve the user goal, −R if the dialogue fails and −1 for each turn to
encourage the agent lasts the minimum number of turns.

The agent’s objective is to maximize the cumulative discounted rewards,∑T
t=0 γtrt, rt ∈ R, received during interactions in order to find its optimal

policy that maps state st ∈ S to the best action π(st) = at, at ∈ A.
In this work the Proximal Policy Optimization (PPO) algorithm [18] was

employed which is a policy gradient method which aim to directly optimize the
parameterized policy to maximize the expected reward. The intuition of PPO
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is to make the greatest improvement in policy without stepping so far from
current policy to avoid a performance collapse. Formally, it optimizes the loss
function, L(θ) = min

(
ρ(θ)Â, clip(ρ(θ), 1 − ε, 1 + ε)Â

)
, where ρ(θ) = πθ(a|s)

πθold(a|s)

denotes the probability ratio, Â is the estimated advantage function and ε is a
hyperparameter that indicates how far can we go from old policy.

For the advantage function estimation, we use the Generalized Advantage
Estimation (GAE) [17], Â(st, at) = δ(st) + γλÂ(st+1, at+1), with δ(st) = rt +
γV̂ (st+1) − V̂ (st), where γ is the discount factor, λ is a hyperparameter to
adjust the bias-variance tradeoff and V̂ (s) is the estimate of value function, i.e.,
the expected reward the agent receives being at state s.

However reinforcement learning algorithms often suffer in sparse reward envi-
ronments. One possible option to deal with this issue is to use some pre-training
method, such as imitation learning, where the agent tries to clone expert behav-
iors. We use the Vanilla Maximum Likelihood Estimation (VMLE) algorithm
[25] to pre-train the agents. VMLE employs a multiclass classification with data
extracted from the MultiWOZ dataset. The algorithm optimizes its policy trying
to mimic the behavior presented by the agent in the dataset.

User Simulator. Furthermore, training the agent with real users is impractica-
ble since it requires a great number of interactions. Therefore there is a need of an
user simulator. The used user simulator follows an agenda-based approach [16].
First, it generates a user goal which comprises all information needed to complete
the task. Then, the user simulator generates an agenda in a stack-like structure
with all actions it needs to take (informing its constraints and/or requesting
information). During the conversation, as the agent requests or informs some-
thing, the user can reschedule the agenda accordingly. For example, if the agent
requests the type of restaurant, than the user can move the action “inform the
type of restaurant” to the top of the stack. The conversation lasts until the stack
is empty or the maximum number of turns is reached.

We made a small modification to the user simulator to handle the confir-
mation actions provided by the agent using the slot sharing mechanism. The
simulator checks if the values of the confirmation act are correct and if they
are wrong it informs the correct value; otherwise, it just removes the action
regarding that slot-value pair from the agenda and continues with its policy.

Finally, after all the seven agents are trained using reinforcement learning we
plug them with the controller resulting in the DCDA system.

3.2 Slot Sharing Mechanism

Some domains contain overlapping slots, i.e., slots that can share their values in
a conversation. For instance, if the user is looking for a restaurant and a hotel,
it is likely that they are for the same day and in the same price range. More
complex relationships can be represented, such as the time of reservation for a
restaurant and the time when the taxi must arrive at its destination (which would
be the restaurant). However, not all slots are shareable between two domains.
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Therefore, we need to know which slots whose contents can be transferred from
one domain to another.

In the following subsections we show how we learned these relationships.
But for now, suppose we already know what such slots are. Therefore, during
the conversation, when the controller notices a domain change, the information-
sharing mechanism first gets all informed slots in previous domains and then
checks whether any of those slots can share their values with any slots in the
current domain. In this case, the controller copies the value from that slot to the
slot of the new domain. For example, suppose the system has already interacted
with the user in the hotel domain and knows that the demand is for two peo-
ple. When the conversation changes to the restaurant domain, the slot sharing
mechanism will see that hotel-people slot can be shared with restaurant-people
slot and the controller will transfer this information (two people) to the restau-
rant domain. The agent then asks for confirmation and acts considering this
transferred slot. This can speed up the dialogue and improve the user experi-
ence during interactions by avoiding asking redundant information. In the worst
case, if the transferred value is wrong, the user informs the correct value and
continues the interaction normally.

Learning Shareable Slots. Our proposal to learn which slots can be shared,
named Node Embedding for Slots Sharing Mechanism, uses the node embedding
technique in which each node represents a domain-slot pair. The similarity of
two nodes indicates whether they can share the same value in a conversation.
It is defined by a simple scalar product, that is, given nodes u = [u1, u2, . . . , ud]
and v = [v1, v2, . . . , vd], we have: similarity(u, v) = 〈u, v〉 =

∑d
i=1 ui · vi, where

d is the embedding dimension. For instance, the nodes restaurant-day and hotel-
day must be similar, i.e., have a high scalar product, while restaurant-name and
hotel-name must have a low scalar product.

Before learning the node embedding, we need to build a similarity matrix
A ∈ R

n×n, a n × n matrix where n is the number of nodes, i.e., number of
domain-slot pairs and the cell Auv represents the similarity between nodes u
and v normalized to fall between 0 and 1, that is, similarity(u, v) ∈ [0, 1]. This
is done using the dialogues from dataset D as shown in Algorithm 1. At the end
of each conversation, we observe the final state (the state of the dialogue in the
last interaction) and check if each node pair presents the same value (a node
represents a domain-slot pair). If they do, the weight between these two nodes is
increased by one. In the end, all weights are normalized to the number of times
each pair of nodes appeared in the dialogues.

However, keeping a matrix with O(n2) of space complexity does not scale with
the number of domains and slots. For this reason, we trained a node embedding
representation for each domain-slot pair. The learning of node embedding uses
the similarity matrix A ∈ R

n×n and follows Algorithm 2 proposed by Ahmed et
al. [1]. In each step, for each node pair (u, v) ∈ E, where E is the set containing
all node pairs, it performs an update to minimize the following error L(A,Z, λ) =
1
2

∑
(u,v)∈E(Auv − 〈Zu, Zv〉)2 + λ

2

∑
u ||Zu||2, where Z represents the embedding
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Algorithm 1. Similarity Matrix
Require: Dataset D
1: Initialize similarity matrix A ∈ R

n×n with zeros
2: Initialize pair-counter matrix C ∈ R

n×n with zeros
3: for all dialogue d ∈ D do
4: Set goal ← final state of dialogue d
5: for all (u, v) ∈ goal, where u and v form a domain-slot pair do
6: if value(u) = value(v) then
7: Auv ← Auv + 1
8: end if
9: Cuv ← Cuv + 1

10: end for
11: end for
12: A ← A/C � normalize similarity matrix
13: return A

space and Zu is the vector for node u. The t in Algorithm 2 can be thought as
a learning rate for each update.

This S2M is independent of the agent trained, so it can be plugged with any
agent we want. Gathering the DCDA and S2M we get the DCDA-S2M system
(Fig. 3), where the controller asks for the S2M for slots that can share their values
when there is a domain shift and then send the state features to the respective
agent to get the response to the user.

4 Experiments and Results

To evaluate our proposal we did three experiments: the first was to train the
embedding of nodes and to do a qualitative analysis of the learned embedding.
We then evaluate the divide-and-conquer approach with the information-sharing
mechanism, and finally we evaluate the same approach without the mechanism.

Algorithm 2. Node Embedding
Require: Matrix A ∈ R

n×n, embedding dimension d, regularization factor λ, set of
all node pairs E

1: Initialize Z ∈ R
n×d at random

2: t ← 1
3: repeat
4: for all (u, v) ∈ E do
5: η ← 1√

t
6: t ← t + 1
7: Zu ← Zu + η [(Auv − 〈Zu, Zv〉)Zv] + λZu

8: end for
9: until no more epochs

10: return Z
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4.1 Experimental Setup

We used the ConvLab-22 platform to run our experiments. It provides a plat-
form with a user simulator and some implementations of all dialogue systems
components (NLU, DST, POL and NLG). In this way, it is easy to assess new
algorithms for each of the components. We trained the agents for each domain
using the PPO algorithm with the standard parameters of the ConvLab-2 plat-
form: discount factor γ = 0.99, clipping factor ε = 0.2 and λ = 0.95 (for advan-
tage value estimation). The training lasted 200 epochs and in each epoch we
collected around 100 turns and sampled a batch of size 32 for optimization. The
agent contains two separate networks, one for policy estimation with two hidden
layers of size 100 and other for value estimation with two hidden layers of size 50.
The optmizers used for policy and value networks are RMSProp and Adam and
learning rate lrp = 10−4 and lrv = 5 · 10−5, respectively. The reward function
is −1 for each turn (to encourage the agent complete the task more quickly),
40 for success dialogue and 20 for fail dialogue. For pre-training we employed
the VMLE algorithm using RMSProp optimizer with lrvmle = 10−3 and binary
cross entropy with logits as loss function. We also used the available PPO model
trained with all domains at once to compare with our results.

For our node embedding, we built the adjacency matrix using the dia-
logue corpus available at ConvLab-2 platform. For hyperparameters, we used
an embedding dimension d = 50, regularization factor λ = 0.3, and 1000 epochs
for training.

4.2 Node Embedding

For visualization of the learned node embedding we used a t-distributed stochas-
tic neighbor embedding (t-SNE) model with perplexity 5 using the scalar product
as similarity function. Figure 4 shows this visualization.

Figure 4 clearly shows some groups of nodes that are related to each other.
For example, hotel-area, attraction-area, and restaurant-area forms a group, indi-
cating that users generally request places in the same area. It also happens for
the price range (restaurant-pricerange and hotel-pricerange), day (restaurant-
day, hotel-day, and train-day) and people (restaurant-people, hotel-people, and
people) slots. Although hotel-stay and hotel-stars looks close to the group with
slot “people”, computing their similarity with restaurant-people we got 0.118
and 0.088, respectively. Thus they are not similar and should not share values.
On the other hand, the similarity between restaurant-area and attraction-area
is 0.91 showing that they are similar and must share their values inside a con-
versation. Here we used a similarity of 0.8 as a threshold for sharing the slots
values.

An interesting observation is that attraction-name and hotel-name are quite
close to taxi-departure, with similarity 0.57 and 0.668, respectively, but they
are not close to each other, i.e., the similarity between them is 0.011. This is
expected since it is not common an attraction with the same name as a hotel.
2 https://github.com/thu-coai/ConvLab-2.

https://github.com/thu-coai/ConvLab-2
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Fig. 4. Visual representation of the learned node embedding.

4.3 DCDA Evaluation

To evaluate our proposal we assessed four models: the baseline Rule-based policy
available in ConvLab-2, the VLME policy (obtained from the VLME algorithm),
and the PPO algorithm trained in both approaches: a centralized system with a
unique agent trained to handle all domains at once (PPOall) and our proposal
(DCDA). We also evaluated the effects of using or not the S2M in the rule
and DCDA agents. The metrics are automatically computed by the evaluator
presented in ConvLab-2 and encompasses the complete rate, success rate, book
rate, precision, recall, F1-score for the informed slots, and average number of
turns for both the dialogues that were successful and the total set of dialogues.
The complete rate indicates the rate of dialogues that could finish (either with
success or fail) before achieving the maximum number of turns. The precision,
recall and F1-score indicate the ability of the agent to fulfill the slots of the user
goal, i.e., leads to the correct slot. Tests were performed over 2000 dialogues.

Table 1 shows the evaluation results for all the four models trained in the
pipeline setting, i.e., without the NLU and NLG modules. As expected the rule
policy performs almost “perfectly” succeeding in 98.45% of the dialogues and it
can serve as a baseline. Among the trainable agents, DCDA performs better in
almost all aspects achieving 88.14% of success rate, 94.01% of completion rate,
and 88.01% of book rate. It beats the PPOall by almost 21.51% in the success
rate, showing a much better performance and efficiency as it can solve user
tasks using less number of turns. The average number of turns in all dialogues,
14.92, is very close to the baseline rule policy (13.48) showing it could learn a
very good policy in solving tasks. The large increase in the average number of
turns for all dialogues can be explained by analysing the failed dialogues during
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test. It can be seen that in many failed dialogues the conversation went in a
loop with the agent and the simulated user, repeating the same act of dialogue
consecutively. The reason why this phenomenon occurs is not very clear to us.
The worst performance of the VLME is expected, as the other agents depend on
the VLME for pre-training.

Table 1. Results of the four agents: Rule, VLME, PPOall and DCDA tested in a
pipeline setting. Best results among trainable agents are in bold.

Rule VLME PPOall DCDA

Success 98.45 39.57 66.63 88.14

Complete 98.45 41.50 77.17 94.01

Book 98.79 1.35 60.20 88.01

Precision 83.47 65.24 77.57 80.26

Recall 99.16 68.82 86.53 97.02

F1 88.55 64.12 79.12 86.00

Turn (suc) 13.40 13.80 13.62 13.84

Turns (all) 13.48 22.39 19.82 14.92

The results of the second experiment regarding the use of the slot sharing
mechanism are presented in Table 2. We evaluated both the Rule policy and
our proposed model DCDA. Results show that for the Rule policy the sharing
mechanism also helped the agent to have a slightly better performance. Although
the success rate for DCDA did not change much, the sharing mechanism also
helped it to have a better complete and book rate. Another enhancement was in
the average number of turns. The average number of turns required in successful
dialogues for the Rule and DCDA policies decreased from 13.40 to 13.20 and from
13.84 to 13.43, respectively, when the sharing mechanism was incorporated. Thus
we can see that the sharing mechanism makes the agent to complete dialogues
faster than without this mechanism for both agents.

Table 2. Evaluation of the use of S2M in the Rule policy and DCDA with the goal
generator generating random goals. Best results are in bold.

Rule DCDA

With S2M No S2M With S2M No S2M

Success 98.60 98.45 88.24 88.14

Complete 98.65 98.45 95.94 94.01

Book 99.25 98.79 90.50 88.01

Precision 83.32 83.46 80.31 80.26

Recall 99.14 99.16 97.04 97.02

F1 88.46 88.55 86.02 85.99

Turn (suc) 13.20 13.40 13.43 13.84

Turns (all) 13.23 13.48 14.77 14.92
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An interesting fact is that besides the slightly better performance with the
sharing mechanism, the precision, recall and F1-score did not followed the same
behavior, i.e., they had better results or very close (less than 0.05%) results as
those without the sharing mechanism. This result is not very surprising because
as the agent with the sharing mechanism tries to “guess” the slots of new domains
within the conversation, it ends up reporting more wrong slots of the user goal
causing worse precision, recall, and F1-score.

All theses experiments was assessed with the user simulator generating ran-
dom goals based on a distribution of the goal model extracted from the dataset.
So this can include simple goals within only one domain and/or goals that span
to more than one domain but do not have any slot with the same value. Indeed,
among all 2000 goals generated during testing, only about 400 contain common
values between slots. With that in mind, we ran another test of the sharing
mechanism that restricts the user simulator to only generating goals that con-
tain common slots. Therefore, the generated goals end up being more complex
in general than those generated in the first test.

Table 3 shows the results. There is an expected significant decrease in the
general performance due to the increase in user goals complexity. However, here
we can clearly observe the great advantage of the sharing mechanism in this
setting.

Table 3. Evaluation of the use of S2M in the Rule policy and DCDA with the goal
generator generating slots with common values. Best results are in bold.

Rule DCDA

With S2M No S2M With S2M No S2M

Success 92.60 80.35 78.41 68.42

Complete 92.50 80.45 92.13 85.49

Book 96.11 95.88 83.58 83.10

Precision 79.89 79.34 76.82 74.88

Recall 95.43 86.80 95.15 90.01

F1 83.99 77.38 82.92 78.77

Turn (suc) 17.15 18.24 19.97 20.69

Turns (all) 17.10 17.60 21.28 21.57

There is a 12.25% and 9.99% success rate difference with the Rule and DCDA
policies, respectively. We also see a bigger impact on the average number of turns.
It affects mostly the successful dialogues because the number of turns is affected
only when the transferred slots values are correct – otherwise the user would
still need to inform these slots – and chances of a successful dialogue increase
when it happens. Finally, we also see a better precision, recall and F1-score for
the agent with the sharing mechanism. Since all goals in this tests have at least
one common value among the slots, the agent “guesses” are more likely to be
correct.
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restaurant:  info: {area: north, food: indian, pricerange: moderate}, 
                   reqt: {postcode: ?, address: ?},

hotel: info: {parking: yes, pricerange: moderate, stars: 4, area: north}, 
          reqt: {type: ?}}

usr: [Restaurant, Inform, Price, moderate], [Restaurant, Inform, Area, north]

agt: [Restaurant, Inform, Name, the nirala]

usr: [Restaurant, Request, Addr, ?], [Restaurant, Request, Post, ?]

agt: [Restaurant, Inform, Addr, 7 Milton ....], [Restaurant, Inform , Post, cb41uy]

H
o

te
l

usr: [Inform, Hotel, Starts, 4

agt: [Confirm, Hotel, Price, moderate], [Confirm, Hotel, Area, north],
        [Recommend, Hotel, Name, limehouse], 

usr: [Inform, Hotel, Parking, yes]

agt: [Inform, Hotel, Choice, 6], [Recommend, Hotel, Name, kirkwood house]

usr: [Request, Hotel, Type, ?]

agt: ['Inform', 'Hotel', 'Type', 'guesthouse']

 . . .

. . .

Fig. 5. Example of dialogue using the slot
sharing mechanism, resulting in a dialogue
length 8.
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restaurant:  info: {area: north, food: indian, pricerange: moderate}, 
                   reqt: {postcode: ?, address: ?},

hotel: info: {parking: yes, pricerange: moderate, stars: 4, area: north}, 
          reqt: {type: ?}}

usr: [Restaurant, Inform, Price, moderate], [Restaurant, Inform, Area, north]

agt: [Restaurant, Inform, Name, the nirala]

usr: [Restaurant, Request, Addr, ?], [Restaurant, Request, Post, ?]

agt: [Restaurant, Inform, Addr, 7 Milton ....], [Restaurant, Inform , Post, cb41uy]

H
ot

el

usr: [Inform, Hotel, Starts, 4]

agt: ['Request', 'Hotel', 'Area', '?'] 

usr: ['Inform', 'Hotel', 'Area', 'north']

agt: ['Request', 'Hotel', 'Price', '?']

usr:  ['Inform', 'Hotel', 'Price', 'moderate']

agt: [Recommend, Hotel, Name, limehouse]

 . . .

. . .

Fig. 6. Example of dialogue that does not
use slot sharing mechanism, resulting in a
dialogue length 11.

Figures 5 and 6 show examples of system generated dialogues using and not
using the slot sharing mechanism, respectively. Observe that when the domain
switched to the hotel domain, the agent in Fig. 5 asked for confirmation if the
price is moderate and area is north and recommended a hotel with these con-
straints. In natural language we could think in this dialogue act as: “Do you want
a hotel in north with a moderate price, right? There is the hotel Limehouse”. In
this way, the user did not need to inform these slots again, saving some turns
until task completion. While in Fig. 6 the agent needed to ask again the area
and price for the user, resulting in a redundant dialogue which takes more turns
to be completed (11 turns against 8 turns).

One drawback for the DCDA-S2M is the training time required for training
all the agents. Table 4 shows the average training time for each agent. As we can
see, the total amount of time required to train all seven agents is 291.29 minutes,
which is approximately 16% more than centralized system training. However, it
is worth noting that agents could be trained in parallel, which would require
greater computational power.

Table 4. Training time in minutes for each agent.

All Attraction Hospital Hotel Police Restaurant Taxi Train

Training
time (min)

188.97 32.01 28.87 29.97 26.85 32.01 29.77 111.81

5 Conclusions

In this work we show that the use of a distributed architecture, with multiple
agents trained separately for each domain, can leverage the system performance
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compared to the same algorithm used to train a single agent for all domains
at once. This is because each agent can specialize in solving its own problem
well, which is much simpler than solving tasks well in all domains, as with the
centralized approach in a single agent. Furthermore, distributed systems can add
new domains without the need to retrain the entire system.

The use of the slot sharing mechanism also proved to enhance system perfor-
mance, especially for tasks where the goal has some common slot across domains.
Besides improving the system’s success rate, it also decreases the average number
of turns, showing that the system avoided asking for redundant information.

A major disadvantage of DCDA-S2M is the need to train several agents
separately and this can be time and energy consuming. In this sense, for future
work we intend to explore transfer learning techniques in reinforcement learning
to accelerate the training of new agents.
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Abstract. In the Steiner Tree Problem in Graphs, a subset of nodes,
called terminals, must be efficiently interconnected. The graph is undi-
rected and weighted, and candidate solutions can include additional
nodes called Steiner vertices. The problem is NP-complete, and opti-
mization algorithms based on population metaheuristics, e.g., Genetic
Algorithms (GAs), have been proposed. However, traditional recombi-
nation operators may produce inefficient solutions for graph-based prob-
lems. We propose a new recombination operator for the Steiner Tree
Problem based on the graph representation. The new operator is a kind
of partition crossover: it breaks the graph formed by the union of two
parents solutions and decomposes the evaluation function by finding con-
nected subgraphs. We also investigate two soft-repair operators that pro-
duce small changes in candidate solutions: an MST transformation and
a pruning repair. The GA with the proposed crossover operator was able
to find the global optimum solution for all tested instances and has a
success rate of 28% in the worst case. The experiments with the pro-
posed crossover presented a quick convergence to optimal solutions, and
an average solution cost lower in most cases than other approaches.

Keywords: Steiner Tree Problem in Graphs · Partition based
crossover · Genetic algorithms

1 Introduction

Steiner Tree Problems (STP) are relevant in the combinatorial optimization
field [9]. In STP, a minimum special tree should be found in a weighted graph
G(V,E), where an edge eij ∈ E represents the relationship between vertices vi
and vj ∈ V , and a function c : E → R

+
∗ maps each edge to a positive value. The

graph is also undirected, i.e., we can reach a node vj from vi and vice-versa by
the same edge and cost. Moreover, suppose there is a subset of requested vertices
Z ⊂ V , also called terminals.
c© Springer Nature Switzerland AG 2021
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The Steiner Tree Problem in Graphs (STPG) seeks the Steiner Minimum
Tree (SMT), a subgraph of G that connects all the terminals nodes in Z and
minimize Eq. 1, i.e., has the minimum cost.

f(T ) =
∑

i=1

c(ei) ∀ ei ∈ E′ ⊂ E (1)

A Steiner tree (ST) is a candidate solution for the problem with Z ⊂ V ′

and E′ ⊂ E forming a tree T (V ′, E′). Some non-terminal vertices from the set
V − Z might appear in V ′ to assure connectivity - they are Steiner vertices. An
ST must follow these constraints: 1) The terminal nodes must be connected; 2)
Any cycle must be broken to reduce the solution cost; 3) Leaf nodes that are not
terminals must be removed, reducing the solution cost without lost connectivity.

Hamiki (1971) [4] first described the SPTG for a finite graph with vertices
and well-defined edges. The STPG is a well-known NP-complete problem [6]
in the combinatorial optimization field. It means no known algorithm assures
that deterministically can find the best possible solution in a polynomial time
for the general case. As a consequence, heuristics and metaheuristics have been
proposed for the STPG.

The STPG can model a comprehensive range of practical problems. Sev-
eral studies describe applications in the telecommunication and related fields
as Multicast Routing Problems and Wireless Sensor Networks. However, it is
also applicable in supply chain management, VSLI circuit projects, genetic phy-
logeny, and drug repositioning. Due to its applicability, several studies attempted
to find better solutions for the STPG.

Ljubic (2021) [9] describes different approaches for special cases of the STPG:
Lagrangian relaxations, dual-ascent methods, heuristics, approximate and exact
algorithms. The author in [9] pointed out that metaheuristics also has been
developed, like genetic algorithms (GA), ant colony optimization, and particle
swarm optimization. However, metaheuristics are not competitive in many prac-
tical Steiner Tree benchmark problems where traditional approaches have been
applied. The worst results, when compared to conventional approaches, can be
partially credited to the use of transformation operators that end up producing
inefficient or unfeasible solutions in graph-based representations of the problem.

In addition, the interaction between decision variables is ignored in black-box
optimization. Alternatively, in gray-box optimization, the structure of the prob-
lems is efficiently explored by transformation operators to produce better solu-
tions [14]. Partition Crossover (PX) operators explore the interaction between
decision variables in problems with graph-based representation to recombine
solutions efficiently. PX operators break the union graph formed by two parents’
solutions and decompose the problem’s evaluation function.

For instance, the Generalized Partition Crossover (GPX) improved the solu-
tion cost for the Traveling Salesman Problem (TSP) when it was combined
with the state-of-art Lin-Kernighan-Helsgaum heuristic [13]. This operator is
respectful because the offspring inherits all common edges from its parents. It
also transmits alleles, which means all edges present in the offspring can be found
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in the parents. Moreover, when two local optima are recombined, the offspring
is also local optima.

Accordingly to Raidl et al. (2003) [11], an efficient crossover operator for
tree-graph problems is expected to be respectful and transmit alleles. In this
paper, we propose a new recombination operator for the STPG based on parti-
tion crossover. It is important to observe that PX operators were not previously
proposed for Steiner Tree Problems. In addition, we use two soft-repair opera-
tions to repair unfeasible solutions eventually generated by recombination. The
proposed operator is compared to a Prim’s random-based crossover. The GA
with the proposed recombination and repair operators is also compared to a
classical GA using binary chromosome representation.

This paper is organized as follows: Sect. 2 describes GA approaches for the
STPG and some expected features for an efficient crossover operator. Section 3
explains our partition crossover for Steiner Trees. Section 4 describes the experi-
ments, Subsect. 4.1 gives more detail about GA tested, and Subsect. 4.2 discusses
results. Finally, a conclusion is given in Sect. 5.

2 Related Works

In two early studies, Kapsalis et al. (1993) [5] and Esbensen (1995) [3] proposed
a GA with a binary chromosome to encode an ST. The binary chromosome
indicates if a non-terminal node (from the set V − Z) belongs to an ST. If it
belongs, it is set the value one to the corresponding node. Otherwise, it will set
a value of zero if the node does not belong. The algorithms in [5] and [3] differ
by the process of decoding the ST from the chromosome.

The decoding procedure in [5] first identifies the Steiner vertices from the
chromosome and the terminals nodes that form the set of nodes V ′ ⊂ V for the
ST. Then, it adds an edge eij = (vi, vj) ∈ E to the subgraph G′ if both incidents
vertices vi and vj belongs to V ′. If so, the edge will also belong to G′. Finally,
the ST is the Minimum Spanning Tree (MST) from the subgraph G′.

The decoding procedure adopted by [5] can lead to disconnected individuals.
However, their fitness evaluation receives a penalization proportionally to the
number of disconnected components. They also used traditional GA operators
such as 1 point crossover and bit-flip mutation. The GA found the best solution
for all OR-Library B class instances in at least one algorithm run. However,
the authors applied a diverse range of parameters configuration to achieve the
results, and the GA required a long running time.

Esbensen (1995) [3] embodied the Distance Network Heuristic (DNH) [7]
to avert disconnected solutions in his decoding procedure. The heuristic uses
the distance graph (representing all paths and distances between every pair
of vertices) obtained by the Floyd-Wharsall algorithm [2]. Even though it is
computed once, its time complexity of O(n3) might prevent its use for large
graphs. The decoding procedure computes the ST by applying the heuristic over
the subgraph G′ induced by the chromosome subset of vertices V ′.

The author in [3] applied his GA in C, D, and E instance classes from OR-
Library [1]. The author also used reduction techniques to reduce the size of the
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instance graphs. Reduction techniques try to identify edges and vertices that
always will belong to an ST—contracting those pairs of vertices and edges—or
identifying those that will never be part of an ST and remove them. However,
the GA achieved a near-optimum solution and took a long time running.

Raidl et al. (2003) [11] presented an Edge Set encoding for tree-based opti-
mization problems. In this approach, just the set of edges represents the tree.
They tested it considering different tree-based problems, but the adaptation to
STPG is simple. They also proposed three randomized strategies for population
initialization, based on Prim [10], Kruskal [8], and random walk algorithms.

The random walk starts at an arbitrary node vstart and moves a particle to
some adjacent node vk. The edge (vstart, vk) is selected to compose the resulting
tree. Then the particle moves to another adjacent node of vk and inserts a new
edge into the resulting tree if the selected edge does not insert a cycle in the tree.
This procedure is repeated until all terminal nodes belong to the individual. The
authors in [11] proved that this procedure does not favor a specific tree topology.

Prim (1957) [10] and Kruskal (1956) [8] have proposed two well-known algo-
rithms to compute the MST from a graph. These algorithms greedily choose
the lowest cost edges to form the MST, but they differ in selecting such edges.
Kruskal’s algorithm looks at the entire edges’ set and selects one even though
it does not connect with the previously chosen. Therefore, this algorithm uses a
disjoint set data structure to ensure that the selected edges will not form a cycle.
Instead, Prim’s algorithm starts from a node v0, considers its incident edges as
eligible, and chooses some edge (v0, vj) with the lowest cost. The new incident
edges from vj will be eligible too. The set of eligible edges keeps growing until
all graph edges are reached.

As a procedure to population initialization, the authors in [11] proposed a
variation of Prim and Kruskal algorithms to select a new edge randomly instead
of in a greedy way. Furthermore, the authors claimed that these procedures
favor a star topology in the individuals. Hence, they named these variations as
PrimRST and KruskalRST .

Also, in [11] the initialization procedures are adapted as recombination pro-
cedures by simply applying them to the union graph of the two candidate solu-
tions. In addition, they stated that other recombination strategies are possible
depending on what to do with the shared edges, transmitting them directly to
the offspring or not. However, they conclude that recombination operators for
spanning trees should always include the common edges in the offspring.

The authors in [11] stated that these operators offer locality (small changes
in the genotype imply small changes in the phenotype) and heritability (the
offspring consist mainly of alleles of its parents). These are two of many proper-
ties expected for proper encoding. However, to the best of our knowledge, those
recombination strategies were not evaluated for the STPG case. Additionally,
there is no formal demonstration that PrimRST always includes all the com-
mon edges between two individuals chosen for recombination.

In this paper, we propose a crossover operator for ST based on PX. It gen-
erates two offspring, which will have: the shared edges from both parents, the
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select edges from recombinant partitions, and the remaining edges from non-
recombinant partitions, respectively, from each parent.

The principles behind our operator come from the PX for the Traveling Sales-
man Problem (TSP) proposed in [12,13,15], and [16]. The original Generalized
Partition Crossover (GPX) was designed to recombine two Hamiltonian cycles.
Under these circumstances, a new recombination operator is necessary for the
Steiner Tree, i.e., recombine tree graph solutions.

The GPX takes two individuals (Hamiltonian cycles) for recombination.
Then, it joins the edges from each individual in a union graph Gu. The ver-
tices with a degree equal to 2 are removed, and their incident edges are trans-
ferred directly to the offspring. The remaining edges form candidate partitions
for recombination. One can think each partition is the union of two paths, each
one from a parent.

The recombinant partition must ensure that it can ensemble a cycle in the
offspring if either inner path is chosen. It is made by checking the portal and
simplified graph for each parent graph. A simplified graph reduces a path to a
single edge. A portal vertex connects a partition to another through common
edges. So it will be easy to verify if the path from both parents connects to the
same portal vertex. Nevertheless, vertices with a degree equal to 4 are split by
inserting a ghost vertex. The edges are then divided between each vertex–the
original and the ghost one.

3 Proposed Operator

As mentioned before, the original GPX is not suitable for the STPG case due
to differences in candidate solutions’ topology. Algorithm 1 shows the proposed
recombination operator based on partition crossover (PXST ).

Both operators (the original and the proposed one) keep some resemblance.
The offspring will inherit all the common edges between the parents. Uncommon
edges will form partitions, and some tests will identify the comparable ones, also
called recombinant partitions. For such partitions, those with the lowest cost
will compose the offspring. Moreover, if there are k recombining components,
the operator will generate the best of 2k potential offspring.

Furthermore, the PXST’s operation can be divided into four phases: identify-
ing common elements (vertices and edges); identifying partitions candidates to
recombination; matching, selecting, and updating the recombinant partitions;
handle partitions unfeasible to recombination and return the offspring. Each
phase will be detailed as follows.

a) Identifying Common Elements. The common vertices and edges between
two ST, play an essential role in the PXST. They work as a cutting point, increas-
ing the number of partitions and will help to identify recombinant partitions.

The vertices from the union graph between two Hamiltonian cycles will have
degrees equal to 2, 3, or 4, and GPX explores it. First, the operator removes the
vertices with a degree equal to 2. The vertices with a degree equal to 3 belong to
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Fig. 1. An example of PXST crossover between two ST, Ta and Tb, showed in Figs. 1a
and 1b. Figure 1c shows the resulting graph after removing the common edges from the
union Ta ∪Tb; the resulting graph has only one connected component. Figure 1d shows
the common elements (vertices and edges) between Ta and Tb. They will be used to
explore more partitions. PXST represents common elements as a disjoint set, where
vertices are linked if they share a common edge (steps 1, 2, and 3, of Algorithm 1).
Figure 1e shows two cycles identified in the first iteration. The distinct paths of non-
common edges are connected to the same components of common elements. Then, we
can choose the best path. The selected path is added to the common elements, and two
more cycles are then identified in the second iteration (Fig. 1f). Again, the respective
paths for each parent are compared, and the best paths are chosen. Figure 1g shows
the offspring. All the partitions are feasible for recombination in this example, but this
may not be the case for some pairs of solutions (ST).
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some partition. Moreover, the insertion of a ghost vertex will separate the edges
adjacent to vertices with a degree equal to 4, leading to more partitions.

Unlike, the ST inner vertices do not have such degree constraints. An inner
node can have any number of adjacent edges, and only the leaves must have a
degree equal to one. Consequently, the union graph between two ST solutions
might have more connections within its vertices, leading to fewer independent
components.

Figures 1a and 1b show two examples of ST, Ta and Tb. Figure 1c shows
why the strategy adopted by GPX is not suitable for the STPG. Figure 1c the
resulting graph obtained by removing the common edges from the union between
Ta and Tb has only one connected component. In this simple case, choosing either
one or another parent’s edges did not result in a new individual.

Figure 1d shows the common edges and vertices between Ta and Tb. Notice
that the vertices 15, 61, and 47 will act like cutting points, breaking the compo-
nent shown in Fig. 1c in smaller partitions.

Algorithm 1: Partition based crossover for Steiner Tree (PXST)

Input: trees Ta(Va, Ea) and Tb(Vb, Eb)
Output: offspring Ty(Vy, Ey) and Tz(Vz, Ez)

1 Define the subset Sab := Va ∩ Vb of common nodes between the two solutions.
Include leaf nodes that are not terminal and belong to just one solution.

2 For each node in Sab define a unity set in a disjoint set DS.
3 For each common edge (vi, vj) ∈ Ea ∩ Eb, apply a union operation in DS

between the vertices vi and vj .
4 Define the subgraph T ∗

a and T ∗
b by removing the common edges from Ta and Tb,

respectively. The common edges will compose the two resulting offspring.
5 Proceeds a depth-first search in T ∗

a , starting with a common vertex vs ∈ Sab to
find its partitions, and then save them in La. A partition is a set of non-common
edges and vertices, except by the portals vertices. The portal vertices are
common vertices defined in step 1. Repeat it for T ∗

b and save in a list Lb.
6 Consulting DS maps each partition’s portal vertices to a key representing which

component (of common elements) the partition is connected to. The key is
necessary to identify related partitions in La and Lb.

7 While there is a key-matching between partitions in La and Lb, select the best
subtree partition (lower cost). If two subtrees partition has an equal cost, select
it randomly.

8 Update DS by applying a union operation with the portal vertices from the
selected partition.

9 Repeat steps 6, 7, and 8 until there are not more related subtrees partitions in
La and Lb. The remaining partitions are unfeasible for recombination.

10 Return two offspring (Ty and Tz) formed by the common edges identify in step
3, the partition edges selected in steps 7, 8, and 9, and the respective remaining
edges identified in step 9.
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Moreover, there are two sets of common edges: one formed by the edge {(5, 9)}
and the other formed by the edges {(55, 12), (12, 11), (23, 11), (17, 11)}. Also,
notice how candidate partitions connect to these sets by different vertices. One
first test to identify a recombinant partition might be to check when two distinct
partitions (one from each parent) connect to the same components of common
elements, i.e., a set of connected edges or an isolated vertex.

To keep track of such common elements, PXST uses a disjoint set (DS) data
structure. It allows three operations: the “make a set” initializes the disjoint
set; the “find” operation returns the same representative element for any other
element in the set; the “union” operation joins two sets and defines a new element
to represent the new set. An efficient implementation of the union operation
(using union by rank and path compression) has O(m log n) time complexity [2].

Step 1 from Algorithm 1 firstly identifies the common vertices between the
parent’s solutions. Then, step 2 initializes DS by creating a unitary set for all
common vertices. Finally, DS’s initial unitary sets are jointed when a common
edge connects two distinct vertices (step 3). Notice that the set of common edges
(showed in Fig. 1d) will be represented as a disjoint set, i.e., unique key-vertex.

Another detail is that some individuals might have leaf nodes that are not
terminals. Some of these leaf nodes might belong to just one of the parent’s
solutions. Moreover, such leaf nodes will become a portal vertex for one partition.
Since checking portal vertices will allow identifying recombinant partition, such
leaves will be included in the DS, although they may not be common (step 1).

b) Identifying Candidate Partitions to Recombination. The PXST iden-
tifies partitions directly on the graphs T ∗

a e T ∗
b (step 4). They are the resulting

graphs from deleting the common edges from Ta and Tb, respectively. Removing
an edge from a tree results in two subtrees. Therefore, T ∗

a and T ∗
b are compound

by many subtrees. However, those subtrees are not partitions yet. They still will
be divided into smaller parts taking the common vertices as cutting points.

A depth-first search looks for partitions in T ∗
a e T ∗

b , separately (step 5).
A partition is formed mainly by non-common elements, where all its internal
vertices and edges belong to one of the solutions. Since the common vertices
work as cutting points, where the partitions are breaking, these vertices are
called portals. Figure 1 shows partitions only with two portal vertices. However,
a partition with more than two portal vertices is possible when an internal node
has a degree greater than two, i.e., the partition has a subtree topology.

c) Matching, Selecting, and Updating the Recombinant Partitions. For
instance, consider two STs with common vertices u, v ∈ Ta ∩ Tb. Pretend that
Ta has a partition with a path-like topology Pa and Tb has a Pb partition. Both
Pa and Pb connect u and v by different edges. The union between Pa and Pb will
form a cycle closing in the vertices u and v. Moreover, u and v are the portal
vertices for these partitions. Alternatively, the portal vertices for the partitions
are coincident, and one can select the partition with the lower cost.
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However, Figs. 1e and 1f show that partitions can connect to the same com-
ponent of common edges by different vertices. Then, the partition will not have
coincident portal vertices. So, a more refined way to find recombinant partitions
is needed.

One can argue that if we shrink all common edges to a single vertex, we
might get the well-formed cycle as mentioned earlier. For example, in Fig. 1e,
vertices 12 and 23 will become coincident, and the partitions will form a cycle
between nodes 15 and 12 (or 23). In the same way, shrinking the edge (5, 9) will
close another cycle with the path-like partitions up to node 17. Then, we will be
able to compare such distinct paths.

Instead of shrinking common edges and checking the exact correspondence
between portal vertices from distinct partitions, we check if they are mapped to
the same representative nodes by the disjoint set (step 6). That indicates the
partitions are connected to the same components of common elements (Fig. 1d),
and they are interchangeable. Then, the operator can choose between the parti-
tions without losing the offspring connectivity or adding a loop into it.

When a partition is liable for recombination, the disjoint set from each portal
vertex can be joined, expanding the original disjoint set (common elements set).
This update is helpful to discover new recombination opportunities, and it will
be performed until there are no new recombinant components (step 9).

For instance, Fig. 1f shows other opportunities for recombination. In the first
one, we can choose the path from node 61 up to 15 or from 61 to 55. However,
to compare these paths, it is necessary to resolve the connectivity to node 15
first (shown in Fig. 1e). When we resolve the best connectivity up to node 15,
this node will belong to the same disjoint set with nodes 12, 23, and 55. The
portal vertices 15 and 55 will be mapped to the same arbitrary representative
element, and the operator can decide the best path to node 61. A similar situation
occurs to the partitions connecting node 47. Firstly, we must decide the best
connectivity up to node 9 to include this node to the same disjoint set as portal
vertex 12.

Some partitions might have equal cost even though they do not have the
same edges. In such cases, the selection occurs randomly, with equal probability
for each partition. When their total cost is different, PXST chooses the one with
a lower cost. Thus, the partition’s selected edges will belong to both offspring.

d) Handle Unfeasible Partitions to Recombination and Return Off-
spring. By the end of this process, some non-recombinant partitions might
persist for both parents. One alternative is to choose the remaining partitions
from one of the parents with the lowest sum cost. In preliminary tests, this strat-
egy leads to an early population stagnation and higher solution cost outcomes.
Another option is to return two offspring, one for each parent’s remaining parti-
tions (step 10). Therefore, we chose this last alternative as it showed to lead to
better outcomes.

New ways for identifying recombinant partitions can further be developed.
It may improve the operator’s efficiency and lead to better solutions.
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Table 1. Average and standard deviation of the best solution found along with the
runs of each experiment. The symbols ‘=’, ‘+’ or ‘−’ indicate if the average cost is
equal, better, or worse than GA with PXST. The letter s indicates if the differences
are statistically significant. Properties of each instance are also presented (number of
vertices |V |, number of edges |E|, number of terminals vertices |Z| and the optimum
solution cost (Opt.).

Instances |V | |E| |Z| Opt. PXST + R(mst,

pruner)

PrimRST + R(mst,

pruner)

Binary GA

B1 50 63 9 82 82.00 ± 0.00 82.10 ± 0.30 (−) 84.88 ± 3.15 (s−)

B2 50 63 13 83 83.00 ± 0.00 83.00 ± 0.00 (=) 84.34 ± 2.23 (s−)

B3 50 63 25 138 138.00 ± 0.00 138.00 ± 0.00 (=) 138.00 ± 0.00 (=)

B4 50 100 9 59 60.22 ± 1.53 59.30 ± 0.84 (s+) 63.02 ± 2.25 (s−)

B5 50 100 13 61 61.10 ± 0.46 61.00 ± 0.00 (+) 62.10 ± 0.68 (s−)

B6 50 100 25 122 122.84 ± 1.31 123.44 ± 0.86 (s−) 122.12 ± 0.44 (s+)

B7 75 94 13 111 111.02 ± 0.14 111.00 ± 0.00 (+) 124.96 ± 8.23 (s−)

B8 75 94 19 104 104.00 ± 0.00 104.06 ± 0.42 (−) 107.96 ± 3.48 (s−)

B9 75 94 38 220 220.00 ± 0.00 220.00 ± 0.00 (=) 220.80 ± 1.03 (s−)

B10 75 150 13 86 87.26 ± 1.99 86.00 ± 0.00 (s+) 97.00 ± 4.98 (s−)

B11 75 150 19 88 88.06 ± 0.31 88.12 ± 0.48 (−) 97.46 ± 3.81 (s−)

B12 75 150 38 174 174.18 ± 0.39 176.26 ± 1.07 (s−) 174.16 ± 0.37 (+)

B13 100 125 17 165 165.64 ± 1.48 167.70 ± 2.53 (s−) 190.98 ± 9.35 (s−)

B14 100 125 25 235 235.84 ± 0.82 238.04 ± 0.20 (s−) 244.68 ± 6.00 (s−)

B15 100 125 50 318 319.46 ± 0.93 325.20 ± 1.12 (s−) 322.26 ± 2.42 (s−)

B16 100 200 17 127 130.98 ± 3.66 138.78 ± 3.22 (s−) 150.32 ± 6.72 (s−)

B17 100 200 25 131 132.52 ± 1.52 131.00 ± 0.00 (s+) 137.90 ± 4.57 (s−)

B18 100 200 50 218 218.46 ± 0.65 219.02 ± 0.94 (s−) 218.88 ± 0.87 (s−)

4 Experiments

This section describes the experiments comparing the proposed operator
(PXST ), the PrimRST crossover operator [11] and a binary GA based on [5].
The section also describes soft-repair operators used in our algorithm. In the
experiments, three algorithms were compared:

– PXST+Repair(pruner, mst): GA with the proposed operator PXST
(Algorithm 1), mutation that replaces edges randomly, and the pruning and
MST repair strategies.

– PrimRST+Repair(pruner, mst): GA with the PrimRST crossover oper-
ator [11] and pruning and MST repair strategies.

– Binary GA: GA with binary chromosome [5]. It used a traditional 2 point
crossover operator and bit-flip mutation.

4.1 Experimental Design

The algorithms were tested over 18 instances of class B from the OR-Library [1].
Table 1 presents the properties for each instance and statistics about the solu-
tion cost discussed later. In all three experiments, the same stop condition was
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adopted. The execution stops if the algorithm finds the global optimum solution,
if the best solution is not improved within an interval of 500 fitness evaluations,
or if the number of iterations reaches 4.000. However, this last condition was
never reached.

The experiments with PXST and PrimRST differ only by the crossover
operator. They have the same parameters and underlying mechanisms for selec-
tion (roulette) and mutation. An adjacency list data structure represents the ST.
The population size is 100 individuals, initialized by a heuristic based on the ran-
dom walk procedure presented in [11]. This initialization strategy generates only
connected individuals.

The mutation by replacing a random edge (RRE) is presented in [11]. The
operator removes a random edge from the tree producing two disconnected sub-
trees. Then, it reconnects them by inserting a new edge selected randomly from
the problem instance graph. The mutation rate is fixed to 0.3. This operator
produces a slight change in the ST since it replaces just one edge when possible.

The PrimRST crossover takes two individuals and joins them in a graph
Gu. Like the original Prim’s algorithm, the operator computes a spanning tree
from Gu (see Sect. 2). Instead of taking the lowest cost edge, the operators insert
a new edge randomly – of course, if the new edge does not form a cycle with
the previously selected edges. The algorithm stops when all terminal vertices are
inserted in the offspring or when all edges from Gu were processed.

The offspring’s edges generated by PrimRST came only from Gu, i.e., the
operator does not insert a new edge that does not belong to one of the parents.
Some common edges will appear in the offspring, although there is no proof that
all common edges will be transmitted every time. In that regard, both PrimRST
and PXST transmit alleles (edges) from the parent to the offspring. However,
PXST transmits all of the common edges to the offspring, and for PrimRST ,
this is not guaranteed. Moreover, PrimRST favors the edge exchange between
the parents, while PXST looks for connected components.

PrimRST and PXST generate connected individuals. Still, some offspring
might not be completely ST because some of them might have leaf nodes that are
not terminal. Thereby, a pruning repair iteratively seeks and removes leaf nodes
that are not terminal. It reduces the solution cost without losing the offspring’s
connectivity. Thus, the pruning repair was constantly applied for all individuals
over the generations (fitness evaluations).

In [5] and [3] a solution is obtained computing the MST of the induced
subgraph from Steiner vertices represented in the chromosome. Similarly, an
ST can be improved by replacing some of its edges with lowest cost edges that
span the solution vertices, computed from the induced MST subgraph. For that
reason, an MST-based repair is applied.

The MST-based repair operator takes one individual Tk(Vk, Ek) and deter-
mines a subgraph induced from its vertices Vk. The induced subgraph has all
edges from the individual plus the edges from the problem instance graph when
both incident vertices are in the individual’s vertex set. Then, it applies Prim’s
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Table 2. Average and standard deviation of the execution time (in seconds) and the
success rate (SR), i.e., the percentage of execution where the best-known solution was
found. The symbols =, +, and − indicate if the average result was equal, better or
worse than the GA with PXST. The letter s indicates if the differences in the samples
are statistically significant.

Instances PXST + R(mst, pruner) PrimRST + R(mst, pruner) Binary GA

Exec. time (s) SR (%) Exec. time (s) SR (%) Exec. time (s) SR (%)

B1 0.14 ± 0.05 100.0 2.04 ± 4.64 (s−) 90.0 23.65 ± 6.66 (s−) 18.0

B2 0.21 ± 0.09 100.0 0.52 ± 0.32 (s−) 100.0 17.20 ± 8.73 (s−) 68.0

B3 0.24 ± 0.09 100.0 0.26 ± 0.08 (−) 100.0 2.30 ± 0.93 (s−) 100.0

B4 11.11 ± 11.47 52.0 3.39 ± 6.01 (s+) 86.0 26.21 ± 8.25 (s−) 6.0

B5 2.15 ± 6.98 94.0 2.34 ± 2.98 (s−) 100.0 20.92 ± 5.68 (s−) 18.0

B6 15.37 ± 21.31 68.0 35.03 ± 12.51 (s−) 24.0 9.45 ± 6.47 (+) 92.0

B7 0.78 ± 4.10 98.0 0.32 ± 0.07 (s+) 100.0 42.57 ± 11.70 (s−) 0.0

B8 0.20 ± 0.05 100.0 1.03 ± 3.48 (s−) 98.0 34.60 ± 11.36 (s−) 22.0

B9 0.32 ± 0.07 100.0 0.44 ± 0.15 (s−) 100.0 31.30 ± 13.59 (s−) 48.0

B10 12.54 ± 15.08 60.0 0.80 ± 0.41 (+) 100.0 44.87 ± 12.34 (s−) 0.0

B11 1.88 ± 6.59 96.0 3.64 ± 7.06 (s−) 94.0 42.81 ± 11.21 (s−) 0.0

B12 13.32 ± 25.93 82.0 70.48 ± 20.67 (s−) 2.0 23.33 ± 11.73 (s−) 84.0

B13 6.71 ± 14.57 84.0 24.39 ± 15.91 (s−) 40.0 60.08 ± 14.92 (s−) 0.0

B14 37.56 ± 25.51 34.0 65.24 ± 14.26 (s−) 0.0 70.69 ± 17.36 (s−) 0.0

B15 58.87 ± 36.28 28.0 92.33 ± 27.59 (s−) 0.0 67.04 ± 19.47 (−) 2.0

B16 25.52 ± 17.99 34.0 53.59 ± 17.32 (s−) 0.0 72.10 ± 24.21 (s−) 0.0

B17 34.48 ± 25.47 36.0 7.78 ± 6.16 (s+) 100.0 75.61 ± 17.86 (s−) 0.0

B18 34.23 ± 42.30 62.0 74.83 ± 36.45 (s−) 30.0 45.99 ± 18.31 (−) 36.0

algorithm to compute the MST from the induced subgraph. This repair operator
is used with a fixed rate of 0.3.

Since PXST and PrimRST operators do not produce disconnected individ-
uals, repair operations to reconnect the candidate solution or a penalty function
(as in [5]) are useless.

The binary GA is based on [5] (see Sect. 2). A binary chromosome represents
the Steiner vertices that belong to some ST. A decoding procedure based on
computing the MST tree from the induced graph does not assure the candidate
solution’s connectivity. Therefore, a penalty function increases the fitness of
infeasible solutions (disconnected ones). The GA used a population size of 100
individuals. The binary chromosome is randomly initialized, and the genetic
operators are roulette selection, a traditional crossover operator with 2 points
cut, and a mutation by bit flip by a rate of 0,2.

The operators and GA implementations were in Python language, version
3.7.9, and the code is available publicly.1 Experiments were conducted in a vir-
tual machine set up in Google CloudTM platform, using Linux Ubuntu OS (ver-
sion 18.4), 32 GB of RAM, and CPU with 8 cores Intel Cascade Lake. Each
experiment runs 50 times, with a seed randomly defined by the system.

1 https://github.com/GiliardGodoi/ppgi-stpg-gpx.

https://github.com/GiliardGodoi/ppgi-stpg-gpx
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4.2 Experimental Results and Analysis

Table 1 presents the instances graphs features alongside the average and standard
deviation for the best solution cost found in all executions. The values in bold
indicate the lower average cost. Table 2 shows the average and standard deviation
of execution time (in seconds) and the success rate (SR), i.e., the proportion of
runs where the algorithm found the global optimum solution.

For the average cost and execution time results, we applied the Wilcoxon
signed-rank test to verify if the differences in the samples are statistically signif-
icant. We adopted a significance level of α = 0.05.

The GA with PXST found the global optimum solution for all instances in
at least one run. This GA found the global optimum solution for all execution
in five instances (B1, B2, B3, B8, and B9). For the other six cases (B11, B13,
B14, B15, B16, and B18), the GA obtained the lowest average solution cost, as
showed in Table 1. Moreover, GA with PXST has an SR in the worst case of
28% (instance B15), as shown in Table 2. In all other cases, it has an SR above
30%, indicating certain robustness of the algorithm.

The GA with PrimRST found the global optimum solution in all runs for
seven instances: B2, B3, B5, B7, B9, B10, and B17. It obtained the lowest average
solution cost for the B4 instance. Significant improvements are observed for B4,
B10, and B17. This GA could not find the optimum solution in any run for B14,
B15, and B16 and obtained a low SR for instances B6 (24%) and B12 (2%)
(Table 2).

The statistical test does not indicate significant differences for the best cost
sample to B1, B2, B3, B5, B7, B8, B9, B11, and B18 between PXST and
PrimRST experiments. For example, GA with PrimRST found the global opti-
mum solution, for instance, B5 in all runs (SR 100%) – note that the average best
cost is equal to the global optimum, and the standard variation is zero. In con-
trast, GA with PXST obtained 94% of the SR and an average best cost of 61.10
and a standard deviation of 0.46. However, the test indicates that the difference
observed in the best cost sample was not significant for the B5 instance.

Binary GA obtained a lower best cost average for instances B6 and B12.
However, the differences for best cost are statistically significant just for B6. All
of the three GA solved the instance B3 in all runs. For all other 15 instances, the
best cost average for binary GA was worse than the GA with PXST . This result
can be credited to the use of specific operators for tree-graph problems rather
than traditional operators that produce infeasible (disconnected) solutions.

The GA with PXST was faster for fourteen instances (see Table 2). More-
over, GA with PXST was, in general, faster than PrimRST for those instances
where the average best cost was similar, i.e., differences were not statistically
significant. That is the case for B1, B2, B3, B5, B8, B9, and B11 (except B7).
This result is because the crossover PXST is greedy and converges quickly to a
local optimum solution.

The GA with PrimRST was faster when it found the global optimum solu-
tion in all runs (B7, B10, and B17) and in B4, where the SR is 86%. PXST and
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PrimRST GA took less than a second on average to solve some instances (see
B2, B3, B7, B8, B9, and B10).

As expected, binary GA usually took a long time to run on average, as showed
in Table 2. For B6, binary GA was faster than the other two GAs. Compared with
GA with PXST , the execution time is similar (not statistically significant) for
B6, B15 and B18, and worse for all other instances. Both PXST and PrimRST
operators do not rely on high complexity cost heuristic as [3]. Hence, they might
be suitable for large instance graphs in an appropriate execution time.

5 Conclusions

In this paper, we presented a graph-based crossover for the STPG. PXST is
based on partition crossover, firstly proposed to the TSP problem. The main
adaptation is identifying partitions since the candidate solutions are tree-graphs,
in this particular case.

Two soft-repair operators were applied in the GA using a graph representa-
tion of the individuals. The first repair relates to the property that the STPG
can be solved by determining the MST of an appropriate set of Steiner vertices.
An MST transformation calculates the MST spanning the vertices for a given
ST. In this case, many edges can be replaced by lower-cost edges. Then, the GA
would not necessarily explore all possible ST.

A second repair operation pruned non-terminal leaves, reducing the solution
cost without losing the tree connectivity. The repair operator is applied since
PXST and PrimRST might generate individuals with such leaves. In this first
study, we do not analyze the impact of varying the numeric parameters (mutation
or repair rate, for example).

Compared with two other GA for the STPG, the one using the PXST was
faster for almost all instances. It also reached the global optimum solution for
all instance problems with a success rate above 30% in general, considering 50
executions of the experiment.

PXST and PrimRST are similar considering the offspring are constituted
only with edges of their parents, and common edges are transmitted to the off-
spring, most of them in the PrimRST case. The differences are that PXST does
not delete edges or nodes present in the parents and exchanges more significant
structures such as paths or subtrees. Because of their similarities, both crossover
operators are at least competitive in their results.

The partition crossover operators, which PXST was based on, have the
property of tunneling between optima [13]. It produces the best of 2k potential
offspring, where k is the number of feasible partitions. Thus, if two parents are
local optima, the offspring will be a local optimum with a lower cost. Considering
that, PXST also can be used combined with other heuristics as in [13].

Furthermore, the GA using PXST is greedy and quickly converges to local or
global optima. A mechanism to control the population diversity might contribute
to GA with PXST performance.
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In the PXST , some partitions remain unfeasible for recombination. Further
studies can improve the partition discovery or fusion procedures to find more
opportunities for recombination and improve the operator’s efficiency.
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Abstract. This paper presents a novel Multiobjective Genetic Algo-
rithm, named Modified Non-Dominated Sorting Genetic Algorithm Dis-
tance Oriented (MNSGA-DO), which aims to adjust the NSGA-DO
selection operator to improve its diversity when applied to continu-
ous multiobjective optimization problems. In order to validate this new
Genetic Algorithm, we carried out a performance comparison among it
and the genetic algorithms NSGA-II and NSGA-DO, regarding continu-
ous multiobjective optimization problems. To this aim, a set of standard
benchmark problems, the so-called ZDT functions, was applied conside-
ring the quality indicators Generational Distance, Inverted Generatio-
nal Distance and Hypervolume as well as a time evaluation. The results
demonstrate that MNSGA-DO overcomes NSGA-II and NSGA-DO in
almost all benchmarks, obtaining more accurate solutions and diversity.

Keywords: Multiobjective genetic algorithm · Multiobjective
optimization · NSGA-II · NSGA-DO

1 Introduction

Multiobjective optimization is an area of multiple-criteria decision making, con-
cerning mathematical optimization problems involving more than one objec-
tive function to be optimized simultaneously [12]. Multiobjective optimization
has been used to many fields of science and engineering, which provides mul-
tiple solutions representing the trade-offs among objectives in conflict. Genetic
Algorithms have been applied to several classes of Multiobjective Optimization
Problems (MOP) and have been shown to be promising for solving such pro-
blems efficiently [2,8–10,13,16], along with the advantage of evaluating multiple
potential solutions in a single iteration because they deal with a population of
solutions.
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Given the diversity of existing genetic algorithms for solving MOP, named
Multiobjective Genetic Algorithms (MOGA), it is necessary to be aware of their
benefits and drawbacks. Thereby, this work performs a comparative study among
the well-known MOGA NSGA-II [6], a modification of it, the NSGA-DO [15]
and the novel MNSGA-DO (Modified Non-Dominated Sorting Genetic Algo-
rithm Distance Oriented), designed as a adjustment of the NSGA-DO. The use
of crowding distance by NSGA-II as the selection criterion can prioritize indivi-
duals that are farther from the optimal front. A selection process which guide
the solutions to converge towards the ideal points along the Pareto front, as
proposed by NSGA-DO, have been developed as an alternative to enhance a
diversity of solutions. However, the NSGA-DO was developed based on pro-
blems with discrete search space. So, when applied to continuous problems, it
does not guarantee the assignment of solutions to all the ideal points what might
concentrate its set of solutions in specific regions. Another disadvantage is the
amount of ideal points, which is proportional to the size of Pareto front. This
imbalance between the quantity of ideal points and the number of solutions that
need to be selected makes the convergence time-consuming.

In order to overcome these failures, we proposed the Modified Non-
Dominated Sorting Genetic Algorithm Distance Oriented (MNSGA-DO). This
MOGA calculates the length of Pareto front and then estimates a partition con-
sidering the number of solutions to be found, setting the coordinates of the ideal
points. In addition, MNSGA-DO assigns one solution to each ideal point, what
ensures a diversity of solutions. To perform the proposed comparative analysis,
the ZDT family of functions [20] was selected, because it is a broad and pop-
ular set of test functions for benchmarking the performance of multiobjective
optimization methods. For each NSGA, a study of its convergence and distribu-
tion of solutions along the Pareto Front was performed by applying the quality
indicators Generational Distance, Inverted Generational Distance and Hyper-
volume, according to the literature. In order to complement the analysis, the
optimal Pareto front were visually compared to the boundaries computed by the
three MOGA. Finally, we carried out an analysis of runtime and a statistical
evaluation of the results achieved.

2 Multiobjective Optimization Problems

According to [12], a multiobjective optimization problem (MOP) can be defined
as follows:

Minimize F (x) = (f1(x), ..., fm(x))T

subject to gj(x) ≥ 0, j = 1, ..., J

hk(x) = 0, k = 1, ...,K

x ∈ Ω

(1)

where J and K are the numbers of inequality and equality constraints, respec-
tively. Ω = Γn

i=1[ai, bi] ⊆ R
n is the space, x = (x1, ..., xn)T ∈ Ω is a can-

didate solution. F : Ω −→ R
m constitutes m conflicting objective functions
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and R
m is called the objective space. The attainable objective set is defined as

Θ = {F (x) | x ∈ Ω, gj(x) ≥ 0, hk(x) = 0}, for j ∈ {1, ..., J} and k ∈ {1, ...K}.
x1 is said to dominate x2 (denoted as x1 � x2) if and only if fi(x1) ≤ fi(x2)

for every i ∈ {1, ...,m} and fl(x1) < fl(x2) for at least one index l ∈ {1, ...,m}.
A solution x∗ is Pareto-optimal to (1) if there is no other solution x ∈ Ω such
that x � x∗. F (x∗) is then called a Pareto-optimal (objective) vector. The set
of all Pareto-optimal solutions is called the Pareto-optimal set (PS). Therefore,
the set of all Pareto-optimal vectors, EF = {F (x) ∈ R

m | x ∈ PS}, is called the
efficient front (EF) [14].

3 Multiobjective Genetic Optimization

Genetic algorithms are suitable to solving multiobjective optimization problems
because they deal simultaneously with a set of possible solutions (or a popula-
tion). This allows to find several members of the Pareto optimal set in a single
run of the algorithm, instead of having to perform a series of separate runs. Addi-
tionally, genetic algorithms are less susceptible to the shape or continuity of the
Pareto front [3]. MOGA are usually designed to meet two often conflicting goals:
convergence, viewed as minimizing the distances between solutions and the EF,
and diversity, which means maximize the spread of solutions along the EF. Balan-
cing convergence and diversity becomes much more difficult in many-objective
optimization [12]. MOGA are population-based approaches which initiate with
a randomly created population of individuals. Then, the algorithm starts an ite-
rative process that creates a new population at each generation, by the use of
operators which simulate the process of natural evolution: selection, crossover
and mutation.

Among of all MOGA approaches, the literature shows that the NSGA-II is
one of the most used for solving multiobjective optimization problems [9,10,
16]. Recently, a modification on the NSGA-II was proposed by [15], seeking to
improve the diversity of the set of non-dominated solutions. This new MOGA was
called Non-Dominated Sorting Genetic Algorithm Distance Oriented (NSGA-
DO). In order to refine the NSGA-DO algorithm, we proposed an adjustment
on it. A brief description of these approaches, which are evaluated in this work,
is presented in Sects. 3.1, 3.2 and 3.3, depicting only the procedures used by
the selection operator, that is the point at which the three algorithms differ. A
detailed mathematical formulation is left to the references cited.

3.1 NSGA-II

The NSGA-II algorithm is based on an elitist dominance sorting. For each solu-
tion i, contained in the population of solutions, two values are calculated: ndi,
the number of solutions that dominate solution i ; and Ui, the set of solutions
that are dominated by solution i. Solutions with ndi = 0 are contained in the
F1 front (Pareto front). Then, for each solution j in Ui, the ndj is decremented
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for each i ≺ j, where i ∈ F1. If ndj = 0, then solution j belongs to the next
front, in this case, F2. This procedure is repeated until all solutions are clas-
sified in a front. This procedure consists of classifying the solutions of a set
M in different fronts F1, F2, ..., Ff according to the dominance degree of such
solutions. To guarantee diversity at the front, NSGA-II employs an estimate of
the density of solutions that surround each individual in the population. Thus,
the average distance of the two solutions adjacent to each individual is calcu-
lated for all objectives by Crowding Distance selection operator. The suitability
of each solution (individual) i is determined by the following values: ranki =
f, the ranki value is equal to the number of the Ff front to which it belongs;
and crowdisti, the crowding distance value of i. Thus, in the dominance sorting
process, a solution i is more suitable than a solution j if: i has a ranking lower
than j, that is, ranki < rankj ; or if both solutions have the same ranking and
ranki has a higher crowding distance value.

Offspring population and current generation population are combined and
the individuals of the next generation are set by dominance sorting process.
The new generation is filled by each front subsequently until the number of
individuals reach the current population size.

3.2 NSGA-DO

As NSGA-DO is based on NSGA-II, the way it works is similar. The difference
between them is due to the selection operator that begins with the estimation
of the ideal points in the Pareto front F1. In order to find the ideal points,
the algorithm calculates the length of the Pareto Front and then estimates an
uniform partition, setting the coordinates of the ideal points. Thereafter, the
selection of solutions to be inserted in the next generation instead of considering
the crowding distance as in NSGA-II, considers the tournament distance between
each solution of a certain front F and the calculated ideal points, with the aim
to enhance the diversity of the solutions.

In order to improve understanding of the difference selection criterion of the
closest solution to an ideal point (NSGA-DO) instead of the crowding distance
(NSGA-II), consider the following example, presented by [15] and illustrated in
Fig. 1. It is possible to observe two representations of the Pareto front, formed
by the solutions belonging to the fronts F1 and F2.

Solutions belonging to the front F1 dominate the solutions belonging to the
front F2 and are not dominated by any other solution, composing the Pareto-
optimal front. The black dots (I1, I2, I3, I4 and I5) represent the ideal points
and the gray dots (F1S1, F1S2, F1S3, F1S4, F1S5, F2S1, F2S2, F2S3 and F2S4)
represent the solutions found by a MOGA. The f1 and f2 are the conflicting
objectives to be optimized.

Assuming that eight solutions would be selected for the next generation of the
MOGA, NSGA-II and NSGA-DO would form different solution sets. Initially,
all solutions belonging to the front F1 (F1S1, F1S2, F1S3, F1S4, F1S5) would
be selected, because the number of solutions on this front is less than the size
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Fig. 1. Difference between NSGA-II and NSGA-DO selection operator [15].

of population (F1 SIZE < N). Up to this point, the NSGA-II solution set is the
same as the NSGA-DO solution set, both of which are:

SNSGA-II = SNSGA-DO = {F1S1,F1S2,F1S3,F1S4,F1S5}

Three solutions will be selected from F2 front (N - F1 SIZE). The crowding
distance operator from NSGA-II choose solutions with greater distance from its
neighbors, in this case, solutions S1 and S4, because they are located at the
extremity of front. Solution S2 would be the last one to be chosen because its
crowding distance is greater than the one of S3. On the other hand, the solutions
chosen by NSGA-DO are those closest to the ideal points. Among the solutions
of front F2 the ranking of choice would be S3, S4 and S2, because they have the
lowest distance to an ideal point. Therefore, the final solution sets are:

SNSGA-II = {F1S1,F1S2,F1S3,F1S4,F1S5,F2S1,F2S4,F2S2}
SNSGA-DO = {F1S1,F1S2,F1S3,F1S4,F1S5,F2S3,F2S4,F2S2}

3.3 MNSGA-DO

Modified Non-Dominated Sorting Genetic Algorithm Distance Oriented
(MNSGA-DO) is an extension of NSGA-DO, with the purpose to improve its
performance. In the way NSGA-DO works, it estimates ideal points in the Pareto
front based on an uniform partition, proportional to its size, and for each solu-
tion of a certain front F , the distance from the ideal points is calculated. Then,
these distances are sorted, selecting the S solutions associated with the smallest
distances, where S is the number of individuals to reach the current population
size. In this way, if the S smallest distances are associated with a single ideal
point, the selected solutions will be concentrated in a single region of the front,
harming diversity.

Instead of estimating ideal points based on an uniform partition proportional
to the size of Pareto front, MNSGA-DO calculates an uniform partition based on
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the number of solutions to be found, setting the coordinates of the ideal points in
the Pareto front F1, what decrease convergence time by reducing the number of
points when calculating distances. To improve the approximation to the Pareto
front, MNSGA-DO uses the number of ideal points equal to twice the number
of solutions to be selected (2S). Then, it calculates the distances from solutions
in F to ideal points, starting from the ends to the center of the Pareto front,
switching the selection between the two ends. Moreover, MNSGA-DO does not
allow the repetition of the same solution for different points. When a solution has
already been associated with a point, MNSGA-DO do not considers this solution
to the other ideal points. Thus, MNSGA-DO guarantee the assignment of one
different solution to each ideal point, avoiding the concentration of solutions in
some of them and ensuring the diversity of the solutions. MNSGA-DO Selection
Operator is illustrated in Algorithm 1.

Algorithm 1: MNSGA-DO Selection Operator
Input : Pareto Front (F1), front in which the solutions are selected (F ) and

the amount of solutions to be found (S)
Output: Selected solutions set (SelectedSolutions)

1 IdealPoints ← GenerateIdealPoints(F1, 2S);
2 SelectedSolutions ← ∅ ;
3 alternate ← true;
4 Solution ← SearchNearestSolution(IdealPoints[0], F );
5 SelectedSolutions ← SelectedSolutions ∪ Solution;
6 Solution ← SearchNearestSolution(IdealPoints[|IdealPoints| − 1], F );
7 SelectedSolutions ← SelectedSolutions ∪ Solution;
8 for i ← 2 to |IdealPoints| do
9 if alternate = true then

10 index ← i ;
11 else
12 index ← |IdealPoints| − i ;
13 end
14 alternate ← not alternate;
15 Solution ← SearchNearestSolution(IdealPoints[index], F );
16 SelectedSolutions ← SelectedSolutions ∪ Solution;
17 if |SelectedSolutions| = S then
18 break;
19 end

20 end

4 Experimental Setup

For our experiments, the ZDT family of functions [20] was selected, because it is
a widely used set of test functions for benchmarking the performance of multi-
objective optimization methods. All of the ZDT functions contain two objectives
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and a particular feature that is representative of a real world optimization pro-
blem that could cause difficulty in converging to the Pareto-optimal front [18],
as showed in Table 1.

Table 1. ZDT family characteristics.

Test instance Characteristics

ZDT1 Convex front

ZDT2 Non convex front

ZDT3 Discontinuous convex front

ZDT4 Convex front, multimodal

ZDT6 Convex front non uniform

In this study, 5 out of 6 ZDT functions were considered (ZDT{1–4} and
ZDT6) and for each one, 30 runs were conducted using each MOGA, in order
to ensure the results were not biased based upon the initial population. We
performed our experiments on 2.40 GHz PC with 8 GB RAM and operating
system 64 bits. The implementations of MOGAs were done in the Framework
JMetal 5 [7] and assumed the following parameters:

Codification: The chromosomes Ci = (ci1, ci2, ...cin) are encoded as a vector
of floating point numbers in which each component of the vector is a variable of
the problem.

Initial Population and Stopping Criterion were defined following a grid search
procedure [4]. The values tested for the population size were 50, 100, 150 and
200. For the number of fitness function evaluations were considered values 10000,
20000, 25000 and 30000. After these tests, initial population was generated ran-
domly considering population size of 100 individuals and stopping criterion was
defined as 25000 fitness function evaluations, in all problems.

Fitness Function: The fitness function for MOP is the objective function
F (x) to be minimized. The goal of solving a MOP is to find the Pareto-optimal
set or at least a set of solutions close to Pareto-optimal set.

Intermediate Population: Based on [5,11,17], we have used Binary Tourna-
ment selection, Simulated Binary Crossover (SBX) and Polynomial Mutation.
The crossover probability and distribution index were respectively defined as
0.9 and 30. Similarly, the mutation probability was set as 1/n, where n is the
number of problem variables, and the mutation distribution index was 20.

The study of convergence and distribution of solutions along the Pareto Front
was performed to the MOGAs by applying three well known quality indicators,
Generational Distance (GD), Inverted Generational Distance (IGD) and Hyper-
volume (HV) [1]. The first one measure the convergence and the other indicators
can simultaneously measure the convergence and diversity of obtained solutions.

In the following section, the performance of the NSGA-II, NSGA-DO and
MNSGA-DO on ZDT test problems is investigated and the results are presented
based on the mentioned quality indicators.
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5 Experimental Results

As stated in Sect. 4, we have selected five functions from ZDT family to evalu-
ate NSGA-II, NSGA-DO and MNSGA-DO algorithms: ZDT{1–4} and ZDT6.
According to the MOGA configurations presented in Sect. 4 and regarding ZDT
functions mentioned, we applied the quality indicators GD, IGD and HV, which
make a comparison between the set of points sampled from the Pareto-optimal
(set mathematically calculated) and the set of points found by the MOGA to be
evaluated.

Thirty design variables xi were chosen to ZDT{1–4} and ten to ZDT6. Each
design variable ranged in value from 0 to 1, except to ZDT4, which the variables
ranged from −5 to 5. The numerical results of GD, IGD and Hypervolume are
showed in Tables 4, 5 and 6, respectively. The values highlighted in gray means
the best for each ZDT function and SD column shows standard deviation.

According to the results, for the quality indicator GD, which only evalu-
ates convergence, NSGA-DO found the best results. For both quality indicators
IGD and HV, which simultaneously measure the convergence and diversity, the
MNSGA-DO had the best results, except ZDT3 problem, in which the NSGA-
II was slightly better. This happens because both NSGA-DO and MNSGA-DO
consider the entire extension of Pareto front for the definition of ideal points, not
taking into account the gaps of the discontinuous ZDT3 problem. Thereby, ideal
points are assigned in infeasible regions of the search space, thus compromising
their effectiveness.

In Table 2, the execution time of the algorithms is presented in seconds.
NSGA-II performed better than MNSGA-DO. NSGA-DO achieved the worst
results, with execution time much higher than the other two multiobjective
genetic algorithms.

Table 2. Execution time results.

NSGA-II NSGA-DO MNSGA-DO
Problem

Best Average Worst SD Best Average Worst SD Best Average Worst SD

ZDT1 1.60 4.92 8.66 2.17 10.75 13.33 20.45 2.29 2.22 4.69 8.07 1.62

ZDT2 0.84 4.88 8.38 2.63 9.63 14.86 18.86 1.97 1.96 4.85 8.87 1.98

ZDT3 0.60 3.72 7.02 1.89 4.33 13.35 16.75 3.59 0.68 4.31 8.07 2.11

ZDT4 0.38 0.78 0.94 0.13 4.71 6.01 7.47 0.69 0.78 1.05 1.24 0.12

ZDT6 0.73 0.83 0.91 0.05 4.55 5.91 6.71 0.69 0.58 1.06 1.21 0.15

As the result of a two-objective Pareto optimization study is a set of points
on a curve (the Pareto front), we plotted the last fronts from each algorithm with
the aim of visualising the results variation. Hence, a visual comparison between
the algorithms is performed based on the Pareto fronts. Figures 2, 3, 4, 5 and 6
illustrate the Pareto-optimal, NSGA-II, MNSGA-DO and NSGA-DO fronts of
each ZDT function. The x and y axes of all figures represent objectives f1 and
f2, respectively.
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After analysing the fronts, we can observe that the NSGA-II and the
MNSGA-DO fronts are very similar comparing to Pareto-optimal front. NSGA-
II fronts shows some gaps, what demonstrates that the NSGA-II fronts diversity
is worst than MNSGA-DO. On the other side, the NSGA-DO front is very dif-
ferent from Pareto-optimal front. This problem can be attributed to the process
of individuals selection to reach the current population size, which consider the
increasing sorting of the distances from the solutions to the ideal points. Such
sorting can add individuals from a single region of the front in the new popu-
lation. These individuals, combined with others, generate new individuals with
characteristics similar to theirs, leading to agglomeration of solutions in regions
of the objective space. In addition, as the NSGA-DO algorithm does not balance
the number of solutions selected by each ideal point, one same point can select
various solutions and another none.

In order to verify if there is statistical difference among the MOGAs results,
we have applied the Wilcoxon signed-rank test [19], with level of significance
= 0.05. The statistical results are shown in Table 3, in which one – symbol
means the null hypothesis was accepted, and one � or � symbol means the null
hypothesis was rejected. The � symbol indicate that the algorithm from the line
was significantly better than the algorithm from the column, and the � symbol
indicate the opposite. Each –, � or � symbols refers to a function, that is, the
first symbol refers to ZDT1 function, the second symbol refers to ZDT2 function,
and so on.

Table 3. Statistical comparison on quality indicators GD, IGD and HV.

MNSGA-DO NSGA-II

GD
NSGA-DO � � � � – � � � � –

MNSGA-DO � � � � –

IGD
NSGA-DO � � � � � � � � � �

MNSGA-DO � � � � �

HV
NSGA-DO � � � � � � � � � �

MNSGA-DO � � – � �

Time
NSGA-DO � � � � � � � � � �

MNSGA-DO – – – � �

Based on Table 3, when considering quality indicator GD, the NSGA-DO was
significantly better than MNSGA-DO and NSGA-II in almost all functions, only
to the ZDT6 function there was not statistical difference among them. Between
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MNSGA-DO and NSGA-II, MNSGA-DO was better than NSGA-II to ZDT1
and ZDT2 functions, and NSGA-II was better in ZDT3 and ZDT4 functions.
Regarding quality indicator IGD, MNSGA-DO and NSGA-II were significantly
better than NSGA-DO in all functions. Take into account only MNSGA-DO
and NSGA-II, MNSGA-DO was better in almost all functions, except to the
ZDT3 function. Considering quality indicator HV, MNSGA-DO and NSGA-II
were significantly better than NSGA-DO in all functions, once more. Comparing
MNSGA-DO and NSGA-II, they are similar to ZDT3 function, but MNSGA-DO
was markedly better in all others. Finally, evaluating execution time, MNSGA-
DO and NSGA-II were significantly better than NSGA-DO in all the problems.
Regarding MNSGA-DO and NSGA-II, they are similar to ZDT1–3, but MNSGA-
DO was worse than NSGA-II to ZDT4 and ZDT6.

Fig. 2. Pareto-optimal, NSGA-II, MNSGA-DO and NSGA-DO from ZDT1 function.

Fig. 3. Pareto-optimal, NSGA-II, MNSGA-DO and NSGA-DO from ZDT2 function.
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Fig. 4. Pareto-optimal, NSGA-II, MNSGA-DO and NSGA-DO from ZDT3 function.

Fig. 5. Pareto-optimal, NSGA-II, MNSGA-DO and NSGA-DO from ZDT4 function.

Fig. 6. Pareto-optimal, NSGA-II, MNSGA-DO and NSGA-DO from ZDT6 function.
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6 Conclusion

In this paper we have presented a novel multiobjective genetic algorithm and
made a comparison with NSGA-II and NSGA-DO in solving multiobjective opti-
mization problems. In addition, we investigated their performance when applied
to the popular ZDT family benchmark, by analysing the convergence and diver-
sity of these MOGAs based on three quality indicators, GD, IGD and HV.

According to statistical results, NSGA-DO was significantly better conside-
ring the quality indicator GD, while MNSGA-DO was significantly better taking
account the quality indicators IGD and HV. Analysing the Pareto fronts from
MOGAs, it was possible to verify that NSGA-DO Pareto front solutions are
concentrated in a few points, mainly in ZDT1, ZDT2, ZDT3 and ZDT6 func-
tions. This result can be explained by NSGA-DO individuals selection process,
which allow one ideal point select various solutions and another none, leading to
agglomeration of solutions in regions of the objective space. On the other side,
the MNSGA-DO fronts has better convergence and diversity of the solutions in
comparison with NSGA-II.

The NSGA-DO, proposed to improve the distribution of solutions along the
Pareto front, fails to overcome the crowding distance of the NSGA-II in conti-
nuous problems. As NSGA-DO was developed based on discrete problems, the
gaps in Pareto front are not important, what harms its performance in this class
of problems. In this context, MNSGA-DO appears as an alternative in solving
continuous multiobjective optimization problems and its results demonstrate its
feasibility and efficiency.

In future works, we aim to apply MNSGA-DO in solving multiobjective dis-
crete optimization problems and compare it with NSGA-II and NSGA-DO by
analysing the convergence and diversity as done in this work. Moreover, we are
going to investigate the adjustment of MNSGA-DO regarding problems with
discontinuous fronts.
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Abstract. The extensive exploration of the Low Earth Orbit (LEO) has
created a dangerous spacial environment, where space debris has threat-
ened the feasibility of future operations. In this sense, Active Debris
Removal (ADR) missions are required to clean up the space, deorbiting
the debris with a spacecraft. ADR mission planning has been investigated
in the literature by means of metaheuristic approaches, focused on max-
imizing the amount of removed debris given the constraints of the space-
craft. The state-of-the-art approach uses an inver-over and maximal open
walk algorithms to solve this problem. However, that approach fails to deal
with large instances and duration constraints. This work extends the state
of the art, increasing its performance and modeling all the constraints.
Experimental results evidence the improvements over the original app-
roach, including the ability to run for scenarios with thousands of debris.

Keywords: Time-dependent traveling salesman problem · Space
debris · Active debris removal · Genetic algorithm

1 Introduction

In the1960 s, space exploration began to boost the development of new tech-
nologies feasible through the use of satellites distributed in orbits. Among these
orbits, Low Earth Orbit (LEO) was widely used for satellite networks with a
large number of objects per service in orbit [20]. Over time, these satellites
became depreciated, lose communication or got out of control, thus becoming
space debris. A high population of debris represents a hazard to the operating
structures in orbit, since they are objects out of control and at high speed [12].

According to some predictive models, a sufficiently large population of debris
will increase the probability of collisions and, therefore, increase the debris pop-
ulation again, thus making this population increase recursively for many years.
This phenomenon is known as Kessler syndrome and may cause the collapse of
the LEO, rendering it useless for years [12].

In fact, the literature already pointed out that the debris population inLEOhas
already reached a critical point [16], and now measures to mitigate this situation
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are needed. While there are documented techniques that would stabilize the debris
population, for now, the only approach capable of reducing it consists in Active
Debris Removal (ADR) missions [16]. These missions aim to clean up orbit space
by forcing the re-entry of certain debris as performed by specific spacecraft. Due
to the limited resources and time to perform the rendezvous maneuvers and the
debris population size, the selection of the debris to be removed has became a hard
combinatorial problem [3,4,7].

A basic ADR should consider the bounds of cost and duration, dependent
position values of the moving debris along time [3,4], and also prioritizing the
removal of the most threatener debris first, thus increasing the benefits of such
missions [17]. Various approaches to this problem have been proposed in the
literature [7,9,13]. However, most of these works share the same limitations:
small instance sizes, unbounded approaches, and non-time-dependent modeling.

In this work, we propose an enhanced genetic algorithm to optimize ADR
mission planning. Our approach builds upon the work by [9], improving its per-
formance through a novel combination of genetic operators. The final algorithm
resembles the original inver-over genetic operator, with modifications to its
reversing strategy. Moreover, a new variant of the k-opt algorithm is implemented
using a stochastic approach. Finally, the open-walk algorithm is improved with
one additional constraint. Through extensive experiments, our approach yielded
better solutions with instances larger than the previous largest ones [9].

2 Literature Review

In order to solve the ADR optimization problem, a few methods have been
approached and documented in the last 10 years. Exact solutions were used by
Braun et al. [2] with brute force, and branch and bound variations by [3,14,19].
However, in both classes of methods can only be applied to small instances.
Approximate solutions were implemented using simulated annealing [4,7], rein-
forcement learning [25], and genetic algorithms [18,24]. Nonetheless, all of these
works were also tested only on small instances.

On the other hand, a few approximate methods considered bigger instances.
Barea et al. [1] used a linear programming method, which has a high complexity
as drawback. Yang et al. [26] used a greedy heuristic, but requires instance-
dependent parameters. Ant Colony Optimization was used in [13,21,27], but
ignoring mission constraints, strongly simplifying the cost dynamics to reduce
the complexity, or even leaving mission duration unbounded. Finally, Izzo et al.
[9] and Kanazaki et al. [11] used genetic algorithms, though both did not model
all the necessary mission constraints.

Generally speaking, the majority of the works do not prioritize debris by haz-
ard, consider bigger instances, model the time-dependence, or bound the cost or
the mission duration, meaning that most works fail to fully meet the ADR mis-
sion requirements. Building against this background, in this work we introduce
the enhanced inver-over operator to deal with large instances, and an enhanced
maximal open walk algorithm to model the cost and duration constraints while
prioritizing the most threatener debris.



142 J. B. Rodrigues Neto and G. de Oliveira Ramos

3 Problem Formulation

An ADR problem is the combinatorial problem of finding the correct sequence
to rendezvous maneuvers towards debris in order to maximize the mission profit
given some constraints. In this sense, ADR can be seen as a complex variant of
the Travelling Salesman Problem (TSP), where one wants to find the minimum
weight path in a dynamic complete graph, where the debris are the cities and
the dynamic transference trajectories are the edges. The dynamicity is due to
the time-dependent cost of the transference, so the correct generalized version
of the TSP will be a time-dependent TSP (TDTSP). This work will make use
of the integer linear TDTSP problem formulation by [7].

Hereafter, we will follow the notation typically used in the literature [7]. Let
V = {1, ..., n} be the set of n debris. The distance tensor is represented by C =
(cijtm), where cijtm is the cost of transfer from debris i at epoch t to debris j at
epoch t+m. Also, let X = (xijtm) be a binary tensor, where Xijtm = 1 indicates
that this transference is part of the solution and Xijtm = 0 otherwise. The nt

possible epochs of departure and arrival are discretized following nt ≥ n + 1
and M ≤ nt − (n − 1). Usually, in order to grant some freedom at the mission
planning, nt is far larger than n, while M limits the maximum duration of the
transfers.

Along these lines, the problem of finding the optimized route can be modelled
as finding the X matrix that minimizes the total cost with due respect to the
constraints, which can be formulated as follows.

min
x
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nt∑
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cijtmxijtm (1)
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In the above formulation Eq. (1) represents the objective function and
Eqs. (2)–(6) represent the problem constraints, to which we will refer simply
as constraints (2)–(6) hereafter. Constraint (2) guarantees that the solution ten-
sor has all the n debris. Constraints (3) and (4) ensure that there is no loops in
the solution (one departure and one arrival transfer for each debris). Constraint
(5) enforces the transfer duration. Finally, constraint (6) limits the total mis-
sion duration. As the result, this formulation has a O(2n) search space, using n4

binary decision variables and 3n − 1 constraints.

3.1 Orbit Transfer

The trip between one debris and another require impulses (Δv) of the thrusters
to change the orbit of the spaceship. Low thrust propulsion systems can perform
this maneuvers efficiently. However, they require the optimization of the trajec-
tories to make the mission time available [5]. Determining a minimal fuel transfer
trajectory between two debris is a complex optimization problem in general case.
Thus, major works simplify this task by using a generic transfer strategy [4].

The major used transfer strategies are the Hohmann and Lambert transfers.
Since this work’s scope does not focus on the orbital transfer optimization prob-
lem, the mechanics of the transfers will be briefly described. In [6], Hohmann is
described as a minimum two-impulse elliptic maneuver to transfer from coplanar
orbits. Hohmann transfer is a high thrust transfer. Since debris are not always in
co-planar orbits it is also presented a variation of the Hohmann transfer, namely
the Edelbaum transfer, which is a three-impulse bi-elliptic transfer that allows
transferences between non-coplanar orbits.

In [5], Lambert is described as two-impulse trajectory to transfer from copla-
nar orbits given a certain transference duration. Also, it is possible to make use
of the J2 gravitational earth perturbation to wait for the natural alignment of
orbital planes, saving some fuel but increasing the mission duration [5,7].

Finally, the cost of a transference between two debris relies on the mass of
the spacecraft, since the thrusters consume propellant mass at each impulse, as
the mission goes on the cost of the transfers became lower due to the mass lost in
the previous maneuvers. So, it is also possible to optimize the removal sequence
taking in account the resultant masses of the objects [3].

4 Proposed Approach

In this work, the ADR problem is approached with an improved heuristic solu-
tion, similar to the method used by [9] with the inver-over operator in a Genetic
Algorithm and the maximal open walk algorithm. The inver-over operator opti-
mizes the total cost of the mission with a local search strategy through genetic
operations on the individuals. The maximal open walk algorithm constraints the
path. This work enhances this solution with a greedier implementation of the
algorithms. Moreover, to avoid the local optimum, a stochastic 2-opt is proposed
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to improve the solution, creating new connections. Finally, the most rewardable
open walk is extracted from the best individual as the final solution.

As this is a bi-optimization problem, the complexity was divided in two
stages. In the first part, the effectiveness of a solution will be given by the
total cost of the removal sequence, calculated with the Edelbaum transfer [6]
(Eqs. (7) and (8)), a consistent and reliable cost approximation for cheap orbital
maneuvers. In the second part, the effectiveness of a solution became the removed
threat of the LEO, calculated with the sum of radar cross section (RCS) area
of the removed debris. The RCS area is an abstraction of the size of the debris
and is widely used for the threat calculation in the literature, being a measure
about how much detectable an object is for a ground radar.

Δv =
√

v2
0 − 2V0Vf cos

π

2
Δi + v2

f (7)

cos Δi = cos i1 cos i2 + sin i1 sin i2(cos Ω1 cos Ω2 + sin Ω1 sin Ω2) (8)

T =
1
2

√
4π2a3

μ
(9)

Also, in order to minimize the complexity of the problem, major works in
the literature have assumed a few dynamics simplifications. In this work, the
following assumptions were made with the same purpose:

– The time dependence of the problem is relaxed by the correlation explored
in [9], where an optimal solution can remain optimal up to 50 d, depending
on the size of the instance.

– Since the Edelbaum transfer is an optimized variation of the Hohmann trans-
fer [6], the duration of the transference arcs can be computed using Kepler’s
third law of planetary motion (Eq. (9)), which measures the orbital transfer-
ence duration of an object (spacecraft) between two orbits (debris).

– The transfer cost also depends on mass of the spacecraft, that will decrease
during the mission, where the fuel mass will be consumed. Moreover, the
gravitational effects of the earth on the spacecraft also influence the transfer
cost. In this work, the masses of the objects and the orbital perturbation
effects are neglected in the cost transfer dynamics.

– There are more steps of the rendezvous process to remove a debris, and each
step take some time to be performed [15]. In this work the duration of the
mission will be given by the sum of the duration of the transferences, the
other stages will be neglected.

4.1 Inver-Over

The inver-over operator [22] is a unary genetic operator that resembles char-
acteristics of mutation and crossover at the same time. The evolution of an
individual is based on simple population-driven inversions and recombinations
of genes. This is a well established operator, know by its good performance with
larger instances [22].
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Algorithm 1. Inver-over
1: generate random population P;
2: while not satisfied termination-condition do
3: for each individual Si ∈ P do

4: S
′ ← Si

5: c ← select random gene ∈ S
′

6: repeat

7: S
′′ ← select random individual ∈ P that S

′′ �= S
′

8: c
′ ← gene after c in S

′′

9: if c
′
is the next or previous gene to c in S

′
then

10: exit from repeat loop;
11: end if
12: if c

′
> c then

13: ctemp ← gene after c
′
in S

′

14: else
15: ctemp ← gene before c

′
in S

′

16: end if
17: inverse the section from the gene after c until c

′
in S

′

18: c ← ctemp

19: until
20: if eval(S

′
) ≤ eval(Si) then

21: Si ← S
′

22: end if
23: end for
24: end while

In this work a different version on the algorithm is used, mixing the origi-
nal implementation with the [9] implementation. This work allows array cyclic
inversions to happen, inversions that include the section of the last to the first
gene. However, the next gene pick depends of the previous order of the selected
genes for inversion. This inversion process is analogous to a crossover operator.

Furthermore, it is stated that to avoid the local optima, a process analogous
to the mutation operator has to be used to create new connections that do not
exist in population [22]. However, these mutations are not greedy and usually
delay the convergence process, so for this implementation it was removed. The
implemented algorithm pseudo-code is sketched in Algorithm 1.

4.2 Stochastic 2-Opt

The 2-opt optimization [8] is a TSP local search algorithm that adjusts the
routing sequence greedily with simple inversions. The main idea is to break the
route in two paths and reconnect it invertedly, if it improves the fitness so the
inversion is kept in the solution. Unfortunately, this is an exact algorithm with
a complexity of O(n2), so a lot of solutions evaluations need to be performed in
order to improve the solution. Nonetheless, there are other methods to improve
the 2-opt performance, such as search parallelism and the Lin and Kernighan
technique [10]. The present work made use of a stochastic approach for the
algorithm.

The stochastic implementation relies on the observations that even with a N2

search space, the actual number of improvements performed by the algorithm is
roughly N [10]. So, with a random exploration of the space, there could be more
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Algorithm 2. Stochastic 2-opt
1: given an individual Si ∈ P ;

2: S
′ ← Si

3: moves ← {}
4: while not satisfied termination-condition do
5: repeat

6: c ← select random gene ∈ S
′

7: c
′ ← select random gene ∈ S

′

8: until (c, c
′
) /∈ moves

9: moves ← moves + (c, c
′
)

10: if c
′
< c then

11: tmp ← c

12: c ← c
′

13: c
′ ← tmp

14: end if
15: S

′′ ← inverse the section from the gene c until c
′
of S

′

16: if eval(S
′′
) ≤ eval(S

′
) then

17: S
′ ← S

′′

18: end if
19: end while
20: if eval(S

′
) ≤ eval(Si) then

21: Si ← S
′

22: end if

chances of finding a profitable move. In order to keep control of the algorithm
run time, a termination condition is used to limit the exploration. Also, a set
of explored moves prevents duplicated evaluations. The implemented algorithm
pseudo-code is sketched in Algorithm 2.

4.3 Maximal Open Walk

The maximal open walk proposed by [9] as “City Selection”, is a separated
algorithm that searches for the contiguous part of a Hamiltonian path with the
maximal cumulative value limited to some constraint. The path is the optimal
solution found, while the value and constraint are respectively, the threat, given
by the RCS area, and the total cost. In this work, another constraint is added
to this problem, the duration of the open walk, calculated with Kepler’s third
law. The implemented algorithm pseudo-code is sketched in Algorithm 3.

5 Experimental Evaluation

The objective of these experiments is to evaluate the performance of the app-
roach, understand the improvement gain by each technique and find some opti-
mal parameters. To preserve the comparability, all the runs used 20000 fixed
iterations as the termination-condition of the inver-over algorithm, a 100 indi-
viduals population, the original method runs used 0.05 as ri (mutation proba-
bility), the constrained runs were performed with a cost constraint of 1000 m/s
and a time constraint of 1 year.



An Enhanced TSP-Based Approach for ADR Mission Planning 147

Algorithm 3. Maximal Open Walk
1: given an individual Si ∈ P ;
2: arcs ← {}
3: for each pair of contiguous genes (g

′
, g

′′
) ∈ Si do

4: arcs ← arcs + (cost(g
′
, g

′′
), duration(g

′
, g

′′
))

5: end for
6: walks ← {}
7: for each of arc a

′ ∈ arcs do

8: walk ← {a′}
9: cost ← a

′
cost

10: duration ← a
′
duration

11: for each of arc a
′′

after a
′ ∈ arcs do

12: if cost + a
′′
cost > maxcost or duration + a

′′
duration > maxduration then

13: exit from second for loop;
14: else
15: walk ← walk + a

′′

16: cost ← cost + a
′′
cost

17: duration ← duration + a
′′
duration

18: end if
19: end for
20: genes ← the genes of the arcs in walk
21: reward ← threat(genes)
22: walks ← walks + (genes, cost, duration, reward)
23: end for
24: return walk ∈ walks with the biggest walkreward

The data about the debris were extracted from the Satellite Catalog (SAT-
CAT), a catalogue of all the objects on the Earth orbit, maintained by the United
States Space Command (USSPACECOM). The following instances of the prob-
lem were extracted: Iridium-33, Cosmos-2251 and Fengyun-1C, with respectively
331, 1048 and 2653 debris. Data was collected at respectively 11-Jun-2021 00:06
UTC, 13-Jun-2021 22:06 UTC and 13-Jun-2021 22:06 UTC.

To preserve the comparability of some results, back-propagated instances
were generated inputting the actual instances in a SGPD4 orbital propagator
[23] that backtracked the debris positions back to 01-Jan-2015 at 00:00 UTC,
the same epoch of the instances used by [9]. Unfortunately this process is not
very precise, though still feasible. All the debris in the clouds were considered,
including the ones that will decay during the mission time.

For the sake of clearness, the Time (min) values on the experiments are
concerned to the computation time taken for the run, and Std. dev. is the abbre-
viation for Standard Deviation. All experiments were conducted on a public
online machine with a 2.30GHz CPU and 12.69 GB of RAM. Also, for all the
experiments, the statistical data results out of 10 independent runs.

5.1 Back-Propagated Instances

The experiments performed with the back-propagate debris are intended to pro-
vide comparative results to the work of [9] and guide the definition of the param-
eters. The inver-over algorithm implemented in this work differs from the original
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Fig. 1. Iridium-33 convergence results

Fig. 2. Cosmos-2251 convergence results

implementation on two points, each point will be tested separately to show the
advantages and justify its usage in this approach.

The changes made on the inversion implementation in this work aims to
improve the convergence of the algorithm, to do so, this work approach is more
population driven and less random mutated. To analyse the performance of the
changes, the instances Iridium-33 and Cosmos-2251 were each run twice for 10
times, the first runs with the [9] implementation, and the other ones with this
work implementation. The Figs. 1 and 2 demonstrate the improvement of the
convergence, for a better visualization, just the first 4000 iterations were drawn.
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Table 1. Inversion results

Instance Method Mean (min) Std. dev. (min)

Iridium-33 Original 2.14 0.02

Iridium-33 Enhanced 1.25 0.02

Cosmos-2251 Original 12.09 0.07

Cosmos-2251 Enhanced 7.30 0.08

It is possible to notice a considerably change on the shape of the curve and
the taken computation time in Table 1, making this works implementation con-
vergence better. For the record, the majority of runs in each instance got the
same final result, indicating that, for small and medium sized instances, the fast
convergence does not deteriorate the result.

To deviate from the local optima, the stochastic 2-opt (S2opt) is used in
this work. Parametric tests were conducted to analyse its performance when it
matters to time and achieved result. Iridium-33 and Cosmos-2251 were submitted
to 9 different runs, running 10 times each, with a different combination of two
parameters: how often does the S2opt runs and with how many iterations at each
time. All individuals of the population were processed at each S2opt iteration.

Since the search area of the S2opt is large, a range of possible attempts
should be chosen, being neither too small, so no improvement move is found,
or too big, so almost the whole search space is tested, turning it into a exact
solution. In this work, the chosen range is from 10,000 to 1,000,000 attempts,
while the parameters are equally spaced discrete values where its configuration
do not underflow or overflow the range. The parameters per run are the following:

– Run 1: At each 100 main iterations, run S2opt with 100 iterations.
– Run 2: At each 100 main iterations, run S2opt with 500 iterations.
– Run 3: At each 100 main iterations, run S2opt with 1000 iterations.
– Run 4: At each 500 main iterations, run S2opt with 100 iterations.
– Run 5: At each 500 main iterations, run S2opt with 500 iterations.
– Run 6: At each 500 main iterations, run S2opt with 1000 iterations.
– Run 7: At each 1000 main iterations, run S2opt with 100 iterations.
– Run 8: At each 1000 main iterations, run S2opt with 500 iterations.
– Run 9: At each 1000 main iterations, run S2opt with 1000 iterations.

Analysing the results in Figs. 3 and 4 it is possible to state that due to the
small size of the Iridium-33 debris, all the runs achieved the optimal solution.
Also, the number of S2opt iterations is directly proportional to the computation
time. And finally, the Runs 4, 7 an 8 have the better performances ratios, with
low values of cost and time, among these, Run 7 is the best one.

Also, to preserve the idea of a competitive evolution, the following experi-
ments use S2opt with an elitist strategy. This time, instead of running the S2opt
for the whole population at each S2opt iteration, just the better individuals will
be improved. Parametric tests were performed with 5 different sizes of elites, run-
ning 10 times each. To preserve the elitist characteristic, the elite group should
not be greater than 30% of the population.
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Fig. 3. Iridium-33 Stochastic 2-opt results

Fig. 4. Cosmos-2251 Stochastic 2-opt results

In these experiments, Iridium-33 will be discarded, since its small size does
not help to fully analyse the performance of the algorithm. Here, the tests are set
with the same parameters of the previous Run 7 (best run), at each 1000 main
iterations, run S2opt with 100 iterations.

Analysing the results in Table 2 it is possible to state that the elitist improve-
ment of the best 5 individuals at each iteration is the wise strategy to follow,
having a lower cost with a little bit more computational time taken.

To emphasises the importance of each technique, ablation experiments were
conducted for this solution. It is important to state that the Elitism is applied on
the S2Opt, so there is no possible scenario using Elitism without S2Opt. Table 3,
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Table 2. Elitist results

Run Elite size Cost (m/s) Time (min)

Mean Std. dev. Mean Std. dev.

Run 1 1 63,226 29.75 8.01 0.12

Run 2 5 63,211 0.10 7.54 0.05

Run 3 10 63,216 16.92 7.52 0.11

Run 4 20 63,217 22.01 8.02 0.13

Run 5 30 63,220 26.56 8.07 0.10

Table 3. Ablation results

Technique Cost (m/s) Time (min)

Inver-over S2Opt Elitism Mean Std. dev. Mean Std. dev.

Y Y Y 63,211 0.10 7.54 0.05

Y Y N 63,211 2.14 8.27 0.31

Y N N 63,214 8.23 7.49 0.07

N Y Y 63,225 21.01 12.57 0.12

N Y N 63,252 36.87 13.34 0.14

N N N 63,256 42.70 12.50 0.08

summarizes the results of each combination. The experiments were performed
on instance Cosmos-2251, with 10 runs each. The S2opt parameters are 100 runs
at each 1000 main iterations, and the elitist parameter is 5.

With the ablation experiments, it is possible to understand how each tech-
nique of our approach affects the final results. It is clear that the conjunction of
the techniques improves the found solutions.

5.2 Actual Instances

The experiments performed with the actual instances are intended to provide
results for the present status of the debris clouds. The runs were performed
using the best parameters found in the previous experiments. Also, for a com-
parative result, the original implementation was used with the actual instances,
and its solutions, inputted to the enhanced maximal open walk of this work.
For each instance were performed 10 runs, for the sake of clarity, the settings
are: Enhanced inversion implementation, with S2opt running 100 iterations for
the best 5 individuals at each 1000 main iterations, with a cost constraint of
1000 m/s and a time constraint of 1 year.

The results on both sections of Table 4 are from the same runs, the results at
the bottom are given by the maximal open walk applied to the optimized path
at the top. Being the missions objective: clear the maximum possible area are
under the cost and time constraints [17], our approach focused on making an
optimized use of the mission resources to outperforms other approaches. Cleaning
more area, even if the mission duration and cost are bigger, bounded to time
and cost constraints, of course.
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Table 4. Final results

Instance Method Cost (m/s) Duration (min) Time (min)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Iridium-33 Original 55,788 0.0 16,345 0.57 4.27 0.04

Iridium-33 Enhanced 55,810 12.69 16,346 0.80 2.56 0.03

Cosmos-2251 Original 186,896 4,512 52,069 1.23 46.52 1.29

Cosmos-2251 Enhanced 156,067 8,022 52,069 1.41 31.00 0.14

Fengyun-1C Original 2,438,068 24,731 134,904 0.71 188.29 6.50

Fengyun-1C Enhanced 899,179 11,468 134,905 0.82 115.37 5.24

Constrained results

Instance Method Cost (m/s) Duration (min) Area (m2)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Iridium-33 Original 971.16 26.17 34,722 3,785 3,984 196.0

Iridium-33 Enhanced 952.42 61.79 34,720 3,789 3,993 167.0

Cosmos-2251 Original 974.77 19.55 26,675 6,705 1,666 86.0

Cosmos-2251 Enhanced 967.90 19.62 33,163 5,009 1,703 41.0

Fengyun-1C Original 859.63 270.0 148.0 84.52 671.4 45.4

Fengyun-1C Enhanced 951.67 67.63 403.5 60.21 905.5 221.6

Summarizing, in the average of the runs, the enhanced approach decreased
the cost by 26.51% and the computation time by 35.56%. Also, when con-
strained, the solutions of the enhanced approach produced paths that performs
significantly better than the original approach solutions, cleaning 12.82% more
area under the same constraints. This is possible by a better usage of the con-
strained resources, increasing the cost by 5.28% and the mission duration by
1.06%. Finally, it is possible to notice that the most profitable mission is the
enhanced Iridium-33, cleaning way more area with the same constraints.

6 Conclusions

The exploration of TSP approaches when dealing with space debris have consid-
erably evolved the TDTSP problem modeling and its available solutions. How-
ever, it still lacks from approaches that fulfill the ADR mission requirements with
a feasible performance and big instance sizes. This work proposed an enhanced
method as a strong candidate to future approaches on TSP based ADR mission
plannings. Using the inver-over as a fast convergence algorithm to deal with the
greedy search throught fast inversions, the S2opt as a solution diversity creator
to deviate the search from local optima, our method found optimized solutions in
a feasible time out of large datasets. Real world instances were used to evaluate
this approach performance and execute parametric tests, the retrieved results
were considerably better than the original approach by [9].

However, this approach does not model the time dependence of the problem,
meaning that the produced solutions may not be good solutions in a real scenario,
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since it does not consider the moving dynamics of the debris. Also, this approach
first optimizes the cost of the solution, and later chooses the most rewardable
sub-path, so it is not a fully bi-optimization algorithm. Meaning that solutions
with a good cost versus reward ratio could be missed.

As future work, we would like to implement a time-dependent removal
sequence to produce a complete solution for the ADR mission planning prob-
lem. We also plan to implement Lin and Kernighan’s algorithm to improve the
convergence of local search heuristic. The optimization of the transference cost
with the consideration of body masses and J2 effect on the transfers represents
another interesting direction. Finally, we would like to improve the approxima-
tion of the mission duration with a more suitable equation for the Edelbaum
(rather than Hohmann) transfer duration.
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Abstract. Hyper-heuristics (HHs) are algorithms suitable for designing
heuristics. HHs perform the search divided in two levels: they look for
heuristic components in the high level and the heuristic is used, in the
low level, to solve a set of instances of one or more problems. Different
from offline HHs, hyper-heuristics with dynamic learning select or gen-
erate heuristics during the search. This paper proposes a hyper-heuristic
associated with a dynamic learning strategy for selecting Iterated Greedy
(IG) components. The proposal is capable of selecting appropriate val-
ues for six IG components: local search, perturbation, destruction size,
neighborhood size, destruction position and local search focus. The pro-
posed HH is tested with six dynamic adaptation strategies: random, ε-
greedy, probability matching, multi-armed bandit, LinUCB, and Thomp-
son Sampling (TS). The hyper-parameters of each strategy are tuned by
irace. As a testbed, we use several instances with four different sizes (20,
50, 100 and 200 jobs) of three different formulations of flowshop problems
(permutation, no-wait, no-idle), two distinct objectives (makespan, flow-
time), and four processing time distributions (uniform, exponential and
job or machine correlated). The results show that different strategies are
most suitable for adapting different IG components, TS performs quite
well for all components and, except for local search, using adaptation
is always beneficial when compared with the IG running with standard
parameters.

Keywords: Hyper-heuristic · Iterated Greedy algorithm · Adaptive
Components · Flowshop Variants

1 Introduction

An automated methodology for selecting or generating heuristics to solve opti-
mization problems is the focus of hyper-heuristics (HHs) [4]. HHs can be further
classified according to the learning phase feedback, where they possibly have no
learning, offline learning, or online learning. The later is also known, and referred
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in this text, as dynamic learning, that selects or generates heuristics during the
search process.

As occurs in a simpler level for meta-learning approaches, in a broader
view, hyper-heuristics make algorithm design more adaptable to different prob-
lems [14]. Another face on the same problem is given by the algorithm selec-
tion, particularly for dynamic schedules of algorithms, which generalizes static
and per-instance algorithm selection approaches [10]. Hyper-heuristics can con-
tribute therefore to the development of algorithms for solving a wide range of
optimization problems.

Flowshop problems (FSP) involve deciding how J jobs will be processed
on M machines in series [2]. This paper investigates three FSP formulations:
permutation (with no schedule constraints), and no-wait, no-idle which include
constraints (there are no waiting jobs, and no idle machines, respectively).

Different proposals of parameter adaptation and HHs exist in the context of
FSPs and scheduling problems in general [3,16,25,26]. In this context, one of
the first works proposed in the literature uses an adaptive genetic algorithm [26],
with online selection of four types of crossover and three mutations for the per-
mutation FSP with makespan objective. The algorithm produces new offspring
using different operators proportional to their contributions on previous genera-
tions. Results show that the adaptive genetic algorithm presents a good perfor-
mance when compared with an algorithm with static parameters and uniform
selection of operators.

A HH based on Variable Neighborhood Search (VNS) is proposed in [16].
The VNS strategy adapts the shaking mechanism and local search, providing
different low-level heuristics. The shaking is adapted by maintaining a tabu-list
of non-improving heuristics, while different local searches are chosen greedily on
a rank metric based on improving moves. The proposal performs well on four
different combinatorial optimization problems, including permutation FSPs.

Another related work is presented in [25], using the Iterated Local Search
(ILS) with different neighborhood types. A greedy strategy selects the best
neighborhood based on the fitness improvement, number of times each oper-
ator is used and the time to perform the local search. Results show advantages
on problems considering makespan, as well as flowtime objective.

A recent work [3] proposes an Iterated Greedy (IG) algorithm enhanced
by hyper-heuristics to solve hybrid flexible FSPs with setup times. IG is a
metaheuristic with excellent results for some FSP variants. It is based on
initialization-destruction-construction phases, followed by a local search, which
provides at the end a solution that can be accepted or discarded depending
on an acceptance criterion. In [3], the neighborhood types used by the local
search (swap, insert and inverse) are considered the low-level heuristics to be
selected during the search. The enhanced IG is competitive while solving real-
world instances.

Inspired by the fact that IG has been adapted, presents good performance
on several combinatorial optimization problems, and performs particularly well
on permutation FSP [18], in the present paper we propose and analyze different
dynamic strategies used by a hyper-heuristic for selecting IG components. By
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adapting different components like destruction size and position, neighborhood
size, perturbation, local search and its focus, the proposed HH is tested with
distinct dynamic adaptation strategies: random, ε-greedy, probability match-
ing, multi-armed bandit, LinUCB, and Thompson sampling. The most suitable
hyper-parameters of each strategy are set in the tuning phase performed by irace.
The proposal’s performance is evaluated on three formulations (constraints) of
FSPs, with four different sizes, two objectives, and four processing time distri-
butions. This way, we intent to contribute to the FSP understanding and to find
general strategies for solving different formulations of the problem.

The main contributions of the paper can be summarized as: (i) adapting six
different IG components; (ii) testing six different dynamic learning strategies
in the proposed HH; (iii) tuning main HH hyper-parameters; (iv) addressing
several FSP variants; (v) providing a high performance adaptive IG capable of
outperforming the standard IG [18] in many FSP variants. As far as we know,
there is no other previous work considering different HHs with dynamic learning
to FSP. Moreover, no other previous work considers the simultaneously adapta-
tion of multiple IG components. Finally, there is no reported results with HH
outperforming standard IG on different FSP types.

The paper is organized as follows. Section 2 discusses the basic concepts nec-
essary to understand the proposal. Section 3 details the adaptive IG that is
being proposed here. The methodology adopted in the experiments is described
in Sect. 4. Results are presented and analyzed in Sect. 5. Finally, Sect. 6 concludes
the paper and discusses future perspectives.

2 Background

This section presents the basic concepts regarding the application context
(Sect. 2.1 details the FSP) and the proposal (Sect. 2.2 describes the dynamic
adaptive strategies used by the proposed hyper-heuristic).

2.1 Flowshop Problems (FSPs)

Flowshop is a combinatorial optimization problem of scheduling. The problem
involves deciding how J jobs will be processed on M machines in series. Given
the processing times on each machine, a permutation x = (x0, . . . , xJ ) informs
the order jobs will be executed on all machines. The most common formulation
considers that jobs and machines are available any time, with processing times
known in advance, and machine processes are sequence-independent and occur
without interruptions [2].

In permutation FSPs, the completion time of a job xj in the m-th machine
can be determined by:

Cxj ,m = max(Cxj ,m, Cxj−1,m) + pxj ,m (1)

where pxj ,m is the processing time of job xj on machine m.
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Two common objectives in FSPs are makespan and flowtime. Makespan is
the time required to complete all jobs, i.e., maxj Cxj ,M , and flowtime is the sum
of all completion times,

∑
j Cxj ,M .

Besides the permutation FSPs formulations, other variants like the no-wait
and no-idle include constraints on the schedules. The no-wait FSP variant only
considers schedules where there are no waiting times between job operations.
The no-wait completion times are given by:

Cxj ,m = dxj−1,j +
M∑

m=0

pxj ,m (2)

where d are the precomputed delay times [20].
No-idle schedules completion times are computed using [23]:

F (x1,m,m + 1) = pxj ,m+1 (3)

F (xj ,m,m + 1) = max
{
F (xj−1,m,m + 1) − pxj ,m, 0

}
+ pxj ,m+1 (4)

Cxj ,m =
M−1∑

m=1

F (xj ,m,m + 1) +
j∑

k=1

pxk,1. (5)

where F (xj ,m,m + 1) is the minimum difference between the completion of
processing up to job xj , on machines k + 1 and k, restricted by the no-idle
constraint.

In addition to objectives and constrains, a FSP formulation includes the def-
inition of processing times, which can be correlated or non-correlated and whose
distributions can be uniform or exponential. Large number of jobs and uniform
processing times usually make the problem harder to solve. Alternatively, simple
heuristics perform well when there are correlations between processing time [24].
Also, in this paper, we investigate processing times with exponential distribu-
tions, and job or machine correlated processing times.

2.2 Hyper-Heuristics and Their Adaptation Strategies

According to [15], a hyper-heuristic (HH) works with a two-level structure, at the
high-level it looks for heuristic configurations h ∈ H, considering H the heuristic
space. At the low-level, each solution x ∈ X of the target optimization problem
p is generated by the heuristic h ∈ H. There are two evaluation functions: in the
first level, the HH’s success is measured by function F : h → � and in the second
level, each solution x ∈ X is evaluated by an objective function f : x → �.

From a mapping function M : f(x) → F (h), it is possible to define the
purpose of a selection HH. The HH must optimize F (h) by means of the search
for the optimal heuristic configuration h∗, in H, thus h∗ generates the optimal
solution(s) x∗ [15]. The formal HH definition, in a minimization optimization
problem is summarized in Eq. 6.

F (h∗ | h∗ → x∗, h∗ ∈ H) ← f(x∗, x∗ ∈ X) = min{f(x), x ∈ X} (6)
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In this paper, h relies on different choices for each IG component, f is asso-
ciated with makespan or flowtime objectives, and F is measured by a reward
function detailed in Sect. 3.

Hyper-heuristics aim therefore at providing more generalized solutions for
optimization problems by producing good results when dealing with a set of
instances or a set of problems. For this, HHs work in the heuristic space rather
than the solution space. Based on specific strategies, they adapt low-level heuris-
tics, which are used to solve the target problem(s).

We investigate six adaptation strategies commonly used in the HH litera-
ture: Random, ε-greedy, Probability Matching, Multi-armed Bandit, LinUCB
and Thompson sampling.

Random parameter selection is the simplest strategy and in most cases,
it serves as a baseline for comparison between static and dynamic parameter
selection. It might be beneficial depending on the chance of selecting the best
parameter combination [5].

ε-greedy is a simple strategy often referenced on the exploration-exploitation
dilemma [22]. With probability ε, the parameter with the best average reward
is chosen, otherwise, with probability 1 − ε, a random one is selected.

Probability Matching (PM) [7] works as a roulette wheel selection biased
towards the operators with best quality. The probability of selecting the k-th
operator from a set of K operators at iteration t is given by:

Pk,t = Pmin + (1 − K × Pmin)
qk,t

∑K
j=1 qj,t

(7)

where qk,t is the quality of k-th operator and 0 < Pmin < 1/K is used to
guarantee that every operator will have a minimum chance of being chosen. The
quality values are updated according to the rewards:

qk,t = qk,t−1 + α × (racck,t − qk,t−1) (8)

where α is the learning rate parameter and racck,t is the accumulated reward
of operator k during a given update window of size W . The accumulation in
racck,t considers either the average or extreme and, optionally, normalized reward
values.

Multi-armed bandit (MAB) [1] algorithms are based on the Upper Con-
fidence Bound for exploitation-exploration trade-off. In particular, the Fitness-
Rate-Rank-Based Multi-armed Bandit [11] considers the dynamic search behav-
ior with a sliding window of size W to store the rewards of each operator. The
selected operator maximizes the expression:

FRRk,t + Cs

(
2 ln

∑K
l=1 nt

l

nt
k

)

(9)

where Cs is a scaling parameter, nt
k is the number of times operator k is applied

during the window of size W , and FRRk,t is the k-th operator credit value
given by:
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FRRk,t =
Drankk × rk

∑K
l=1 Drankl × rl

(10)

in which D is the best operator influence decay parameter, racck is the k-th
operator accumulated reward, and rankk is the k-th operator reward sum rank.

Linear Upper Confidence Bound (LinUCB) [12] works by assuming that
the reward for a given operator is linearly proportional to the values of contextual
features, i.e., E[rk,t|φk,t] = φT

k,tθ
∗
k, where φk,t is the feature vector and θ∗

k the
unknown coefficients. We consider four fitness landscape metrics as the context
for a local search procedure, calculated online during the local search step [17]:

– Adaptive walk length: the total number of steps of the local search;
– Autocorrelation: correlation between the fitness values observed with the fit-

ness values of the previous solutions;
– Fitness-distance correlation: correlation between fitness and insertion distance

considering the initial and final solutions;
– Neutrality: proportion of neighbors with equal fitness values.

Using a ridge regression formulation, the coefficients can be found efficiently
with the following steps:

θ∗
k,t = A−1

k,tbk,t

Pk,t = θ∗
k,tφk,t + α

√
φk,tA

−1
k,tφk,t

(11)

where α is a learning rate parameter. The operator with maximum Pk,t is chosen,
yielding the reward value rk,t, and the model update follows:

Ak,t = Ak,t−1 + φk,tφ
T
k,t

bk,t = bk,t−1 + rk,tφk,t.
(12)

Thompson Sampling (TS) [19] strategy starts with a prior distribution,
chooses the best operator by sampling, observes the output and updates the
distribution. The Beta distribution Beta(Sk,t, Fk,t) models Bernoulli trials where
operator k has Sk,t successes (rewards rk > 0) and Fk,t fails (rewards rk ≤ 0).
Therefore we choose the operator with:

op = arg max
k

Sample[Beta(Sk,t, Fk,t)] (13)

and update the distribution after the reward:

Sk,t = Sk,t−1 + 1rk,t>0

Fk,t = Fk,t−1 + 1rk,t≤0.
(14)

Alternatively, the Dynamic TS [8] introduces a window size parameter W and a
modified update rule (after iteration W ) as follows:

Sk,t = (Sk,t−1 + 1rk,t>0) W
W+1

Fk,t = (Fk,t−1 + 1rk,t≤0) W
W+1 .

(15)
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Table 1. Hyper-parameters of the addressed adaptation strategies.

Strategy Hyper-Parameter Domain

ε-greedy Greedy choice probability (ε) [0.0, 1.0]

Probability matching Min. probability (Pmin) [0.05, 0.2]

Learning rate (α) [0.1, 0.9]

Update window (W ) [1, . . . , 500]

Reward accumulation {average, extreme}
Reward normalization {yes, no}

Multi-armed bandit Scale (Cs) [0.01, 100.0]

Decay (D) [0.25, 1.0]

Update window (W ) [10, . . . , 500]

LinUCB Learning rate (α) [0.01, 1.5]

TS Update type {static, dynamic}
Update window (W ) [1, . . . , 500]

Common Warm up period [0, 1000, 2000]

Reward typea [bLaL, bLaI, bIaL, bIaI]
aReward types are detailed in Sect. 3.

Table 1 shows a summary of all hyper-parameters used by the adaptation
strategies, as well as two hyper-parameters common to all strategies: reward
type and warm-up period. The warm-up period is considered at the beginning
of the iterations where strategies are chosen randomly. Reward type is detailed
in the next section.

3 Adaptive IG Proposal

Considered the state of the art for some FSP variants, the Iterated Greedy (IG)
algorithm [18] is a successful iterative metaheuristic that encompasses five main
steps: (1) the incumbent solution x is initialized, (2) a destruction phase ran-
domly removes d jobs, (3) a construction procedure inserts each job at the best
position, (4) a local search generates a new solution by exploiting the solution
resulted from construction and (5) the new solution replaces the incumbent x
according to an acceptance criterion. The last step accepts the new solution x′′

based on the following probability:

Paccep(x′′) =

{
1.0 if f(x′′) < f(x)
exp

(
−(f(x′′)−f(x))

Temp

)
otherwise (16)

where f(.) is the cost function and Temp is the temperature defined by:

Temp = T ×
∑J

j=1

∑M
m=1 pj,m

J ∗ M ∗ 10
. (17)

IG has two main parameters: the destruction size d and the temperature fac-
tor T , whose values IG authors [18] recommend to be set as d = 4 and T = 0.5.
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Other recommended configurations are Nawaz–Enscore–Ham (NEH) construc-
tion heuristic as the initialization and iterative improvement as local search. The
local search iteratively inserts a job, chosen randomly without replacement, on
the best position until there are no improvements [21]. This version is referred
from now on as Standard IG.

The hyper-heuristic proposed in the present paper considers an adaptive
strategy (one fixed among the six possible strategies described in Sect. 2.2) to
update some components of an IG algorithm. An adaptive strategy requires a
set H of possible choices and a reward function indicating how well a particular
choice performs.

An important issue for defining an adaptive strategy is the reward function.
It returns a real number representing the quality of a given choice. Good choices
have positive rewards and bad choices receive negative ones. In the case of using
IG to solve FSPs, reward of kth parameter at iteration t can be calculated
based on the relative decrease in cost function value (e.g. makespan or any other
objective function being considered):

rk,t = (f(xbefore) − f(xafter))/f(xbefore). (18)

Here xbefore and xafter represent solutions before and after the reward eval-
uation period (whose reference can be either local search or iteration). We have
four possible periods during which a solution has its performance evaluated:
before the iteration (bI) or the local search (bL) and after the iteration (aI) or
local search (aL), giving rise to four types of reward:

– bLaL: (f(xbefore local search) − f(xafter local search))/f(xbefore local search);
– bIaL: (f(xbefore iteration) − f(xafter local search))/f(xbefore iteration);
– bLaI: (f(xbefore local search) − f(xafter iteration))/f(xbefore local search);
– bIaI: (f(xbefore iteration) − f(xafter iteration))/f(xbefore iteration).

As Fig. 1 shows, each reward type considers a different period to get the
feedback for each solution considering its quality increase/decrease.

Fig. 1. IG algorithm and reward types: bLaL, bIaL, bLaI and bIaI.

Using the standard IG [18] as basis, with a budget computation time as the
stopping criteria, we identify some components that can be adapted dynami-
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cally: type of the local search, type of perturbation, destruction size, neighbor-
hood size, destruction position, local search focus. A summary of these adaptive
components and their values are presented in Table 2.

In our case, different choices are possible for each IG component, for exam-
ple, the number of deconstructions. We refer to the parameter values as dis-
crete choices (also referred to arms in multi-armed bandit literature) indexed by
{1, . . . , K}, where K = |H| is the total number of choices. Therefore, according
to Eq. 6, we have each choice representing a heuristic h ∈ H, where the dynamic
adaptation strategy of the HH chooses h as the k-th choice, k = 1, . . . , |H|.

The pool regarding the first choice sets encompasses the most usual options
for Local search and Perturbation in the context of combinatorial optimization.
The options for Destruction size are the ones often chosen in IG implementations
for FSP. Finally, the pools for the last three choice sets are defined aiming to
produce different granularities, starting from a coarse, ending to a fine search.

Table 2. IG adaptive parameters.

Parameter Choice set(s) H

Local search {Iterative improvement, first improvement,
First-best improvement, random best improvement}

Perturbation {Destruction-construction, Random swaps +transposition,
Destruction-construction with local search}

Destruction size {2, 4}, {4, 6}, {2, 4, 6} or {4, 8}
Neighborhood size {1/2, 2/2}, {1/3, 2/3, 3/3}, {1/5, ..., 5/5}, {1/10, ..., 10/10}
Destruction position {[0, 1/3], ..., [2/3, 3/3]}, {[0, 1/10], ..., [9/10, 10/10]} or {1, ..., J}
Local search focus {[0, 1/3], ..., [2/3, 3/3]}, {[0, 1/10], ..., [9/10, 10/10]} or {1, ..., J}

The HH based on dynamic learning proposed in this paper is capable of
adapting different components (e.g. local search and perturbation) for each iter-
ation of the adaptive IG. In local search for example, it can choose between the
original IG’s iterative improvement, first improvement, first-best improvement,
random best improvement. The last three local search options consider all possi-
ble insertions. The perturbation adaptation considers three possibilities: (1) the
IG destruction-construction steps; (2) two random swaps and a transposition,
as used in [21] for ILS on FSP , and (3) destruction-construction with iterative
improvement local search between destructions, recently proposed in [6].

The neighborhood size adaptation considers the percentage of the neighbor-
hood explored during the local search step. For example, exploring only half of
the neighborhood at the beginning of the search could save time for exploita-
tion at the end of the search. Similarly, choosing the destruction size parameter
dynamically might improve the search during exploration-exploitation phases.

As mentioned, there are two mechanisms in IG that randomly choose jobs to
be re-inserted: destruction and best-insertion local search. An adaptive mecha-
nism can be applied in the last two IG components shown in Table 2 to focus



164 L. M. Pavelski et al.

these operators on parts of the solution that have a better chance of improve-
ment. For that, we propose partitioning the solution into chunks and adaptively
selecting from each chunk the job that will be sampled.

As shown in Table 2, for some parameters there are multiple possible choice
pools {H1,H2, ...}. For example, the destruction size can be chosen from the set
H1 = {2, 4}, H2 = {4, 6}, H3 = {2, 4, 6} or H4 = {4, 8}. Also on destruction
position and local search focus, the solution can be partitioned into 3, 10 or J
chunks (the last considering one arm for each job). Some HH hyper-parameters
like the pool Hi for a component, reward type and update window are determined
in a parameter tuning phase described in Sect. 4.

4 Tuning and Testing Phases

Based on the hyper-heuristic with dynamic learning and its six possible adap-
tive strategies described in Sect. 2.2, Sect. 3 has detailed the proposed adaptive
IG. This section presents the hyper-parameter configuration performed by irace
(tuning) using part of available data and the test performed on the tuned HH
using the remaining one. The configurations are evaluated with a budget of
J × (M/2) × 30 ms on tuning and test phases. Algorithms are implemented in
C++ using the Paradiseo library [9]. The experiments have been executed on
a server with 8-core AMD EPYC 7542 processors and 16 GB of RAM. For the
results analysis, we used the R language and relevant packages1.

Tuning phase Before running the experiments, we perform a tuning phase
aiming to determine which strategy configuration (shown in Table 1) works best
for each IG component (shown in Table 2). The random strategy is not considered
for destruction position and local search focus, because a random choice in these
cases is equivalent to the standard IG behaviour.

The irace algorithm [13] with default parameters and 5000 configurations
evaluations is used to tune each combination of the six adaptive components
and the six dynamic strategies. There are multiple choice pools {H1,H2, ...} for
destruction size, neighborhood size, destruction position and local search focus
components. For example, the destruction size can be chosen from H1 = {2, 4}
or H2 = {4, 8}. In these cases, the pool choice is considered as an additional
categorical parameter for irace during the tuning phase.

The instance set for the tuning phase is composed of 48 (3 × 2 × 3 ×
4) instances resulted from the combinations of: 3 sizes (20 or 50 jobs and 10
machines), 2 objectives (makespan or flowtime), 3 types (permutation, no-wait
or no-idle FSPs), and 4 processing times distributions: (exponential, uniform,
job-correlated or machine-correlated processing times).

Testing phase After tuning, the best configurations are tested with 10
restarts on a set of unseen instances with the same features, but sampled with
different random seeds. Aiming to better evaluate algorithms’ generalization

1 Tuning and Testing instances, as well as the code used in the paper, are available at
https://github.com/lucasmpavelski/Adaptive-IG.

https://github.com/lucasmpavelski/Adaptive-IG
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capabilities, we also include larger instances of J = 100 and J = 200 jobs and
M = 20 in the testing phase.

The evaluation for each algorithm is done using the Average Relative Per-
centage Deviation (ARPD) given by:

ARPDalg =
1
R

R∑

r=1

100 × f(xalg
r ) − f(xbest)
f(xbest)

(19)

where R is the number of runs and xalg
r is the best solution found by algorithm

alg. The reference solution xbest is given by the best solution found by a standard
IG (the same used by the authors in [18]) with a higher budget of J × (M/2) ×
120 ms and 30 restarts.

Finally, the configurations are also compared with the standard IG configu-
ration to evaluate the effectiveness of the adaptive components in the presented
scenario. In all comparisons, we highlight the lowest ARPDs and perform a
Friedman rank sum test with Nemenyi post hoc to verify if the differences are
statistically significant with p-value threshold of 0.05: results with no statistically
significant differences from the best one are highlighted with gray background.

5 Results

Table 3 shows some hyper-parameter values (reward type, choice sets and update
window) tuned by irace for each IG component addressed in the paper.

Different reward types have been tuned for the different adaptive components
and HHs, with no dominance between the different options. The choice sets
for the destruction size parameter enable more exploration with values higher
than the default d = 4, which is present in all options. The choice sets for
neighborhood size are small (2 or 3), with preference for a coarse search, while
the local search focus uses partitions with 10 or more choices in three among
five cases. Finally, the update window is short for MAB and TS on perturbation
component, indicating that its value (4 or 8 destructions) is often switched during
the search. However, in most cases the strategies prefer less frequent changes,
since large window sizes are the tuned parameters.

The ARPD values for each adaptive component and strategy are shown in
Table 4, and they are calculated using Eq. 19, with R = 10 and considering all
the different testing instances. The values for standard IG configuration [18] are
computed with the same budget (J × (M/2) × 30) as the HHs proposals on the
testing instances. Notice that this budget is lower than the one used to compute
the reference f(xbest) values for ARPD.

The adaptive components are able to improve the static standard IG config-
uration for all (perturbation, destruction size, destruction position and local
search focus) but one IG component. Local search adaptation is not effec-
tive independently of the strategy used by the HH, meaning that the iterative
improvement performed by the standard IG is quite effective compared with
the other choices. TS adaptation achieves the lowest ARPD for perturbation
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Table 3. Tuned hyper-parameters.

Adaptive component Random ε-greedy PM MAB LinUCB TS

Reward type

Local search - bLaI bIaI bLaI bLaI bIaL

Perturbation - bLaL bIaI bIaL bLaL bIaL

Destruction size - bIaI bIaL bIaL bLaI bLaI

Destruction position - bLaI bIaI bLaL bLaL bIaL

Neighborhood size - bIaL bLaL bIaI bIaI bLaI

Choice sets

Destruction size {4, 8} {2, 4, 6} {4, 6} {4, 8} {4, 8} {4, 8}
Neighborhood size {1/2, 1} {1/3, 2/3, 1} {1/3, 2/3, 1} {1/2, 1} {1/2, 1} {1/2, 1}
Destruction position* - 3 3 3 3 10

Local search focus* - 3 J 10 3 10

Update window

Local search - - 283 188 - 414

Perturbation - - 283 59 - 21

Destruction size - - 128 406 - static

Destruction position - - 357 350 - static

Neighborhood size - - 340 32 - 358

Local search focus - - 125 271 - 299

* number of partitions.

and destruction position components, while ε-greedy performs well on the local
search focus task. As (biased) adaptation might not be the best option in some
cases [5], the simple random strategy performs well for selecting the destruction
size and neighborhood size. In all cases, the adaptive strategies TS and MAB
are among the strategies with the lowest or statistically equivalent to the lowest
ARPD values.

We see from Table 4 that TS is robust for different components but provides
the lowest among all results when adapting IG perturbation. However, it is
equivalent to most other HH proposals.

We compare TS configuring only perturbation with two others that try to
adapt multiple components simultaneously: Adapt all components, Adapt all
components except local search (for which no adaptation strategy was capable
of improving the performance). The Adapt all approaches use strategies with
the best ARPD values for each component from Table 4, which means, TS for
perturbation and destruction position, Random for destruction and neighbor-
hood sizes and ε-greedy for Local search focus. The results in Table 5 show the
metrics separated by objective, FSP type, processing times distribution and size.
Overall, IG with adaptive perturbation obtains the lowest ARPDs. Adapting all
components at the same time does not provide benefits, but when we eliminate
the local search it performs like the best approach.
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Table 4. Adaptation strategies ARPDs (and standard deviation) for each adaptive
component and strategy. Lowest mean values are highlighted in bold, statistically equiv-
alent values are highlighted with gray background.

Adaptive component Random ε-greedy PM MAB LinUCB TS Standard IG

Local search .6941.0 .6861.0 .6861.0 .666.94 .6961.0 .662.96 .595.80

Perturbation .348.63 .377.62 .351.63 .353.61 .434.70 .343.63 .595.80

Destruction size .416.60 .491.67 .466.64 .454.69 .441.61 .438.67 .595.80

Neighborhood Size .567.75 .599.80 .593.79 .589.80 .589.80 .598.81 .595.80

Destruction position - .575.75 .563.73 .553.73 .672.79 .548.73 .595.80

Local search focus - .546.74 .583.80 .554.76 .570.76 .556.76 .595.80

Table 5. Adaptation strategies ARPDs (and standard deviation) for all adaptive com-
ponents, perturbation and destruction size adaptation and standard (static) IG. Best
mean and statistically equivalent values are in bold and gray background, respectively.

Problem set Adapt all Adapt all w/o Adapt only Standard IG

All problems local search perturbation

.455.77 .380.64 .343.63 .595.80

Objective
Flowtime .592.95 .466.80 .436.78 .763.95

Makespan .319.49 .294.42 .251.40 .426.56

Type

No-idle .8881.1 .759.90 .708.90 .793.92

No-wait .144.26 .136.25 .106.22 .592.76

Permutation .334.50 .245.39 .216.35 .400.63

Distribution

Exponential .8051.0 .614.82 .614.84 1.09.99

Uniform .658.78 .589.72 .461.67 .814.81

Job-correlated .317.52 .286.50 .269.48 .403.53

Machine-correlated .042.08 .031.06 .030.07 .070.13

J
{20, 50} .214.52 .206.45 .172.39 .251.50

{100, 200} .697.89 .554.76 .515.75 .938.88

6 Conclusions

This paper proposed and analyzed the use of hyper-heuristic with dynamic
strategies to adapt different components of the Iterated Greedy algorithm. Six
different adapting strategies (random, ε-greedy, probability matching, multi-
armed bandit, LinUCB, and Thompson sampling) were tested to adapt six
IG components (local search, perturbation, destruction size, neighborhood size,
destruction position and local search focus). After a tuning phase performed
by irace to set the best strategy hyper-parameters for each component being
adapted, the proposal was tested in different variants of the flowshop problems.

Results show that, in most cases, the adaptation is able to improve the per-
formance over the static standard IG configuration, especially the perturbation
operator adapted using dynamic Thompson Sampling. Also, using multiple adap-
tive components did not seem to be beneficial, unless we fix the local search as
iterated improvement, a fact that deserves further investigation.
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The work can be expanded by including different flowshop problems (objec-
tives and constraints), adaptation strategies, and alternative operators. In
addtion, we intend to propose modifications to improve the performance of the
Adapt all approach.

Acknowledgment. M. Delgado acknowledges CNPq (grants 439226/2018-0, 314699/
2020-1) for her partial financial support.
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6. Dubois-Lacoste, J., Pagnozzi, F., Stützle, T.: An iterated greedy algorithm with
optimization of partial solutions for the makespan permutation flowshop problem.
Comput. Oper. Res. 81, 160–166 (2017). https://doi.org/10.1016/j.cor.2016.12.021

7. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classi-
fier system Bidding. Mach. Learn. 5(4), 407–425 (1990). https://doi.org/10.1023/
A:1022681708029

8. Gupta, N., Granmo, O.C., Agrawala, A.: Thompson sampling for dynamic multi-
armed bandits. In: 2011 10th International Conference on Machine Learning and
Applications and Workshops, pp. 484–489. IEEE, Honolulu, HI, USA (2011).
https://doi.org/10.1109/ICMLA.2011.144

9. Humeau, J., Liefooghe, A., Talbi, E.G., Verel, S.: ParadisEO-MO: From Fitness
Landscape Analysis to Efficient Local Search Algorithms. Research Report RR-
7871, INRIA (2013)

10. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27(1), 3–45 (2019)

11. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with ban-
dits for a multiobjective evolutionary algorithm based on decomposition. IEEE
Trans. Evol. Comput. 18(1), 114–130 (2014). https://doi.org/10.1109/TEVC.2013.
2239648

12. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th International
Conference on World Wide Web - WWW ’10, p. 661. ACM Press, Raleigh, North
Carolina, USA (2010). https://doi.org/10.1145/1772690.1772758

https://doi.org/10.1016/j.cor.2020.105044
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1007/978-3-540-79438-7_1
https://doi.org/10.1016/j.cor.2016.12.021
https://doi.org/10.1023/A:1022681708029
https://doi.org/10.1023/A:1022681708029
https://doi.org/10.1109/ICMLA.2011.144
https://doi.org/10.1109/TEVC.2013.2239648
https://doi.org/10.1109/TEVC.2013.2239648
https://doi.org/10.1145/1772690.1772758


Dynamic Learning in Hyper-Heuristics to Solve Flowshop Problems 169
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Abstract. The Quadratic Assignment Problem (QAP) can be subdi-
vided into different versions, being present in several real-world appli-
cations. In this work, it is used a version that considers many objec-
tives. QAP is an NP-hard problem, so approximate algorithms are used
to address it. This work analyzes a Hyper-Heuristic (HH) that selects
genetic operators to be applied during the evolutionary process. HH
is based on the NSGA-III framework and on the Thompson Sampling
approach. Our main contribution is the analysis of the use of a many
objective algorithm using HH for QAP, as this problem was still under-
explored in the context of many objective optimization. Furthermore,
we analyze the behavior of operators forward the changes related to HH
(TS). The proposal was tested considering 42 instances with 5, 7 and 10
objectives. The results, interpreted using the Friedman statistical test,
were satisfactory when compared to the original algorithm (without HH),
as well as when compared to algorithms in the literature: MOEA/DD,
MOEA/D, SPEA2, NSGA-II and MOEA/D-DRA.

Keywords: NSGA-III · Hyper-Heuristic · Thompson sampling ·
MaQAP

1 Introduction

The Quadratic Assignment Problem (QAP) is an NP-Hard problem even for
small instances [1]. The QAP was initially introduced to model a plant location
problem, with the objective of placing facilities in places so that the sum of the
product between distances and flows is minimal [2]. Depending on the needs,
several variations of the problem arose, such as the linear allocation problem,
quadratic bottleneck allocation problem, the quadratic multi-objective alloca-
tion problem, among others. Each variation works to solve different real-world
problems [1]. The multi-objective QAP (mQAP) [3] and the many objective
QAP (MaQAP) are versions of the problem where a distance matrix and sev-
eral flow matrices (objectives) are used, with two or more functions configuring
the mQAP and with more than three functions the MaQAP. The greater the
number of objective functions to be optimized, the amount of non-dominated
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solutions and the computational cost for calculating the fitness of the solutions
and the operations of the algorithm increases [4]. These versions are used to solve
disposition problems, for example, the allocation of clinics and departments in
hospitals to reduce the distance between doctors, patients, nurses and medical
equipment [1].

NSGA-III [5] is an Evolutionary Algorithm for many objective problems that
uses a non-dominance classification approach based on reference points, being a
hybrid strategy. Different classifications are used according to the method that
the problem is solved [4]. Such an approach has been showing good results in
the literature of the area, so it will be investigated in this work.

Hyper Heuristics (HHs) [6] are high-level methods that generate or select
heuristics, used to free the user from choosing a heuristic or its configuration.
The Thompson Sampling (TS) [7] approach is a HH that selects a heuristic based
on information accumulated during the execution of the algorithm to improve
their performance.

In this work, a study was carried out on the methods already used to solve
MaQAP, implementing and testing the NSGA-III with the Thompson Sampling,
which makes the selection of the crossover operator combined with a mutation
operator. We tested different versions by modifying the way of Thompson Sam-
pling action. TS uses success and failure factors to determine the best operator
choices to apply. Different ways of handling these factors and the frequency of
resetting them are proposed. The changes of success and failures factors are
based on the dominance relation and the average of the objectives. In addition
to the comparison between the previously mentioned versions, the proposal,
named NSGA-IIITS , is also evaluated in terms of effectiveness by comparison
with the original algorithm that does not use HH. Finally, the performance of
the NSGA-IIITS is compared with five other evolutionary multi-objective algo-
rithms: MOEA/DD [8], MOEA/D [9], SPEA2 [10], NSGA-II [11] and MOEA/D-
DRA [12]. The main contribution of this work is to analyze the behavior of a
many objective algorithm based on hyper-heuristic applied to MaQAP. MaQAP
is an under-explored problem in the literature of the area, which motivated its
choice for use in this work due to several fronts of scientific contribution. In addi-
tion, to analyze how the choice of operators proceeds when important factors
related to the HH used (TS) are modified.

This paper is organized as follows. Section 2 presents concepts related to
work, such as the QAP, the used algorithm (NSGA-III) and the HHs. The section
ends with some related works. Section 3 presents the proposed methodology for
the development of the work. The results are shown and discussed in Sect. 4.
Section 5 ends the work with the conclusions and future directions.

2 Background

2.1 Many-Objective Quadratic Assignment Problem - MaQAP

QAP’s objective is to associate a set of n facilities to n different locations, in
order to minimize the cost of transporting the flow between the facilities [2].
Over time the problem has been adapted to solve different real-world problems
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[13]. One of its existing variations is the QAP with many objectives, which is an
extension of the multi-objective QAP, but which more than 3 flow matrices.

The MaQAP is formalized by the Eq. 1, with the condition of Eq. 2 being
satisfied. π is a solution that must belong to a set of feasible solutions.

Minimize
−→
C (π) = {C1(π), C2(π), . . . , Cm(π)}

π ∈ P(n)
(1)

Ck(π) =
n∑

i=1

n∑

j=1

aijb
k
πiπj

, k ∈ 1..m (2)

The calculation of each objective is shown in Eq. 2, and two matrices of the
same size are used, the matrix aij has the distance between the locations, bk

πiπj

is a matrix of the k-th objective flow, with πi and πj being the position of i and
j in π; n is the number of locations and k is an iterator. The objective is to find
a permutation π, belonging to the set of all possible permutations (P (n)), which
simultaneously minimizes m objective functions each represented by the k-th C.
In order to represent problems with many objectives, the constraint m > 3 must
be added.

2.2 Hyper-Heuristics (HH)

Hyper heuristics are high-level methodologies developed for the optimization
of complex problems [6], looking for the best option to fulfill your objective
by generating heuristics through components (generation HH) or by selecting
from a set of low-level heuristics (selection HH). The basic composition of a
selection HH is a high-level strategy, which uses a mechanism to decide which
low-level heuristic to use, and an acceptance criterion that can accept or reject
a solution. The other element of HH is a set of low-level heuristics, which must
be appropriate for the tested problem [14]. Low-level heuristics work on the set
of solutions, they can be of two types, constructive or perturbative.

Among the ways that the HHs can learn are: online, where the learning takes
place during the execution of the search process, or offline where the learning
already comes with the rules defined before the execution of the algorithm. The
use of HHs is due to their ability to find good results for NP-hard problems,
seeking the best way to achieve a good result and removing the need for the user
to choose a single heuristic or its configuration [15]. But as the HHs have evolved,
updated information is needed to better organize the classifications to reflect the
challenges found in the current world, [16] presents an extended version of the
categorization of selection heuristics.

In the Fig. 1, a diagram showing the elements of the HH used in this work
is shown. In which, the high level strategy is formed by the TS as a heuristic
selection mechanism, and the NSGA-III acceptance criterion is used. The low
and high level heuristics are separated because they work in different search
spaces, the high level ones works searching in the space of low level heuristics,
and the low level ones work in the space of solutions. The heuristic selection
mechanism chooses within a predefined set of low-level heuristics based on its
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own evaluation criteria. In this case, Thompson Sampling uses the success and
failure factors associated to each operator who performs a count using different
methods to define whether a low-level heuristic was efficient or not. Finally, the
solution is sent to the acceptance criterion, which can choose whether or not to
accept the new solution (NSGA-III acceptance criterion).

Fig. 1. Hyper-Heuristic elements. Adapted from [14].

Low-Level Heuristics - Genetic Operators: The set of genetic operators is
from the permutational type, so they don’t generate infactible solutions. These
operators use two solutions, to create two new solutions, and they are: i) Partially
Matched Crossover (PMX) [17]: 2 cutoff points are selected, so both parents are
divided into 3 parts. When creating an offspring, the elements between the points
are copied in the same absolute position, then the elements of the other parent
are taken. If they have not been used, they are copied in the same position,
and if there is a conflict, they are exchanged according to their position in the
offspring. The parents order to raise a second offspring is reversed. ii) Cyclic
Crossover (CX) [18]: sequences of connected positions are created by the values
and positions. It starts at the first value on the left, takes the position at parent
2, checks and looks for the value at parent 1 and repeats the process until it
finds cycles. Each cycle is passed alternately to the offspring. iii) Permutational
Two Points Crossover (2P) [17]: two points are chosen at random, separating
the individual into three parts. The initial and final parts of a parent are passed
on to the offspring. Then, the parent is changed and the offspring receive values
according to the order in the parent of the missing elements.

In this work the Swap mutation [19] was used, then two positions of the
solution are chosen at random and they are exchanged with each other.

High Level Heuristic - Thompson Sampling: Thompson Sampling was
proposed by [7] and is used for online decision problems, where information is
accumulated during the execution of the algorithm to performance optimization.
As shown in [20], TS can incorporate a Bayesian model to represent the uncer-
tainty associated with decision making on K operators (actions). When used, a k
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operator produces, in the context of Bernoulli, a reward of 1 with probability θk

and a reward of 0 with probability 1−θk. In the present work, for each k action,
the previous probability density function of θk is given by a β-distribution with
parameters α = (α1, ..., αK) e β = (β1, ..., βK):

p(θk) =
Γ (αk + βk)
Γ (αk) Γ (βk)

θαk−1
k (1 − θk)βk−1 (3)

with Γ denoting the gamma function. As the observations are collected, the
distribution is updated according to the Bayes rule and the β-prior conjugate.
This means that αk or βk increases by one with each success or failure observed,
respectively. Here pop(g) = θk (operator probability in generation g) and the
operator chosen is the one with the highest value of pop(g). The success estimate
of the probability is sampled randomly from the later distribution.

2.3 NSGA-III

NSGA-III [5] arose from adaptations of NSGA-II [11] which is used for multi-
objective problems, in order to better address problems with many objectives.
NSGA-III is an algorithm based on Pareto dominance and Decomposition con-
cepts. Pareto dominance happens when an individual has at least one of the
objectives better than the others and all the others must be equivalent or better
[21]. As decomposition-based algorithms, the NSGA-III uses an adaptive refer-
ence point mechanism, when the population for the next generation is formed,
to preserve the diversity and convergence of the algorithm.

Any structure of reference points can be used, but in this work, as well as in
many decomposition based algorithms, is considered the technique applied in [5].
In this technique, in order to avoid generating a very large number of reference
points, the reference points are generated twice and then joined.

2.4 Related Works

When analyzing the papers on QAP [1], mQAP [22–24] and MaQAP [25,26], it
is possible to observe that with the increasing objectives and, consequently, on
the problem complexity, there is less research being carried out on the theme. In
researching different sources of scientific work, few correlated works are found
for the QAP with many objectives. In [25] the Pareto stochastic local search is
used. The authors compare different versions using algorithms that make use of
the Cartesian product of scaling functions to reduce the number of objectives
in the search space. The benchmark considered for testing has problems with 3
objectives, and the quality indicator used was the hypervolume. In [26] a compar-
ison research was carried out between 18 state-of-art evolutionary algorithm to
solve QAP with many objectives. The instances used in the tests have 3, 5 and
10 objectives. The performance metric used was IGD (Inverted Generational
Distance). In the work [27] two frameworks for multi-objective optimization,
MOEA/D and NSGA-II, were hybridized with Transgenetic Algorithms for the
multi- and many-objective QAP solution. The benchmark instances considered
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2, 3, 5, 7 and 10 objectives. The results were analyzed by different quality indica-
tors of the Pareto frontier and statistical tests. The work shows the performance
gain of the inclusion of operators based on computational transgenetics in the
analyzed frameworks.

The many objective HHs have already been used for some problems in the
literature [28–32], especially for continuous optimization problems with bench-
mark instances, although they are still under-explored. However, there is a gap
for MaQAP, where the use of HH has not yet been explored. This is one of the
contributions that we intend to obtain with this work.

3 Proposed Approach

The algorithm proposed in this work, named NSGA-IIITS , is presented in Algo-
rithm 1, in which the functions marked in gray are part of the TS-based HH. The
NSGA-IIITS algorithm starts with the random generation of the initial popula-
tion, of size NP , and the evaluation of its solutions. The NP reference points
(Z) are initialized as an uniformly distributed hyperplane intersecting the axis
of each objective (Step 1). Then, a main loop (Steps 3–27) begins , each iter-
ation is a new generation (g). Internally to the main repetition, another loop
(Steps 5–12) is used to create a new population who starts by selecting two
solutions (parents), carried out at random (Step 6). The Thompson Sampling
chooses among three different crossover operators (Step 7), the PMX, the CX or
the 2P, combined with the swap mutation, using the beta distribution. After the
application of the chosen crossover and, followed by the Swap mutation (Step
8), the new solutions are evaluated (Step 9) and inserted in a NP size pop-
ulation formed only by the offspring. The next action of the algorithm (Step
10) is related to the different versions of the algorithm which have been created.
This step returns the obtained reward for each operator, after applying the swap
mutation.

When the population of offspring is full, respectively in Steps 13 and 14, an
union with the population of the parents is made, and the joined population
is organized by the non-dominance ordering method. The first set of solutions
to be part of next population is formed by the fronts of non-dominance that
fully fit into the new population (Steps 16–19). If individuals are missing, the
algorithm normalizes the objectives (Step 23) to determine the ideal and extreme
points and adjust the reference points accordingly. The projected distance of
each solution on the lines formed by the ideal and reference points are used to
associate each solution with a reference point (Step 24) and a niche procedure
is performed to select the solutions remaining, prioritizing clusters with fewer
solutions (Step 25). Unused solutions are discarded. The algorithm ends when
it reaches the maximum number of evaluations performed.

The different versions tested in Step 10 represent contributions of this work.
What differentiates one version from another is the success and failure factor
and the frequency of resetting successes and failures count, used by TS. The
success and failure factor concerns the decision on which operator applications
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will contribute to the update of the TS counters (success - αk and failure - βk

in Eq. 3).
The NSGA-IIITS ’s versions that change the success and failures factors are

based on the dominance relation (ND) and the average of the objectives (AVG)
and work as follows: i) ND: after applying the crossover, a two-phase method is
used. In the first, parents and offspring are ordered by level of non-dominance.
If all parents and offspring are at the same level, the best average of the objec-
tives is used as success. On the other hand, if at least one offspring succeeds in
dominating a parent, it is considered success, otherwise it is failure; ii) AVG:

Algorithm 1: NSGA-IIITS Procedure
Require: f : a many-objective problem;

MaxEv: the maximum number of evaluations;
P0: the initial population of size NP ;

Ensure: A Pareto front approximation of f
1 Assign to Z the NP reference points evenly distributed
2 t ← NP
3 while t < MaxEv do
4 a ← 0
5 while a < NP/2 and t < MaxEv do
6 ParentSelection()

7 TSOperatorSelection()

8 Qg ← CrossoverAndMutation(Pg)
9 OffspringEvaluation()

10 OperatorRewardCalculation()

11 a ← a + 1; t ← t + 2

12 end
13 Rg ← Pg

⋃
Qg

14 (F1, F2, . . . ) ← Non-DominatedSorting(Rg)
15 i ← 1
16 while Pg+1 have space to include Fi do
17 Pg+1 ← Pg+1

⋃
Fi

18 i ← i + 1

19 end
20 if |Pg+1| = NP then
21 Go to the next generation
22 else
23 Normalize objectives and adapt Z
24 Associate each solution in Pg+1 to a reference point and count the

number of solutions in each cluster.
25 Choose NP − |Pg+1| solutions from Fi using niching information and

complete Pg+1

26 end

27 end
28 return Pg+1
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after applying the crossover, the mean of the objectives is used. Comparing the
average of the parents with that of the offspring, if there is improvement it is
considered success, otherwise failure;

The different ways of treating the success and failure counting of operators are
presented below: i) V1: the success and failure counter variables are not reset
at any point in the search; ii) V2: the variables success and failure counters
are reset when creating a new population, that is, at each iteration; iii) V3:
the variables success and failure counters are reset during the execution, at the
moment when they reach 1/3 and 2/3 of the evaluations performed.

4 Experiments and Discussion

For the tests, 42 MaQAP instances were used with 50 locations and 5, 7 and
10 objectives (flows), these instances were proposed in [27] using the generators
presented in [33]. Each instance is named following the format: mqapX -Y fl-
TW, with X is the number of locations, Y is the number of objectives (or flow
types), T means that the correlation is positive (p) or negative (n) and W shows
whether the problem is uniform (uni) or real-like (rl) [27].

All experiments are evaluated by the IGD+ (Inverted Generational Distance
plus) quality indicator [34]. This metric evaluates different properties of a Pareto
front approximation and provides a single performance value for the set. IGD+
indicates the distance from the set found by the algorithm in relation to a refer-
ence set. The reference set used in this work is composed of the non-dominated
solutions resulting from the union of the approximation front of all the algo-
rithms involved in the comparison.

The experiments were organized in four stages. Firstly, the different strategies
for resetting the count of successes and failures are compared with each other, for
the two success and failure factors: by the dominance relation criterion (ND) and
by the average criterion (AVG). Next, considering the best counting strategies,
AVG and ND are confronted. In the third stage, the best version of the proposed
algorithm is compared with the separately applied operators. In the last stage,
the best proposed HH is compared with some approaches from literature.

The proposed approaches, as well as the other considered algorithms, are
executed 30 times with different seeds. The parameters for all experiments in this
study are in Table 1. TS does not have any input parameters to be defined, which
represents a positive point for the technique. All algorithms, quality indicator
and statistical test were developed in jMetal framework [35].

Table 1. Parameters considered in the proposed and in the literature approaches.

Values Description

CrR 100% Crossover rate (percentage)

MutR 100% Mutation rate (percentage)

NP 105/294/275 Population size (5/7/10 objectives)

MaxEv 300000 Maximum number of function evaluations
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Tables 2, 3, 4, 5 and 6 show a comparison between the algorithms, involving
all instances for 5, 7 and 10 objectives, using the test statistical analysis of
Friedman test [36]. The tables show the rank of the algorithms and the hypothesis
that the first place approach is equivalent to the others. Whenever the hypothesis
is rejected, the first ranked approach is statistically superior to those in the
rejected hypothesis line.

4.1 Stage 1: Selecting the Success and Failure Counting Strategy

The number of succeed and fail operator applications is the main element for
the operation of the Thompson Sampling heuristic. Therefore, experiments are
presented below for the analysis of different strategies for resetting these counts
throughout the search process. This analysis is performed for the two proposed
success factor - dominance relation (ND) and the average of the objectives
(AVG), detailed in Sect. 3.

Table 2 analyzes the different ways of counting on the ND success factor
(Algorithm column) and shows the Friedman test on the IGD+ indicator (Rank-
ing and Hypothesis columns), considering all 42 instances for all number of
objectives. The percentage of usage of the different operators used is also shown
(% PMX, % 2P, % CX columns. From the table it is possible to observe that
the NSGA-IIITS−NDV3, which resets the count in two moments of the search
process, is the best algorithm, followed by NSGA-IIITS−NDV1 (version without
reset). The algorithm that resets the success and failure counts at each itera-
tion (NSGA-IIITS−NDV2) has the worst performance. This table also shows the
average percentage usage of operators throughout the search process. It is worth
noting that the algorithms that selected the CX operator more often have better
performance. In addition, the version that resets success and failure counts at
each iteration tends to distribute the use of operators more evenly, as well as in
a random selection. The same analysis is performed in Table 3, considering the
success and failure factors by the average of the objectives (AVG). According
to the IGD+ quality indicator and the Friedman test, the NSGA-IIITS−AV GV1,
which does not reset the count during the search, is the best algorithm, while
the NSGA-IIITS−AV GV3 algorithm got second place. Again, the algorithm that
resets the success and failure counts at each iteration (NSGA-IIITS−AV GV2)
has the worst performance. The two algorithms that have the highest choice
frequency for the CX operator have the best performance.

Table 2. Ranking and average percentage usage of operators - comparison between
the three ways of restarting the counting of successes and failures (V1, V2 and V3), for
success factor based on the dominance criterion (ND), according to Friedman’s test.

Algorithm Ranking % PMX % 2P % CX Hypothesis

NSGA-IIITS−NDV3 1.500 7.05 8.2 84.75 -

NSGA-IIITS−NDV1 1.619 15.00 8.31 76.68 Rejected

NSGA-IIITS−NDV2 2.881 30.27 17.31 52.41 Rejected
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Table 3. Ranking and average percentage usage of operators - comparison between
the three ways of restarting the counting of successes and failures (V1, V2 and V3), for
success factor based on the objectives average (AVG), according to Friedman’s test.

Algorithm Ranking % PMX % 2P % CX Hypothesis

NSGA-IIITS−AV GV1 1.500 0.91 0.64 98.44 -

NSGA-IIITS−AV GV3 1.667 0.67 0.43 98.88 Rejected

NSGA-IIITS−AV GV2 2.833 16.51 9.86 73.63 Rejected

In view of these analyzes, it is possible to observe that the best count reset
strategy for the ND success and failure factors is that which reset the vari-
ables in 1/3 and 2/3 of the maximum number of performed evaluations (V3).
As for the AVG success and failure factors, is the best strategy that accumu-
lates the scores throughout all evaluations, without resetting them at any time
(V1). The next section compares the two success and failure factor (ND and
AVG), taking into account your best success and failure count reset strategies,
NSGA-IIITS−AV GV1 and NSGA-IIITS−NDV3. In order to understand how the
different forms of counting and factors of success and failure behave in the oper-
ators choice, the frequencies of use for each operator during the search were
analyzed. Figures 2 and 3 show how often each of the three available operators is
selected by HH during the search, taking as example three instances, they are:
mqap50 − 5fl − n25uni, mqap50 − 7fl − p00rl, mqap50 − 10fl − n75rl. The
choice of instances aimed to vary their characteristics such as the number of
objectives, the correlation and the form of generation (rl or uni). These figures
show the percentage of use of the operator (y axis) over the generations (x axis),
considering the average of 5 independent executions. Each point on the curve
represents the frequency with which each operator is used in a given generation.
Figure 2 shows, for the AVG success and failure factor, that the version with the
best performance (NSGA-IIITS−AV GV1) selects the CX more frequently than
the others operators. However, all three restart strategies favor the choice of the
CX operator. V2, which resets the counts at each iteration, presents an oscilla-
tion in the choice of operators throughout the search. V3, which resets the count
in two moments, behaves similarly to the version that does not reset the counts
(V1). Considering ND, Fig. 3 also shows that the version with the best perfor-
mance (NSGA-IIITS−NDV3) selects the CX operator more frequently than the
others. The oscillation in the choice of operators in the version that reinitial-
izes the count at each iteration (V2) is even greater in this success and failure
factors (ND). In order to make a fair comparison, the same stopping criterion
was applied in all experiments (MaxEv = 300000). Thus, as can be seen in
the figures, the number of generations for each instance is equal to 2832 for 5
objectives, 1022 for 7 objectives and 1088 for 10 objectives.

4.2 Stage 2: Selecting the Success and Failure Factor

The tests carried out in this stage answer the research question related to which
the most appropriate success and failure factor in the proposed scenario. It is
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Fig. 2. Operators usage over the generations for the NSGA-IIITS−AV GV1 approaches
(left), NSGA-IIITS−AV GV2 (in the middle) and NSGA-IIITS−AV GV3 (right), for 5, 7
and 10 objectives.

based on the best strategy selected in the previous simulation stage, that is,
performs the comparison of the NSGA-IIITS−AV GV1 and NSGA-IIITS−NDV3
algorithms.

Friedman’s test, in Table 4, makes clear the supremacy of the version that
considers the average of the objectives when deciding whether the application of
a given operator is a success or a failure (AVG). NSGA-IIITS−AV GV1 represents
the best HH version proposed in the scope of this work and will be compared
with the operators applied in isolation in the next section.

Table 4. Average ranking of algorithms considering the comparison between NSGA-
IIITS−AV GV1 and NSGA-IIITS−NDV3, according to Friedman test.

Algorithm Ranking Hypothesis

NSGA-IIITS−AV GV1 1.357 -

NSGA-IIITS−NDV3 1.643 Rejected

4.3 Stage 3: Effect of Operator Selection by Hyper-Heuristic

The use of a hyper-heuristic in the selection of different operators throughout the
search process releases the user from choosing the best operator to be applied
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Fig. 3. Operators usage over the generations for the NSGA-IIITS−NDV1 (left), NSGA-
IIITS−NDV2 (in the middle) and NSGA-IIITS−NDV3 (right), for 5, 7 and 10 objectives.

Table 5. Average ranking of algorithms considering comparison between the best HH
(NSGA-IIITS−AV GV1) and operators applied in isolation, according to Friedman’s test.

Algorithm Ranking Hypothesis

NSGA-IIICX 1.476 -

NSGA-IIITS−AV GV1 1.524 Accepted

NSGA-IIIPMX 3.048 Rejected

NSGA-III2P 3.952 Rejected

in the solution of a given problem. This avoids the necessary simulations and
even a more in-depth knowledge of the technique and the problem in question.
The simulations of this stage aim to analyze the performance of the automatic
selection made by Thompson Sampling in relation to the performance of the
operators applied in isolation. Table 5 shows that the performance of HH and
the CX operator are similar to each other, while the PMX and 2P operators per-
form worse, considering the IGD + quality indicator. Friedman’s test indicates
statistical equivalence between NSGA-IIITS−AV GV1 and NSGA-IIICX , which
shows that the automation of the choice of operators is done properly.
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4.4 Stage 4: Literature Comparison

The efficiency of the best proposed HH is measured at this stage in the face of the
algorithms reported in the literature. Table 6 compares the NSGA-IIITS−AV GV1
algorithm with the MOEA/DD [8], MOEA/D [9], SPEA2 [10], NSGA-II [11],
MOEA/D-DRA [12] algorithms. All comparison approaches are present in the
framework jMetal version 4.5 and the parameters used, with the exception of
those presented in Table 1, are the standard parameters of the framework for
each of these algorithms.

According to the Friedman test, presented in Table 6, the hypothesis that
the algorithm with the lowest rank (NSGA-IIITS−AV GV1) is equivalent to the
others is rejected for all algorithms. Therefore, the proposed algorithm can be
seen as a competitive approach for MaQAP.

Table 6. Average ranking of the algorithms considering a comparison between the best
HH (NSGA-IIITS−AV GV1) and literature algorithms, according to Friedman’s test.

Algorithm Ranking Hypothesis

NSGA-IIITS−AV GV1 2.048 -

MOEA/DD 2.143 Rejected

MOEA/D 2.881 Rejected

SPEA2 3.976 Rejected

NSGA-II 4.024 Rejected

MOEA/D-DRA 5.929 Rejected

5 Conclusions

In this work, it was proposed an approach combining selection HH with the
NSGA-III framework. The selection HH considered was Thompson Sampling.
The HH was used to generate each offspring through the selected operator from
a set of LLH, according to an updated probability based on their previous per-
formance. Three candidates for operators were considered: PMX, 2P and CX. A
set of 42 benchmarks instances was considered with 5, 7 and 10 objectives.

Two success and failure factors have been proposed with different ways of
resetting the counters. The results were analyzed with the IGD+ quality indi-
cator and Friedman’s statistical test. The IGD+ points out that the best way
to restart the success and failure counts varies according to the success and
failure factor adopted. The best proposed HH (NSGA-IIITS−AV GV1) presented
equivalent, or even better, performance to operators applied in isolation. This
shows the benefit of automatic selection made by TS, as it releases the user from
determining the best operator to be applied in the problem solution. In compari-
son with the literature, the NSGA-IIITS−AV GV1 outperforms all the considered
algorithms.
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It should be noted that, in addition to its competitive results, Thompson
Sampling is a simple technique in relation to other high-level heuristics imple-
mented for HHs and without parameters to be adjusted. As future work we can
consider the adaptive control of the size of the set of operators and the test in
different optimization problems with multiple and many objectives.
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combinatória com múltiplos objetivos. Ph.D. dissertation, Federal University of
Technology - Paraná, Brazil (2013)
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Abstract. Several hybrid approaches have been proposed to solve
numerical constrained optimization problems. In this paper we present
an Improved Interval Differential Evolution (I2DE) that uses structural
information of the instance during the optimization process. We extend
the math operations supported by a multi-interval core implementation
that allows pruning infeasible solutions by using local consistency tech-
niques and a backtrack-free local search. Furthermore, we propose a refor-
mulation of interval evolutionary mutation strategies. A comprehensive
experimental analysis is conducted over COCONUT and CEC2018 com-
petition benchmarks and indicates that the hybridization between meta-
heuristics and constraint programming significantly improves the quality
of the solutions. The experimental evaluation shows that our black-box
version of I2DE outperformed several state-of-the-art solvers.

Keywords: Global optimization · Differential evolution · Interval
methods

1 Introduction

In the last few decades, interval based solvers have been used to tackle Numerical
Constrained Global Optimization Problems (NCOP) in a rigorously way [1]. In
general, such methods are composed by a complete investigation of the search
space, using the structure of the problem and consistency techniques from the
constraint programming field to prune infeasible solutions. Despite the great
progress of interval techniques, such methods remain impractical in instances
with a large number of dimensions.

On the other hand, Differential Evolution (DE) has become one of the most
used evolutionary algorithms to deal with large global optimization problems,
due to its performance and simplicity [3,4,20]. As opposed to interval algorithms,
DE based solvers are fast, but do not guarantee the global optimality. Also, DE
uses the instance as a black-box model, where its structure is unknown.

A promising strategy to handle with NCOPs is the hybrid approach, where
different methods are combined [26]. In this context, the solver Interval Differ-
ential Evolution (InDE) was proposed [5]. This method integrates the usual DE
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approach with an interval solver called Relaxed Global Optimization (OGRe) [8].
This solver uses a structural decomposition of the NCOP instance to identify
the amount of local consistency that guarantees a backtrack-free optimization.
Although this is a strong theoretical result, achieving this amount of local consis-
tency can be an intractable problem. Therefore, OGRe uses an Interval Branch
& Bound (IB&B) method to tackle a relaxed form of the instance. Thus, the
solution found by OGRe may be infeasible on the original NCOP instance. More-
over, the computational cost of the IB&B is prohibitive.

The InDE solver extended usual DE operators to the interval context, using
OGRe’s core to select a subset of variables on which the search process will
occur, whilst the others are valuated by constraint propagation. In addition, local
consistency techniques are applied to prune infeasible solutions. By combining
theses techniques, InDE outperformed OGRe [5].

In this work, we present the Improved Interval Differential Evolution (I2DE)
solver. We extend InDE and the operators supported by the OGRe’s multi-
interval core, which allows us to tackle a greater diversity of benchmark func-
tions and real-world problems. Moreover, we present improved versions of three
interval evolutionary mutation operations and incorporate several heuristics of
state-of-the-art solvers. An extensive experimental analysis performed over the
COCONUT [19] and CEC2018 Competition on Constrained Real-Parameter
Optimization [27] benchmarks reveals that our I2DE significantly outperforms
InDE, OGRe and a black-box version of I2DE, which suggests that hybridiza-
tion between metaheuristics and structural decomposition is a promising research
direction. Furthermore, our black-box solver outperformed several state-of-the-
art metaheuristic solvers.

The remaining of this paper is organized as follows: Sect. 2 contains back-
ground definitions of interval methods and metaheuristics. Section 3 provides
details of I2DE’s features and the main improvements compared to InDE. The
experimental analysis is presented in Sect. 4 and Sect. 5 concludes this work.

2 Background

A Numerical Constrained Global Optimization Problem (NCOP) consists of find-
ing an assignment of values to a set of variables V = {x1, x2, . . . , xD} that min-
imizes an objective function f : IRD �→ IR subject to a constraint network (CN)
N = (V,D, C), where D is the domain set of V and C is a set of constraints
of the form gi(xi1 , . . . , xik) ≤ 0. Domain sets can be represented by intervals or
multi-intervals. Given a closed interval X = [x, x], we call x, x ∈ IR the endpoints
of X; ω(X) = x − x denotes the width of X and μ(X) = (x + x)/2 denotes its
midpoint. A closed interval can be defined by its width and midpoint as follows:
X = [μ(X) − ω(X)/2, μ(X) + ω(X)/2]. A multi-interval X = 〈X1,X2, . . . , Xk〉
is an ordered set of disjointed intervals, where i < j =⇒ xi < xj . In this case,
the domain set of a CN is a (multi-) interval box (X1,X2, . . . ,XD).

In this paper, we tackle NCOPs which constraints can be decomposed into a
set of ternary constraints1 x = y◦z or x = 
y, where ◦ (
) is a well-defined binary
1 A constraint is said to be ternary if it involves at most three variables.
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(unary) operation. Therefore, auxiliary variables are included in the network. For
example, the constraint x + 2 · sin(y)2 ≤ 0.5 is encoded as {c1 = x + a1, a1 =
2 · a2, a2 = a3

2, a3 = sin(y)}, where Ai = (−∞,+∞) is the domain set of the
auxiliary variable ai and C1 = (−∞, 0.5] is the interval constant that represents
the original constraint’s relation.

2.1 Interval Analysis Applied to Global Optimization

Interval Analysis is a method of numerical analysis introduced by Moore [16].
Given intervals X, Y and Z the interval extension of any binary (unary) oper-
ation ◦ (
) well defined in IR is defined by:

X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y and x ◦ y is defined in IR},


 Z = {
z | z ∈ Z and 
 z is defined in IR}.

The sets X ◦ Y and 
Z can be intervals, multi-intervals or empty sets. It is
possible to compute X◦Y or 
Z for all algebraic and the common transcendental
functions only by analyzing the endpoints of X and Y or Z [10,16], e.g., [x, x] +
[y, y] = [x + y, x + y], [x, x] · [y, y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}],
2[z,z] = [2z, 2z], etc. Given multi-intervals X , Y and Z, the operation X ◦ Y is
the tightest multi-interval that contains {X ◦ Y | X ∈ X , Y ∈ Y}, and 
Z is the
tightest multi-interval that contains {
Z | Z ∈ Z}.

In the constraint programming field, a constraint is locally consistent if it
satisfies some specific property within a given box. For instance, a ternary con-
straint C : x = y◦1 z is Generalized Arc-Consistent (GAC) w.r.t. a box (X,Y,Z)
iff X ⊆ Y ◦1 Z, Y ⊆ X ◦2 Z and Z ⊆ X ◦3 Y , where ◦2 and ◦3 are the inverse
operations of ◦1 that hold the condition (x = y◦1z) ⇐⇒ (y = x◦2z) ⇐⇒ (z =
x◦1 y). In other words, if C is GAC then given any value for one of its variables,
one can extend such valuation for its remaining variables whilst satisfying C.
This notion of local consistency was proposed by [15].

It is well known that acyclic2 CN can be solved in a backtrack-free manner
if GAC is achieved [6]. Such result can be extended to NCOP by encoding the
objective function f(x) as a new constraint y = f(x); after enforcing GAC (by
removing inconsistent values from the current box) we instantiate y = min Y
and propagate this valuation over the entire network without encountering any
conflicts [8]. However, GAC is not enough when the network is not acyclic.

Another notion of local consistency is Relational Arc-Consistent (RAC) [7].
A ternary constraint C : x = y ◦1 z is RAC w.r.t. a box (X,Y,Z) iff X ⊇ Y ◦1 Z,
Y ⊇ X ◦2 Z and Z ⊇ X ◦3 Y , i.e., given any value for two variables of C, one
can extend such valuation for its remaining variable whilst satisfying C.

In [8] it was proposed a decomposition of CNs that relates the amount of
consistency necessary to ensure a backtrack-free solution. An epiphytic decom-
position of a CN is a tuple (A, Ω, t), where A is an ordered set of acyclic networks
2 The structure of a CN can be represented by a hypergraph which vertices are the

variables and for each constraint there is a hyperedge connecting its respective ver-
tices. Therefore, a CN is acyclic if its hypergraph is Berge-acyclic [2].
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obtained by removing from the CN a set of constraints Ω and t : Ω �→ VΩ is
a function that associates each constraint C ∈ Ω with one of its variables t(C)
satisfying the following: if t(C) belongs to the network Ni then (i) the remain-
ing variables of C belongs to previous networks Nj<i; and (ii) there is no other
constraint C ′ ∈ Ω such that t(C ′) belongs to Ni. If the CN encodes a NCOP
instance, the variable y = f(c) that represents the objective function must be in
the first acyclic network of A.

It was shown that if a NCOP P encoded as a ternary CN is GAC and the
constraints in the set Ω of its epiphytic decomposition are RAC, then P can
be solved in a backtrack-free fashion. The proposed OGRe [8] and InDE [5]
solvers are based on this relation and attempt to achieve the relational arc-
consistency of the CN as a form of optimization. However, enforcing RAC is
in general intractable. The approach proposed in OGRe approximates RAC by
using an Interval Branch and Pruning scheme. If a constraint (C : x = y ◦
z) ∈ Ω is not RAC under the current box, the domain of some variable in this
constraint (excluding t(C)) is bisected (branch) and GAC is enforced on both
sub-problems (pruning) before a new verification of the RAC property of Ω
constraints. The algorithm continues in a recursive fashion. Therefore, although
the ternary decomposition of the original NCOP instance increases the number
of variables, not all of them are considered in the branch process, but only those
of Ω constraints.

In each branch of the search tree, a backtrack-free local search occurs. First,
the variable representing the objective function is instantiated with its minimum
value in the current box. Next, the valuation is propagated over all the network,
following the ordering A of the epiphytic decomposition. Note that acyclic net-
works of A are feasible if GAC was enforced, but the constraints in Ω may be
infeasible. There are two main parameters that control OGRe’s search procedure:
the tolerance εΩ allowed in each Ω constraint, and the minimum granularity Δ
which intervals can be bisected.

OGRe’s approach is a variation of usual Interval Branch and Bound (IB&B)
methods [1] that have been used in the last few decades to rigorously solve
NCOP. Interval methods compute a set of atomic boxes that contains an opti-
mum solution of the NCOP instance. Due to elevated computational cost, these
algorithms remain inefficient in instances with many dimensions. On the other
hand, a solution found by OGRe may be inexact (w.r.t. objective function cost
or constraint violation), because RAC is approximated by a tolerance εΩ in Ω
constraints. Besides that, find an acceptable value for εΩ is not trivial.

The multi-interval core proposed in OGRe is also used in InDE, including
the local search procedure, GAC contractor, epiphytic decomposition of the CN,
and multi-interval operations +, −, ∗, /, ∧ and

√
.

2.2 Differential Evolution

Storn and Price [20] proposed Differential Evolution (DE) as an Evolutionary
Algorithm that combines the coordinates of existing solutions with a particular
probability to generate new candidate solutions. The classical DE consists of
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a loop of G generations over a population of NP individuals. An individual is
an assignment of values to all variables of the instance, represented by a vector
x = (a1, a2, . . . , aD), where ai ∈ Xi is a value from the domain of the variable xi,
1 ≤ i ≤ D. The fitness evaluation of an individual is responsible for determinate
its quality throughout the evolutionary process.

The initial population is randomly generated according to a uniform distri-
bution over X1 × · · · × XD. During each generation, the operators of mutation,
crossover and selection are performed on the population until a termination con-
dition is satisfied, like a fixed maximum number of fitness evaluations (MaxFEs).

In the mutation phase, an operator is applied to generate a mutant vector vi

for each individual xi (called target vector) of the population. The most popular
mutation operator is DE/rand/1 and is defined by:

vi = r1 + F · (r2 − r3), (1)

where F is the scaling factor and r1, r2 and r3 are three mutually distinct
individuals randomly selected from the population. Other popular mutation
operators are used in this work, such as DE/current-to-rand/1 (Eq. 2) [12] and
DE/current-to-pbest/1 (Eq. 3) [29]:

vi = xi + s · (r1 − xi) + F · (r2 − r3), (2)
vi = xi + F · (rpbest − xi) + F · (r1 − r2), (3)

where s is a uniformly distributed random number between 0 and 1, p is a
value in [1,NP ], and rpbest is an individual randomly chosen from the p best
individuals of the current population.

A crossover search operator is applied on the mutant individual vi to produce
a new solution ui, called trial vector, given a probability defined by the crossover
rate CR. In the exponential crossover used in this work, we first choose an
integer d ∈ [1,D] to be the starting point of the target vector for crossover.
We also determine another integer value l chosen from [1,D] with probability
P(l ≥ L) = CRL−1 for any L > 0 which denotes how many consecutive decision
variables are selected from the mutant vector starting at d position. Then, the
offspring is generated as follows:

uij =

{
vij , if j ∈ {mD(d),mD(d + 1), . . . , mD(d + l − 1)},

xij , otherwise,

where mD(n) = 1 + ((n − 1) mod D) allows to iterate cyclically through the
vector. Finally, a selection operator is performed on xi and ui, and the best one
according to a fitness evaluation function is chosen for the next generation.

3 Improved Interval Differential Evolution

In this section we describe details of our approach, called I2DE, and emphasize
the improvements and differences from the work presented in [5] which intro-
duced the InDE solver, an Interval Differential Evolution approach that uses
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structural information for global optimization. One of the main contributions
of our work is the extension of operations supported by OGRe’s multi-interval
core. Previously, it was only possible to tackle instances restricted to operations
+, −, ∗, /, ∧ and

√
. We extended the multi-interval implementation for han-

dling the following additional operations: log, exp, sin, cos, tan, abs, sign, max
and min. Considering the new operations, we implemented a new procedure to
identify the tolerance εΩ needed to approximate RAC. For example, given a
constraint x = y ◦ z, this tolerance is the maximum distance between any value
of the multi-interval Y ◦ Z to its closest value in the multi-interval X . However,
the operator ◦ may be not well-defined within the box (Y,Z). In this case, we
compute the distance using the inverse operation of ◦ that results in the tightest
multi-interval. For instance, we can not compute the distance for the constraint
x = y/z within the box Z = [0, 0], but we can do it for the inverse y = x ∗ z.

In I2DE and InDE, an individual is an assignment of intervals to variables
(a box). The population is a set of boxes that covers parts of the search space,
instead of just points as in classical metaheuristics. In the optimization process,
only the variables of constraints in the Ω set of an epiphytic decomposition are
considered. This allows to apply local consistency techniques to prune infeasible
solutions. OGRe’s local search is used to compute the real parameter instantia-
tion of the variables. However, unlike in [5], we use the original instance modeling
to evaluate the individual’s fitness value, instead of the ternary encoded CN. We
propose improved formulations of three DE interval mutation operators. Inter-
val adaptations of the main features of state-of-the-art solvers are implemented.
Some details of I2DE’s components are discussed below.

3.1 Interval Population

In the same way as in [5], the I2DE’s initial population is generated by the top
level branching tree of OGRe’s IB&B. This strategy guarantees that the initial
population covers all the search space. Although each branch of OGRe’s IB&B
is composed by a GAC multi-interval box, we iteratively split multi-intervals to
obtain a set of interval boxes (individuals) that are added to the initial popula-
tion until the number of individuals is NP . If numerical rounding errors make an
individual to be considered inconsistent by OGRe’s backtrack-free local search,
this individual is replaced by a randomly generated individual from the initial
domain of the instance.

The scheme in which the current population is subdivided between the sub-
populations A and B of size NP/2 was mantained. The entire population is
kept sorted, which allows A to contain the best individuals. In order to promote
exploitation of the fitter solutions and accelerate the convergence process, we
apply a pool of three strategies to each individual of this sub-population. The
best one of the three trial individuals is compared to the parent individual in the
selection operation. The other individuals are added to an archive, while in [5]
they were discarded. In sub-population B, an adaptive scheme is used to choose
the mutation strategy to be applied, as proposed in [24]. At the end of each
generation, all individuals are sorted and divided between the sub-populations.
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In InDE, when a multi-interval box is split into interval individuals, only the
best fitting one is compared to the target vector, and the others are added to the
archive. Similarly, individuals who are not selected for the next generation are
also added to this archive with a maximum size of 100,000 individuals. When the
archive is full, or every 50 generations, the current population and the archive
are merged, the NP best individuals go to the new population, and the archive
is emptied. Our tests revealed that this process is computationally expensive
and contributes very little to the maintenance of diversity in the population. So
I2DE only maintain individuals who are not selected for the next generation in
a NP × 2.6 archive, according to the strategy proposed in [29] and used in many
state-of-art DE solvers [3,13,18].

Finally, we kept the linear population size reduction scheme proposed in [22]
and applied in [5]. At each generation, the new population size is calculated and
if it is different from the current size, the worst individuals are deleted from
the population until it has the new size. When the population size reduces, the
archive size is proportionally reduced.

3.2 Interval Operations

In IUDE [24] it was proposed the use of three mutation operators: DE/rand/1,
DE/current-to-pbest/1 and DE/current-to-rand/1. Just like in [5], we use this
operators pool in the sub-population A in order to intensify the local search
around the best individuals in the current population. The three generated trial
vectors are compared among themselves and the mutation strategy with the best
trial vector scores a win. At every generation, the success rate of each strategy
is evaluated over the period of previous 25 generations. In the bottom sub-
population B, the probability of employing a mutation strategy is equal to its
recent success rate on the top sub-population A. Additionally, base and terminal
vectors are selected from the top sub-population.

Since an interval is defined by its width (ω) and midpoint (μ), mutation oper-
ators can be applied over midpoints and extended to deal with interval widths.
In [5], it was introduced interval versions of the three mutation operators men-
tioned above. However, our tests revealed that in practice numerical rounding
errors may result in intervals with negative widths. Consequently, with the appli-
cation of local consistency, the box is considered inconsistent and discarded.

In order to optimize the convergence process, we reformulated the mutation
strategies proposed in InDE [5]. The interval version of DE/rand/1 combines r1,
r2 and r3 to generate the mutant vector vi. The j-th element of vi is defined by:

μ(vij) = μ(r1j) + Fi · (μ(r2j) − μ(r3j)) , (4)

ω(vij) = ω(r1j) ·
(

1 + Fi ·
(

ω(r2j)
ω(r3j)

− 1
))

.

This formulation reduces numerical errors and avoid inconsistent intervals.
The other two mutation operators are defined in a similar way. The inter-

val version of DE/current-to-rand/1 combines the target vector xi with three
randomly selected individuals r1, r2 and r3. The mutant vector is defined by:
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μ(vij) = μ(xij) + si · (μ(r1j) − μ(xij)) + Fi · (μ(r2j) − μ(r3j)) , (5)

ω(vij) = ω(xij) ·
(

1 + si ·
(

ω(r1j)
ω(rij)

− 1
))

·
(

1 + Fi ·
(

ω(r2j)
ω(r3j)

− 1
))

,

where si is a random number between 0 and 1. This strategy does not use
crossover operator, so the trial vector is a copy of the mutant vector vi.

Finally, the interval version of DE/current-to-pbest/1 with archive uses the
coordinates xi and r1 in the same way as in Eq. 5, while r2 is randomly chosen
from the union of the current population and the archive, and rpbest is selected
among the p best individuals in the population:

μ(vij) = μ(xij) + Fi · (μ(rpbestj) − μ(xij)) + Fi · (μ(r1j) − μ(r2j)) , (6)

ω(vij) = ω(xij) ·
(

1 + Fi ·
(

ω(rpbestj)
ω(rij)

− 1
))

·
(

1 + Fi ·
(

ω(r1j)
ω(r2j)

− 1
))

.

Whereas in [5] the value of p remained fixed throughout the evolutionary
process, we adopted the strategy proposed in [4]. After each generation g, the p
value in the next generation g + 1 is computed as follows:

p =
(

pmax − pmin

MaxFEs

)
· nfes + pmin , (7)

where pmin and pmax are, respectively, the minimum and maximum values of p,
nfes is the current number of fitness evaluations and MaxFEs is the maximum
number of fitness evaluations.

Additionally, in [5] if the width ω(uij) is greater than the width of the base
individual ω(r1j), it is updated by ω(uij) := ω(r1j). Considering that this mech-
anism can decrease the population diversity by forcing the reduction of intervals,
it is not used in I2DE.

It is known that the settings of values for the F and CR parameters is instance
dependent and may change according to the region of the search space being
visited. To make these parameters self-adaptive, InDE employed a scheme intro-
duced in [22] that uses a pair of memory values 〈MCR,MF 〉 for each mutation
operator in order to store the settings that were successful in the last generations.
All the memory pairs are stored in a vector of H positions. At each generation
one of the positions is circularly updated based on the weighted Lehmer mean
of the fitness differences between offspring and their parents.

In I2DE we incorporated some features proposed in [3,4]. The first H − 1
positions of the vector are initialized with 〈0.8, 0.3〉. The last position is always
set to 〈0.9, 0.9〉 and remains unchanged during the evolutionary process. At each
generation one of the first H − 1 positions are circularly updated based on the
Euclidean distance between the coordinates of offspring and their parents. Also,
very low values of CR and very high values of F are not allowed in early stages
of the search. It is important to note that only successful trial vectors in A are
used in the adaptation of parameters, since only in this sub-population the three
strategies are used for each individual.
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3.3 Fitness Evaluations

To estimate the quality of the boxes that represent individuals in the population,
we use OGRe’s pruning and local search strategy. First, we enforce GAC on
individuals from the initial population or resulting from the operators mentioned
in Sect. 3.2. Then, we try the instantiation of the entire CN in a backtrack-free
fashion starting by the initial valuation y = min Y , where Y is the interval
domain of the objective function f(x). We allow the constraints in the Ω set
of the epiphytic decomposition to be instantiated regardless of the tolerance εΩ

required to satisfy them. In [5], the sum of all these tolerances is considered the
constraint violation value φ(x) of the individual, while its cost is f(x) = min Y .

In this paper we assume that the instantiation of real parameters described
above provides suitable reference points for evaluating interval individuals. How-
ever, to obtain the real values of f(x) and φ(x), we only consider the instantiation
of variables belonging to the original modeling of the instance, not the approx-
imation given by the ternary CN employed in [5]. This allows us to compare
results with recent black-box solvers that use the original instance modeling.

The consistent individuals obtained by the GAC contractor may contain
multi-intervals. In [5], such multi-interval box was split into a set of interval
individuals, adding to the population the one with the best fitness value (if it is
better than the target vector) and saving all other generated interval individu-
als in the additional archive. As commented in the Sect. 3.1, our tests revealed
that this mechanism is computationally expensive and does not contribute to
maintaining the population diversity. So, instead of splitting the multi-intervals
and adding them to the archive, we use the interval hull of the box (the smallest
interval box that contains all the multi-intervals) and consider it as only one
individual which is compared with its parent in the selection operation.

In order to compare two individuals, we apply the widely used ε constrained
method [21]. The ε comparisons are defined as a lexicographic order in which φ(x)
precedes f(x). This precedence is adjusted by the parameter ε that is updated at
each generation until the number of generations exceeds a predefined threshold.
From this point the ε level is set to 0 to prefer solutions with minimum constraint
violation.

4 Experimental Results

Our experimental evaluation considers four solvers: the improved approach pro-
posed in this paper (I2DE); an implementation that uses the same DE interval
operations and additional archive of the original InDE [5]; a black-box version of
the I2DE (BBDE); and OGRe [8]. The aim of use the features of original InDE
is to measure the impact of the modifications incorporated in our approach. The
black-box version does not use interval representation neither structural decom-
position as the other three white-box solvers. This comparison aims to evaluate
the impact of using the instance structure in optimization process. In turn,
the comparative analysis with OGRe is intended to provide a baseline with a
search method that employs IB&B, local consistency and constraint propagation
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over the constraint network. It is important to note that local consistency and
backtrack-free local search techniques are the same in I2DE, InDE and OGRe.

To ensure a fair comparison, the three DE solvers employ the same heuris-
tics coming from state-of-the-art solvers for adapting and adjusting parame-
ters, as well as the same number of fitness evaluations. Furthermore, the input
parameters of the solvers were empirically defined after a series of preliminary
experiments. It was set to MaxFEs = 20000 × D. The maximal and minimal
population size was defined as NPmax = 15 × D and NPmin = 6, respectively,
where D is the number of variables on the original instance. Note that in [5],
MaxFEs and NP were defined in relation to |VΩ |, which resulted in a much larger
budget and population. The DE/current-to-pbest/1 operator used pmax = 0.25
and pmin = pmax/2. The length of historical memory was H = 5. Parameters of
ε level were θ = 0.7, cp = 4 and T = 0.85 × G, where G is the maximum num-
ber of generations. We used the exponential version of the classical crossover
operator. GAC contractor was applied to a maximum of 1000 iterations. The
timeout for OGRe was 10000s. Since OGRe parameters εΩ and Δ are not triv-
ially configured, and to have a similar methodology of execution to DEs, we ran
25 different configurations for each instance using εΩ ∈ {10e | e = −5, . . . , 1}
and Δ ∈ {10e | e = −6, . . . , 0}, Δ ≤ εΩ .

Although most experimental evaluations of metaheuristic-based solvers use
CEC competition benchmarks, their instances are only available in source code
to be used as black-box evaluation functions. Therefore, they do not provide the
necessary formalization for use in solvers that exploit structural information of
the NCOP instance, such as I2DE. For the main experimental evaluation we used
the COCONUT Benchmark [19] due to its wide use in numerical optimization
research and because it contains the AMPL (A Mathematical Programming
Language) description necessary to explore the structure of the instances in a
white-box approach.

However, to provide a baseline with some state-of-the-art solvers3, we com-
pared our black-box version of I2DE (BBDE) with solvers from CEC2018 Com-
petition on Constrained Real-Parameter Optimization [27] in the 28 proposed
benchmark functions with D = {10, 30, 50, 100}, totalizing 112 instances. The
results of the CEC2018 solvers were obtained from the competition records4.
BBDE used the same competition protocol, with 25 runs for instance.

The rank of Table 1 considers the CEC2018 [27] methodology based on mean
and median score values on each instance, in which the best solver obtains the
lowest total score. The results indicate that our black-box version is highly com-
petitive with some of the most popular state-of-the-art solvers.

To investigate the performance of I2DE, experiments were conducted on 155
optimization problems from the COCONUT Benchmark [19] with different num-
ber of equality and inequality constraints and up to 75 dimensions. Note that

3 LSHADE-IEpsilon [9], εMAgES [11], LSHADE44 [17], UDE [23], IUDE [24],
LSHADE+IDE [25] and CAL-SHADE [28].

4 https://www3.ntu.edu.sg/home/EPNSugan/index files/CEC2018/CEC2018.htm,
last accessed 18 Jun 2021.

https://www3.ntu.edu.sg/home/EPNSugan/index_files/CEC2018/CEC2018.htm
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Table 1. Comparison of BBDE with solvers from CEC2018.

Solver Mean Median Total Rank Solver Mean Median Total Rank

BBDE 381 380 761 1st LSHADE44 462 485 947 5th

IUDE 445 398 843 2nd UDE 521 481 1002 6th

εMAgES 439 409 848 3rd LSHADE+IDE 529 548 1077 7th

LSHADE-IEpsilon 445 449 894 4th CAL-SHADE 647 575 1222 8th

it was only possible to tackle a larger number of functions than in [5] because
our approach extends the implementation of OGRe’s multi-interval core to other
math operations, as commented in Sect. 3.

The first aspect to be analyzed is the impact of using structural decompo-
sition. Transforming the original instance modeling into a ternary CN usually
involves adding an auxiliary variable for each occurrence of math operators. From
this, the variables of constraints in the Ω set, VΩ , whose valuation is critical for
the search process, are extracted. As noted in Sect. 3.2, I2DE and InDE only
apply its operators on these variables, while the other valuations are assigned
through OGRe’s backtrack-free local search. Figure 1 illustrates the number of
variables (and operators) from the original modeling, the ternary representation
and the VΩ size in the 155 instances. Although VΩ presents a considerable reduc-
tion in number of variables compared to the ternary representation, it is evident
that the search space is still larger than in the original instance modeling.

Fig. 1. Number of variables in original V , ternary V , VΩ and operators per instance.

The solvers ran on a computer with Intel Xeon E5-4627v2 3.30 GHz processor,
256 GB of RAM and CentOS Linux 7. The average time of the 25 executions of
the 155 instances was 7372.04 s for I2DE, 5031.19 s for InDE, 4.63 s for BBDE
and 5619.52 s for OGRe. The processing times of I2DE, InDE and OGRe are
significantly higher due to the local consistency process. Moreover, the execution
time of InDE is smaller compared to I2DE because many candidate solutions
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resulting from InDE interval operations considered inconsistent are immediately
discarded, without going through the local consistency process.

I2DE found feasible solutions on 119 instances, against 107 in InDE, 115 in
BBDE and 64 in OGRe. Feasible solutions with value at most 10−8 greater than
the optimal value are considered as optimal solutions. So, I2DE found 40 optimal
solutions, while InDE, BBDE and OGRe found 35, 35 and 5, respectively.

In order to perform a comparative analysis among I2DE, InDE, BBDE and
OGRe we used two methodologies. The first was the one applied in CEC2018 [27],
the same used in Table 1. The second was proposed in CEC2020 Competition on
Non-Convex Constrained Optimization Problems from the Real-World [14] and
involves the objective function and constraints violation of the best, the mean,
and the median solutions. The values are normalized and adjusted to calculate
the performance measure. The total score is a weighted composition of best,
mean and median with weights 50%, 30% and 20%, respectively.

To estimate the feasibility of the four solvers, we compared the average con-
straint violation values of the 25 runs for the 155 benchmark instances. As the
pre-analysis rejected the null hypothesis that the distribution of violation values
of each instance is normal, we chose a non-parametric test. The Friedman test
with post-hoc Nemenyi test with significance level of 0.05 was applied to the vio-
lation results of each instance, comparing four sets of 25 values each time. The
null hypothesis that the four solvers perform equally was rejected in all instances
with p-value close to 10−6. Based on the Nemenyi test rank on each instance, we
counted the number of instances where each solver was better, equal or worse
than the others. If the rank distance of two solvers was less than the critical
distance of the test, we considered the solvers perform equally in the instance.
Table 2 shows in its violation rows the number of instances where I2DE was bet-
ter, equal or worse than the other three solvers. In all three cases, I2DE obtained
more solutions with violation values smaller than the other solvers.

A second statistical test was conducted over the normalized and adjusted
objective function value of best, mean and median solution of the CEC2020
methodology. The value of each solver in an instance is a composition of objective
function value and the average constraint violations of the obtained solutions.
As the pre-analysis rejected the null hypothesis that the distribution of each set
of values is normal, we chose a non-parametric test. We applied the Wilcoxon
signed rank test with significance level of 0.05 to compare the solvers on each set
of values: best, mean and median. Table 2 shows the test results and the number
of instances where I2DE was better, equal or worse than the other solver. Only
in two cases the null hypothesis, that the two solvers perform equally, was not
rejected: decision ≈. In the other cases, I2DE perform better: decision +.

According to both CEC2018 and CEC2020 ranking methodologies, the best
solver will obtain the lowest total score value. Table 3 shows that the I2DE
outperforms the other three approaches in both ranking methodologies. In com-
parison to InDE, the results point to a significant performance improvement
due to the reformulation of interval mutation strategies and the maintenance
of population diversity with the additional archive of solutions. Furthermore,



198 M. R. S. Cassenote et al.

Table 2. Statistical tests results and comparison of I2DE with InDE, BBDE and OGRe
based on best, mean, median and violation scores over 155 COCONUT instances.

Solvers Criteria Better Equal Worse P-value Decision

I2DE vs. InDE Best 66 60 29 0.0002 +

Mean 89 42 24 10−8 +

Median 85 46 24 10−6 +

Violation 39 110 6 ∼10−6 +

I2DE vs. BBDE Best 60 36 59 0.9204 ≈
Mean 64 33 58 0.0002 +

Median 61 39 55 0.9987 ≈
Violation 47 83 25 ∼10−6 +

I2DE vs. OGRe Best 124 10 21 10−16 +

Mean 131 9 15 10−24 +

Median 127 7 21 10−20 +

Violation 108 40 7 ∼10−6 +

Table 3. Rank of I2DE, InDE, BBDE and OGRe according to CEC2018 and CEC2020
methodologies on COCONUT Benchmark.

CEC2018 CEC2020

Solver Mean Median Total Rank Best Mean Median Total rank

I2DE 249 229 478 1st 0.2153 0.0811 0.1348 0.1589 1st

InDE 330 309 639 3rd 0.3068 0.1361 0.2345 0.2411 2nd

BBDE 317 320 637 2nd 0.2975 0.2340 0.3049 0.2799 3rd

OGRe 575 543 1118 4th 0.7306 0.8123 0.7314 0.7553 4th

the comparative analysis with BBDE and OGRe suggests that the hybridization
between metaheuristics, constraint programming and structural decomposition
is a promising research direction.

5 Conclusion

In this work we proposed the I2DE, an improved version of Interval Differential
Evolution that uses structural information to solve global optimization prob-
lems. From exploration of the epiphytic decomposition, it becomes possible to
concentrate the search process only on a subset of variables that have critical
valuation, while all the others are instantiated by propagation through the con-
straint hypergraph. Additionally, our search is enhanced by a local consistency
process that prunes values that certainly do not constitute the optimal solution.

One of the main contributions of our approach is the extension of the multi-
interval core of OGRe. This allows us to tackle a greater diversity of bench-
mark functions and real-world problems that otherwise could not be adequately
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represented. We also proposed a reformulation of three DE interval mutation
operations and incorporated heuristics from several state-of-the-art solvers that
contributed to improve the performance of our approach.

The experimental analysis of the proposed I2DE on the 155 functions selected
from the COCONUT Benchmark [19] showed that the reformulation of the inter-
val mutation strategies and of the additional archive significantly improved the
performance of the search method. Furthermore, the results obtained in compari-
son with OGRe and BBDE reveal that, although the exploration of the instance’s
structural information increases the size of the search space and the processing
time, it considerably improves the quality of the solutions found. Considering
that BBDE outperformed several state-of-the-art solvers and was overcome by
I2DE, we shown that the use of structural instance information in the context
of metaheuristics is a promising research direction.

Some future work includes the implementation of other contractors that help
to efficiently prune the intervals without loss of solutions. In addition, we intend
to develop a hybrid cooperative approach that joins our interval metaheuristics
with exact methods that also use this representation for the solutions.
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Abstract. Genetic-based clustering meta-heuristics are important
bioinspired algorithms. One such technique, termed Genetic Algorithm
for Decision Boundary Analysis (GADBA), was proposed to support
Structural Health Monitoring (SHM) processes in bridges. GADBA is
an unsupervised, non-parametric approach that groups data into natu-
ral clusters by means of a specialized objective function. Albeit it allows
a competent identification of damage indicators of SHM-related data,
it achieves lackluster results on more general clustering scenarios. This
study improves the objective function of GADBA based on a Cluster
Validity Index (CVI) named Mutual Equidistant-scattering Criterion
(MEC) to expand its applicability to any real-world problem.

Keywords: Genetic Algorithm · Automatic Clustering Algorithm ·
Decision Boundary Analysis · Mutual Equidistant-scattering Criterion

1 Introduction

The world is increasingly filled with fruitful data, most of which daily stored
in electronic media. As such, there is a high potential of technique research
and development for automated data retrieval, analysis, and classification [15].
Around 90% of the data produced up to 2017 were generated in 2015 and 2016,
and the tendency is to biennially double this amount [17]. The exponential
increase in size and complexity of Big Data are aspects worthy of attention.

Latent potentialities for decision-making based on insights learned from his-
torical data are only actually exploited if pushed into practice. A comprehensive
information extraction procedure is composed of two sub-processes: data man-
agement and data analysis [15]. Management supports data acquisition, han-
dling, storage, and retrieval for analysis [18,29]; in contrast, data analysis refers
to the evaluation and acquisition of intelligence from data.

It was pointed out by [17] that researchers of various subjects have been
adopting methods from Machine Learning (ML) [5,10] and Data Mining (DM)
[31]. Many of them did so in Big Data contexts such as stock data monitoring,
c© Springer Nature Switzerland AG 2021
A. Britto and K. Valdivia Delgado (Eds.): BRACIS 2021, LNAI 13073, pp. 202–217, 2021.
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financial analysis, traffic monitoring, and Structural Health Monitoring (SHM)
[14]. [6] demonstrated the relationships between the data management and anal-
ysis sub-processes in practice, with a specific focus on the application herein
highlighted. On one hand, this work claims that Big Data is not restricted to
a computerized manipulation of massive data streams; on the other hand, it
emphasizes that SHM can learn ipsis litteris with the conscientious use of ML.

The problem of data grouping (i.e., data clustering) is one of the main tasks
in ML [2,5] and DM [31], prevailing in any discipline involving multivariate data
analysis [21]. It gained a prominent place in many applications lately, especially
in speech recognition [11], web applications [35], image processing [3], outlier
detection [23], bioinformatics [1], and SHM [9].

A wide variety of Genetic Algorithm (GA)-based clustering techniques have
been proposed in recent times [25,28,42]. Their search ability is commonly
exploited to find suitable prototypes in the feature space such that a per-
chromosome measure of the clustering results is optimized in each generation.
In [2], two conflicting functions were proposed and defined based on cluster
cohesion and connectivity. The goal was to reach well-separated, connected, and
compact clusters by means of two criteria in an efficient, multi-objective parti-
cle swarm optimization algorithm. More recently, [20] combined K-means and
a GA through a differentiate arrangement of genetic operators to conglomerate
different solutions, with the intervention of fast hill-climbing cycles of K-means.

An unsupervised, non-parametric, GA-based approach to support the SHM
process in bridges termed Genetic Algorithm for Decision Boundary Analysis
(GADBA), which was proposed by [36], aims to group data into natural clusters.
The algorithm is also supported by a method based on spatial geometry to
eliminate redundant clusters. Upon testing, GADBA was more efficient in the
task of fitting the normal condition than its state-of-the-art counterparts in
SHM contexts. However, due to the specialization of its objective function to
SHM contexts, GADBA is lackluster on more general clustering scenarios.

This work aims to improve the objective function of GADBA to expand
its application potential to a wider range real-world problems. In this sense, a
version of GADBA based on the Mutual Equidistant-scattering Criterion (MEC)
is proposed as a general-purpose clustering approach. Four clustering algorithms
are compared against the new proposal: K-means [26], Gaussian Mixture Models
(GMM) [30], Linkage [22], and GADBA, of which the first three are well-known
and explored in literature.

The remaining sections of this paper are divided as follows. Section 2 and
Sect. 3 respectively define GADBA and MEC. Section 4 discusses the perfor-
mance of the new proposal under some experimental evaluations. Finally, Sect. 5
summarizes and ends the paper.

2 Genetic Algorithm for Decision Boundary Analysis

Given a minimum (Kmin) and maximum (Kmax) number of clusters, clustering is
done by the combination of a GA to dispose their centroids in the M -dimensional
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feature space, and a method called Concentric Hypersphere (CH) to agglutinate
clusters, to choose an appropriate K ∈ [Kmin,Kmax] [37].

The initial population P(t=0) is randomly created and each individual rep-
resents a set of K centroids, where K is randomly selected. The chromosome
is then formed by concatenating K feature vectors (Fig. 1), whose values are
initialized by randomly selecting K data points from the training set. A length
ratio is defined as γi = Ki/Kmax, where Ki is the number of active centroids
in individual i. The role of γ is to define the number of active centroids for a
given candidate solution, since a single individual might have enabled/disabled
centroids during the recombination process.

The parent selection is based on tournament with reposition, where R indi-
viduals are randomly selected and the fittest one is chosen to recombine with
other individual chosen in the same way. The recombination is conducted in
three steps for each pair of parents Pi and Pj to generate a pair of descendants:

1. A random number r ∈ [0, 1] is compared with prec defined a priori. If r ≤
prec, then two cut points π1 and π2 are selected such that 1 ≤ π1 < π2 ≤
min(Ki,Kj). The centroids in the range are then swapped. If r > prec, the
parents remain untouched.

2. Likewise, two random numbers r, T ∈ [0, 1] are picked for each centroid posi-
tion in the parents and, if r ≤ ppos, defined a priori, an arithmetic recombi-
nation is conducted as follows:

F i
x,t = F i

x,t + (F j
y,t − F i

x,t)T, (1)

F j
x,t = F j

x,t + (F i
y,t − F j

x,t)T, (2)

where F i
x,t and F j

x,t are the values in the tth position of xth centroid from par-
ents Pi and Pj , respectively. Similarly, F i

y,t and F j
y,t respectively correspond

to the yth centroid of the i and jth parents. A pair of parents can recombine
even if they have a different number of genes.

3. Finally, the last step consists in arithmetically recombining the parents’ length
ratio to define the length ratios of the offspring individuals.

The mutation is the result of a personalized two-step process:

1. Let Tx = K−1
max and Tr be a random number on interval [0, 1]. The number of

centroids to be enabled in an offspring individual is Knew = �Tr/Tx�. When
K < Knew ≤ Kmax, the missing positions are filled with the information of
Knew − K data points chosen at random.

F (1, 1) F (1, ...) F (1,M) F (2, 1) F (2, ...) F (2,M) . . . F (K, 1) F (K, ...) F (K,M)

Fig. 1. Chromosome organization in GADBA.
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2. Each centroid position can be mutated with a probability pmut, defined a
priori, in which a Gaussian mutation is applied by using

F j
x,t = F j

x,t + N (0, 1), (3)

where N (0, 1) is a random number from a standard Gaussian distribution
and F j

x,t is the value in the tth position of xth centroid.

Survivor selection is based on elitism, where the parents I(t)p and offspring
I(t)c are concatenated into I(t+1)

p = I(t)p ∪ I(t)c , which is then sorted according
to a fitness measure based on Pareto Front and Crowding Distance. The new
population P(t + 1) is composed by the |P| best individuals [8].

Parent selection, recombination, mutation, and survivor selection are
repeated until a maximum number of iterations is reached and/or the difference
of the current solution against the last one is smaller than a given threshold ε.

As mentioned, the CH algorithm is used to regularize the number of clus-
ters encoded in the individuals. It is executed in each individual prior to their
evaluation by determining the regions that limit each cluster in three steps:

1. For each cluster, its centroid is dislocated to the mean of its data points.
2. Each centroid is the center of a hypersphere whose radius will increase while

the difference of density between two consecutive inflations is positive.
3. If more than one centroid is found inside a hypersphere, they are agglutinated

into a centroid located at their mean point.

3 A New Objective Function

3.1 Basic Notations and Definitions

The objective of clustering is to find out the best way to split a given data set
X ∈ R

N×M , with N input vectors in an M -dimensional real-valued feature space{
xi

∣
∣ xi ∈ R

M , 1 � i � N
}
, into K mutually disjoint subsets (K ≤ N). Assume

the vectors in X have hard labels marking them as members of one cluster. A
set of prototypes Θ is described as a function of X and K as

Θ ∈ R
K×M = Θ(X ), (4)

whereupon Θ contains K representative vectors
{

θκ

∣
∣ θκ ∈ R

M , 1 � κ � K
}
.

Let the hard label for cluster κ be

yκ = (
1
0,

2
0, . . . ,

κ︷︸︸︷
1 , . . . ,

K
0).

The prototypes are computed whereby N label vectors are organized into a
partition over the vectors in X such that

U ∈ Z
N×M = U(X ), (5)
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subject to

U = [μiκ]N×K ∈ {0, 1}, i = 1, . . . , N,

where μi = yκ ⇔ xi is in cluster κ.
Put another way, the membership of xi to cluster κ, μiκ, is either 1 if the ith

object belongs to the κth cluster, or 0 otherwise. Accordingly, μiκ = 1 for one
value of κ only, such that [41]

∪N
i=1μiκxi �= ø, κ = 1, . . . , K;

∪K
κ=1

(∪N
i=1μiκxi

)
= X ;

(∪N
i=1μiκxi

) ∩ (∪N
i=1μilxi

)
= ø, κ, l = 1, . . . , K, and κ �= l.

The resulting grouping in this structure is hard [24], since one object belonging
to one cluster cannot simultaneously belong to another.

In general, data clustering involves finding {U,Θ} to partition X somehow.
For a given initial Θ, the optimal set of prototypes can be represented by cen-
troids, medians, medoids, and others, in which the optimized partition U is
obtained by assigning each input vector to the cluster with the nearest proto-
type. Both U and Θ comprise a dual structure (if one of them is known, the
other one will also be) named clustering solution.

3.2 Cluster Validation

Most researchers have some theoretical difficulty in describing what a cluster is
without assuming an induction principle (i.e., a criterion) [21]. A classic defi-
nition for them is: “objects are grouped based on the principle of maximizing
intra-class similarity and minimizing inter-class similarity”. Another cluster def-
inition involving density defines it as a connected, dense component such that
high-density regions are separated by low-density ones [1,19].

In clustering algorithms, K is usually assumed to be unknown. Since cluster-
ing is an unsupervised learning procedure (i.e., there is no prior knowledge on
data distribution), the significance of the defined clusters must be validated for
the data [33]. Therefore, one of the most challenging aspects of clustering is the
quantitative examination of clustering results [31]. This procedure is performed
by Cluster Validity Indices (CVIs), sometimes called criteria, which also targets
hard problems such as cluster quality assessment and the degree wherewith a
clustering scheme fits into a specific data set. The most common application of
CVIs is to fine-tune K. Given X , a specific clustering algorithm and a range of
values of K, these steps are executed [10,43]:

1. Successively repeat a clustering algorithm according to a number of clusters
from a fixed range of values defined a priori : K ∈ [Kmin,Kmax];

2. Obtain the clustering result {U,Θ} for each K in the range;
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3. Calculate the validity index score for all solutions; and
4. Select Kopt for which data partitioning provides the best clustering result.

CVIs are considered to be independent of the clustering algorithms used [40]
and usually fall into one of two categories: internal and external [27,32]. Internal
validation does not require knowledge about the problem for it only uses infor-
mation intrinsic to the data; hence, it has a practical appeal. Conversely, external
validation is more accurate, but not always feasible [32]. Knowing this, it can
be evaluated how well the achieved solution approaches a predefined structure
based on previous and intuitive understanding regarding natural clusters.

3.3 Mutual Equidistant-Scattering Criterion

This work proposes the replacement of the objective function of GADBA with
a CVI called MEC [12]. MEC is a non-parametric, internal validation index
for crisp clustering. An immediate benefit of MEC is the absence of fine-
tuning hyper-parameters, thus mitigating the user’s effort in operational terms
and enabling the use of GADBA to cluster real-world data whose structure is
unknown.

MEC assumes that “objects belonging to the same data cluster will tend
to be more equidistantly scattered among themselves compared to data points
of distinct clusters” [12]. As such, the mean absolute difference Mκ is applied
using multi-representative data in every clustering solution {U,Θ} obtained from
a pre-determined K. MEC is weighted by a penalty of local restrictive nature to
each cluster κ as well, while a global penalty is then applied a posteriori. Such
penalties are a measure of intra-cluster homogeneity and inter-cluster separation.

Mathematical Formulations. The mean absolute difference is calculated
between any possible pair of intra-cluster dissimilarities

Dij
κ =

{
dist(xi,xj) if μiκ = 1, μjκ = 1, i < j

0 otherwise,
κ = 1, . . . , K, (6)

where nκ objects within the cluster are considered as representative data in
formulation (thereby multi-representative). That is, Dκ is a strictly upper tri-
angular matrix of order nκ.

Nevertheless, only the pairwise distances matter in Mκ. Thus, Υ (·) reshapes
all elements above the main diagonal of Dκ (Eq. 6) into a column vector

⎡

⎢
⎢
⎢
⎣

d1κ

d2κ

...
dLκκ

⎤

⎥
⎥
⎥
⎦

= Υ (Dκ), (7)
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denoted by Lκ = nκ(nκ−1)
2 intra-cluster Euclidean distances. The key part of

MEC is then defined in Eq. 8 as

Mκ = η−1
κ

Lκ−1∑

i=1

Lκ∑

j=i+1

abs
(
diκ − djκ

)
, Lκ > 1, (8)

where Lκ > 1 ⇔ nκ > 2, abs(·) is the absolute value and ηκ = Lκ(Lκ−1)
2 stands

for the total number of differences for a single cluster.
An exponential-like distance measure provides a robust property based on the

analysis of the influence function [39]. [12] empirically observed that it works
properly, particularly when we look for Kopt within a hierarchical data set.
Therefore, a new homogeneity measure Σκ of non-negative exponential type
was modelled as a penalty over Mκ as

Σκ =

⎧
⎨

⎩

1 − e−σ2
κ

e−σ2
κ

if σκ > 0

0 otherwise,
(9)

where σ2
κ is the variance of dκ.

One can observe that the homogeneity measure gets closer to zero with the
approximation of the ideal model solution, where the criterion value is zero and,
therefore, the loss of information is null. Thus, we have MEC defined as

MEC(K) = λ

K∑

κ=1

Σκ × Mκ, (10)

where

λ =

⎧
⎪⎨

⎪⎩

K
1

max
i�=j

{dist(θi, θj)} if K > 1

1 otherwise.

(11)

The measure of global separation and penalty λ, therefore, does not depend
exclusively on the κth cluster, but on the greater distance between the pairs
of representative points of each data cluster (e.g., centroids). In a few words, λ
globally weights the result of the solution. The presence of K, in Eq. 11, is a sim-
ple way to avoid overfitting as a result of clustering solutions already sufficiently
accommodated to the data. In addition to avoiding overfitting, an improvement
over other indices is the possibility of evaluating the clustering tendency (K=1)
without resorting to additional, external techniques [43].

To illustrate, Fig. 2 shows the MEC composition for three feasible cluster
solutions, where each dotted line represents one measure of intra-cluster dis-
similarity and each cluster is depicted by a quadratic centroid. The operating
mechanism of MEC, which encompasses both homogeneity (Eq. 9) and separa-
tion (Eq. 11), is visualised for K = 1, 2, 4 (Figs. 2a, 2b, and 2c, respectively).
The motivation is that the dissimilarity measures should be similar to each
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Fig. 2. MEC results for a small set of twelve data points: (a) K = 1; (b) K = 2; (c)
K = 4.

other when looking at each cluster. In this case, Fig. 2a contains the least suit-
able solution among those shown graphically, as their dissimilarity measures are
more divergent in magnitude than those in Fig. 2b and 2c. The four-cluster solu-
tion (Fig. 2c) is the best within the solution set, as the distances among objects
are exactly the same in each cluster.

At last, it is worth noting that Eq. 10 should be minimized,

K̂ = arg min MEC(K), (12)

where K ∈ [Kmin,Kmax] and K̂ is inferred by the variation of K which deter-
mines the lowest MEC value, regardless of the clustering algorithm.

Improving the Time-Complexity of MEC. Equation 8 can be equivalently
computed in terms of a log-linear time complexity as a function of Lκ, to improve
the computational efficiency of MEC. To do so, Eq. 8 can be reformulated to
generate an auxiliary vector, as well as in sorting dκ with an algorithm of same
complexity (e.g., HeapSort). In fact, the time complexity of MEC will be entirely
dependent on the complexity of the chosen sorting algorithm. As such, we have
a complexity of O(Lκ log Lκ) with the Heap-Sort algorithm, or even O(N2), by
the reformulated
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Fig. 3. Element assignment of cκ.

Mκ = η−1
κ

L̃κ∑

l=1

(
clκ − d̂lκ × (Lκ − l)

)
, (13)

where d̂κ is the increasing ordering of the values of dκ and L̃κ = Lκ − 1 = |cκ|;
cκ is an auxiliary variable that consists of a cumulative and naturally ordered
vector of d̂κ defined as

cL̃κκ = d̂Lκκ ≥ 0
cL̃κ−1,κ = cL̃κκ + d̂Lκ−1,κ ≥ cL̃κκ

...
...

...
c1κ = c2κ + d̂2κ ≥ c2κ.

(14)

Looking at Fig. 3, each square and value between square brackets depicts
some vector position (l notation). In Eq. 13, the general form (Lκ − l) consists
of the number of subtractions (Eq. 8) represented by arrows in the Figure, with
d̂lκ depending on its location. The ordered d̂κ ensures that d̂lκ ≤ d̂l+1,κ. By
transitivity we have that, in Eq. 13,

d̂lκ × (Lκ − l) ≤ clκ, l = 1, . . . , L̃.

Hence, d̂κ is sensibly less accessed, thus reducing the time complexity of MEC.

4 Results and Analyses

This section describes the results achieved by the five algorithms compared
in this study: GADBA, its new version GADBA-MEC, K-means, GMM, and
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Linkage. Since none of the last three techniques automatically finds K̂, the
Calinski and Harabasz Cluster Validity Index (CVI) is used to optimize K̂
through cluster validation (Sect. 3.2). Section 4.1 presents the methodology as
how to, and by what means, the results were generated; Sect. 4.2 discusses the
results highlighting the techniques that clustered the data; and the statistical
significance of the results is analysed in Sect. 4.3.

4.1 Applied Methodology

The accuracy of the clustering algorithms is explained in a set of statistical indi-
cators, such as absolute frequency, mean and standard deviation of K̂, in twenty
clustering validations for each data set (i.e., Nr = 20). The Mean Absolute
Percentage Error (MAPE) was then estimated between the desired (Kopt) and
optimized (K̂) number of clusters in Sect. 4.3. It generally expresses accuracy as
a percentage which is designated by

MAPE =
100
Nr

Nr∑

t=1

abs
(
K̂t − Kopt

)

Kopt
. (15)

Table 1 presents data sets from different benchmarks used for performance
analysis when comparing clustering algorithms. To evaluate the algorithms, ten
sets were selected as archetypes of real challenges faced in cluster validation (e.g.,
data hierarchy, clustering tendency, different densities/sizes).

Table 1. Properties of test data sets.

Data set N M Kopt Separation Homogeneity Distribution Density Overlap Shape Noise

From [34]

S&C1 4500 2 9 Low High Uniform High – Quadratic –

S&C2 3200 2 10 High High Uniform High – Circular –

From [13]

Dim-32 1024 32 16 High High Gaussian High Low Hyperspherical Low

G2-4-100 2048 4 2 Low High Gaussian High High Hyperspherical Low

From [38]

Hepta 212 3 7 High High – High – Hyperspherical –

GolfBall 4002 3 1 – Low – Low – Hyperspherical –

From [12]

One-G 1000 2 1 – High Gaussian High – Circular High

H1 300 2 6(2) Low High Uniform High – Circular –

H2 180 2 6(5,3) High High Gaussian High – Circular –

From [4]

Iris 150 4 3 High High – High High Hyperspherical –

The attributes in bold are effective for most clusters.

The GADBA-MEC algorithm works through some previously specified
hyper-parameters. Considering an oscillation of the best fitness in the order
of 1 × 10−4, the number of generations needed to infer the convergence of the
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fitness value is 50. The crossover and mutation probabilities are 0.8 and 0.03,
respectively. The ring size of the tournament method for individual selection is
set to 3. The population size and the maximum number of clusters are 100 and
30, respectively.

All experiments presented herein were conducted on a computer with an
Intel c© CoreTM i5 CPU @ 3.00 GHz with 8 GB of memory running MATLAB R©

2017a. Most packages used in our tests are internal to MATLAB R©.

4.2 Cluster Detection Results

One approach to evaluate the performance of the clustering algorithms is to
analyse how frequently K̂ = Kopt. In this sense, Table 2 shows the frequency of
Kopt with emphasis on the highest absolute frequency by algorithm in blue.

Only GADBA is inconsistent with Kopt overall due to its SHM-related
objective function, as proven by the performance of GADBA-MEC. Moreover,
GADBA is the most unstable algorithm, as shown by the standard deviation
values. The only highlight of GADBA was reached in Iris, although this might
be explained by its tendency of settling on lower K values. Thus, a new version is
justified ex post facto, attesting to the generalization potential of GADBA-MEC.

Table 2. Cluster detection results taken from the data sets.

Data set Kopt GADBA-MEC GADBA K-means GMM Linkage

S&C1 9
20 0 13 6 20
9.00± 0.00 5.55± 4.99 9.45± 0.69 9.95± 0.76 9.00± 0.00

S&C2 10
8 0 0 1 0
9.15± 1.04 3.00± 1.72 26.90± 2.34 12.10± 6.13 9.00± 0.00

Dim-32 16
5 0 20 19 20
17.05± 0.83 3.70± 5.55 16.00± 0.00 16.05± 0.22 16.00± 0.00

G2-4-100 2
20 0 20 11 20
2.00± 0.00 26.85± 2.87 2.00± 0.00 2.50± 0.61 2.00± 0.00

Hepta 7
17 0 7 12 20
7.15± 0.37 2.80± 0.95 7.75± 0.64 7.45± 0.60 7.00± 0.00

GolfBall 1
20 0 0 0 0
1.00± 0.00 26.50± 5.90 25.95± 5.11 28.45± 1.32 21.00± 0.00

One-G 1
20 0 0 0 0
1.00± 0.00 2.00± 0.00 6.30± 0.47 4.70± 1.49 10.00± 0.00

H1 6(2)
20 0 0 0 0
6.00± 0.00 2.55± 0.94 2.00± 0.00 2.00± 0.00 2.00± 0.00

H2 6(5,3)
20 1 12 14 20
6.00± 0.00 2.25± 0.91 6.40± 0.50 6.30± 0.47 6.00± 0.00

Iris 3
2 4 0 1 0
3.95± 0.39 2.90± 1.41 26.00± 3.84 9.10± 10.24 30.00± 0.00
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An important highlight of the proposed version is the detection of low-
separation hierarchical data in H1. Virtually all other techniques tended to settle
on expected sub-optimal K values. Contrastingly, in cases where GADBA-MEC
did not reach the highest frequency (i.e., Dim-32, Hepta, and Iris), it at least
approached the expected result in a stable manner, unlike GADBA.

For the rest of the algorithms, it should be noted that Linkage is deter-
ministic, so its null standard deviation is expected. It was the second best in
finding Kopt, although it failed to assess clustering tendency. In this regard, only
GADBA-MEC determined that K̂ = 1 in GolfBall and One-G.

4.3 Statistical Significance Analyses

Friedman’s test is a non-parametric statistical test analogue to the two-way
ANOVA (analysis of variance) [1,16]. This statistical test is used to determine
whether there are any statistically significant differences among algorithms from
sample evidences. The samples to be considered are clustering algorithm per-
formance results collected over the data sets, where the null hypothesis H0, to
be considered is that all algorithms obtained similar results. Friedman’s test
converts all results to ranks where all algorithms are classified for each problem
according to its performance. As such, p-values can be computed for hypothesis
testing. The p-value represents the probability of obtaining a result as extreme as
the one observed, given H0 [7]. Specifically, given the significance level α = 0.05,
the null hypothesis is rejected if p < α.

Since we want to know which algorithms are significantly different from
each other when H0 is rejected, a post-hoc procedure is necessary to compare

Table 3. MAPE (%) taken from the data sets with emphasis on values above 100%.

Data set Kopt GADBA-MEC GADBA K-means GMM Linkage

S&C1 9 0.00 62.78 5.00 10.56 0.00

S&C2 10 9.50 70.00 169.00 39.00 10.00

Dim-32 16 6.56 83.75 0.00 0.31 0.00

G2-4-100 2 0.00 1242.50 0.00 25.00 0.00

Hepta 7 2.14 60.00 10.71 6.43 0.00

GolfBall 1 0.00 2550.00 2495.00 2745.00 2000.00

One-G 1 0.00 100.00 530.00 370.00 900.00

H1 6(2) 0.00 57.50 66.67 66.67 66.67

H2 6(5,3) 0.00 62.50 6.67 5.00 0.00

Iris 3 31.67 36.67 766.67 243.33 900.00

Overall mean 4.99 432.57 404.97 351.13 387.67

Overall mean′ 6.23 209.46 128.09 49.54 122.08



214 C. Flexa et al.

Table 4. Friedman’s test on the data set results.

F p-value

270.65 2.31 × 10−57

Table 5. Friedman’s post-hoc pairwise comparisons on the data set results, with empha-
sis on significant comparisons.

Algorithm R̄i GADBA K-means GMM Linkage

GADBA-MEC 28.02 41.23 29.12 23.65 18.38

GADBA 69.25 12.10 17.58 22.85

K-means 57.15 5.47 10.75

GMM 51.67 5.27

Linkage 46.40

Critical value of Friedman test (α = 0.05): 9.49

all possible algorithm pairs. In this work, the procedure presented in [16] is
employed, in which the means of critical values at α are compared to each abso-
lute difference on mean ranks as abs(R̄i − R̄j), i �= j. The absolute difference
must be greater than α to determine statistical significance.

In this section, we verify the significance of GADBA-MEC using the Fried-
man’s test F . For this purpose, we calculate the MAPE of each data set. Once
the algorithm with the smallest error is determined, the statistical significance
test is applied to verify if the obtained difference is substantial. If this is the case,
one can justify using one algorithm instead of another with more confidence.

Table 3 summarizes MAPE per data set emphasizing values above 100%. All
algorithms had error rates above 100%, except GADBA-MEC with the lowest
overall value (4.99%). Table 4 focuses on these errors, for which the Friedman’s
test rejects the null hypothesis for an obtained p-value � α = 0.05. Accordingly,
Friedman’s post-hoc test shows that there are significant improvements of the
proposed version in terms of MAPE (Table 5), as well as the fact that significant
differences are shown in virtually all algorithm pairs.

5 Conclusions and Further Work

Genetic-based clustering approaches play an important role in natural comput-
ing. In this sense, GADBA was introduced as an efficient, bioinspired approach
to cluster data in SHM. Despite its competitive performance identifying struc-
tural components, it produces poor results on more general clustering scenarios.
For this reason, this study proposed the replacement of its objective function for
MEC, a recently developed CVI based on mutual equidistant-scattering analysis.
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GADBA-MEC outperforms conventional clustering algorithms when statis-
tically evaluated across various data sets, attaining the expected number of clus-
ters more often than others. The results showed that GADBA-MEC yielded bet-
ter results in terms of cluster validation and MAPE errors, in particular when
handling hierarchical data and data with low separation. Also, only GADBA-
MEC is able to verify the clustering tendency in the data sets addressed.

As future work, we intend to expand GADBA-MEC to multi-objective opti-
mization contexts. It is also relevant to apply GADBA-MEC in real-world prob-
lems to validate its efficiency in finding natural clusters. Finally, comparing other
CVI’s and bioinspired algorithms would be pertinent as well.
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Abstract. Particle Swarm Optimization (PSO) algorithms are swarm
intelligence methods that are effective in solving optimization prob-
lems. However, current techniques have some drawbacks: the particles of
some PSO implementations are sensible to their input hyper-parameters,
lack direction diversity in their movement, have rotational variance, and
might prematurely converge due to rapid swarm diversity loss. This arti-
cle addresses these issues by introducing Rotationally Invariant Attrac-
tive and Repulsive eXpanded PSO (RI-AR-XPSO) and Rotationally
Invariant Semi-Autonomous eXpanded PSO (RI-SAXPSO) as improve-
ments of Rotationally Invariant Semi-Autonomous PSO (RI-SAPSO)
and eXpanded PSO (XPSO). Their swarm behavior was evaluated with
classic functions in the literature and their accuracy was tested with
the Congress on Evolutionary Computation (CEC) 2017 optimization
problems, in whose results a statistical significance test was applied. The
results obtained attest that strategies such as diversity control, auto-
matic hyper-parameter adjustment, directional diversity, and rotational
invariance improve performance without accuracy loss when adequately
implemented.

Keywords: Particle swarm optimization · Global continuous
optimization · Adaptive adjustment · Rotational invariance · Diversity
control

1 Introduction

Heuristic algorithms are becoming increasingly more robust means to find
suitable solutions to complex problems. Current approaches range from low-
level heuristics—designed for specific issues—to complex, more general hyper-
heuristics [4]. Particle Swarm Optimization (PSO) is an effective, swarm-
intelligence technique based on the collective behavior of fish shoals and bird flocks
used to solve optimization problems.

The parameter settings of non-deterministic algorithms such as meta-
heuristics are known to be dependent on the problem. The same occurs with
c© Springer Nature Switzerland AG 2021
A. Britto and K. Valdivia Delgado (Eds.): BRACIS 2021, LNAI 13073, pp. 218–233, 2021.
https://doi.org/10.1007/978-3-030-91702-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91702-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-91702-9_15


Improving Particle Swarm Optimization 219

PSO, for the adjustment of hyper-parameters affects the trajectory of the parti-
cles in the swarm. In some implementations, the cognitive and social coefficients,
as well as the inertial weight, are dynamically selected [17]. In others, these hyper-
parameters are manually set and remain fixed throughout the execution [15]. The
authors of implementations with fixed hyper-parameters customarily disclose rec-
ommended values for them, defined after multiple analyzes on different problems,
as in [14].

In PSO, the works of [7,10,18] demonstrate that particles tend to move
in parallel to the coordinate axes. Using rotational invariance mitigates this
dependency on the coordinate system wherein the objective function is defined,
improving results across various problems. In terms of complex multimodal func-
tions, experiments indicate that maintaining swarm diversity helps mitigate pre-
mature convergence and avoid sub-optimal solutions [11].

Motivated by these aspects, this paper aims to improve two PSO implementa-
tions termed Rotationally Invariant Semi-Autonomous PSO(RI-SAPSO) [14] and
eXpanded PSO (XPSO) [21] by automatically updating hyper-parameters, pro-
moting rotational invariance, and maintaining swarm diversity during execution.

The remaining sections are structured as follows. Section 2 describes the
canonical PSO, as well as some properties of its variants. In Sect. 3, the frame-
work of some PSO variants is exposed. Details on the improvements made to
RI-SAPSO and XPSO are presented in Sect. 4. Section 5 presents the obtained
experimental results and their statistical significance. Lastly, Sect. 6 concludes
this paper with some remarks and future work.

2 Theoretical Background

The canonical PSO algorithm only performs simple mathematical operations.
As such, it is computationally inexpensive in terms of time and space. PSO is a
population-based meta-heuristic where each individual (i.e., particle) represents
a candidate solution to an optimization problem in a D-dimensional space. In
each iteration t of the algorithm, the ith particle of the swarm is associated to
three vectors: the position vector �xi = [xi,1, xi,2, . . . xi,D], that represents the
candidate solution; the velocity vector �vi = [vi,1, vi,2, . . . vi,D], that represents
the direction and velocity of the particle in the search space; and local memory
vector �pi = [pi,1, pi,2, . . . pi,D], which stores the best solution found. By its turn,
the swarm is associated to the global memory vector �g = [g1, g2, . . . gD], which
stores the best solution found overall. Following the algorithm of [5], the position
of the particles are updated as t increases according to

�vt+1
i = �vt

i + c1φ1(�pti − �xt
i) + c2φ2(�gt − �xt

i) (1)

and
�xt+1
i = �xt

i + �vt+1
i , (2)

where c1 and c2 respectively represent the cognitive and social coefficients and
φ1 and φ2 are random numbers sampled from a uniform distribution in [0, 1].
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Ulteriorly, [17] added the inertial weight w to (1), turning �vt
i into w�vt

i . This
significantly improved the canonical PSO and is widely used in its variants.

Making the algorithm rotationally invariant ensures that particles will move
independently without influence of the coordinate system of the problem. Its
presence (or lack thereof) might lie in how φ1 and φ2 are used in the velocity
update equation. If they are vectors, the optimizer is variant in terms of scale,
translation, and rotation. If they are scalar values, then the algorithm is rota-
tionally invariant. To illustrate, a rotationally variant version of (1), which is
rotationally invariant, can be defined as

�vt+1
i = wt�vt

i + c1 �̇φ
t

i � (�pti − �xt
i) + c2 �̈φ

t

i � (�gt − �xt
i), (3)

where �̇φ
t

i and �̈φ
t

i are two vectors containing random values sampled from a uni-
form distribution in [0, 1] and � represents the element-wise multiplication of
vectors and matrices [8]. The mathematical tool presented in [20] can be used
to prove whether a given PSO implementation is variant or invariant.

The work of [19] introduces the concept of directional diversity, i.e., the abil-
ity to carry out the stochastic search in various directions. Conversely, particles
without directional diversity perform their search in fixed directions. This work
proved that, unlike (3), (1) provokes loss in directional diversity. To demon-
strate that the directional diversity and rotational invariance are not necessarily
exclusive, [20] proposed a rotationally invariant PSO that maintains directional
diversity named Diverse Rotationally Invariant PSO (DRI-PSO), whose velocity
update equation is rotationally invariant in a stochastic manner but also diverse
in direction. This was possible thanks to small, consistent perturbations in the
direction of the local (�p − �x) and global swarm memories (�g − �x), multiplying
these values with an independent, random rotation matrix W .

The ability to store gradient information allows the particles to individually
perform asynchronous searches, mitigate the random walk effect and avoid wast-
ing random efforts to reach local optima. When using the method described in
[9] with problems of high D, the employment of gradient descent information
might be difficult. Depending on how it is applied throughout the search, up to
D objective function evaluations per particle might be performed.

The ability to control swarm diversity, firstly proposed to PSO in [13], is
present in many implementations. This strategy, which entails monitoring the
swarm diversity during the search, enables the algorithm to increase exploration
when the diversity is low to avoid local optima. Equation (4) represents one form
of defining swarm diversity, where |L| is the diagonal size of the search space,
xt
i,j is the j-th dimension of the i-th particle, and xt

j is the j-th dimension of the
mean position across all particles.

diversity(�xt) =
1

n × |L| ×
n∑

i=1

√√√√
D∑

j=1

(xt
i,j − xt

j)2 (4)
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3 Related Work

Works related to this paper are associated with other meta-heuristics inspired
on the canonical PSO. This section will focus on implementations that involve
diversity control, gradient use, rotational invariance, directional diversity, rota-
tion matrices, and hyper-parameter auto-adjustment.

The introduction of Gradient-Based PSO (GPSO) is described in [12],
wherein the gradient directions are used as a deterministic approach for a pre-
cise local exploration around the best global position, thus strengthening the
global exploration of the algorithm. In [6], where diversity control and gradient
information were employed as strategies to switch between two PSO algorithms
throughout the search, a new, hybrid approach termed Diversity-Guided PSO
based on Gradient Search (DGPSOGS) was introduced.

The Semi-Autonomous PSO (SAPSO) [15] takes advantage of ideas present
in Attraction and Repulsion PSO (ARPSO) [13], GPSO [12], and DGPSOGS [6]
to provide a semi-autonomous particle swarm optimizer that uses gradient and
diversity-control information to optimize unimodal functions. SAPSO attempts
to reduce computational efforts related to local investigation with the aid of
gradient information and provide a diversity control mechanism to avoid local
optima. The performance of SAPSO and other PSO implementations are evalu-
ated in a set of test functions based on optimization problems of De Jong’s bench-
mark. Numerical results showed that the proposed method attained at least the
same performance of other PSO implementations. Moreover, SAPSO achieved
better results in terms of global minima found and fine-tuning of the final solu-
tion. However, problems in spaces of higher dimensionality caused longer execu-
tion times due to the employment of gradient-based information by each particle
and the need to modify parameters depending on the problem at hand.

As an improvement to DRI-PSO, the Locally Convergent Rotationally Invari-
ant PSO (LcRiPSO) was introduced in [2]. The authors pointed out several
problematic situations: particles can get stuck in some areas of the search space,
unable to change the value of one or more decision variables; poor performance
is observed when the swarm is small or the dimensionality is high; convergence
is not guaranteed even for local optima; and the algorithm is sensible to the
rotation of the search space. Aiming to solve these issues, LcRiPSO contains a
new general form of velocity update equation that contains a normal distribution
function defined by the user around local and global memories.

The RI-SAPSO is proposed in the work of [14] as an improvement to SAPSO
[15]. This PSO implementation inherits the rotational invariance of SAPSO and
incorporates a rotation matrix generated by an exponential map to maintain
directional diversity using an idea present in [20]. Besides mathematically prov-
ing that RI-SAPSO is rotationally invariant, benchmark tests with statistical
significance demonstrated that the algorithms were capable of finding better
solutions in most problems. Therefore, RI-SAPSO is the starting point of this
work because despite its superior results against those of SAPSO, it still has
long execution times when handling high-dimensional problems and employs
fixed hyper-parameters during execution.
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An expanded variant of PSO termed XPSO was proposed in [21]. It updates
acceleration coefficients and the learning model based on fitness, given that
updating these coefficients by only considering iterations might result in sub-
par intelligence when solving complex problems. Moreover, XPSO expands the
social part of each particle from one to two exemplars and applies the ability
to forget some particles, which is based on a universal biological phenomenon
wherein parts of the memory management system forget undesirable or useless
information. Upon testing, this approach presented promising results with differ-
ent types of objective function, despite its possible lack of rotational invariance
as it employs the random components similarly to (3).

4 Improving RI-SAPSO and XPSO

This section details how XPSO and RI-SAPSO were changed into the Rotation-
ally Invariant Attractive and Repulsive eXpanded PSO (RI-AR-XPSO) and the
Rotationally Invariant Semi-Autonomous eXpanded PSO (RI-SAXPSO).

4.1 Rotationally Invariant Attractive and Repulsive eXpanded PSO

The implementation herein defined is termed Rotationally Invariant Attractive
and Repulsive eXpanded PSO. Since XPSO has a vector of random numbers
�φt for each component in its velocity update equation—similar to (3)—, its
search strategy might have directional diversity, but still suffers from rotation
variance, which can be proven by using the mathematical tool seen in [20].
As previously exposed, in addition to automatically adjusting the acceleration
coefficients during the search, XPSO has an additional social coefficient. Here,
the ith particle out of N particles will be related to three coefficients: c1,i, which
is the cognitive coefficient; and c2,i and c3,i, which are social coefficients. The
coefficients of each particle are defined using a Gaussian following the method
described in [21].

A greater movement amplitude is preserved in each particle by using the
stochastic rotation matrix W in the velocity equation, thus increasing directional
diversity in the search [20]. Furthermore, it also promotes rotational invariance.
As such, the velocity equation will be changed to use W similarly to [14].

The authors of XPSO justify that its ability to forget relates to maintaining
swarm diversity throughout the search. In this regard, another improvement
to be added was motivated by the attraction and repulsion strategy of [13],
where the diversity monitoring will influence the behavior of the particles such
that they will not forget during the attraction phase to accelerate convergence.
Moreover, a lower swarm diversity bound will be dynamically defined in the new
implementation to avoid that the repulsion phase precludes refining the solution
at the end of the search. The dtmin values will exponentially decrease at this
point, with values defined by f(x) = bx (the best results were attained with x
having values within [1, 10] linearly increasing during the search). b = 10−2 is
the same value used by [14] as an upper swarm diversity bound.
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The modifications made to XPSO change its velocity equation to

�vt+1
i = wt�vt

i + dir ×
[
�Ωt
i + �Υ t

i + �Λt
i

]
, (5)

�Ωt
i =

{
c1,iφ̇

t
i (�pti − �xt

i) , if dir = 1;
c1,iφ̇

t
iẆ

t
i (�pti − �xt

i) , else
(6)

�Υ t
i =

⎧
⎨

⎩
c2,iφ̈

t
i

(
�lti − �xt

i

)
, if dir = 1;

c2,iφ̈
t
iẄ

t
i

[(
1 − �fi

)
�lti − �xt

i

]
, else

(7)

�Λt
i =

{
c3,i

...
φ

t
i (�gt − �xt

i) , if dir = 1;

c3,i
...
φ

t
i

...
W

t

i

[(
1 − �fi

)
�gt − �xt

i

]
, else

(8)

where �̇φ
t

i, �̈φ
t

i and
...
�φ
t

i are three random vectors uniformly distributed within
[0, 1]; �F = [fi,1, fi,2, · · · , fi,D] represents the amount of information that the
i-th particle forgot of a given sample; �lti represents the best position visited
between two neighbors (i.e., �lti will be equal to the most fit solution between
�pi−1 and �pi+1); and dir controls the attraction and repulsion phases according
to

dir =

{
−1, if d < dtmin and StagG < StagGmax;
1, otherwise,

(9)

where the current swarm diversity value is represented by d, calculated in (4),
and StagG and StagGmax respectively represent the number of iterations with-
out updating the best global position and the maximum number of iterations
without progress allowed. The elitist behavior employed by the hyper-parameter
adjusting logic during execution also aids the update of dir. As exposed by [21],
when StagG ≥ StagGmax, it is assumed that the particles got stuck in a local
minimum. As such, a hyper-parameter update takes place to change their search
direction. Nevertheless, if the particles maintain low diversity, the implementa-
tion will trigger the repulsion phase to speed up this process. Conversely, the
attraction phase is initiated when adequate diversity is maintained.

4.2 Rotationally Invariant Semi-autonomous eXpanded PSO

The implementation defined herein is termed Rotationally Invariant Semi-
Autonomous eXpanded PSO. eXpanded refers to the automatic hyper-parameter
adjustment and the expansion of the RI-SAPSO velocity equation inspired by
XPSO. In [14], the variant employs parameters without dynamic update during
execution and uses two main strategies: the diversity-guided attraction/repulsion
logic and the replacement of the personal part of the velocity equation from
�pti− �xt

i to ∇f(�xt
i) to use the gradient. As such, the improvements are: implement a

hyper-parameter update strategy; employ adaptive diversity control; and employ
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three acceleration coefficients in the velocity update equation involving the best
global position (c1), the gradient (c2), and the best personal position (c3).

The implementation of automatic hyper-parameter update during execution
is identical to what is performed in XPSO. The update scenarios of dir will be
changed due to the difficulty it faces to converge when diversity is low, which
hurts the results of RI-SAPSO in such situations. Therefore, (9) will be used
herein as well. The upper swarm diversity bound was removed in this case
because when the search triggers the repulsion phase in later iterations, this
restriction will result in high swarm diversity, thus preventing the refinement of
the solution. The lower swarm diversity bound is dtmin, which will have the same
values explained in Sect. 4.1. Unlike the original implementation, the switch from
repulsion to attraction does not alter the individual decision of the particles. In
other words, only dir changes from −1 to 1, mitigating gradient use.

Due to the smaller gradient descent use in the attraction phase, c3 was added
as a cognitive coefficient in (10) to accelerate convergence. In this case, if a
particle is unable to decide with the gradient, it will determine with �g and �p.

After detailing all modifications, the equation that governs velocity updates
in RI-SAPSO had its social component

�Ωt
i =

{
Iti c1φ̇

t
i(�g

t − �xt
i), if dir = 1;

Iti c1φ̇
t
iẆ

t
i (�g

t − �xt
i), otherwise

(10)

changed in the new implementation to

�Ωt
i =

{
Iti c1,iφ̇

t
i(�g

t − �xt
i) + Iti c3,i

...
φ

t
i(�p

t − �xt
i), if dir = 1;

Iti c1,iφ̇
t
iẆ

t
i (�g

t − �xt
i), otherwise.

(11)

5 Experimental Simulations

This section presents tests performed with the two new algorithms side-by-side
with their original counterparts in two scenarios. Firstly, the swarm diversity
and the behavior of the convergence curve of the best solution are analyzed with
unimodal and multimodal test functions found in the literature. Subsequently,
tests are performed using a set of benchmark functions from Congress on Evolu-
tionary Computation (CEC) 2017 [1], whose functions were randomly rotated or
dislocated. The final results are evaluated considering time, Number of Function
Evaluations (NFEs), and the minimal error rate—the difference between the
solution found and the best one (i.e., f(�x)− f(�xopt)). Lastly, statistical tests are
carried out to investigate how significant the differences are between algorithms.
All results are the mean of 50 executions.

It is noteworthy that this work does not aim to solve the CEC 2017 functions,
but rather to use them as a means of proving the concepts previously exposed.
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5.1 Swarm Diversity and Solution Convergence

Five classical test functions found in the literature were selected to analyze
behavioral swarm changes during the search: a unimodal one (Sphere), a non-
convex unimodal one (Rosenbrock), and three multimodal functions (viz., Ack-
ley, Griewank, and Rastrigin). In these tests, D was set to 30, N was set to 20
following [14], and T was set to 6000 following [21]. Existing algorithms were set
with the hyper-parameters that were recommended in their respective studies:
RI-AR-XPSO used the same settings as XPSO and RI-SAXPSO received a value
range for each coefficient guided by [15]. Specific hyper-parameter settings are
presented in Table 1. The results represent the average of 50 independent execu-
tions where the swarm diversity and the convergence curve of the best solution
(in logarithmic scale) were evaluated. The only stopping criteria used was the
maximum number of iterations T .

Table 1. Parameter settings utilized in the tested algorithms.

c1 c2 c3 w

RI-SAPSO 1.4962 10−2 - w = 0.7298

RI-SAXPSO min = 1 min = 10−5 min = 1 w = 0.9 → 0.4

µ = 1.4962 µ = 10−2 µ = 1.4962

max = 4 max = 10−1 max = 4

XPSO min = 0.5 min = 0.5 min = 0.5 w = 0.9 → 0.4

µ = 1.35 µ = 1.35 µ = 1.35

max = 2.05 max = 2.05 max = 2.05

RI-AR-XPSO min = 0.5 min = 0.5 min = 0.5 w = 0.9 → 0.4

µ = 1.35 µ = 1.35 µ = 1.35

max = 2.05 max = 2.05 max = 2.05

Figure 1 shows the performance of the modified and original algorithms. It
can be seen that RI-SAXPSO quickly converges while maintaining high swarm
diversity at the beginning of the search. It attains better results than RI-SAPSO,
which only achieves similar results in the Ackley function (Fig. 1c) despite main-
taining swarm diversity throughout the search. XPSO did not lose diversity
quickly, but it was lower at the beginning of the search when compared to RI-
AR-XPSO. In terms of solution convergence, XPSO best refines the final solu-
tion of Sphere (Fig. 1a), and loses diversity faster. XPSO solutions converge with
inferior quality when compared to RI-AR-XPSO in the multimodal functions.

5.2 Congress on Evolutionary Computation 2017 Benchmark
Functions

The CEC 2017 benchmark is composed of 30 functions, of which only Sum of
different Power is not used in this work due to its unstable behavior in higher
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Fig. 1. Swarm diversity and best solution convergence curve.
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dimensionalities [1]. Hence, a total of 29 functions were used to test the algo-
rithms: unimodal ones (f1 − 2), simple multimodal ones (f3 − 9), hybrid ones
(f10 − 19), and composed ones (f20 − 29). The same settings found in Sect. 5.1
were used herein except for the stopping criteria: in addition to using T = 6000,
the search is interrupted whenever the global minima is found or NFE = 106,
which is the upper limit defined in [1]. The D of each function was set to 10, 30,
and 50 to evaluate performance in different dimensionalities.

Table 2. Average error rates and algorithm ranks.

fi D RI-SAPSO RI-SAXPSO XPSO RI-AR-XPSO

f1 10 6.141E+08 (4) 1.337E+03 (2) 1.924E+03 (3) 1.291E+03 (1)

30 1.232E+09 (4) 5.076E+03 (3) 3.015E+03 (2) 2.398E+03 (1)

50 1.193E+10 (4) 2.183E+04 (2) 4.137E+05 (3) 2.915E+03 (1)

f2 10 6.497E-12 (3) 1.701E+00 (4) 1.819E-14 (1) 6.696E-13 (2)

30 8.479E+04 (4) 2.043E+02 (3) 5.830E+01 (2) 7.579E+00 (1)

50 1.019E+06 (4) 2.485E+03 (1) 1.448E+04 (3) 1.140E+04 (2)

f3 10 1.113E+00 (4) 3.104E-13 (1) 9.308E-02 (2) 1.137E-01 (3)

30 4.133E+03 (4) 1.097E+01 (1) 1.224E+02 (2) 1.273E+02 (3)

50 1.218E+04 (4) 2.481E+01 (1) 2.641E+02 (2) 2.695E+02 (3)

f4 10 4.482E+01 (4) 2.514E+01 (3) 6.806E+00 (1) 8.218E+00 (2)

30 2.500E+02 (4) 1.370E+02 (3) 5.056E+01 (2) 4.889E+01 (1)

50 4.950E+02 (4) 2.784E+02 (3) 1.074E+02 (1) 1.092E+02 (2)

f5 10 3.124E+01 (4) 4.365E+00 (3) 1.221E-06 (2) 1.267E-07 (1)

30 7.366E+01 (4) 3.088E+01 (3) 2.741E-01 (2) 8.438E-02 (1)

50 7.958E+01 (4) 4.274E+01 (3) 2.533E+00 (2) 1.676E+00 (1)

f6 10 2.411E+01 (3) 2.579E+01 (4) 1.866E+01 (1) 1.889E+01 (2)

30 2.159E+02 (4) 1.409E+02 (3) 9.389E+01 (2) 8.987E+01 (1)

50 6.468E+02 (4) 3.122E+02 (3) 1.898E+02 (1) 1.939E+02 (2)

f7 10 1.110E+01 (3) 2.042E+01 (4) 7.661E+00 (2) 6.825E+00 (1)

30 1.908E+02 (4) 1.190E+02 (3) 5.094E+01 (2) 5.092E+01 (1)

50 4.751E+02 (4) 2.883E+02 (3) 1.073E+02 (2) 1.054E+02 (1)

f8 10 5.681E+01 (4) 8.847E+00 (3) 1.819E-14 (1) 6.594E-14 (2)

30 4.720E+03 (4) 1.385E+03 (3) 2.224E+01 (2) 1.475E+01 (1)

50 2.004E+04 (4) 7.121E+03 (3) 1.565E+02 (1) 1.857E+02 (2)

f9 10 1.049E+03 (4) 8.194E+02 (3) 3.247E+02 (2) 3.197E+02 (1)

30 4.637E+03 (4) 4.496E+03 (3) 3.034E+03 (2) 2.813E+03 (1)

50 8.065E+03 (4) 7.824E+03 (3) 5.724E+03 (1) 5.758E+03 (2)

f10 10 1.462E+02 (4) 5.785E+01 (3) 3.196E+00 (2) 3.010E+00 (1)

30 1.655E+03 (4) 1.993E+02 (3) 1.028E+02 (2) 9.989E+01 (1)

50 5.214E+02 (4) 3.147E+02 (3) 2.248E+02 (2) 2.104E+02 (1)
(continued)
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Table 2. (continued)

fi D RI-SAPSO RI-SAXPSO XPSO RI-AR-XPSO

f11 10 6.421E+07 (4) 5.948E+03 (1) 1.001E+04 (2) 1.239E+04 (3)

30 2.867E+06 (4) 5.112E+04 (1) 1.666E+05 (2) 2.050E+05 (3)

50 1.247E+10 (4) 3.754E+05 (1) 2.091E+06 (3) 1.041E+06 (2)

f12 10 2.302E+03 (2) 7.992E+02 (1) 6.438E+03 (4) 4.832E+03 (3)

30 9.465E+08 (4) 9.169E+03 (1) 1.054E+04 (2) 1.202E+04 (3)

50 6.819E+04 (4) 1.338E+04 (3) 6.867E+03 (2) 3.131E+03 (1)

f13 10 4.875E+05 (4) 8.270E+01 (3) 3.145E+01 (1) 3.201E+01 (2)

30 1.033E+06 (4) 1.023E+03 (1) 8.734E+03 (3) 3.515E+03 (2)

50 5.757E+05 (4) 4.518E+03 (1) 5.257E+04 (3) 4.178E+04 (2)

f14 10 9.803E+02 (4) 1.270E+02 (3) 4.034E+01 (2) 2.423E+01 (1)

30 1.372E+08 (4) 1.826E+03 (1) 6.428E+03 (3) 3.949E+03 (2)

50 2.583E+09 (4) 1.039E+04 (3) 4.574E+03 (2) 2.946E+03 (1)

f15 10 2.328E+02 (4) 6.265E+01 (2) 1.093E+02 (3) 5.961E+01 (1)

30 1.401E+03 (4) 1.081E+03 (3) 7.314E+02 (2) 6.945E+02 (1)

50 2.509E+03 (4) 2.188E+03 (3) 1.183E+03 (2) 1.181E+03 (1)

f16 10 1.359E+02 (4) 7.116E+01 (3) 3.114E+01 (2) 1.740E+01 (1)

30 4.642E+03 (4) 6.600E+02 (3) 2.112E+02 (2) 1.857E+02 (1)

50 2.012E+03 (4) 1.855E+03 (3) 9.730E+02 (1) 1.053E+03 (2)

f17 10 1.175E+07 (4) 4.453E+03 (1) 7.393E+03 (3) 6.324E+03 (2)

30 7.251E+05 (4) 2.798E+04 (1) 1.193E+05 (3) 8.578E+04 (2)

50 1.040E+08 (4) 5.880E+04 (1) 6.948E+05 (3) 6.522E+05 (2)

f18 10 4.299E+02 (4) 7.378E+01 (3) 5.379E+01 (2) 4.500E+01 (1)

30 1.065E+08 (4) 5.381E+03 (1) 7.265E+03 (3) 5.617E+03 (2)

50 3.887E+08 (4) 3.387E+03 (1) 1.563E+04 (3) 1.386E+04 (2)

f19 10 1.774E+02 (4) 9.491E+01 (3) 6.659E+01 (2) 1.481E+01 (1)

30 8.454E+02 (4) 5.037E+02 (3) 2.481E+02 (2) 2.249E+02 (1)

50 1.774E+03 (4) 1.219E+03 (3) 7.360E+02 (2) 5.733E+02 (1)

f20 10 1.939E+02 (2) 2.080E+02 (4) 1.981E+02 (3) 1.024E+02 (1)

30 4.782E+02 (4) 3.415E+02 (3) 2.465E+02 (1) 2.468E+02 (2)

50 8.361E+02 (4) 5.367E+02 (3) 3.062E+02 (2) 3.055E+02 (1)

f21 10 3.665E+02 (4) 1.235E+02 (3) 9.958E+01 (2) 9.451E+01 (1)

30 4.785E+03 (4) 3.538E+03 (3) 3.584E+02 (2) 1.006E+02 (1)

50 8.717E+03 (4) 8.240E+03 (3) 4.039E+03 (1) 4.628E+03 (2)

f22 10 3.518E+02 (4) 3.313E+02 (3) 3.087E+02 (2) 3.035E+02 (1)

30 8.522E+02 (4) 6.245E+02 (3) 4.046E+02 (2) 3.925E+02 (1)

50 1.422E+03 (4) 1.010E+03 (3) 5.581E+02 (1) 5.618E+02 (2)

f23 10 3.071E+02 (3) 3.540E+02 (4) 2.520E+02 (2) 2.139E+02 (1)

30 7.860E+02 (4) 6.301E+02 (3) 4.731E+02 (1) 4.753E+02 (2)

50 1.300E+03 (4) 9.482E+02 (3) 6.398E+02 (1) 6.518E+02 (2)

f24 10 4.780E+02 (4) 4.099E+02 (1) 4.227E+02 (2) 4.235E+02 (3)

30 1.226E+03 (4) 3.935E+02 (1) 4.017E+02 (2) 4.074E+02 (3)

50 1.610E+03 (4) 5.409E+02 (1) 6.098E+02 (2) 6.148E+02 (3)
(continued)
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Table 2. (continued)

fi D RI-SAPSO RI-SAXPSO XPSO RI-AR-XPSO

f25 10 4.944E+02 (3) 5.395E+02 (4) 2.739E+02 (1) 2.889E+02 (2)

30 4.173E+03 (4) 3.133E+03 (3) 7.849E+02 (2) 7.631E+02 (1)

50 9.589E+03 (4) 5.184E+03 (3) 1.263E+03 (2) 1.231E+03 (1)

f26 10 4.284E+02 (4) 4.012E+02 (3) 3.953E+02 (1) 3.966E+02 (2)

30 7.909E+02 (4) 5.799E+02 (3) 5.343E+02 (1) 5.378E+02 (2)

50 1.559E+03 (4) 1.004E+03 (3) 7.729E+02 (2) 7.503E+02 (1)

f27 10 4.731E+02 (2) 5.396E+02 (4) 5.013E+02 (3) 3.500E+02 (1)

30 9.498E+02 (4) 3.717E+02 (1) 3.898E+02 (3) 3.840E+02 (2)

50 2.501E+03 (4) 4.929E+02 (1) 5.702E+02 (2) 5.806E+02 (3)

f28 10 3.754E+02 (4) 3.151E+02 (3) 2.680E+02 (2) 2.568E+02 (1)

30 1.700E+03 (4) 1.262E+03 (3) 6.379E+02 (2) 5.936E+02 (1)

50 3.069E+05 (4) 2.954E+03 (3) 1.149E+03 (2) 1.044E+03 (1)

f29 10 5.634E+05 (4) 4.440E+05 (3) 1.941E+05 (2) 1.303E+05 (1)

30 4.570E+05 (4) 8.392E+03 (1) 1.176E+04 (3) 8.725E+03 (2)

50 5.318E+08 (4) 1.172E+06 (1) 2.532E+06 (3) 2.344E+06 (2)

Table 2 shows average error rates accompanied by rank values (from 1 to
4). Overall, RI-AR-XPSO attained the lowest error rates on most optimization
problems. Despite the simplicity of this evaluation, Table 3 presents the rank-
sum stratified by D. It shows that the proposed implementations surpassed the
original ones overall, although RI-SAXPSO did not overcome XPSO.

Table 4 presents average computation times and the NFEs of each algorithm
stratified by dimensionality. One might notice how RI-SAPSO was the worst,
with higher execution time and NFEs. Despite the high number of NFEs, employ-
ment of rotation matrix, diversity control, gradient information, and automatic
hyper-parameter adjustment during the execution, RI-SAXPSO performed best
overall in terms of time. However, it took longer than XPSO and RI-AR-XPSO
for 50 dimensions, indicating that using gradient information in high dimension-
alities results in lower efficiency. The performance of XPSO attests that using
two exemplars, the ability to forget, and the velocity update equation postpones
the execution. In spite of using these techniques, RI-AR-XPSO forgets parti-
cles with less frequency thanks to the other properties involved, consequently
attaining similar performance to XPSO despite the presence of diversity control.

Table 3. Total sum of the rankings, detailed by dimensionality.

D RI-SAPSO RI-SAXPSO XPSO RI-AR-XPSO

10 105 82 58 45

30 116 67 61 46

50 116 68 57 49

Overall 337 217 176 140
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Table 4. Time (in seconds) and NFEs.

D RI-SAPSO RI-SAXPSO XPSO RI-AR-XPSO

Time 10 15.58 10.29 15.71 15.85

30 19.82 15.59 18.31 17.67

50 29.56 24.49 20.82 20.31

NFEs 10 5.911E+05 2.362E+05 1.144E+05 1.197E+05

30 5.713E+05 3.647E+05 1.200E+05 1.200E+05

50 5.695E+05 4.267E+05 1.200E+05 1.200E+05

In terms of success rate, the evaluated algorithms never reached the global
optima when optimizing the evaluated functions for 30 and 50 dimensions. When
D = 10, XPSO obtained a global success rate of 8.07%, followed by RI-AR-XPSO
with 1.86%, RI-SAXPSO with 0.07%, and RI-SAPSO with 0%. Therefore, it can
be argued that XPSO finishes its execution faster than RI-AR-XPSO thanks to
its higher success rate for 10 dimensions.

5.3 Statistical Hypothesis Testing

This section describes the Friedman’s statistical significance test, as well as the
post-hoc tests performed to demonstrate which differences are statistically sig-
nificant in terms of the error rates obtained in Table 2.

Friedman’s test with significance level α = 0.05 was applied for multiple
comparisons. In this work, each pair of algorithms is analyzed (k × k) consider-
ing the four PSO implementations (k = 4) and a family of different hypotheses
(h = k(k − 1)/2 = 6). The null hypothesis of this experiment is that there is no
significant difference in the results. The post-hoc procedure was applied to find
which algorithm pairs attained significantly different results, returning a p-value
for each comparison to determine the degree of rejection of each hypothesis. Fur-
thermore, the p-values are adjusted due to the Family-Wise Error Rate (FWER),
which is the probability of making one or more false discoveries between all
hypotheses by performing multiple pairwise tests [16].

To calculate Friedman’s statistics, the results seen in Table 2 are the rankings,
and Table 5 highlights the mean ranks of each PSO implementation obtained by
applying a ranking-based classification. The results obtained attest that the best
algorithm among the four implementations is RI-AR-XPSO. Upon application
of Friedman’s test, a p-value of 1.085E−32 and a Friedman’s statistic of 151.79
were found. Since p � α, there seems to be at least one significant difference.
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Table 5. Average ranks

Algorithm Average rank Order

RI-AR-XPSO 1,61 1

XPSO 2,02 2

RI-SAXPSO 2,49 3

RI-SAPSO 3,87 4

Table 6. Friedman’s p-values and adjusted p-values (Holm) for pairwise comparison
tests between all algorithms.

Hypothesis p-value adjusted p-value

RI-SAPSO vs RI-SAXPSO∗ 1.83E-12 7.33E-12

RI-SAPSO vs XPSO∗ 3.25E-21 1.63E-20

RI-SAXPSO vs XPSO∗ 0.016058 0.032115

RI-SAPSO vs RI-AR-XPSO∗ 5.98E-31 3.58E-30

RI-SAXPSO vs RI-AR-XPSO∗ 6.14E-06 1.84E-05

XPSO vs RI-AR-XPSO∗ 0.034516 0.034516

The evidence of statistically significant differences prompted the execution of
post-hoc tests to pinpoint which algorithm pairs obtained significantly different
results. p-values of all six hypotheses were obtained by converting the mean ranks
of each algorithm by a normal approximation. z-values were used to find the
corresponding p-value of the standard normal distribution N (0, 1). Friedman’s
z-value can be defined as

zij =
Ri − Rj√

k(k+1)
6n

. (12)

The p-values found using (12) are in Table 6. As previously explained, these
values are not suitable for direct comparison with the significance levels due to
FWER. Thus, the adjusted p-values were used to directly compare the values
with the significance levels. In this paper, an adjust procedure termed Holm
[3] was employed. In Table 6, ∗ indicates which algorithm performed better. In
harmony with the results previously obtained, RI-AR-XPSO obtained the best
results, and RI-SAXPSO only outperformed RI-SAPSO. All p-values are smaller
than 0.05, meaning that all differences are statistically significant.

6 Final Considerations

This work presented two new PSO implementations with conveniences such as
automatic hyper-parameter update during execution and employment of a rota-
tion matrix to promote independence from the coordinate systems wherein the
objective function is defined. Both RI-AR-XPSO and RI-SAXPSO boast an
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attraction/repulsion mechanism guided by a diversity control whose effect is
exponentially reduced throughout the search, resulting in more exploration at
the beginning and more exploitation at the end. Both algorithms were compared
against their original counterparts in a varied set of problems and dimension-
alities, and statistical significance tests indicated their superiority against the
original implementations. RI-SAXPSO, which uses gradient-based information,
consumed less time in problems with smaller dimensionalities. In these cases and
those where the objective function is not very costly, this technique might be
convenient.

In future work, new arrangements can be tested to use the gradient infor-
mation more efficiently since the gradient-based techniques did not reach good
performance. New approaches that consider swarm diversity information to auto-
matically adjust hyper-parameters during execution can also be studied. The
goal would be to adapt the hyper-parameter fine-tuning according to current
swarm diversity status instead of just verifying whether the search is stagnated.
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Abstract. Bloat is a common issue regarding Genetic Programming
(GP), specially noted in Symbolic Regression (SR) problems. Due to
this, GP tends to generate a huge amount of ineffective code that could
be avoided or removed. Code editing is one of many approaches to avoid
bloat. The objective in this strategy is to mutate or remove subtrees
which do not contribute to the final solution. Two known methods
of redundant code removal, the Rule Based Simplification (RBS) and
Equivalent Decision Simplification (EDS) are extended in a new opera-
tor presented in this paper, called Dynamic Operator with RBS and EDS
(DORE). This operator gives the algebraic simplification table used by
RBS the potential to learn from reductions performed by EDS. An ini-
tial benchmark highlighted how the RBS table can grow as much as 86%
with DORE, and reducing the time spent on simplification by 16.83%.
Experiments with the other three SR problems were performed showing
a considerable improvement on fitness of the generated programs, besides
a slight reduction in the population of the average tree size.

Keywords: Genetic Programming · Bloat control · Code editing

1 Introduction

Symbolic Regression (SR) is one of the main applications and motivators to
Genetic Programming (GP), a method for automatically generate computer pro-
grams from a high level definition of a problem [15]. Since early 90ś, many data-
driven problems are modeled as SR problems [2], where no previous knowledge
or pre-processing input is required. GP is well suited for resolving such prob-
lems since any algebraic function set can be effectively represented as trees and
implemented as computer programs for the problem domain [9].

Bloat - the uncontrolled and excessive growth of individuals without a pro-
portional gain of fitness - is a well-known issue and a field of study in GP. It
is specially noted in SR. The large amount of inefficient code causes excessive
consumption of computational resources, as well as many other practical issues
[16], hiding the problems real complexity and domain.
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There are many approaches for avoiding uncontrolled code growth in tree-
based GP [5], some of which are presented as follows. The most simple and
popular of them is implementing a Depth Limit [9], although is not a truly
effective approach, as it can induce growth in some scenarios. Parsimony Pressure
[9,13] is another popular technique which adds a penalty term in fitness function
to punish large trees. Pseudo-hill Climbing [6] attempts to guarantee the fitness
to improve in population rejecting individuals least fit than its parents until
one is finally accepted. Code Editing approach mutates or removes redundant
sub-trees in individuals.

Regarding the code editing approach, Koza [9] proposed a simple method to
simplify (to convert a tree into a smaller, equivalent, tree) using grammar rewrite
rules, which further inspired the Rule Based Simplification (RBS) method [7,11,
20]. RBS was extended with Equivalent Decision Simplification (EDS) [11], which
recursively compares all sub-trees in an individual for equivalency with a small
set of terminals.

This paper proposes the Dynamic Operator with RBS and EDS (DORE),
which improves a code editing bloat control algorithm using both RBS and EDS
to maximize its reduction potential without greater punishments in execution
time. The main feature of DORE is to dynamically learn redundant expressions
to be applied with RBS from EDS outputs. It also optimizes the access of RBS
rules using the any keyword in a hash-table implementation, as well as introduces
a warm-up stage to grow RBS rules before the evolutionary process begins.

The article is organized as follows: Sect. 2 provides a quick overview about
code editing operators; In Sect. 3 an improved strategy using the previous oper-
ators is proposed; Sect. 4 shows how RBS and EDS were implemented and the
technical resources utilized in benchmarks; Sect. 5 shows a performance com-
parison between the simplification operators, beside the empirical results and
discussion over three SR benchmark problems; and finally in Sect. 6, the conclu-
sion is presented and the possibilities for further research.

2 Background

Redundancy is one of the key contributors to inefficient code growth. EDS [11]
was introduced to extend RBS as they complement each other. RBS removes
redundant subtrees by replacing a tree for a smaller equivalent one by applying
arithmetic rules such as X/1 → X and 0∗X → 0. These rules must be known and
provided before the evolutionary process starts, thus each rule must be explicitly
specified. Another limitation by RBS is that it’s rules must be specified exactly
like it would appear in an individual. For example, the rule X ∗0 → 0 would not
be sufficient to simplify a tree 0 ∗ X unless the rule 0 ∗ X → 0 is specified.

EDS extends RBS in a manner that it simplifies trees without previous knowl-
edge of algebraic rules. It can also remove redundancies that are only true in the
training domain. The simplification by EDS is made by evaluating each subtree
in an individual and comparing these subtrees with a set of small trees or ter-
minals which is usually the result of simplifications, such as X, 1 and 0. In a SR
problem, EDS is evaluated as follows [11]:
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1. Determine a suitable set of simple trees Ssimple.
2. Check all subtrees in the target for equivalence to a tree in Ssimple.
3. If some subtree is equivalent to a tree in Ssimple, and larger than it, replace

that subtree with the simple tree.
4. Repeat this procedure recursively until it fails.

Finding a suitable set of trees Ssimple for a problem is not an easy task.
Usually the set of terminals is a natural fit for Ssimple, but if it is already known
that some subtrees must appear in the final output, such as in trigonometrical
problems, they can be inserted in this set. However, the main issue of using EDS
as a single operator of bloat control is the computational performance. With
problems hard enough and individuals big enough, reducing a single generation
can take as long as multiple generational evaluations. This scenario is not uncom-
mon in simple SR problems. If an evaluated individual with EDS contains more
subtrees than the population size, the evaluation function will be called upon as
much as in the generational evaluation.

2.1 Simplification with RBS and EDS

The flow of simplification using both RBS and EDS is as follows [11]:

1. Let the genotype tree of individual i be ti.
2. Apply RBS recursively to all nodes of ti, until there is no node to which RBS

can be applied, obtaining t′i.
3. Apply EDS to all nodes of t′i. If any node is translated, let the translated tree

be ti and go to (2). If there is no node to which EDS can be applied, finish
and let t′i be the final result.

Applying RBS before applying EDS is a good idea since it prevents EDS to
be used for simplifying already known rules. Also, RBS execution time is lower
than EDS, which will be explored further in this paper.

3 Proposed Improvements

The main idea of the improvements to the simplification with RBS and EDS
flow is to increase RBS rules table R dynamically as soon as new rules, or more
efficient ones, are discovered. This allows RBS to execute independently with
no large impacts in execution time. A more robust RBS operator also helps in
simplification itself, since any simplification made by EDS triggers new RBS
calls, as well as new EDS calls. If simplifications made by EDS occurred in the
first step of the simplification flow, then it would eliminate the need to reevaluate
subtrees that would only be reduced by EDS.

The first improvement proposed is to allow the simplification rules table R,
used by RBS, to have rules inserted in execution time. Each time a subtree is
simplified by RBS using the keyword ANY , which denotes any subtree, a new
rule with the original subtree as input is inserted in R. Afterwards, new calls to
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RBS with the same subtree as input have O(1) access guaranteed in a hash-table
implementation.

Analogously, each simplification made with EDS creates a new rule in R table
with the learned simplification. This way, there is no need to apply simplification
with EDS to the same subtree in subsequent individuals. Algorithm 1 shows an
example algorithm to simplify a generation using this improved simplification
flow with RBS and EBS in a SR problem.

Another strategy adopted to grow even more the R table was the insertion
of a warm-up step before the evolutionary process begins. This warm-up step
consists of generating random trees in the training domain of a problem, with
random sizes, and then simplifying them with the improved flow. Each successful
reduction creates a new rule in the table, so the GP starts with a larger R table.

Algorithm 1: Example of a generation simplification using improved RBS
and EDS flow
Data: P : generation population; R: RBS rules table

1 populationsimplified ← {}
2 foreach individual I in P do
3 foreach subtree Isubtree in I do
4 subtreesimpl, simplification ← call RBS with Isubtree
5 if simplification exists and not in R then add simplification to R ;
6 subtreesimpl, simplification ← call EDS with subtreesimpl

7 if simplification exists then
8 if simplification not in R then add simplification to R ;
9 go back to the beginning of current loop

10 end
11 Isubtree ← subtreesimpl

12 end
13 add I to populationsimplified

14 end
15 return populationsimplified

4 Methodology

All algorithms were implemented in Python 3.8.3 with the package DEAP [4]
(Distributed Evolutionary Algorithm in Python) in version 1.3.1. Parallelism was
used to evaluate fitness functions using the package Ray [12] in version 0.8.6.
The benchmarks were conducted in a 2018 MacBook Pro with 2.2 GHz 6-Core
Intel Core i7 and 16 GB 2400 MHz DDR4 memory.

4.1 Rule Based Simplification

The RBS simplification rules table R was implemented as a hash table. The
keyword ANY denotes any subtree and allows rules such ANY ∗ 0 → 0 to
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be defined. In the original paper [11] this keyword was referenced as A and no
further details were provided on how it was implemented. In this paper, every
subtree evaluated by RBS consults the hash table directly and only if no rule
with the subtree is described the ANY rules are consulted. The access to the
table R has complexity O(1), except on the scenario where the ANY keyword
is included in the rule body, which makes the complexity O(N) where N is the
amount of rules in the table.

Reducing the amount of rules with ANY is a slight improvement to this
implementation as it maximizes the rate of O(1) accesses. Another way to attain
this goal is to define as many redundant rules as possible in R, for example
prioritizing the definition of rules 1 ∗ 0 → 0 and X ∗ 0 → 0 instead of ANY ∗
0 → 0. This task can be hard when there is no previous knowledge of such
simplifications in the domain of the problem.

4.2 Equivalent Decision Simplification

The subtrees set Ssimple for comparison for equivalence in EDS was implemented
as a simple list. Two subtrees is considered equivalent if all fitness values elapsed
from this subtree in the domain has relative error ε < 0.005. This threshold was
chosen after some tests and set to all benchmark problems in both compared
operators in this paper.

5 Experimental Results

This section is organized as follows: Sect. 5.1 shows a preliminary benchmark,
validating the performance improvement on each simplification method; It is pre-
sented in Sect. 5.2 the results for three artificial SR problems using the proposed
operator, comparing it with the original operator and baseline GP.

5.1 Simplification Methods Performance

A simple benchmark - using cos(2πx) as objective function - was ran 50 times
to compare the execution time of the five simplification strategies.

Experimental Setting. The experiment was the simplification of many inde-
pendent individuals in each reduction strategy: traditional versions of RBS and
EDS, RBS and EDS with dynamic rules allowed and RBS after the warm-up
step. More details of each strategy were discussed in Sect. 3. The fitness function
was defined as the RMSE (Root Mean Squared Error), of 20 uniform points
in the interval [−π, π]. The function set used was {+. − .∗,÷}, where ÷ is the
protected division satisfying X/0 → 1. The terminal set is {X, 0, 1, π}. For each
execution, 200 trees are generated and then cloned in each step to avoid any
bias or propagation of simplifications. The reductions applied in one step are
not carried on to the next. The procedure is described as:



DORE - Dynamic Operator with RBS and EDS 239

1. Reduction with RBS is applied to the 200 cloned individuals.
2. Reduction with EDS is applied to the 200 cloned individuals.
3. With the dynamic insertions in the rules table R allowed, reduction with RBS

is applied to the 200 cloned individuals.
4. With the dynamic insertions in the rules table R allowed, reduction with EDS

is applied to the 200 cloned individuals.
5. With the dynamic insertions in the rules table R allowed, a warm-up step is

done, and reduction with EDS is applied to the 200 cloned individuals.

The 200 individuals are generated in each of 50 executions with the method
Ramped Half and Half and with depth limited to [5, 10]. The warm-up step
applied RBS and EDS sequentially to 200 trees generated with Grow method
and with depth limited to [1, 5]. The initial RBS rules table R is defined in
Table 1.

Table 1. Initial simplification rules table used by RBS

ANY + 0 → ANY , ANY + 0 → ANY , ANY ∗ 1 → ANY ,
1 ∗ ANY → ANY , ANY ∗ 0 → 0, 0 ∗ ANY → 0,
ANY − ANY → 0, 1 − 1 → 0, 0 − 0 → 0, 0 + 0 → 0,

ANY − 0 → ANY , 1 ÷ 0 → 1, 0 ÷ 1 → 0, 0 ÷ 0 → 1, 1 ÷ 1 → 1,
ANY ÷ 0 → 1, 0 ÷ ANY → 0, ANY ÷ ANY → 1,

ANY ÷ 1 → ANY

Results and Discussion. Table 2 shows the arithmetic mean of the 50 execu-
tions in each strategy. Dynamic RBS is 4.84% faster than the default RBS. The
RBS after the warm-up is shown to be 16.83% faster than the traditional RBS
and provided a 11.52% improvement to dynamic RBS before the warm-up.

Table 2. Execution time comparison of the simplification operators

Simplification strategy RBS EDS Dynamic RBS Dynamic
EDS

Dynamic RBS
after warm-up

Avg. execution time (s) 5.49 11.48 5.23 9.61 4.69

This benchmark indicates that not only a bigger R table can improve the
simplifications performance but also how much slower EDS is compared to RBS
as well. With no improvements, EDS is 2.09 times slower than RBS. Dynamic
EDS is 1.84 times slower than dynamic RBS before warm-up. Dynamic RBS
after the warm-up can be twice as fast as the dynamic EDS. The warm-up
increased the rules of table R, in average, from 19 entries to 135, to an around
86% improvement.
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5.2 Symbolic Regression Problems

To validate the proposed improvements, 3 simple artificial SR problems were
tested. These benchmarks were extracted in [5], selected from [8,10,17–19]. Since
this paper presents a preliminary analysis of the operator, the benchmark prob-
lems are rather simple and harder problems will be explored in future works.
The problems are presented in Table 3.

Experimental Setting. For each problem, 50 independent executions were
performed, in 3 different approaches: Base GP: with no code editing bloat
control operator, Baseline Operator: with the original simplification flow of
RBS and EDS as in [11], and DORE: using the proposed dynamic operator.

Table 3. Artificial symbolic regression problems

Benchmark Objective function Function formula Domain - Training

1 f1(x1, x2, x3, x4, x5)
10

5+
∑5

i=1(xi−3)2
50 random points. xi ∈ [0, 6]

2 f2(x1, x2)
(x1−3)4+(x2−3)3+(x2−3)

(x2−2)4+10
50 random points. xi ∈ [0, 6]

3 f3(x) 0, 3xsen(2πx) 40 random points. x ∈ [−2, 2]

The function set to all benchmarks is set to F = {+,−, ∗,÷} where ÷ is the
protected division satisfying X/0 → 1. The terminal set to benchmarks 1 and
2 is τ = {0, 1} and the decision variables. For benchmark 3, the terminal set is
τ = {0, 1, π} and the decision variable. To all benchmarks, the fitness function
is the RMSE of the training domain points.

Besides the traditional GP parameters, two new parameters were introduced
to fit the operator’s context in more computational resource expansive problems.
The first one is the percentage of population ρ which passes through the full
simplification flow. The algorithm is developed in such way that the best ρ%
individuals of the population are chosen each generation. The second additional
parameter is the remaining best γ percentage of the population that was not
previously chosen and passes through the reduction with RBS only. For example,
if the population size is 100, and the values ρ = 40% and γ = 20%, the 40 most
fit individuals would pass through the complete reduction flow and the remaining
best 20 trees would be reduced with RBS only.

These additional parameters are needed due the high computational cost
of the reductions that would make unfeasible the operation of all individuals
without a great impact in execution time. A large γ value does not have a
high impact on the execution time, since RBS reduction is simpler. Nonetheless,
the ρ value greatly impacts the total execution time. For the benchmarks these
parameters were chosen empirically, testing values big enough that would not
make the total GP execution time significantly slower than the Base GP.
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A custom tournament selection, named as Partial Tournament, is used to
reduce the number of repeated individuals in the crossover. Being P the pop-
ulation, the Partial Tournament does |P | traditional K size tournaments, but
limits the repeated number of each individual to two. Then, if necessary, the
population is completed with individuals chosen at random up to |P |.

Table 4. GP settings used in symbolic regression benchmarks

Number of runs 50

Generations per run 50

Initialisation Ramped half-and-half

Population size 200

Selection Non-elitist Partial Tournament Selection, with K = 5

Crossover One Point Crossover with 90% probability

Mutation Uniform subtree mutation with 5% probability

Tree depth limit Initial limit = 6; Subsequent limit = 17

Reduction threshold ρ 40%

Reduction threshold γ 60%

The GP settings used is presented in Table 4. The simplification rules used
in RBS are as described in Table 1. The simple subtrees set Ssimple used in EDS
is the terminal set τ for each problem. The warm-up step used in DORE runs
is defined as 200 full trees with depth limited in [1, 5] range.

Results and Discussion. The median was preferred over the mean in this
section since it is less sensitive to outliers and the data is not guaranteed to
follow a normal distribution. In all of the data in any graph or table the median
of the 50 executions is shown.

It was first analyzed how the fitness behaved over generations. Figure 1 shows
how Base GP is worse than the others in all benchmarks. It also presents how
Base GP fitness curve tends to flatten in each benchmark. DORE has slightly
better results than the baseline operator. Figure 2 shows a fitness boxplot of the
best individuals in each generation.

The size of individuals is a crucial concern to have bloat-controlled GP exe-
cutions, beside the fitness stagnation. A tree depth limit was used, so it was not
expected a completely uncontrolled growth on Base GP. As Fig. 3 shows, both
operators had a much better size control on the population over generations than
Base GP. The difference between DORE and baseline operator was tiny, with
DORE having best results on the first two benchmarks.
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Fig. 1. Best fitness versus generations, for all benchmark problems

Fig. 2. Boxplots of the best of generation individuals, for all benchmark problems

Table 5 shows the validation and test domains used to analyze the best indi-
viduals from each generation for all benchmark problems. It is presented in
Table 6 the median and median average deviation (MAD), as utilized in [1], of
each set of points - training, validation, and test - using the RMSE as reference.
Table 7 shows the same metrics for the tree size of these best individuals. As the
data is not normally distributed, Table 6 and Table 7 also present the p-value
of the Mann-Whitney U-test [3] considering DORE x Base GP and DORE x
Baseline Operator datasets. The null hypothesis is that the distributions of both
datasets are equal. DORE performed better regarding tree size in all benchmark
problems, compared to the other two strategies. It also presented better results
in training error in all benchmarks. The benchmark 3 test error was worse using
an operator, which suggests that this kind of strategy is not well suited for more
complex problems even though the generated trees were smaller.

Besides the best trees found for each generation, the best individuals of each
run were also analyzed. Figure 4 shows the mean training fitness against the
mean tree sizes. It is clear that DORE dominates the other strategies in all 3
benchmark problems regarding the fitness.

In benchmark 1, due to bloat, Base GP generates smaller but unfit individu-
als. These individuals are, in average, from earlier generations than the ones using
code editing operators, see Fig. 5. The boxplot shows how Base GP converges
earlier than the other two strategies. Thus, it is expected that trees generated
in later generations have better fitness but also a larger size. DORE performed
better than the other strategies in Benchmarks 2 and 3 and regarding both size
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Fig. 3. Tree median size versus generation

Table 5. Validation and test domain for best of run individuals analysis

Benchmark Validation domain Test domain

1 100 random points xi ∈ [0, 6] 500 random points xi ∈ [0, 6]

2 100 random points xi ∈ [0, 6] 1156 points x1, x2 ∈ (−0, 25 : 0, 2 : 6, 35)

3 50 random points x ∈ [−2, 2] 2000 points x ∈ (−2 : 0, 001 : 2)

and fitness, as shown in Table 6 and Table 7. In all benchmarks it is noted that
the average size of the best individuals in DORE are better than the ones with
the baseline operator, see Table 7.

Another point of interest analyzed was the reductions made between baseline
operator and DORE. Each RBS and EDS simplification made was logged in each
run in these strategies. The tables and graphs related to reductions used the
arithmetic mean as an average value. Table 8 highlights how DORE increased
the number of unique simplifications made by RBS. This result was expected
since DORE tends to increase the reductions table used by RBS.

Fig. 4. Best of run average fitness against best of run average size
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Table 6. Best individuals for generation performance, of all benchmark problems

Method
Benchmark 1 Benchmark 2 Benchmark 3

Median MAD Median MAD Median MAD

DORE

Training Error 0.18 1.77e-02 1.16 1.71e-01 0.18 1.95e-02

Validation error 0.22 2.46e-02 1.62 3.94e-01 0.26 4.58e-02

Test error 0.21 1.48e-02 1.09 4.49e-01 0.67 4.39e-01

Base GP

Training Error
(p-value)

0.19 4.03e-02 1.26 1.93e-01 0.20 1.79e-02

(1.42e-16) (1.49e-34) (5.80e-78)

Validation error
(p-value)

0.21 2.55e-02 1.75 4.02e-01 0.24 1.96e-02

(1.28e-12) (1.73e-27) (5.23e-23)

Test error
(p-value)

0.21 1.12e-02 1.59 8.89e-01 0.25 9.80e-03

(4.12e-11) (7.96e-09) (3.78e-96)

Baseline operator

Training error
(p-value)

0.20 2.38e-02 1.20 1.79e-01 0.19 2.10e-02

(2.09e-34) (1.19e-07) (1.10e-16)

Validation error
(p-value)

0.22 2.25e-02 1.62 3.72e-01 0.25 2.85e-02

(5.81e-05) (1.16e-01) (3.94e-14)

Test error
(p-value)

0.21 1.36e-02 1.24 7.44e-01 0.33 1.07e-01

(1.84e-04) (5.31e-02) (6.43e-32)

The average value of total reductions made by RBS and EDS is shown in
Table 9. These graphs present different scenarios. In benchmark 1, the total
reductions made by both RBS and EDS in DORE was greater than in baseline
operator. In benchmark 2, the reductions by RBS were greater in DORE but
lesser by EDS. Finally, in benchmark 3, the total reductions made by both
RBS and EDS was greater in the baseline operator. These different scenarios
are directly related to the nature of each benchmark problem. Also, although
the RBS reduction table in DORE had more entries than the baseline table,
each simplification called by EDS triggered another recursive RBS simplification
attempt on each subtree in the individual. Thus, in problems where the number
of simplifications by EDS is high - and with an increased average size reduction
- the number of reductions by RBS tends to be higher as well.

Table 7. Tree Size data of best individuals for generation, of all benchmark problems

Benchmark
DORE Base GP Baseline operator

Median of Avg.
tree size

MAD
Median of Avg.

tree size
MAD p-value

Median of Avg.
tree size

MAD p-value

1 94.55 6.11e+01 282.19 2.01e+02 5.61e-128 103.26 7.04e+01 1.37e-03

2 101.88 5.55e+01 196.58 1.21e+02 2.09e-87 119.84 7.96e+01 4.53e-10

3 203.80 1.34e+02 367.09 2.51e+02 8.29e-62 229.19 1.61e+02 1.30e-04
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Fig. 5. Best of run generation boxplot

Table 8. Average value of unique RBS simplifications performed

Method Benchmark 1 Benchmark 2 Benchmark 3

Baseline operator 866.34 756.1 1735.98

DORE 1667.04 1330.9 2066.62

Even though each benchmark presented a different reduction scenario, a pat-
tern in the ratio between reductions by RBS and reductions by EDS could be
noted, as is shown in Fig. 6. In all benchmark problems, except the proportion,
the total amount of RBS reductions relative to the total amount of EDS reduc-
tions is bigger. It can also be noted that this ratio is greater in DORE than in the
baseline operator, which is exactly the main goal of the proposed improvements.

The impact of the dynamically learned rules was analyzed and shown in
Fig. 7. The graphs are histograms of the total amount of reductions made by
RBS in each subtree size reduction percentage interval. The values highlighted
in purple are from rules that could only be learned with DORE improvements.
The average size reduction of these dynamically learned rules in each benchmark
were 86.01%, 88.01% and 85.40%, respectively, compared to the average size
reduction of 59.38%, 55.98% and 52.74% from the predefined rules. DORE not
only provided more reductions to be applied but also better ones.

Table 9. Average total simplifications made by RBS and EDS

Method Avg. Total RBS simplifications Avg. Total EDS simplifications

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 1 Benchmark 2 Benchmark 3

Baseline Op 8060.32 12569.58 67622.52 104.8 165.92 680.82

DORE 16100.26 23830.96 39455.28 145.28 137.94 214.92
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Fig. 6. Average ratio of simplifications made

Fig. 7. RBS simplification frequency against size reduction percentage

Finally the execution time was analyzed, an important point of interest in
this work as DORE execution time should be close to the baseline operator.
Average execution time - using the arithmetic mean - for all benchmark prob-
lems is shown in Table 10. Since the values of parameters ρ and γ were defined
empirically to make execution time between baseline operator and DORE close,
the values presented are expected. However, the difference between Base GP and
executions with operators is notable. Using RBS and EDS operators as a single
bloat control method seems to be not adequate in hard or complex problems as
the execution time tends to increase even more due to all the fitness function
evaluation performed recursively in EDS step of the simplification flow.

Table 10. Average total execution time (in seconds) of each strategy, for all benchmark
problems

Benchmark Average execution time (s)

Base GP Baseline operator DORE

1 180.36 292.23 321.12

2 167.31 276.08 277.59

3 206.10 585.60 514.68
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6 Conclusion and Future Work

This paper presented improvements to a simplification flow introduced in [11]
to make it more reasonable to be applied in complex problems. Besides a meta-
learning reduction, two parameters were introduced to optimize the number of
trees to be reduced by RBS and EDS in harder problems than the one presented
in the original work, without greater impact in execution time.

The resulting operator was able to improve the execution time performance
of reduction by RBS, as well as the relative frequency of this reduction in the
simplification flow, even with a limit of trees applied. A greater percentage of
the population could pass through reduction by RBS with no significant penalty
in execution time.

The results of the three artificial SR problems benchmark highlighted how
DORE improved the fitness and slightly the tree size in the population dur-
ing the evolutionary process. The best individuals in these experimental runs
had significantly better results in both fitness and tree size using the dynamic
operator.

It is noted that DORE is helpful to control bloat in GP but could be chal-
lenging to adopt in more complex problems due the computational burden. This
issue should be addressed in future research. Probably tuning the parameters ρ
and γ may be needed as well as limiting the size of the subtrees in Ssimple.

Future work could measure the limits of the list Ssimple and a robust strategy
to handle random ephemeral constants, which was not explored in this paper.
Parallelization of the reductions could improve the operator performance, mak-
ing it more viable, although is not a trivial problem as the rule table is constantly
updated by each EDS reduction performed. It would also be interesting to apply
this operator with other bloat control methods, such as a equalization operator
[14], using it as a tool to optimize a small set of individuals in a population.
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Abstract. Adding self-loops at each vertex of a graph improves the per-
formance of quantum walks algorithms over loopless algorithms. Many
works approach quantum walks to search for a single marked vertex. In
this article, we experimentally address several problems related to quan-
tum walk in the hypercube with self-loops to search for multiple marked
vertices. We first investigate the quantum walk in the loopless hypercube.
We saw that neighbor vertices are also amplified and that approximately
1/2 of the system energy is concentrated in them. We show that the
optimal value of l for a single marked vertex is not optimal for multiple
marked vertices. We define a new value of l = (n/N) · k to search mul-
tiple marked vertices. Next, we use this new value of l found to analyze
the search for multiple marked vertices non-adjacent and show that the
probability of success is close to 1. We also use the new value of l found
to analyze the search for several marked vertices that are adjacent and
show that the probability of success is directly proportional to the den-
sity of marked vertices in the neighborhood. We also show that, in the
case where neighbors are marked, if there is at least one non-adjacent
marked vertex, the probability of success increases to close to 1. The
results found show that the self-loop value for the quantum walk in the
hypercube to search for several marked vertices is l = (n/N) · k.
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1 Introduction

According to Shenvi, Kempe, and Whaley [17], quantum walks provide one of
the most promising features, an intuitive framework for building new quantum
algorithms. They were pioneers in designing a quantum search algorithm on the
hypercube based on quantum random walks [14]. Recent works have used the
quantum walks to search weights and train artificial neural networks [19,20].

The topology of the structure where the walk is applied considerably affects
the evolution of the walker [22]. Therefore, many works are developed to improve
the performance of quantum walks, quantum search algorithms in different struc-
tures: one-dimensional, two-dimensional, and multidimensional grids, complete
and bipartite graphs, among others [4,5,11,15].

Quantum walk modification proposals are also made to improve their per-
formance. For example, Wong [24] added to each vertex of a two-dimensional
grid a self-loop, so the walker has some probability of staying put, achieving an
improvement over the algorithm without self-loop [3].

Rhodes [16] proposed an ideal weight for all vertex-transitive graphs with a
single marked vertex such that the ideal self-loop weight is equal to the degree
of the loopless graph divided by the total number of vertices. Potovcek [14]
observed that the nearest neighbors are also presented with high probability
and Nahimovs [10] that adjacent vertices can be hard to find by quantum walks.

In this way, we investigate whether the optimal value of l = (d/N) for a
single marked vertex is optimal for multiple marked vertices, where d is the
degree of the loopless vertex and N is the number of vertices. We analyzed the
quantum walk on hypercube without self-loop and with self-loop. We analyzed
the quantum walk on the hypercube for multiple marked adjacent and non-
adjacent vertices. Finally, we find an optimal value of l for a quantum walk in
the hypercube with multiple marked vertices.

This paper is organized as follows. In Sect. 2, we present some concepts about
quantum walks and specifically the quantum walk on the hypercube. In Sect. 3,
we characterize the probability distribution along with the space, adjust the
self-loop weight for multiple marked vertices, and search for adjacent marked
vertices. Finally, in Sect. 4 is the conclusion.

2 Quantum Walk

The processing of quantum information is governed by quantum mechanics or
quantum physics [18]. Quantum computing study the processing of this informa-
tion [8,13,25]. Quantum walks are the quantum counterpart of classical random
walks. Discrete and continuous-time quantum walks are the advanced tools used
to build quantum algorithms [1,2]. The main feature that differentiates these
two types of quantum walks is the timing used to applying the evolution opera-
tors. In the quantum walk in continuous time, the evolution operator is applied
at any time, whereas the quantum walks in discrete time, the evolution oper-
ator is applied in discrete time steps [21]. The quantum walk evolution in the
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discrete-time process occurs by the successive applications of a unitary evolution
operator U that acts on the Hilbert space

H = HC ⊗ HS .

The coin space HC is the Hilbert space associated with a quantum coin, and
the walker’s space HS is the Hilbert space associated with the position of the
nodes in a graph, for example. The evolution operator U is defined in Eq. 1.

U = S(C ⊗ IN ) (1)

where, S is the shift operator, i.e., a permutation matrix that acts in the walker’s
space based on the state of the coin space. The unitary matrix C is the coin
operator [17]. Therefore, the equation of evolution represented by a quantum
walk at time t is given by

|Ψ(t)〉 = U t |Ψ(0)〉
.

2.1 Quantum Walk on the Hypercube

According to Venegas [21], the hypercube is defined as an undirected graph of
degree n and N = 2n nodes. Each node is represented by an n-bit binary string.
Two nodes �x and �y are connected by an edge if the Hamming distance between
them is 1, i.e., |�x − �y| = 1. This means that �x and �y only differ in a single bit.
The expression |�x| is the Hamming weight of �x. The Hilbert space associated
with the quantum walk on the hypercube is

H = Hn ⊗ H2n ,

where Hn is the Hilbert space associated with the quantum coin space, and H2n

is the Hilbert space associated with nodes on the hypercube.
According to Shenvi [17], in a d-dimensional hypercube, the d directions

specify the coin state. Kempe [7] defines that directions can be labeled by the n
base-vectors {|0〉 , |1〉 , . . . , |n − 1〉} on the hypercube which corresponding to the
n vectors of Hamming weight 1. These n vectors are represented by the states
{|e0〉 , |e1〉 , . . . , |en−1〉}, where ed has a 1 in the d-th bit. The shift operator S
described in Eq. 2 acts mapping a state |d, �x〉 → |d, �x ⊕ �ed〉.

S =
n−1∑

d=0

∑

�x

|d, �x ⊕ �ed〉 〈d, �x| (2)

The initial state of the quantum walk in the hypercube is defined according
to Eq. 3 as an equal superposition over all N nodes and n directions.

|Ψ(0)〉 =
1√
n

n−1∑

d=0

|d〉 ⊗ 1√
N

∑

�x

|�x〉 (3)
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According to Rhodes [16], the hypercube was the first graph in which quan-
tum walks were researched. In their work, Shenvi [17] presented a quantum search
algorithm based on the random walk quantum architecture. In this article, we
are based on the approach used by Wong [24]. The pure quantum walk (without
search) evolves by repeated applications from the evolution operator described
in Eq. 1, where C is Grover’s “diffusion” operator on the coin space and is given
by

C = 2 |sC〉 〈sC | − In (4)

where, In is the identity operator, n is the vertex degree loopless, and |sC〉 is
the equal superposition over all n directions [9,17], i.e.,

|sC〉 =
1√
n

n−1∑

d=0

|d〉 . (5)

We include a query to the “Grover oracle”, described in Eq. 6, at each step of
the quantum walk.

U ′ = U · (In ⊗ Q) (6)

where, Q = IN − 2 |ω〉 〈ω|, and |ω〉 means the marked vertex. The system is
initiated according to the initial state presented in Eq. 3.

3 Analyzing the Quantum Walk on the Hypercube

In this section, we experimentally analyze the quantum walk on the hypercube
searching for multiple marked vertices. The simulations and the obtained results
are detailed in the following subsections.

3.1 Characterizing the Probability Distribution Along the Space

Previous works showed there is an amplification in the solution neighborhood,
which interferes with the amplification of the solutions by the quantum walk
on the hypercube [11,14,17]. Initially, it is necessary to understand how the
probability amplitudes are distributed in the search space and how the quantum
walk evolves in the hypercube over time considering the impacts caused by the
solution neighborhood.

Figure 1 shows the probability of success after one hundred steps for the
quantum walk in the hypercube with one, two, three, and four arbitrarily marked
vertices. Although the search algorithm is able to amplify the probability ampli-
tudes of the marked vertices, if a measurement is performed, the probability of
finding one of the solutions is still unsatisfactory. Another interesting aspect that
can be observed is that as the number of marked vertices increases, the speed of
amplification the probability amplitudes also increases. However, it is necessary
to increase the probability amplitudes of the marked vertices.

Figure 2 shows the probability distributions of the marked vertices only after
the number of iterations necessary to reach the maximum value of the probabil-
ity amplitude close to 1/2. As Potovcek et al. [14] noted in their work, we also
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note that the set of neighbors have a high probability. If we add the amplitudes
of the neighbor’s vertices, the values are compatible with the amplitude value of
the marked vertex. We conclude that a considerable part of the energy, approxi-
mately 1/2, is retained in the neighbors of the marked vertices. Figure 2d, shows
the probability distribution of four marked vertices. Note that the amplitudes of
each vertex have their maximum and a neighborhood region. The x-axis distri-
bution is the relative position of the position on the hypercube. It explains why
even increasing the number of marked vertices, the success probabilities do not
reach values above 1/2.

Fig. 1. Success probability after 100 steps in a hypercube with 1024 nodes. The solid
blue curve is the success probability for one solution. The dotted orange curve is the
success probability for two solutions. The dot-dashed green curve is the success prob-
ability for three solutions. The dotted red curve is the success probability for four
solutions. (Color figure online)

Figure 3 shows the success probability for the quantum walk with one and
four marked vertices after one hundred steps. Figure 3a shows the behavior of the
success probability of one marked vertex, the solid blue curve, and its neighbors,
which is the dotted orange curve. If a measurement is performed, the probability
of getting a neighbor vertex is greater than getting a marked vertex. With prob-
ability above 90%, you get the solution or a vertex that is one step away from the
solution. Figure 3b shows the behavior of the success probability of four marked
vertices, the solid blue curve, and their neighbors, the dotted orange curve. Note
that in a step when the probability of success of the marked vertices is high,
the probability of success of the neighbors decreases, and in the next step, when
the probability of success of the neighbors is high, the probability of success
of the marked vertices decreases. Because of this behavior, if a measurement is
performed, the probability of getting a neighbor is high. This happens in Fig. 3a
but more smoothly.

Observing these results, we must consider the probability p of obtaining
a marked vertex and the probability p′ = (1 − p) of obtaining an unmarked
vertex which is the sum of the probabilities of the (N − k) vertices, where k
is the number of marked vertices. These results are shown in Table 1. Note the
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column of the value of p′, which is composed of the value of the amplitudes of
the neighbors and the amplitude of the vertices that are neither neighbors nor
marked. The probability of the walker finding a region is high because the energy
is concentrated in the neighboring region. It is concluded that the amplification
of the neighborhood around the marked vertices interferes with the probability
of success of finding a target vertex.

3.2 Adjusting the Self-loop Weight for Multiple Marked Vertices

Many works have been proposed with the purpose of improving the search capac-
ity of quantum algorithms. According to Wong [23], adding a self-loop to each
vertex boosts the success probability from 1/2 to 1. A modification to the initial
state in the Eq. 3 and to Grover’s coin in the Eq. 4 is needed so that the self-loop

Fig. 2. Probability distribution of the quantum walk after the number of iterations
necessary to reach the maximum value of the probability amplitude with n = 10 and
N = 1024 vertices. The y-axis values are at different ranges to improve visualization.
(a) solid blue bar show the probability distribution for one marked vertex. (b) solid blue
bar and orange dashed bar show the probability distribution for two marked vertices.
(c) solid blue bar, orange dashed bar and green dash-dot bar show the probability
distribution for three marked vertices. (d) solid blue bar, orange dashed bar, green
dash-dot bar and dotted red bar show the probability distribution for four marked
vertices. (Color figure online)
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Table 1. Probabilities of success of marked and unmarked vertices.

Probabilities of success

Figure p
p′ = (1− p)

Neighbors Neither
2a 43.5% 48.2% 8.3%
2b 45.8% 45.5% 8.7%
2c 44.2% 48.4% 7.4%
2d 47.4% 44.5% 8.1%
3a 43.5% 48.2% 8.3%
3b 40.5% 52.9% 6.6%

Fig. 3. Probability of success after 100 steps with n = 10 and N = 1024 vertices. (a)
shows the probability of success for one marked vertex and its neighbors. (b) shows
the probability of success for four marked vertices and their neighbors. (Color figure
online)

can be added. The addition of the self-loop is described in Eq. 7. Thus, the coin
space is now an (n + 1)-dimensional space [16].

|sC〉 =
1√

n + l

(√
l |�〉 +

n−1∑

d=0

|d〉
)

(7)

One of the concerns when adding a self-loop at each vertex is knowing the
best self-loop value. More specifically, in the case of the quantum walk on the
hypercube, Rhodes [16] proposed an optimal self-loop value

l =
d

N
, (8)

where d is equal to the degree of the loopless graph and N is the number of
vertices in the hypercube. Recently, two works showed that inserting the number
of marked vertices in calculating the self-loop value optimizes quantum walks.
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Carvalho [6] shows that the optimal value of the self-loop for quantum walks in
D-dimensional grids with multiple marked vertices is

l =
2Dm

N
,

where 2D is the number of movements the walker can do, not counting the
self-loop, m the number of marked vertices, and N the number of vertices of
the grid. Nahimovs [12] shows that for different types of two-dimensional grids
- triangular, rectangular, and honeycomb the optimal self-loop value is also,

l =
m · d

N

where d is the degree of the vertex, m is the number of marked vertices, and N
is the number of vertices of the grid.

Figure 4a shows the probability of success after two hundred steps for one
marked vertex. Here, the values of l were the same as used by Rhodes. The dashed
red curve has the optimum value of l. Our interest was to investigate whether the

Fig. 4. Comparison between multiple self-loops values and l = (n/N). (a) shows the
success probability for one marked vertex. (b) shows the success probability for two
marked vertices. (c) shows the success probability for three marked vertices. (d) shows
the success probability for four marked vertices. (Color figure online)
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value of l described in Eq. 8 also improved the walk results for a number (k > 1)
of marked vertices. For this, we performed three more experiments where we
increased the number of marked vertices up to four. As we added the marked
vertices the success probability of the dashed red curve decreased to 88.7% (4b)
while the success probability of the dotted purple curve increased to 99.8% (4b)
but then also decreased to 96.2% (4c) and 89.3% (4d). It indicates that a new
value of l is required when the number of marked vertices increases. To find the
optimal self-loop for multiple marked vertices, we defined a set of values in the
form l′ = (α · l), where α ∈ N.

Figure 5 compares the probability of success for a set of marked vertices,
k = {2, 3, 5, 14, 17}, these vertices were chosen randomly as well as their number.
The self-loop values for these vertex numbers are α · l, where l = (d/N) and
α = {1, 2, 3, ...}. Note that the curves have their maximum points exactly at the
locations on the x-axis where the l′ values are. We can conclude that the value
of (α = k). Therefore, we can set the value of l for multiple marked vertices for
the quantum walk in the hypercube,

l′ =
n

N
· k (9)

where n is equal to the degree of the loopless vertex of the hypercube, N the
number of vertices in the hypercube, and k the number of marked vertices. The
self-loop value shown by Nahimovs [12] for the quantum search in various types
of two-dimensional grids coincides with the optimal self-loop value for the search
for a quantum walk in the hypercube.

Figure 5 shows that, as the values of l approach the optimal value, the proba-
bility of success of the curve also approaches its maximum value. We can observe
this behavior in Table 2 which shows the probability of success for multiple val-
ues of l and multiple marked vertices. Consider the values of the main diagonal,
which are the maximum success probabilities for each l = (n/N) · k.

Fig. 5. Investigation to set the value of l for multiple marked vertices.

Table 2 shows the relationship between the self-loop value and the number
of marked vertices. We observe the relationship between the self-loop value and
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the number of marked vertices. Note that when the values of l approach the
optimal values for each number of marked vertices, there is an improvement
in the probability amplitude. Figure 6 shows the probability of success after two
hundred steps for multiple marked vertices. We can conclude that for cases where
there is more than one marked vertex, the optimal value of l = (n/N) · k.

3.3 Searching for Adjacent Marked Vertices

The results found in the previous sections refer to the search for non-adjacent
marked vertices, i.e., | �ωi − �ωj | 	= 1 the Hamming distance from vertex �ωi and all
other marked vertices is different from 1. Nahimovs et al. [11] shows in their work
that for quantum walks in the hypercube if the search space contains marked
neighbors vertices, the search can be drastically affected. The authors considered
two sets, one with two adjacent marked vertices and the other with two non-
adjacent marked vertices. In the first case, the two adjacent marked vertices

Table 2. Probability of success for multiple values of l.

l = (n/N) · k Number of marked vertices
1 2 3 4 5 6 7 8 9 10

(n/N)*1 0.999 0.888 0.75 0.663 0.775 0.592 0.575 0.576 0.589 0.55
(n/N)*2 0.888 0.998 0.958 0.886 0.815 0.9 0.705 0.672 0.639 0.624
(n/N)*3 0.749 0.959 0.998 0.976 0.934 0.886 0.941 0.792 0.857 0.727
(n/N)*4 0.64 0.888 0.978 0.998 0.975 0.954 0.922 0.885 0.847 0.813
(n/N)*5 0.555 0.816 0.937 0.986 0.996 0.989 0.966 0.943 0.912 0.883
(n/N)*6 0.49 0.75 0.888 0.958 0.989 0.996 0.991 0.973 0.953 0.928
(n/N)*7 0.438 0.691 0.84 0.926 0.969 0.992 0.996 0.99 0.978 0.983
(n/N)*8 0.395 0.641 0.794 0.888 0.944 0.895 0.991 0.993 0.99 0.988
(n/N)*9 0.361 0.596 0.75 0.852 0.915 0.957 0.978 0.993 0.994 0.982
(n/N)*10 0.331 0.554 0.711 0.816 0.888 0.935 0.966 0.982 0.99 0.996

Fig. 6. Probability of success after 200 steps. Solid blue curve, k = 1. Dotted orange
curve, k = 2. Green dash-dot curve, k = 3. Red dashed curve, k = 4. Dotted purple
curve, k = 5 (Color figure online)
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are M = {0, 1}. The absolute value of the overlap remained close to 1, and the
probability remains close to the initial state probability. In the second case, the
two non-adjacent marked vertices are M = {0, 3}. The behavior on this one is
different, the same behavior as the solid blue curve in Fig. 3a.

As the addition of self-loop in the quantum walk in the hypercube improved
the search for multiple non-adjacent marked vertices, we investigated the case
where the marked vertices are adjacent. We consider ten sets of vertices, M =
[{0, 1}, {0, 1, 2}, · · · , {0, 1, 2, 4, 8, · · · , 256, 512}], i.e., all vertices adjacent to the
vertex 0. We add one more vertex to the set of marked vertices on each new
walk until the number of vertices in M is equal to the degree n of the vertex.

Figure 7 shows the probability of success after two hundred steps. Figure 7a
shows the result for the value of l = (n/N). The probability reaches its maximum
when the number of vertices reaches k = 4 with a probability of success of 99.1%.
Then the probability starts to decrease as k increases. Figure 7b shows the result
for the value of l = (n/N) · k. The probability reaches its maximum when the
number of vertices reaches k = 11 with a success probability of 94.5%. Although
the probability increases with a slower speed when k = 5, it already reaches
78.3%. This behavior is interesting for search spaces where the marked vertex
density is high. Note the probability of the solid cyan curve. This behavior
was found in work done by Nahimovs et al. [11] and was repeated here in our
experiments. According to the authors, this is because the quantum walk has a
stationary state.

Fig. 7. Probability of success after 200 steps with n = 10 and N = 1024 vertices. Shows
the probability of success for k adjacent marked vertices. (a) shows for l = (n/N) and
(b) for l = (n/N) · k.

Figure 8 shows the comparison between what happens to the success probabil-
ities in Fig. 7 when the number of k increases. Note the dotted orange curve, the
probability of success grows to its maximum value when the value of l = (n/N)·k.
The same does not happen when l = (n/N).
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Fig. 8. Maximum probability reached for each number of marked vertices in the neigh-
borhood after one hundred steps with n = 10 and N = 1024 vertices. Evaluating the
interference of the number of adjacent marked vertices in the value of l. (Color figure
online)

We considered before that the marked vertices were neighbors. Now, let us
analyze the possibility that in addition to having marked vertices in the neigh-
borhood, there are also marked vertices that are not neighbors. We run ten
experiments, and each one starts with two adjacent marked vertices M = {0, 1}.
In each experiment, a i = {1, 2, 3, · · · } non-adjacent vertex is randomly marked
and the next marked neighbor, i.e., M = {0, 1, 2, ...}. Therefore, in the tenth
experiment, there will be eleven adjacent and ten non-adjacent vertices.

Figure 9 shows the behavior of probability amplitudes when for each set of
adjacent vertices, a number of non-adjacent vertices are marked. Figure 9a shows
that as new non-adjacent vertices are marked the probability is affected. Note
that the behavior seen in the solid blue curve in Fig. 8 when there were no non-
adjacent vertices is similar, i.e., as the density of the marked vertices increases,
the probabilities decrease, even adding the vertices non-adjacent. The same can

Fig. 9. Maximum probability reached for each number of marked vertices after one
hundred steps with n = 10 and N = 1024 vertices. (a) shows the probability of success
for k adjacent and non-adjacent marked vertices for l = (n/N). (b) shows the prob-
ability of success for k adjacent and non-adjacent marked vertices for l = (n/N) · k.
(Color figure online)
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be seen in the case of the dotted orange curves in Figs. 8 and 9b, i.e., when the
density of the marked vertices increases, the probability also increases, this tells
us that the value of l = (n/N) · k is optimal for high marked vertex densities.

Figure 10 shows the probability of success for the search of marked adjacent
and non-adjacent vertices in the search space. We performed an experiment,
where, at every hundred steps, an adjacent vertex and a non-adjacent vertex were
marked, i.e., for each M set of adjacent vertices a vertex i /∈ M was marked ran-
domly, then, M ′ = {0, 1, i0}, {0, 1, i0, 2, i1}, · · · , {0, 1, i0, 2, i1, 4, i2, · · · , 512, i10}.
Figure 10a shows the probability of success for l = (n/N) and Fig. 10b shows
the probability of success for l = (n/N) · k. Note that the probability of success
above 90% is achieved in a smaller number of steps.

Fig. 10. Probability of success after 100 steps with n = 10 and N = 1024 vertices.
(a) shows the probability of success for k adjacent and non-adjacent marked vertices
for l = (n/N). (b) shows the probability of success for k adjacent and non-adjacent
marked vertices for l = (n/N) · k. (Color figure online)

4 Conclusions

Many efforts are applied in order to improve the performance of quantum search
algorithms. Quantum walks are the main tool for building these algorithms. We
initially analyzed the quantum walk in the hypercube applying Grover’s search
and came to the conclusion that neighbor vertices affect the search performance,
an observation that has been corroborated by other authors. We found that the
walk could not improve its results even for a number of marked vertices equal
to one. Many authors have developed works for adding self-loops in various
types of graphs and grids of different dimensions. In this sense, we decided to
investigate how to improve the quantum search in the hypercube using self-loops.
Previous works defined the optimal self-loop value as l = (d/N) for one marked
vertex to the quantum walk on the hypercube. After performing experiments
we saw that this value of l was not optimal for multiple marked vertices. We
arrive at a value of l = (n/N) · k for an arbitrary number of vertices. This
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value is also used when searching in two-dimensional grids. Another aspect of
the quantum walk in the hypercube is whether the marked vertex is adjacent
or not, this interferes with the search performance. We then analyzed whether
the value of l = (n/N) and l = (n/N) · k had any positive effect when applied
to the hypercube vertices. The results show that the value of l = (n/N) is not
optimal for the quantum walk in the hypercube with multiple marked vertices
adjacent or not. It also shows that for a search space where there are marked
adjacent vertices, just one non-adjacent marked vertex is sufficient for the value
of l = (n/N) · k to be better. According to the results presented here, there
is a greater than 90% probability that the measurement will collapse in one of
the solutions. Recent works have used the quantum walks to search weights and
train artificial neural networks [19,20]. The quantum walk in the hypercube has
an interesting behavior, the amplification of neighbors vertices. In future work,
we intend to use this quantum walk to find a set of weights to initialize and train
classical artificial neural networks. We also intend to analyze the quantum walk
in the hypercube with multiple weighted self-loops.
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Abstract. Gene Regulatory Networks (GRNs) inference from gene
expression data is a hard task and a widely addressed challenge. GRNs
can be represented as Boolean models similarly to digital circuits. Carte-
sian Genetic Programming (CGP), often used for designing circuits, can
thus be adopted in the inference of GRNs. The main CGP operator for
generating candidate designs is mutation, making its choice important
for obtaining good results. Although there are many mutation operators
for CGP, to the best of our knowledge, there is no analysis of them in
the GRN inference problem. An evaluation of the Single Active Muta-
tion (SAM) and the Semantically-Oriented Mutation Operator (SOMO)
is performed here for GRNs inference. Also, a combination of both oper-
ators is proposed. We use a benchmark single-cell RNA-Sequencing time
series data and its evaluation pipeline to measure the performance of the
approaches. The experiments indicate that (i) combining SOMO and
SAM provides the best results, and (ii) the results obtained by the pro-
posal are competitive with those from state-of-the-art methods.

1 Introduction

Systems Biology is an interdisciplinary research area that focuses on the compu-
tational and mathematical analysis of interactions among the components of a
biological system [28]. All cellular activities are controlled by their genes through
a network that forms proteins from DNA. The gene expression depends on the
relationships in this network, known as Gene Regulatory Network (GRN) [13].

Several methods have been developed for the inference of GRNs, such as
PIDC [3], that uses partial information decomposition (PID) to identify regu-
latory relationships between genes, GENIE3 [12], winner of the DREAM5 net-
work challenge, that decomposes the prediction of a regulatory network among p
genes into p different regression problems, and GRNBoost2 [19], that is based on
GENIE3, and uses a Gradient Boosting Machine (GBM) regression [7]. GENIE3
c© Springer Nature Switzerland AG 2021
A. Britto and K. Valdivia Delgado (Eds.): BRACIS 2021, LNAI 13073, pp. 264–279, 2021.
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and GRNBoost2 are provided in the same Python package Arboreto [19]. Also,
evolutionary computation techniques have been applied to infer gene regulatory
networks. For instance, one can find the application of Genetic Programming
and Evolutionary Strategies in this context [15,26].

GRNs can be modeled as continuous models in the form of differential equa-
tions or as discrete models, such as Bayesian and Boolean networks. For discrete
models, a common scheme for representing the genes’ interactions is an alphabet
of two symbols Γ = {0,1}, where 0 means inhibition and 1 means activation. A
model for this type of network is similar to digital circuits, which can be evolved
using Cartesian Genetic Programming (CGP) [18], as presented in [24,25].

Although it is possible to use recombination operators, CGP mostly uses
mutation operators to create genetic variation in its offspring. There is no
general-purpose crossover operator with good performance for CGP [17]. Point-
mutation, in which a gene is randomly chosen and changed to another value,
and Single Active Mutation (SAM) [9] that guarantees a phenotypic difference
after the mutation, are two common mutation approaches used on CGP.

Recently, the Semantically-Oriented Mutation Operator (SOMO) was devel-
oped for designing evolutionary circuits [11]. SOMO can obtain feasible circuits
using less computational effort than other approaches from the literature, and
this advantage helps to deal with the scalability limitation of CGP. However,
SOMO uses only a specific population initialization in order to optimize the cir-
cuit in terms of reducing the number of logic elements. There is not a proper
optimization step. Also, point-mutation has a parameter, μr, which defines the
percentage of the genotype to be mutated. SOMO, on the other hand, has more
sensitive parameters that control the genetic variation of the offspring.

Therefore, in this paper, we propose the evaluation and analysis of CGP
when applied to the context of the gene regulation networks inference by using
benchmark curated models with single-cell RNA-Sequencing (scRNA-Seq) time-
series gene expression data technology. Here, we provide a critical assessment of
the advantages and disadvantages of using SOMO, with and without an appro-
priate optimization scheme with SAM. Furthermore, we perform a parameter
sensitivity analysis of SOMO. Also, the results obtained by the proposal in the
computational experiments are better than those found by other GP approaches
and similar to those reached by the state-of-the-art algorithm GENIE3, one of
the techniques more widely used in the literature for modeling GRNs. Our results
show that it is important to have an optimization step to obtain correct GRNs
and that SOMO is very sensitive to its parameters.

2 Problem Definition

The usual research aim is to infer the network topology from given gene expres-
sion data [1]. The gene expression data can be given as a steady-state or time-
series matrix. For the former, each measure represents the expression level of a
given gene in a certain condition and, for the latter, the gene expression mea-
surements is carried out in each time point. Considering N the total number of
genes and S the total number of time-points measured, a gene expression dataset
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(a) GRN. (b) CGP individual’s representation.

Fig. 1. Illustrations of a GRN with four genes (G1-G4) (a) and an individual of CGP
(b). The representation is composed by three primary inputs (I0, I1, and I2) and one
output (O0). Continuous lines defines the phenotype. In this representation, nc = nr

= 3 and the function set Γ = {AND, OR, NOT, XOR}.

is represented by a S x N matrix, where each row vector s (s = 1, ..., S) repre-
sents a N-dimensional transcriptome, and each column vector y (y = 1, ..., N)
corresponds to a S-dimensional gene profile in the total cell population [4]. The
goal of the network inference method is to use the data matrix to predict a set
of regulatory interactions between any two genes from the total of N genes. The
final output is in the form of a graph with N nodes and a set of edges [4].

Figure 1a shows an example of a GRN with four genes (nodes) and their
regulatory relationships (edges). Blue pointed arrows represent an activation
and orange lines, inhibition. For example, G1 activates G2, and G4 inhibits G3.

Discrete and continuous models of GRNs are often used to understand the
process. When considering continuous models, it is common to use differential
equations to model the regulatory relationships between genes, such as presented
in [8,24]. This type of model uses the concentrations of the macromolecules such
as RNAs and proteins (both are gene products) and other biological species
concentration, modeling them through the time-rate-of-change of their concen-
tration variables. Regulatory interactions take the form of functional and differ-
ential relationships between concentration variables [22]. More specifically, gene
regulation is modeled by rate equations that express the rate of production of a
system component as a function of the concentrations of other components.

Also, it is possible to model GRNs through a discrete model, such as Boolean
Networks. Boolean Networks use Boolean Algebra to discover the relationship
between genes. Moreover, Boolean networks assume each gene g at a time point
t to be in one of two states, active or inactive, according to its gene expression
data at time t [2], therefore, one needs to binarize the data, leading to infor-
mation loss. Given a threshold, the data is discretized in 1 (activation) or 0
(inhibition). Boolean-based models simplify the structure and dynamics of gene
regulation. Inferred networks provide a quantitative measure of gene regulatory
mechanisms [22]. This model, despite its simplicity, can represent, through its
dynamics, several biologically significant phenomena. Furthermore, it is possible
to obtain several practical uses, such as the identification of drugs for cancer
treatment through the inference of the relationships between genes from exper-
imental data such as gene expression profiles [16].
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There are several techniques for measuring the expression of a gene. For
instance, single-cell RNA-Sequencing (scRNA-seq) is attractive for GRN inference
due to its production of thousands of independent measurements [14] and there are
methods that sort cells along “trajectories” describing the development or progress
of the cell [10,21,23,27], called pseudotime, which is a measure of how far a cell has
moved through biological progress. Also, when using scRNA-Seq data technolo-
gies, it is common to observe a dropout, which occurs when a gene is observed at
a low or moderate expression level in one cell but it is not detected in another cell
of the same type. Dropouts make it difficult to get correct GRNs.

3 Cartesian Genetic Programming

Cartesian Genetic Programming is a Genetic Programming technique in which
programs are Directed Acyclic Graphs (DAGs) encoded by a matrix of processing
nodes, with nc columns and nr rows. [17]. The genes are integer values and, for
each gene, there are inputs and operation/function that the node performs.

Given a node in the matrix, the nodes at its left side can be used as inputs.
There is a user-defined parameter (levels-back) that limits the number of columns
at the left side where inputs can be selected to constrain the connectivity of the
graph. The number of inputs that a node can receive is called arity. Also, the
genotype contains nodes that contribute directly to the output, called active
nodes, and those that do not, the inactive nodes. The phenotype is composed
only of the active nodes and the genotype-phenotype mapping is done by recur-
sively determining the nodes that contribute to each output, starting on the
output and ending on the primary inputs. The function set is user-defined and
problem-dependent. For example, logic functions or gates are used when design-
ing digital circuits. Figure 1b presents a CGP individual with three primary
inputs and one output. The functions are logical ones. Grey nodes are active
and white nodes, inactive. The most common search technique used in CGP
is the (1 + λ) Evolutionary Strategy (ES) [17], where λ is the number of new
solutions generated at each iteration. In this case, the best individual, the one
with more matches concerning its truth-table, between the parent and the λ new
generated solutions is selected for the next generation.

3.1 Mutation Operators

CGP normally uses only mutation to generate new individuals and crossover
operators have received little attention in the CGP [17]. The two most adopted
mutation approaches are point mutation [17] and SAM [9].

Point mutation is a simple approach that randomly selects a node and a
gene and changes it to another valid value. However, the changes may occur in
inactive nodes leading to a lack of modifications in the phenotype.

SAM, proposed for reducing the number of wasted objective function eval-
uations, operates by (i) randomly selecting one node and one of its elements
(inputs or function) and (ii) changing its value to another valid value. Steps (i)
and (ii) are repeated until an active node is modified. As a result, SAM ensures
that one active node is changed.
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Algorithm 1. Semantically-oriented mutation operator [11].
Input: A CGP individual p consisting of |C| nodes
Output: A mutated individual p’

1: (C, E, CPI , CPO, Ψ) ← decode(p); � decode p as a DAG (C, E) with CPI leaves
and CPO roots (outputs); Ψ : C → Γ

2: N ← activeNodes; c ← selectNodeRandomly(N / CPI)
3: if (rand(0,1) < pf ∧ (c /∈ CPO) then � mutate node function
4: Ψ(c) ← rand(0, Γ -1)
5: else � mutate node connection
6: change connection and function of pq inactive nodes
7: e ← selectInputEdgeRandomly({(x, c) ∈ E|x ∈ N)}
8: n ← identifyBestNode(c, e, (C,E), Ψ); E ← (E / {e}) ∪ {(n, c)}
9: end if

10: return p’ ← encode(C,E,CPI ,CPO,Ψ)

SOMO [11] was developed for the design of digital circuits using CGP, where
the purely stochastic mutation operator is replaced and operates in the phe-
notype space. The SOMO steps are presented in Algorithm 1, which can be
summarized as: (i) all inactive nodes have their inputs changed randomly to
another valid value; functions are changed with a probability pf ; (ii) a random
node (c) is chosen, in order to be mutated using SOMO; (iii) c has its func-
tion modified randomly with a probability pf ; (iv) a random input (e) is chosen
from c. Step (i) ensures that new genetic material is generated before performing
the actual mutation. With the random input (e) chosen, SOMO identifies the
best input considering all previous nodes in the genotype and then performs the
mutation.

The identification of the most suitable node is based on semantics. Initially,
it calculates the score of every node of the genotype that may be connected to
the mutated node c. If more nodes receive the same score, the node closest to
the program inputs is preferred. The score reflects the Hamming distance (HD).
In the sequence, all left-sided nodes from the mutated node c are connected at
e and simulated in three different ways: (a) using the function of the node being
connected, (b) forcing e to logic zero (val

[0]
e=0), and (c) forcing e to a logic one

(val
[0]
e=1). The desired input value is denoted as req and it can be equal to ‘0’, ‘1’

or ‘X’, where ‘X’ means that it does not matter what Boolean value the input e
takes. The value of req is determined by using the ternary operator Θ and the
reduction operator

⊙
, defined in Equations 1 and 2. The term [o] in superscript

points to a Boolean value associated with a program output node o.

Θ(t, v0, v1) =

⎧
⎨

⎩

‘X ′, v0 = v1
‘0′, v0 = t
‘1′, v1 = t

(1)
⊙

(a, b) =
{

a, a �= ‘X ′

b, otherwise (2)
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Algorithm 2. Semantically-oriented mutation operator with SAM.
1: (C, E, CPI , CPO, (Ψ) ← decode(p); � decode p as a DAG (C, E) with CPI leaves

and CPO roots (outputs); Ψ : C → Γ
2: N ← activeNodes
3: c ← selectNodeRandomly(N / CPI)
4: if feasible == False then
5: perform SOMO � Described in Algorithm 1
6: else � perform SAM
7: while an active node is not selected and mutated do
8: c ← selectNodeRandomly(N / CPI)
9: g ← rand(0, arity-1)

10: if g == arity-1 then � mutate node function
11: Ψ(c) ← rand(0, Γ -1)
12: else
13: Mutate node connection of c
14: end if
15: if c ∈ N then
16: An active node was selected and mutated
17: end if
18: end while
19: end if
20: return p’ ← encode(C,E,CPI ,CPO,Ψ)

In SOMO, the mutated input e of c is connected to the best node in the
genotype of the current generation. Differently from the standard CGP, SOMO
uses λ = 1 and a different population initialization. In SOMO, the population is
started with a candidate solution having no active gate in order to maximize the
efficiency and minimize the number of active gates of the evolved solutions [11].

4 Proposal and Methods

Here, we evaluate different approaches using SOMO aiming at discovering if
using an appropriate optimization step helps it to obtain better GRNs. We
propose the use of SOMO with SAM as (i) SOMO can obtain a feasible solution
quickly but with many logic elements, and (ii) SAM is appropriate for reducing
the number of logic elements. The proposal is presented in Algorithm 2.

In [11], the percentage of inactive nodes to be mutated (pq) is equal to 100.
Here, we analyze the performance of SOMO when using pq = 50% with SAM as
optimization step. In addition, as highlighted in [11], SOMO usually gets stuck in
local optima. To avoid this issue, we use a restart strategy for exploiting different
locations of the search space. The restart strategy consists of initializing a new
population and restart the search for every k objective function evaluations.

The criteria for evaluating and comparing methods are varied, but [20] pre-
sented a set of benchmark problems when considering scRNA-Seq data for infer-
ring GRNs. This set is composed of toy, curated, and real datasets. For toy and
curated models, we have the ground-truth network, which facilitates the evalu-
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ation of new methods. Also, there is an extensive comparison between several
algorithms from the literature using the pipeline provided in [20].

In this paper, we use curated scRNA-seq data in the form of pseudotime-
series. These datasets were made considering 2,000 cells with three configura-
tions: 0%, 50%, and 70% dropout rates. For each configuration, 10 datasets are
given. Furthermore, each problem has a different number of pseudotimes.

As each pseudotime gives information about one possible cell trajectory, for
each pseudotime one GRN is inferred. Then, the final GRN is given by merging
the partial GRNs discovered for each pseudotime. This final GRN is evaluated
considering the pipeline presented in [20] which considers the area under the
precision-recall curve (AUPRC) and the area under the receiver operating char-
acteristic curve (AUROC) values for comparison. AUPRC is calculated as the
area under the precision-recall (PR) curve and shows the trade-off between pre-
cision and recall across different decision thresholds. The x-axis of a PR curve is
the recall and the x-axis is the False-Positive Ratio (FPR). Considering TP as
True Positive, FP as False Positive and FN as False Negative, we can define Pre-
cision = TP

TP+FP and Recall = TP
TP+FN . For AUROC, the ROC curve is plotted

considering the False-Positive Ratio (FPR) on the x-axis and the Recall, on the
y-axis. Recall was defined previously and FPR = FP

TN+FP . An excellent model
has AUC close to 1, which means it has good separability. For many real-world
datasets, particularly medical datasets, the fraction of positives is often less than
0.5, meaning that AUPRC has a lower baseline value than AUROC [6].

5 Computational Experiments

Computational experiments were conducted to analyze the performance of CGP
mutation operators when applied to the inference of GRNs using the benchmark
scRNA-Seq time-series data from [20]. Here, we highlight whether obtaining
feasible solutions in a faster way has a positive impact on the quality of the solu-
tions. Also, we analyze the importance of reducing the number of logic elements.
The computational experiments are composed of two parts: (i) the performance
of CGP variants are compared and, (ii) the results obtained by the two best
CGP approaches are compared to those found by GENIE3.

The problems considered in our analysis are presented in Table 1, with infor-
mation of the number of genes (#Genes) and the number of pseudotimes (#Pseu-
dotimes). These problems are curated models with 2,000 cells and are presented
in three different configurations considering 0%, 50%, and 70% dropout.

In order to remove or soften the effects of technical and biological variations
as well as obtain a single curve that represents gene expression over time, we use
data approximation via cubic smoothing splines implemented in Python and dis-
tributed through the library csaps1. Then, the data is binarized with Bikmeans
through Gene Expression Data Pre-Processing Tool (GEDPROTOOLS)2. All
methods were implemented in C++ and the source codes are available 3.
1 https://csaps.readthedocs.io/en/latest/index.html.
2 http://lidecc.cs.uns.edu.ar/files/gedprotools.zip.
3 https://github.com/ciml.

https://csaps.readthedocs.io/en/latest/index.html
http://lidecc.cs.uns.edu.ar/files/gedprotools.zip
https://github.com/ciml
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Table 1. Problems used in the experiments.

Problem #Genes #Pseudotimes

HSC 11 4

mCAD 5 2

VSC 8 5

The experiments were run in a Ubuntu Server 20.04 LTS (HVM) with 16
vCPUs Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz and 30GB RAM and the
results are evaluated using the pipeline presented in [20] which considers the
AUPRC and AUROC values for comparison.

5.1 Comparative Analysis of the CGP Techniques

We compare the standard CGP with SAM and the CGP with SOMO in dif-
ferent approaches: (i) CGP: Standard CGP using SAM for obtaining the first
feasible solution and for optimizing; (ii) SOMO: CGP using SOMO without
optimization step; (iii) SOMO-SAM: CGP using SOMO with optimization step;
(iv) SOMO-SAM-R: CGP using SOMO with optimization step and evolution-
ary search restart; (v) SOMO-SAM-PQ50: CGP using SOMO with optimization
step and pq = 50%. The suffix R means that the evolutionary process is restarted
with a different initial population every 1,000 evaluations.

Here, we aim to evaluate the performance of SOMO with an appropriate
optimization step. SOMO is able to obtain feasible solutions in a faster way
than other approaches but this solution usually has many logic elements.

For the standard CGP, we use λ = 4 and random population initialization.
When considering SOMO, we use λ = 2, pf = 0 and the population initialization
suggested in [11]. Also, in [11] the value of nc is variable, considering a multiple
of the number of standard gates required to implement each circuit. However,
the definition of the number of gates to implement a circuit cannot be easily
defined a priori and, hence, we fixed nc as usually considered when using the
standard CGP and used only nc = 100. The other parameters are nr = 1 and
lb = nc. For each problem, 5 independent runs were performed with a maximum
of 100,000 objective function evaluations. For SOMO-SAM-R, the number of
evaluations to restart is 1,000 and was defined during preliminary experiments,
analyzing the average number of evaluations needed to find a feasible solution.
Also, the accumulated number of evaluations is used in the stop criteria.

Tables 2 and 3 present the results of the CGP methods, respectively, for
AUPRC and AUROC. The best (maximum), first quantile (Q1), Median, Mean,
third quantile (Q3), and standard deviation values of the results are shown, and
the best values are highlighted in boldface. Also, the methods with an asterisk
have statistical difference, when considering Dunn’s test for 95% of confidence.

Based on these results, one can see that the results of SOMO-SAM and
SOMO-SAM-R are equal in some cases. This is expected as the first feasible
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Table 2. AUPRC results for all problems. The suffix after the problem’s name is the
dropout rate.

Algorithm Best Q1 Median Mean Q3 Worst Std.

HSC-0

CGP 0.4032 0.2535 0.2658 0.2901 0.3198 0.2241 5.63E-02

SOMO 0.4637 0.2691 0.2881 0.2986 0.3048 0.2253 6.01E-02

SOMO-SAM 0.4177 0.2679 0.2760 0.3023 0.3261 0.2396 5.61E-02

SOMO-SAM-R 0.4265 0.2634 0.2763 0.3044 0.3329 0.2438 5.74E-02

SOMO-SAM-PQ50 0.4626 0.2960 0.3082 0.3277 0.3532 0.2434 6.08E-02

HSC-50

CGP 0.4167 0.2998 0.3527 0.3440 0.3876 0.2509 5.28E-02

SOMO∗ 0.3738 0.3014 0.3093 0.3093 0.3282 0.2450 3.46E-02

SOMO-SAM 0.4290 0.3050 0.3771 0.3565 0.3872 0.2718 5.42E-02

SOMO-SAM-R 0.4325 0.2812 0.3569 0.3480 0.4114 0.2523 6.58E-02

SOMO-SAM-PQ50∗ 0.4759 0.3275 0.3831 0.3660 0.3952 0.2608 5.88E-02

HSC-70

CGP 0.3502 0.2714 0.2857 0.2915 0.2979 0.2462 3.25E-02

SOMO 0.4490 0.2682 0.2891 0.3074 0.3419 0.2284 6.41E-02

SOMO-SAM 0.3806 0.2608 0.2785 0.2962 0.3082 0.2562 4.39E-02

SOMO-SAM-R 0.4166 0.2751 0.2859 0.2964 0.3050 0.2417 4.42E-02

SOMO-SAM-PQ50 0.4001 0.2891 0.3055 0.3151 0.3361 0.2597 4.00E-02

mCAD-0

CGP 0.7508 0.5719 0.6452 0.6540 0.7508 0.5291 8.65E-02

SOMO 0.8361 0.5675 0.6049 0.6770 0.8361 0.5371 1.32E-01

SOMO-SAM 0.7844 0.6238 0.6522 0.6871 0.7844 0.5843 8.22E-02

SOMO-SAM-R 0.7844 0.6238 0.6522 0.6871 0.7844 0.5843 8.22E-02

SOMO-SAM-PF50 0.7631 0.5917 0.6369 0.6642 0.7631 0.5506 8.50E-02

mCAD-50

CGP∗ 0.6561 0.6081 0.6403 0.6281 0.6561 0.5515 3.31E-02

SOMO∗ 0.6020 0.5374 0.5737 0.5689 0.6020 0.5212 3.36E-02

SOMO-SAM∗ 0.6614 0.5874 0.6536 0.6282 0.6614 0.5669 3.85E-02

SOMO-SAM-R∗ 0.6614 0.5874 0.6536 0.6282 0.6614 0.5669 3.82E-02

SOMO-SAM-PF50 0.6645 0.5861 0.6431 0.6203 0.6431 0.5651 3.33E-02

mCAD-70

CGP 0.7624 0.5766 0.6452 0.6466 0.6926 0.5596 7.13E-02

SOMO 0.8361 0.5799 0.6073 0.6577 0.7407 0.5402 1.06E-01

SOMO-SAM 0.7960 0.6274 0.6522 0.6793 0.7462 0.5843 7.53E-02

SOMO-SAM-R 0.7960 0.6274 0.6522 0.6793 0.7462 0.5843 7.53E-02

SOMO-SAM-PF50 0.7747 0.6109 0.6369 0.6618 0.7284 0.5648 7.32E-02

VSC-0

CGP 0.4683 0.2789 0.3138 0.3217 0.3287 0.2338 6.67E-02

SOMO 0.3930 0.2660 0.2892 0.3011 0.3282 0.2205 5.23E-02

SOMO-SAM 0.3860 0.2643 0.3131 0.3134 0.3634 0.2368 5.16E-02

SOMO-SAM-R 0.4222 0.2456 0.2640 0.3021 0.3546 0.2293 6.91E-02

SOMO-SAM-PF50 0.4951 0.2749 0.3286 0.3290 0.3624 0.2287 7.41E-02

VSC-50

CGP 0.3730 0.2275 0.2590 0.2709 0.3071 0.1938 5.32E-02

SOMO 0.4035 0.2665 0.2952 0.3024 0.3376 0.2218 5.10E-02

SOMO-SAM 0.4645 0.2325 0.2541 0.2765 0.2696 0.2018 7.47E-02

SOMO-SAM-R 0.4317 0.2383 0.2634 0.2828 0.3144 0.2209 6.15E-02

SOMO-SAM-PF50 0.4784 0.2226 0.2675 0.2860 0.3147 0.2117 7.81E-02

VSC-70

CGP 0.4671 0.3069 0.3431 0.3607 0.4395 0.2457 7.50E-02

SOMO 0.4208 0.2479 0.2978 0.3007 0.3442 0.2235 6.69E-02

SOMO-SAM 0.4357 0.3014 0.3674 0.3496 0.3858 0.2409 6.10E-02

SOMO-SAM-R 0.4361 0.2596 0.3172 0.3213 0.3735 0.2191 6.94E-02

SOMO-SAM-PF50 0.4278 0.3013 0.3292 0.3289 0.3621 0.2329 5.73E-02
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Table 3. AUROC results for all problems. The suffix after the problem’s name is the
dropout rate. Algorithms marked with an asterisk have statistical difference.

Algorithm Best Q1 Median Mean Q3 Worst Std.

HSC-0

CGP 0.6376 0.5160 0.5413 0.5517 0.5951 0.4531 5.54E-02

SOMO 0.6186 0.5171 0.5598 0.5538 0.5739 0.5066 3.78E-02

SOMO-SAM 0.7060 0.5224 0.5654 0.5726 0.5967 0.4975 6.34E-02

SOMO-SAM-R 0.6969 0.5484 0.5568 0.5858 0.6108 0.5103 5.98E-02

SOMO-SAM-PQ50 0.6962 0.5870 0.5960 0.6060 0.6467 0.5089 5.71E-02

HSC-50

CGP 0.6827 0.5684 0.6197 0.6097 0.6465 0.5039 5.47E-02

SOMO 0.6625 0.5525 0.5834 0.5822 0.6207 0.4906 5.46E-02

SOMO-SAM 0.7109 0.5861 0.6268 0.6255 0.6542 0.5412 5.12E-02

SOMO-SAM-R 0.7141 0.5524 0.6006 0.6085 0.6758 0.5055 7.14E-02

SOMO-SAM-PQ50 0.7596 0.6071 0.6493 0.6419 0.6658 0.5391 5.64E-02

HSC-70

CGP 0.6172 0.5171 0.5488 0.5552 0.5912 0.4966 4.14E-02

SOMO 0.6564 0.5218 0.5970 0.5828 0.6324 0.5092 5.59E-02

SOMO-SAM 0.6516 0.5192 0.5616 0.5628 0.6161 0.4652 6.07E-02

SOMO-SAM-R 0.6777 0.5243 0.5604 0.5593 0.5705 0.5089 4.58E-02

SOMO-SAM-PQ50 0.6861 0.5734 0.5815 0.5982 0.6053 0.5588 3.84E-02

mCAD-0

CGP 0.6264 0.3750 0.5165 0.4978 0.6264 0.3242 1.22E-01

SOMO 0.6703 0.4148 0.4615 0.5176 0.6703 0.3681 1.28E-01

SOMO-SAM 0.6923 0.4959 0.5330 0.5742 0.6923 0.4231 1.01E-01

SOMO-SAM-R 0.6923 0.4959 0.5330 0.5742 0.6923 0.4231 1.01E-01

SOMO-SAM-PQ50 0.6484 0.4217 0.4973 0.5203 0.6484 0.3736 1.12E-02

mCAD-50

CGP 0.5440 0.4286 0.4863 0.4736 0.5440 0.3352 7.49E-02

SOMO∗ 0.4560 0.3626 0.4093 0.4055 0.4560 0.3352 5.11E-02

SOMO-SAM∗ 0.5440 0.4341 0.4973 0.4852 0.5440 0.3791 6.13E-02

SOMO-SAM-R∗ 0.5440 0.4341 0.4973 0.4852 0.5440 0.3791 6.13E-02

SOMO-SAM-PQ50 0.5055 0.4286 0.4918 0.4659 0.5055 0.3681 4.66E-02

mCAD-70

CGP 0.6319 0.4135 0.5055 0.4934 0.5412 0.3626 8.99E-02

SOMO 0.6703 0.4313 0.4753 0.5027 0.5632 0.3681 1.01E-01

SOMO-SAM 0.6978 0.4973 0.5522 0.5604 0.6195 0.4231 8.79E-02

SOMO-SAM-R 0.6978 0.4973 0.5522 0.5604 0.6195 0.4231 8.79E-02

SOMO-SAM-PQ50 0.6538 0.4602 0.500 0.5176 0.5797 0.3736 8.75E-02

VSC-0

CGP 0.6805 0.5014 0.5541 0.5608 0.6280 0.4211 7.78E-02

SOMO 0.6382 0.5006 0.5581 0.5440 0.5839 0.4236 6.30E-02

SOMO-SAM 0.6878 0.5089 0.5496 0.5659 0.6222 0.4707 7.06E-02

SOMO-SAM-R 0.6512 0.4848 0.5154 0.5462 0.6394 0.4301 8.36E-02

SOMO-SAM-PQ50 0.7220 0.5167 0.5508 0.5603 0.5982 0.4276 8.25E-02

VSC-50

CGP 0.6854 0.4280 0.5272 0.5113 0.5742 0.3415 1.01E-01

SOMO 0.6415 0.4754 0.5488 0.5372 0.6085 0.3699 8.32E-02

SOMO-SAM 0.7154 0.4467 0.4732 0.5049 0.5327 0.3659 1.01E-01

SOMO-SAM-R 0.6585 0.4591 0.5106 0.5217 0.5817 0.3894 7.97E-02

SOMO-SAM-PQ50 0.7309 0.4213 0.4699 0.5091 0.5602 0.4114 1.03E-02

VSC-70

CGP 0.7707 0.5583 0.6130 0.6199 0.6929 0.4593 9.13E-02

SOMO 0.7057 0.5071 0.5325 0.5480 0.5872 0.4317 8.53E-02

SOMO-SAM 0.7122 0.5630 0.6276 0.6023 0.6648 0.400 8.88E-02

SOMO-SAM-R 0.7415 0.5018 0.5780 0.5745 0.6433 0.4065 9.74E-02

SOMO-SAM-PQ50 0.7154 0.5545 0.5992 0.5841 0.6457 0.4057 9.95E-02
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Table 4. Algorithm counting considering the best values of median. Values between
parenthesis is the algorithm counting considering the statistical equality.

Algorithm AUPRC Count AUROC Count

CGP 0(8) 0(8)

SOMO 1(8) 3(9)

SOMO-SAM 4(8) 4(9)

SOMO-SAM-R 3(8) 3(9)

SOMO-SAM-PQ50 4(8) 2(8)

solution was obtained before reaching the first restart point (1,000 evaluations).
In general, most CGP approaches have no statistical difference when compared
to each other, both in AUPRC and AUROC. When considering the median, we
count the times that each algorithm reached the best result. Values in parenthe-
ses consider the statistical tests and when there is no statistical difference, all
methods score. This counting is shown in Table 4.

Also, the approaches using an optimization step performed better than the
other ones. The restart scheme helps to escape from local optima but it does not
provide good results. Furthermore, the results when using pq = 50% are better
than the standard values presented in [11]. The SOMO population initialization
is essential for a good performance of the algorithm as well as using λ = 1.

Finally, based on Table 4, one can conclude that the best methods are SOMO-
SAM and SOMO-SAM-PQ50 when AUPRC is considered. For AUROC, the best
algorithms are SOMO-SAM and SOMO. However, here we consider one approach
using the standard SOMO with SAM as optimization step (SOMO-SAM) and
another approach varying the parameter pq, namely SOMO-SAM-PQ50.

5.2 Comparative Analysis with GENIE3

As observed in Sect. 5.1, the two best CGP variants are SOMO-SAM and
SOMO-SAMPQ50, and we compare them here with GENIE3. According to [20],
GENIE3 is the best algorithm for inferring GRNs. Performance profiles (PPs) [5]
were used in order to analyze the relative performance of the algorithms. Con-
sidering p as a particular problem (model) and s as a particular solver, ρ(p, s) is
defined as the performance ratio within a factor of τ of the best possible ratio.

From PPs, it is possible to extract: (i) the approach that obtained the best
results for most problems (largest ρ(1)), (ii) the most reliable approach (smaller
τ such that ρ(τ) = 1), and (iii) the best overall performance (largest area under
the performance profiles curves). Moreover, boxplots of the results are presented
in Fig. 2. Also, Kruskal Wallis statistical test and Dunn’s post hoc test were
carried out and the results show that there is statistical difference only when
comparing CGP approaches with GENIE3.

Based on the PPs presented in Fig. 3 is possible to conclude that: (i) GENIE3
has the best performance in most of the problems (largest ρ(1)), followed by
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(a) Results for HSC AUPRC (b) Results for HSC AUROC

(c) Results for mCAD AUPRC (d) Results for mCAD AUROC

(e) Results for VSC AUPRC (f) Results for VSC AUROC

Fig. 2. Results for the problems considering all scenarios.
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Fig. 3. PPs considering AUPRC and AUROC for the best approaches.

SOMO-SAM and SOMO-SAM-PQ50, respectively. (ii) GENIE3 is the most reli-
able variant (smallest τ such that ρ(τ) = 1), followed by SOMO-SAM-PQ50 and
SOMO-SAM, respectively, and; (iii) GENIE3 presents the best overall perfor-
mance (largest AUC), followed by SOMO-SAM-PQ50 and SOMO-SAM, respec-
tively. Thus, GENIE3 is a good choice when considering only AUPRC. However,
as highlighted in Sect. 4, for many real-world medical datasets the fraction of
positives is often less than 0.5.

On the other hand, when considering the performance profiles of AUROC, we
can conclude that: (i) GENIE3 hast the best performance in most of the prob-
lems, followed by SOMO-SAM and SOMO-SAM-50, respectively; (ii) SOMO-
SAM and SOMO-SAM-PQ50 are the most reliable variants, and; (iii) SOMO-
SAM presents the best overall performance, followed by SOMO-SAM-PQ50 and
GENIE3, respectively. Then, SOMO-SAM highlights the importance of using an
appropriate optimization step.

Also, SOMO is very sensitive to the parameter pq, i.e. keeping some inactive
nodes unchanged before performing SOMO helps to obtain better results. One
possible reason is the fact that, when using SAM, we adopt λ = 4, then, CGP
is able to create more diverse offspring than with λ = 1 as the standard SOMO
uses. However, only when considering mCAD, approaches that use CGP obtained
better results on AUPRC and AUROC. With respect to mCAD it is interesting
to highlight that this problem is the only one with 2 pseudotimes. The evaluation
pipeline considers the “top k” regulatory relationships and, when merging the 2
solutions to obtain the final GRN, it is possible to construct a smaller GRN (less
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number of regulatory relationships) that consider the most important regulatory
relationships leading to a better evaluation.

The statistical tests show that there is no statistical difference between the
CGP approaches. The statistical difference is observed only when comparing the
CGP variants with GENIE3, reinforcing the superiority of GENIE3 as shown in
the AUPRC boxplots.

6 Conclusions and Future Work

Here, we analyze the performance of CGP mutation operators applied when
inferring GRN using benchmark curated scRNA-seq time series data. These
approaches include mainly two aspects: (i) a proposal using SAM to optimize
the solution obtained by SOMO, and (ii) a parameter sensitivity analysis for
SOMO.

We compared the CGP approaches, and the best-obtained CGP methods
with GENIE3. The results show that modifying pq to 50% helped CGP to obtain
better results, as a more diverse offspring is generated. GENIE3 performed better
in most problems, except in mCAD. The mCAD problem has only two pseudo-
times and the CGP solutions’ merge can obtain a smaller GRN that is better
evaluated in the pipeline. Also, there is no statistical difference between the
CGP approaches, but there is when comparing the CGP variants with GENIE3.
According to PPs, GENIE3 obtained the best results in general but one can
highlight that both SOMO-SAM and SOMO-SAM-PQ50 are more reliable when
AUROC is considered. Furthermore, the use of SOMO for obtaining faster first
feasible solutions and SAM as an appropriate optimization step helps CGP to
obtain better results when inferring gene regulatory networks when compared
to the standard SOMO and to the standard CGP. Thus, one can conclude that
using SAM with SOMO improves the inferred GRNs.

As future work, we intend to explore even more the SOMO parameters,
considering other values of pq and pf in the context of the inference of GRNs and
the impact of nc when adopting values of λ > 1. Also, we intend to investigate
the impact of the number of pseudotimes in the merging step of CGP.
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Abstract. General and adaptive strategies have been a highly pursued
goal of the optimization community, due to the domain-dependent set
of configurations (operators and parameters) that is usually required
for achieving high quality solutions. This work investigates a Deep Q-
Network (DQN) selection strategy under an online selection Hyper-
Heuristic algorithm and compares it with two state-of-the-art Multi-
Armed Bandit (MAB) approaches. We conducted the experiments on
all six problem domains from the HyFlex Framework. With our defini-
tion of state representation and reward scheme, the DQN was able to
quickly identify the good and bad operators, which resulted on better
performance than the MAB strategies on the problem instances that a
more exploitative behavior deemed advantageous.

Keywords: Hyper-Heuristic · Reinforcement Learning ·
Combinatorial Optimization

1 Introduction

For many complex optimization problems, the use of heuristic approaches is often
required to achieve feasible solutions in reasonable computational time [2]. One
drawback of heuristics is that their performance heavily rely on the configuration
setting, which must be tuned for the problem-domain at hand [2].

Because of that, the optimization community has investigated several adap-
tive search methodologies [2], initially only for parameter tunning, but then it
expanded for automatically controlling the heuristic operators to be used. These
strategies are normally termed in the literature as Hyper-Heuristics (HH) [3], in
which the algorithm explore the search space of low-level heuristics. It can also
be found as Adaptive Operator Selection (AOS) [7], usually when the selection
occurs at a certain step within a meta-heuristic.

Moreover, with the advance and success of Machine Learning (ML) tech-
niques, there has been an increasing interest in using novel ML for guiding the
optimization search in several ways, including the selection of heuristic operators
[9]. Due to the stochastic and iterative nature of optimization heuristics, Rein-
forcement Learning [17] techniques have been widely investigated for HH and
c© Springer Nature Switzerland AG 2021
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AOS applications. However, most of them are traditionally simple additive rein-
forcement strategies, such as Probability Matching (PM) and Adaptive Pursuit
(AP) [7], that use the received feedback to update a probability vector. Others
are based on selection rules, that takes into account the feedback and the fre-
quency of appliances in order to deal with the exploration versus exploitation
dilemma (e.g., Choice Function and Multi Armed Bandit based strategies [7]).

Although those approaches presented good overall results, they lack a state
representation according to the traditional RL definition [17], in which an agent
learns a policy (directly or not) by interacting with an environment based on
the observed state and the received feedback (reward or penalty). This work
investigates a selection Hyper-Heuristic that uses a Deep Q-Network to choose
the heuristics. The selection agent is updated while solving an instance using
the Q-learning algorithm [19] with an Artificial Neural Network as function
approximator [17]. In this way, we model the task of selecting the heuristics as
a Markov Decision Process (MDP) [14], which implicates that the state repre-
sentation must contain enough information for the agent to take an action.

Using a MDP-based strategy for this selection task has been shown to be
advantageous over stateless strategies [18]. In fact, there are a few works that
have successfully applied Q-Learning for HH and AOS. Handoko et al. [8] defined
a discrete state space that relates to fitness improvement and diversity level.
Then, the Q-learning updates the state-action values which are used to select
the crossover operator of an evolutionary algorithm applied on the Quadratic
Assignment Problem. The experimental results demonstrated that the approach
is competitive with classical credit assignment mechanisms (AP, PM and MAB),
while being less sensitive to the number of operators.

Similarly, Buzdalova et al. [4] applied Q-Learning to select crossover and
mutation operators for the Traveling Salesman Problem. The state is defined by
a 2-tuple containing the current generation and the fitness improvement of the
current best individual over the initial best individual, both values discretized
into 4 intervals. Their approach outperformed a random selection, indicating
that the agent was able to learn a working policy while solving the instances.
Mosadegh et al. [11] proposed a Simulated Annealing (SA) based HH that uses Q-
Learning to select the moving operators. Each action consists on three operators,
and the state is the number of times that the previous actions succeed (i.e., the
operator generated an accepted solution under the SA conditions). The approach
was significantly superior to other versions of SA and two software packages, with
respect to both the quality of the solution and the computation time.

One limitation of these works is the use of a discrete state space, which
may limit the representation of the search stage [18]. However, when defining a
continuous state representation, the classical Q-Learning becomes infeasible due
to the high dimensional Q-Table. Therefore, a function approximation model is
necessary to estimate the state-action values [17]. The work from Teng et al. [18]
defined a continuous state space that includes landscape measures about the cur-
rent population and some parent-oriented features. Then, a Self-Organizing Neu-
ral Network is trained offline to select the crossover operator. The performance
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of this approach was competitive with other selection mechanisms (including a
tabular Q-Learning) and even better on some instances, thus highlighting the
advantages of using a continuous MDP-based selection strategy.

In Sharma et al. [15], the authors used a Double Deep Q-Network to select
mutation operators of a Differential Evolution algorithm applied on several
CEC2005 benchmark functions. The target network, which is trained offline
during the training phase, receives as input 99 continuous features, where 19
are related to the current population and the reaming characterize the perfor-
mance of each operator so far. This approach outperformed other non-adaptive
algorithms and was competitive with state-of-the-art adaptive approaches.

In contrast with these works, we modeled a continuous state representation
that consider only the past performance of the operators (within a certain mem-
ory), and the DQN is only trained online to learn a selection policy on each
instance. We compare this approach with two state-of-the-art MAB based selec-
tion rules, namely the Dynamic MAB (DMAB) [5] and the Fitness-Rate-Rank
MAB (FRRMAB) [10]. The MAB problem can be seen as a special case of
Reinforcement Learning with only a single state [17].

We have present a preliminary work in a workshop paper [6], in which we
report the results on two problem domains (the Vehicle Routing and the Trav-
eling Salesman problems). Later, we found a flaw in our FRRMAB implementa-
tion. Here, we expand the results to all six problems from the Hyper-Heuristics
Flexible framework (HyFlex) [12] and with all implementations revised. More-
over, we also present some analysis on the behavioral aspect of the selection
mechanisms.

The remainder of this paper is organized as follows: Sect. 2 explains the con-
cepts of HHs and describes the selection strategies that we compared: DMAB,
FRRMAB and DQN. The experimental setup and results are given in Sect. 3.
Finally, we draw some conclusions and indicate future works in Sect. 4.

2 Selection Hyper-Heuristic

According to Burke et al. [3], Hyper-Heuristics can be divided in two groups:
selection HH, where it selects from a set of predefined low-level heuristics (llh);
generative HHs, where the algorithm uses parts of llhs to construct new ones.
Moreover, they can also be classified by its source of learning feedback: online,
offline, and no-learning. This work is about an online learning selection HH.

As a search methodology, selection HHs explore the search space of low-
level heuristics (e.g., evolutionary operators) [3]. To avoid getting stuck into
local optima solutions, good HHs must know which is the appropriate low-level
heuristic to explore a different area of the search space at the time [3]. We
used in this work a standard selection Hyper-Heuristic algorithm, as shown in
Algorithm 1. Iteratively, it selects and applies a low-level heuristic on the current
solution and computes the reward. Then, the acceptance criteria decides if the
new solution is accepted and, at last, the HH calls the update method of the
corresponding selection model.
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Algorithm 1: Selection Hyper-Heuristic
Input: A initial solution φ with size n
Output: The best found solution
repeat

heuristic ← SelectHeuristic()

φ′ ← ApplyHeuristic(φ, heuristic)

reward ← GetReward(f(φ), f(φ′))
if AcceptSolution(φ′) then

φ ← φ′

end
UpdateSelectionModel(reward)

until stopping criteria is not met

The reward is defined as the FIR value (Eq. 2) and was kept the same for
all selection strategies. Since our goal is to investigate the learning ability of the
selection strategies, the acceptance criteria accepts all solutions. In this way, the
actions of the agent always reflects a change in the environment.

The selection is made according to the employed selection strategy. In this
work, we compared three strategies: Dynamic MAB, Fitness-Rate-Rank MAB,
and Deep Q-Network.

2.1 Dynamic Multi-Armed Bandit

A MAB framework is composed of N arms (e.g., operators) and a selection rule
for selecting an arm at each step. The goal is to maximize the cumulative reward
gathered over time [16]. Among several algorithms to solve the MAB, the Upper
Confidence Bound (UCB) [1] is one of the most known in the literature, as
it provides asymptotic optimality guarantees. The UCB chooses the arm that
maximizes the following rule

pi,t + C

√
2log(

∑N
j=1 nj,t)

ni,t
(1)

where ni,t is the number of times the ith arm has been chosen, and pi,t the
average reward it has received up to time t. The scaling factor C gives a balance
between selecting the best arm so far (pi,t, i.e., exploitation) and those that have
not been selected for a while (second term in the Eq. 1, i.e., exploration).

However, the UCB algorithm was designed to work in static environments.
This is not the case in the Hyper-Heuristic context, where the quality of the low-
level heuristics can vary along the HH iterations [7]. Hence, the Dynamic MAB,
proposed by [5], incorporates the Page-Hikley (PH) statistical test to deal with
this issue. This mechanism resembles a context-drifting detection, but is related
to the performance of the operators throughout the execution of the algorithm.
Once a change in the reward distribution is detected, according to the PH test,
the DMAB resets the empirical value estimates and the confidence intervals (p
and n in Eq. 1, respectively) of the UCB [5].
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2.2 Fitness-Rate-Rank Multi-Armed Bandit

The Fitness-Rate-Rank MAB [10] proposes the use of Fitness Improvement Rate
(FIR) to measure the impact of the application of an operator i at time t, which
is defined as

FIRi,t = max
(

0,
pfi,t − cfi,t

pfi,t

)
(2)

where pfi,t is the fitness value of the original solution, and cfi,t is the fitness
value of the offspring.

Moreover, the FFRMAB uses a sliding window of size W to store the indexes
of past operators, and their respective FIRs. This sliding window is organized as
a First-in First-out (FIFO) structure and reflects the state of the search process.
Then, the empirical reward Rewardi is computed as the sum of all FIR values
for each operator i in the sliding window.

In order to give an appropriate credit value for an operator, the FRRMAB
ranks all the computed Rewardi in descending order. Then, it assigns a decay
value to them based on their rank value Ranki and on a decaying factor D ∈ [0, 1]

Decayi = DRanki × Rewardi (3)

The D factor controls the influence for the best operator (the smaller the
value, the larger influence). Finally, the Fitness-Rate-Rank (FRR) of an operator
i is given by

FRRi,t =
Decayi∑N

j=1 Decayj

(4)

These FRRi,t values are set as the value estimate pi,t in the UCB Eq. (1).
Also, the ni,t values considers only the amount of time that the operator appears
in the current sliding window. This differs from the traditional MAB and other
variants such as the DMAB, where the value estimate pi,t is computed as the
average of all rewards received so far.

2.3 Deep Q-Network

The classic Q-learning algorithm keeps a table that stores the Q-values (the esti-
mate value of performing an action at current state) of all state-action pairs [19].
This table is then updated accordingly to the feedback the agent receives upon
interacting with the environment. However, in a continuous state space, keeping
the Q-table is not feasible due to the high dimensionality of the problem [17].
Instead, we can use a function approximation model (called the Q-model) that
gives the estimate Q-values. In DQN, the Q-model is defined by an Artificial
Neural Network (ANN), in which the inputs are the current observed state rep-
resentation, and the output layer yields the predicted Q-values for the current
state-action pairs. For this task, we used the MultiLayer Perceptron Regressor
from the Scikit-learn library [13].



Online Selection of Heuristic Operators with Deep Q-Network 285

With these estimated Q-values, the agent selects the next action (low-level
heuristic) according to its exploration policy. We used the ε-greedy policy, that
selects a random action with probability ε, and selects the action with the highest
Q-value with probability 1 − ε. Thus, ε is a parameter that controls the degree
of exploration of the agent and is usually set to a small value [17].

After performing the action, receiving the reward and observing the next
state, the Q-model is updated by running one iteration of gradient descent on
the Artificial Neural Network, with the following target value

target = reward + γ max
a′

Q (s′, a′) (5)

where s′ is the next state after performing the action, and maxa′ Q (s′, a′) is
the highest Q-value of all possible actions from state s′. The discount factor γ
([0, 1]) controls the influence of the future estimate rewards.

We defined the state representation as the normalized average rewards of each
operator. For this, we used the same sliding window structure from FRRMAB.
Hence, if we have 10 available low-level heuristics, for example, the state is
represented as a vector of 10 values ranging [0,1], where each value is the average
of the past W rewards (window size) of an operator. The idea is to investigate
if the past observed rewards can be representative enough to allow the DQN to
learn a proper selection policy.

3 Experiments

We conducted the experiments on all 6 problems from the HyFlex Framework
[12]: One Dimensional Bin Packing (BP), Flow Shop (FS), Personal Scheduling
(PS), Boolean Satisfiability (MAX-SAT), Traveling Salesman Problem (TSP),
and Vehicle Routing Problem (VRP). The HyFlex provides 10 instances of each
domain and 4 types of low-level heuristics: mutational, ruin-and-recreate, local
search, and crossover. We included all operators but the crossover group into the
selection pool. We refer to the documentation for more details [12].

We executed each selection strategy 31 times on every instance with differ-
ent random seeds. We set the stopping criteria as 300 s of CPU running time on a
Intel(R) Core(TM) i7-5930K CPU @ 3.50 GHz. The number of runs and stopping
criteria were set following the Cross-Domain Heuristic Search Challenge1 compe-
tition rules, for which the HyFlex was originally developed. Table 1 displays the
parameters setting that we used throughout the experiments.

Next we present the performance comparison of the selection strategies for
each problem domain. For this, we compared the mean performance obtained by
each approach on all instances using the Friedman hypothesis test and a pairwise
post-hoc test with the Bergmann correction. The results of these tests are shown
in the pipe graphs (e.g. Fig. 1), where the approaches are displayed according
to their rank (the smaller the better), and the connected bold lines indicate the
approaches that are statistically equivalent (p < 0.05).
1 http://www.asap.cs.nott.ac.uk/external/chesc2011/.

http://www.asap.cs.nott.ac.uk/external/chesc2011/
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Table 1. Parameters setting

Parameter Value

UCB C 8

FRRMAB W 100

D 1

DQN γ 0.9

W 100

ε 0.05

ANN hidden layers (30, 20)

Learning rate 0.001

Solver Adam

Additionally, we also compared them on each instance individually with the
Kruskal-Wallis hypothesis test, followed by a pairwise Dunn’s test, with the
lowest ranked approach set as the control variable. The tables, such as Table 2,
report the average and standard deviation of the best solution found by each
selection strategy in the 31 runs. Bold values indicate that the corresponding
approach achieved a better performance with statistical difference (p < 0.05),
and gray background highlights all approaches that were statistically equivalent
to the approach with the best rank on that instance.

Moreover, we also contrasted the approaches in terms of the selection behav-
ior during the search. For this, we divided the search into 10 phases with equal
number of iterations, and computed the average frequency that each operator
was selected on that phase, resulting on the line graphs such as Fig. 2.

3.1 Bin Packing

On Bin Packing, both DQN and FRRMAB were statistically equivalent when
considering all instances performance, as displayed in Fig. 1 where the DQN
ranked better.

Fig. 1. Friedman ranking with post-hoc tests on BP instances

In fact, if we observe the individual performance shown in Table 2, we can
notice that their performance was dependent on the type of the instance, mean-
ing that neither of them could generalize for all instances.
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Table 2. Performance comparison on Bin Packing

ID Instance DMAB DQN FRRMAB

0 falkenauer-falk1000-1 0.0757 (0.0016) 0.0556 (0.0041) 0.0503 (0.0029)

1 falkenauer-falk1000-2 0.0744 (0.002) 0.0538 (0.0049) 0.0479 (0.0027)

2 schoenfield-schoenfieldhard1 0.0283 (0.0006) 0.0275 (0.0005) 0.0284 (0.0005)

3 schoenfield-schoenfieldhard2 0.0459 (0.0083) 0.0312 (0.0011) 0.0315 (0.0005)

4 2000-10-30-instance1 0.0275 (0.0017) 0.0228 (0.0063) 0.0245 (0.0022)

5 2000-10-30-instance2 0.0289 (0.002) 0.0262 (0.0081) 0.0247 (0.0007)

6 trip1002-instance1 0.181 (0.0114) 0.162 (0.0285) 0.1838 (0.0086)

7 trip2004-instance1 0.1848 (0.0074) 0.1626 (0.0234) 0.1842 (0.0069)

8 testdual4-binpack0 0.1207 (0.0019) 0.1105 (0.0044) 0.1044 (0.0036)

9 testdual7-binpack0 0.0421 (0.0009) 0.0422 (0.0013) 0.0377 (0.0014)

Figure 2 displays the average appliances of each operator for instance 0, that
the DQN was worse than FRRMAB. We can observe that the DQN presents a
exploitative behavior, giving high emphasis on the early prominent operators. The
FRRMAB, on the other hand,was able to detect a change in operator performance.

(a) DMAB (b) DQN (c) FRRMAB

Fig. 2. Average selection of operators on BP instance 0

However, this exploitative behavior was advantageous on some instances,
such as instance 7 as shown in Fig. 3. The DQN detected at the initial phases
the set of prominent operators, while the FRRMAB needed more time to do so.

(a) DMAB (b) DQN (c) FRRMAB

Fig. 3. Average selection of operators on BP instance 7
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3.2 Flow Shop

The DQN presented very poor performance on Flow Shop, where the FRRMAB
and DMAB were both statistically better, as displayed in Fig. 4. Even when
comparing the instances individually (Table 3), the DQN was not competitive in
any instance.

Fig. 4. Friedman ranking with post-hoc tests on FS instances

Table 3. Performance comparison on Flow Shop

ID Instance DMAB DQN FRRMAB

0 100 × 20-1 6389.13 (10.0) 6399.13 (8.68) 6385.39 (5.15)

1 100 × 20-2 6337.42 (8.75) 6346.06 (14.0) 6331.71 (10.96)

2 100 × 20-3 6409.29 (8.18) 6424.68 (7.85) 6406.74 (7.26)

3 100 × 20-4 6393.77 (6.64) 6405.26 (9.13) 6389.16 (7.73)

4 100 × 20-5 6473.29 (7.83) 6488.65 (10.86) 6468.9 (10.93)

5 200 × 10-1 10544.1 (8.63) 10553.26 (8.16) 10540.94 (9.53)

6 200 × 10-2 10974.58 (10.18) 10988.35 (15.6) 10971.13 (9.71)

7 500 × 20-1 26444.16 (29.13) 26477.71 (34.79) 26437.58 (21.05)

8 500 × 20-2 26938.9 (33.22) 26978.13 (35.76) 26912.74 (25.31)

9 500 × 20-4 26753.84 (27.49) 26787.61 (27.47) 26742.58 (26.18)

Figure 5 shows that, although theDQNkept selecting a fewoperators at around
10% of times, its exploitative behavior of giving high emphasis on the top two
operators resulted on the poor performance on Flow Shop. Therefore, the reward
scheme and/or the state representation that we defined were not satisfiable for
domains in which more exploration is required to attain high quality solutions.

3.3 Personal Scheduling

The same thing happened in the PS domain, as shown in Fig. 6 and Table 4, where
we can see that the MAB strategies were statistically superior to the DQN.

However, in this case we noticed that the DQN did present a more explorative
behavior in comparison to the other domains, as displayed in Fig. 7. But even so,
while the MAB strategies kept an operator being selected at maximum around
15% of the times, the DQN reached about 30% of preference for a single operator
on some phases.
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(a) DMAB (b) DQN (c) FRRMAB

Fig. 5. Average selection of operators on FS instance 0

Fig. 6. Friedman ranking with post-hoc tests on PS instances

Table 4. Performance comparison on Personal Scheduling

ID Instance DMAB DQN FRRMAB

0 BCV-A.12.2 2369.19 (106.61) 2641.16 (430.57) 2433.52 (122.82)

1 BCV-3.46.1 3343.71 (11.9) 3345.77 (26.87) 3348.48 (13.67)

2 ORTEC02 385.35 (20.47) 714.55 (624.1) 390.35 (19.42)

3 Ikegami-3Shift-DATA1 21.32 (2.96) 44.45 (70.7) 21.19 (3.14)

4 Ikegami-3Shift-DATA1.1 23.48 (2.8) 54.61 (63.06) 24.03 (2.55)

5 Ikegami-3Shift-DATA1.2 24.65 (3.01) 35.32 (7.65) 24.58 (2.96)

6 CHILD-A2 1141.35 (38.43) 1676.26 (1295.02) 1133.19 (33.15)

7 ERRVH-A 2278.26 (36.05) 2646.29 (413.8) 2282.48 (45.74)

8 ERRVH-B 3273.9 (49.7) 3545.71 (363.42) 3307.42 (74.79)

9 MER-A 9960.58 (176.96) 13146.9 (14931.08) 9921.45 (115.97)

(a) DMAB (b) DQN (c) FRRMAB

Fig. 7. Average selection of operators on PS instance 0
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3.4 MAX-SAT

The MAX-SAT is another domain in which giving high preference to few oper-
ators results in better solutions. Figure 8 and Table 5 shows that the DQN out-
performed with a large marge the two MAB approaches.

Fig. 8. Friedman ranking with post-hoc tests on MAX-SAT instances

Table 5. Performance comparison on MAX-SAT

ID Instance DMAB DQN FRRMAB

0 sat05-457 269.97 (6.05) 16.0 (6.75) 272.06 (5.05)

1 sat05-488 277.81 (5.52) 38.58 (4.81) 277.74 (6.23)

2 sat05-486 273.87 (5.22) 30.97 (4.2) 273.94 (6.41)

3 instance n3 i3 pp 156.13 (4.41) 10.77 (2.54) 159.68 (4.42)

4 instance n3 i3 pp ci ce 165.16 (3.46) 7.1 (1.87) 168.65 (4.76)

5 instance n3 i4 pp ci ce 257.1 (5.2) 24.9 (8.69) 258.16 (6.1)

6 HG-3SAT-V250-C1000-1 44.58 (1.83) 5.9 (0.59) 48.81 (1.86)

7 HG-3SAT-V250-C1000-2 43.1 (2.4) 5.84 (0.68) 47.61 (2.1)

8 HG-3SAT-V300-C1200-2 63.97 (2.48) 7.74 (1.37) 67.55 (2.71)

9 t7pm3-9999 368.81 (5.83) 218.32 (2.94) 367.94 (4.37)

Interestingly, on some instances such as the one displayed in Fig. 9, the three
approaches identified the same set of operators as the best ones, meaning that
the simple fitness-based reward scheme was able to give the selection strategy
useful information in order to select the proper operators at each time. But
again, the DQN selects with higher frequency the better heuristics and discard
the others very quickly.

3.5 Traveling Salesman Problem

The TSP was another problem domain that the DQN outperformed the DMAB
and FRRMAB, as shown in Fig. 10. When observing the individual instance
performance (Table 6), the DQN was statistically better on 7 out of 10 instances
and was at least equivalent on the others.

Figure 11 confirms that the same exploitative behavior, i.e., giving high pref-
erence for one to three heuristics, allows the DQN to attain high quality solution
on some domains.
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(a) DMAB (b) DQN (c) FRRMAB

Fig. 9. Average selection of operators on MAX-SAT instance 0

Fig. 10. Friedman ranking with post-hoc tests on TSP instances

Table 6. Performance comparison on TSP

ID Instance DMAB DQN FRRMAB

0 pr299 49747.28 (249.17) 49260.04 (250.86) 50154.84 (411.53)

1 pr439 135745.64 (3762.28) 111659.98 (840.66) 134431.84 (3313.73)

2 rat575 7011.83 (16.16) 7003.9 (12.78) 7038.14 (12.67)

3 u724 43535.11 (94.64) 43325.02 (86.48) 43748.77 (131.53)

4 rat783 9161.79 (20.45) 9153.62 (16.45) 9194.59 (19.78)

5 pcb1173 60699.53 (221.59) 59922.78 (277.29) 61313.72 (321.36)

6 d1291 61735.75 (1209.04) 61399.89 (1465.7) 61700.42 (1100.66)

7 u2152 78938.98 (954.45) 71886.59 (1490.88) 79205.61 (1067.75)

8 usa13509 25101651.94 (184874.36) 23545009.35 (1517146.7) 25041853.19 (169712.13)

9 d18512 793982.73 (3448.01) 720240.45 (46824.84) 792602.46 (3492.93)

(a) DMAB (b) DQN (c) FRRMAB

Fig. 11. Average selection of operators on TSP instance 0
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3.6 Vehicle Routing Problem

Finally, on VRP we observed a similar pattern of the Bin Packing domain: both
DQN and FRRMAB were statistically equivalent on general (Fig. 12), but they
outperformed one another on different type of instances (Table 7). The FRRMAB
was better on the Solomon instances and the DQN outperformed the others on
the Homberger instances.

Fig. 12. Friedman ranking with post-hoc tests on VRP instances

Table 7. Performance comparison on VRP

ID Instance DMAB DQN FRRMAB

0 Solomon-RC207 5689.22 (46.49) 5738.31 (114.05) 5579.54 (35.3)

1 Solomon-R101 26120.17 (534.92) 25421.07 (504.9) 25065.58 (445.35)

2 Solomon-RC103 16686.23 (427.47) 16742.45 (414.33) 15859.84 (60.77)

3 Solomon-R201 6725.91 (267.25) 6766.63 (154.91) 6097.2 (329.91)

4 Solomon-R106 18288.04 (532.87) 17901.7 (338.36) 17604.26 (403.66)

5 Homberger-C1 10 1 361216.81 (4113.6) 338425.55 (17118.67) 358482.72 (5404.71)

6 Homberger-RC2 10 1 112072.12 (2187.45) 109000.24 (11591.1) 111727.57 (1787.41)

7 Homberger-R1 10 1 245814.38 (3857.74) 239111.47 (13276.12) 244623.53 (2885.65)

8 Homberger-C1 10 8 316065.31 (4010.8) 296789.73 (24428.51) 314762.88 (5444.14)

9 Homberger-RC1 10 5 223601.08 (2705.0) 216119.92 (13217.05) 221983.66 (3076.55)

Figure 13 shows the frequencies of operator selection on one Homberger
instance. Such as in other VRP instances, we observed a pattern in which the DQN
gave really high emphasis (more than 80%) for a single operator, which is a local
search heuristic. This happens because only the fitness improvement is rewarded
and, although the Q-Learning update rule (5) already implicitly deals with delayed
rewards, it was not enough to give some credit for the exploration heuristics.

(a) DMAB (b) DQN (c) FRRMAB

Fig. 13. Average selection of operators on VRP instance 5
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4 Conclusion

This work investigated the use of a heuristic selection strategy using Deep Q-
Network. In comparison with the MAB-based strategies, the DQN selects its
actions based on a state representation, which can give more insights about the
current search stage.

We performed the experiments on six problem domains from the HyFlex
framework and compared our approach with DMAB and FRRMAB strategies.
We could observe that our approach can detect earlier the good and bad oper-
ators. However, it is slower to detect a change in performance of the heuristics.
Therefore, for the domains and instances that there exists dominant operators,
it outperformed the other selection approaches. On the other hand, it performed
worse than both MABs when a wider diversity of operators was necessary.

Hence, further studies should be pursued to improve the exploration of DQN,
so it can become more adaptive to different domains. This can be done either
by improving the state representation, so it can give different information to
the agent (such as stagnation, concept drift, etc.), or by investigating different
reward schemes, so it can also rewards operators that do not necessarily improve
the fitness function.
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Abstract. We propose in this paper a framework of prioritised logic
programs (PLP) to represent priority information explicitly in a pro-
gram. Differently of others approaches, we do not restrain the preference
relation only to literals, but to sets of literals. As consequence, we can
express in PLPs sophisticated forms of preferences without changing the
programs or introducing new atoms to obtain artificially the intended
preferences. Besides, inspired on various developments in the literature
on preference, we present a comprehensive and systematic treatment to
deal with preferences in logic programming. In fact, we introduced 32
different criteria (semantics) to establish preference between partial sta-
ble models as well as those semantics whose definition depends on partial
stable models. We show some properties of our framework; in particular,
we guarantee these semantics for PLP generalise their counterparts for
logic programs without preferences.

Keywords: Logic programming · Preferences · Semantics

1 Introduction

In many applications of Artificial Intelligence and Commonsense Reasoning, we
have to deal with uncertain, vague, inaccurate, doubtful and even contradictory
information as well as with certain, precise and reliable information. In this sce-
nario, conflicts can naturally arise and, it urges to develop mechanisms to resolve
them. Adopting some criteria to establish preferences between these conflicting
information is an effective way of reasoning with them. Somehow we have to
prioritise the information to separate the wheat from the chaff. For representing
and reasoning with preferences, several prioritised systems have been proposed
(see [1] for a survey).

When moving our eyes to preferences in Logic Programming, we see a
plethora of proposals (see [2–12] for a non exhaustive list). As witnessed by
the multitude of formalisms with preferences, a key issue here is the lack of
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consensus on the role played by preferences. Roughly speaking, we find in the
literature various works with diverging intuitions, and as a consequence, concep-
tually different formal techniques to deal with preference. While there are many
proposals on preferences in the reasoning process and knowledge representation,
there is still much space for improvement.

Indeed, as noticed in [13], one of the main problems a user faces when express-
ing preferences is any preference representation language based on the direct
assessment of user preferences over the complete set of options is simply infea-
sible. We have to resort to compact preference representation languages which
represent partial descriptions of preferences and rank-order the possible options.

With such a motivation in view, in this paper, we generalise the notion of Pri-
oritised Logic Programs (PLPs) proposed in [4] to encompass not only the rela-
tion of priority between literals (atoms or its negation), but also sets of literals.
The resulting framework offers a preference representation language expressive
enough to represent complex forms of preference in a compact manner. While in
[4], in order to represent a conjunction of preferences, they have to include new
rules in the program and preferences between new atoms, we will surmount this
problem by representing conjunctions of preferences directly.

A second fundamental challenge is to select the most preferable models given
the priorities between the sets of literals. Which criteria should be regarded?
In order to decide a model I1 is more preferable than a model I2, someone
would require any set of literals associated with I1 should have higher priority
than any set of literals associated with I2. For others, it suffices to guarantee
the worst-ranked sets of literals associated with I1 should have higher priority
than those worst-ranked sets of literals associated with I2. Depending on the
criteria employed to select the most preferable models, we would obtain different
semantics for PLPs. Overall, there is no consensual way to define these semantics
and, we will find many disconnected approaches. In this work, we will not cling
to a unique path, but present comprehensive and systematic criteria to define
semantics for them. As result, we will have a clearer notion of what we mean
when selecting the most preferable models.

The rest of the paper develops as follows. In Sect. 2, we will introduce the
basic concepts related to Normal Logic Programs (NLP) and their semantics.
The main contributions of the paper can be found in Sect. 3, where we will
present the Prioritised Logic Programs (PLPs) and comprehensive and system-
atic criteria to define semantics for them. Next, we show how complex forms of
priorities can be expressed straightforwardly in PLPs. In Sect. 5, we prove some
properties of our proposal; in particular, we guarantee these semantics for PLP
generalise their counterparts for logic programs without preferences. Section 6
provides an overview of related works. Finally, Sect. 7 summarises our contribu-
tions and pointed out future works.

2 Preliminaries

In the sequel, we will consider propositional normal logic programs, which we
will call logic programs or simply programs from now on.
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Definition 1. A Normal Logic Program (NLP), P , is a set of rules of the form
a ← a1, . . . , am, not b1, . . . , not bn (m,n ∈ N), where a, ai (1 ≤ i ≤ m) and
bj (1 ≤ j ≤ n) are atoms; not represents default negation, and not bj is a
default literal. A literal is an atom or a default literal. We say a is the head of
the rule, and a1, . . . , am, not b1, . . . , not bn is its body. If P has no occurrence
of default literals, it is called a Definite Logic Program. The Herbrand Base
of P is the set HBP of all atoms occurring in P . The set of literals of P is
LitP = HBP ∪ {not a | a ∈ HBP }.

A wide range of logic programming semantics can be defined based on the
3-valued interpretations (for short, interpretations) of programs:

Definition 2. [14] A set I ⊆ LitP is a 3-valued interpretation of an NLP P
if � ∃a ∈ HBP with {a, not a} ⊆ I. We say I is a model of P iff for each rule
a ← a1, . . . , am, not b1, . . . , not bn ∈ P , if {a1, . . . , am, not b1, . . . , not bn} ⊆ I,
then a ∈ I. We refer to TI = {a ∈ HBP | a ∈ I} as the set of true atoms w.r.t.
I and to FI = {a ∈ HBP | not a ∈ I} as the set of false atoms w.r.t. I. If
a �∈ TI ∪ FI , then a is undefined w.r.t. I.

Let I be a 3-valued interpretation of a program P ; in order to define the
semantics for normal logic programs, we will resort to the reduct of P with
respect to I (written as P/I), which is the definite logic program built by the
execution of the following steps:

1. Remove any a ← a1, . . . , am, not b1, . . . , not bn ∈ P with {b1, . . . , bn}∩I �= ∅;
2. Afterwards, remove any occurrence of not bi from P such that not bi ∈ I.
3. Then, replace any occurrence of not bi left by a special atom u (u �∈ HBP ).

We say I is the least model of a definite logic program P if among the models
of P , TI is minimal (w.r.t. set inclusion) and FI is maximal (w.r.t. set inclusion).
Note that P/I is a definite logic program. As consequence, P/I has a unique
least model [14], denoted by ΩP (I), such that for any a ∈ HBP

– a ∈ ΩP (I) iff a ← a1, . . . , am ∈ P/I and {a1, . . . , am} ⊆ ΩP (I);
– not a ∈ ΩP (I) iff for every a ← a1, . . . , am ∈ P/I, it holds {not a1, . . . ,
not am} ∩ ΩP (I) �= ∅.

We now specify the NLP semantics to be examined in this paper.

Definition 3. Let P be an NLP and I be an interpretation:

– I is a partial stable (PS) model of P iff I = ΩP (I) [14].
– I is a well-founded model of P iff I is a PS model of P with minimal TI [14].
– I is a regular model of P iff I is a PS model of P with maximal TI [15].
– I is a stable model of P iff I is a PS model of P where for each a ∈ HBP ,

a ∈ TI ∪ FI [14].
– I is an L-stable model of P iff I is a PS model of P with minimal (w.r.t. set

inclusion) {a ∈ HBP | a �∈ TI ∪ FI} [15].
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Example 1. Consider the NLP P :

a ← not b b ← not a, not c c ← not b, not d c ← not c d ← not c

With respect to P , we have a) Partial stable models: I1 = ∅, I2 = {a, not b},
I3 = {d}, I4 = {b, d, not a}, I5 = {a, c, not b, not d} and I6 = {a, d, not b}; b)
Well-founded model: I0; c) Regular models: I4, I5 and I6; d) Stable model and
L-Stable model: I5.

In the next section, we will offer a comprehensive and systematic treatment
to deal with preferences in logic programming.

3 Semantics for Prioritised Logic Programs

The semantics of Normal Logic Programs seen in Definition 3 have multiple mod-
els in general. Preference is then introduced to select among them the intended
models of a program, but at the semantic level. In [4], they conceived the notion
of Prioritised Logic Programs (PLPs) by establishing a prioritisation mechanism
between literals (atoms or its negation) to represent and reason with preferences
in logic programming at the syntactic level.

Here we generalise this notion of PLP to encompass not only the relation of
priority between literals, but also sets of literals. The idea is to employ these
priorities to select the most preferable partial stable models. We will focus on
partial stable models, because it is the base to define the remaining semantics
in Definition 3. In this work, the priorities will be established between sets of
literals, which we will be called as options:

Definition 4 (Options). Given an NLP P , an option o from P is a subset of
LitP . By OP we mean the set of all options from P . We say o is inconsistent,
if there is a ∈ HBP such that {a, not a} ⊆ o. Otherwise, o is consistent.

Thus in a program representing a menu based on fish (f), meat m, white
wine (w), red wine (r), cake (c) and ice cream (i), {f, not m, r}, {i, not i} and ∅
are possible options. Not rarely, some options have a higher priority than others:

Definition 5 (Priorities). Given an NLP P , a reflexive and transitive relation
is defined on OP . For any o1 and o2 from OP , o1 � o2 is called a priority, and
we say o2 has a higher or equal priority than o1. We write o1 ≺ o2 if o1 � o2
and o2 �� o1, and say o2 has a strictly higher priority than o1. Furthermore, o1
is indifferent to o2, denoted by o1 ≈ o2, when both o1 � o2 and o2 � o1 hold.

From an NLP and a set of priorities, we build a prioritised logic program:

Definition 6 (Prioritised Logic Programs). A prioritised logic program
(PLP) is a pair (P,Φ), where P is an NLP and Φ is a set of priorities on OP .

In order to enforce the priority relation in Φ is reflexive and transitive, while
maintaining a compact representation of priorities, we resort to the closure of Φ:
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Definition 7. (Closure of Φ). Let (P,Φ) be a PLP. For each o1, o2 in OP ,
the closure Φ∗ of Φ is defined as follows:

– o1 � o1 ∈ Φ∗;
– if o1 � o2 ∈ Φ, then o1 � o2 ∈ Φ∗;
– if o1 � o2 ∈ Φ∗ and o2 � o3 ∈ Φ∗, then o1 � o3 ∈ Φ∗.
– o1 � o2 ∈ Φ∗ and o1 �= ∅ and o2 �= ∅ and e �∈ o1∪o2, then o1∪{e} � o2∪{e} ∈

Φ∗.

The closure Φ∗ of Φ is the set of priorities derived reflexively and transitively
using priorities in Φ. Besides, we introduced in Φ∗ an inertia principle to keep the
preference representation in Φ compact. In the remainder of this paper, when we
say o2 �≺ o1 according to Φ∗, we mean o2 � o1 �∈ Φ∗ or o1 � o2 ∈ Φ∗. Among the
many possible options, we are particularly interested in those best/worst-ranked:

Definition 8 (best/worst-ranked option). Let (P,Φ) be a PLP and I ⊆
LitP . We say o is a) a best-ranked option in I w.r.t. Φ iff o ⊆ I and � ∃o′ ⊆ I
such that o ≺ o′ ∈ Φ∗. b) a worst-ranked option in I w.r.t. Φ iff o ⊆ I and
� ∃o′ ⊆ I such that o′ ≺ o ∈ Φ∗.

Given two set of options, we have to determine which one is preferable; we
introduce below four criteria with this purpose:

Definition 9. Let (P,Φ) be a PLP and O1 and O2 subsets of OP . We say

– O1 ⊆∀∀ O2 in Φ iff ∀o1 ∈ O1 and ∀o2 ∈ O2, it holds o2 �≺ o1 in Φ∗.
– O1 ⊆∀∃ O2 in Φ iff ∀o1 ∈ O1, it holds ∃o2 ∈ O2 such that o2 �≺ o1 in Φ∗.
– O1 ⊆∃∀ O2 in Φ iff ∃o1 ∈ O1 such that ∀o2 ∈ O2, it holds o2 �≺ o1 in Φ∗.
– O1 ⊆∃∃ O2 in Φ iff ∃o1 ∈ O1 and ∃o2 ∈ O2 such that o2 �≺ o1 in Φ∗.

Besides, different preference semantics have been proposed in the literature.
We recall some of the most well-known of them:

Definition 10 (Preference relation). Let (P,Φ) be a PLP, I1 and I2 be
PS models of P , B1 and B2 are respectively the sets of all best-ranked options
in I1 and I2 w.r.t. Φ, and W1 and W2 are respectively the sets of all worst-
ranked options in I1 and I2 w.r.t. Φ. Consider also x ∈ {st , opt , pes , opp} and
y ∈ {∀∀,∀∃,∃∀,∃∃}. By I1 ⊆y

x I2 w.r.t. Φ, we mean the preference relation ⊆y
x

over the set of PS models of P is defined as follows:

1. I1 ⊆y
x I1 w.r.t. Φ;

2. I1 ⊆y
x I2 w.r.t. Φ

a) (Strong Semantics): if x = st and B1 ⊆y W2 in Φ.
b) (Optimistic Semantics): if x = opt and B1 ⊆y B2 in Φ.
c) (Pessimistic Semantics): if x = pes and W1 ⊆y W2 in Φ.
d) (Opportunistic Semantics): if x = opp and W1 ⊆y B2 in Φ.

3. If I1 ⊆y
x I2 w.r.t. Φ and I2 ⊆y

x I3 w.r.t. Φ, then I1 ⊆y
x I3 w.r.t. Φ.
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When it is clear from the context, we will drop the reference to Φ and say
O1 ⊆∀∀ O2 and I1 ⊆y

x I2. Inspired by [4], we can define a preference relation
I1 �y

x I2 which consider just their exclusive portions given by I1 −I2 and I2 −I1.

1. I1 �y
x I2 iff I1 − I2 ⊆y

x I2 − I1.
2. If I1 �y

x I2 and I2 �y
x I3, then I1 �y

x I3.

Note we have four criteria to choose the best/worst-ranked options (Defini-
tion 9), four criteria to choose the most preferable semantics (Definition 10). We
also can decide if a PS model I1 is preferred to a PS model I2 by regarding the
whole models or just their exclusive portions given by I1 −I2 and I2 −I1. Hence,
we have at disposal 32 manners of selecting the preferred partial stable models:

Definition 11 (Preferred Partial Stable Model). Let (P,Φ) be a PLP. A
PS model I of P is a Preferred Partial Stable Model (or PPS model, for short)
of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) if I ⊆y

x I ′ (resp. I �y
x I ′) implies I ′ ⊆y

x I (resp.
I ′ �y

x I) (w.r.t Φ) for any PS model I ′ of P . The set of all PPS of (P,Φ) w.r.t.
⊆y

x (resp. �y
x) is written as PPS(P,Φ)⊆y

x
(resp. PPS(P,Φ)�y

x
).

As the remaining semantics for NLP seen in this paper are based on PS
models (Definition 3), we are equipped with 32 different manners of selecting
the most preferred models according to them.

Definition 12. Let (P,Φ) be an PLP and I be an interpretation:

– I is a preferential well-founded model of (P,Φ) w.r.t. ⊆y
x (resp. �y

x) iff I is a
PPS model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) with minimal TI .

– I is a preferential regular model of (P,Φ) w.r.t. ⊆y
x (resp. �y

x) iff I is a PPS
model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) with maximal TI .

– I is a preferential stable model of (P,Φ) w.r.t. ⊆y
x (resp. �y

x) iff I is a PPS
model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) where for each a ∈ HBP , a ∈ TI ∪ FI .

– I is a preferential L-stable model of (P,Φ) w.r.t. ⊆y
x (resp. �y

x) iff I is a a
PPS model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) with minimal (w.r.t. set inclusion)

{a ∈ HBP | a �∈ TI ∪ FI} {a ∈ HBP | M(a) = u}.

Let us consider the following example:

Example 2. Let P be the NLP in Example 1 and Φ = {∅ � {a} , {a} �
{d} , {d} � {b} , {b, d} � {b} , {b, not a} � {not a} , {a, d} � {d}}.
Then the best-ranked options for I1, I2, I3, I4, I5 and I6 are respec-
tively B1 = ∅,B2 = {{a} , {not b} , {a, not b}},B3 = {{d}} ,B4 =
{{b} , {not a}} ,B5 = 2I5 and B6 = {{d} , {not b} , {d, not b}}. Regarding only
the optimistic approach for illustrative purposes, we have PPS(P,Φ)⊆∀∀

opt
=

{I4}; PPS(P,Φ)⊆∀∃
opt

= {I2, I4, I5, I6}; PPS(P,Φ)⊆∃∀
opt

= {I3, I4, I6} and
PPS(P,Φ)⊆∃∃

opt
= {I2, I3, I4, I5, I6}. In this example, notice at least one PS model

of P is discarded in PPS(P,Φ)⊆y
opt

for any y ∈ {∀∀,∀∃,∃∀,∃∃}.
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Many attempts have been made to empower logic programming with pref-
erences. The distinguishing aspect of our work is that we offer a comprehensive
and systematic way of dealing with preferences in logic programming inspired
by well-known criteria found in the literature on preference. In the next section,
we will examine how expressive our proposal is.

4 Expressing Priorities in PLPs

As it is not feasible in general when expressing preferences to compare all possible
pairs of options or evaluate them individually (the number of options increases
exponentially with the number of variables), we have to resort to compact pref-
erence representation languages to represent these partial descriptions prefer-
ences. Now we will show our preference representation language although com-
pact is robust enough to express well-known complex forms of preferences. In
Subsects. 4.1, 4.2, 4.3, 4.4 and 4.5, we will tackle respectively how to represent
priorities between conjunctive knowledge, priorities between disjunctive knowl-
edge, conditional priorities, priorities between rules and bipolar priorities.

4.1 Priorities Between Conjunctive Knowledge

Users may also express their partial preferences in term of comparative state-
ments (as in “I prefer white wine to red wine”); this preference can be altered
when interacting with other options (as in “I prefer meat accompanied by a red
wine to meat accompanied by a white wine”); the preference for white wine can
even be regained with the addition of more options (as in “I prefer meat and
cheesecake accompanied by a white wine to meat and cheesecake accompanied
by a red wine”). Thus, the conjunction of options can interfere with the users’
preference and change the overall outcome.

In [4], conjunctive preferences (e1, . . . , em) � (e′
1, . . . , e

′
n) cannot in general

be expressed directly as the preference relation applied there only involves a pair
of individual literals. In order to represent these conjunctive preferences in a PLP
(P,Φ), the authors have to add the rules e0 ← e1, . . . em and e′

0 ← e′
1, . . . e

′
n to

P with the newly introduced atoms e0 and e′
0, and the priority (e0 � e′

0) to Φ.
In short, conjunctive preferences are represented in [4] by changing the program
P with two new atoms and two new rules before introducing (e0 � e′

0), which
expresses indirectly the desired conjunctive preference.

In our approach, we neither need to change the program P nor to add new
artificial atoms to express conjunctive preferences. Preferences as (e1, . . . , em) �
(e′

1, . . . , e
′
n) can just be represented as {e1, . . . , em} � {e′

1, . . . , e
′
n} and included

straightforwardly in Φ.

4.2 Priorities Between Disjunctive Knowledge

Disjunctive preferences as (e1 ∨ · · · ∨ em) � (e′
1 ∨ · · · ∨ e′

n) can be represented in
a PLP (P,Φ) by ensuing Φ′ ⊆ Φ and Φ′ =

{
ei � e′

j | 1 ≤ i ≤ m and 1 ≤ j ≤ n
}
.
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4.3 Conditional Priorities

It is not always the case a preference is absolute. In the so-called conditional
preference, users may also wish to express specific preferences in particular
contexts (e.g., If red wine is served, I prefer meat to fish). It is denoted by
γ : φ � ψ and interpreted as “given a context γ, prefer ψ to φ”. Assum-
ing γ = c1 ∧ · · · ∧ co, φ = e1 ∧ · · · ∧ em and ψ = e′

1 ∧ · · · ∧ e′
n, we can

represent the conditional preference γ : φ � ψ as the conjunctive preference
{c1, . . . , co, e1, . . . , em} � {c1, . . . , co, e′

1, . . . , e
′
n} in Φ.

Conditional preferences can occur disguised as in “if γ = c1 ∧ · · · ∧ co is true,
then prefer ψ = e′

1 ∧ · · · ∧ e′
n”; it interpreted as if γ is true, then prefer ψ to

not e′
j with 1 ≤ j ≤ n. This is a particular case of our representation when

φ = not e′
j , i.e., such a preference can be represented in (P,Φ) by including in

Φ the preferences
{
c1, . . . , co, not e′

j

} � {c1, . . . , co, e
′
1, . . . , e

′
n} with 1 ≤ j ≤ n.

4.4 Priorities Between Rules

Preferences can also be established between (conflicting) rules as in e ←
e1, . . . , em � e′ ← e′

1, . . . , e
′
n. Its intended meaning is the conclusion of e′ via

e′ ← e′
1, . . . , e

′
n will block the conclusion of e via e ← e1, . . . , em. Such a pref-

erence can be represented in (P,Φ) by including {e1, . . . , em} � {e′
1, . . . , e

′
n} in

Φ.

4.5 Bipolar Preferences

Preferences can express not only what is satisfactory (positive preferences), but
also what can be considered tolerable or unacceptable (negative preferences).
These two forms of preferences (bipolar preferences) have been conjointly and
compactly expressed in various works [16–21]. Roughly speaking, the intended
meaning of introducing positive preferences is to express wishes which should be
satisfied as best as possible, whilst negative preferences are intended to enhance
the idea that what is not rejected or excluded is tolerated. Thus, when inter-
preting � as a bipolar priority by {e1, . . . , em} � {e′

1, . . . , e
′
n}, we mean we are

giving priority not only to outcomes satisfying {e1, . . . , em} � {e′
1, . . . , e

′
n}, but

to those not falsifying {e1, . . . , em} � {e′
1, . . . , e

′
n}, i.e., it either should con-

tain {e′
1, . . . , e

′
n}, but not {e1, . . . , em} (positive preference), or should contain

{not ei}, but not
{
not e′

j

}
with 1 ≤ i ≤ m and 1 ≤ j ≤ n (negative preference).

Bipolar preferences as {e1, . . . , em} � {e′
1, . . . , e

′
n} can be represented in

(P,Φ) by including in Φ the conjunctive preference {e1, . . . , em} � {e′
1, . . . , e

′
n}

and the preferences
{
not e′

j

} � {not ei} with 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Before moving to the next section, we will emphasise our decision of employ-

ing a representation language to express priorities between sets of literals instead
of a language to express priorities only between literals as in [4]. Although the
approach of [4] suffices to express in a PLP (P,Φ) the complex forms of pref-
erences showed in this section, there is a price to pay: the program P should
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be changed with the introduction of new atoms as well as the set Φ of priori-
ties. In our approach, as the priority relation is given in term of sets of literals,
we neither need to change the program P nor to add new artificial atoms to
express priorities between conjunctive knowledge, priorities between disjunctive
knowledge, conditional priorities, priorities between rules and bipolar priorities.

5 Results

Now we will prove some properties found in our proposal. The main results are
both the preference relations ⊆y

x and �y
x are consistent (Proposition 1) and have

neither a monotonic nor an antitonic behaviour w.r.t. Φ (Theorem 3); Proposi-
tion 2 and Theorem 1 establish conditions under which the relations of prefer-
ence are simplified; when no priority is available, Prioritised Logic Programs and
Normal Logic Programs have the same semantics (Theorem 2) and inconsistent
options are useless (Theorem 4). Next we define the notion of cyclic relation:

Definition 13 (Cyclic Relation). A relation � is cyclic if and only if its
induced strict preference relation is cyclic, i.e., there exists a chain O . . . O′ such
that O � O′ � · · · � O. Otherwise � is acyclic.

If either ⊆y
x or �y

x were cyclic, the resulting preference relation would be
inconsistent. In particular, we would find PLPs without preferred partial stable
models at all. For instance, suppose an NLP whose partial stable models are
M1, M2 and M3 such that M1 ⊂y

x M2, M2 ⊂y
x M3 and M3 ⊂y

x M1. Clearly the
resulting PLP would not have any preferred partial stable model. Fortunately,
both ⊆y

x and �y
x are acyclic:

Proposition 1. For any x ∈ {st , opt , pes, opp} and any y ∈ {∀∀,∀∃,∃∀,∃∃},
both the preference relations ⊆y

x and �y
x are acyclic.

Proof. By absurd, suppose ⊆y
x is cyclic. This means there exists a chain O . . . O′

such that O ⊂y
x O′ ⊂y

x · · · ⊂y
x O. As ⊆y

x is reflexive (Definition 10), it holds
O �⊂y

x O. Besides, by transitivity, we obtain O′ ⊆y
x O. It is an absurd as O ⊂y

x O′.
The proof for �y

x is similar.

Notice in this last result the importance of imposing reflexivity and transi-
tivity in Definition 10 to ensure every PLP will have at least one preferable PS
model. Now we will show when the best-ranked options of the PS models have
the same priority and the worst-ranked options of the PS models have the same
priority, the relations of preference are simplified:

Proposition 2. Let (P,Φ) be a PLP, I1 and I2 be subsets of LitP , B1 and B2 be
respectively the set of best-ranked options in I1 and I2 w.r.t. Φ, and W1 and W2

be respectively the set of worst-ranked options in I1 and I2 w.r.t. Φ. Assume for
each o1 and o2 in Bi and for each o′

1 and o′
2 in Wi with i ∈ {1, 2}, it holds o1 ≈ o2

and o′
1 ≈ o′

2. Consider X = B1 if x ∈ {st , opt} and X = W1 if x ∈ {pes , opp},
and Y = B2 if x ∈ {opt , opp} and Y = W2 if x ∈ {st , pes}. Then for any
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x ∈ {st , opt , pes, opp}, ∀o ∈ X and ∀o′ ∈ Y, it holds o′ �≺ o ∈ Φ iff ∀o ∈ X , it
holds ∃o′ ∈ Y such that o′ �≺ o ∈ Φ iff o2 �≺ o1 ∈ Φ iff ∃o ∈ X such that ∀o′ ∈ Y,
it holds o′ �≺ o ∈ Φ iff o2 �≺ o1 ∈ Φ iff ∃o ∈ X and ∃o′ ∈ Y such that o′ �≺ o ∈ Φ.

Proof. For any x ∈ {st , opt , pes , opp}, let o1 be an element of X and o2 be an
element of Y. Given the elements of X are indifferent to each other and the
elements of Y are also indifferent to each other, we obtain

– o2 �≺ o1 ∈ Φ iff ∀o ∈ X and ∀o′ ∈ Y, it holds o′ �≺ o ∈ Φ;
– o2 �≺ o1 ∈ Φ iff ∀o ∈ X , it holds ∃o′ ∈ Y such that o′ �≺ o ∈ Φ;
– o2 �≺ o1 ∈ Φ iff ∃o ∈ X such that ∀o′ ∈ Y, it holds o′ �≺ o ∈ Φ;
– o2 �≺ o1 ∈ Φ iff ∃o ∈ X and ∃o′ ∈ Y such that o′ �≺ o ∈ Φ.

i.e., ∀o ∈ X and ∀o′ ∈ Y, it holds o′ �≺ o ∈ Φ iff ∀o ∈ X , it holds ∃o′ ∈ Y such
that o′ �≺ o ∈ Φ iff o2 �≺ o1 ∈ Φ iff ∃o ∈ X such that ∀o′ ∈ Y, it holds o′ �≺ o ∈ Φ
iff o2 �≺ o1 ∈ Φ iff ∃o ∈ X and ∃o′ ∈ Y such that o′ �≺ o ∈ Φ. ��

A binary relation � on a set O is a total preorder if it is reflexive, tran-
sitive and for each o1 and o2 in O, it holds o1 � o2 or o2 � o1. For all
x ∈ {st , opt , pes, opp}, if the relation � is a total preorder, ⊆∀∀

x , ⊆∀∃
x , ⊆∃∀

x and
⊆∃∃

x (�∀∀
x , �∀∃

x , �∃∀
x and �∃∃

x ) will collapse into each other.

Theorem 1. Let (P,Φ) be a PLP such that the preference relation � in Φ is a
total preorder on OP . Then for any x ∈ {st , opt , pes , opp}, I is a PPS model
of (P,Φ) w.r.t. ⊆∀∀

x (resp. �∀∀
x ) iff I is a PPS model of (P,Φ) w.r.t. ⊆∀∃

x (resp.
�∀∃

x ) iff I is a PPS model of (P,Φ) w.r.t. ⊆∃∀
x (resp. �∃∀

x ) iff I is a PPS model
of (P,Φ) w.r.t. ⊆∃∃

x (resp. �∃∃
x ).

Proof. Let I1 and I2 be PS models of P , B1 and B2 be respectively the set of
best-ranked options in I1 and I2 w.r.t. Φ, and W1 and W2 be respectively the set
of worst-ranked options in I1 and I2 w.r.t. Φ. Consider X = B1 if x ∈ {st , opt}
and X = W1 if x ∈ {pes , opp}, and Y = B2 if x ∈ {opt , opp} and Y = W2 if
x ∈ {st , pes}.

It suffices to show for any x ∈ {st , opt , pes , opp}, I1 ⊆∀∀
x I2 iff I1 ⊆∀∃

x I2 iff
I1 ⊆∃∀

x I2 iff I1 ⊆∃∃
x I2 and I1 �∀∀

x I2 iff I1 �∀∃
x I2 iff I1 �∃∀

x I2 iff I1 �∃∃
x I2:

As � in Φ is a total preorder on OP , for each o1 and o2 in Bi and for each o′
1

and o′
2 in Wi with i ∈ {1, 2}, it holds o1 ≈ o2 and o′

1 ≈ o′
2. Let I ⊆∀∀

x I ′; there
are three possibilities:

1. I2 = I1. Then I1 ⊆∀∃
x I2, I1 ⊆∃∀

x I2 and I1 ⊆∃∃
x I2.

2. ∀o ∈ X and ∀o′ ∈ Y, it holds o′ �≺ o ∈ Φ. Then by Proposition 2, a) ∀o ∈ X ,
it holds ∃o′ ∈ Y such that o′ �≺ o ∈ Φ and b) ∃o ∈ X such that ∀o′ ∈ Y, it
holds o′ �≺ o ∈ Φ and c) ∃o ∈ X and ∃o′ ∈ Y such that o′ �≺ o ∈ Φ. Hence,
I1 ⊆∀∃

x I2 and I1 ⊆∃∀
x I2 and I1 ⊆∃∃

x I2.
3. I1 ⊆∀∀

x I and I ⊆∀∀
x I2.This means there exists a sequence

I1 = J1 ⊆∀∀
x J2 ⊆∀∀

x · · · ⊆∀∀
x Jm = I ⊆∀∀

x Jm+1 ⊆∀∀
x · · · ⊆∀∀

x Jn = I2
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such that ∀i ∈ {1, . . . , n − 1}, we have J1 ⊆∀∀
x J2 iff the condition 2 of Def-

inition 10 holds. Again by Proposition 2, condition 2 of Definition 10 also
holds for J1 ⊆∀∃

x J2, J1 ⊆∃∀
x J2 and J1 ⊆∃∃

x J2 for each i ∈ {1, . . . , n − 1}.
Hence, by condition 3 of Definition 10, we obtain I1 ⊆∀∃

x I2 and I1 ⊆∃∀
x I2

and I1 ⊆∃∃
x I2.

Similarly for I1 ⊆∀∃
x I2, I1 ⊆∃∀

x I2 and I1 ⊆∃∃
x I2.

The proof of I1 �∀∀
x I2 iff I1 �∀∃

x I2 iff I1 �∃∀
x I2 iff I1 �∃∃

x I2 is similar. ��
Corollary 1. Let (P,Φ) be a PLP such that the preference relation � in
Φ is a total preorder on OP . Then ∀x ∈ {st , opt , pes , opp}, and ∀y,∀z ∈
{∀∀,∀∃,∃∀,∃∃}
– I is a preferential well-founded model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) iff I is a

preferential well-founded model of (P,Φ) w.r.t. ⊆z
x (resp. �z

x);
– I is a preferential regular model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) iff I is a

preferential regular model of (P,Φ) w.r.t. ⊆z
x (resp. �z

x);
– I is a preferential stable model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) iff I is a pref-

erential stable model of (P,Φ) w.r.t. ⊆z
x (resp. �z

x);
– I is a preferential L-stable model of (P,Φ) w.r.t. ⊆y

x (resp. �y
x) iff I is a

preferential L-stable model of (P,Φ) w.r.t. ⊆z
x (resp. �z

x).

Proof. It follows from Theorem 1 and Definition 12. ��
When no priority is available (Φ = ∅), the semantics for (P,Φ) collapse into

the semantics for P (and vice versa):

Theorem 2. Let (P,Φ) be a PLP such that Φ = ∅, i.e., (P,Φ) corresponds to
the NLP P . Then ∀x ∈ {st , opt , pes , opp} and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds

– I is a PS model of P iff I is a PPS model of (P,Φ) w.r.t. ⊆y
x iff I is a PPS

model of (P,Φ) w.r.t. �y
x.

– I is a well-founded model of P iff I is a preferential well-founded model of
(P,Φ) w.r.t. ⊆y

x iff I is a preferential well-founded model of (P,Φ) w.r.t. �y
x.

– I is a regular model of P iff I is a preferential regular model of (P,Φ) w.r.t.
⊆y

x iff I is a preferential regular model of (P,Φ) w.r.t. �y
x.

– I is a stable model of P iff I is a preferential stable model of (P,Φ) w.r.t. ⊆y
x

iff I is a preferential stable model of (P,Φ) w.r.t. �y
x.

– I is an L-stable model of P iff I is a preferential L-stable model of (P,Φ)
w.r.t. ⊆y

x iff I is a preferential L-stable model of (P,Φ) w.r.t. �y
x.

Proof. Since Φ = ∅, Φ∗ = {o � o | o ∈ OP } according to Φ∗. This means for every
o, o′ ∈ OP , it holds o �≺ o′. Thus for any I ⊆ LitP , we obtain BI = WI = 2I ,
in which BI is the set of all best-ranked options in I and WI is the set of all
worst-ranked options in I w.r.t. Φ. Then for any PS models I1 and I2 of P , for
any o1 ∈ BI1 = WII = 2I1 and for any o2 ∈ BI2 = WI2 = 2I2 , it holds o2 �≺ o1
and o1 �≺ o2 according to Φ∗. Hence, for any y ∈ {∀∀,∀∃,∃∀,∃∃}, we obtain
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BI1 = WII = 2I1 ⊆y BI2 = WI2 = 2I2 and

BI2 = WI2 = 2I2 ⊆y BI1 = WI1 = 2I1
(1)

From Eq. (1), we infer for each x ∈ {st , opt , pes , opp} and for all y ∈
{∀∀,∀∃,∃∀,∃∃}, it holds I1 ⊆y

x I2 and I2 ⊆y
x I1.

Consequently, for each x ∈ {st , opt , pes, opp} and for all y ∈ {∀∀,∀∃,∃∀,∃∃},
it holds I is a PS model of P iff I is a PPS model of (P,Φ) w.r.t. ⊆y

x.
After replacing above I1 by I1 − I2 and I2 by I2 − II , we obtain the same

result for �y
x. ��

The following results are immediate:

Corollary 2. Let (P,Φ) be a PLP such that Φ = ∅, i.e., (P,Φ) corresponds to
the NLP P . Then ∀x ∈ {st , opt , pes , opp} and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds

– I is a well-founded model of P iff I is a preferential well-founded model of
(P,Φ) w.r.t. ⊆y

x iff I is a preferential well-founded model of (P,Φ) w.r.t. �y
x.

– I is a regular model of P iff I is a preferential regular model of (P,Φ) w.r.t.
⊆y

x iff I is a preferential regular model of (P,Φ) w.r.t. �y
x.

– I is a stable model of P iff I is a preferential stable model of (P,Φ) w.r.t. ⊆y
x

iff I is a preferential stable model of (P,Φ) w.r.t. �y
x.

– I is an L-stable model of P iff I is a preferential L-stable model of (P,Φ)
w.r.t. ⊆y

x iff I is a preferential L-stable model of (P,Φ) w.r.t. �y
x.

Proof. These results follow from Definitions 3 and 12 and Theorem 2.

Both the relations ⊆y
x and �y

x have neither a monotonic nor an antitonic
behaviour w.r.t. Φ:

Theorem 3. Let (P,Φ1) and (P,Φ2) be PLPs. If Φ1 ⊆ Φ2, then ∀x ∈ {st , opt ,
pes, opp} and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it does not hold in general

1. PPS(P,Φ1)⊆y
x

⊆ PPS(P,Φ2)⊆y
x

(resp. PPS(P,Φ1)�y
x

⊆ PPS(P,Φ2)�y
x
)

(monotonic).
2. PPS(P,Φ2)⊆y

x
⊆ PPS(P,Φ1)⊆y

x
(resp. PPS(P,Φ2)�y

x
⊆ PPS(P,Φ1)�y

x
)

(antitonic).

Proof. Let P be the NLP {a ← not b b ← not a}, whose PS models are ∅, {a}
and {b}. Firstly, we will show a counterexample to the statement ∀x ∈ {st , opt ,
pes, opp} and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds PPS(P,Φ1)⊆y

x
⊆ PPS(P,Φ2)⊆y

x

(resp. PPS(P,Φ1)�y
x

⊆ PPS(P,Φ2)�y
x
) :

Let Φ1 = ∅ and Φ2 = {∅ � {b} , {b} � {a}}. We have ∀x ∈ {st , opt , pes, opp}
and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds PPS(P,Φ1)⊆y

x
= PPS(P,Φ1)�y

x
= {∅, {a} ,

{b}} and PPS(P,Φ2)⊆y
x

= PPS(P,Φ2)�y
x

= {{a}}. Consequently,

PPS(P,Φ1)⊆y
x

= PPS(P,Φ1)�y
x

�⊆ PPS(P,Φ2)⊆y
x

= PPS(P,Φ2)�y
x

Now we will show a counterexample to ∀x ∈ {st , opt , pes, opp} and
∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds PPS(P,Φ2)⊆y

x
⊆ PPS(P,Φ1)⊆y

x
(resp.

PPS(P,Φ2)�y
x

⊆ PPS(P,Φ1)�y
x
):
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Let Φ1 = {∅ � {b} , {b} � {a}} and Φ2 = {∅ � {b} , {b} � {a} , {a} � ∅}. We
have ∀x ∈ {st , opt , pes, opp} and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds PPS(P,Φ1)⊆y

x
=

PPS(P,Φ1)�y
x

= {{a}} and PPS(P,Φ2)⊆y
x

= PPS(P,Φ2)�y
x

= {∅, {a} , {b}}.
Consequently,

PPS(P,Φ2)⊆y
x

= PPS(P,Φ2)�y
x

�⊆ PPS(P,Φ1)⊆y
x

= PPS(P,Φ1)�y
x

We end up this section by showing inconsistency options do not interfere in
the process of selecting the PPS models:

Theorem 4 (Invariant to Inconsistency). Let (P,Φ1) and (P,Φ2) be PLPs
such that Φ2 = {o1 � o2 | o1 � o2 ∈ Φ1 and both o1 and o2 are consistent}.
Then ∀x ∈ {st , opt , pes , opp} and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds
PPS(P,Φ1)⊆y

x
= PPS(P,Φ2)⊆y

x
(resp. PPS(P,Φ1)�y

x
= PPS(P,Φ2)�y

x
).

Proof. Let I1 and I2 be a PS model of P . We will show I1 ∈ PPS(P,Φ1)⊆y
x

iff
I1 ∈ PPS(P,Φ2)⊆y

x
(resp. I1 ∈ PPS(P,Φ1)�y

x
iff I1 ∈ PPS(P,Φ2)�y

x
).

As no PS model is inconsistent, the inconsistent options are neither in the
set BIj of all best-ranked options of Ij nor in the set WIj of all worst-ranked
options of Ij with j ∈ {1, 2}. This means for each o1 ∈ BI1 ∪ WI1 and for each
o2 ∈ BI2 ∪ WI2 , it holds o2 �≺ o1 according to Φ∗

1 iff o2 �≺ o1 according to Φ∗
2.

Then ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds BI1 ⊆y BI2 in Φ1 iff BI1 ⊆y BI2 in Φ2,
BI1 ⊆y WI2 in Φ1 iff BI1 ⊆y WI2 in Φ2, WI1 ⊆y BI2 in Φ1 iff WI1 ⊆y BI2 in
Φ2 and WI1 ⊆y WI2 in Φ1 iff WI1 ⊆y WI2 in Φ2, i.e., ∀x ∈ {st , opt , pes , opp}
and ∀y ∈ {∀∀,∀∃,∃∀,∃∃}, it holds I1 ⊆y

x I2 in Φ1 iff I1 ⊆y
x I2 in Φ2. Hence,

I1 ∈ PPS(P,Φ1)⊆y
x

iff I1 ∈ PPS(P,Φ2)⊆y
x
.

Similarly we can prove I1 ∈ PPS(P,Φ1)�y
x

iff I1 ∈ PPS(P,Φ2)�y
x
. ��

6 Related Work

The first studies on preference information in non-monotonic reasoning involved
the idea of specificity [22]: given two conflicting conclusions obtained from the
same initial information but resorting to different inference rules, one should
prefer the more specific. Following a related point of view, in [23], they intro-
duced preference between predicates in the context of Circumscription. Prefer-
ence (usually based on simplicity measures) is also employed in [24] to select the
most preferable explanations in abductive systems.

With respect to preferences in Logic Programming, we find a plethora of pro-
posals (see [2–12] for a non exhaustive list). In [2] and [3], they extend respec-
tively the well-founded semantics and the answer sets semantics [25] for logic
programs to represent preference between rules in the language and resort to
such information to obtain new conclusions. Unlike the semantics in [3], which
allows multiple preferred answer sets even for some fully prioritised programs,
the semantics in [10] selects at most one preferred answer set for all fully priori-
tised programs. Furthermore, for a large class of programs guaranteed to have
an answer set, the existence of a preferred answer set is also guaranteed.
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In ordered logic programming [5], CR-prolog [6], logic programming with
ordered disjunction [7], answer set optimization [8], possibilistic answer set pro-
gramming [9], preference is handled to evaluate the preferred answer sets by
specifying the precedence over the rules or the literals in rules heads.

A logic programming language PrefLog based on an infinite-valued logic has
been conceived in [11] to support operators for expressing preferences. Despite
the infinite-valued truth domain, it can be defined a terminating bottom-up
proof procedure for implementing a significant fragment of the language. For
continuous operators, a least Herbrand model is guaranteed to exist.

In [12], it is proposed a logic programming paradigm to combine non-
monotonic reasoning with epistemic preferential reasoning. In this proposal, the
relation of preferences between atoms can occur in the body of the rules and can
be employed to possibly generate new models.

An approach closer in spirit to ours is [4], where the authors introduced a
framework of prioritised logic programming to represent priority information
explicitly in a program. Differently of us, however, they restrain the preference
relation to literals only, whereas we have defined the preference relation over sets
of literals. As consequence, in order to express in a PLP (P,Φ) the complex forms
of preferences expounded in Sect. 4, they have to change the program P with the
introduction of new atoms as well as the set Φ of priorities. Furthermore, they
defined a unique semantics to determine the preferred answer sets. In contradis-
tinction, we introduced 32 different criteria (semantics) to establish preference
between partial stable models (which allow defining 32 different ways of selecting
the preferred answer sets). In this sense, our work offers a more comprehensive
and systematic treatment to deal with preferences in logic programming.

7 Conclusion and Future Works

Prioritised Logic Programs (PLPs) [4] are obtained from Normal Logic Pro-
grams (NLP) by including priorities between literals (an atom or its negation).
In this paper, we have presented a more general notion of PLP when compared
with that version in [4]. Our proposal has two main distinguishing features: a) it
encompasses not only priorities between literals (atoms or its negation), but also
between sets of literals. As consequence, we can represent compactly complex
forms of preference. b) Concerning its semantics, we have provided a compre-
hensive and systematic mechanism to select the most Preferable Partial Stable
Models (PPS Models). Indeed, by combining well-known criteria found in the
literature, we have defined 32 different manners of selecting the PPS models. As
the most important semantics in NLP are based on partial stable models, we are
also equipped with 32 different manners of selecting the most preferred models
according to them. Besides, we have proved some properties of these PLPs and
guaranteed these semantics for PLP generalise their counterparts for NLP.

Future directions include investigating computational complexity issues on
PLPs and exploiting the consequence of introducing preference on paraconsistent
semantics found in logic programming. We also intend to study how to work with
dynamic preferences along with the resulting semantics.
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Active Learning and Case-Based Reasoning
for the Deceptive Play in the Card Game

of Truco
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Maria, RS, Brazil

Abstract. Deception is an essential behavior in many card games. Despite this
fact, it is not trivial to capture the intent of a human strategist when making decep-
tive decisions. That is even harder when dealing with deception in card games,
where components of uncertainty, hidden information, luck and randomness intro-
duce the need of case-based decision making. Approaching this problem along
with the investigation of the game of Truco, a quite popular game in Southern
regions of South America, this work presents an approach that combines active
learning and Case-Based Reasoning (CBR) in which agents request a human spe-
cialist to review a reused game action retrieved from a case base containing played
Truco hands. That happens when the agents are confronted with game situations
that are identified as opportunities for deception. The goal is to actively capture
problem-solving experiences in which deception can be used, and later employ
such case knowledge in the enhancement of the deceptive capabilities of the Truco
agents. Experimental results show that the use of the learned cases enabled dif-
ferent kinds of Truco agents to play more aggressively, being more deceptive and
performing a larger number of successful bluffs.

Keywords: Deception · Case-based reasoning · Active learning

1 Introduction

Deception involves a deliberate attempt to introduce in another person a false belief or
belief in which the deceiver considers false [1, 2]. Such deceptive behavior can be mod-
eled as a) concealment, aiming to hide/omit the truth and b) simulation, whose purpose
is to show the untruth [3]. To conceal the deceiver acts by withholding information and
omitting the truth. To simulate, in addition to the retention of genuine information, unreal
information is presented as being legitimate. Among the various forms of deception is
the bluff, where deception and bluffing is interchangeably used in this work. In the con-
text of a card game, a bluff is an action where players, to deceit their opponents, seek
to make an illusory impression of strength when they hold weak hands. Alternatively,
players may try to show that their strong hands have little value in the game.

To card games with hidden, stochastic and imperfect information, acting deceptively
is an essential strategy for players to succeed. The use of deceptive moves can also
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be closely related to the nature of some popular games, and the entertainment that it
introduces in the game disputes. To do so, players should be able to identify what the
best opportunities for the use of deception are, considering the strength of their hand
and their betting history in order to make themselves as unpredictable as possible [4].
In general, real-world situations present complex characteristics for the modeling of
deceptive agents, such as the need for learning and decision-making with a small number
of training examples, for instance.

For the development of agents capable of acting deceptively in card games, this work
explores Case-based Reasoning (CBR) [5]. With relevant explanatory capabilities, CBR
combines learning and problem-solving with the use of specific knowledge captured in
the form of cases. In particular, this technique has supported the development of agents
which competitively play Poker [6, 7]. In this line of research, this paper extends past
work [8–10] in the CBR modeling of a popular game in the Southern regions of South
America, a game that is under-investigation in Artificial Intelligence (AI): the game of
Truco [11].

CBR allows continuous learning by retaining concrete problem-solving experiences
in a reusable case base. Despite this fact, it is not simple to capture and label the intention
of human playerswhenmaking deceptivemoves in card game. To approach this problem,
active learning [12] is investigated in the analysis of Truco opportunities for being
deceptive, and the consequent collection of such problem-solving experiences in a case
base. Then, the acquired case knowledge is used to equip different kinds of CBR agents
to make deceptive actions. In the proposed approach, the case learning is focused on the
review of decisions and retention of cases in the case base. As a result of the implemented
solution reuse policy, whenever a game action is reused by the agent, if a certain pre-
established learning criterion is met, the agent requests for a human expert to review
the reused game action and the current game state. If the solution presented by the
reuse policy is not considered to be the most effective according to the judgment of the
domain specialist, the expert suggests a game action to be played (deceptive or not).With
attention to the capture and reuse of deceptive game actions from human players, the
contributions of this paper are: i) the exploration of active learning to support the retention
of case problem situations in which deceptive moves can be used, ii) the performance
evaluation of deceptive Truco agents configured according to alternative solution reuse
policies, and iii) the analysis of the resulting game playing behavior of the implemented
agents when using case bases storing the collected problem-solving experiences.

2 Background to This Work

CBR [5] combines learning and problem-solving with the use of knowledge obtained
from concrete problem-solving experiences. Learning in CBR aims to acquire, modify
or improve different knowledge repositories [13], where the enhancement of the case
base is often sought in different applications. In doing so, it is possible to explore the
automatic case elicitation (ACE) technique [14]. This technique focuses on the system’s
ability to explore its domain in real time and automatically collect new cases. Another
technique is the learning by observation, also referred as demonstration learning or
imitation learning. In such learning modality, the system learns to perform a certain
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behavior by observing an expert to act [15]. The first learning stage is the acquisition of
cases from the expert demonstrations. The second stage is the resolution of a problem
using the case base collected from the observations [16]. An alternative to learning by
observation is the active learning, where the goal is to obtain greater quality in the
learning process considering the smallest possible number of labeled instances. Active
learning tries to overcome the labeling and data distribution bottlenecks by allowing
the learner to intelligently choose the most representative instances. This model allows
requesting that a human expert present a solution to the problem. Later it allows adding
the resolved instances to the training set.

2.1 CBR, Active Learning and Games

Active learning and CBR have been explored in a number of digital game applications.
In the SMILe - Stochastic Mixing Iterative Learning [17] game, SMILe controls the
agent while observing the specialist behavior. When the game iteration ends, SMILe
uses the collected observations to train a new policy that can be used in subsequent
game iterations. The DAgger – Dataset Aggregation [18] algorithm enhances SMILe by
preventing the agent from selecting actions using outdated policies. In doing so, the agent
updates a single policy learned each iteration. In both SMILe and DAgger, the control
to determine whether the player is the agent or the specialist is defined probabilistically.

The SALT algorithm – Selective Active Learning from Traces [19, 20] allows the
learner agent to perform a task, and when it is determined that the agent has left the
space for which it has training data, the control is assigned to an expert. As in SMILe
and DAgger, the focus is on the collection of training data for the set of states that
are expected to be found during testing. Unlike SMILe and DAgger, control in SALT
is assigned to the specialist only when the agent leaves the state-space of the training
set. The training data is generated only when the specialist is in control, reducing the
specialist’ cognitive load.

With regard to expert consultation strategies, in [21], the retrieval of most similar
cases is used to determine a game action to be taken according to a vote. Considering
the average similarity value of the cases retrieved from the last five decisions made in
the game and a coefficient obtained from a linear regression, which determines whether
the similarities are increasing or decreasing during the last performed movements, the
CBR agent gives the game control to the human expert. This happens whenever themean
similarity is increasingly moving away from the space of known situations. The expert
plays until the states of the game are familiar again. To avoid continuous changes between
the CBR agent and the human specialist, each one has to perform certain minimum play
before giving control to the other.

In [22] and [15], a similarity threshold value is used to determinewhen the human spe-
cialist is consulted. Then the specialist automatically gives control to the CBR agent after
performing a move in the game. Moreover, the retention of cases in the case base only
happens when the human specialist is in control. Unlike passively acquired cases, which
can result in the retention of redundant cases in the case base, the use of active learning
in these games allowed the learning of certain situations that would not be observed in a
purely passive manner. To achieve a reasonable expert imitation, active learning required
a considerably lower number of cases than when a fully passive approach was used.
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In contrast to these past works, this work actively learns only in the resolution of the
required problems, which are identified as deception game opportunities. In addition to
use a similarity threshold, the condition to query the human specialist is combined with
a strategy that employs hand strength and probability to determine whether a situation
is opportune for the use of deceptive moves. Instead of using active learning to collect
any kind of expert experience of game playing, this work direct such learning to the
improvement of the deceptive capabilities of card playing agents.

TheAI researchhas also investigated the effectiveness ofCBR in themodelingof card
games, mainly with respect to the game of Poker [7, 23]. Considering deceptive-related
Poker strategies, however, only [7] explicitly addresses this issue. There, the developed
agent, whose case base starts empty, performs the random play strategy to populate the
case base. With respect to the game of Truco, [10] addresses the case retention problem,
especially considering the lack of large numbers of cases. It investigates alternative
learning techniques such as ACE, Imitation Learning, and Active Learning to enable
an agent to learn how to act in situations in which past case knowledge is limited.
Through the assistance of a human player, the purpose of the active learning technique
is to guide the agent in its use of any kind of game action whenever the agent had not
encountered similar game situations stored in the case base. Despite this research, Truco
matches disputed amongst the agents implemented according to the analyzed learning
techniques showed that, unlike the automatic retention and the retention of new cases
strategies, which demonstrated an improvement in the agents’ performance, the active
learning technique did not showan improvement in the agents’ performance.Unlike [10],
which performed a broad collection of case situations in Truco, this paper investigates
the use of active learning in the analysis of deceptive game opportunities and, for those
in which the expert decided that it was worth acting deceptively, the collection of new
problem-solving experiences.

[8, 9] address the indexing of the Truco case base through the organization of cases
into different clusters. Using such clusters, the goal was to identify game actions along
with game states in which such actions are performed. In addition, it is proposed a two-
step solution reuse model, which is further explored in our work. The model involves
a step that retrieves the most similar cases for a given query, where a reuse criterion is
used in the choice of the group of cases that is more similar to the current query situation
(extra cluster reuse criterion). After selecting this group of cases, a filtering is performed
in order to select only the retrieved cases that belong to the chosen group. Based on
these filtered cases, a second reuse step can use another reuse criterion to choose the
game action that is used to solve the current problem (intra cluster reuse criterion). The
reuse policies that showed to be the most effective according to their experiments are
described in Table 1.

Considering the cases retrieved from a given query, the number of points solution
criterion (NPS) involves the reuse of game actions, where the game action choice is
supported on the amount of earned points due to the use of that action in the game.
The probability victory (PV) criterion involves the choice of either clusters (PVC) or
game actions (PVS) to be reused (or both in the PVCS), where the reuse is based on the
calculation of the chances of victory for each of the different game actions recorded in
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Table 1. Reuse policies used by the implemented Truco agents.

Reuse policy Criterion for the
choice of clusters

Criterion for the
choice of game
actions

Reuse model

Number Points
Solution (NPS)

– Number Points Standard reuse model

Probability Victory
with Cluster and
Number Points
Solution (PVCNPS)

Probability Victory Number Points Two-step reuse model

Probability Victory
Solution (PVS)

– Probability Victory Standard reuse model

Probability Victory
with Cluster and
Solution (PVCS)

Probability Victory Probability Victory Two-step reuse model

the retrieved cases. These policies were thoughtfully explored in the development of the
Truco playing agents investigated in this paper.

2.2 The Card Game of Truco

Truco is a widely practiced card game in Southern regions of South America [11]. The
AI techniques covered in this work were investigated with the use of matches disputed
between two opposing players. Such blind Truco version (Truco “Cego”) uses 40 of the
48 cards in the Spanish deck, as the four eights and four nines are removed. The deck is
divided into “Black” cards, which are the cards with figures (King – 12, Horse – 11 and
Sota – 10), and “White” cards that are from ace to seven.

In Truco, the dispute takes place through successive hands that are initially worth a
point. Each player receives three cards to play one hand. A hand can be divided into two
phases of dispute: ENVIDO and TRUCO. In each stage, players have different ways to
increase the number of points that are played. Each hand can be played in a best of three
rounds, in which the player who plays the highest card in each round wins. Finally, the
match comes to an end when a player reaches twenty-four points.

ENVIDO is a dispute that takes place during the first round of a hand. Such a dispute
is based on the sum of the value of each one of the player’s cards. For ENVIDO, each
card is worth the value presented in it, with the exception of “black” cards that are not
computed in the sum of points. ENVIDOhas the following bettingmodalities: ENVIDO,
REAL_ENVIDO, and FALTA_ENVIDO, which the player can bet before playing the
first card on the table. If a player advances any one of these bets, the opponent can
accept or deny the ENVIDO dispute. There is a special case of ENVIDO, which is
called FLOR. The FLOR occurs when a player has three cards with the same suit. The
FLOR bet cancels any ENVIDO modality previously advanced since it increases the
value of the ENVIDO dispute. As in ENVIDO, FLOR allows one to fight back (e.g.
CONTRA_FLOR) if the opponent also has three cards of the same suit.
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When the ENVIDO dispute ends, the TRUCO phase begins. At this stage, one to
four points are disputed during the three rounds of the hand (one for each card in the
hand). In one round, each player drops a card at the table starting with the hand player’s
or the winner from the previous round. These cards are confronted according to a Truco
ranking involving each card. The player who wins two of the three rounds wins the hand.
Unlike bet actions for ENVIDO, which can only be placed during the first round of each
hand, TRUCO bets can be placed at any time during a hand dispute. In addition, if a
player decides to go to the deck, the opponent receives a score of points equivalent to
the points in dispute in that TRUCO stage.

Similar to other card games, such as in the different variations of Poker, for example,
the gameofTruco involves different degrees of deception/bluffing. These strategies allow
players to win hands and even matches in situations where they do not own strong cards
for the ENVIDO and TRUCO disputes. Most importantly, human players in real-life
Truco matches employ deceptive actions with certain frequency. Among other reasons,
this behavior makes the game more fun, even if such bluffs don’t necessarily result in
better results in the game.

3 Active Learning and CBR in the Card Game of Truco

Agents can employ CBR to learn game strategies for playing Truco. In our work, when-
ever such agents take the game turn, they evaluate the current state of the game. To do it,
a query containing the game state information is formed. Then, the K-NN algorithm is
executed along with a similarity function that averages case attribute similarities to per-
form the retrieval of past cases from the case base. After retrieval, the selected cases are
used to generate a game move which is played in the current game situation. The reuse
is supported by a reuse policy which defines, among other criteria, the number of similar
cases considered in the solution choice and the minimum similarity value (threshold, set
to 98% in this work) so that the solutions represented in the retrieved cases are reused in
the resolution of the current problem. At the end of such problem-solving procedure, the
system can decide whether the derived problem-solving experience is worth retaining
as a new case in the case base.

3.1 The Case Base Formation

Aweb-based system was developed to permit the collection of Truco cases, where these
cases were the result of Truco matches played between two human opponents who had
various levels of Truco experience. At the end of each disputed Truco hand, a new case
(i.e. a hand of Truco) was stored in the case base. In our project, 147 matches were
played among different players using this system. In total, 3,195 cases were collected
and stored into a case base called BASELINE. To represent the cases, a set of attributes
captured the main information and game actions employed in the Truco disputes. Table
2 summarizes these attributes.

The played cards were recorded according to a numerical codification. The encoding
uses a nonlinear numerical scale ranging from 1 to 52. Code 1 is assigned the cards with
the lowest value (all 4’s). Code 52 is assigned the highest value card, which is the ace
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Table 2. Attributes for representing a Truco case.

Attributes Description

Case identification Identify the hand and match to which the hand
belongs

Player who starts actions on each hand Player 1 or 2. The player that starts the hand
dispute is known as “hand player”

Received and played cards Cards received and played during the 3 hand
rounds by each player organized as: “high
card, medium card and low card”

Scoreboard Points from each player when starting and
finishing the hand

Points regarding the ENVIDO dispute Point score for the ENVIDO dispute

Played bets/actions Bets and game actions that each player
performed during the hand dispute

Winners for ENVIDO, TRUCO and the hand
rounds

Player 1 or 2 who won every hand dispute

Amount of points earned/lost in each dispute Amounts of points awarded to the winners of
each dispute that occurred in the hand

… …

of spades. Then it was explored both in the representation of cases and in the similarity
evaluations. In effect, the codification is based onboth the categories identified in [24] and
the Truco knowledge from our research group participants. Each value in this encoding
represents the relative strength of the Truco cards.

To collect deceptive game information to support the development of the active
learning task (only used during the active case learning) through the course of each
played Truco match, other set of attributes were added into the case representation
model. These attributes are described in Table 3.

With respect to the deceptive actions performed by Truco players, case attributes to
represent the deception information were used to measure the similarity of the current
game situation in relation to the cases stored in a LEARNINGcase base. The purposewas
to determine whether such case base had enough records of problem opportunities for
using deceptive actions in order to solve the game problems encountered in the matches
in which the active learning tasks were executed.

3.2 Game Actions and Deception

Truco has various kinds of game actions. To support the analysis of deceptive Truco
behaviors, we classified as aggressive the Truco playing actions involving betting or
raising an opponent’s bet. Similarly, passive are the actions in which the player should
decide either accepting or denying an opponent’s bet. In addition, aggressive game
actions can be labeled as either honest or deceptive. In aggressivemoves, the player can
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Table 3. Attributes regarding the deceptive actions made in the Truco match.

Attributes Deception type Description

Deceptive actions performed
with success

Bet/Raise
Slow playing
Bet/Raise with complete
game information

Number of deceptive moves that
achieved the goal

Deceptive actions performed
without success

Number of deceptive moves that
didn’t have the expected effect

Revealed deceptive actions Due to the cards played by the
agent, number of deceptive
actions that could have been
detected by the opponent

Opponent’s deceptive actions Due to the cards played by the
opponent, number of deceptive
actions that were discovered by
the agent

most effectively employ deception. In passive moves, the player has the opportunity to
detect the opponent’s deception since the opponent is either betting or increasing a bet.
In Table 4, we analyze such deceptive game actions in Truco.

Table 4. Possible types of deceptive game actions in Truco.

Game action Condition Goal Deception characteristic

Bet/Raise on
ENVIDO-type bets

Low probability of
having a better
hand than the
opponent

To give the
impression that the
deceiver has a strong
hand. Consequently,
to induce the
opponent not to
accept the bet or raise
the bet

Concealment/simulation;
omit the reality and show
the untruthBet/Raise on

TRUCO-type bets

Bet/Raise with perfect
information on
TRUCO-type bets

Deceivers are sure
they cannot defeat
the opponent’s
card in the last
hand round

Slow playing on
ENVIDO-type bets

High probability
of having a better
hand than the
opponent

To induce the
opponent to bet so
that the deceiver can
raise the bet in order
to maximizing the
number of points
been disputed

Concealment;
hides/omits the truth

Slow playing on
TRUCO-type bets

Bet/Raise with perfect
information on
ENVIDO-type bets

Low probability of
having more
points than the
opponent

To induces the
opponent not to
accept the bet

Concealment/simulation;
omit the reality and show
the untruth
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3.3 Hand Strength

Truco is playedwith 40 of the 48 cards of the Spanish deck,where there are 9,880 possible
hands. With this, it is possible to sort and classify each hand according to their strength
for the ENVIDO and TRUCO disputes. The ENVIDO hand strength is directly based on
the ENVIDO points. To calculate the strength of a TRUCO hand, the relative strength
and importance of each card that forms the hand have to be considered. A method to
calculate such hand strength can be derived from the analysis of two components: a) the
strength of the two highest value hand cards and b) the strength of the two lower value
hand cards. This method considers the Truco rules since a hand dispute is played in a
best of three rounds.

The two highest hand cards a player possesses (high and medium cards, see Table
2) are more important in the estimation of final hand strength. To have two high cards
in a hand tends to increase the player’s chances of winning in the best-of-3 competition.
A low card among these higher hand cards has a high negative impact on the final hand
strength. On the other hand, a low card between the two lowest hand cards (medium
and low cards) should also have a negative impact on the final hand strength. However,
this impact is not as severe in the calculation of the hand strength as it is the impact of
owning a low card between the two highest ones.

The method explores the calculation of means between the hand card numerical
encodings (i.e. the non-linear encoding from 1 to 52). The first calculates a harmonic
mean (1) between the two highest hand cards (high and medium cards). When one value
much lower than another is used in this type of harmonic mean calculation, the final
result of the computed mean tends to be reduced toward the lowest value.

M1 = 2
1/
HighCard + 1/

MediumCard
(1)

The second uses the calculation of a weighted arithmetic mean (2) between the two
lower hand cards (medium and low cards). In this case, the weight attributed for the
highest card between these two lowest hand cards was set to double the weight of the
lowest card. The use of a weighted arithmetic mean also allows expressing the impact of
a low card on the hand strength. However, the weight of having a high card between the
two lower ones should be greater than the weight of having a lower card among these
two lower cards.

M2 = (2 ∗ MediumCard) + LowCard

2 + 1
(2)

To reach the final value of the hand strength, a weighted arithmetic mean (3) is
calculated between the results obtained from the two mean values computed with (1)
and (2).

M3 = (2 ∗ M1)+M2

2 + 1
(3)

According to numerical tests, it was not possible to identify hand situations in which
our calculations of hand strength presented unsatisfactory results. Qualitatively, either
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higher or lower values than those obtained by the use of our method could be argued as
relevant in some situations. In these situations, even without the use of our method, the
strength of the considered hands is subject to debate, especially when we considered the
Truco rules and the different ways of deceptively playing in this game.

3.4 Triggering the Expert Consultation

As part of the proposed active learning approach, two strategies to trigger a human
specialist consultation are proposed in the work.

First, the coverage of a case base is used as a trigger to consult the expert. To do it,
the similarity between the current game situation and the cases learned through active
learning is computed when a query is emitted. The query is performed on the case base
containing the newly retained cases: the LEARNING case base. Such query considers
the case attributes that are relevant for each type of decision in the game. In addition, the
case attributes referring to the previously taken deception decisions in the match (Table
3) are considered in the similarity computations. The 98% similarity threshold was used
to determine whether the LEARNING case base had sufficient coverage to resolve the
current query situation.

Second, the trigger for the expert consultation is also directed to the identification of a
problem opportunity to play deceptively. To define whether a particular decision-making
scenario is characterized as an opportunity for such bluffing, the number of possibilities
of certain Truco events is computed. With this, for example, it is possible to determine
the probability of an opponent havingmore ENVIDO points than the points of the agents
ENVIDO, using the card that had already been played by the opponent and the position
of the agent on the table. Moreover, in each moment of the hand competition and in
each type of game move, whenever there is a probability of success lower than 50%,
the game situation can be classified as an “opportunity for deception”. Similarly, when
the probability of success is higher than 85%, the agent may also adopt a slow playing
deceptive move. Such estimate of the winning odds is computed in each new decision
state of the game. It is updated according to the information revealed throughout the
hand dispute.

The following example shows how this probability calculation is performed. Given
the following agent’ cards: (3 , 12 , 6 ), which are removed from the deck, it is possible
to calculate that the opponent can have C37,3 = 7,770 possible hands. Then the strength
of each possible opponent hand is compared with the strength of the agent’s hand in
each of these 7,770 card combinations. To do so, our method for calculating the hand
strength is used. The result is that the agent has a better hand than the opponent in 5,106
hands. By computing the probability, there is a 66% chance of having a better hand than
the opponent’s hand.

4 Experiments and Results

The developed experiments aimed to evaluate the effectiveness of the proposed active
learning and CBR approach in the collection and exploration of deception cases in the
stochastic and imperfect information game of Truco. These experiments were organized
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as follows: a) case learning, covering the acquisition of cases through active learning,
b) agent performance, referring to the analysis of agent victories with and without the
use of the collected cases, and c) agent behavior, concerning the evaluation of the set of
decisions taken by the agents with and without the use of the collected cases. The tested
Truco playing agents were implemented according to the four different solution reuse
policies listed in Table 1.Different case baseswere used by them: a) the initially collected
case base (BASELINE, storing 3,195 cases), collected from matches played amongst
human players, b) the resulting case base later built in this work (ACTIVE, storing
5,013 cases), which increased the BASELINE case base with the new cases collected
through active learning. To analyze the different game playing strategies adopted by the
agents, according to the reuse policies along with their respective case bases, a number
of evaluation attributes was used (Table 5).

Table 5. Game attributes observed in the analysis of the implemented agents.

Game attributes Description

Matches Total number of disputed matches

Wins Total number of victorious matches by each agent

Game actions Total number of ENVIDO/TRUCO game actions (passive +
aggressive) by each agent

Aggressive game actions Total number of ENVIDO/TRUCO aggressive game actions by
each agent

Bluffs Total number of played bluffs by each agent*

Successful bluffs Total number of successful played bluffs by each agent*
*Bluffs: ENVIDO/TRUCO game actions in which the hand has either less than 50% or more than
85% (slow playing) winning chances.

Using the attributes described in Table 5, the analyzed strategies were the follow-
ing: i) Honest-deceptive: indicating the rate of deceptiveness, it expresses the relation-
ship between the total number of deceptive game moves and the total number of game
moves. The higher the value is, the more deceptive the agent behavior is; ii) Success-
ful bluff : indicating the rate of bluff effectiveness, it corresponds to the relationship
between the number of successful bluffs and the total number of bluffs; and iii) Passive-
aggressive: indicating the rate of aggressiveness, it captures the relationship between
the number of aggressive moves of the ENVIDO/TRUCO-type and the total number of
ENVIDO/TRUCO-type game moves, including when the agent does not bet. The higher
the value is, the more aggressive the agent behavior is.

4.1 The Active Learning Experiment

To build the case base via active learning, 148 Truco matches were played between the
agents implemented according to the tested reuse policies. The reuse policies used by
each agent were randomly chosen at the beginning of eachmatch. Only one of the players
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in each match had the ability to consult the expert human player, where the expert player
was the first author of this paper.

During the collection of such cases via active learning, the agents computed their
decisions by using the BASELINE case base. In these learning matches, whenever the
learning criterion related to the detection of deception problem opportunities was sat-
isfied, the learning algorithm presented information about the game to the specialist.
Then, the expert reviewed whether the reused game action provided an effective solu-
tion for the current problem. With that, the expert player decided whether to maintain
the decision recommended by the automated reuse policy or to perform another game
action, deceptive or not. The expert decision was stored as a new case in a separate
case base containing situations and decisions (LEARNING case base). New cases were
stored in this case base only when the specialist performed an intervention by changing
the game action suggested by the reuse policy. In total, 1,818 new cases were stored in
the LEARNING case base. When the reviewed game actions were used by the agents,
they won 79% of the disputes played during this learning experiment.

4.2 The Evaluation Experiments

Due to luck and randomness, the quality of the Truco cards received by each player is
likely to have a large variation. To reduce this imbalance in the evaluation experiments,
the dispute model described by the Annual Computer Poker Competition (ACPC) [25]
was adopted. This model employs duplicate matches, in which the same set of hands
is distributed in two sets of matches. In doing so, players reverse their positions at the
table when playing the second match. Because all players receive the same set of cards,
this dispute model allows a fair assessment of agents’ ability.

In the first set of tests, a competition between the four implemented agents was
developed, where all of them competed against the others in a total of 300 Trucomatches.
The agents only used the BASELINE case base in all these matches. The results in
Fig. 1 (A) indicate that the PVCNPS and NPS agents achieved the best performance.
Regarding the analysis of their deceptive characteristics, even the BASELINE case base,
which did not yet retained the cases collected via active learning, allowed these agents
to deceptively play. In fact, that BASELINE case base collected from human players
already stored deceptive problem-solving experiences which were reused by the agents
throughout these matches.

In the second set of tests, the test setup was similar to the previous one. However,
the tested agents only used the ACTIVE case base. So the aim was to analyze whether
the cases collected through the proposed active learning approach permitted to improve
the agents’ deceptive capabilities, and how such behavior change was expressed in the
different kinds of tested agents. The results in Fig. 1 (B) indicate that the use of new
cases collected via active learning enabled the PVS and PVCS agents to have the most
significant performance improvement. While only the PVS and PVCS agents improved
their aggressiveness rates, all tested agents increased their deceptiveness and successful
bluff rates.

In the third set of tests, each one of the four implemented agents was now configured
to use different case bases: BASELINE and ACTIVE. In a total of 200 played matches,
each kind of agent implemented with the use of one of these case bases played against
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Fig. 1. Competition results between (A) agents implemented with the BASELINE case base only
and (B) agents implemented with the ACTIVE case base only.
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its correspondent using the other case base. The results in Fig. 2 (A) indicate that the
agents implemented with the use of the cases collected via active learning achieved a
superior performance in relation to the others. The tests also permitted to observe the
behavior of the implemented agents according to their reuse policies and the different
case bases used to compute their game decisions. Figure 2 (B) allowed analyzing the
tested agents according to the honesty level, showing that the agents with the ACTIVE
case base were more deceptive than the others. Figure 2 (C) allowed comparing the
agents according to their aggressiveness, showing that the ACTIVE case base enabled
the tested agents to be more aggressive behaviors. Figure 2 (D) allowed analyzing the
assertiveness rate of performed bluffs by each one of the agents and case bases. Again,
the results show that the agents with the ACTIVE case base deceived better than their
BASELINE’s correspondents (with a single exception: the NPS agent). In addition,
the relationship between the agents’ performance and the adopted game behaviors is
apparent since the reuse policies that obtained the best performance (PVS and PVCS)
were those that played more aggressively, were more deceptive and performed a larger
number of successful bluffs. Despite losing their matches, such behavior could also be
observed with the better performing agents implemented with the BASELINE case base:
the NPS and PVCNPS agents.

5 Final Remarks

This work investigates the integration of active learning and CBR, two different but
complementary AI techniques, aiming to permit card playing agents to make better
decisions when faced with problem opportunities to deceive. The experiments show that
the actively learned cases allowed the tested agents to achieve a better game playing
performance. Regarding the agents’ playing behaviors, the collected cases allowed them
to more assertively act in deceptive problem situations. The CBR reuse policies that
benefited the most, improving their deceptive behavior, were the ones that implemented
the “Probability Victory” criterion (PVS and PVCS). As future studies, we can sug-
gest the analysis of how deception could be related to other CBR techniques, e.g. in
the execution of deceptive similarity computations. Further tests involving the imple-
mented agents playing against human players are also relevant to improve the techniques
proposed in this paper.
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Abstract. We introduce an interrogation mark ? in ASPIC+ languages
as a plausibility operator to enhance any defeasible conclusion does not
have the same status as an irrefutable one. The resulting framework,
dubbed ASPIC ?, is tailored to make a distinction between strong incon-
sistencies and weak inconsistencies. The aim is to avoid the former and to
tolerate the latter. This means the extensions obtained from the ASPIC ?

framework are free of strong conflicts, but tolerant to weak conflicts. Then,
in the current study, we show ASPIC ? satisfy reasonable properties. In
particular, we focus on the property that a conflict between two arguments
should not interfere with the acceptability of other unrelated arguments.
With this purpose inmind, we prove under which conditions the important
principles of Non-interference and Crash-Resistance hold in ASPIC ?.

Keywords: Argumentation · Paraconsistency · Conflict-tolerance

1 Introduction

As noticed in [1], contradictions can be considered under the mantle of many
points of views: as a consequence of the only correct description of a contradictory
world, as a temporary state of our knowledge, as the outcome of a particular
language which we have chosen to describe the world, as the result of conflicting
observational criteria, as the superposition of world-views, or as the result from
the best theories available at a given moment. Indeed, in [2], it is argued that
inconsistency is a natural companion to defeasible methods of reasoning and
that paraconsistency (the property of a logic admitting non-trivial inconsistent
theories) should play a role in the formalisation of these methods. In fact, they
introduced an interrogation mark ? as a plausibility operator to enhance any
defeasible conclusion do not have the same status as an irrefutable one, obtained
from deduction.

Inspired by these ideas, we will present the ASPIC ? framework by extend-
ing the ASPIC+ framework [3], one of the most important formalisms to rep-
resent and reason with structured argumentation. In ASPIC ? (as well as in
ASPIC+), we identify two types of rules: strict (irrefutable) and defeasable.
Unlike ASPIC+, the distinguishing characteristic of ASPIC ? is the conclusion
of any defeasible rule will be a plausible (?-suffixed) formula φ?. The intended
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meaning is the conclusion of φ? will not necessarily prevent the conclusion of
¬φ?; it is required an argument with conclusion ¬φ, which can only be obtained
from a strict rule, to attack the conclusion ¬φ? of an argument. Thus, to pro-
duce a strong conflict between the conclusions of the arguments, at least in one
of them, the conclusion should be a ?-free formula obtained via a strict rule.

In ASPIC ?, strong inconsistencies as in {φ,¬φ} (or {φ?,¬φ}) are distin-
guished from those weak inconsistencies as in {φ?,¬φ?}: the first should be
avoided; the second can be tolerated. This means the (weak) conflict between
φ? and ¬φ? can be accommodated in the same extension. Hence, the extensions
in ASPIC ? will be free of strong conflicts, but tolerant to weak conflicts.

Given that much current work on structured argumentation [3–5] combines
strict and defeasible inference rules, unexpected results can arise when two argu-
ments based on defeasible rules have contradictory conclusions. This is partic-
ularly critical (see [6]) if the strict inference rules include the Ex Falso prin-
ciple (that an inconsistent set implies anything), because for any formula φ,
an argument concluding ¬φ can be constructed from these two arguments. As
consequence, any other argument is potentially under threat!

In order to solve this problem for ASPIC+, Wu [7,8] requires that in each
argument, the set of conclusions of all its sub-arguments are classically consis-
tent. Another approach was taken in [6], in which they replace classical logic as
the source for strict rules by the (weaker) paraconsistent logic presented in [9]
to invalidate the Ex Falso principle as a valid strict inference rule.

Here we will also exploit how to avoid the application of the Ex Falso prin-
ciple in ASPIC ? by combining these two solutions: 1) as in [6], we resort to
paraconsistent reasoning to tolerate conflicts; our differential is we tolerate only
weak conflicts. 2) as in [7,8], we require for each argument, the set of conclusions
of all its sub-arguments are consistent; our differential is that we eliminate only
those arguments whose sets of conclusions lead to a strong conflict.

Then, we show ASPIC ? satisfies reasonable properties. In particular, we focus
on the property that a conflict between two arguments should not interfere with
the acceptability of other unrelated arguments. With this purpose in mind, we
prove under which conditions the important principles of Non-interference and
Crash-Resistance [10] hold in ASPIC ?.

The rest of the paper is organised as follows: in Sect. 2, ASPIC ? framework
is presented. Then, we introduce the corresponding argumentation framework
with two kinds of defeats (strong and weak) and its semantics. Section 3 is
focused on proving the satisfaction of the principles of Non-interference and
Crash-Resistance. Finally, we summarise our contributions and future develop-
ments.

2 The ASPIC ? Framework

An Abstract Argumentation Framework AF [11] is a pair (A,D) in which A
is a set of arguments and D ⊆ A × A is a relation of defeat. An argument
A defeats B if (A,B) ∈ D. The ASPIC+ framework [3,12] gives structure to
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the arguments and defeat relation in an AF . In this section, we introduce in
ASPIC+ languages an interrogation mark ? as a plausibility operator to enhance
defeasible conclusions do not have the same status as those irrefutable. The
resulting framework, ASPIC ?, is tailored to distinguish strong inconsistencies
from weak inconsistencies. The aim is to avoid the former and to tolerate the
latter. We start by defining the argumentation systems specified by ASPIC ?:

Definition 1 (Argumentation System). An argumentation system is a tuple
AS = (L,− ,R, n), in which

– L = L∗ ∪L? is a logical language with a unary negation symbol ¬ and a unary
plausibility symbol ? such that

• L∗ is a ?-free logical language with a unary negation symbol.
• L? = {φ? | φ ∈ L∗}.

– − is a function from L to 2L, such that
• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ �∈ ϕ;
• ϕ is a contradictory of ψ (denoted by ϕ = −ψ), if ϕ ∈ ψ, ψ ∈ ϕ;

– R = Rs ∪Rd is a set of strict (Rs) and defeasible (Rd) inference rules of the
form φ1, . . . , φn → φ and φ1, . . . , φn ⇒ ψ? respectively (in which φ1, . . . , φn, φ
are meta-variables ranging over wff in L and ψ is a meta-variable ranging over
wff in L∗), and Rs ∩ Rd = ∅.

– n is a partial function such that n : Rd −→ L.

For any formula φ ∈ L∗, we say ψ ∈ −φ if ψ = ¬φ or ψ = ¬φ? or φ = ¬ψ or
(φ = ¬γ and ψ = γ?); we say ψ ∈ −φ? if ψ = ¬φ or φ = ¬ψ.

Intuitively, contraries can be used to model well-known constructs like nega-
tion as failure in logic programming. Note for any φ ∈ L∗, φ and φ? are contra-
dictories of ¬φ; whilst, only φ is a contradictory of ¬φ?. This means φ? is not a
contradictory of ¬φ?. A set as {φ,−φ} (or {φ?,−φ?}) is intended to represent
a strong inconsistency, and {φ?,¬φ?} is intended to represent a weak inconsis-
tency. We will refer to these two kinds of inconsistencies (strong and weak) as
epistemic inconsistencies or simply inconsistencies.

It is also required a knowledge base to provide premises for the arguments.

Definition 2 (Knowledge Base). A knowledge base in an argumentation sys-
tem AS = (L,− ,R, n) is a set K ⊆ L consisting of two disjoint subsets Kn (the
axioms) and Kp (the ordinary premises).

Axioms are certain knowledge and cannot be attacked, whilst, ordinary
premises are uncertain and can be attacked. Now we can define an argumen-
tation theory:

Definition 3. An argumentation theory (AS ,K) is a pair in which AS is an
argumentation system and K is a knowledge base in AS.

In ASPIC ?, arguments are constructed recursively from an argumentation
theory by the successive application of construction rules:
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Definition 4 (Argument). An argument A on the basis of an argumentation
theory (AS ,K) and an argumentation system (L,− ,R, n) is

1. φ if φ ∈ K with Prem(A) = {φ}, Conc(A) = φ, Sub(A) = {φ}, DefR(A) = ∅,
Rules(A) = ∅, TopRule(A) = undefined.

2. A1, . . . , An → ψ if A1, . . . , An are arguments s.t. there is a strict rule
Conc(A1), . . . , Conc(An) → ψ ∈ Rs; Prem(A) = Prem(A1) ∪ · · · ∪ Prem(An);
Conc(A) = ψ; Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A}; Rules(A) =
Rules(A1)∪· · ·∪Rules(An)∪{Conc(A1), . . . , Conc(An) → ψ}; TopRule(A) =
Conc(A1), . . . , Conc(An) → ψ.

3. A1, . . . , An ⇒ ψ? if A1, . . . , An are arguments such that there exists a defea-
sible rule Conc(A1), . . . , Conc(An) ⇒ ψ? ∈ Rd; Prem(A) = Prem(A1) ∪
· · · ∪ Prem(An); Conc(A) = ψ?; Sub(A) = Sub(A1) ∪ · · · ∪ Sub(An) ∪ {A};
Rules(A) = Rules(A1)∪ · · · ∪ Rules(An)∪{Conc(A1), . . . , Conc(An) ⇒ ψ?};
TopRule(A) = Conc(A1), . . . , Conc(An) ⇒ ψ?.

For any argument A we define Premn(A) = Prem(A)∩Kn; Premp(A) = Prem(A)∩
Kp; DefR(A) = {r ∈ Rd | r ∈ Rules(A)} and StR(A) = {r ∈ Rs | r ∈ Rules(A)}.
Example 1. Consider the argumentation system AS = (L,− ,R, n), in which

– L = L∗ ∪ L? with L∗ = {a, b, f, w,¬a,¬b,¬f,¬w,∼ a,∼ b,∼ f,∼ w,∼ ¬a,
∼ ¬b,∼ ¬f,∼ ¬w}. The symbols ¬ and ∼ respectively denote strong and
weak negation.

– For any φ ∈ L∗ and any ψ ∈ L, (1) φ ∈ ψ iff (a) ψ = ¬φ or ψ = ¬φ? or
φ = ¬ψ or (φ = ¬γ and ψ = γ?); or (b) ψ = ∼ φ or (ψ = ∼ φ?. (2) φ? ∈ ψ
iff (a) ψ = ¬φ or φ = ¬ψ; or (b) ψ = ∼ φ.

– Rs = {¬f → ¬w; b → a} and Rd = {a ⇒ ¬f?; b,∼ ¬w ⇒ w?;¬f? ⇒ ¬w?}.

Let K be the knowledge base such that Kn = ∅ and Kp = {b,∼ ¬w}. The
arguments defined on the basis of K and AS are A1 = [b], A2 = [∼ ¬w], A3 =
[A1 → a], A4 = [A3 ⇒ ¬f?], A5 = [A1, A2 ⇒ w?] and A6 = [A4 ⇒ ¬w?].

An argument A is for φ if Conc(A) = φ; it is strict if DefR(A) = ∅; defeasible if
DefR(A) �= ∅; firm if Prem(A) ⊆ Kn; plausible if Prem(A)∩Kp �= ∅. An argument
is fallible if it is defeasible or plausible and infallible otherwise. We write S � φ
if there is a strict argument for φ with all premises taken from S, and S |∼ φ if
there is a defeasible argument for φ with all premises taken from S. The next
definition will be repeatedly employed in Sect. 3:

Definition 5. Let AT = (AS ,K) be an argumentation theory with argumenta-
tion system AS = (L,− ,R, n). For a formula φ ∈ L, we define Atoms(φ) =
{a | a is an atom occurring in φ}. For a set F ⊆ L of formulas in L, we define
Atoms(F) =

⋃
φ∈F Atoms(φ); furthermore, for a set of atoms A, F|A =

{φ ∈ F | φ contains only atoms in A}. For a strict rule s = φ1, . . . , φn → Ψ , we
define Atoms(s) = Atoms({φ1, . . . , φn, ψ}). For a defeasible rule d = φ1, . . . , φn ⇒
Ψ , we define Atoms(d) = Atoms({φ1, . . . , φn, ψ}). For a set S = {s1, . . . , sn} of
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strict rules, we define Atoms(S) = Atoms(s1) ∪ · · · ∪ Atoms(sn). For a set D =
{d1, . . . , dn} of defeasible rules, we define Atoms(D) = Atoms(d1)∪· · ·∪Atoms(dn).
For an argumentation system AS = (L,− ,R, n), we define Atoms(AS ) =
Atoms(Rd) ∪ Atoms({n(r) | r ∈ Rd and n(r) is defined}), in which Rd ⊆ R is the
set of defeasible rules in R. For an argumentation theory AT = (AS ,K), we define
Atoms(AT ) = Atoms(AS )∪Atoms(K). For an argument A, we define Atoms(A) =
Atoms(StR(A)) ∪ Atoms(DefR(A)). Finally, for a set A = {A1, . . . , An} of argu-
ments, we define Atoms(A) = Atoms(A1) ∪ · · · ∪ Atoms(An).

Let AT = (AS ,K) be an argumentation theory with AS = (L,− ,R, n), and
A the set of all arguments constructed from K in AS . Assume K = (Kn,Kp), such
that Kn = {a, b, c} and Kp = ∅. Consider R = {a → d, b ⇒ e}. The resulting
arguments are A = [a], B = [b], C = [c], D = [A → d], and E = [B ⇒ e]. We
have Atoms(D) = {a, d}, Atoms(AT ) = {a, b, c, e}. Note those atoms occurring
only in the strict rules (as d) are not considered as atoms in Atoms(AT ).

2.1 Attacks and Defeats

In ASPIC ? arguments are related to each other by attacks (as in ASPIC+) and
by weak attacks:

Definition 6 (Attacks). Consider the arguments A and B. We say A attacks
B iff A undercuts, undermines and rebuts B, in which

– A undercuts B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) such that
B′’s top rule r is defeasible.

– A undermines B (on φ) iff Conc(A) ∈ φ and φ ∈ Premp(B). In such a case,
A contrary-undermines B iff Conc(A) is a contrary of φ.

– A rebuts B (on B′) iff Conc(A) ∈ φ? for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B′′
n ⇒ φ?. In such a case, A contrary-rebuts B iff Conc(A) is a con-

trary of φ?.

We say A weakly attacks B iff A weakly undermines or weakly rebuts B, in which

– A weakly undermines B (on φ? (resp. ¬φ?)) iff Conc(A) = ¬φ? (resp.
Conc(A) = φ?) for an ordinary premise φ? (resp. ¬φ?) of B.

– A weakly rebuts B (on B′) iff Conc(A) = ¬φ? (resp. Conc(A) = φ?) for some
B′ ∈ Sub(B) of the form B′′

1 , . . . , B′′
n ⇒ φ? (resp. B′′

1 , . . . , B′′
n ⇒ ¬φ?).

Example 2. Recalling Example 1, we have A5 weakly rebuts A6 and A6 weakly
rebuts A5. Besides, A6 contrary-undermines A2 and A5 on ∼ ¬w. If in addition,
one had the argument A7 = [A4 → ¬w?], then A7 (like A6) would weakly rebut
A5 on A5; however, A7 (unlike A6) would not be weakly rebutted by A5.

Definition 7 (SAF ). A structured argumentation framework SAF defined by
an argumentation theory AT = (AS ,K) is a tuple 〈A, C, C′,〉, in which

– A is the set of all arguments A constructed from K in AS such that it satisfies
Definition 4 and Atoms(A) ⊆ Atoms(AT );
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– (X,Y ) ∈ C iff X attacks Y and (X,Y ) ∈ C′ iff X weakly attacks Y ;
–  is a preference ordering on A.

The restriction Atoms(A) ⊆ Atoms(AT ) is to avoid including in the SAF
arguments built from strict rules without relation to Atoms(AT ). Next, we define
the corresponding defeat relation:

Definition 8 (Defeat). [3] Let A,B ∈ A and A attacks B. If A undercut,
contrary-rebut or contrary-undermine attacks B on B′ then A is said to preference-
independent attack B on B′; otherwise A is said to preference-dependent attack B
on B′. A defeats B iff for some B′ either A preference-independent attacks B on
B′ or A preference-dependent attacks B on B′ and A �≺ B′.

As observed in the previous definition, a preference-dependent attack from
one argument to another only succeeds (as a defeat) if the attacked argument is
not stronger than the attacking argument. Thus, if an argument A preference-
dependent attacks B and B is preferred over A, then the attack of A to B does
not succeed, and B is not defeated by A.

2.2 Abstract Argumentation Frameworks with Two Kinds
of Defeats

As SAF s have two kinds of attacks, the associated abstract argumentation frame-
works have to couple with two kinds of defeats:

Definition 9 (Argumentation frameworks with two kinds of defeats).
An abstract argumentation framework with two kinds of defeats (AF 2) corre-
sponding to a SAF = 〈A, C, C′,〉 is a tuple (A,D,D′) such that D = {(X,Y ) ∈
C | X defeats Y } and D′ = {(X,Y ) ∈ C′ | X �≺ Y }. For A ∈ A, we define

A+ = {B ∈ A | (A,B) ∈ D ∪ D′} and A− = {B ∈ A | (B,A) ∈ D ∪ D′} .

Given a SAFSA defined by an argumentation theory AT and an AF 2 AF cor-
responding to SA, we will refer to AF as the resulting AF 2 from AT.

Example 3 (Example 2 continued). Let = {(A6, A2)}, i.e., A6 ≺ A2 be a pref-
erence ordering on A = {A1, A2, A3, A4, A5, A6}. In the SAF (A, C, C′,) defined
by AT , we have C = {(A6, A2)} and C′ = {(A5, A6), (A6, A5)}. As (A6, A2) is a
preference independent attack, we obtain D = C and D′ = C′.

Traditional approaches to argumentation semantics ensure arguments attack-
ing each other are not tolerated in the same set, which is said to be conflict free.
In ASPIC ?, we distinguish a strong conflict from a weak conflict. The aim is to
avoid strong conflicts, which are carried over by the defeat relation D, and to
tolerate weak conflicts, which are carried over by the relation D′. We say the
resulting set is compatible:

Definition 10 (Compatible sets). Let AF = (A,D,D′) be an AF 2 and S ⊆
A. A set S is compatible (in AF) if ∀A ∈ S, � ∃B ∈ S such that (B,A) ∈ D.
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Compatible sets do not contain the arguments A and B if A attacks B (or vice
versa); however they can accommodate weak attacks between their members.
This means in Example 3, the set {A5, A6} is compatible, but {A2, A6} is not.
Now we are entitled to define semantics to deal with compatible sets:

Definition 11 (Semantics). Let AF = (A,D,D′) be an AF 2 and S ⊆ A be a
compatible set of arguments. Then X ∈ A is acceptable with respect to S iff

– ∀Y ∈ A such that (Y,X) ∈ D : ∃Z ∈ S such that (Z, Y ) ∈ D and
– ∀Y ∈ A such that (Y,X) ∈ D′ : ∃Z ∈ S such that (Z, Y ) ∈ D ∪ D′.

We define fAF (S) = {A ∈ A | A is acceptable w.r.t. S}. For a compatible set
S in AF, we say 1) S is an admissible set of AF iff S ⊆ FAF (S); 2) S is a
complete extension of AF iff fAF (S) = S; 3) S is a preferred extension of AF
iff it is a set inclusion maximal complete extension of AF; 4) S is the grounded
extension iff it is the set inclusion minimal complete extension of AF; 5) S is
a stable extension iff S is complete extension of AF and ∀Y �∈ S, ∃X ∈ S s.t.
(X,Y ) ∈ D ∪D′. 6) S is a semi-stable extension iff it is a complete extension of
AF such that there is no complete extension S1 of AF in which S∪S+ ⊂ S1∪S+

1 .

Notice for an argument X to be acceptable w.r.t. S, if (Y,X) ∈ D, there
should exist an argument Z ∈ S such that (Z, Y ) ∈ D, i.e., a weak defeat as
(Z, Y ) ∈ D′ is not robust enough to defend a defeat as (Y,X) ∈ D. Otherwise,
X defends a weak defeat (Y,X) ∈ D′ if ∃Z ∈ S such that Z (weak) defeats Y .

Example 4 (Example 3 continued).
Regarding the AF 2 constructed in Example 3, we obtain

– Complete Extensions: {A1, A3, A4}, {A1, A3, A4, A5}, {A1, A3, A4, A6},
{A1, A3, A4, A5, A6};

– Grounded Extension: {A1, A3, A4};
– Preferred Extension: {A1, A3, A4, A5, A6}
– Stable/Semi-stable Extensions: {A1, A3, A4, A6}, {A1, A3, A4, A5, A6}

3 The Postulates of Non-interference and
Crash-Resistance

In this section, we show under which conditions, ASPIC ? satisfies the property
that a conflict between two arguments should not interfere with the acceptability
of other unrelated arguments. Let us illustrate it via the following example:

Example 5. [6] Let Rd = {p ⇒ q; r ⇒ ¬q; t ⇒ s} be a set of defeasible rules in
ASPIC+ (their conclusions are not ?-suffixed formulas), Kp = ∅ and Kn =
{p, r, t}, while Rs consists of all propositionally valid inferences. The corre-
sponding AF includes the arguments A1 = [p], A2 = [A1 ⇒ q], B1 = [r],
B2 = [B1 ⇒ ¬q], C = [A2, B2 → ¬s], D1 = [t] and D2 = [D1 ⇒ s]. We have C
defeats D2 if C �≺ D2. This is problematic as s can be any formula. Hence, any
defeasible argument unrelated to A2 or B2 can, depending on , be defeated by
C owing to the explosiveness of classical logic as the source for Rs.
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This property is guaranteed by proving the postulates (originally conceived
in [10]) of Non-interference (Definition 22) and Crash-Resistance (Definition 25)
hold in ASPIC ?. Unlike [7,8], however, we will not eliminate all arguments
whose set of conclusions of all its sub-arguments is contradictory, but only those
whose set of conclusions contains strong contradictions as {φ,¬φ}, {φ,¬φ?} or
{¬φ, φ?}. Weak contradictions as {φ?,¬φ?} will not lead to the elimination of
the argument (see Definition 14). We proceed by introducing several definitions
and lemmas before proving the satisfaction of these postulates:

Definition 12 (Consistency). Let A = {A1, . . . , An} be a set of arguments
on the basis of an argumentation theory (AS ,K) and an argumentation system
AS = (L,− ,R, n). An argument A ∈ A is inconsistent iff ∀φ ∈ L, it holds
{Conc(A′) | A′ ∈ Sub(A)} � φ. Otherwise, A is consistent. The set A is incon-
sistent if ∀φ ∈ L, it holds Concs(Sub(A1))∪ . . .∪Concs(Sub(An)) � φ. Otherwise
A is consistent.

A strict rule as φ1, . . . , φn → ψ represents that if φ1, . . . , φn hold, then with-
out exception it holds that ψ. It has a very general meaning; the unique restric-
tion we will impose to prove our results is that we will assume throughout this
section that every strict rule in an argumentation system is reasonable:

Definition 13 (Reasonable strict rules). Let (AS ,K) be an argumentation
theory and AS = (L,− ,Rs ∪ Rd, n) be an argumentation system. A strict rule
φ1, . . . , φn → ψ ∈ Rs is reasonable iff 1) for each φi (1 ≤ i ≤ n) it holds
Atoms(φi) ⊆ Atoms(ψ) or 2) ∀ψ ∈ L, it holds {φ1, . . . , φn} � ψ.

A strict rule φ1, . . . , φn → ψ is reasonable if ∀φi (1 ≤ i ≤ n), each atom in φi

is also in ψ or {φ1, . . . , φn} is inconsistent. Reasonable strict rules are very usual
in many propositional logics. Now we define an inconsistency cleaned AF 2:

Definition 14 (Inconsistency-cleaned AF 2). Let 〈A,D,D′〉 be a AF 2 result-
ing from an argumentation theory AT. We define Ac = {A ∈ A | A is consistent},
Dc = D ∩ (Ac × Ac) and D′

c = D′ ∩ (Ac × Ac). We refer to (Ac,Dc,D′
c) as the

inconsistency cleaned AF 2 resulting from an argumentation theory AT.

By inconsistency-cleaned version of the ASPIC ? system, we mean the ASPIC ?

system from which the inconsistency-cleaned AF 2 is constructed. The next con-
cept is important to simplify the proofs of the results we will show in this section:

Definition 15 (Flat arguments). Let A be an argument on the basis of an
argumentation theory AT. We say that A is flat iff TopRule(A) is strict, A =
[A1, . . . , An → α] and ∀Ai (1 ≤ i ≤ n), one of the following conditions holds:

1. TopRule(Ai) is defeasible or
2. Rules(Ai) = ∅.

Flat arguments have strict top rule and every of its strict subarguments
comes from the set of premises. Henceforth, for any AF 2〈A,D,D′〉 resulting
from argumentation theory AT , we will assume without loss of generality every
A ∈ A with a strict top rule is flat. In order to prove some results in this section,
we will need to identify the set of conclusions associated with a set of arguments:
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Definition 16. Let A be a set of arguments whose structure complies with Def-
inition 4. We define Concs(A) = {Conc(A) | A ∈ A}.

Next, we define the consequence function Cnsem , such that Cnsem(AT ) is a
set of sets of conclusions under the argumentation semantics sem.

Definition 17. Let AT be the set of all argumentation theories that can be con-
structed from a language L. Let AT ∈ AT be an argumentation theory and
AF = (A,D,D′) be the resulting AF 2 from AT. We define Cnsem : AT →
22

Concs(A)
is a function s.t. Cnsem(AT ) = {Concs(E) | E ⊆ A is an extension

of AF 2 under semantics sem}, where sem ∈ {complete, grounded, preferred,
stable, semi-stable}. We will use Cnc(AT ) as the shortening of Cncomplete(AT ).
For a set A of propositional atoms, by Cnsem(AT )|A, we mean the set{F|A | F ∈ Cnsem(AT )

}
.

In order to define the postulate for non-interference, we need to specify what
the union of two argumentation theories looks like:

Definition 18 (Union of argumentation theories). Let AT 1 = (AS 1,K1)
and AT 2 = (AS 2,K2) be argumentation theories s.t. K1 = Kn1 ∪ Kp1 , K2 =
Kn2 ∪Kp2 , AS 1 = (L,− ,Rs1 ∪Rd1 , n1) and AS 2 = (L,− ,Rs2 ∪Rd2 , n2). Besides,
we assume n1(r) = n2(r) for any r ∈ Rd1 ∪ Rd2 . We define AT 1 ∪ AT 2 is an
argumentation theory AT = (AS ,K) s.t. K = Kn∪Kp with Kn = Kn1 ∪Kn2 , and
Kp = Kp1 ∪Kp2 ; AS = (L,− ,Rs ∪Rd, n) with Rs = Rs1 ∪Rs2 , Rd = Rd1 ∪Rd2

and n(r) = n1(r) if r ∈ Rd1 ; otherwise, n(r) = n2(r).

Other very important notion to guarantee our results in this section is that of
syntactically disjoint argumentation theories; it will be employed to characterise
non-interference (Definition 22) and contamination (Definition 24).

Definition 19 (Syntactically disjoint argumentation theories). Let AT 1

and AT 2 be argumentation theories. We say AT 1 and AT 2 are syntactically
disjoint when Atoms(AT 1) ∩ Atoms(AT 2) = ∅.

The depth of an argument will be employed in the proof of Lemma 1:

Definition 20 (Depth of an argument). Let A be an argument whose struc-
ture complies with Definition 4. The depth of A, denoted by depth(A), is 1 if
Rules(A) = ∅ or else depth(A) = 1 + max{depth(A′) | A′ ∈ Sub(A)}.

The following essential lemma states that for every argument A such that
Conc(A) ⊆ Atoms(AF ) there exists an argument A′ with the same conclusion,
Atoms(A′) ⊆ Atoms(AF ), and is not more vulnerable than A.

Lemma 1. Let AS 1 = (L,− ,Rs ∪ Rd1 , n1) and AS 2 = (L,− ,Rs ∪ Rd2 , n2) be
argumentation systems s.t. Rs is a set of strict rules and Rd1 and Rd2 are sets of
defeasible rules. Let AT = AT 1 ∪AT 2 be an argumentation theory where AT 1 =
(AS 1,K1) and AT 2 = (AS 2,K2) are syntactically disjoint, and AF = (A,D,D′)
and AF 1 = (A1,D1,D′

1) be respectively the inconsistency cleaned AF 2s resulting
from AT and AT 1. For each argument C ∈ A such that Conc(C) ⊆ Atoms(AT 1),
∃C ′ ∈ A1 with Conc(C ′) = Conc(C), C ′+ ⊆ C+ and C ′− ⊆ C−.



ASPIC ? and the Postulates of Non-interference and Crash-Resistance 337

Proof. Let K1 = Kn1 ∪ Kp1 and K2 = Kn2 ∪ Kp2 . We will prove by induction on
depth(C) that ∀C ∈ A, where Atoms(Conc(C)) ⊆ Atoms(AT 1), ∃C ′ ∈ A1 such
that Conc(C ′) = Conc(C) and (1) Concs(Sub(C ′)) ⊆ Concs(Sub(C)) and (2)
DefR(C ′) ⊆ DefR(C). Note C ′+ = C+ follows directly from Conc(C ′) = Conc(C);
condition (1) guarantees C ′ is consistent as C is consistent; condition (2) suffices
to show C ′− ⊆ C− as AS 1 and AS2 share the same set Rs of strict rules:

Suppose depth(C) = 1. There are two possibilities: C ∈ Kn1 or C ∈ Kp1 .
Thus, for C ′ = C, C ′− = C− and Conc(C ′) = Conc(C). Now assume conditions
(1) and (2) hold for any argument C with depth(C) ≤ k. We will show for any
argument C with depth(C) = k + 1 they also hold. There are two possibilities:

– TopRule(C) ∈ Rd = Rd1 ∪ Rd2 . Note C is of the form C1, . . . , Cn ⇒
Conc(C). As AT 1 and AT 2 are syntactically disjoint and Atoms(Conc(C)) ⊆
Atoms(AT 1), TopRule(C) ∈ Rd1 . It follows that for each i ∈ {1, . . . , n},
Atoms(Conc(Ci)) ⊆ Atoms(AT1). As depth(Ci) ≤ k, by induction hypothesis,
there exists C ′

i ∈ A1 such that Conc(C ′
i) = Conc(Ci), DefR(C ′

i) ⊆ DefR(C ′
i),

and Concs(Sub(C ′
i)) ⊆ Concs(Sub(Ci)). Applying TopRule(C) we construct

C ′ = C ′
1, . . . , C

′
n ⇒ Conc(C) from AT1. Now we show that C ′ satisfies the

requested properties.
• C ′ ∈ A1 since Atoms(C ′) = Atoms(TopRule(C)) ∪ ⋃n

i=1 Atoms(C
′
i) ⊆

Atoms(AT 1).
• Conc(C ′) = Conc(C) since C and C ′ share the same top rule.
• DefR(C ′) = {{DefR(C)} ∪ ⋃n

i=1 DefR(C
′
i)} ⊆

{{TopRule(C)} ∪ ⋃n
i=1 DefR(Ci)} = DefR(C).

• Concs(Sub(C ′)) = {{Conc(C)} ∪ ⋃n
i=1 Concs(Sub(C

′
i))} ⊆

{{Conc(C)} ∪ ⋃n
i=1 Concs(Sub(Ci))} = Concs(Sub(C)).

– TopRule(C) ∈ Rs. Note C is of the form C1, . . . , Cn → Conc(C). As we have
assumed C is flat, we can partition arguments Ci into two sets Cp ∪ Cd =
{1, . . . , n}, in which i ∈ Cp iff Conc(Ci) ∈ K1 ∪ K2 and TopRule(Ci) =
undefined, and i ∈ Cd iff TopRule(Ci) ∈ Rd1 ∪ Rd2 . Since AT 1 and AT 2

are syntactically disjoint, for i ∈ Cp, Atoms(Conc(Ci)) ⊆ Atoms(AT1) or
Atoms(Conc(Ci)) ⊆ Atoms(AT2), and for i ∈ Cd, Atoms(TopRule(Ci)) ⊆
Atoms(AT1) or Atoms(TopRule(Ci)) ⊆ Atoms(AT2). We can partition the
subarguments of C into two disjoint sets C1 and C2 such that for i ∈ C1,
Conc(Ci) ⊆ Atoms(AT1) and for i ∈ C2, Conc(Ci) ⊆ Atoms(AT2). Let Cp ∩
C1 = {p1, . . . , pk}, Cd ∩ C1 = {d1, . . . , dm}, and C2 = {b1, . . . , bj}. For each
di ∈ Cd∩C1,depth(Cdi

) ≤ k. By the inductionhypothesis, for eachdi ∈ Cd∩C1,
exists C ′

di
∈ A1 s.t Conc(C ′

di
) = Conc(Cdi

), and DefR(C ′
di

) ⊆ DefR(Cdi
).

Note that Conc(Cp1), . . . , Conc(Cpk
), Conc(C ′

d1
), . . . , Conc(C ′

dm
), Conc(Cb1),

. . . , Conc(Cbj ) → Conc(C) corresponds to TopRule(C).
Let T = Atoms(Conc(Cb1))∪. . .∪Atoms(Conc(Cbj )). As T ∩Atoms(Conc(C)) =
∅, Conc(Cp1), . . . , Conc(Cpn

), Conc(C ′
d1

), . . . , Conc(C ′
dm

) → Conc(C) ∈ Rs;
otherwise {Conc(Cb1), . . . , Conc(Cbj )} is inconsistent (Definition 13), which
cannot be true as C is consistent. Thus, we can construct an argument C ′ =
Conc(Cp1), . . . , Conc(Cpn

), Conc(C ′
d1

), . . . , Conc(C ′
dm

) → Conc(C) from AT1

s.t. Conc(C ′) = Conc(C). Now we show C ′ satisfies the requested properties.
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• C ′ ∈ A1 since Atoms(C ′) = Atoms(TopRule(C)) ∪ ⋃
(1≤i≤n) Atoms(C

′
i) ⊆

Atoms(AT 1).
• Conc(C ′) = Conc(C) since C and C ′ share the same top rule.
• In the construction of C ′ we resort to Ci for each i ∈ C1 ∩ Cp and for

each j ∈ C1 ∩ Cd, we resort to C ′
j , obtained by induction hypothesis, s.t.

DefR(C ′
j) ⊆ DefR(Cj) and Concs(Sub(C ′

j)) ⊆ Concs(Sub(Cj)). It follows
DefR(C ′) ⊆ DefR(C) and Concs(Sub(C ′)) ⊆ Concs(Sub(C)). ��

The notion of defense expresses when an argument C defends B from A:

Definition 21 (Defense). Let AF = (A,D,D′) be an AF 2 and A,B,C ∈ A
such that (A,B) ∈ D ∪ D′. An argument C defends B from A, denoted by
df (C,B,A), when 1) if (A,B) ∈ D, then (C,A) ∈ D; 2) if (A,B) ∈ D′, then
(C,A) ∈ D or (C,A) ∈ D′.

In addition to the fundamental result obtained by Lemma 1, we will use
Lemmas 2, 3, 5 and 6 to prove Theorem 1, which is one of our main results. With
the following lemma we establish a connection between complete extensions of
AF with the arguments in A1:

Lemma 2. Let AT = AT 1 ∪AT 2 for syntactically disjoint argumentation theo-
ries AT 1 and AT 2, and AF = (A,D,D′) and AF 1 = (A1,D1,D′

1) be respectively
the resulting inconsistency-cleaned AF 2s from AT and AT 1. For any complete
extension E ⊆ A of AF, Concs(E ∩ A1) = Concs(E)|Atoms(AT1).

Proof.

– If φ ∈ Concs(E ∩ A1), then ∃A ∈ E ∩ A1 such that Conc(A) = φ. It fol-
lows A ∈ E and A ∈ A1, and so φ ∈ Concs(E) and φ ∈ Concs(A1). As
Atoms(Conc(φ)) ⊆ Atoms(AT 1), it holds φ ∈ Concs(E)|Atoms(AT1).

– If φ ∈ Concs(E)|Atoms(AT1), then ∃A ∈ E s.t. Conc(A) = φ and Atoms(φ) ⊆
Atoms(AT 1). From Lemma 1, ∃A′ ∈ A1 such that Conc(A′) = φ and A′− ⊆
A−. As E is a complete extension of AF and A ∈ E, it must be A′ ∈ E, and
so A′ ∈ E ∩ A1. Thus, φ ∈ Concs(E ∩ A1). ��

Lemmas 3 and 4 will be used as intermediate steps in the demonstration of
Lemma 5. Lemma 3 expresses the function fAF1 associated with the subframe-
work AF 1 in terms of the function fAF associated with AF :

Lemma 3. Let AT = AT 1 ∪ AT 2 for syntactically disjoint argumentation the-
ories AT 1 and AT 2, and AF = (A,D,D′) and AF 1 = (A1,D1,D′

1) be respec-
tively the resulting inconsistency-cleaned AF 2s from AT and AT 1. For any set
of arguments S ⊆ A1, fAF1(S) = fAF (S) ∩ A1.

Proof.

– fAF1(S) ⊆ fAF (S) ∩ A1. If A ∈ fAF1(S), then A ∈ A1. It remains to prove
A ∈ fAF (S): let B ∈ A s.t. (B,A) ∈ D ∪ D′. It means Atoms(Conc(B)) ⊆
Atoms(AT 1). By Lemma 1, ∃B′ ∈ A1 s.t. Conc(B′) = Conc(B) and B′− ⊆
B−. Thus, (B′, A) ∈ D ∪D′. As A ∈ fAF1(S), ∃C ∈ S s.t. df (C,A,B′). From
B′− ⊆ B−, (C,B) ∈ D ∪ D′. It follows A ∈ fAF (S). Thus A ∈ fAF (S) ∩ A1.
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– fAF (S) ∩ A1 ⊆ fAF1(S). Let A ∈ fAF (S) ∩ A1. It means that ∀B ∈ A such
that (B,A) ∈ D ∪D′, ∃C ∈ S such that df (C,A,B). As D1 ∪D′

1 ⊆ D ∪D′, it
follows ∀B ∈ A1 such that (B,A) ∈ D1 ∪ D′

1, ∃C ∈ S such that df (C,A,B).
Then A ∈ fAF1(S). ��
By Lemma 4 (employed in Lemma 5), if an argument A is attacked by a set

of arguments that also attack arguments in a complete extension E, then A ∈ E.

Lemma 4. Let AF = (A,D,D′) be the AF 2 resulting from an argumentation
theory AT. Let AF c = (Ac,Dc,D′

c) be the inconsistency-cleaned AF 2. Let E be a
complete extension of AF c, S ⊆ E and A ∈ A. If A is consistent and A− ⊆ S−,
then A ∈ E.

Proof. Suppose A is consistent. It follows A ∈ Ac. As E is a complete extension
of AF , ∀B ∈ S, B ∈ fAF (E). As A− ⊆ S−, it follows A ∈ fAF (E) = E. ��

Lemmas 5 assures the complete extensions of AF when restricted to the
arguments of its subframework AF 1 is a complete extension of AF 1:

Lemma 5. Let AT = AT 1 ∪ AT 2 for syntactically disjoint argumentation the-
ories AT 1 and AT 2, and AF = (A,D,D′) and AF 1 = (A1,D1,D′

1) be the
inconsistency-cleaned AF 2s resulting from AT and AT 1 respectively. If E is a
complete extension of AF, then E ∩ A1 is a complete extension of AF 1.

Proof. Let E be a complete extension of AF . Assume E′ = E ∩ A1. We will
prove that E′ is a complete extension of AF 1. Note E′ is compatible in AF 1,
since E′ ⊆ E, E is compatible in AF and there are no new defeats in AF 1. Now
we will show E′ = fAF1(E

′):

– E′ ⊆ fAF1(E
′). Let A ∈ E′. As also A ∈ E and E is a complete extension

of AF , it means ∀B ∈ A1 such that (B,A) ∈ D1 ∪ D′
1, ∃C ∈ E such that

df (C,A,B). As B ∈ A1, Atoms(Conc(C)) ⊆ Atoms(AT 1). By Lemma 1, ∃C ′ ∈
A1, such that Conc(C ′) = Conc(C) and C ′− ⊆ C−. From Lemma 4, C ′ ∈ E,
and so C ′ ∈ E′. Thus, A ∈ fAF1(E

′).
– fAF1(E

′) ⊆ E′. As f is a monotony function, and E is a complete extension
of AF , fAF (E′) ⊆ fAF (E) = E, and so fAF (E′)∩A1 ⊆ E∩A1. From Lemma
3, fAF1(E

′) = fAF (E′) ∩ A1. But then, we obtain fAF1(E
′) ⊆ E ∩ A1. Thus,

fAF1(E
′) ⊆ E′. ��

Lemma 6 assures the admissible sets in AF 1 are also admissible sets in AF :

Lemma 6. Let AT = AT 1 ∪AT 2 for syntactically disjoint argumentation theo-
ries AT 1 and AT 2, and AF = (A,D,D′) and AF 1 = (A1,D1,D′

1) be respectively
the resulting inconsistency-cleaned AF 2s from AT and AT 1. Let S ⊆ A1. If S
is an admissible set in AF 1, then S is an admissible set if AF.

Proof. As S is a compatible set in AF 1, S is also a compatible set in AF , since
A1 ⊆ A. It remains to show that S ⊆ fAF (S). Assume B ∈ A such that for
some A ∈ S, (B,A) ∈ D ∪ D′. It means Atoms(Conc(B)) ⊆ Atoms(AT 1). From
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Lemma 1, ∃B′ ∈ A1 such that Conc(B′) = Conc(B) and B′− ⊆ B−. Note
(B′, A) ∈ D ∪D′ in AF 1. As S is admissible in AF 1, from Definition 11, ∃C ∈ S
s.t. df(C,A,B′). Given B′− ⊆ B−, (C,B) ∈ D ∪ D′. It follows S ⊆ fAF (S). ��

In the sequel, we formally define the concept of non-interference.

Definition 22 (Non-interference). The ASPIC ? system satisfies non-
interference under a semantics sem iff for every syntactically disjoint argu-
mentation theories AT 1 and AT 2, it holds Cnsem(AT 1 ∪ AT 2)|Atoms(AT1) =
Cnsem(AT 1).

Non-interference means that, for disjoint argumentation theories AT 1 and
AT 2, AT 1 does not influence the outcome with respect to the language of AT 2.

Theorem 1. The inconsistency-cleaned version of the ASPIC ? system satisfies
non-interference under complete semantics.

Proof. Let AT = AT 1 ∪ AT 2 for syntactically disjoint argumentation the-
ories AT 1 and AT 2 and AF = (A,D,D′) and AF 1 = (A1,D1,D′

1) be
respectively the resulting inconsistency-cleaned AF 2s from AT and AT 1. Let
S1 = {B1, . . . , Bn} and S2 = {S1, . . . , Sm} be the set of complete exten-
sions of AF and AF 1 respectively. We will prove that L = R, in which
L = Cnc(AT )|Atoms(AT1) =

{
Concs(B1)|Atoms(AT1), . . . , Concs(Bn)|Atoms(AT1)

}
,

and R = Cnc(AT 1)|Atoms(AT1) = {Concs(S1), . . . , Concs(Sm)}.
From Lemma 2, L = {Concs(B1 ∩ A1), . . . , Concs(Bn ∩ A1)}. For each com-

plete extension B of AF , B ∩ A1 is a complete extension of AF 1 (Lemma 5). It
remains to prove for any S ∈ S2, ∃B ∈ S1 with B ∩ A1 = S. If S is a complete
extension of AF 1 (S = fAF1(S)), S is an admissible set in AF (Lemma 6), i.e.,
S ⊆ fAF (S). Then B =

⋃∞
n=1 fn

AF (S) is a complete extension of AF as the least
fixed point of fAF contains S. We will prove that B ∩A1 = S. Intersecting both
sides of B =

⋃∞
n=1 fn

AF (S) with A1, and applying Lemma 3, we get B ∩ A1 =
(
⋃∞

n=1 fn
AF (S)) ∩ A1 =

⋃∞
n=1 fn

AF (S) ∩ A1 =
⋃∞

n=1 fn
AF1

(S) =
⋃∞

n=1 S = S. ��

ASPIC ? is non trivial under semantics sem if the conclusions of an argumen-
tation theory are never fully determined by the atoms.

Definition 23 (Non-trivial). The ASPIC ? system is non-trivial under
semantics sem iff for each nonempty set A of atoms, there are argumentation the-
ories AT 1 and AT 2 such that Atoms(AT 1) = Atoms(AT 2) and Cnsem(AT 1)|A �=
Cnsem(AT 2)|A.

In the following theorem, we show that the inconsistency-cleaned version of
the ASPIC ? system satisfies non-triviality under complete semantics:

Theorem 2. The inconsistency-cleaned version of the ASPIC ? system satisfies
non-triviality under complete semantics.
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Proof. Let A = {a1, . . . , an} (n ≥ 1) a set of atoms. We will show that there
are two inconsistency-cleaned argumentation frameworks AF 1 = (A1,D1,D′

1)
and AF 2 = (A2,D2,D′

2) resulting from AT 1 and AT 2 respectively such that
Atoms(AT 1) = Atoms(AT 2) and Cnc(AT 1)|A �= Cnc(AT 2)|A. Let Kn1 = Kn2 =
Kp2 = ∅, Kp1 = {a1, . . . , an}, Rd2 = {a1 ⇒ a1?; . . . ; an ⇒ an?}, Rs1 = Rs2 =
Rd1 = ∅. Thus, Cnc(AT 1) = {{a1, . . . , an}} and Cnc(AT 2) = {∅}, and so
Cnc(AT 1) = Cnc(AT 1)|A �= Cnc(AT 2)|A = Cnc(AT 2). ��

An argumentation theory AT 1 is contaminating when any other unrelated
argumentation theory AT 2 becomes irrelevant when merged with AT 1:

Definition 24 (Contamination). An argumentation theory AT 1 is contami-
nating under a semantics sem iff for every argumentation theory AT 2 s.t. AT 1

and AT 2 are syntactically disjoint, it holds Cnsem(AT 1) = Cnsem(AT 1 ∪AT 2).

Crash-resistance is strongly related to the concept of contamination:

Definition 25 (Crash-resistance). We say that ASPIC ? under a semantics
sem satisfies crash-resistance iff there does not exists an argumentation theory
AT that is contaminating under sem.

The intuition behind crash-resistance is that one wants to avoid local prob-
lems having global effects.

Theorem 3. If ASPIC ? satisfies non-interference and non-triviality under
complete semantics, then it also satisfies crash-resistance under complete seman-
tics.

Proof. (1) By absurd suppose the ASPIC ? does not satisfy crash-resistance.
Then there exists an argumentation theory AT 1 that is contaminating and
Atoms(AT 1) ⊂ A. Let B = A\Atoms(AT 1). (2) By assumption ASPIC ? is
non-trivial. Thus, there are argumentation theories AT 2 and AT 3 such that
Atoms(AT 2) = Atoms(AT 3) ⊆ B and Cnc(AT 2)|B �= Cnc(AT 3)|B. Note
that both AT 2 and AT 3 are syntactically disjoint from AT 1. (3) By assump-
tion ASPIC ? satisfies non-interference, from which follows Cnc(AT 2)|B =
Cnc(AT 2 ∪ AT 1)|B and Cnc(AT 3 ∪ AT 1)|B = Cnc(AT 3)|B. (4) Given AT 1

is contaminating, Cnc(AT 1 ∪ AT 2)|B = Cnc(AT 1)|B = Cnc(AT 1 ∪ AT 3)|B.
From (3) and (4), it follows that Cnc(AT 2)|B = Cnc(AT 3)|B. It is an absurd
as from (2) we have Cnc(AT 2)|B �= Cnc(AT 3)|B. ��

Theorem 4. The inconsistency-cleaned version of the ASPIC ? system satisfies
crash-resistance under complete semantics.

Proof. It follows from Theorems 2, 1 and 3.
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4 Conclusion and Future Works

In this work, we defined an argumentation framework, dubbed ASPIC ?, by
introducing in ASPIC+ [3] an interrogation mark ? as a plausibility operator
to enhance any defeasible conclusion does not have the same status than an
irrefutable one: In ASPIC ?, any defeasible rule have the form φ1, . . . , φn ⇒ φ?.

As in [2], we distinguish strong contradictions from weak ones. We avoid the
former and tolerate the latter. Then, we showed in ASPIC ? conflicting arguments
does not interfere with the acceptability of unrelated arguments. This is proved
by combining solutions found in [6] and in [7,8] to show the postulates of Non-
interference and Crash-Resistance hold in inconsistency-cleaned ASPIC ?: 1) as
in [6], we resort to paraconsistent reasoning to tolerate conflicts; our differential
is we tolerate only weak conflicts. 2) as in [7,8], we require for each argument,
the set of conclusions of all its sub-arguments are consistent; our differential is
that we eliminate only those arguments whose sets of conclusions lead to a strong
conflict. Thus, our work paves the way to investigate in the context of structured
argumentation alternative solutions to satisfy the postulates of Non-interference
and Crash-resistance without having to delete all inconsistent arguments.

In the future we will study other ways to satisfy these postulates and which
monotonic paraconsistent logics can be used as source of strict rules to avoid
contaminating argumentation theories. We will also exploit the relation between
ASPIC ? and extended logic programas with paraconsistent semantics [13].
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Abstract. Acceptability semantics for the frameworks of weighted argu-
mentation can satisfy up to one of the principles of (Quality Prece-
dence), (Cardinality Precedence) or (Compensation), which are
pairwise incompatible. In this paper we define two new principles: (Qual-
ity Compensation) and (Cardinality Compensation), which are
weakened versions of (Quality Precedence) and (Cardinality Prece-
dence), respectively. We show that these new principles are compatible
with (Compensation) and propose two new semantics: a t-conorm-
based, which can satisfy (Quality Compensation) and a cumulative
sum-based semantics, which satisfies (Cardinality Compensation).

Keywords: Argumentation · T-conorms · Cumulative sum

1 Introduction

Argumentation is a reasoning process in which interacting arguments are built
and evaluated. It is widely studied in Artificial Intelligence, namely for reason-
ing about making decisions [5,8,22] and modelling agents interactions [7,30].
An argumentation-based formalism or argumentation framework is generally
defined as a set of arguments, attacks amongst the arguments, and a semantics
for evaluating the arguments. A semantics assesses to what extent an argument
is acceptable. Examples of semantics are those proposed by Dung, which com-
pute extensions of arguments [6,11,21,26,29,32] and ranking semantics, which
compute the overall strengths of each argument [2,10,12,13,18,31].

With respect to the ranking semantics, in the works of Amgoud and Ben-
Naim [2], it was proposed a set of principles for it and consequently refined
in [3]. Moreover, new principles were introduce to describe strategies that a
semantics may use when it faces a conflict between the quality of attackers and
their quantity [4]. The strategies are: i) privileging quality through the princi-
ple of (Quality Precedence), ii) privileging cardinality through the principle
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of (Cardinality Precedence), or iii) simply allowing compensation between
quality and cardinality through the principle of (Compensation).

It was pointed out some limitations in the literature about this subject.
First, there was no semantics satisfying (Cardinality Precendence), which
was unfortunate since (Cardinality Precendence) is a viable choice in (mul-
tiple criteria) decision making [17]. Second, there was only one semantics satisfy-
ing (Quality Precedence). Third, several other semantics satisfy (Compen-
sation), however, none of them satisfies all the principles that are compatible
with the compensation principle. With that in mind, Amgoud and Ben-Naim
[4] provided three new semantics: a max-based, a cardinality-based and a sum-
based one. A formal analysis and thorough comparison with other semantics were
done to fill the previous gaps by introducing three novel semantics and show new
semantics that enjoy more desirable properties than existing semantics.

Besides that, another important result pointed out is that some of the prin-
ciples are incompatible. They cannot be satisfied all together by a semantics.
This is particularly the case with the (Quality Precedence), (Cardinality
Precedence) and (Compensation). From this perspective, in this work, we
propose to explore further the relation among these three principles and show
weaker principles that are intermediary of these three principles. Furthermore,
we present two new semantics, one based on t-conorms operators [24], which
present a mix of max-based semantics and the sum-based semantics; and the
other semantics based on the notion of cumulative sum [25], which presents a
trade off between the cardinality-based and the sum-based semantics. The nov-
elty is both semantics satisfy not only all the basic principles, but also weakened
versions of two incompatible principles. As far as we know, this is the first work to
push forward the frontier of knowledge on the development of semantics aiming
at satisfying weakened versions of incompatible principles.

The paper is organized as follows: in Sect. 2, we first recall some basic notions
of Argumentation theory, introduce the notations used throughout the paper
and show some examples of semantics and the principles that a semantics could
satisfy. In Sect. 3, we then consider the contribution of the paper, with the intro-
duction of two new semantics and two new principles. We provide a formal
analysis and comparison of existing semantics and these new principles. Finally,
in Sect. 4, we conclude the paper.

2 Foundations of Weighted Argumentation Frameworks

2.1 Basic Concepts

A weighted argumentation graph is a set of arguments and an attack relation
between them. Each argument has a weight in the interval [0, 1] representing its
basic strength (the smaller the weight, the weaker the argument).

Definition 1 (WAG). A weighted argumentation graph (WAG) is an ordered
tuple G = 〈A, w,R〉, where A is a non-empty finite set of arguments, w is a
function from A to [0, 1], and R ⊆ A × A.
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Intuitively, w(a) is the basic strength of argument a, and (a, b) ∈ R (or aRb)
means argument a attacks argument b.

Example 1. Consider the WAG G below consisted of four arguments
a, b, c, . . . , k. For instance, the basic strength of a is w(a) = 1 and the basic
strength of d is w(d) = 0.6. Besides that, argument d attacks argument a, which
is depicted by a directed edge in the graph.

w(a) = 1

w(d) = 0.6

w(i) = 0.5

w(b) = 1

w(e) = 0.3 w(g) = 0.06

w(j) = 0.2

w(f) = 0.6

w(k) = 0.7

w(c) = 1

w(h) = 0.53

Definition 2 (Isomorphism). Let G = 〈A, w,R〉 and G′ = 〈A′, w′,R′〉 be
two WAGs. An isomorphism from G to G′ is a bijective function f from A to
A′ such that: i) ∀a ∈ A, w(a) = w′(f(a)), ii) ∀a, b ∈ A, aRb iff f(a)R′f(b).

An acceptability semantics is a function assigning a value, called acceptability
degree, to every argument in a weighted argumentation graph. This value repre-
sents the overall strength of an argument, and is issued from the aggregation of
the basic strength of the argument and the overall strengths of its attackers. The
greater this value, the more acceptable the argument. Unlike extension semantics
where arguments are either accepted or rejected, it is consider graded semantics,
which may assign various acceptability degrees to arguments. Throughout the
paper, we consider the scale [0, 1].

Definition 3 (Semantics). A semantics is a function S transforming any
WAG G = 〈A, w,R〉 into a vector DegSG in [0, 1]n, where n = |A|. For a ∈ A,
DegSG(a) is called acceptability degree of a.

We present next the list of all notations used in the paper. Let G = 〈A, w,R〉
be a WAG and a ∈ A. AttG(a) denotes the set of all attackers of a in G, i.e.
AttG(a) = {b ∈ A : bRa}. For G = 〈A, w,R〉 and G′ = 〈A′, w′,R′〉 such that
A∩A′ = ∅, G⊕G′ is the WAG 〈A∪A′, w′′,R∪R′〉 where for any x ∈ A (resp.
x ∈ A′), w′′(x) = w(x) (resp. w′′(x) = w′(x)).

2.2 Examples of Weighted Semantics

The first semantics satisfies quality precedence, thus it favors the quality of
attackers over their cardinality. It is based on a scoring function which follows
a multiple steps process. At each step, the function assigns a score to each
argument. In the initial step, the score of an argument is its basic strength.
Then, in each step, the score is recomputed on the basis of the basic strength as
well as the score of the strongest attacker of the argument at the previous step.
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Definition 4 (Weighted Max-Based Semantics [4]). For any WAG G =

〈A, w,R〉 and a ∈ A, DegMbs
G (a) =

w(a)

1 + maxb∈AttG(a) DegMbs
G (b)

. By convention,

if AttG(a) = ∅, maxb∈AttG(a) DegMbs
G (b) = 0.

Example 2. Considering the WAG G from Example 1, we have that

DegMbs
G (a) =

w(a)

1 + maxb∈AttG(a) DegMbs
G (b)

=
w(a)

1 + max{DegMbs
G (d),DegMbs

G (e)}. Since

the argument d is attacked by the argument i, we need to compute DegMbs
G (d) =

w(d)

1 + max{DegMbs
G (i)} =

0.6
1 + 0.5

= 0.4 (since there is no argument attacking i,

DegMbs
G (i) = w(i) = 0.5). We also have that DegMbs

G (e) = w(e) = 0.3. There-

fore, DegMbs
G (a) =

1
1 + max{0.4, 0.3} = 0.71.

For a matter of simplicity, in this paper we are considering examples with
acyclic graphs, but the weighted semantics are also defined to deal with cyclic
graphs. The details and proofs about this issue can be found in [4].

The second semantics, called weighted card-based, favors the number of
attackers over their quality. It considers only arguments that have a basic
strength greater than 0, called founded. This restriction is due to the fact that
unfounded arguments are lifeless and their attacks are ineffective.

Definition 5 (Weighted Card-Based Semantics [4]). Let G = 〈A, w,R〉 be
a WAG and a ∈ A. The argument a is founded iff w(a) > 0. It is unfounded oth-
erwise. Let AttFG(a) denote the set of founded attackers of a. For any WAG G =

〈A, w,R〉 and a ∈ A, DegCbs
G (a) =

w(a)

1 + |AttFG(a)| +

∑
b∈AttFG(a) DegCbs

G (b)

|AttFG(a)|

.

By convention, if AttG(a) = ∅, ∑
b∈AttFG(a) DegCbs

G (b) = 0.

Example 3. From the WAG G in Example 1, we have that DegCbs
G (d) = 0.24,

DegCbs
G (e) = 0.3 and DegCbs

G (a) = 0.3.

The third semantics extends h-categorizer, initially proposed by Besnard
and Hunter [12] for non-weighted and acyclic graphs. Then, it was extended
to account for varying degrees of basic strengths, and any graph structure.

Definition 6 (Weighted h-Categorizer Semantics [4]). For any WAG G =

〈A, w,R〉 and a ∈ A, DegHbs
G (a) =

w(a)

1 +
∑

b∈AttG(a) DegHbs
G (b)

. By convention, if

AttG(a) = ∅, ∑
b∈AttG(a) DegHbs

G (b) = 0.

Example 4. From the WAG G in Example 1, we have that DegHbs
G (d) = 0.4,

DegHbs
G (e) = 0.3 and DegHbs

G (a) = 0.58.
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2.3 Principles and Properties

In the sequel, we present some principles, which are important for i) a better
understanding of semantics, ii) the definition of reasonable semantics, iii) com-
paring semantics, iv) choosing suitable semantics for applications [4].

It was proposed 15 principles, which described the role and impact of attacks
and basic strengths in the evaluation of arguments, and how these two elements
are aggregated. The first principle, called (Anonymity), can be found in almost
all axiomatic studies. In the argumentation literature, (Anonymity) is called
abstraction in [2] and language independence in [9].

Principle 1 (Anonymity). A semantics S satisfies anonymity iff for any two
WAGs G = 〈A, w,R〉 and G′ = 〈A′, w′,R′〉, for any isomorphism f from G to
G′, the following property holds: ∀a ∈ A,DegSG(a) = DegSG′(f(a)).

The second principle, called (Independence), states that the acceptabil-
ity degree of an argument should be independent of any argument that is not
connected to it.

Principle 2 (Independence). A semantics S satisfies independence iff for any
two WAGs G = 〈A, w,R〉 and G′ = 〈A′, w′,R′〉 such that A ∩ A′ = ∅, the
following holds: ∀a ∈ A,DegSG(a) = DegSG⊕G′(a).

The next principle states that the acceptability degree of an argument a in a
graph can depend on argument b only if there is a path from b to a, i.e., a finite
non-empty sequence 〈x1, . . . , xn〉 such that x1 = b, xn = a and ∀i < n, xiRxi+1.

Principle 3 (Directionality). A semantics S satisfies directionality iff for any
two WAGs G = 〈A, w,R〉 and G′ = 〈A′, w′,R′〉 such that R′ = R ∪ {(a, b)}, it
holds that: ∀x ∈ A, if there is no path from b to x, then DegSG(x) = DegSG′(x).

The next principle, called (Neutrality), states that an argument, whose
acceptability degree is 0, has no impact on the arguments it attacks.

Principle 4 (Neutrality). A semantics S satisfies neutrality iff for any WAG
G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), and ii) AttG(b) = AttG(a) ∪ {x}
with x ∈ A\AttG(a) and DegSG(x) = 0, then DegSG(a) = DegSG(b).

The condition w(a) = w(b) ensures that the attacks from AttG(a) have the
same effect on both arguments a and b. (Equivalence) principle ensures that
the overall strength of an argument depends only on the basic strength of the
argument and the overall strengths of its (direct) attackers.

Principle 5 (Equivalence). A semantics S satisfies equivalence iff for any
WAG G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), and ii) there exists a bijec-
tive function f from AttG(a) to AttG(b) such that ∀x ∈ AttG(a),DegSG(x) =
DegSG(f(x)), then DegSG(a) = DegSG(b).
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(Maximality) principle states that an unattacked argument receives an
acceptability degree equal to its basic strength.

Principle 6 (Maximality). A semantics S satisfies maximality iff for any
WAG G = 〈A, w,R〉, ∀a ∈ A, if AttG(a) = ∅, then DegSG(a) = w(a).

The role of attacks is (Weakening) their targets. Indeed, when an argument
receives an attack, its overall strength decreases whenever the attacker is “alive”.

Principle 7 (Weakening). A semantics S satisfies weakening iff for any WAG
G = 〈A, w,R〉, ∀a ∈ A, if i) w(a) > 0, and ii) ∃b ∈ AttG(a) such that DegSG(b) >
0, then DegSG(a) < w(a).

(Weakening) leads to strength loss as soon as an argument is attacked by
at least one alive attacker. (Counting) principle states that each alive attacker
has an impact on the overall strength of the argument. Thus, the more numerous
the alive attackers of an argument, the weaker the argument.

Principle 8 (Counting). A semantics S satisfies counting iff for any WAG
G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), ii) DegSG(a) > 0, and iii) AttG(b) =
AttG(a) ∪ {y} with y ∈ A\AttG(a) and DegSG(y) > 0, then DegSG(a) > DegSG(b).

(Weakening Soundness) principle goes further than weakening by stating
that attacks are the only source of strength loss.

Principle 9 (Weakening Soundness). A semantics S satisfies weakening
soundness iff for any WAG G = 〈A, w,R〉, ∀a ∈ A such that w(a) > 0, if
DegSG(a) < w(a), then ∃b ∈ AttG(a) such that DegSG(b) > 0.

(Reinforcement) principle states that the stronger the source of an attack,
the greater its intensity.

Principle 10 (Reinforcement). A semantics S satisfies reinforcement iff for
any WAG G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), ii) DegSG(a) > 0 or
DegSG(b) > 0, iii) AttG(a)\AttG(b) = {x}, iv) AttG(b)\AttG(a) = {y}, and v)
DegSG(y) > DegSG(x), then DegSG(a) > DegSG(b).

(Resilience) principle states that an attack cannot completely kill an argu-
ment, i.e., to turn its acceptability degrees equal to 0.

Principle 11 (Resilience). A semantics S satisfies resilience iff for any WAG
G = 〈A, w,R〉, ∀a ∈ A, if w(a) > 0, then DegSG(a) > 0.

(Proportionality) states that the stronger the target of an attack, the
weaker its intensity.

Principle 12 (Proportionality). A semantics S satisfies proportionality iff
for any WAG G = 〈A, w,R〉, ∀a, b ∈ A such that i) AttG(a) = AttG(b), ii)
w(a) > w(b), and iii) DegSG(a) > 0 or DegSG(b) > 0, then DegSG(a) > DegSG(b).
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The three last principles concern possible choices offered to a semantics when
it faces a conflict between the quality and the number of attackers. (Quality
Precedence) principle gives more importance to the quality.

Principle 13 (Quality Precedence). A semantics S satisfies quality prece-
dence iff for any WAG G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), ii)
DegSG(a) > 0, and iii) ∃y ∈ AttG(b) such that ∀x ∈ AttG(a),DegSG(y) >
DegSG(x), then DegSG(a) > DegSG(b).

(Cardinality Precedence) principle states that a great number of attackers
has more effect on an argument than just few.

Principle 14 (Cardinality Precedence). A semantics S satisfies cardinality
precedence iff for any WAG G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), ii)
DegSG(a) > 0, and iii) |{y ∈ AttG(b) : DegSG(y) > 0}| > |{x ∈ AttG(a) :
DegSG(x) > 0}|, then DegSG(a) > DegSG(b).

Finally, (Compensation) states that several weak attacks may compensate
the quality of attacks overall.

Principle 15 (Compensation). A semantics S satisfies compensation iff
there exists a WAG G = 〈A, w,R〉, such that for two arguments a, b ∈ A, i)
w(a) = w(b), ii) DegSG(a) > 0, iii) |{x ∈ AttG(a) : DegSG(x) > 0}| > |{y ∈
AttG(b) : DegSG(y) > 0}|, iv) ∃y ∈ AttG(b) such that ∀x ∈ AttG(a),DegSG(y) >
DegSG(x) and DegSG(a) = DegSG(b).

The results corresponding to the compatibility of the principles is stated
below.

Proposition 1. [4] The three following properties hold. i) (Quality Prece-
dence), (Cardinality Precedence) and (Compensation) are pairwise
incompatible; ii) (Independence), (Directionality), (Equivalence), (Resil-
ience), (Reinforcement), (Maximality) and (Quality Precedence) are
incompatible; iii) (Cardinality Precedence) (respectively (Compensation))
is compatible with all principles 1–12.

It was shown that Weighted max-based semantics satisfies (Quality Prece-
dence) as well as all the principles which are compatible with it [4]. It violates,
however, (Counting) since by definition, this semantics focuses only on the
strongest attacker of an argument, and neglects the remaining attackers.

Theorem 1. [4] Weighted max-based semantics violates (Cardinality Prece-
dence), (Compensation), (Counting) and (Reinforcement). It satisfies all
the remaining principles.

Weighted card-based semantics satisfies (Cardinality Precedence) as well
as all the principles that are compatible with it.
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Theorem 2. [4] Weighted card-based semantics satisfies all the principles
except (Quality Precedence) and (Compensation).

Weighted h-categorizer semantics satisfies (Compensation) as well as all
the principles that are compatible with it.

Theorem 3. [4] Weighted h-categorizer semantics satisfies all the principles
except (Quality Precedence) and (Cardinality Precedence).

3 Refinements of Compensation-Based Semantics

Fuzzy set theory has been shown to be a useful tool to describe situations in
which the data are imprecise or vague. Fuzzy sets handle such situations by
attributing a degree to which a certain object belongs to a set [15]. An important
notion in fuzzy set theory is that of triangular norms and conorms: t-norms and
t-conorms are used to define a generalized intersection and union of fuzzy sets
[24]. Triangular norms and conorms serve as aggregation operators, which can
be used, e.g., for querying databases [20], to compute the resulting degree of
confidence of agents [33], in Approximate Reasoning [16], Information Retrieval
[14], Neuro-symbolic Learning [19], Machine Learning [1], etc.

Definition 7 (T-conorm [24]). A binary function ⊕ : [0, 1] × [0, 1] → [0, 1] is
a t-conorm if it satisfies the following conditions:

1. ⊕{a, b} = ⊕{b, a} (Commutativity);
2. ⊕{a,⊕{b, c}} = ⊕{⊕{a, b}, c} (Associativity);
3. a ≤ c and b ≤ d ⇒ ⊕{a, b} ≤ ⊕{c, d} (Monotonicity);
4. ⊕{a, 0} = a (Neutral Element).

A t-conorm acts as a disjunction in fuzzy logic or as a union in fuzzy set
theory. When one of its arguments is 0, it returns its other argument; when one
of its arguments is 1, it returns 1. It is both associative and commutative, and its
partial derivatives with respect to its parameters are non-negative. T-conorms
are a generalization of the usual two-valued logical disjunction (or the maximum
operator), studied by classical logic, for fuzzy logics. The four basic t-conorms
are described below:

Definition 8 (Basic T-conorms [24]). The following are the four basic t-
conorms:

1. Maximum t-conorm: ⊕M{x, y} = max(x, y);
2. Probabilistic sum t-conorm: ⊕P{x, y} = x + y − x · y;
3. �Lukasiewicz t-conorm: ⊕L{x, y} = min(x + y, 1);

4. Drastic sum t-conorm: ⊕D{x, y} =
{

1, if (x, y) ∈ ]0, 1]×]0, 1];
max(x, y), otherwise.
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These four basic t-conorms are remarkable for several reasons. The drastic
sum ⊕D and the maximum ⊕M are the largest and the smallest t-conorms,
respectively (with respect to the pointwise order). The maximum ⊕M is the
only t-conorm where each x ∈ [0, 1] is an idempotent element (recall x ∈ [0, 1]
is called an idempotent element of ⊕ if ⊕{x, x} = x). The probabilistic sum
⊕P and the �Lukasiewicz t-conorm ⊕L are examples of two important subclasses
of t-conorms, namely, the classes of strict and nilpotent t-conorms, respectively
(more details in [23]).

One way to compare t-conorms is using the notion of strength. Consider two
t-conorms ⊕1 and ⊕2. If we have ⊕1{x, y} ≤ ⊕2{x, y} for all x, y ∈ [0, 1], then
we say that ⊕1 is weaker than ⊕2 or, equivalently, that ⊕2 is stronger than ⊕1,
and we write in this case ⊕1 ≤ ⊕2. We shall write ⊕1 < ⊕2 if ⊕1 ≤ ⊕2 and
⊕1 �= ⊕2. The drastic sum ⊕D is the strongest, and the Maximum ⊕M is the
weakest t-conorm, i.e., for each t-conorm ⊕ we have ⊕M ≤ ⊕ ≤ ⊕D. Between the
four basic t-conorms we have these strict inequalities: ⊕M < ⊕P < ⊕L < ⊕D.

Example 5. Consider x = 0.4 and y = 0.7. We have that ⊕M{0.4, 0.7} = 0.7,
⊕P{0.4, 0.7} = 0.82, ⊕L{0.4, 0.7} = 1 and ⊕D{0.4, 0.7} = 1. We can state that
the maximum t-conorm disconsiders all the values that are not the maximum,
while the result of the probabilistic sum t-conorm takes into consideration the
value of each argument. The �Lukasiewicz t-conorm follows a similar idea, how-
ever, when the sum of the argument reaches a threshold, i.e. the value 1 which
represents total membership, the result is equal to 1 (and all the excess is dis-
considered). The Drastic sum t-conorm, as the name states, it is radical in the
decision: if a argument x has a partial (i.e., x ∈ (0, 1]) or total membership (i.e.,
x = 1), the result of drastic t-conorm between x and any other element is equal
to 1 (any partial membership is transformed in a total membership).

As the t-conorms are a natural generalization of the maximum operator, we
can generalize the definition of Weighted Max-Based Semantics to a Weighted
t-conorm Semantics.

Definition 9 (Weighted T-conorm Semantics). For any WAG G = 〈A, w,

R〉 and a ∈ A, Deg⊕
G(a) =

w(a)
1 +

⊕
b∈AttG(a) Deg⊕

G(b)
. By convention, if AttG(a) =

∅, ⊕
b∈AttG(a) Deg⊕

G(b) = 0.

Intuitively, we can think of the probabilistic sum semantics as the following
idea: the degree of acceptability of an argument a is measured based on its weight
and also the sum of pairs of acceptability degrees of the attacking arguments
minus a rate (measured by the product between the attackers’ acceptability
degrees). It is a different approach to the maximum that only considers the
largest value of an attacking argument and also different from the sum approach
present in the h-categorizer semantics. In fact, the probabilistic sum semantics
encompasses a bit of both worlds.
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�Lukasiewicz’s semantics is much closer to h-categorizer semantics, and its big
difference is that if the sum of the acceptability degrees of the attacking argu-
ments exceeds 1, the weight of this attack is considered 1 (in the h-categorizer
semantics this value can be greater than 1).

Drastic semantics is much less interesting when compared to the two previous
ones, since it considers that if an argument is attacked by any other argument or
a set of arguments with a degree of acceptability greater than 0, the total weight
of the attack is always 1, regardless the values of the degrees of acceptability.
In practice this means that when an argument is attacked, if the weight of any
argument is greater than 0, the degree of acceptance of that argument attacked
results in half its original weight.

Example 6. Considering the WAG G from Example 1, we have that Deg⊕M

G (a) =
0.71, Deg⊕P

G (a) = 0.63, Deg⊕L

G (a) = 0.58 and Deg⊕D

G (a) = 0.5. As said before,
the drastic t-conorm is the strongest t-conorm and maximum t-conorm is the
weakest. Consequently, the acceptability degree of an argument is higher for the
maximum semantics and lower for the drastic semantics, when compared to the
other t-conorms semantics.

With respect to the range of values of the acceptability degree for t-conorms
semantics, we have the following results.

Proposition 2. For any WAG G = 〈A, w,R〉 and for any a ∈ A, we have

that {Deg⊕M

G (a),Deg⊕P

G (a),Deg⊕L

G (a)} ∈ [
w(a)

2
, w(a)] and Deg⊕D

G (a) =
w(a)

2
or

Deg⊕D

G (a) = w(a).

Next, we will propose a weaker principle than (Quality Precedence),
named (Quality Compensation). The idea of this principle is to prioritize,
during a conflict of attacks on two arguments, the quality of attacks when the
overall sum of attacks on these arguments is equal.

Principle 16 (Quality Compensation). A semantics S satisfies quality com-
pensation iff for any WAG G = 〈A, w,R〉, ∀a, b ∈ A, if i) w(a) = w(b), ii)
DegSG(a) > 0, iii)

∑
x∈AttG(a) DegSG(x) =

∑
y∈AttG(b) DegSG(y), and iv) ∃y ∈

AttG(b) such that ∀x ∈ AttG(a),DegSG(y) > DegSG(x), then DegSG(a) > DegSG(b).

This principle weakens (Quality Precedence) by introducing condition iii)∑
x∈AttG(a) DegSG(x) =

∑
y∈AttG(b) DegSG(y), where it considers equal the sum of

the acceptability degrees of the attacking arguments. Therefore, if a semantics
satisfies (Quality Precedence) it also satisfies (Quality Compensation).
Regarding Weighted t-conorms semantics, we have the following results accord-
ing to their properties.

Theorem 4. Considering the weighted t-conorm semantics:

1. Weighted Drastic t-conorm semantics violates only (Counting), (Rein-
forcement), (Quality Precedence), (Cardinality Precedence), (Com-
pensation) and (Quality Compensation).
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2. Weighted �Lukasiewicz t-conorm violates only (Quality Precedence), (Car-
dinality Precedence) and (Quality Compensation).

3. Weighted Probabilistic sum t-conorm semantics violates only (Quality
Precedence) and (Cardinality Precedence).

Weighted drastic t-conorm semantics behaves similar to weighted max-based
semantics, except that it does not satisfy (Quality Precendence) or (Qual-
ity Compensation). Although they are t-conorms, weighted �Lukasiewicz and
weighted probabilistic sum semantics go in a direction different from weighted
max-based Semantics and satisfy (Compensation), along with all the 1–12
principles. In special, weighted probabilistic sum also satisfies (Quality Com-
pensation), which is a weaker version of (Quality Precedence), that is, it
presents a balance between compensation and quality in its decisions.

Example 7. From the WAG G in Example 1, we have that w(a) = w(b) and
the sum of degrees of acceptability (for ⊕P semantics) of the attackers of a and
b are, respectively, Deg⊕P

G (d) + Deg⊕P

G (e) = 0.4 + 0.3 = 0.7 and Deg⊕P

G (e) +
Deg⊕P

G (f) + Deg⊕P

G (g) = 0.3 + 0.34 + 0.06 = 0.7. However, Deg⊕P

G (a) = 0.63 <

0.64 = Deg⊕P

G (b), since the argument a has an attacker with the highest degree
of acceptability (Deg⊕P

G (d) = 0.4). We can see that quality takes on importance
when the total of values compared is indistinguishable. Otherwise, the semantics
behaves like a compensating semantics.

The next semantics introduced in this paper is the Weighted CS-Based
Semantics, based on the idea of Cumulative Sum. This operator has been applied
in the areas of Outlier Detection [25], identifying rare items, events or observa-
tions which raise suspicions by differing significantly from the majority of the
analyzed data. It is also studied in the area of Economy, from the notion of
the Lorenz curve [27], which is most often used to represent economic inequal-
ity and it can also demonstrate unequal distribution in any system. Formally, a
cumulative sum can be defined as follows.

Definition 10 (Cumulative Sum). Consider the vectors L = (x1, . . . , xn)
and L′ = (xσ(1), . . . , xσ(n)), where σ is the permutation of {1, . . . , n} sort-
ing the xi in descending order. We define the vector of accumulated sum

ASL = (AS1
L′ , . . . , An

L′), where ASi
L′ =

i∑

xk∈L′,k=1

xk. The Cumulative Sum of

L is defined as CSL =
∑

ASL (the sum of its elements).

A cumulative sum is a sequence of partial sums of a given sequence. For
example, the cumulative sums of the sequence a, b, c, ..., are a, a+b, a+b+c, . . . .
After that, the sum of all these elements is performed.

Example 8. Consider the vector V = (0.23, 0.26, 0.1) and V ′ = (0.26, 0.23, 0.1)
its ordered version. The cumulative sum of V is given by CSV =

∑
ASV =∑

(AS1
V ′ , AS2

V ′ , A3
V ′) =

∑
(0.26, 0.49, 0.59) = 1.34.
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Definition 11 (Weighted CS-Based Semantics). For any WAG G =

〈A, w, R〉 and a ∈ A, DegCSbs
G (a) =

w(a)
1 + CSAttSG(a)

, where AttSG(a) =

(DegCSbs
G (b1), . . . ,DegCSbs

G (bn)) and bi ∈ AttG(a), for 1 ≤ i ≤ n. By convention,
if AttG(a) = ∅, then CSAttSG(a) = 0.

Weighted CS-Based Semantics extends the h-categorizer semantics by mak-
ing the cumulative sum of the acceptability degrees of the attacking arguments.

Example 9. Considering the WAG G from Example 1, we have that DegHbs
G (a) =

0.58 and DegCSbs
G (a) = 0.47. As it happened with the maximum t-conorm, which

has a higher acceptability degree when compared with the other t-conorms,
the acceptability degree of an argument is higher for the h-categorizer when
compared to cumulative sum semantics.

As said previously, the cumulative sum is used in data analysis to detect
variations and anomalies in a set of data, and this operator is sensible to the
number of elements in the set. Thus, we propose a weaker principle than (Car-
dinality Precedence), named (Cardinality Compensation). The idea of
this principle is to prioritize, during a conflict of attacks on two arguments, the
quantity of attacks when the overall sum of attacks on these arguments is equal.

Principle 17 (Cardinality Compensation). A semantics S satisfies car-
dinality compensation iff for any WAG G = 〈A, w,R〉, ∀a, b ∈ A, if i)
w(a) = w(b), ii) DegSG(a) > 0, iii)

∑
x∈AttG(a) DegSG(x) =

∑
y∈AttG(b) DegSG(y),

and iv) |{y ∈ AttG(b) : DegSG(y) > 0}| > |{x ∈ AttG(a) : DegSG(x) > 0}|, then
DegSG(a) > DegSG(b).

This principle weakens (Cardinality Precedence) by introducing condi-
tion iii)

∑
x∈AttG(a) DegSG(x) =

∑
y∈AttG(b) DegSG(y), where it considers equal

the sum of the acceptability degrees of the attacking arguments. Therefore, if
a semantics satisfies (Cardinality Precedence) it also satisfies (Cardinal-
ity Compensation). Regarding Weighted CS-Based semantics, we have the
following results according to their properties.

Theorem 5. Weighted CS-based semantics satisfies all the principles except
(Cardinality Precedence), (Quality Precedence) and (Quality Prece-
dence). Additionally, it satisfies (Cardinality Compensation).

Example 10. From the WAG G in Example 1, we have that w(b) = w(c) = 1
and the sum of degrees of acceptability (for cumulative sum semantics) of the
attackers of b and c are, respectively, DegCSbs

G (e)+DegCSbs
G (f)+DegCSbs

G (g) =
0.3 + 0.23 + 0.06 = 0.59 and DegCSbs

G (g) + DegCSbs
G (h) = 0.06 + 0.53 = 0.59.

However, DegCSbs
G (b) = 0.41 < 0.47 = DegCSbs

G (c), since the argument b has
more attackers than argument c. We can see that quantity takes on importance
when the total of values compared is indistinguishable. Otherwise, the semantics
behaves like a compensating semantics.
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With respect to the range of values of the acceptability degree for CS-based
semantics, they have the same result of the h-categorizes semantics.

Theorem 6. For any WAG G = 〈A, w,R〉, for any a ∈ A, DegCS
G (a) ∈

(0, w(a)].

4 Conclusion

This paper introduced two new semantics for the weighted argumentation frame-
work. The main objective is to show that there are semantics that have a
hybrid behavior between the principles of (Quality Precedence), (Cardinal-
ity Precedence) and (Compensation). The semantics based on t-conorms,
as the drastic t-conorms, �Lukasiewicz and probabilistic sum seek an alternative
to the maximum operator, which has the principle of (Quality Precedence)
as a characteristic. It has been shown that the probabilistic sum t-conorm has
the most interesting properties, because although it does not satisfy (Quality
Precedence), it satisfies all the basic principles, along with (Compensation)
and (Quality Compensation).

Table 1. The list of the principles satisfied (or violated) by the semantics.

Mbs Cbs Hbs ⊕D ⊕L ⊕P CSbs

Anonymity

Independence

Directionality

Neutrality

Equivalence

Maximality

Weakening

Counting × ×
Weakening soundness

Reinforcement × ×
Resilience

Proportionality

Quality Precedence × × × × × ×
Cardinality Precedence × × × × × ×
Compensation × × ×
Quality Compensation × × × × × ×
Cardinality Compensation × × × × × ×

The semantics based on cumulative sum is intended to exhibit a hybrid
behavior between a (Compensation) and (Cardinality Precedence). Unlike
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the classical sum operator, presented in the h-categorizer semantics, the cumu-
lative sum gives more weight to the total sum according to the number of ele-
ments: the more elements, the greater the sum value. As a result, we show that
the cumulative sum semantics satisfies all the principles of the h-categorizer
semantics plus a weak version of (Cardinality Precedence), called (Cardi-
nality Compensation). Table 1 summarizes the results regarding the weighted
argumentation framework operators and the satisfaction of all principles.

As future work, we intend to continue exploring other operators with inter-
mediate characteristics between these three main incompatible principles. An
alternative is to study t-conorm families. Besides the four basic t-conorms, it is
possible to extend them into several families of t-conorms through parameters
[28], resulting in several operators with different properties. Another point to
be investigated are operators that exhibit intermediate behavior between qual-
ity and quantity. Furthermore, another possibility of research is to study other
new principles in the weighted argumentation framework. A remarkable question
remains open: is it possible to conceive a new semantics with a hybrid behavior
involving not only two, but these three main incompatible principles?
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Abstract. Value-based health care management models require a pre-
cise accounting of health indexes such as risk events monitoring, clinical
conditions, patient handling and outcomes. Currently this accounting is
performed by manually reading and searching through electronic health
records for these indexes. Our research proposes a way to make this an
autonomous task that is performed by a computer using a Portuguese
free-text concept classifier model based on ontologies. To validate our
model we tested it on digital clinical records from 191 patients under
ischemic stroke care. We have selected 30 management indexes to be
identified in these texts. Our model reached, on average 56,8% of f1-
score, varying from 5,83% to 94,78% f1-score across different manage-
ment indexes.
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1 Introduction

Value-based healthcare systems (VBHC) allow fair rewards and proper recogni-
tion for health providers based on the quality and results of the service provided
[3,5,11]. In this system, the responsible bodies for financing and rewarding these
providers can be more confident about their investments, the main users get
better services and results and, providers are encouraged to optimize their prac-
tice. The implementation of effective VBHC requires advances in computational
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intelligence to continually turn EHR data on information [7,10]. Through these
records, services and results are evaluated. This is an exhausting manual task
that has to be performed even on top of edge digital health records software;
therefore it is essential to turn it into an automated task. This task is defined
as the measure of service indexes such as risk events monitoring, clinical con-
ditions, patient handling and outcomes. In order to measure these indexes it is
necessary to find keywords and technical terms inside clinical records that are
written as free-texts in the Portuguese language. Our research aims to autom-
atize such task, and it is focused on patients under ischemic stroke care. For
this context, 30 indicator indexes were chosen to measure the services grouped
in: Clinical features, Evaluation measures and risk events, Clinical handling and
Patient condition.

This challenge has been handled previously by Zanotto et al. (2021) [14]
through machine learning techniques where good results were presented. How-
ever, these techniques often require vast amounts of annotated data and compu-
tational processing for model training. Our approach tries to avoid these issues
by proposing a knowledge based system combined with natural language pro-
cessing (NLP) techniques. We make use of the NLP methods to find keywords
and match terms with an ontology which then uses axioms to classify a given
text from the clinical records according to the management indexes.

The evaluation of our model was made on digital clinical records from 191
patients under stroke care. Our model was capable of to identify and to classify
28 of those indexes varying from 5,83% f1-score results and mcc score of 8,01%
to 94,78% f1-score results and mcc-score of 94,78%. Considering all 30 indexes,
our model reached, on average 56,8% of f1-score and a mcc-score of 57,97%.

2 Related Work

In Wang et al. (2003) [12] and Zhou and El-Gohary (2015) [15] we see the use
of machine learning algorithms as part of the classification processes, either to
learn the terms related to the domain or to make the classifications. A larger
quantity of data was required to achieve good results. The domain application
of Wang et al. (2003) were papers from the MEDLINE database and on Zhou
and El-Gohary (2015) were construction regulation documents.

Other works follow a knowledge representation approach. The work of Allah-
yari et al. (2014) [1] uses an ontology for the classifications of English text from
news on the web, they used graph projection for this purpose. In Chi et al. (2014)
[4] an ontology was created in a semi-automated way, but due to data scarcity,
quality and range of terms were not optimal. They worked with job hazards
reports. In Schwertner et al. (2019) [9] the authors built an ontology based on
domain knowledge from specialists, defining relations between concepts and sen-
tences, they used the ontology as a classification tool. They also worked with clin-
ical data information in the English language. In Gayathri and Kannan (2020)
[6] the authors face a similar challenge that we had, their goal was to detect
and identify health-related information on English text documents. On Yehia
et al. (2019) [13] domain ontologies are used to classify sentences using rules,
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based on the relations between concepts. They worked with clinical data docu-
ments. In de Araujo et al. (2017) [2] an ontology that uses inference processes,
based on linguistic rules defined by specialists, to classify texts is presented. In
this paper the authors worked with documents and texts in Portuguese about
judicial events.

These related works show that ontologies can be considered an alternative
for text classification. Different approaches are applied to different domains and
results were in general positive. We also see few movements towards techniques
focused on the Portuguese language. Given the results of These related works,
we considered that a model based on ontologies should be tested for our text
classification task, in Portuguese language, to compare with previous work on
the same problem that used machine learning in a study made by Zanotto et al.
(2021) [14]. They present an evaluation of machine learning approaches for the
same database used in the present work, the classification considers almost the
same set of classes, they worked on 24 or the indexes. A comparison with this
work is presented in the results section.

3 Available Data and Challenges

The main goal of this research was to verify the applicability and the perfor-
mance of a computational model, based on ontologies, in the task of automat-
ically detect and classify Portuguese free-texts from electronic health records.
To accomplish our goal we focused on classifying clinical records from patients
under ischemic stroke care. This decision is based on our proximity with a team
of specialists of this domain. We also wanted to verify how this model compares
against machine learning approaches on this same task and dataset [14].

The data available for this research contains Portuguese free texts clinical
records of 191 patients that were treated for ischemic stroke incidents from
01/01/2019 up to 07/23/2019. Our challenge is to find terms and keywords in a
given text from these records and given the detected words, classify the text in
one the following 30 quality indexes that are shown in Table 1. This study was
approved by the Hospital Ethics Committee (CAAE: 29694720000005330).

We aim to develop a computational model in a way that it permeates cur-
rent Electronic Health Records software, allowing it to operate as first designed
as it only would have to provide the data that is stored. With this approach,
healthcare practitioners may keep using the same kind of software that they are
used to, with no need to input any new data. As the model outputs only the
indexes in which the texts were classified, practitioners would also be able keep
the privacy and the details of their records and practices.

With the help of a team of domain specialists, we identified technical terms
and keywords for the indexes that are to be found within the clinical records.
We developed an ontology that plays three important roles in our model. The
first one is to provide a list of terms (keywords) that are to be found in the texts.
The second role is the definition of the relation of the indexes with the terms.
Moreover, the last role is the classifier itself that reasons about the relation
between texts and terms and classifies them into the appropriate index. To work
along with our ontology, a term detecting algorithm was also developed.
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Table 1. Management indexes and its sub-groups

Sub-group Indexes

Clinical Features Coronary
Disease

Previous Stroke
Incident

Dyslipidemia Drinker

Atrial
fibrillation

Systemic
Arterial
hypertension

Cancer Diabetes

Obesity Smoker

Clinical Handling and
Care process

Location Trombectomy Thrombolysis

Evaluation Measures
and Risk Events

Intracranial
Hemorrhage

Fall Braden Fall Risk

Infection

Results and
Patient Status

Death Pain Feeding Strength

Paresis Mobility Mobility Level Communication

Cognitive
Capacity

Rankin (mRs) Self Care NIHSS

3.1 Data Preprocessing and Annotation

All available clinical records were first anonymized. All records were split into
sentences. After this step, 46.547 sentences were generated, in which the indexes
would have to be detected. The sentence order was randomized to prevent anno-
tation based on previous context, the idea was to analyse each sentence inde-
pendently.

Two annotators, domain specialists, read the sentences and informed all the
indexes that could be identified in each sentence. The results obtained from
both annotators had the percent agreement between them measured by kappa,
which was higher than 0.61. In the cases in which there were conflicts, both
annotators would come to together to discuss and solve the conflict. No conflict
was left unsolved. At the conclusion of these step it was identified that only
17.471 out of the 46.547 sentences were related to one or more of the indicators.
The sentences occurrences of each indicator is detailed in Table 8.

4 Methods

4.1 Ontology Based Classification Algorithm

Note that our ontology is a task ontology, developed for classifying sentences
containing terms into 30 different indexes. Thus our ontology has three main
concepts: the ‘Terms’ concept, in which all the sub-concepts are keywords that
are to be found in the texts; the ‘Sentences’ concept that contains all the sen-
tences processed by the text-detection algorithm; and the ‘Index’ concept that
contains the description of all the indexes in which the sentences should be classi-
fied into. An object property relation ‘contain’, expresses the presence of a given
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term in a sentence. To the ‘Terms’ concept we added a few subsets of concepts:
The ‘Values’ sub-concept aims to specify the terms that require a numeric value
in order to compose a classification; The ‘Negations’ sub-set contains expressions
that would indicate the negation of the occurrence of an index; the ‘PastTense’
sub-set contains terms that would signal the occurrence of an index in some
point of the past, these terms often do so by appearing at some point after the
mention of an index, and the ‘PastTenseRetroactive’ is also for identification
of the past, but this specifies the terms that appear before the mention of the
index in the sentence. Whenever the terms from these subsets were found, they
create the appropriate relation, for instance, ‘sentence negates index’, instead of
‘sentence contains index’.

Our ontology plays the following roles: It serves as knowledge model of the
terminology of this domain and it plays as a text classifier trough its inference
capabilities.

The inference process is based in assertions in a logical form that together
comprise the overall theory that the ontology describes in this domain, this asser-
tions are calles axioms and in this ontology it refers to which terms a sentence
must contain in order to be classified as an element of a given index. Table 2
shows us a few examples of these axioms. This ontology was built in OWL lan-
guage using the Protégé tool.

The term detection algorithm receives the instances of the class Terms. The
algorithm then runs through each sentence and tries to match the given terms to
the words in the sentences. Whenever a match is found, the algorithm registers
it in the ontology composing the triple sentence, relation, term.

Our approach also uses ‘word embedding’ models. The ‘word embedding’ used
was developed on the basis of electronic health records of a brazilian hospital1[8],
which was trained using 21 million sentences culminating in a model with 63
thousand words. We chose this language model, since this is based on Portuguese
EHR. The application of this models has two main goals: To circumvent grammar
errors that often occur in these clinical records and; To expand the vocabulary
list of terms that were defined initially in the ontology, which means that it
brings new rellated words, for instance the medical term ‘coronarina’ is not
defined in the ontology, but this model relates it to term ‘coronaria’ covering
this terminology gap. Hence our algorithm uses these models to search for similar
words. Using the cosine similarity, the top 10 words are retrieved to expand the
list of terms given by the ontology.

To optimize running time two parallel lists are kept by the algorithm: the
first one is in charge of storing all words from the texts that do not have a
match in the ontology; the second list keeps track of all the words from the
sentence that do not match with the terms in the ontology, but some of its
word embedding similar do. After all the sentences have been processed and put
under the ‘Sentences’ set in the ontology, the reasoning process starts and the
classification is made. The results are then evaluated by comparing them with
the annotated data.

1 https://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/word-embed
dings-para-saude/.

https://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/word-embeddings-para-saude/
https://www.inf.pucrs.br/linatural/wordpress/recursos-e-ferramentas/word-embeddings-para-saude/
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Table 2. Axioms examples

Indicator ClassificationAxioms

Thrombolysis 1 (contain some delta) and (contain some reperfusão)
and (contain some terapia) SubClassOf trombólise1

(contain some reperfusão) and (contain some
terapia) and (sem some contraindicação) SubClassOf
trombólise1

0 (contain some reperfusão) and (contain some terapia)
and (sem some indicação) SubClassOf trombólise0

Rankin (mRs) 0–6 rankin some xsd:decimal[>= 0 , <= 6] SubClassOf
rankin

Mobility Level 11 (contain some auxiliar) and (contain some deambula)
and (contain some um) SubClassOf
Nı́velMobilidade11

mobilidade some xsd:decimal[>= 11 , < 12]
SubClassOf Nı́velMobilidade11

12 Nı́velMobilidade11 and (contain some prontidão)
SubClassOf Nı́velMobilidade12

Strength 3 (contain some contra) and (contain some gravidade)
and (contain some movimento) SubClassOf
ForçaNı́vel3

4 ForçaNı́vel3 and (contain some resistência)
SubClassOf ForçaNı́vel4

((contain some força) and (contain some perda)) and
((contain some leve)
or (contain some sutil)) SubClassOf ForçaNı́vel4

5 (MobilidadeSemAjuda or Nı́velMobilidade12 or
Nı́velMobilidade13 or Nı́velMobilidade14
or Nı́velMobilidade15) SubClassOf ForçaNı́vel5

(contain some maior) and (contain some resistência)
and (contain some supera) SubClassOf ForçaNı́vel5

4.2 Example

To better understand how our model works let us take the set of sentences
shown in Table 3. Our model receives these sentences as input and classifies
them. Consider sentence number 6, the first step is to tokenize it. Table 4 shows
the result of this step. Next, every word is treated to remove characters that are
not either alphabets or numbers, and changed to lowercase, as seen in Table 5.
The first word from our sample is ‘após’, our model uses the word embedding
model to expand this word and get new similar words. Table 6 shows us all the
similar words found for this term. After that they are compared with our defined
terms. In this example, the term ‘após’ and all the similar terms are searched in
the list of defined terms in the ontology. For this instance the term ‘após’ is not
defined and hence no relation between ‘sentence #6’ and this term is created.
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Our model stores this term in a list of unmatched terms, for the next time it
appears it will not be evaluated again. Next, we have the term ‘trombolise’. This
one is also expanded with our word-embedding model and the similar terms are
shown in Table 7. Again, the term and all the similar words are matched against
the ontology.

Table 3. Randomized set of sentences

# Sentence

1 Cardiologia - ińıcio acompanhamento a pedido da
Dr.nome do médico
Sr.nome do paciente, 78 anos

2 [Sentença de outra evolução] Nega tabagismo

3 [Sentença de outra evolução] AVC prévio em 2017

4 # Fibrilação atrial em 2008–2009 (uso de amiodarona até fev/2017)
recorrência de FA documentada
desde março/2019 - reiniciou amiodarona e usou até abril/19

5 # IMC = 35.

6 #Após trombolis, vomitos hipotensao e dor

Table 4. Set of words from sentence #6

# Words

1 #Após

2 trombolis

3 vomitos

4 e

5 hipotensão

6 nega

7 dor

Table 5. Set of treated words from sentence #6

# Words

1 após

2 trombolis

3 vomitos

4 e

5 hipotensão

6 nega

7 dor
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Table 6. Set of similar words given by the word-embedding model for the term ‘após’

# Words

1 após (`após0’), (`após0o’), (`apósck’), (`apósjá’), (`apósi’),˜
(`apapós’), (`apósqt’), (`apósc’), (`apóso’), (`apósa’)

In this scenario we notice that the term given by the sentence is ‘trombolise’,
whereas the definition contains ‘trombólise’. So as expected the term itself is
not found in the ontology list as it is defined with proper spelling. However the
word embedding model captures this misspelling. As one of the similar words is
‘trombólise’ then our model correctly creates the relation between ‘sentence #6’
and the term ‘trombólise’. Our algorithm then writes in the ontology the rela-
tion ‘Sentence#6 contain trombólise’. As this relation is specified in the axiom
‘(contain some alteplase) or (contain some trombolisada) or (contain some trom-
boĺıtico) or (contain some trombólise) SubClassOf thrombolysis’ once the reason-
ing process is complete this sentence would then be classified as an elements of
the set ‘thrombolysis’ which is the set of all sentences that tell us that the index
Thrombolysis is present.

These steps are then taken to every word in the sentence, and at the end,
the relations found are stored in the ontology that will next reason about them.

5 Results

For evaluation of the proposed model the 46.547 sentences were processed and the
output was compared to the manual annotation to measure ‘precision’, ‘recall’,
‘mcc-score’ and ‘f1-score’. The running time for the whole task was also mea-
sured. Table 8 shows the total occurrences of sentences annotated for each index
and the results obtained.

The model took 532,43 s to process all the 46.547 sentences achieving, in
average, ‘f1-score’ of 56,8%, ‘mcc-score’ of 57,97%, ‘precision’ of 64,89% and
‘recall’ of 57,97%. Some indexes, such as ‘Thrombolysis’ and ‘Atrial fibrillation’,
achieved results over 80%; however others, such as ‘Pain’ and ‘Mobility’, did not
reach over 20%.

Table 7. Set of similar words given by the word-embedding model for the term ‘trom-
bolise’

# Words Expansions

2 trombolis (`tromb́ıolise’),˜(`trombolisec’),˜(`trombolisdo’),˜(`00trombolise’),
(`tromboĺıse’),
(`trombolisetc’), (`trombolize’),˜(`trombolisada’), (`trombólise’),
(`trombse’)
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Table 8. Ontology based model results

Running time 532,43 s

Index Occurrences f1 (%) mcc (%) precision recall

Braden 260 94,78 94,78 97,12 92,55

Dyslipidemia 143 94,07 94,22 100 88,81

Smoker 283 92,24 92,24 94,96 89,68

Systemic Arterial Hyp. 589 91,26 91,15 90,99 91,15

Diabetes 354 89,89 89,86 92,63 87,31

Location 1512 89,01 88,67 92,29 87,74

Thrombolysis 499 87,75 87,66 88,94 86,45

Rankin (mRs) 189 87,61 87,69 92,36 83,33

Atrial fibrillation 292 83,65 83,84 76,44 92,68

Drinker 109 82,61 82,59 80,85 84,44

Obesity 86 81,36 81,36 82,76 80

NIHSS 320 79,33 79,22 81,23 77,52

Coronary Disease 316 78,5 78,37 77,06 80

Trombectomy 236 64,97 68,82 97,46 48,73

Paresis 510 64,33 64,43 72,77 57,65

Feeding 1576 61,83 64,54 90,8 46,68

Fall Risk 447 61,77 63,23 80,16 50,25

Communication 1134 61,54 62,77 81,06 49,49

Mobility Level 845 50,75 53,01 75,91 39,01

Fall 22 36,89 44,97 23,46 86,36

Cognitive Capacity 759 33,8 33,28 28,59 41,03

Strength 690 27,48 27,63 37,15 22,5

Previous Stroke Incident 238 26,76 32,05 56,14 14,48

Infection 1247 25,58 30,2 56,9 16,5

Mobility 845 19,64 24,87 51,15 11,59

Cancer 247 17,23 17,06 15,14 20

Pain 636 13,37 13,46 10,12 19,69

Intracranial Hemorrhage 216 5,83 8,01 19,35 3,43

Death 2335 0,2 −0,24 2,86 0,11

Self Care 482 0 −0,74 0 0

Total/Average 17417 56,80 57,97 64,89 54,97

Weighted Average 48 75,21 80,61 66,97
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These results were compared to the ones obtained by Zanotto et al. (2021)
[8] in which a machine learning approach was used for the same challenge. Sev-
eral supervised computational machine learning (ML) methods, including recent
neural and non-neural methods were evaluated on the basis of a 5-fold cross-
validation procedure. The best results were achieved by the W+C+SVM model,
which is based on word-TFIDF and character-TFIDF for input representation
and SVM for the classification.

Table 9 presents the f1-score results of our ontology based approach and the
machine learning approach. Recall that we have machine learning evaluation
results for only some of the indexes (24) and can only compare those.

Table 9. ‘F1-score’ results comparison between the ontology based approach and
machine learning for 24 indexes. When the difference is 5 points or more, the higher
score is in bold.

Indexes Occurrences Ontology W+C+SVM

Dyslipidemia 143 94,07 83,2

Smoker 283 92,24 82,1

Systemic Arterial Hyp. 589 91,26 86

Diabetes 354 89,89 89

Location 1512 89,01 88,9

Thrombolysis 499 87,75 85,8

Rankin (mRs) 189 87,61 26,9

Atrial fibrillation 292 83,65 71,3

Drinker 109 82,61 38,6

Obesity 86 81,36 81,7

NIHSS 320 79,33 12,4

Coronary Disease 316 78,5 61,2

Trombectomy 236 64,97 72,6

Paresis 510 64,33 88,7

Feeding 1576 61,83 89,5

Fall Risk 447 61,77 89,6

Communication 1134 61,54 74,4

Mobility level 845 50,75 40,5

Previous Stroke Incident 238 26,76 67,1

Infection 1247 25,58 79,9

Mobility 845 19,64 75,7

Pain 636 13,37 52

Intracranial hemorrhage 216 5,83 66,4

Death 2335 0,2 89,5

Average 62,24 70,54



Ontology for Value-Based Health Care 369

Our approach performs well on indexes that the machine learning model
doesn’t and vice-versa. This signals that, by delegating a given a indicator to
the most adequate classifier, a combined model could perform well on a larger
range of indexes. For instance classifications made by the ontology would benefit
the analysis when it comes to the indicator ‘Dyslipidemia’ whereas the indicator
‘Infection’ would benefit from the machine learn approach. This decision could
also be modeled in the ontology and reasoned by it. Further efforts should be
put into this matter as a collaborative future work.

5.1 Errors Analysis

In Table 10 we present the most common cases of ‘false negatives’ and ‘false
positives’. In general the performance of the model is related to the coverage
of terms in the ontology. Misspellings and technical slang played a big part on
classification errors, the word-embedding model does not cover all the possible
variations of terms.

Cases 3, 12 and 13 are related to differences in spelling which were not cap-
tured in the most similar words according to the WE model. Examples 1, 2 and
9 are cases in which the Index is present in the sentences, but the specific terms
in these sentences were not defined in our ontology.

Table 10. Most common erros

Index # Confusion matrix Annot. Class Sentence

Death 1 False Negative 0.0 −1 Condição Ventilatória: ar ambiente, eupneico

2 False Negative 0.0 −1 Ambiente - Na poltrona, estável, colaborativo, sem

queixas,

acompanhado da filha.

Previous

Stroke

3 False Negative 1.0 −1 D # AVC isquêmico previo - sem sequelas aparentes

-mrankin (mRs) previo: 3 # Demência de Alzheimer -

Tem vida de relação, corversa, caminha, alimenta-se

4 False Negative 1.0 −1 Paciente com história de AVC isquêmico em out/18 e

dezembro de 2018

5 False Negative 1.0 −1 #Atual: AVCI #Prévio: AVC/DM2/HAS/DPOC

6 False Positive 0.0 1.0 # Nega AVC ou Infarto prévio

Cancer 7 False Positive 0.0 1.0 # CA bexiga em 2012 #

8 False Positive 0.0 1.0 # 2016 - Ca de células claras rim direito - Nefrectomia

parcial Dir

# Descolamento de retina há 1 ano - Olho Esq

# Adenocarcinoma com células em anel de sinete do

esôfago distal

- QT até junho/19 com progressão da doença + prótese

esofágica

# medicações em uso

Intracranial

Hemorrhage

9 False Negative 1.0 −1 > transformação hemorrágica

10 False Positive 0.0 1.0 Não há evidência de lesão expansiva, hemorragia

intracraniana ou desvios da linha média

Pain 11 False Positive 0.0 1.0 Sem queixas de dor ou desconforto

Location 12 False Negative 1.0 −1 Emergencia/Enfermagem

13 False Negative 1.0 −1 > EMG HMV->
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Past tense and negation are also common source of errors, as expected, since
these elements in language require specific sophisticated solutions on their own.
In examples 4, 7, 8 the past is indicated through the date of the event, neither
our ontology nor our algorithm was prepared for this. Errors in 6, 10 and 11
show us cases in which one ‘negation’ term is negating more than one Index.
Our model expects one negation term per event.

6 Conclusion

In this paper, we proposed a Portuguese text classifier based on ontologies. Our
results show that this approach achieved good results for at least 18 out of the
30 indexes. We believe that this research demonstrates how ontologies is a good
alternative for Portuguese medical texts classifications and, because of that,
can contribute to the implementation of VBHC programs, contributing to the
transformation of health care systems. An advantage of this approach is direct
explainability.

For future work we plan to evaluate the model on EHR from different institu-
tions to validate the generality of the results shown here. We also plan to expand
the coverage of terms and for that end, we plan to create another word embed-
ding model, more tailored to the stroke patients context. As a continuation of
the project we plan to align our task ontology with stroke domain ontologies.

References

1. Allahyari, M., Kochut, K.J., Janik, M.: Ontology-based text classification into
dynamically defined topics. In: Proceedings of the 8th IEEE International Confer-
ence on Semantic Computing, Newport Beach, Estados Unidos da America, pp.
273–278. IEEE (2014)

2. de Araujo, D.A., Rigo, S.J., Barbosa, J.L.V.: Ontology-based information extrac-
tion for juridical events with case studies in Brazilian legal realm. Artif. Intell. Law
25, 379–396 (2017)

3. Bessa, R.d.O.: Análise dos modelos de remuneração médica no setor de saúde
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Abstract. Co-clustering is a specific type of clustering that addresses
the problem of simultaneously clustering objects and attributes of a data
matrix. Although general clustering techniques find non-overlapping co-
clusters, finding possible overlaps between co-clusters can reveal embed-
ded patterns in the data that the disjoint clusters cannot discover. The
overlapping co-clustering approaches proposed in the literature focus on
finding global overlapped co-clusters and they might overlook interesting
local patterns that are not necessarily identified as global co-clusters.
Discovering such local co-clusters increases the granularity of the analy-
sis, and therefore more specific patterns can be captured. This is the
objective of the present paper, which proposes the new Overlapped
Co-Clustering (OCoClus) method for finding overlapped co-clusters on
binary data, including both global and local patterns. This is a non-
exhaustive method based on the co-occurrence of attributes and objects
in the data. Another novelty of this method is that it is driven by an
objective cost function that can automatically determine the number
of co-clusters. We evaluate the proposed approach on publicly available
datasets, both real and synthetic data, and compare the results with a
number of baselines. Our approach shows better results than the baseline
methods on synthetic data and demonstrates its efficacy in real data.

Keywords: Co-clustering · Overlapped co-clusters · Binary data

1 Introduction

Over the years, the task of clustering complex data has become more challenging
since a high number of attributes can increase computational complexity and
affect cluster consistency [17]. One way to deal with this complexity is to use
the co-clustering approach, which simultaneously clusters objects (rows) and
attributes (columns) in matrix data [5]. The focus of these methods relies on
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finding co-clusters, where each co-cluster is formed by a subset of objects and
attributes that can represent a submatrix of a given matrix.

Co-clustering approaches use, in general, a non-overlapping strategy, which
means that an element of a co-cluster can belong to only one co-cluster [1,14].
However, in many real situations, an element can participate simultaneously
in more than one co-cluster. For example, a movie could be both thriller and
science-fiction, a song can be both rock and high-energy, etc. Therefore, an
overlapping strategy is important because it identifies intersections between co-
clusters, revealing patterns that could be lost when using disjoint co-clustering.
Besides, the detection of overlapping co-clusters has proven to be challenging
since it is not trivial to evaluate the clustering quality [8].

We notice that most of the overlapping co-clustering approaches proposed
in the literature have two characteristics: (1) they discover global clusters, and
(2) they tend to fit a specific application. Examples can be found in text min-
ing [2], bioinformatics [13], recommendation systems [15], and social network
analysis [18], to name a few. In contrast, the works of Fu et al. [4], Li [7], Whang
et al. [16], and Zhu et al. [19], not only focus on global clusters on binary datasets,
but they were designed for generic purposes. The limitation of these works is that
they do not detect local co-clusters, i.e., refined groups formed by objects and
attributes that identify an overlap pattern on global co-clusters.

In this paper, we propose a new co-clustering method that combines simplic-
ity of use with the capacity to extract overlapping global and local co-clusters.
This method is named Overlapped Co-Clustering (OcoClus) and it is based on
the co-occurrence of attributes and objects. The main novelty of this method
is that, unlike the traditional overlapped co-clustering, it is able to infer a new
type of patterns called local co-clusters. Furthermore, OCoClus is driven by an
objective cost function that does not require the user-defined parameter of the
number of co-clusters.

In summary, we make the following contributions: (i) propose an incremental
co-clustering approach that is application-independent and an algorithm that
can find both overlapped and non-overlapped global and local co-clusters; (ii)
use a cost function that, finds the number of co-clusters automatically, that
ranks the co-clusters from the most relevant to the less relevant, and that finds
overlapped co-clusters.

The remainder of this work is organized as follows. The basic concepts defi-
nition of our work are presented in Sect. 2. Section 3 presents the works that are
related to our proposal. Section 4 presents the details of our method. Section 5
presents the evaluation of the method with synthetic and real data. Finally, the
conclusion and further research directions of our work are presented in Sect. 6.

2 Basic Concepts

In this section we present the basic concepts to guide the reader throughout this
paper.

Let D be a binary matrix with N rows (objects) and M columns (attributes).
The element dij of D, where i and j are integers that 1 ≤ i ≤ N and 1 ≤ j ≤ M ,
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is equal to 1 if the j-th attribute occurs in the i-th object (true element); other-
wise, it is 0. Co-clustering is the grouping task of finding K (global) co-clusters
in D where each co-cluster is formed by a subset of objects and attributes [11].
The subset of objects I can be represented as a binary vector of length N , where
Ii = 1 indicates that the i-th object is present in I. Similar to that, a subset
of attributes J with Jj = 1 indicates that the j-attribute is present in J with
length M . More formally, a co-cluster can be defined as follows:

Definition 1. Co-cluster: Let D be a binary matrix, I be the subset of objects,
J be the subset of attributes; a co-cluster C is defined as C = 〈I, J〉. The elements
cij of co-cluster C are formed by the outer product of its subsets I and J (C ∈
{0, 1}|I|×|J|). Thus, a co-cluster C can represent a submatrix of D.

Such (global) co-cluster C can be formed with only the true elements in
D or mixed with true elements and noise elements (dij = 0). In this paper,
the terms global co-cluster and co-cluster are interchangeably used. The co-
occurrence between objects and attributes can form a co-cluster C which can be
simplified by searching elements dij = 1 in the matrix D. Furthermore, it can
reduce the search space once the goal is to identify true co-occurrences. Inspired
by [9], we adapted four concepts for co-clustering problem: cost function FP ,
pure co-cluster PC, noise thresholds εI and εJ , and expanded pure co-cluster
EC. The cost function FP can be used to evaluate the process of forming a
co-cluster. More formally, we can define the cost function FP as follows:

Definition 2. Cost Function: Let C∗ be a co-cluster,
∏

be a set of global
co-clusters, D be an input matrix, ρ be a weight of importance for the co-clusters
cost, N be a noise matrix, γC

∗ and γN be user-defined functions for measuring
the costs of co-clusters and noise; a cost function FP is defined as FP (

∏
,D) =

ρ × ∑
C∗ ∈ ∏ γC

∗(C∗) + γN (N ).

The objective is to minimize FP regarding ρ, γC
∗(C∗) and γN (N ). Such

noise matrix N used by [9] takes into account the false positives, false negatives,
and the already covered elements in D. Regarding the set of co-clusters

∏
and

matrix D, the false positives are elements dij = 0 covered by some pattern in∏
, while false negatives are elements dij = 1 not covered by any pattern in

∏
.

The concept of pure co-cluster simplifies the identification of a global co-cluster,
which identifies a disjoint global co-cluster that contains only true elements.
Thus, we can define a Pure Co-cluster PC as follows:

Definition 3. Pure Co-cluster: Let D be a binary matrix, dij be an element
of D; a pure co-cluster PC = 〈PCJ , PCI〉 is formed by a subset of objects PCI

and a subset of attributes PCJ that identifies only the true elements. Thus, PC
can represent a submatrix of D, which contains only the true elements dij = 1.

A pure co-cluster PC can be expanded with noisy objects and attributes. We
use two thresholds to control the amount of noise in a co-cluster: εI for objects
and εJ for attributes. Thus, the noise thresholds εI and εJ can be defined as
follows:
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Definition 4. Noise Thresholds: Let C∗ be a co-cluster, C∗
J and C∗

I be the
subsets of attributes/objects that define C∗; a maximum noise threshold for
objects εI and attributes εJ limit the amount of noise that can be included in
C∗. Thus, each new object must be included in at least (1− εI)×||C∗

J || attributes
of C∗, while each new attribute must be included in at least (1 − εJ ) × ||C∗

I ||
objects of C∗.

The noise threshold value can range from [0, 1], where 0 does not allow any
noise while 1 allows the maximum amount. The number of objects and attributes
of a given subset is measured by the L1-norm || · || (or Hamming norm), which
simply counts the number of bits 1 in the vector. From that, the expanded
pure co-cluster EC represents a expanded version of PC with noise data. More
formally, an Expanded Pure Co-cluster EC can be defined as follows:

Definition 5. Expanded Pure Co-cluster: Let PC be the pure co-cluster,
ECI be a subset of objects, ECJ be a subset of attributes, εI be the noise object
threshold, εJ be the noise attribute threshold; an expanded pure co-cluster is
defined as EC = 〈ECJ , ECI〉, where ECJ and ECI can contain new attributes
and objects not present in PC regarding the noise thresholds εI and εJ .

3 Related Works

Because of the difficulty in finding co-clusters, there is no method widely accepted
as the state-of-the-art; instead, there are algorithms that perform better in cer-
tain types of data than others. Since a complete review is out of the scope of this
paper, we shall briefly discuss some reference algorithms. For a comprehensive
review of co-clustering algorithms, we refer to [12].

Dhillon [3] used the matrix decomposition using the eigenvectors combined
with bipartite graph to find global co-clusters in a real-valued matrix. It needs
to know the number of co-clusters a priori and the order of the discovered
co-clusters is not important. Furthermore, it uses a support matrix to include
some attributes as noise data; however, it does not have any noise-parameter
to control the number of objects or attributes as noise data. Kluger et al. [6]
extended the Dhillon [3] approach by using the singular value decomposition to
find global co-clusters. It assumes that the data have a checkerboard structure in
the matrix. This approach includes each element of a matrix into one co-cluster
without overlap; therefore, it cannot control the noise data.

Fu et al. [4] proposed a Bayesian-based overlapping co-clustering approach
based on a multivariate distribution to find global co-clusters in a binary data
matrix. It assumes that the number of co-clusters is known a priori. This app-
roach does not indicate that the order of the discovered co-clusters is important.
It tolerates noisy elements in the co-clusters; however, it does not have a noise-
parameter to control the number of objects or attributes included in the co-
cluster as noise. Zhu et al. [19] proposed an overlapping co-clustering approach
to approximate a binary data matrix with the sum of identified global co-clusters.
This method needs to have the number of co-clusters a priori. Furthermore, it
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does not deal with noise data and does not associate any importance for the
co-cluster that explains the discovered order.

Lucchese et al. [9] proposed a frequent pattern mining method for binary
datasets. The patterns are formed by sets of attributes and objects, where they
can represent a non-overlapped global co-cluster. It uses a generalized cost func-
tion to drive the mining process to find the number of patterns automatically.
The discovered order of the patterns is relevant regarding the cost function;
therefore, it can be seen as a ranking. Finally, two noise thresholds control the
number of noisy attributes and objects included in a pattern.

Whang et al. [16] modeled the input data as a bipartite graph to find global
overlapping co-clusters in binary data. This method allows to include noise
objects in the co-clusters with a probability distribution function that models
the noise. However, it does not define noise thresholds to control the number of
noise objects and attributes. It can automatically infer the number of co-clusters,
besides that, the method does not consider that the order of the discovered co-
clusters is relevant in the process.

Li [7] presented a generalized overlapped co-clustering approach that uses
singular value decomposition on the binary data matrix to identify global co-
clusters. This method does not include noise automatically or by a user-defined
noise threshold; it searches for homogeneous co-clusters without noise. Further-
more, it can infer the number of co-clusters; however, it is not guaranteed to
converge to the optimum number. Finally, the method does not show that the
discovered order of these co-clusters is relevant to it.

4 The Overlapped Co-clustering Approach

In this section we present a new method called OCoClus (Overlapped Co-
Clustering) for finding overlapped co-clusters in a binary dataset by identify-
ing both global and local co-clusters. OCoClus searches for the co-occurrences
between attributes and objects to identify co-clusters where a cost function drives
the co-clustering process. In the following we present the method definitions in
Sect. 4.1 and the proposal details in Sect. 4.2.

4.1 Method Definitions

Local co-clusters are patterns in the data related to specific characteristics that
are overlooked by global co-clusters since it finds clusters which are in the inter-
section of objects and attributes of the global clusters. Thus, we formally define
a local co-cluster LC as follows:

Definition 6. Local Co-cluster: Let
∏

be the set of co-clusters, LCI be a
subset of objects, LCJ be a subset of attributes, C be the co-cluster in

∏
; a local

co-cluster is defined as LC = 〈LCI , LCJ 〉, where the object intersections of co-
cluster C with the co-clusters in

∏
forms LCI , and the union of the attributes

between C and the intersected co-clusters in
∏

forms LCJ .
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We propose a new cost function F designed to make the overlapping and
non-overlapping co-clusters equally important including both global and local
co-cluster. The difference between the new cost function in Definition 7 and the
cost function given in Definition 2 is that the new cost function considers just
the size of the co-cluster and the quantity of noise that can be included in the
co-cluster. However, the cost function in Definition 2 weights the relevance of
the patterns regarding its size, it penalizes the patterns that cover an element
already covered and does not include an element into the expected pattern. From
that, we define the new cost function F as follows:

Definition 7. Cost Function: Let
∏

be the set of co-clusters, D be the binary
matrix, C∗ be the co-cluster, ||C∗

J || and ||C∗
I || be the size of the subsets of

attributes/objects that define C∗, N be the number of noise elements included in
C∗ (dij = 0), and H be the part that does not consider noise data; a cost func-
tion F is defined as F(

∏
,D) = H + N , where H =

∑
C∗ ∈ ∏ (||C∗

I || + ||C∗
J ||) −

(||C∗
I || × ||C∗

J ||). Thus, the objective is to minimize F regarding C∗
I , C∗

J and N .

Regarding the new cost function F , part H contributes to the cost function
evaluating co-clusters without noise, while part N contributes by allowing some
noise data regarding the maximum noise thresholds. Once we have already for-
malized the main definitions, it is simple to define the overlapped co-cluster used
to represent the global and local patterns as follows:

Definition 8. Overlapped Co-cluster: Let
∏

be the set of co-clusters, X
be the co-cluster ∈ ∏

with its subset of attributes XJ and objects XI , Op be
the set of co-clusters ∈ ∏

that intersect XI , and OpJ and OpI be the subset
of attributes and objects of Op; an overlapped co-cluster is formally defined as
OC = 〈XJ ∪ OpJ ,XI ∩ OpI〉.

Considering the Definition 8, the subset of objects of OCI is formed by the
nested intersection of objects between XI and OpI (XI ∩ OpI), and the subset
of attributes OCJ by joining the attributes of XJ with OpJ (XJ ∪ OpJ).

4.2 Method Description

Algorithm 1 is the main algorithm that organizes our approach. It receives four
input parameters: the matrix D, the number of co-clusters K, the object noise
threshold εI and the attribute noise threshold εJ . As a result, it outputs a set
of co-clusters Φ which contain K co-clusters that can overlap.

In Algorithm 1, the set of co-clusters
∏

is set as empty (line 1), and the resid-
ual matrix Dr is initiated with D, which is used to find uncovered co-clusters in D
(line 2). The algorithm iterates over findPureCocluster (line 4) and expandPure-
Cocluster (line 5) methods at most K times, where K is the maximum number of
co-clusters (line 3). In findPureCocluster method, the attributes in Dr are sorted
in descending order (from the most frequent to the least) and stored in a list S to
maximize the probability of forming large co-clusters. Therefore, the attributes
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Algorithm 1. OCoClus
Input: D: input matrix

K: max number of clusters {optional}
εI : max object noise threshold {optional}
εJ : max attribute noise threshold {optional}

Output: Φ: set of disjoint and overlapped co-clusters
OCoClus (K, D, εJ , εI)

1:
∏ ← ∅

2: Dr ← D{residual matrix}
3: for i = 1, . . . , K do
4: PC,E ← findPureCocluster(D, Dr,

∏
) {Definition 3}

5: EC ← expandPureCocluster(PC, E,
∏

, D, εI , εJ) {Definition 5}
6: if F(

∏
, D) < F(

∏ ∪ EC, D) then
7: break
8: end if
9:

∏ ← ∏ ∪ EC

10: Dr(i, j) ← 0 ∀i, j where ECI(i) = 1 ∧ ECJ(j) = 1
11: end for
12: Φ ← findOverlap(

∏
) {Definition 8}

13: return Φ

in S are evaluated for being added to a co-cluster without backtracking reduc-
ing the search space. Only the true elements in D forms the pure co-cluster PC
regarding the attributes in S. With this, the number of objects and attributes
that co-occur are used in the cost function F stated in Definition 7 to evaluate if
the tested subsets of objects and attributes can minimize the cost function. The
PC grows in the number of objects and attributes as long as the cost function
F is minimized. Besides, some attributes cannot be used to form the PC, then
these attributes are stored in an extension list E. The output is a pure co-cluster
PC and an extension list of attributes E.

In expandPureCocluster method, OCoClus expands PC with new objects
and attributes that allows noise data (line 5). With this, the expanded co-cluster
EC is initiated with PC identified at line 4. Then, the process is similar to
findPureCocluster ; however, at this part, the method checks if the inclusion
does not exceed the maximum noise thresholds (Definition 4) and improves the
cost function F . This inclusion occurs in two steps. First, the method tries to
include new objects that are not present in EC and does not modify the current
attributes. Second, it does not modify the current objects and tries to include
the attributes stored in the extension list E one at a time without backtracking.
If an attribute is included in EC, the process goes back to the first step and
repeats both steps. We remark that each new object and attribute is included in
EC if such inclusions respect both Definition 4 and Definition 7. This process is
repeated while E is not empty. The expandPureCocluster returns an expanded
co-cluster EC as the output.

Given the output of the expandedPureCocluster, if the new co-cluster EC
minimizes the cost function F of the model (line 6), it is added to

∏
(line

9). However, if EC does not minimize the cost function F of the model, even
though the parameter K does not reach its maximum value, the algorithm stops
searching for new co-clusters (line 7). Besides, if the cost function F is improved,
the residual matrix Dr is then updated with EC (line 10). The updated residual
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matrix Dr is used in the next iteration to find new patterns in D that are not
covered by any previous co-cluster. OCoClus can find the number of co-clusters
automatically whenever K is not given. However, if the user misspecify the value
of K, then the true number of co-clusters may not be discovered.

So far,
∏

covers non-overlapped patterns in the data (line 9); hence, it cannot
show which co-clusters share characteristics. Therefore, OCoClus refines these
non-overlapped co-clusters to identify global and local overlapped co-clusters
as stated in Definition 8. With this, the findOverlap method (line 12) iterates
over

∏
to identify possible overlapped co-clusters by taking the nested object

intersections between the co-clusters in
∏

. The nested intersection considers
what is shared among all intersected co-clusters instead of a common inter-
section between pairs of co-clusters. If such a co-cluster intersection exists, the
attributes of the co-clusters involved in the intersection are joined. The next step
is to delete the redundant co-clusters, i.e., co-cluster totally covered by another
co-cluster. From that, the findOverlap is a simple and effective method that
allows OCoClus to find both overlapped co-cluster structures. Its simplicity and
effectiveness become possible by exploring the nested intersections of objects
and joining attributes separately regarding the co-clusters in

∏
. This process

looks simple once the cost function F already evaluated the disjoint co-clusters
in the previous methods, but it effectively identifies overlapped co-clusters. At
the end, findOverlap returns the set of non-overlapped and overlapped (if exist)
co-clusters Φ. Finally, Algorithm 1 returns this set of non-overlapped and over-
lapped patterns including both global and local co-clusters (line 13).

Proposition 1. Let K be the maximum number of non-overlapped co-clusters,
N the total number of objects, M the total number of attributes, and P the num-
ber of overlapped co-clusters. The computational complexity of findPureCocluster
method is O(MN), expandPureCocluster method is O(M(MN+N)) = O(M2N),
and findOverlap method is O(K2+P2). Regarding the overall complexity of our
algorithm, OCoClus calls findPureCocluster and expandPureCocluster methods,
then builds Dr for each of the K (or less) non-overlapped co-clusters and finalizes
with the findOverlap method. Thus, the computational complexity of the OCoClus
Algorithm is O(KM2N + (K2+P2)).

5 Experimental Evaluation

We compare OCoClus1 with four publicly available methods presented in the
related works to use as the baseline methods, which are: Li [7], Lucchese et al.
[9], Kluger et al. [6], and Dhillon [3]. We include the works of Dhillon and Kluger
et al. because they are consolidated approaches in the literature and publicly
available as a package by scikit learn2. Considering their stable implementation,
we selected these works once the overlapping baseline methods fail to find the
embedded overlapped co-clusters. Therefore, we include those non-overlapped

1 https://github.com/bigdata-ufsc/ococlus.
2 https://scikit-learn.org/stable/modules/biclustering.html.

https://github.com/bigdata-ufsc/ococlus
https://scikit-learn.org/stable/modules/biclustering.html
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Table 1. Datasets description.

Dataset Number of
objects

Number of
attributes

Sparsity (%) Number of
co-clusters

Synthetic-1 100 100 76.62 7

Synthetic-2 600 1000 77.97 10

Synthetic-3 100 100 68 4

CAL500 502 103 76.6 –

CV-19 5729 567 98.18 –

methods in the baseline to compare such a co-clustering result. We used three
synthetic datasets named synthetic-1 and synthetic-2, and synthetic-3, where
we artificially embedded the co-clusters (patterns) to create the ground-truth
datasets. Furthermore, we also evaluated OCoClus on two real-life datasets,
named CAL5003 and CV-194, to show its efficacy in the real application sce-
nario. All the experiments data and source code are made public.

We performed the experiments in a machine with a processor Intel i7-7700
3.6 GHz, 16 GB of memory, and OS Windows 10 64bits. Furthermore, we ran 15
independent simulations for all methods on each synthetic dataset to compute
the average and standard deviation of the evaluation metrics score. Table 1 shows
the main characteristics of the datasets used in the experiments. It shows the
total number of objects and attributes, the sparsity in the data (percentage of
zeros), and the number of co-clusters for the synthetic datasets.

We use four evaluation metrics to assess the quality of the OCoClus. First,
we use the reconstruction error matrix to measure the difference between data
input and found co-clusters given by Recerror = ||X � Y || similar to [7]. In
short, we take the sum of the element-wise xor (�) between the input data
matrix X (ground-truth) and the reconstructed matrix Y regarding the found
co-clusters to measure the quantity of false positives and false negatives. The
clustering quality is better when the result of the Recerror is equal or close
to zero. The other three metrics are Omega index (overlapped version of ARI
measure), Overlapped Normalized Mutual Information (ONMI) and overlapped
F1 measure (Fscore) [10]. For these three last measures, the clustering quality is
better when the result is equal or close to one, where one is the maximum score.
We decided to use these measures since our approach focuses on the overlapping
problem and therefore the traditional measures like for example Adjusted Rand
Index (ARI), Normalized Mutual Information (NMI), and Fscore are not suitable
to capture the overlapping behaviour.

5.1 Evaluation of OCoClus with Synthetic Data

To be fair with all methods, we set the number of co-clusters K according
to the ground-truth shown in Table 1. Regarding the noise control used by
3 http://mulan.sourceforge.net/datasets-mlc.html.
4 https://ti.saude.rs.gov.br/covid19/; just passed away people data were used.

http://mulan.sourceforge.net/datasets-mlc.html
https://ti.saude.rs.gov.br/covid19/
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Table 2. Score of the evaluation metrics for the synthetic datasets.

Dataset Work Recerror Omega ONMI Fscore

S
y
n
th

et
ic

-1

Li 2086.27 ∓ 371.33 –0.0110 ∓ 0.0228 0.0060 ∓ 0.0103 0.0717 ∓ 0.1051

Luccheset1 0 ∓ 0 0.6640 ∓ 0 0.5419 ∓ 0 0.6617 ∓ 0

Luccheset2 160 ∓ 0 0.6125 ∓ 0 0.509 ∓ 0 0.6359 ∓ 0

Luccheset3 160 ∓ 0 0.6125 ∓ 0 0.509 ∓ 0 0.6359 ∓ 0

Dhillon 1404 ∓ 0 0.1818 ∓ 0 0.1648 ∓ 0 0.4868 ∓ 0

Kluger 3759 ∓ 0 0.2107 ∓ 0 0.1824 ∓ 0 0.3155 ∓ 0

OCoClus 0 ∓ 0 1 ∓ 0 1∓ 0 1 ∓ 0

S
y
n
th

et
ic

-2

Li 19528.33 ∓ 1568.05 0.748 ∓ 0.022 0.2624 ∓ 0.0092 0.4968 ∓ 0.0177

Luccheset1 353 ∓ 0 0.7644 ∓ 0 0.5985 ∓ 0 0.711 ∓ 0

Luccheset2 40078 ∓ 0 0.7483 ∓ 0 0.326 ∓ 0 0.5425 ∓ 0

Luccheset3 40078 ∓ 0 0.7483 ∓ 0 0.326 ∓ 0 0.5425 ∓ 0

Dhillon 31426 ∓ 0 0.9106 ∓ 0 0.3627 ∓ 0 0.5001 ∓ 0

Kluger 34382 ∓ 0 0.9653 ∓ 0.001 0.1744 ∓ 0.004 0.2828 ∓ 0.0036

OCoClus 0 ∓ 0 1 ∓ 0 1 ∓ 0 1 ∓ 0

S
y
n
th

et
ic

-3

Li 1530.4 ∓ 923.1 0.0152 ∓ 0.0554 0.0395 ∓ 0.0355 0.3466 ∓ 0.1857

Luccheset1 0 ∓ 0 0.1813 ∓ 0 0.4031 ∓ 0 0.6462 ∓ 0

Luccheset2 1000 ∓ 0 0 ∓ 0 0.0003 ∓ 0 0.4767 ∓ 0

Luccheset3 1000 ∓ 0 0 ∓ 0 0.0003 ∓ 0 0.4767 ∓ 0

Dhillon 2200 ∓ 0 –0.0123 ∓ 0 0.1565 ∓ 0 0.3856 ∓ 0

Kluger 1000 ∓ 0 0.0835 ∓ 0 0.2935 ∓ 0 0.4576 ∓ 0

OCoClus 0 ∓ 0 1 ∓ 0 1 ∓ 0 1 ∓ 0

Lucchese et al. [9], we use three configurations (t1, t2 and t3) of noise threshold
parameters to assess its clustering result when the noise values change. The con-
figuration t1 uses the object noise threshold εI = 0 and attribute noise threshold
εJ = 0. For the last two configurations t2 and t3, the noise values are the same
used in Lucchese et al. [9]. The configuration t2 uses εI = 0.5 and εJ = 0.8, while
configuration t3 uses εI = 1 and εJ = 1.

Table 2 shows respectively the average and standard deviation from the eval-
uation metrics for each method and synthetic dataset. It can be seen that OCo-
Clus obtained the best score result in all synthetic datasets; hence, it finds the
embedded overlapped co-clusters. Luccheset1 obtained the second best result
while the other two configurations obtained the same score values because they
identified the same co-clusters. The method proposed by Li [7] obtained the
worst result among the methods. This happens because the method sometimes
does not converge to any co-cluster which makes its overall result worse than or
close to the non-overlapped methods. Besides, it can be seen in Table 2 that the
baseline methods do not find the real number of co-clusters once their evaluation
scores do not reach the best value. Regarding the non-overlapped methods, the
method proposed by Kluger et al. [6] shows the worse overall co-clustering result.
Meanwhile, the method of Li [7] improved slightly its overall clustering result in
synthetic-2 dataset compared to synthetic-1 and synthetic-3. However, it does
not overcome the clustering results of the non-overlapped approaches at all.
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In summary, it can be seen in Table 2 that OCuClus outperformed the base-
line methods in all evaluation metrics. Such a result occurs because OCoClus
identifies all global and local co-clusters while the baselines fail to find both co-
cluster structures correctly in the data. The baselines focus on the global non-
overlapped and overlapped structures. Regarding the baseline methods, using the
constraint t1 in the work of Lucchese et al. [9], this configuration generated the
best clustering result. However, considering the other two constraints, we notice
that they do not improve the clustering result. Furthermore, the method pro-
posed by Li [7] shows an overall worse clustering result, even though it improved
its performance in the synthetic-2 dataset but not enough to overcome all meth-
ods. The methods of Kluger et al. [6] and Dhillon [3], in general, obtained stable
results in comparison with Li [7].

5.2 Real Application Scenario

In this section, we used OCoClus on two real datasets to demonstrate its general
utility. We set the noise thresholds εI and εJ to the minimum value, and this
means that we are not allowing any attribute or object to be added as noise
in the co-clusters. With this parameter control, it is possible to have a better
understanding of the co-cluster structure. In fact, OCoClus finds pure co-clusters
when the noise thresholds are set to the minimum value (zero); this means that
all attributes that occur in all objects do not include the presence of noise.

Music Annotation. The left side of Fig. 1 shows the bitmap of the CAL500
dataset, and the right side shows the bitmap of the OCoClus result. Similar to Li
[7], the question is to identify song sets that share similar annotations. Moreover,
we are interested in finding which are the common annotations that distinguish
each song set. This task can enhance our perception of the relationship between
songs and annotations and therefore it can be applied to music retrieval and
recommendation system. We used OCoClus in the processed dataset and the
main co-clusters are highlighted in the right side of Fig. 1.

OCoClus identified three main levels which are within the red lines and four
main co-clusters. The two larger global co-clusters have the size 150 × 13 and
100 × 12. Further, looking into these two co-clusters we found such annotations
as “NOT-Song-Fast Tempo”, “NOT-Emotion-Angry-Aggressive”, “NOT-Song-
Heavy Beat” and “NOT-Emotion-Bizarre-Weird” for the first co-cluster, and the
“Song-Fast Tempo”, “NOT-Emotion-Angry-Aggressive”, “Song-Heavy- Beat”
and “Song-High Energy” for the second co-cluster. The first co-cluster includes
songs such as “For you and I” by 10cc, “Three little birds” by Bob Marley
and The Weilers, and “I’ll be your baby tonight” by Bob Dylan. In the second
co-cluster includes songs such as “Trapped” by 2pac, “Dirty deeds done dirt
cheap” by AC/DC and “Livin on a prayer” by Bon Jovi. Considering the song
attributes in the first cluster, it can be seen that songs are formed by a slow
rhythm and without strong beats. The second cluster characterized songs with
strong beats and a fast rhythm. Therefore, the method identified clusters with
opposite characteristics, showing two groups of users with different preferences.
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Fig. 1. CAL500 Music dataset. The left side shows the bitmap of the binary annotation
matrix where objects represent songs and attributes represent annotations (black =
presence; white = absence). The right side shows the bitmap of the identified co-
clusters. Objects and attributes are ordered in the same way in both figures just for
visualization purpose. (best seen in color) (Color figure online)

Considering the local patterns, for instance, OCoClus finds a co-cluster of
songs as “Summertime” by Dj Jazzy Jeff and The fresh prince, “Sunset 138
bpm remix” by Dj Markitos and “Teenage shutdown” by Electric Frankenstein to
name few songs that share some annotations as “Song-Texture Electric”, “Song-
Fast Tempo” and “Song-High Energy”. The fourth local co-cluster consists of 45
songs and 7 music annotations. It characterizes a group formed by songs with
drums, men on vocals, with electronic and acoustic parts. We identified the
music genres like Rock, Pop music, Pop rock, and Alternative rock in this co-
cluster. For instance, to name a few songs, this cluster has the “Soul and Fire”
by Sebadoh, “Clocks” by Coldplay, “Tubthumping” by Chumbawamba, “Last
Goodbye” by Jeff Buckley, “November Rain” by Guns N ’Roses, and “Wonderful
Tonight” by Eric Clapton. Thus, it can be seen that OCoClus is useful for finding
overlapped and non-overlapped co-clusters that identify the relationship between
songs based on the semantic annotations.

Coronavirus Information. Table 3 shows the co-clusters with its attributes
and the number of objects. The union of clusters G8 and G9 show the cluster
of older people with a total of 1137. Attribute Senior 3 aggregates people 80
years old or above, and Senior 2 aggregates people from 70 to 79 years old.
Once the Senior 3 and heart disease attributes appear in G8, they are relevant
to form this cluster with 913 people and no other attributes have improved the
cost function for it. The G9 cluster has 224 people who died in August, which
also happened in the G6 cluster (467 people) during July. These two months
mark the peak of the winter season in the region where these people lived.

The clusters G2, G3, G4, G7, and G10 can be seen as a group of people who
had at least one main symptom of Covid-19 associated with some comorbidity.
The non-overlapped co-clusters are the first 10 groups in Table 3. We notice that
the Male attribute is present in two clusters (G1 and G3) regarding the top



OCoClus: An Overlapped Co-clustering Approach 387

Table 3. Description of the clusters in the CV-19 dataset.

Clusters Attributes
Number of

objects

G1 Dyspnea, Cough, Male, Fever 1174
G2 Dyspnea, Other Comorbidities, Female 1066
G3 Heart Disease, Dyspnea, Male 1272
G4 Cough, Diabetes 1307
G5 Fever, PORTO ALEGRE - R10, PORTO ALEGRE 631
G6 Other Comorbidities, Infected July, Death July 467
G7 Other Symptoms, Dyspnea, Female 569
G8 Senior 3, Heart Disease 913
G9 Senior 2, Death August, Infected August 224
G10 Fever, Other Comorbidities, Male 769
G11 Dyspnea, Heart Disease, Cough, Fever, Male 539
G12 Dyspnea, Cough, Fever, Diabetes, Male 410
G13 Dyspnea, Cough, Diabetes, Other Comorbidities, Female 258
G14 Dyspnea, Other Comorbidities, Other Symptoms, Female 365

G15
Dyspnea, Cough, Fever, Heart Disease, Diabetes,

PORTO ALEGRE - R10, PORTO ALEGRE, Male
39

G16 Dyspnea, Cough, Fever, Heart Disease, Diabetes, Male 241

G17
Dyspnea, Cough, Fever, Heart Disease, Diabetes,

Senior 3, Male
41

G18 Dyspnea, Cough, Fever, Heart Disease, Senior 3, Male 135

four. Cluster G1 identifies 1174 men who experienced the three main symptoms
of Covid-19. Meanwhile, the Female attribute is present in one cluster regard-
ing the top four. It identifies 1066 women who presented Dyspnea and other
comorbidities as main attributes for this group.

The identified overlapped co-clusters show details that are overlooked in dis-
joint co-clusters and these co-clusters are the last 8 groups (G11–G18) in Table 3.
For instance, cluster G11 identifies a group of 539 men that felt symptoms as dys-
pnea, fever, and cough and had heart disease problem. In the same way, cluster
G12 identifies 410 men with symptoms as in G1, but now it has those with dia-
betic issues. In comparison, the overlapped cluster G13 identifies a group of 258
women with cough symptoms in combination with diabetes and other comor-
bidities. Cluster G14 represents another pattern since it identifies 365 women
with dyspnea and other symptoms in combination with other comorbidites.

Groups G11 and G12 are examples of global overlapped co-clusters, while
the groups G15 and G17 are two different examples of local co-clusters. Cluster
G15 represents a group of 39 men from Porto Alegre region and lived in the
capital, where they all felt the main symptoms of covid-19 and who had heart
disease and diabetes problems. For group G17, characterizes a group of 41 older
men over 80 years of age who had the main symptoms and who had heart
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disease and diabetes. Regarding the local co-clusters, it can be seen that such
co-clusters identify detailed patterns that are overlooked by global co-clusters.
The experiment with the Covid-19 dataset is an example of a real problem related
to data analysis complexity. Thus, it can be seen that each co-cluster reveals a
meaning pattern according to the information granularity.

6 Conclusion and Future Works

We proposed OCoClus, a new non-exhaustive overlapped co-clustering method
for binary data, designed for general purpose analysis. OCoClus is based on the
detection of co-occurrence of objects and attributes, to identify global and local
co-clusters that overlap. Besides that, when there are no overlapped patterns in
the dataset, OCoClus can identify the non-overlapped co-clusters. Furthermore,
it is driven by a cost function to automatically identify the number of co-clusters.
We performed experiments on synthetic and real data that demonstrates the
efficacy and utility of our proposed method.

OCoClus found all embedded co-clusters in the synthetic datasets used as
ground-truth, proven by the fact that OCoClus obtained the maximum score
in the evaluation metrics. Such a result shows that OCoClus outperformed the
limitations of the baseline methods. Nevertheless, we prove the usefulness of our
method in two real datasets where we show that OCoClus identified co-clusters
that can represent meaningful patterns. We highlight the fact that the obtained
results are interesting to propose new specialized systems that use the identified
co-clusters as input to decision support systems.

Like any work in the literature, our approach also has space for improvements
as future research. First, the number of co-clusters is driven by a cost function
regarding the number of objects and attributes. Then, the method tends to find
rectangular clusters which may generate patterns with few attributes for big data
mining. Second, an interesting research direction is to adapt the method to deal
with heterogeneous data. Third, it may be interesting to set the noise thresholds
εI and εJ in a data-driven way Finally, identifying uncorrelated co-clusters in
the data matrix is another interesting direction to improve the method.
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Abstract. Context: in the field of machine learning models are trained
to learn from data, however often the context at which a model is
deployed changes, degrading the performances of trained models and giv-
ing rise to a problem called Concept Drift (CD), which is a change in data
distribution. Motivation: CD has attracted attention in machine learn-
ing literature, with works proposing modification to well-known algo-
rithms’ structures, ensembles, online learning and drift detection, but
most of the CD literature regards classification, while regression drift is
still poorly explored. Objective: The goal of this work is to perform a
comparative study of CD detectors in the context of regression. Results:
we found that (i) PH, KSWIN and EDDM showed higher detection aver-
ages; (ii) the base learner has a strong impact in CD detection and (iii)
the rate at which CD happens also affects the detection process. Con-
clusion: our experiments were executed in a framework that can easily
be extended to include new CD detectors and base learners, allowing
future studies to use it.

Keywords: Concept drift detection · Regression · Comparative study

1 Introduction

Machine learning is a sub-field of artificial intelligence which develops models
that are able to learn from data. Learning usually happens statically with fixed
labels during the process. In the context of regression with continuous dependent
variables, many models have been proposed with useful results in many scenarios.
However, there has been a growing interest in models that are able to process
streams of data and can learn incrementally [10].

While working with data streams, models often face changes in the prob-
ability distribution of input data, which can negatively affect performance if
the model was trained on data sampled from a significantly different distribu-
tion. This problem is most commonly referred to as concept drift (CD). CD can
happen in many different scenarios, such as weather forecasting, stock price pre-
diction and fake news identification [17]. CD might happen in the conditional
c© Springer Nature Switzerland AG 2021
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distribution of the dependent variable given the predictors, which is called real
drift, or it can affect only the independent variable distribution, which is called
virtual drift [12].

Due to its significance, CD has been widely studied in recent years with
approaches involving structural changes applied to well-known models, ensem-
bles and drift detection. However, most of these works targeted the task of
classification. In this context, Gonçalves et al. (2014) [9] ran a large compara-
tive study of CD detectors using Naive Bayes as the base learner. Their work
showed that there is no single best CD detector and performance depends on the
pair (dataset, CD detector), i.e. “there is no free lunch”, as expected in machine
learning. These results motivate a similar study in the context of regression with
continuous targets.

Therefore, this paper’s main contribution is to perform a wide compara-
tive study of CD detectors for regression. We used seven different CD detec-
tors together with 10 regression models. The 70 detector-base learner combi-
nations were applied to four synthetic and four real datasets with virtual CD.
Thus, our study presents significant variation of base learners, detectors and
datasets. Experiments were evaluated according to prediction error and number
of detected drift points. As another contribution, we develop our work such that
future research can easily expand it by adding new detectors, base learners and
datasets. In addition, this study focuses on continuous outputs in the dependent
variable, which is still scarcely explored in the literature.

The rest of this paper is organized as follows: Sect. 2 presents the drift detec-
tion methods. Section 3 describes the parameters used in the drift detectors,
the datasets used in the experiments, and the adopted evaluation methodology.
The results obtained in the experiments are analyzed in Sect. 4. Finally, Sect. 5
presents our conclusions.

2 Background

CD detection methods use a base learner (regressor/classifier) to identify if an
input is a drift point, i.e. for each instance the method outputs a drift predic-
tion based on the base learner prediction and the observed target value. Most
detectors perform this analysis in groups of instances at each time.

Many detectors have been proposed for regression. One of the first was the
drift detection method (DDM) [8], which is based on the idea that the base
learner’s error rate decreases as the number of samples increases, as long as the
data distribution is stationary. If DDM finds an increased error rate above a
calculated threshold, it detects that CD has happened. The threshold is given
by pmin + smin is minimum. Where, pmin is the minimum recorded error rate
and smin is the minimum recorded standard deviation.

DDM was later extended to monitor the average distance between two errors
instead of only the error rate. This new method was called early drift detection
method (EDDM) [2].
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A different approach, called adaptive windowing (ADWIN) [4], is a sliding
window algorithm which detects drifts and records updated statistics about data
streams. The size of the sliding window is decided based on statistics calculated
at different points of the stream. If the difference between the calculated statistics
is higher than a predefined threshold, ADWIN detects the CD and discards all
data from the stream up to the detected drift point.

Another early CD detector, called Page-Hinkley (PH) [14], computes
observed values and their average up until the current point in a data stream.
PH then detects the drift if the observed average is higher than a predefined
threshold.

Fŕıas-Blanco et al. (2014) [7] proposed two detectors. The first, called
HDDM A, is based on Hoeffding’s inequality and used the average of the contin-
uous values in a data stream to determine if the data contain CD. The second
method, HDDM W, uses McDiarmid’s bounds and the exponentially weighted
moving average (EWMA) statistic to estimate if an instance represents CD or not.

The Kolmogorov-Smirnov Windowing (KSWIN) method [16] uses the Kolmo-
gorov-Smirnov (KS) statistical test to monitor data distributions without assum-
ing any particular distributions. KSWIN keeps a fixed window size and compares
the cumulative distribution of the current window to the previous one, detecting
CD if the KS test rejects the null hypothesis that the distributions are the same.

3 Experiment Configuration

In this section we describe the datasets and the parametrization used for the
drift detectors as well as the evaluation methodology used in the experiments.

3.1 Datasets

The datasets chosen for the experiments have all been previously used to study
the concept drift problem. To analyze the performance of the methods, four syn-
thetic datasets and four real-world datasets were used. The datasets allow us to
analyze how the detectors identify the points of deviation in the data and false
points detected. We use the synthetic data sets from the work of Almeida et al.
(2019) [1] following the same methodological process of adding deviation. For each
data set 5000 samples are created. The domain of each attribute is divided into ten
equal-sized parts. The first 2000 samples correspond to the first seven parts of the
domain of each variable. 1000 new instances are added and the domain is expanded
until the 5000 samples are completed. Table 1 presents synthetic data.

The real-world datasets used are Bike [12], FCCU1 (gasoline concentration),
FCCU2 (LDO concentration) and FCCU3 (LPG concentration) [18]. We per-
formed an analysis on the target variable using the interquartile range method
(IQR), IQR = Q3 − Q1, where = Q3 is the third quartile and = Q1 is the
first quartile. We perform a variability estimate to calculate lower Linf =
ȳ − 1.5 ∗ IQR and higher Lsup = ȳ + 1.5 ∗ IQR bounds for drift identifica-
tion, where ȳ is the mean of the target variable. At the end of the analysis we
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Table 1. Synthetic datasets

Dataset Function Domain

3d Mex.hat y = sin x12+x22
x12+x22

+ ε xi ∼ U [−4π, 4π]

Friedman#1 y = 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε xi ∼ U [0, 1]

Friedman#3 y = tan−1
x2x3− 1

x2x4
x1

+ ε x1 ∼ U [0, 1]
x2 ∼ U [40π, 560π]
x3 ∼ U [0, 1]
x4 ∼ U [0, 11]

Mult y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 + ε xi ∼ U [0, 1]

noticed that none of the data points were out of bounds. Thus, we artificially
added drift along the data. Figure 1 shows the distributions of y and yDrift (y
with artificial drift).

To add the deviation we add the value of the dependent variable (y) by
multiplying the standard deviation and a number that leaves the value of y
greater than Lsup. The added drift in the Bike dataset ((a)) has the characteristic
of recurring and abrupt speed, as it appears in the data in a certain period of
time, returns to the original concept, and appears again, in addition to abruptly
changing the concept. We add two offsets by multiplying by the numbers three
and four respectively. In the FCCU1, FCCU2, FCCU3 dataset we add three
abrupt deviations. Which we multiply: by three, seven and, twelve (For FCCU1);
three, six, three (For FCCU2); three, six, nine (For FCCU3).

Fig. 1. Datasets

√
√
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Table 2 presents a summary of the main characteristics of each dataset, such
as number of predictive attributes, number of samples and amount of drift.

Table 2. Dataset features

Name Dataset # Samples # Attributes Drift quantity Test batch size

3-D Mex.Hat (Mex) Synthetic 5000 2 3 250

Friedman #1 (Fried1) Synthetic 5000 5 3 250

Friedman #3 (Fried3) Synthetic 5000 4 3 250

Multi (Multi) Synthetic 5000 5 3 250

Bike Real-word 731 8 2 25

FCCU1 Real-world 104 6 3 13

FCUU2 Real-world 104 6 3 13

FCCU3 Real-world 104 6 3 13

3.2 Evaluation Setup

To evaluate the drift detection methods using the presented datasets, we use a
methodology similar to the one described in [1]. For each time step, a specified
amount of instances of the training set are read and used to train the regressor.
Next, other examples from the test set are used to test the regressor. If the detec-
tion method identifies the occurrence of CD, the test data are used for training,
which corresponds to the popular train-test-train approach. This procedure is
repeated 30 times.

We used seven base learners paired with all tested drift detection methods.
They are: Boosting Regressor (BR) [6], Decision Trees (DT) [3], Lasso Regression
(LR) [20], Hoeffding Tree Regressor (HTR) [13], Multilayer Perception (MLP)
[19], Bagging with meta-estimator BR (B-BR), Bagging with meta-estimator LR
(B-LR), Bagging with meta-estimator DT (B-DT), Bagging with meta-estimator
HTR (B-HTR) and Bagging with meta-estimator MLP (B-MLP) [5]. The experi-
ments described here used Scikit-multiflow: A multi-output streaming framework
[11]. To run the experiments, we used a machine running a 64-bit operational
system with 4 GB of RAM and a 2.20 GHz Intel(R) i5-5200U CPU.

We use RelMAE = |y true−y pred|
mean absolute error(y true,y pred) to evaluate the predicted

value against the actual value of the data set, indicating whether it correctly
classified the instance.

If RelMAE gets a value less than 1, we treated the learner’s prediction as
correct, otherwise it was considered wrong. This value is passed to a parame-
terized drift detector, which will flag the example for no drift or true drift. If
true drift is identified, the base learner is trained on the instance that has just
arrived. If no drift is found, the instance is not used for training. Scikit-multiflow
provides the following concept drift detection methods: ADWIN, DDM, EDDM,
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HDDM A, HDDM W, KSWIN and PageHinkley, which were used with their
default settings for the paper. The prequential evaluation method or interleaved
test-then-train method strategy is used for the evaluation of the learning models
with concept drift and we performed thirty iterations [1]. We chose the Mean
Square Error (MSE) for error metric. In addition, we carry out statistical tests
to analyze the predictive performance of the learning models in relation to the
MSE error. The Friedman test is applied with α = 0.05 [9]. We present our
statistical analysis using critical difference diagrams.

We initially performed experiments to identify the best parameter settings
for each of the base learners. Specifically, we conducted a grid search to choose
hyperparameters from the base learners using the initial training data. After
identifying the parameters that most influence performance we conducted the
actual experiments. All models are from sklearn [15] and scikit-multiflow [11].

4 Experimental Results

In this section we present the results of the experiments with the concept drift
detection methods.

4.1 Predictive Accuracy and Drift Identification

We performed a broad base learner study together with the detectors. Therefore,
in addition to the detectors, we compare the base learner without updating
with test data (called No Partial) and updating whenever new test data arrives,
regardless of detection (called Partial). Figure 2 shows the heat map of the mean
MSE value of all CD detectors and base learners across the 30 iterations with
distinct seeds. Errors are normalized between 0 and 1.

We analyzed the average points of detection for all different scenarios.
Figure 3 presents the mean error along the data stream for dataset 3d Mex.hat.
Only the LR, HTR, B-LR and B-HTR base learners showed lower errors as the
new test data arrived, even in cases when no CD was detected by ADWIN,
DDM, HDDM A and HDDM W. A higher number of wrong detections can lead
to larger errors, because models are retrained with data from the detected new
concept. Additionally, due to the small number of training data of each new
concept, base learners that are not able to learn incrementally may show worse
performances.

Differently from the previous scenario, Fig. 4 shows that for dataset
Friedman#1 most models have increasing errors along the data stream. How-
ever, base learner HTR together with detector PH have decreased errors begin-
ning with point 2000. This happened due to successful drift point detections
followed by base learner updates. Base learners MLP and B-MLP also showed
lower errors when paired with the ADWIN and PH detectors.
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Fig. 2. Heatmap of normalized MSE errors

Figure 5 presents results for dataset Friedman#3. Most base learners, except
MLP and B-MLP, had lower errors at point 2000. For dataset Mult, Fig. 6 shows
variation in the error value, with increasing errors starting at point 2000 in most
cases. In such cases, the error increases because it is necessary to retrain the
base learners given the new concept. Thus, we can see that the base learners
were not updated correctly.
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Fig. 3. Comparison of all base learner and Detectors using Average MSE Accuracies
in dataset 3d Mex.hat, and Average Drifts Points Detection.

Regarding synthetic data, the best average detection performances were
obtained by EDDM, KSWIN and PH, considering the different base learners.
These indicates that in these scenarios where concept drift happens gradually,
these methods are able to detect small variations in data distribution.

For the Bike dataset (Fig. 7), only ADWIN and PH were not able to detect
any concept drift in the data. The base learners varied significantly according
in their error values. Additionally, we observed that all pairs of base learners
and detectors increased their errors around point 200, with worse performances
coming from ADWIN and PH. These detectors did not adjust well to the concept
changes in this dataset.
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Fig. 4. Comparison of all base learner and Detectors using Average MSE Accuracies
in dataset Friedman#1, and Average Drifts Points Detection.

Due to small changes in the average errors for datasets FCCU1, FCCU2 and
FCCU3, Fig. 8 only shows the average detection points. Only KSWIN was able
to find drift points. This is likely due to lack of enough data to train the base
learners, which would allow better precision for the detectors. For FCCU1 and
FCCU3, only the Partial model, which always retrains with the new test data,
obtained significantly lower errors. For FCCU2, all models behaved similarly,
with slightly decreasing errors.
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Our results show that, in addition to the base learner and to the detector,
the pace at which the drift happens and the number of instances available to
update the base learner all contribute significantly to the overall performance.

4.2 Statistical Analysis

We used critical difference diagrams and Nemenyi test to compare all detectors
across all 8 datasets for the different base learners. The resulting diagrams can
be seen in Fig. 9. This analysis shows that the detectors have statistically similar
performances for all base learners.

Fig. 5. Comparison of all base learner and Detectors using Average MSE Accuracies
in datase Friedman#3, and Average Drifts Points Detection.



400 M. Lima et al.

Fig. 6. Comparison of all base learner and Detectors using Average MSE Accuracies
in dataset Mult, and Average Drifts Points Detection.

As shown in Fig. 9a, all detectors had similar performances with base learner
BR. This even includes the model without any CD detectors (No Partial), which
only learns from the first training data and is only used for testing. The same
happens in Figs. 9b, 9f, 9i and 9g. Figure 9c, on the other hand, shows that there
are two distinct groups of detectors. This is mainly because the Partial method,



A Comparative Study on Concept Drift Detectors for Regression 401

Fig. 7. Comparison of all base learner and Detectors using Average MSE Accuracies
in dataset Bike, and Average Drifts Points Detection.

which always updates with every new block of test data in the stream, signifi-
cantly outperformed every detector, except for EDDM and KSWIN. HDDM A,
HDDM W, ADWIN, PH and DDM had worse errors than No Partial on aver-
age, although these results were not statistically significant. Finally, DDM was
statistically worse than Partial, because their distance is larger than the critical
difference.
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Fig. 8. Average Drifts Points Detection for datasets FCCU1, FCCU2 and, FCCU3

Figure 9d shows that No Partial, ADWIN, DDM, HDDM A and HDDDM W
share the same average rank, which means that these detectors did not improve
the performance of the base learner trained only on the original training data.
The same happened with DDM with base learner MLP (9e), where DDM and
No Partial were outside the critical difference when compared to Partial, which
led to two separate performance groups. Similarly, 9h shows that ADWIN and
No Partial are statistically worse than Partial, resulting in two groups: the first
includes methods that had statistically similar errors to Partial and the second
includes those that were similar to ADWIN and No Partial. Finally, Fig. 9j shows
that only EDDM, No Partial and DDM were statistically worse than Partial.

The only case were Partial was not alone in the top rank was Fig. 9i, were
it shared the position with No Partial, which means that there was not benefit
in retraining the model. It is important to point out that it is actually a good
result when a detector is statistically similar to Partial, because it means that,
as a result of using the detector, the base learner performed just as well as if it
was always retrained, even though it only retrains when the detector identifies
a drift.
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Fig. 9. Comparison of all regressors against each other with the Nemenyi test. Groups
of regressors that are not significantly different (at α 0:05) are connected
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5 Conclusion

In this paper, seven CD detectors were compared using ten base learners and
eight real and synthetic datasets. The resulting Python-based framework1 used
the sklearn and skmultiflow libraries and will be available for future use by other
researchers, who will be able to extend it with other base learners, detectors and
datasets. All base learners were optimized using a grid search procedure, such
that they would present their best results considering the training data.

Average MSE results indicate that PH and KSWIN were the best detec-
tors for the synthetic datasets. For the Bike dataset, EDDM, HDDM A and
HDDM W showed the best average errors. For the other real datasets, none of
the detectors identified any drift points.

The base learner has an important impact on CD detection. Additionally,
considering the approach that we used in this paper, i.e. the base learner is
updated whenever CD is detected, it is useful that the base learner is able to
perform incremental learning, such that it gradually adapts to new concepts.

Therefore, the main limitation of our work is that only one of the base learners
can learn incrementally, with the other ones training from scratch with every
batch of test data that was flagged as CD. Another important limitation was
that our real datasets did not have a ground truth for the presence of CD, thus we
artificially added drift to the data, but most detectors were not able to capture
that.

Future works include adding other incremental learners to the framework,
investigating additional real datasets and analyzing the impact of different rates
of change in data distribution.
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Abstract. Numerous problems in machine learning require some type
of dimensionality reduction. Unsupervised metric learning deals with
the definition of intrinsic and adaptive distance functions of a dataset.
Locally linear embedding (LLE) consists of a widely used manifold learn-
ing algorithm that applies dimensionality reduction to find a more com-
pact and meaningful representation of the observed data through the
capture of the local geometry of the patches. In order to overcome rele-
vant limitations of the LLE approach, we introduce the LLE Kullback-
Leibler (LLE-KL) method. Our objective with such a methodological
modification is to increase the robustness of the LLE to the presence
of noise or outliers in the data. The proposed method employs the KL
divergence between patches of the KNN graph instead of the pointwise
Euclidean metric. Our empirical results using several real-world datasets
indicate that the proposed method delivers a superior clustering alloca-
tion compared to state-of-the-art methods of dimensionality reduction-
based metric learning.

Keywords: Locally linear embedding · Metric learning · KL
divergence

1 Introduction

The main objective of dimensionality reduction unsupervised metric learning is
to produce a lower dimensional representation that preserves the intrinsic local
geometry of the data. The locally linear embedding (LLE) consists of one of
the pioneering algorithms of such a class, which has been successfully applied to
non-linear feature extraction for pattern classification tasks [9]. Although more
efficient than linear methods, the LLE still has some important limitations.

Firstly, it is rather sensitive to noise or outliers [14]. Secondly, in datasets
that are not represented by smooth manifolds, the LLE frequently fails to pro-
duce reasonable results. It is worth mentioning that variations of the LLE have
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been proposed to overcome such limitations, with varying degrees of success.
In Hessian eigenmaps, the local covariance matrix used in the computation of
the optimal reconstruction weights is replaced by the Hessian matrix (i.e., the
second order derivatives matrix), which encodes relevant curvature information
[1,13,15]. A further extension is known as the local tangent space alignment
(LTSA).

The difference is that the LTSA builds the locally linear patch with an
approximation of the tangent space through the application of the principal
component analysis (PCA) over a linear patch. Subsequently, the local represen-
tations are aligned to the point in which all tangent spaces become aligned in
the unfolded manifold [16]. In addition, the modified LLE (MLLE) introduces
several linearly independent weight vectors for each neighborhood of the KNN
graph. Some works in the relevant literature describe that the local geometry
of MLLE is more stable in comparison with the LLE [17]. One remaining issue
still present in such recent developments of the LLE method is the adoption of
Euclidean distance as the similarity measure within a linear patch.

In the proposed LLE-KL method, we incorporate the KL divergence into the
estimation of the optimal reconstruction weights. The main contribution of the
proposed method is that, through the replacement of the pointwise Euclidean
distance by a patch-based information-theoretic distance (i.e., KL divergence),
the LLE becomes less sensitive to the presence of noise or outliers. Our empir-
ical clustering analysis performed subsequently to the dimensionality reduction
for several real-world datasets popularly used in the machine learning literature,
indicate that the proposed LLE-KL method is capable of generating more rea-
sonable clusters in terms of silhouette coefficients compared to state-of-the-art
manifold learning algorithms, such as the Isomap [12] and UMAP [6].

The remainder of the paper is organized as follows. Section 2 discusses previ-
ous relevant work, with focus on the relative entropy and the regular LLE algo-
rithm. Section 3 details the proposed LLE-KL algorithm. Section 4 presents the
data used as well as computational experiments and empirical results. Section 5
concludes with our final remarks and suggestions for future research.

2 Related Work

In this section, we discuss the relative entropy (KL divergence) between probabil-
ity density functions as a similarity measure among random variables, exploring
its computation in the Gaussian case. Moreover, we discuss the LLE algorithm
and detail its mathematical derivation.

2.1 Kullback-Leibler Divergence

In machine learning applications, the problem of quantifying similarity levels
between different objects or clusters consists of a challenging task, especially in
cases where the standard Euclidean distance is not a reasonable choice. Many
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studies on feature selection adopt statistical divergences to select the set of fea-
tures that should maximize some measure of separation between classes. Part of
their success is due to the fact that most dissimilarity measures are related to
distance metrics. In such a context, information theory provides a solid mathe-
matical background for metric learning in pattern classification. The entropy of
a continuous random vector x is given by:

H(p) = −
∫

p(x)[log p(x)]dx = −E [log p(x)] (1)

where p(x) is the probability density function (pdf). In a similar fashion, we may
define the cross-entropy between two probability density functions p(x) and q(x):

H(p, q) = −
∫

p(x)[log q(y)]dx (2)

The KL divergence is the difference between cross-entropy and entropy [4]:

DKL(p, q) = H(p, q) − H(p) =
∫

p(x)log
(

p(x)
q(x)

)
dx = Ep

[
log

(
p(x)
q(x)

)]
(3)

An important property is that the relative entropy is non-negative, therefore,
DKL(p, q) ≥ 0.

2.2 The LLE Algorithm

The LLE consists of a local method, thus, the new coordinates of any �xi ∈ Rm

depends only on the neighborhood of the respective point. The main hypothesis
behind the LLE is that for a sufficiently high density of samples, it is expected
that a vector �xi and its neighbors define a linear patch (i.e., they all belong to an
Euclidean subspace [9]). Hence, it is possible to characterize the local geometry
by linear coefficients:

�̂xi ≈
∑

j

wij�xj for �xj ∈ N(�xi) (4)

consequently, we can reconstruct a vector as a linear combination of its neighbors.
The LLE algorithm requires as input an n × m data matrix X, with rows

�xi, a defined number of dimensions d < m, and an integer k > d + 1 for finding
local neighborhoods. The output is an n × d matrix Y , with rows �yi. The LLE
algorithm may be divided into three main steps [9,10], as follows:

1. From each �xi ∈ Rm find its k nearest neighbors;
2. Find the weight matrix W that minimizes the reconstruction error for each

data point �xi ∈ Rm;
3. Find the coordinates Y which minimize the reconstruction error using the

optimum weights.

In the following subsections, we describe how to obtain the solution to each
step of the LLE algorithm.
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Finding Local Linear Neighborhoods. A relevant aspect of the LLE is that
this algorithm is capable of recovering embeddings which intrinsic dimensionality
d is smaller than the number of neighbors, k. Moreover, the assumption of a
linear patch imposes the existence of an upper bound on k. For instance, in
highly curved datasets, it is not reasonable to have a large k, otherwise such
an assumption would be violated. In the uncommon situation where k > m, it
has been shown that each sample may be perfectly be reconstructed from its
neighbors, from which another problem emerges: the reconstruction weights are
not anymore unique.

To overcome this limitation, some regularization is necessary in order to
break the degeneracy [10]. Lastly, a further concern in the LLE algorithm refers
to the connectivity of the KNN graph. In the case the graph contains multiple
connected components, then the LLE should be applied separately on each one
of them, otherwise the neighborhood selection process should be modified to
assure global connectivity [10].

Least-Squares Estimation of the Weights. The second step of the LLE is
to reconstruct each data point from its nearest neighbors. The optimal recon-
struction weights may be computed in closed form. Without loss of generality,
we may express the local reconstruction error at point �xi as follows:

E(�w) =

∥∥∥∥∥∥
∑

j

wj(�xi − �xj)

∥∥∥∥∥∥
2

=
∑

j

∑
k

wjwk(�xi − �xj)T (�xi − �xk) (5)

Defining the local covariance matrix C as:

Cjk = (�xi − �xj)T (�xi − �xk) (6)

we then have the following expression for the local reconstruction error:

E(�w) =
∑

j

∑
k

wjCjkwk = �wT C �w (7)

Regarding the constraint
∑

j wj = 1, that may be interpreted in two dif-
ferent manners, namely geometrically and probabilistically. From a geometric
point of view, it provides invariance under translation, thus, by adding a given
constant vector �c to �xi and all of its neighbors, the reconstruction error remains
unchanged. In terms of probability, enforcing the weights to sum to one leads W
to become a stochastic transition matrix [10] directly related to Markov chains
and diffusion maps [11]. As detailed below, in the minimization of the squared
error the solution is found through an eigenvalue problem. In fact, the estimation
of the matrix W reduces to n eigenvalue problems. Considering that there are
no constraints across the rows of W , we may then find the optimal weights for
each sample �xi separately, drastically simplifying the respective computations.
Therefore, we have n independent constrained optimization problems given by:

arg min
�wi

�wT
i Ci �wi s.t. �1T �wi = 1 (8)
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for i = 1, 2, ..., n. Using Lagrange multipliers, we express the Lagrangian function
as follows:

L(�wi, λ) = �wT
i Ci �wi − λ(�1T �wi − 1) (9)

Taking the derivatives with relation to �wi as follows:

∂

∂ �wi
L(�wi, λ) = 2Ci �wi − λ�1 = 0 (10)

leads to

Ci �wi =
λ

2
�1 (11)

Which is equivalent to solving the following linear system:

Ci �wi = �1 (12)

and then normalizing the solution to guarantee that
∑

j wi(j) = 1 by dividing
each coefficient of the vector �wi by the sum of all the coefficients:

wi(j) =
wi(j)∑

j

wi(j)
for j = 1, 2, ...,m (13)

In the case that k (i.e., number of neighbors) is greater than m (i.e., number
of features) then, in general, the space spanned by k distinct vectors consists
of the whole space. This means that �xi may be expressed exactly as a linear
combination of its k-nearest neighbors. In fact, if k > m, there are generally
infinitely many solutions to �xi =

∑
j wj�xj , due to the fact that there would be

more unknowns (k) than equations (m). In such a case, the optimization prob-
lem is ill-posed and, thus, regularization is required. A common regularization
technique refers to the Tikonov regularization, which adds a penalization term
to the least squares problem, as follows:

∥∥∥∥∥∥�xi −
∑

j

wj�xj

∥∥∥∥∥∥
2

+ α
∑

j

w2
j (14)

where α controls the degree of regularization. In other words, it selects the
weights which minimize a combination of reconstruction error as well as the
sum of the squared weights. In the case that α → 0, then there is a least-
squares problem. However, in the opposite limit (i.e., α → ∞), the squared-error
term becomes negligible, allowing the minimization of the Euclidean norm of the
weight vector �w. Typically, α is set to be a small but non-zero value. In this case,
the n independent constrained optimization problems are:

arg min
�wi

�wT
i Ci �wi + α�wT

i �wi s.t. �1T �wi = 1 (15)
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for i = 1, 2, ..., n. The Lagrangian function is defined by:

L(�wi, λ) = �wT
i Ci �wi + α�wT

i �wi − λ(�1T �wi − 1) (16)

Taking the derivative with respect to �wi and setting the result to zero:

2Ci �wi + 2α�wi = λ�1 (17)

(Ci + αI)�wi =
λ

2
�1 (18)

�wi =
λ

2
(Ci + αI)−1�1 (19)

where λ is selected to properly normalize �wi, which is equivalent to solving the
following linear system:

(Ci + αI)�wi = �1 (20)

and then normalize the solution. In other words, to regularize the problem it
is necessary to add a small perturbation into the main diagonal of the matrix
Ci. In all experiments reported in the present paper, we use the regularization
parameter α = 10−4.

Finding the Coordinates. The main idea in the last stage of the LLE algo-
rithm is to use the optimal reconstruction weights estimated by least-squares as
the proper weights on the manifold and then solve for the local manifold coordi-
nates. Thus, fixing the weight matrix W , the goal is to solve another quadratic
minimization problem to minimize the following:

Φ(Y ) =
n∑

i=1

∥∥∥∥∥∥�yi −
∑

j

wij�yj

∥∥∥∥∥∥
2

(21)

Hence, the following question needs to be addressed: what are the coordinates
�yi ∈ Rd (approximately on the manifold), that such weights (W ) reconstruct?
In order to avoid degeneracy, we have to impose two constraints, as follows:

1. The mean of the data in the transformed space is zero, otherwise we would
have an infinite number of solutions;

2. The covariance matrix of the transformed data is the identity matrix, there-
fore, there is no correlation between the components of �y ∈ Rd (this is a
statistical constraint to assess that the output space is the Euclidean one,
defined by an orthogonal basis).
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However, unlikely the estimation of the weights W , finding the coordinates
does not simplify into n independent problems, because each row of Y appears
in Φ multiple times, as the central vector yi and also as one of the neighbors
of other vectors. Thus, firstly, we rewrite equation (21) in a more meaningful
manner using matrices, as follows:

Φ(Y ) =
n∑

i=1

⎛
⎝�yi −

∑
j

wij�yj

⎞
⎠

T ⎛
⎝�yi −

∑
j

wij�yj

⎞
⎠ (22)

Applying the distributive law and expanding the summation, we then obtain:

Φ(Y ) =
n∑

i=1

�yT
i �yi −

n∑
i=1

∑
j

�yT
i wij�yj

−
n∑

i=1

∑
j

�yT
j wji�yi +

n∑
i=1

∑
j

∑
k

�yT
j wjiwik�yk (23)

Denoting by Y the d × n matrix in which each column �yi for i = 1, 2, ..., n
stores the coordinates of the i-th sample in the manifold and acknowledging that
�wi(j) = 0, unless �yj is one of the neighbors of �yi, we may express Φ(Y ) as follows:

Φ(Y ) = Tr(Y T Y ) − Tr(Y T WY )

− Tr(Y T WT Y ) + Tr(Y T WT WY )

= Tr(Y T Y ) − Tr(Y T (WY ))

− Tr((WY )T Y ) + Tr((WY )T (WY ))

= Tr(Y T (Y − WY ) − (WY )T (Y − WY ))

= Tr((Y − WY )T (Y − WY ))

= Tr(((I − W )Y )T ((I − W )Y ))

= Tr(Y T (I − W )T (I − W )Y ) (24)

Defining the n × n matrix M as:

M = (I − W )T (I − W ) (25)

we get the following optimization problem:

arg min
Y

Tr(Y T MY ) subject to
1
n

Y T Y = I (26)

Thus, the Lagrangian function is given by:

L(Y, λ) = Tr(Y T MY ) − λ

(
1
n

Y T Y − I

)
(27)
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Differentiating and setting the result to zero, finally leads to:

MY = βY (28)

where β = λ
n , showing that the Y must be composed by the eigenvectors of

the matrix M . Since there is a minimization problem to be solved, it is then
required to select Y to compose the d eigenvectors associated to the d smallest
eigenvalues. Note that M being an n × n matrix, it contains n eigenvalues and
n orthogonal eigenvectors. Although the eigenvalues are real and non-negative
values, its smallest value is always zero, with the constant eigenvector �1. Such
a bottom eigenvector corresponds to the mean of Y and should be discarded to
impose the constraint that

∑n
i=1 �yi = 0 [7]. Therefore, to get �yi ∈ Rd, where

d < m, it is necessary to select the d + 1 smallest eigenvectors and discard the
constant eigenvector with zero eigenvalue. In other words, one must select the d
eigenvectors associated to the bottom non-zero eigenvalues.

3 The KL Divergence-Based LLE Method

The main motivation to introduce the LLE-KL method is to find a surrogate
for the local matrix Ci for each sample of the dataset. Recall that, originally,
Ci(j, k) is computed as the inner product between �xi − �xj and �xi − �xk, which
means that we employ the Euclidean geometry in the estimation of the opti-
mal reconstruction weights. In the definition of such matrix it is used a non-
linear distance function, namely the relative entropy between Gaussian densities
estimated within different patches of the KNN graph. Our inspiration is the
parametric PCA, an information-theoretic extension of the PCA method that
applies the KL divergence to compute a surrogate for the covariance matrix (i.e.,
entropic covariance matrix) [5].

Let X = {�x1, �x2, . . . , �xn}, with �xi ∈ Rm, be our data matrix. The first step
in the proposed method consists of building the KNN graph from X. At this
early stage, we employ the extrinsic Euclidean distance to compute the nearest
neighbors of each sample �xi. Denoting by ηi the neighborhood system of �xi, a
patch Pi is defined as the set {�xi ∪ ηi}. It is worth noticing that the number of
elements of Pi is K + 1, for i = 1, 2, ..., n. In other words, a patch Pi is given by
an m × (k + 1) matrix:

Pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

xi(1) xi1(1) . . . xik(1)
xi(2) xi1(2) . . . xik(2)

...
...

. . .
...

...
... . . .

...
xi(m) xi1(m) . . . xik(m)

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

The rationale of the proposed method is considering each row of the matrix
Pi as a sample of a univariate Gaussian random variable, and then estimating the
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parameters μ (mean) and σ2 (variance) of each row, leading to an m-dimensional
vector of tuples, as follows:

�pi =
[
(μi(1), σ2

i (1)), ..., (μi(m), σ2
i (m))

]
(30)

Let p(x) and q(x) be univariate Gaussian densities, N(μ1, σ
2
1) and N(μ2, σ

2
2),

respectively. Then, the relative entropy becomes:

DKL(p, q) = log

(
σ2

σ1

)
+

1
2σ2

2

Ep[(x − μ2)2] − 1
2σ2

1

Ep[(x − μ1)2] (31)

By the definition of central moments, we then have:

Ep[(x − μ1)2] = σ2
1 (32)

Ep[(x − μ2)2] = E[x2] − 2E[x]μ2 + μ2
2 (33)

E[x2] = V ar[x] + E2[x] = σ2
1 + μ2

1 (34)

which leads to the following closed-form equation:

DKL(p, q) = log

(
σ2

σ1

)
+

σ2
1 + (μ1 − μ2)2

2σ2
2

− 1
2

(35)

As the relative entropy is not symmetric, it is possible to compute its sym-
metrized counterpart as follows:

Dsym
KL (p, q) =

1
2
[DKL(p, q) + DKL(q, p)] (36)

=
1
4

[
σ2
1 + (μ1 − μ2)2

σ2
2

+
σ2
2 + (μ1 − μ2)2

σ2
1

− 2
]

=
1

4σ2
1σ

2
2

[(
σ2
1 − σ2

2

)2
+ (μ1 − μ2)

2 (
σ2
1 + σ2

2

)]

Let �dij be the m-dimensional vector of symmetrized relative entropies
between the components of �pi and �pj , computed by the direct application of
equation (36) in each pair of parameter vectors. Then, in the proposed method,
the entropic matrix Ci is computed as follows:

Ci = �dT
ij

�dik (37)

where the column vector �dij involves the patches �pi and �pj , while the row vector
�dT
ik involves the patches �pi and �pk. It is worth noticing that unlike the established

LLE method - which employs the pairwise Euclidean distance, the proposed LLE-
KL method employs a patch-based distance (relative entropy) instead, becom-
ing less sensitive to the presence of noise and outliers in the observed data.
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The remaining steps of the algorithm are precisely the same as in the estab-
lished LLE. The set of logical steps comprising the LLE-KL method is detailed
in Algorithm 1.

Algorithm 1. KL divergence based LLE
1: function LLE-KL(X, K, d)
2: From input data Xm×n, build a KNN graph.
3: for �xi ∈ XT do
4: Compute the K × K matrix Ci as:

Ci = �dT
ij

�dik (38)

5: Solve Ci �wi = �1 to estimate �wi ∈ RK .
6: Normalize the weights in �wi so that

∑
j �wi(j) = 1.

7: end for
8: Construct the n × n matrix W using �wi’s.
9: Compute M = (I − W )T (I − W ).

10: Find the eigenvalues and eigenvectors of M .
11: Select the bottom d non-zero eigenvectors of M and define the matrix Y , where

each column is an eigenvector.
12: return Y
13: end function

In the subsequent sections, we present some computational experiments to
compare the performance of the proposed method against several manifold learn-
ing algorithms.

4 Data, Experiments and Results

In the present section is presented the data used, experiments performed, and a
discussion on the respective empirical results.

4.1 Data

In the present study, a total of 25 datasets are used as input data. Such datasets
are widely used in machine learning estimations and applications. The datasets
used in the present study were collected from openML.org, which contains
detailed information regarding the number of instances, features, and classes
for each one of datasets.

http://openML.org
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4.2 Experiments and Results

In order to test and evaluate the proposed method, a series of computational
experiments is performed to quantitatively compare clustering results obtained
subsequently to the dimensionality reduction into 2-D spaces using the silhou-
ette coefficient (SC) - i.e., a measure of goodness-of-fit into a low-dimensional
representation [8]. All results are reported in Table 1. It is worth noticing that
in 23 out of 25 datasets (i.e., 92% of the cases), the LLE-KL method obtains the
best performance in terms of the SC.

Regarding the means and medians, one may realize that the proposed method
performs better in comparison with the established LLE as well as two of its
variations (i.e., Hessian LLE and LTSA). In addition, the proposed method
also achieves a superior performance compared to the state-of-the-art algorithm
UMAP. It is worth noticing that, commonly, the UMAP requires a reasonably
large sample size to perform well, which is not always the case in the empirical
analysis of the present paper.

To check if the results obtained by the proposed method are statistically supe-
rior to the competing methods, we perform a Friedman test - i.e. non-parametric
test for paired data in case of more than two groups [2]. For a significant level
α = 0.01, we conclude that there is strong evidence to reject the null hypothesis
that all groups are identical (p = 1.12×10−11). In order to analyze which groups
are significantly different, we then perform a Nemenyi post-hoc test [3]. Accord-
ing to this test, there is strong evidence that the LLE-KL method produces
significantly higher SCs compared to the PCA (p < 10−3), Isomap (p < 10−3),
LLE (p < 10−3), Hessian LLE (p < 10−3), LTSA (p < 10−3), and UMAP
(p < 10−3).

The proposed method also has some limitations. One caveat of the LLE-KL -
which is common to other manifold learning algorithms, consists of the out-of-
sample problem. It is not clear how to properly evaluate new samples that are
not part of the training set. Another drawback refers to the definition of the
parameter K (i.e., number of neighbors) that controls the patch size. Previous
computational experiments reveal that the SC is rather sensitive to changes in
such a parameter. Our strategy in this case is then as follows: for each dataset,
we build the KKN graphs for all values of K in the interval [2, 40].

We select the best model as the one that maximizes the SC among all values
of K. Although we are using the class labels to perform model selection, in
fact, the LLE-KL method performs unsupervised metric learning, in the sense
that we do not employ the class labels in the dimensionality reduction. A data
visualization comparison of the clusters obtained through the application of the
LLE and LLE-KL methods for two distinct datasets (i.e., tic-tac-toe and corral)
are depicted in Figs. 1 and 2. It is worth noticing that the discrimination between
the two classes is more evident in the proposed method than in the established
version of the LLE, since there is visibly less overlap between the blue and red
cluster.
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Fig. 1. Comparison between clusters generated subsequently to the application of the
LLE, LLE-KL (with the number of neighbors set as K = 9), and UMAP for the tic-
tac-toe dataset.

Fig. 2. Comparison between clusters generated subsequently to the application of the
LLE, LLE-KL (with the number of neighbors set as K = 14), and UMAP for the corral
dataset.
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Table 1. Silhouette coefficients (SC) for clusters produced by PCA, LLE, Isomap,
Hessian LLE, LTSA, UMAP, and LLE-KL, based on popular machine learning datasets
(2-D case).

PCA LLE ISO HLLE LTSA UMAP LLE-KL

segment −0.161 −0.248 −0.164 −0.623 −0.068 0.142 0.425

banknote 0.160 0.315 0.284 0.109 0.109 0.444 0.596

Acute-inflammations 0.278 0.113 0.266 0.156 0.033 0.223 0.491

geyser1 0.328 0.205 0.339 0.165 0.173 0.124 0.378

penguins 0.344 0.529 0.608 0.188 0.114 0.67 0.817

diggle table a2 0.406 0.328 0.45 0.390 0.390 0.274 0.55

wine 0.526 0.242 0.547 0.527 0.584 0.590 0.763

Qsar-biodeg 0.094 −0.062 0.031 −0.321 −0.032 0.005 0.102

Australian(4) 0.279 0.13 0.291 0.113 0.113 0.193 0.23

prnn crabs 0.040 0.022 0.037 0.037 0.038 0.034 0.19

prnn viruses 0.371 0.112 0.496 0.396 0.396 0.023 0.594

bolts 0.337 0.028 0.286 0.281 0.281 0.174 0.48

kidney 0.019 0.018 0.042 0.026 0.026 0.011 0.111

attendence −0.034 0.000 −0.076 −0.053 −0.053 −0.020 0.182

parity5 −0.062 −0.051 −0.048 −0.043 −0.044 −0.052 0.042

wildcat 0.151 0.149 0.125 −0.020 −0.021 0.026 0.166

newton hema 0.087 0.077 0.082 0.093 0.093 0.128 0.179

servo 0.121 0.185 0.114 0.100 0.100 0.366 0.746

collins −0.05 0.056 −0.054 −0.674 −0.674 0.015 0.316

environmental 0.105 0.104 0.089 0.101 0.101 0.096 0.143

thoracic surgery 0.006 0.082 −0.006 −0.018 −0.450 0.010 0.194

iris 0.401 0.275 0.452 0.251 0.251 0.535 0.577

Hayes-roth −0.023 −0.013 −0.010 0.022 0.023 −0.012 0.107

boxing1 0.019 0.017 −0.03 −0.013 0.004 0.064 0.176

corral 0.285 0.253 0.041 0.267 0.267 0.306 0.332

Average 0.161 0.115 0.168 0.058 0.070 0.175 0.355

Median 0.121 0.104 0.089 0.100 0.093 0.124 0.316

Minimum −0.161 −0.248 −0.164 −0.674 −0.674 −0.052 0.042

Maximum 0.526 0.529 0.608 0.527 0.584 0.67 0.817

5 Conclusion

In the present study, an information-theoretic LLE is introduced to incorporate
the KL divergence between local Gaussian distributions into the KNN adja-
cency graph. The rationale of the proposed method is to replace the pointwise
Euclidean distance by a more appropriate patch-based distance. Such a method-
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ological modification results in a more robust method against the presence of
noise or outliers in the data.

Our claim is that the proposed LLE-KL is a promising alternative to the
existing manifold learning algorithms due to the proposition of its theoretical
methodological improvements and considering our computational experiments
that support two main points. Firstly, the quality of the clusters produced by
the LLE-KL method indicates a superior performance than those obtained by
competing state-of-the-art manifold learning algorithms. Secondly, the LLE-KL
non-linear features may be more discriminative in supervised classification than
features obtained by state-of-the-art manifold learning algorithms.

Suggestions of future work include the use of other information-theoretic dis-
tances, such as the Bhattacharyya and Hellinger distances, as well as geodesic
distances based on the Fisher information matrix. Another possibility is the non-
parametric estimation of the local densities using kernel density estimation tech-
niques (KDE). In this case, non-parametric versions of the information-theoretic
distances may be employed to compute a distance function between the patches
of the KNN graph. The ε-neighborhood rule may also be used for building the
adjacency relations that define the discrete approximation for the manifold, lead-
ing to non-regular graphs. Furthermore, a supervised dimensionality reduction
based metric learning approach may be created by removing the edges of the
KNN graph for which the endpoints belong to different classes as a manner
to impose that the optimal reconstruction weights use only the neighbors that
belong to the same class within the sample.
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Abstract. Hierarchical data stream classification inherits the properties
and constraints of hierarchical classification and data stream classifica-
tion concomitantly. Therefore, it requires novel approaches that (i) can
handle class hierarchies, (ii) can be updated over time, and (iii) are com-
putationally light-weighted regarding processing time and memory usage.
In this study, we propose the Gaussian Naive Bayes for Hierarchical Data
Streams (GNB-hDS) method: an incremental Gaussian Naive Bayes for
classifying potentially unbounded hierarchical data streams. GNB-hDS
uses statistical summaries of the data stream instead of storing actual
instances. These statistical summaries allow more efficient data storage,
keep constant computational time and memory, and calculate the proba-
bility of an instance belonging to a specific class via the Bayes’ Theorem.
We compare our method against a technique that stores raw instances,
and results show that our method obtains equivalent prediction rates
while being significantly faster.

Keywords: Hierarchical classification · Data stream classification ·
Gaussian Naive Bayes · Incremental learning

1 Introduction

Hierarchical classification is required on problems where instances are labeled
with classes that are related to one another in a hierarchy, such as in recognition
of music genres and subgenres [12], computer-aided diagnosis where diseases are
categorized by their etiology [43], recognition of animals, which are organized
in a taxonomy [28,42], and, recently, even helping in COVID-19 identification
using the hierarchical etiology of pneumonia [29].

However, classification techniques often assume that data samples of a par-
ticular problem are static and fully available to a learning model in a well-defined
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training step [26]. This assumption does not reflect many of the real-world sce-
narios in which classification is applied. The ever-increasing volume of data from
diverse sources such as the Internet, wireless sensors, mobile devices, or social
networks produces massive large-scale data streams [23,27,32].

Data streams are potentially unbounded over time and hence cannot be
stored in memory. Also, as the time component is intrinsic in data streams,
these are expected to be transient, i.e., the underlying data distribution is ever-
changing, thus resulting in variations in the target concept, a phenomenon named
concept drift [10,19,21,39].

When merged, hierarchical classification and data stream classification areas
combine their properties and introduce new challenges in a roughly unexplored
area: the hierarchical classification of data streams. Consequently, novel algo-
rithms for hierarchical data stream classification must: (i) handle class hierar-
chies, (ii) be updatable over time, (iii) detect and adapt to changes in data
behavior, and (iv) be computationally light-weighted regarding processing time
and memory consumption [10,19,31].

In this study, we propose the GNB-hDS method: an Incremental Gaussian
Naive Bayes for classifying potentially unbounded hierarchical data streams.
GNB-hDS uses statistical summaries of the data stream instead of storing raw
instances.

Despite the relevant application of Bayesian classifiers in hierarchical and
data stream classification tasks separately, they have not been adapted yet to
their intersection task. Therefore, to the best of our knowledge, this is the first
method that combines incremental Bayesian learning with hierarchical classifi-
cation. These statistical summaries allow a more efficient data storage, holding
constant computational time and memory usage, and permit the calculation of
the probability of a given instance belonging to a specific class via the Bayes’
Theorem.

The novel contributions of this work are as follows:

– We qualify Gaussian Naive Bayes, a well-known classification technique [11],
to work with potentially unbounded hierarchical data streams and in an incre-
mental fashion by using updatable statistical summaries related to a class
hierarchy.

– We propose GNB-hDS, a method for the hierarchical classification of data
streams using summarization techniques. The model is incremental and han-
dles potentially unbounded data streams with constant memory usage.

Furthermore, as a byproduct of this research, we make the source code for
the proposed method, as well as the datasets used in the experiments, available
for reproducibility.

The remainder of this paper is organized as follows. Section 2 describes the
problem of hierarchical classification of data streams and Sect. 3 brings for-
ward related works. Section 4 describes the proposed incremental Gaussian Naive
Bayes for the hierarchical classification of data streams. Section 5 comprises the
experimental protocol and the discussion of the results obtained. Finally, Sect. 6
concludes this paper and states envisioned future works.
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2 Problem Statement

As mentioned above, in this paper, we are particularly interested in hierarchical
data stream classification. This specific task combines characteristics and chal-
lenges from two different areas, and thus, it differs from classical classification
in two key aspects.

First, concerning hierarchical classification, instances of a problem are
assigned to a label path that belongs to a hierarchically structured set of classes
instead of one single independent label [35]. Figure 1 compares a general approach
of (a) flat (non-hierarchical) classification, and (b) hierarchical classification in
an illustrative problem. In flat classification, the decision must be made while
considering all the classes of the problem (all the possible song genres). Mean-
while, hierarchical classification concerns an existing class taxonomy, which can
be used to make first smaller and generic decisions about the problem (in the
example, decide first between Rock and R&B genres), and then more specific
ones.

R&BRock

Root

Funk Soul
Hard 
Rock

Heavy
Metal

(b)(a)

Song genre

?

Song genre

?

Funk Soul
Hard 
Rock

Heavy
Metal

Fig. 1. Example of general approaches of (a) flat and (b) hierarchical classification in
a hypothetical music genre problem. The class taxonomy can be used to lead smaller
specific decisions about the classes by splitting the context complexity.

Second, concerning data stream classification, there is not the concept of a
complete and fully available dataset; instead, instances of a problem are provided
to the model sequentially over time [19]. Figure 2 compares (a) a traditional
classification process and (b) a data stream classification process. In traditional
(or batch) classification, the dataset is assumed to be static and completely
available to the model at the training step. Next, the dataset is divided into
training and test subsets; the training data is submitted to the learning model
that reviews them as many times as necessary until obtaining a single satisfactory
test model. This final model is then applied to the subset of test data and
provides predictions and, consequently, accuracy estimates.
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In contrast, in streaming scenarios, data is made available sequentially over
time, and even a single instance can be provided to the model at a time. Each
instance is tested by the model, resulting in a prediction, and only after that
it is incorporated into the model (being used as training data). This process,
entitled ‘test-then-train’, is repeated for each instance, or chunk of instances,
that is gathered from the stream. Any processed instance needs to be eventually
discarded to maintain the model stable to process new instances since the data
stream is potentially unbounded.

Input data

Model
(test)

Learning
(train)

Data stream

(a)

Prediction

Learning
(train)

Model
(test)

Predictions

Data
(Train)

Data
(Test)

Static
data

Fig. 2. Example of general approaches of (a) Traditional (batch) classification and (b)
Data Stream Classification. An input data is obtained from the data stream, tested,
incorporated into the model, and discarded; then, the cycle starts again.

Thus, hierarchical classification of data streams regards learning models that
use hierarchical data streams as input to their learning processes, not only as a
source of data but effectively processing portions of the data over time, using the
premise that there is no complete dataset and effectively using class taxonomy
in their decision processes.

More formally, we let hDS define a hierarchical data stream in the
[(�xt, �yt)]∞t=0 format providing instances (�xt, �yt) on a specific timestamp t, where
�xt represents a d-dimensional features set and its values, and �yt represents the
corresponding ground-truth label path (hierarchically structured classes).

These hierarchically structured classes compose a regular concept hierarchy
arranged on a partially ordered set (Y,�), where Y is a finite set containing all
label paths and the relationship � is defined as an asymmetric, anti-reflexive, and
transitive subsumption (is-a) relation [35]. Finally, the classification of hierarchi-
cal data streams can be formally defined as f t : �xt �→ �yt, where the function f t

is continuously updated by mapping features �x to the corresponding label paths
�yt accurately.

As the data streams are potentially infinite due to their time component,
learning models are restrained by finite computational resources and must work
with bounded memory and time, analyzing each instance only once according to

(b)
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their arrival and then discarding it. The processing time of an incoming instance
from the data stream must not surpass the ratio in which new instances become
available. Otherwise, the learning model will need to discard new instances with-
out analyzing them [5,10].

3 Related Work

Machine learning models based on the Bayes’ Theorem have been widely used in
classification since their outputs are human-readable, they can naturally handle
missing values, and are relatively easy to implement [22,36].

In hierarchical classification, Bayesian classifiers were used with different lev-
els of adaptation. The authors in [14] used Bayesian probabilities attached to
each node in the hierarchy using a Local Classifier per Node approach [35] and a
top-down strategy to analyze the binary predictions along with the hierarchical
structure. Similarly, the authors in [13] used binary classifiers for each class in
the hierarchy considering both the parent and child classes of the current class.

In the works of [7,45], the authors also used Bayes-based classifiers within
a Local Classifier per Node approach but to perform hierarchical multilabel
classification. Finally, the authors in [36] proposed a Naive Bayes fitted to the
hierarchical classification using a global approach [35].

A Bayesian classifier fitted to handle hierarchical classification needs to be
adapted, at least, to consider the relationship between the hierarchically struc-
tured classes in the calculation of probabilities [36].

In data stream classification, incremental adaptations of Bayesian classifiers
have been widely studied and are also widely applied in state-of-the-art algo-
rithms. Data stream classification can be handled by a Naive Bayes classifier
in a straightforward manner, since the learning model only needs to incremen-
tally store summaries of data that allow the probabilities calculations as new
instances are provided from the data stream [25].

The authors in [3] introduced the idea of recalculating probabilities for each
instance provided to a model and this idea was later reinforced by the authors in
[2,25]. In the work [33], the authors proposed an incremental Bayes Tree based
on statistical summaries of data which are updated with each incoming instance.
The authors in [9] used Naive Bayes classifiers ensembled with other tree-based
classifiers to improve specific leaf node predictions. Finally, the authors in [4]
also used incremental statistical summaries to restrain a Naive Bayes classifier
and cope with limited computational resources.

It is noteworthy, nonetheless, to highlight the work of [28], where the authors
proposed an incremental k-Nearest Neighbors (kNN) [1] approach for the hier-
archical classification of data streams. This can be considered a seminal work
of the area, yet, it does depict drawbacks such as kNN relies on distance com-
putations, which are computationally intensive and can put in jeopardy time
and memory usage constraints required by streaming scenarios [27,38]. In this
sense, in Sect. 5, we compare our proposal (GNB-hDS ) against the one proposed
in [28] and show that GNB-hDS uses Bayes probabilities to obtain competitive
prediction correctness with better computational performance.
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4 Proposed Method

Our proposal, hereafter referred to as Gaussian Naive Bayes for Hierarchical Data
Streams (GNB-hDS ), is an incremental method for the hierarchical classification
of data streams based on the Naive Bayes technique [11,18].

The main idea behind GNB-hDS is the use of incremental data summaries,
specifically the mean, standard deviation, and the number of data instances,
that allow the calculation of probabilities used in the Bayes’ Theorem [11,22].
These incremental data summaries are attached to nodes of the hierarchy and are
updated as new instances are gathered from the data stream. We implemented
two key adaptations in the traditional Naive Bayes classifier to make it handle
hierarchical data streams:

– Regarding the hierarchical data structure, the original algorithm was modified
to consider not only one class but all related classes of a given instance.
As the hierarchical data structure represents a subsumption relation, any
new instance provided from the data stream also belongs to its ancestors.
Thus, we traverse the hierarchy to update all data summaries of parent nodes
recursively until the root node of the hierarchy.

– Regarding the streaming input data, the algorithm must store incremen-
tal statistical descriptors instead of the actual instances. Thus, we need to
compute the mean, the standard deviation, and the count of data instances
assigned to each class incrementally, discarding the instance after it is ana-
lyzed.

Regarding the stated problem approach, GNB-hDS represents the class tax-
onomy in a tree structure using local classifiers at each parent node and assigns
leaf node classes as the last class of one predicted label path �yt (mandatory
leaf-node and single path prediction) [35].

We point out that although the GNB-hDS method has been implemented
here in a more specific way regarding the stated problem, GNB-hDS also sup-
ports direct acyclic graphs and non-mandatory leaf node prediction in its con-
cept. To that, the data structure of a given node in the hierarchy should allow
links with more than one parent node, and the top-down strategy used in the pre-
diction step must consider some stopping criteria (e.g., a probability threshold)
resulting in partial depth label paths.

Figure 3 illustrates the process performed by GNB-hDS. Circles represent
classes, and dashed squares enclose classifiers. The method represents the class
taxonomy in a tree structure, where R stands for the root node of the hierarchy
and classes are related with each other (as described in Sect. 2).

When receiving an incoming instance for prediction, the method tackles the
hierarchy using a Local Classifier per Parent Node (LCPN) approach [35], thus
analyzing the current parent node and predicting between its child nodes by
using probabilities obtained with the Bayes’ Theorem. This process is repeated
until a leaf node is reached.

Each node in the tree stores the count of instances (n), a d-dimensional incre-
mental mean (x̄n) and a d-dimensional incremental standard deviation (σn) of
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the class represented (as shown in class 2). After the incoming instance pro-
cessing, the statistical descriptors (n, x̄nσn) are updated incrementally with the
instance feature values on all the classes through the hierarchy regarding the
ground-truth label path of that instance.

Fig. 3. Illustration of GNB-hDS method.

As before introduced, the instances are represented by data summaries com-
prising three statistical descriptors stored incrementally: (i) the count of class
instances, (ii) the d-dimensional mean instance, and (iii) the d-dimensional stan-
dard deviation of the instances of a given class.

The number of instances assigned to a class C is stored in an attached
counter. When an instance is retrieved from the stream, the C-th class counter
is incremented alongside the counters of C’s ancestors.

The incremental mean (x̄n) and the incremental standard deviation (σn) con-
sidering each attribute from a d−dimensional xn instance are obtained, respec-
tively, from Eqs. 1 and 2, where n stands for the number of instances observed
so far assigned to C [15,40].

Also, it is important to reinforce that the incremental mean and the incre-
mental standard deviation are d-dimensional descriptors as the features set and
its values from the d-dimensional xn instance. Note that Eqs. 1 and 2 support
only continuous feature sets and the current mean and the standard deviation
of the previous observed instances assigned to C are represented by x̄n−1 and
σn−1.

x̄n =
(x̄n−1(n − 1)) + xn)

n
(1)

σn =

√
(n − 2) σ2

n−1 + (n − 1) (x̄n−1 − x̄n)2 + (xn − x̄n)2

n − 1
(2)

The prediction of the class to be assigned to an incoming instance provided
from the data stream is performed in three steps: (i) computation of the a
priori probabilities based on the count of class instances, (ii) computation of
likelihood probabilities based on the Bayes’ Theorem for each attribute of the
incoming instance, and (iii) calculation of the maximum value of the a posteriori
probability from the product of the independent feature probabilities given a
class C.
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The calculation of the likelihood probability is described in Eq. 3, where i
represents a feature index and j a class index [11].

p (xi| Cj) =
1√

2πσ2
i,j

exp

{
−1

2

(
xi − x̄i,j

σi,j

)2
}

(3)

To perform the class assignment, the GNB-hDS obtains the class label with
the maximum value of the a posteriori probability, as described in Eq. 4, from
the product of the independent feature probabilities given C [11].

p (Cj |x) ∝
{∏

i

p (xi| Cj)

}
p(Cj) (4)

Moreover, these three steps are performed from the top of the hierarchy data
structure and repeated until a leaf node is reached, resulting in the union of the
class assignments made from Eq. 4 and representing the final label path assigned
to the incoming instance.

Algorithm 1 shows the proposed Gaussian Naive Bayes for Hierarchical Data
Streams (GNB-hDS ). It receives a hierarchical data stream hDS supplying
instances (�x, �y) over time and, if required, outputs a set of predicted labels (a
label path) �̂yi for each given instance (�x, �y), where �x represents a d-dimensional
features set and its values, and �y represents the corresponding ground-truth label
path of that instance.

The algorithm starts by understanding and representing the class taxonomy
from the hierarchical data stream. The first loop (line 2 onwards) receives an

Algorithm 1:
GNB-hDS - Gaussian Naive Bayes for Hierarchical Data Streams
input : a hierarchical data stream hDS providing instances (�x, �y)

output: a predicted label path ̂�yi for the input instance

1 Tree ← classTaxonomy(hDS);
2 foreach (�x ∈ hDS) do
3 predictedNode ← Tree.root;
4 while ¬(predictedNode.isLeaf) do
5 foreach (childNode ∈ predictedNode.children) do
6 priors ← priorProbability(childNode.Class);
7 end
8 likelihood ← likelihoodProbability(�x,priors);
9 posterior ← posteriorProbability(likelihood,priors);

10 predictedNode ← argmax(posterior);

11 ̂�yi ← ̂�yi ∪ {predictedNode.label};

12 end
13 UpdateStatisticalDescriptors(�yi);

14 end
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incoming instance from the hierarchical data stream. The following loop (lines
4–12) handles the hierarchy using the LCPN approach by predicting one of the
children labels possible for that parent node.

The a priori probabilities are calculated in line 6 using the counts of class
instances. The likelihood and posterior probabilities are calculated in lines 8
and 9 by the application of Eqs. 3 and 4, respectively. The predicted node for
the evaluated parent is obtained in line 10, and the respective single label is
appended to a partial label path �̂yi (line 11). This process is repeated until a
leaf node is reached and the label path �̂yi is complete and ready to be output
by the algorithm.

Finally, the algorithm updates the statistical descriptors (the count n of
class instances, the incremental mean instance x̄n, and the incremental standard
deviation σn) of all classes contained in �yi, from the leaf to the root class.

5 Analysis

In this section, we report the experimental analysis conducted to compare our
proposal against existing works in hierarchical data stream classification. First,
we provide the experimental protocol adopted. Next, we discuss the results in
terms of prediction and performance.

5.1 Experimental Protocol

Table 1 depicts the 14 hierarchically labeled datasets used in our testbed, listing
their number of instances, features, and classes, the number of labels per level in
the hierarchy (from top-level to leaf level), and references. These datasets con-
tain different features, instances, and domains, thus assessing how our proposal
behaves in different scenarios.

Table 1. Datasets used in the experiment.

Dataset Instances Features Classes Labels per level Reference

Entomology 21,722 33 14 4, 6, 9, 10 [28]

Ichthyology 22,444 15 15 2, 6, 12, 15 [28]

Insects-a-b 52,848 33 6 1, 1, 2, 6 [37]

Insects-a-i 355,275 33 6 1, 1, 2, 6 [37]

Insects-i-a-r-b 79,986 33 6 1, 1, 2, 6 [37]

Insects-i-a-r-i 452,044 33 6 1, 1, 2, 6 [37]

Insects-i-b 57,018 33 6 1, 1, 2, 6 [37]

Insects-i-g-b 24,15 33 6 1, 1, 2, 6 [37]

Insects-i-g-i 143,323 33 6 1, 1, 2, 6 [37]

Insects-i-i 452,044 33 6 1, 1, 2, 6 [37]

Insects-i-r-b 79,986 33 6 1, 1, 2, 6 [37]

Insects-i-r-i 452,044 33 6 1, 1, 2, 6 [37]

Insects-o-o-c 905,145 33 24 4, 10, 14, 24 [37]

Instruments 9,419 30 31 5, 10, 31 [28]
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During the experiments, classifiers were assessed in terms of hierarchical F-
measure [24]. Like traditional classification metrics, the hierarchical F-Measure
(hF ) relies on hierarchical precision and recall components, but instances are
associated with a path of labels, and the entire path is evaluated.

The hierarchical F-Measure is depicted in Eq. 5, while its precision (hP )
and recall (hR) components are described in Eqs. 6 and 7, respectively. In both
precision and recall metrics, �̂yi is the set of labels predicted for the i-th instance,
and �yi is its corresponding ground-truth label set.

hF =
2 × hP × hR

hP + hR
(5)

hP =

∑
i

∣∣∣�̂yi ⋂ �yi

∣∣∣∑
i

∣∣∣�̂yi∣∣∣ (6)

hR =

∑
i

∣∣∣�̂yi ⋂ �yi

∣∣∣∑
i |�yi|

(7)

We report the hF metric using the prequential test-then-train [10,20] valida-
tion method, where each instance is used to test the model before it is used for
training and updating [10,21].

Furthermore, we measured the time performance by calculating the number
of instances that a classifier can process per second.

We compared our proposed GNB-hDS to the hierarchical kNN described in
Sect. 3 proposed in [28], hereafter referred to as kNN-hDS. We set up kNN-hDS
with k ∈ {1, 3, 5} and n (buffer size) ∈ {5, 10, 15, 20}. The method GNB-hDS
does not require setting parameters.

Finally, the results obtained by both methods were assessed using Wilcoxon
hypothesis tests [41] with a 95% confidence level according to the protocol pro-
vided in [16] to verify significant differences in the hF and instances processed
per second rates obtained by both methods.

The experiments in this paper were performed using Python 3.7. The pro-
posed script containing the GNB-hDS method, as well as the datasets, are freely
available for download1.

5.2 Results

Table 2 shows the Hierarchical F-measure (hF ) and Instances per second rates
obtained by kNN-hDS and GNB-hDS in the datasets (greater values are high-
lighted in bold). In the kNN-hDS method, rates represent the best hF results
obtained in the parameters configuration (as described in Sect. 5.1).

In terms of predictive performance assessment, the GNB-hDS method
obtained better hF rates in 10 out of the 14 datasets. However, hF values are

1 http://www.ppgia.pucpr.br/∼jean.barddal/datasets/GNB-hDS.zip.

http://www.ppgia.pucpr.br/~jean.barddal/datasets/GNB-hDS.zip
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Table 2. Hierarchical F-measure (hF ) and Instances per second rates obtained during
experiments.

hF (%) Instances per second

Dataset kNN-hDS GNB-hDS kNN-hDS GNB-hDS

Entomology 51.51 48.64 127 379

Ichthyology 40.55 46.82 157 395

Insects-a-b 80.95 81.11 151 489

Insects-a-i 79.14 80.88 153 494

Insects-i-a-r-b 79.49 81.42 153 495

Insects-i-a-r-i 78.52 81.57 153 491

Insects-i-b 79.78 80.55 148 500

Insects-i-g-b 83.29 81.53 158 483

Insects-i-g-i 78.94 80.40 154 495

Insects-i-i 78.63 80.90 152 497

Insects-i-r-b 80.14 78.57 153 491

Insects-i-r-i 78.60 81.61 153 494

Insects-o-o-c 55.24 64.14 75 282

Instruments 65.42 48.31 79 262

Average 72.16 72.60 140.43 446.21

similar across both methods, such that the average difference between them is
0.44% while favoring GNB-hDS. Despite the improvements, the Wilcoxon test
showed no statistical difference between hF rates obtained by the methods (p-
value = 0.2209).

Concerning processing speed comparison, the GNB-hDS method was able to
process more instances per second across all datasets, with an average rate of
446.21 instances against 140.43 of the kNN-hDS method. Thus, on average, our
method was able to process 3.2 times more instances than the kNN-hDS method.

A one-tailed Wilcoxon test indicated a statistical difference between instances
per second rates obtained by both methods (p-value = 0.0005) and confirmed
that GNB-hDS is significantly faster when compared to kNN-hDS method.

Considering predictive performance and processing speed rates, GNB-hDS
can obtain computational performance improvements without significant threats
to the predictive performance by using statistical summaries of data combined
with the class hierarchy information.

As aforementioned, the GNB-hDS method uses the premise of a Gaussian
(normal) data distribution to deal with instance representation in the learning
model [30]. In this sense, in addition to the previously described analysis, we
investigated if GNB-hDS could use its premise to obtain better hF rates when
data is normally distributed.

Thus, the GNB-hDS method, in addition to its speed, would present an
additional advantage to the kNN-hDS method (or to any other method that
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does not use the premise of data normality) since it would be more adapted to
classify normally distributed data. This advantage can be even more noticeable
when we consider the data stream context, where data are potentially unbounded
and statistical descriptors, such as mean and standard deviation, are more likely
to obtain better representations of the population.

To examine this claim, we perform a Shapiro-Wilk test of normality [34] in all
the datasets and applied the Yeo-Johnson power transformation technique [44]
in all data to improve their adherence to a more normal distribution. The data
normality was measured by Shapiro-Wilk test before and after the application
of the Yeo-Johnson transformation.

Table 3 depicts the Shapiro-Wilk W statistic before (raw data) and after
(transformed data) the Yeo-Johnson transformation. W statistic is bounded by
1, and closer values to this upper bound represent data more fitted to a normal
distribution.

In addition, Table 3 depicts the Hierarchical F-measure (hF ) obtained by
both GNB-hDS and kNN-hDS methods when applied in both raw and trans-
formed datasets. One can note that the predictive performance of GNB-hDS
was improved when using transformed data in 13 out 14 datasets. Likewise, the
average hF increased 2.35%, with noticeable increases in some datasets, such as
Entomology (5.23%) and Insects-o-o-c (5.32%). Oppositely, kNN-hDS could not
achieve the same improvements. In fact, kNN-hDS obtained lower hF rates with
the transformed data resulting in a decrease of 1.6% in the average hF from
72.16% to 70.56%.

Table 3. Shapiro-Wilk W statistic of datasets and Hierarchical F-measure (hF)
obtained by GNB-hDS with raw and transformed data.

Shapiro-Wilk W statistic hF (%) obtained by GNB-hDS hF (%) obtained by Local

kNN-hDS

Dataset Raw data Transformed

data

Raw data Transformed

data

Raw data Transformed

data

Entomology 0.7489 0.9517 48.64 53.87 51.51 51.07

Ichthyology 0.9028 0.9839 46.82 50.27 40.55 35.86

Insects-a-b 0.7236 0.9240 81.11 81.90 80.95 78.78

Insects-a-i 0.7248 0.9272 80.88 84.05 79.14 76.96

Insects-i-a-r-b 0.7268 0.9273 81.42 83.48 79.49 78.48

Insects-i-a-r-i 0.7234 0.9269 81.57 83.40 78.52 76.60

Insects-i-b 0.7239 0.9239 80.55 82.28 79.78 77.90

Insects-i-g-b 0.7280 0.9273 81.53 81.42 83.29 81.66

Insects-i-g-i 0.7227 0.9288 80.40 83.16 78.94 77.02

Insects-i-i 0.7234 0.9269 80.90 83.05 78.63 76.58

Insects-i-r-b 0.7250 0.9252 78.57 79.58 80.14 79.03

Insects-i-r-i 0.7234 0.9269 81.61 83.45 78.60 76.60

Insects-o-o-c 0.7416 0.9468 64.14 69.46 55.24 55.03

Instruments 0.9689 0.9868 48.31 49.93 65.42 66.25

Average 0.7577 0.9381 72.60 74.95 72.16 70.56
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Finally, we performed one-tailed Wilcoxon tests to verify if the results
obtained with the transformed datasets are significantly higher than with raw
data for both GNB-hDS and kNN-hDS methods.

On kNN-hDS, the test indicated a statistical difference between performances
with both data (p-value = 0.0009) favoring raw data, i.e., kNN-hDS does not
benefit from a more normal distributed data. In contrast, on GNB-hDS the
test indicated a statistical difference between performances with both data (p-
value = 0.0006) favoring the transformed data and has confirmed that GNB-hDS
can take advantage of a more normal distribution-like data, thus corroborating
our claims.

6 Conclusion

In this paper, we proposed GNB-hDS, an algorithm for hierarchical classification
of data streams using data summaries to represent data. Our proposal is incre-
mental and handles potentially unbounded data streams with constant memory
consumption. Consequently, the proposed method processes more instances per
second without dreadful impacts in prediction rates when compared to existing
kNN-based techniques. To the best of our knowledge, our method extends the
state-of-the-art being the first incremental method based on Bayes’ Theorem
tailored for hierarchical data streams classification.

The resulting source code and all the datasets used in the experiments are
freely available for download to be used as a baseline to further research on the
hierarchical classification of data streams, such as data preprocessing, computa-
tional resources analysis, and concept drift detection and adaptation.

In future works, we are interested in designing and applying other data sum-
maries and different window types to maintain more than one a priori proba-
bilities per class to allow a posteriori probabilities calculation weighted by data
newness. Also, we are interested in applying existing drift detectors [6,8,17] to
increase the responsiveness to changes in the data distribution.
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Abstract. Several coarsening algorithms have been developed as a pow-
erful strategy to deal with difficult machine learning problems repre-
sented by large-scale networks, including, network visualization, trajec-
tory mining, community detection and dimension reduction. It itera-
tively reduces the original network into a hierarchy of gradually smaller
informative representations. However, few of these algorithms have been
specifically designed to deal with bipartite networks and they still face
theoretical limitations that need to be explored. Specifically, a recently
introduced algorithm, called MLPb, is based on a synchronous label
propagation strategy. In spite of an interesting approach, it presents the
following two problems: 1) A high-cost search strategy in dense net-
works and 2) the cyclic oscillation problem yielded by the synchronous
propagation scheme. In this paper, we address these issues and propose
a novel fast coarsening algorithm more suitable for large-scale bipartite
networks. Our proposal introduces a semi-synchronous strategy via cross-
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reduces the oscillation phenomenon. The empirical analysis in both syn-
thetic networks and real-world networks shows that our coarsening strat-
egy outperforms previous approaches regarding accuracy and runtime.

Keywords: Complex networks · Bipartite networks · Multilevel
method · Multiscaling analysis

1 Introduction

Bipartite networks are a broadly pervasive class of networks, also known as two-
layer networks, where the set of nodes is split into two disjoint subsets called
“layers” and links can connect only nodes of different layers. These networks are
widely used in science and technology to represent pairwise relationship between
categories of entities, e.g. documents and terms, patient and gene expression (or
clinical variables) or scientific papers and their authors [17,19]. Over the last
years, there has been a growing scientific interest in bipartite networks given
their occurrence in many data analytic problems, such as community detection
and text classification.

Several coarsening algorithms have been proposed as a scalable strategy to
address hard machine learning problems in networks, including network visual-
ization [29], trajectory mining [15], community detection [30] and dimensionality
reduction [21]. These algorithms build a hierarchy of reduced networks from an
initial problem instance, yielding multiple levels-of-detail, Fig. 1. It is commonly
used for generating multiscale networks and, most notably, as a step of the well-
known multilevel method.

Fig. 1. Coarsening process. In (a), group of nodes are matched; in (b), the original net-
work is coarsened, i.e., matched nodes are collapsed into a super-node and links incident
in matched nodes are collapsed into super-edges; the coarsest network is illustrated in
(c). The coarsening process is repeated, level by level, until the desired network size is
reached.

However, only a few coarsening algorithms have been specifically designed to
deal with bipartite networks, as showed in a recent survey [28], and they still
face theoretical limitations that open for scientific investigation. Specifically, a
recently introduced algorithm, proposed in [24], called MLPb, is based on a label
propagation strategy that uses the diffusion of information to build a hierarchy
of informative simplified representations of the original network. It implements
a high time-cost strategy that searches the whole two-hop neighborhood of each
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node, which limits its use to sparse networks with a low link-density. As an
additional limitation, MLPb uses a synchronous strategy which is known to
yield a cyclic oscillation problem in some topological structures, as bipartite
components.

To overcome these issues, we propose a novel fast coarsening algorithm based
on the cross-propagation concept suitable for large-scale bipartite networks.
Specifically, two-fold contribution:

– We design a novel coarsening algorithm that uses a semi-synchronous strat-
egy via cross-propagation, which only considers the direct neighbors of nodes,
which implies a cost-efficient implementation and can deeply reduce the oscil-
lation phenomenon.

– We improve the classical cross-propagation strategy using the multilevel pro-
cess by adding two restrictions: The first defines the minimum number of
labels at the algorithm convergence and the second enforces size constraints
to groups of nodes belonging to the same label. These restrictions increase the
potential and adaptability of cross-propagation to foster novel applications in
bipartite networks and can foster future research.

The empirical analysis, considering a set of thousands of networks (both
synthetic and real-world networks), demonstrated that our coarsening strategy
outperforms previous approaches regarding accuracy and runtime.

The remainder of the paper is organized as follows: First, we introduce the
basic concepts and notations. Then, we present the proposed coarsening strategy.
Finally, we report results and summarize our findings and discuss future work.

2 Background

A network G = (V, E , σ, ω) is bipartite (or two-layer) if its set of nodes V and
V1 ∩ V2 = ∅. E is the set of links, wherein E ⊆ V1 × V2. A link (u, v) may have
an associated weight, denoted as ω(u, v) with ω : V1 × V2 → R; and a node u
may have an associated weight, denoted as σ(u) with σ : V → R. The degree of
a node u ∈ V is denoted by κ(u) =

∑
v∈V w(u, v). The h-hop neighborhood of

u, denoted by Γh(u), is formally defined as the nodes in set Γh(u) = {v | there
is a path of length h between u and v}. Thus, Γ1(u) is the set of nodes adjacent
to u; Γ2(u) is the set of nodes 2-hops away from u, and so forth.

2.1 Label Propagation

The label propagation (LP) algorithm is a popular, simple and time-effective
algorithm, commonly used in community detection [20]. Every node is initially
assigned to a unique label, then, at each iteration, each node label is updated
with the most frequent label in its neighborhood, following the rule:

l
′
u = arg max

l∈L

∑

v∈Γ1(u)

δ(lv, l), (1)
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wherein lv is the current label of v, l
′
u is the new label of u, L is the label set for

all nodes and δ is the Kronecker’s delta. Intuitively, groups of densely connected
nodes will converge to a single dominant label.

LP has been widely studied, extended and enhanced. The authors in [1]
proposed a modified algorithm that maximizes the network modularity. The
authors in [11] presented a study of LP in bipartite networks. The authors in
[12], improved in [2], introduced a novel algorithm that maximizes the modularity
through LP in bipartite networks. The authors in [7] presented a variation of
this concept to k-partite networks. In the multilevel context, the authors in [14]
proposed a coarsening algorithm based on LP and, recently, the authors in [24]
extended this concept to handle bipartite networks.

Synchronous LP formulation can yield cyclic oscillation of labels in some
topological structures, as bipartite, nearly bipartite, ring, star-like components
and other topological structures within them. Specifically, after an arbitrary
step, labels values indefinitely oscillate between them, i.e. a node exchanges its
label with a neighbor and, in a future iteration, this exchange is reversed. This
problem is illustrated in Fig. 2.

A B C

D E

(a)

E E E

A A

(b)

A A A

E E

(c)

E E E

A A

(d)
. . .
(e)

Fig. 2. Oscillation phenomenon. In (a), labels are randomly assigned to nodes; in (b),
a propagation process updates the labels; in the subsequent iterations, labels values
indefinitely oscillate between them.

To suppress this problem, it is used the asynchronous [20] or semi-
synchronous [4] strategy, in which a node or a group of nodes is updated at a time,
respectively. For bipartite networks are common to apply the cross-propagation
concept, a semi-synchronous strategy [11], in which nodes in a selected layer are
set as propagators and nodes in the other layer are set as receivers. The process
is initially performed from the propagator to the receivers, then it is performed
in the reverse direction, as illustrated in Fig. 3.

Fig. 3. Cross-propagation in bipartite networks. In (a), labels are propagated from top
layer to bottom layer; in (b), the process is performed in the reverse direction.
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2.2 Coarsening in Bipartite Networks

A popular strategy to solve large-scale network problems (or data-intensive
machine learning problems) is through a multiscale analysis of the original prob-
lem instance, which can involve a coarsening process that builds a sequence of
networks at different levels of scale. Coarsening algorithms are commonly used
as a step of the multilevel method, whose aim is to reduce the computational
cost of a target algorithm (or a task) by applying it on the coarsest network. It
operates in three phases [25]:

Coarsening phase: Original network G0 is iteratively coarsened into hierarchy
of smaller networks {G1,G2, · · · ,GH}, wherein GH is the coarsest network.
The process implies in collapsing nodes and links into single entities, referred
to as super-node and super-link, respectively.

Solution finding phase: The target algorithm or a task is applied or evaluated
in the coarsest representation GH.

Uncoarsening phase: The solution obtained in GH is projected back, through
the intermediate levels {GH−1, GH−2, · · · , G1}, until G0.

It is notable that the coarsening is the key component of the multilevel
method, since it is problem-independent, in contrast to the other two phases
that are designed according to the target task [25]. Therefore, many algorithms
have been developed and, recently, some strategies able to handle bipartite net-
works have gained notoriety.

One of the first, proposed in [22,23], called OPMhem (one-mode projection-
based matching algorithm), decomposes the bipartite structure into two unipar-
tite networks, one for each layer. Although it increases the range of analysis
options available (as classic and already established algorithms), this decom-
position can lead to loss of information, reflecting in the performance of the
algorithm.

Later, the authors in [27] introduced two coarsening algorithms, called RGMb
(random greedy matching) and GMb (greedy matching), that uses directly the
bipartite structure to select a pairwise set of nodes. They use the well-known and
useful concept of a two-hop neighborhood. As a drawback, performing this search
on large-scale bipartite networks with a high link-density can be computationally
impractical.

Recently, the authors in [24] proposed a coarsening based on label propaga-
tion through the two-hop neighborhood. Despite its accuracy, it uses a standard
and synchronous propagation strategy that can lead to instability and it does
not guarantee the convergence.

The growing interest in coarsening algorithms for bipartite networks is recent
and current strategies faces several theoretical limitations that remain mostly
unexplored, consequently, open to scientific exploration. To overcome these
issues, in the next section, we present a novel coarsening strategy.
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3 Coarsening via Semi-synchronous Label Propagation
for Bipartite Networks

We design a coarsening strategy via semi-synchronous label propagation for
bipartite networks (CLPb). We use the cross-propagation concept to diffuse
labels between layers. After the convergence, nodes in the same layer that belong
to the same label will be collapsed into a single super-node.

3.1 Algorithm

A label is defined as a tuple Lu(l, β), wherein l is the current label and β ∈
[0, 1] ⊂ R

+ is its score. At first, each node u ∈ V is initialized with a starting
label Lu = (u, 1.0/

√
κ(u)), i.e. the initial Lu is denoted by its id (or name) with

a maximum score, i.e. β = 1.0. To reduce the influence of hub nodes1, in all
iteration, β must be normalized by its node degree, as follows:

L′
u =

(

li,
βi√
κ(u)

)

(2)

Each step propagates a new label to a receiver node u selecting the label with
maximum β from the union of its neighbors’ labels, i.e. Lu = ∪Lv ∀ v ∈ Γ1(u),
according to the following filtering rules:

1. Equal labels Leq ⊆ Lu are merged and the new β
′

is composed by the sum
of its belonging scores:

β
′
=

∑

(l,β)∈Leq

β, (3)

2. The belonging scores of the remaining labels are normalized, i.e.:

Lu = {(l1,
β1

βsum
), (l2,

β2

βsum
), . . . , (lγ ,

βγ

βsum
)}, (4)

βsum =
γ∑

i=1

βi, (5)

where γ is the number of remaining labels.
3. The label with the largest β is selected:

L′
u = arg max

(l,β)∈Lu

Lu. (6)

4. The size of the coarsest network is naturally controlled by the user, i.e. require
defining a number of reduction levels, a reduction rate or any other parameter
to fit a desired network size. Here, the minimum number of labels η for each
layer is a user-defined parameter. A node u ∈ Vi, with i ∈ {1, 2} define a

1 The highest-degree nodes are often called hubs.
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layer, is only allowed to update its label if, and only if, the number of labels
in the layer |Li| remains equal to or greater than ηi, i.e.:

|Li| ≤ ηi. (7)

5. At last, a classical issue in the multilevel context is that super-nodes tend to
be highly unbalanced at each level [25]. Therefore, is common to constrain
the size of the super-nodes from an upper-bound μ ∈ [0, 1] ⊂ R

+, which limits
the maximum size of a group of labels in each layer:

Si =
1.0 + (μ ∗ (ηi − 1)) ∗ |Vi|

ηi
, (8)

wherein μ = 1.0 and μ = 0 implies highly imbalanced and balanced groups
of nodes, respectively. Therefore, a node u with weight σ(v) can update its
current label l to a new label l

′
if, and only if:

σ(u) + σ(l
′
) ≤ Si and σ(l

′
) =

∑

v∈l′
σ(v). (9)

If restrictions 3 or 4 are not attained, the algorithm returns to step 3; the label
with the maximum β is removed and a new ordered label is selected. The process
is repeated until a label that satisfies the restrictions 3 and 4 is obtained. Figure 4
shows one step of CLPb in a bipartite network using the previously defined
strategy. The propagation process is repeated T (user-defined parameter) times
until the convergence or stops when there are no label changes.

Fig. 4. One step of the CLPb algorithm in a bipartite network. In (a), the process is
performed from the top layer, considering the propagators nodes ∈ V1, to the bottom
layer, considering the receiver nodes ∈ V2. At first, represented in (b), equal labels are
merged. In (c), second step, remaining labels are normalized. In third step, the label B
is selected, as showed in (d). In (e), the restriction 4 and 5 are tested. Finally, label B
is propagated to the node in the bottom layer, as illustrated by the black dashed line.

After the cross-propagation convergence, the algorithm collapses each group
of matched nodes (i.e. nodes with same label) into a single super-node. Links
that are incident to matched nodes are collapsed into the so-called super-links.
Figure 5 illustrates this process.
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Note, the CLPb process does not guarantee that the desired minimum num-
ber of labels η will be reached at the current level, i.e. the algorithm can stop with
a number of labels greater than the desired one. However, the multilevel pro-
cess naturally mitigates this problem, since CLPb is performed, level by level,
in the subsequent coarsened networks, until the desired number of nodes are
reached. I.e., the original network G0 is iteratively coarsened into a hierarchy of
smaller networks {G1,G2, · · · ,GH, · · · }, wherein GH is an arbitrary level. Table 1
summarizes three levels automatically achieved by CLPb when evaluated in the
UCForum [10].

Fig. 5. Contraction process. In (a), group of nodes are matched using CLPb algorithm;
in (b), the original network is coarsened, i.e., nodes that share labels are collapsed into
a super-node and links incident to matched nodes are collapsed into super-edges.

Table 1. UCForum: contains 899 users and 522 posts on forums. Considering η1 = 30
and η2 = 50 as an input user-parameter, CLPb automatically builds three levels to
reach the desired network size.

Level |V1| |V2|
G0 899 522

G1 258 258

G2 68 67

G3 30 50

Naturally, users can control the maximum number of levels and the reduction
factor ρ for each layer, rather than input the desired number of nodes in the
coarsest network. In this case, the desired number of nodes for each layer and in
each level can be defined as exemplified in Eq. 10. Alternatively, users can stop
the algorithm in an arbitrary level. However, this is a technical decision and the
stop-criterion in Eq. 10 is commonly used in the literature [25].

ηi = (1 − ρi) ∗ |Vi| (10)
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3.2 Complexity

The computational complexity of the LP is near-linear regarding the number of
links, i.e., O(|V|+ |E|) steps are needed at each iteration. If a constant number of
T iterations are considered, then O(T (|V|+ |E|)). The contraction process (illus-
trated in Fig. 5), first, iterates over all matched nodes ∈ VH to create super-nodes
∈ VH+1, then, each link in EH is selected to create super-links ∈ EH+1, there-
fore, O(|V| + |E|). These complexities are well-known in the literature, and the
expanded discussion can be found in [25] and [20]. Based on these considerations,
the CLPb complexity is O(T (|V| + |E|)) + O(|V| + |E|) at each level.

4 Experiments

We compared the performance of CLPb with four state-of-the-art coarsening
algorithms, namely MLPb, OPMhem, RGMb and GMb (discussed in Sect. 2 and
presented in the survey [28]). First, we conducted an experiment in a set of thou-
sands of synthetic networks and, then, we test the performance of the algorithms
in a set of well-known real networks.

A common and practical approach to verify the quality of a coarsened repre-
sentation is mapping each super-node as a group (community or cluster) and
evaluate them using quality measures. This type of analysis is considered a
benchmark approach in the literature, as discussed in the recent surveys [25,28]
and in other studies, as [6,8,9,18,24]. Therefore, it is natural to use this analysis
in our empirical evaluation.

The following two measures were considered: normalized mutual information
(NMI) [13], which quantifies the quality of the disjoint clusters comparing the
solution found by a selected algorithm with the baseline (or ground truth), and
Murata’s Modularity [16], which quantifies the strength of division of a network
into communities. Experiments were executed on a Linux machine with an 6-core
processor with 2.60 GHz and 16 GB main memory.

4.1 Synthetic Networks

The benchmark analysis was conducted on thousands of synthetic networks
obtained employing a network generation tool called BNOC, proposed in [26].
Each network configuration was replicated 10 times to obtain the average and
standard deviation. Default parameters are presented in [26].

First, we evaluated the sensibility of the algorithms regarding the noise level
in the networks. The noise level is a disturbance or error in the dataset (the
proportion of links wrongly inserted), e.g., 0.5 means that half of the links are
not what they should be. Noise can negatively affect the algorithm’s performance
in terms of accuracy.

A set of 1000 synthetic bipartite networks with distinct noise level was gen-
erated, as follows: |V| = 2, 000 with |V1| = |V2|, noise within the range [0.0, 1.0]
and 20 communities for each layer. Figure 6(a) depicts the NMI values for the
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evaluated algorithm as a function of the amount of noise. The algorithms exhibit
distinct behaviors. MLPb and CLPb obtained high NMI values with a low level
of noise, however, NMI values for MLPb decrease quickly after 0.22 noise level,
whereas CLPb decreases slowly. Therefore, MLPb revealed a high noise sensibil-
ity. Although GMb, RGMb and OPMhem algorithms obtained the lowest NMI
values, mainly, within the range [0.0, 0.4], their performances decrease slowly
compared with MLPb.

We also evaluated the sensibility of the algorithms regarding the number
of communities in the networks. A set of 1000 synthetic bipartite networks
with distinct number of communities was generated, as follows: |V| = 2, 000
with |V1| = |V2|, communities within the range [1, 500] and 0.3 of noise level.
Figure 6(b) depicts the NMI values for the evaluated algorithm as a function
of the number of communities. GMb, RGMb and OPMhem presented a high
sensibility to a low number of communities in the network, specifically, within
the range [1, 100], in contrast, CLPb and MLPb obtained high NMI values in
the same range. Within the range [200, 500], all algorithms obtained close NMI
values.

Fig. 6. NMI of the algorithms in relation to the noise level (a) and number of commu-
nities and (b) in 2, 000 synthetic networks.

A Nemenyi post-hoc test [5] was applied to the results depicted in Figs. 6(a)
and 6(b) to detect statistical differences in the performances of the algorithms.
The critical difference (CD) is indicated at the top of each diagram and algo-
rithms’ average ranks are placed in the horizontal axis, with the best ranked
to the left. A black line connects algorithms for which there is no significant
performance difference. According to the Nemenyi statistics, the critical value
for comparing the mean-ranking of two different algorithms at 95 percentiles
is 0.04, i.e. significant differences are above this value. CLPb was ranked first
followed by GMb, the pair MLPb and RGMb and then, in last, OPMhem. Fur-
thermore, CLPb performs statistically better than MLPb, RGMb and OPMhem

algorithms.
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Fig. 7. Nemenyi post-hoc test applied to the results depicted in Figs. 6(a) and 6(b).

We assessed the scalability of the algorithms in terms of the absolute and
relative total time spent. First, a set of 1000 synthetic networks with distinct
link-density was generated, as follows: link-density within the range [0.01, 0.99],
wherein 0.01 indicates very sparse networks and 0.99 indicates very dense net-
works with m ≈ n2; |V | = 5, 000 with |V 1| = |V 2| and 20 communities at
each layer. Figure 8 shows how each algorithm contributed to the total time,
in both absolute values, Figs. 8(a) and 8(b), and relative values, Fig. 8(c) (val-
ues shown on top of the bars). The total time spent running the experiments
was 419, 857.968 s, or nearly 116 h. CLPb spent 4, 351.2 s, which is nearly 1.0%
of the total time, furthermore, CLPb ran 18 to 35 times faster than the other
algorithms. GMb and OPMhem were the most expensive algorithms.

Fig. 8. Runtime as a function of link-density in 1, 000 synthetic networks: (b) and (c)
shows the total time spent for each algorithm on the experiments, absolute and relative
values, respectively.
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A set of 1000 synthetic bipartite networks with distinct number of nodes
was generated, as follows: the number of nodes within the range [1, 000, 40, 000]
and communities as a percentage of the number of nodes, i.e. |V | ∗0.01. Figure 9
shows how each algorithm contributed to the total time, in both absolute values,
Figs. 9(a) and 9(b), and relative values, Fig. 9(c) (values shown on top of the
bars). The total time spent running the experiments was 128, 151.711 s, or nearly
35 h. CLPb spent 5, 644.2 s, which is nearly 4.4% of the total time, furthermore,
CLPb ran 3, 3 to 8, 2 times faster than the other algorithms. GMb and OPMhem

were the most expensive algorithms.

4.2 Real-World Networks

We considered six real-world bipartite networks available at KONECT (the
Koblenz Network Collection) [10]. We took the largest connected component
of each network. Network properties are detailed in Table 2(a). Murata’s modu-
larity was used to obtain the accuracy of the algorithms by reducing the networks
to 30%, 50% and 80% of its original sizes.

Fig. 9. Runtime as a function of the number of nodes in 1, 000 synthetic networks: (b)
and (c) show the total time spent for each algorithm on the experiments, absolute and
relative values, respectively.
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Considering 30%, 50% and 80% of network reduction, summarized in
Tables 2(b), 2(c) and 2(d), CLPb yielded the best values on 4, 5 and 3 net-
works, respectively; and MLPb yielded the best values on 2 networks at each
of the three cases. The pair GMb and OPMhem obtained the best value on one
network with 80% of network reduction.

A Nemenyi post-hoc test was applied to the results, shown in Figs. 10(a),
10(b) and 10(c), obtained from 30%, 50% and 80% of network reduction, respec-
tively. Figure 10(d) summarizes the overall results. According to the Nemenyi
statistics, the critical value for comparing the average-ranking of two algorithms
at the 95 percentile is 1.11. According to Fig. 10(d), CLPb was ranked best,
followed by MLPb, the pair GMb and OPM and, in last, RGMb. Furthermore,
CLPb performs statistically better than GMb, RGMb and OPMhem.

The empirical investigation showed that CLPb yielded more accurate and sta-
ble results compared to the standard algorithms and requires considerably lower
execution time. It is a strong indicator of its performance on large-enough prob-
lem sizes and must foster the development of novel scalable solutions defined in
bipartite networks, including network visualization, trajectory mining, commu-
nity detection or graph partitioning, data dimension reduction and optimization
of high-complexity algorithms [3,15,27].

Table 2. Modularity scores of the algorithms: (a) summaries the properties of the
networks; (b), (c) and (c) presented modularity scores of the algorithms considering
30%, 50% and 80% of network reduction, respectively.

(a)
Dataset |V1| |V2| |E|
Ucforum 248 610 1,249
MCrime 754 509 1,377
N-reactome 8,788 15,433 41,087
Condmat 13,861 19,466 53,628
Movielens 3,919 2,378 8,868
Dbpedia 54,909 19,866 98,895

(b)
Dataset CLPb MLPb GMb RGMb OPMhem

Ucforum 0.139 0.181 0.135 0.120 0.135
MCrime 0.589 0.564 0.556 0.541 0.556
N-reactome 0.453 0.438 0.431 0.391 0.431
Condmat 0.455 0.463 0.454 0.409 0.454
Movielens 0.293 0.273 0.242 0.233 0.242
Dbpedia 0.520 0.507 0.475 0.449 0.475

(c)
Dataset CLPb MLPb GMb RGMb OPMhem

Ucforum 0.165 0.264 0.145 0.119 0.145
MCrime 0.651 0.624 0.630 0.583 0.630
N-reactome 0.540 0.517 0.467 0.427 0.467
Condmat 0.563 0.557 0.530 0.454 0.530
Movielens 0.330 0.325 0.248 0.234 0.248
Dbpedia 0.583 0.583 0.517 0.480 0.517

(d)
Dataset CLPb MLPb GMb RGMb OPMhem

Ucforum 0.291 0.282 0.129 0.109 0.129
MCrime 0.696 0.724 0.773 0.663 0.773
N-reactome 0.622 0.567 0.496 0.437 0.496
Condmat 0.585 0.700 0.611 0.536 0.611
Movielens 0.382 0.364 0.254 0.220 0.254
Dbpedia 0.645 0.691 0.542 0.524 0.542
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Fig. 10. Nemenyi post-hoc test: (a), (b) and (c) represent the results depicted in Tables
(b), (d) and (d); alternatively, (d) summarizes the overall results.

5 Conclusion

We have proposed a novel time-effective semi-synchronous coarsening algorithm
to handle large-scale bipartite networks, called CLPb. We introduce the cross-
propagation concept in the model to overcome unstable issues, as the cyclic oscil-
lations found state-of-the-art algorithms. Furthermore, CLPb employs a search
strategy that only visits the immediate neighborhood of each node, which is
more suitable to evaluate large-scale networks even with high link-density. Con-
sequently, the algorithm has low computational complexity.

Empirical analysis on thousands of networks provided compelling evidence
that CLPb outperforms the state-of-the-art algorithms regarding accuracy and
demands considerably shorter execution times, specifically, CLPb was 4 to 35
times faster as compared to the established algorithms.

Note, this study intended to present our algorithm and validate them from
an empirical approach following the state-of-the-art guidelines [28]. We now
intend to employ the CLPb in real applications, e.g., in future work, we plan
to extend the CLPb to dimension reduction and semi-supervised classification
tasks. Another issue that deserves further attention is its application to network
visualization.
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Abstract. Data availability in a wide variety of domains has boosted
the use of Machine Learning techniques for knowledge discovery and clas-
sification. The performance of a technique in a given classification task
is significantly impacted by specific characteristics of the dataset, which
makes the problem of choosing the most adequate approach a challenging
one. Meta-Learning approaches, which learn from meta-features calcu-
lated from the dataset, have been successfully used to suggest the most
suitable classification algorithms for specific datasets. This work proposes
the adaptation of clustering measures based on internal indices for super-
vised problems as additional meta-features in the process of learning a
recommendation system for classification tasks. The gains in performance
due to Meta-Learning and the additional meta-features are investigated
with experiments based on 400 datasets, representing diverse application
contexts and domains. Results suggest that (i) meta-learning is a viable
solution for recommending a classifier, (ii) the use of clustering features
can contribute to the performance of the recommendation system, and
(iii) the computational cost of Meta-Learning is substantially smaller
than that of running all candidate classifiers in order to select the best.

Keywords: Meta-learning · Meta-features · Characterization
measures · Clustering problems

1 Introduction

Data analysis is a pervasive activity in several areas of industrial and scientific
activities, often involving Machine Learning (ML) approaches, which have been
successfully applied in a wide variety of domains [35]. However, the variability
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of dataset characteristics makes it challenging to accurately select the most ade-
quate ML approach to handle new data. This issue has also been tackled from
a ML perspective, where the task is learning, based on meta-data extracted
from several datasets related to a given application or domain, a model to
predict which ML approach may be better suited for exploring that partic-
ular domain. This approach, commonly referred to as Meta-Learning (MtL),
has shown promising results in predicting classifier performances for a problem,
based on statistical or geometrical characteristics of a dataset [16].

MtL approaches consist of the data-driven selection of techniques, through
knowledge extracted from previous tasks, which may be then applied by a recom-
mendation system to predict the preferred approach for a new, previously unseen
problem [4]. This depends on the construction of a meta-dataset from the infor-
mation on a group of datasets in the class of the problem. For each dataset in the
group, its descriptive characteristics (meta-features) are extracted and combined
into one or more meta-examples, which are then labeled according to the observed
performances of different ML algorithms or an order-preserving transformation
such as their rank [4], composing the target feature to be predicted. From the
meta-dataset, a meta-model can be induced by a learning algorithm and then
used in a recommendation system to predict which algorithm is expected to have
the best performance when a new problem needs to be addressed [34].

Despite their success, most MtL studies still lack an in-depth analysis of the
meta-features [29] which are known to be crucial in the successful use of MtL [3].
Several works propose new meta-features [15–17], but only a few present impor-
tant details such as their asymptotic computational cost, the degree of infor-
mation presented, or the importance of the meta-features for the investigated
problems [16,24].

This paper presents the use of clustering measures as meta-features in an
MtL framework, to learn a recommendation system for classifiers. These clus-
tering measures are based on internal indices which extract information, such
as compactness or separation, to evaluate the goodness of a clustering struc-
ture. Although some of these measures have been used in unsupervised MtL
scenarios [26,37], this work proposes the use of those measures on classification
problems. The proposed approach uses class labels as cluster indicators rather
than the numerical results of a clustering algorithm, and is expected to extract
informative measures for quantifying statistical or geometrical characteristics of
datasets.

The main goal of this paper is to investigate whether clustering measures
can be applied in this context, and whether they influence the choices of the
recommendation system. The experimental results suggest that including these
measures as meta-features contributes to more accurate recommendations in
the problem of classifier selection. Additionally, an initial evaluation of compu-
tational costs indicates that this MtL approach is substantially less computa-
tionally expensive than testing all classifiers on the dataset for the selection of
the best one.
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2 Background

This section presents the background information necessary to describe the pro-
posed approach: Sect. 2.1 introduces the Meta-Learning framework, including the
process of building a meta-dataset and how to recommend algorithms. Section 2.2
elaborates on clustering meta-features, a subset of internal indices based on com-
pactness and separation of the goodness of a clustering structure.

2.1 Meta-learning

Different algorithms have distinct learning strategies, thus the essence of learning
can only be captured by considering different learning algorithms with diverse
biases to acquire domain specific information [4]. This concept was initially intro-
duced to make the algorithm selection problem systematic [30], and the goal is
to predict the best algorithm to solve a specific given problem, when more than
one option is available.

The components of this model are the space of problem instances (P); the
space of instance meta-features (F); the space of algorithms (A); and the space
of evaluation measures (Y). From these components, an MtL system can obtain
a model capable of mapping a dataset or problem p ∈ P, described by meta-
features f ∈ F , into one algorithm α ∈ A able to solve the problem with a
good predictive performance according to measure y ∈ Y. The meta-learner
recommendation would be the algorithm with the best expected y(α(p)). This
can be further improved, for instance, by the inclusion of components which may
guide theoretical support to refine the recommendation system [34].

A crucial component of these previous approaches is the definition of the
meta-features (F) used to describe general properties of datasets [3]. They must
be able to provide evidence on the future performance of the algorithms in A
and to discriminate, with an acceptable computational cost, the performance of
a group of algorithms. The main meta-features used in the MtL literature can
be divided into six main groups [31], called standard meta-features in this work.
They represent meta-features based general high-level summaries of the data,
statistical and information theory properties of the data, properties of Decision
Trees (DTs) induced from the data and the performance of simple and fast
learning algorithms [9,25,29].

Another concern is the definition of the set of problem instances (P), since
the use of a large number of diverse datasets is recommended to induce a reli-
able meta-model [4]. Attempts to reduce the bias in this choice include using
datasets from different data repositories, such as UCI [13] and OpenML [36]. The
importance of problem diversity is based on the underlying assumption that the
meta-model is expected to generalize the acquired knowledge when faced with
new problem instances without explicit constraints in terms of expected problem
characteristics.

The selected algorithms A represent a set of candidate algorithms to be
recommended in the algorithm selection process. Ideally, these algorithms should
also be sufficiently different from each other and represent all regions in the
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algorithm space [34]. The models induced by the algorithms can be evaluated
by different measures. Quality measures Y for assessing the models depend on
the nature of the problem. Classifiers, for example, can be evaluated by different
measures such as accuracy, Fβ , area under the ROC curve (AUC) or the Kappa
coefficient, among others.

The step following the extraction of meta-features from the datasets and
training the set of algorithms is the labeling of meta-examples in the meta-
base. The three properties most frequently used in this task are [4]: (i) the
best performing algorithm on the meta-example’s dataset (a meta-classification
problem); (ii) the ranking of the algorithm according to its performance (a meta-
ranking problem); and (iii) the raw performance value of each algorithm on the
dataset (a meta-regression problem).

Differently from previous works on MtL applied on clustering data [26,37],
this work presents a MtL regression task based on the use of clustering meta-
features using internal indices, to extract information like separation and com-
pactness on a supervised scenario using the class labels. In this case, the main
objective is to improve the algorithm recommendation using internal indices,
motivated by their generally low computational cost and high degree of infor-
mation. The standard meta-features [31] are considered to provide a comparison
baseline and to allow an objective analysis of the variation in performance result-
ing from using the new clustering meta-features. The evaluation of the recom-
mender system includes assessing the performance in the base- and meta-levels
and the cost in execution time.

2.2 Clustering Meta-features

A few definitions must be presented before the description of the clustering
measures. Let X ∈ R

N×q be a matrix of N observations, each represented by a
q-dimensional vector x� ∈ R

q; and UK(X) = {X1,X2, . . . , XK} be an exhaustive
partition of X into K mutually exclusive clusters Xk with sizes nk > 0, k =
1, . . . ,K. In all definitions below, the clustering meta-features are functions of a
partition UK(X), which in the case of this paper is given by the class labels. The
UK(X) is kept implicit in the definitions in order to keep the notation cleaner,
but the reader should keep this relationship in mind.

Let x̄k denote the mean point of all observations belonging to cluster Xk,
and ¯̄x denote the grand mean of all observations in X. Also, let dist(·, ·) denote
the distance (e.g., Euclidean) between two points. Then,

δij � min
x∈Xi
y∈Xj

dist(x,y) (1)

denotes the single-linkage distance between the two clusters Xi, Xj , and

Δk � max
x,y∈Xk

dist(x,y) (2)

represents the diameter of a cluster Xk.
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Additionally, consider some vectors of distances. Let d+ ∈ R
NW be a vector

of all NW within-cluster distances (i.e., all distances between pairs of points
having equal class labels in the data), d− ∈ R

NB be a vector containing all NB

between-cluster distances (between pairs of points having different class labels),
and d• ∈ R

NT denote a vector containing the distances between all NT pairs of
points in X, with NT = NW + NB .

Finally, let the following quantities be defined: the within-groups sum of
squares,

WGSS =
K∑

k=1

∑

xi∈Xk

[dist(xi, x̄k)]2 , (3)

and the between-groups sum of squares,

BGSS =
K∑

k=1

nk [dist(x̄k, ¯̄x)]2 . (4)

Given the preceding definitions, the clustering meta-features used in this
work are formalized as follows:

– Dunn’s separation index (V DU) [14]:

V DU = min
i,j∈[1,K]

i�=j

δij

max
k∈[1,K]

Δk
. (5)

– Davies-Bouldin index (V DB) [11]:

V DB =
1
K

K∑

i=1

max
j �=i

Δi + Δj

dist(x̄i, x̄j)
. (6)

– Baker-Hubert index (Γ ) [1]: let

s+ =
∑

∀di∈d+

∑

∀dj∈d−
One(di < dj) and s− =

∑

∀di∈d+

∑

∀dj∈d−
One(di > dj)

(7)
where One(condition) is a function that returns 1 if the condition is true and
0 otherwise; then:

Γ =
s+ − s−

s+ + s− . (8)

– Tie-corrected Kendall tau (τ) [12]:

τ =
s+ − s−

√
NW NBNT (NT − 1)/2

. (9)
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– Ray-Turi index (ν) [28]:

ν =
1
N

WGSS

min
i�=j

δ2ij
. (10)

– Mean inter-centroid distance (INT ) [2]:

INT =
2

K(K − 1)

K−1∑

k=1

dist(x̄k, x̄k+1). (11)

– Global silhouette index (SIL) [32]: for a given point x ∈ Xk, let a(x) denote
the mean distance between this point and all other points belonging to the
same cluster, Xk; d(x, k′) denote the mean distance between this point and
all points belonging to a distinct cluster Xk′ (k′ �= k); and

b(x) = min
k′ �=k

d(x, k′). (12)

The silhouette width of point x is then calculated as

S(x) =
b(x) − a(x)

max(b(x), a(x))
, (13)

and the global silhouette index can be calculated as

SIL =
1
K

K∑

k=1

∑

∀x∈Xk

S(x)
nk

. (14)

– Point biserial index (PB) [12]:

PB =
( |d+|1

NW
− |d−|1

NB

)√
NW NB

N2
T

. (15)

with | · |1 denoting the �1 norm of a vector.
– Calinski-Harabasz index (CH) [8]:

CH =
(N − K) BGSS

(K − 1) WGSS
. (16)

– Xie-Beni index (XB) [38]:

XB =
1
N

WGSS

min
i�=j

δij
. (17)

– Normalized Relative Entropy (NRE) [26]:

NRE =
K∑

k=1

nk

N
log2

(nk

N

)
. (18)
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– C index (C) [21]: let smin denote the sum of the NW smallest elements of d•

and smax the sum of its NW largest elements. Then:

C =
|d+|1 − smin

smax − smin
. (19)

– Mean of distances to cluster centroids (CM):

CM =
1
K

K∑

k=1

∑

∀xi∈Xk

dist(xi, x̄k) (20)

– Connectivity (CN) [7,19]:

CN =
N∑

i=1

L∑

j=1

I (xi, ηj (xi)) , (21)

where ηj (xi) denotes the j-th nearest-neighbor to point xi, and I (xi, ηj (xi))
is an indicator function that receives the value of 1/j if xi and ηj (xi) belong
to the same cluster, zero otherwise.

– Average scattering for clusters (SDscat) [18]:

SDscat =

K∑
k=1

∣∣σ̂2
k

∣∣
2

K
∣∣σ̂2

•
∣∣
2

, (22)

where σ̂2
• denotes the vector of variance estimates for all attributes in all clus-

ters, and σ̂2
k is the vector of variance estimates for all attributes considering

only the observations in the k-th cluster.
– Total separation between clusters (SDdis) [18]:

SDdis =
κmax

κmin

K∑

k=1

⎛

⎜⎜⎝
K∑

k′=1
k′ �=k

dist (x̄k, x̄k′)

⎞

⎟⎟⎠

−1

(23)

where:

κmax = max
k′ �=k

dist (x̄k, x̄k′) and κmin = min
k′ �=k

dist (x̄k, x̄k′) . (24)

– Akaike’s Information Criterion (AIC) [33]: The AIC of a first-order multiple
linear regression model of class labels on each attribute of the dataset. The
linear model is given by

class(xi) = β̂0 + β̂xi + ei, (25)

with class(xi) denoting the numerically-encoded class of point xi ∈ X, β̂0

and β̂ representing the fitted coefficients of the model, and ei the residual
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related to the i-th observation in the dataset. The AIC of the model is then
given as:

AIC = −2 ln(L) + 2q (26)

where ln L is the log-likelihood value estimated for the model (25).
– Bayesian Information Criterion (BIC) [33]: The BIC of the regression model

described in (25), which is calculated as:

BIC = −2 ln(L) + q ln(N) (27)

3 Methodology

This works aims to investigate the use of clustering measures as meta-features
for learning a recommendation system for classification tasks. More specifically,
the standard and clustering meta-features are used in the MtL setup designed
to predict the accuracy of some popular classification techniques for a given
dataset. The objectives are: (i) to determine whether the MtL approach results in
an improved recommendation system; (ii) to investigate whether the clustering
meta-features contribute to the performance of this recommendation system;
and (iii) to characterize the execution times required to extract each set of
meta-features.

To train and assess the meta-learner, a meta-dataset was populated with the
meta-feature values (both clustering and standard meta-features) for a collec-
tion of problem instances, labeled with the performances of known classification
techniques. The meta-models were induced by regression techniques and evalu-
ated in the base-level, measuring the predictive performance of the classifiers,
and the and meta-level, measuring the impact of recommending the best one.
The computational costs for theses processes was recorded for evaluation.

Four hundred datasets from the OpenML repository [36], representing diverse
application contexts and domains, were used in this experiment. They were
selected considering a maximum number of 10, 000 observations, 500 features
and 10 classes, to constrain the computational costs of the process. For each
dataset, both standard and clustering meta-features, as described in Sect. 2.2,
were computed. The averages of 10-fold cross-validated predictive accuracies
achieved by each of five classification techniques, for each dataset, were also
calculated for labeling the meta-examples.

The classification approaches used were: C4.5 decision tree [27] with pruning
based on subtree raising; k-Nearest Neighbors (kNN) model [22] with k = 3;
Multilayer Perceptron (MLP) [20] with learning rate of 0.3, momentum of 0.5
and a single hidden layer; Random Forest (RF) [5] with 500 trees; and Support
Vector Machine (SVM) [10] with radial basis kernel. These hyper-parameter
values were defined following the standard configurations of the implementations
used.

This process resulted in a meta-dataset containing 130 meta-features (112
standard and 18 clustering) and 400 samples for each classifier, labeled by the
mean accuracy of the classification method. This meta-dataset was then used to
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train regression models to estimate the expected accuracy of each classifier, as a
function of the meta-features. Five regression techniques known to have differ-
ent biases were tested: Classification And Regression Trees (CART) [6] algorithm
with pruning; Distance-weighted k-Nearest Neighbor (DWNN) [22] with k = 3
and Gaussian kernel; Multilayer Perceptron Regression (MLPR) [20] with learn-
ing rate of 0.3, momentum of 0.5 and a single hidden layer; Random Forest
Regressor (RFR) [5] with 500 trees; and Support Vector Regression (SVR) [10]
using radial basis kernel. As with the classifiers, the regressor hyper-parameters
were also set as the default values of the implementations used without any
problem-specific tuning.

To train and evaluate the regression models, 10-fold cross-validation rounds
were also executed. The models obtained were evaluated for quality, considering
a comparison to two simple baselines: Random (RD) and Default (DF). The RD
baseline represents the observed performance of a randomly chosen classifier in
the meta-base. The DF baseline was set as the accuracy of the classifier that
most often presented the best classification performance across all datasets.

The final step is the analysis of the trade-off between the computational cost
of each set of meta-features and that of evaluating all classifiers, in a cross-
validation setup, through direct comparison of single threaded experiments. The
experiments were done in a cluster node with two Intel Xeon E5-2680v2 pro-
cessors and 128 GB DDR3. The standard meta-features, as well as some of the
clustering ones, are provided by the mfe package1.

4 Experimental Results

Since the main goal of algorithm recommender systems using MtL is to suggest,
within the known options, the algorithm with the most appropriate bias to a
particular dataset [4], the first analysis of this experiment focuses on such objec-
tive. Figure 1 presents the results of two analyses on the meta-base involving the
classifiers on the selected 400 datasets.

The distribution of accuracy values, summarized by the boxplots in Fig. 1a,
suggests that all approaches have generally similar distributions of performance
values across the datasets employed, with reasonably high median accuracies for
most problems. Random Forest has a slightly higher median value than the oth-
ers, while kNN has the lowest median and the largest variability in performance
values. Figure 1b shows how many times each algorithm was the “winner”, i.e.
the number of datasets for which each presented the best performance. These
results imply that the set of choices is considered adequate for MtL since each
one was the best performing in a non-empty subset of the dataset. It is clear from
the figures that RF was most frequently the best classifier in the dataset, which
means it will be the most probable choice for the random baseline recommender
system and the fixed choice for the default baseline one.

To investigate their quality on the task of learning to recommend a classi-
fier, the selected regressors (MLPR, CART, DWNN, SVR, and RFR) and the
1 https://github.com/rivolli/mfe.

https://github.com/rivolli/mfe


462 L. P. F. Garcia et al.

(a) Distribution of accura-
cies per classifier.

(b) Number of times each
classifier was ranked as
best.

Fig. 1. Performance of classifiers over the 400 datasets.

two baselines regressors (RD and DF) were applied to the meta-dataset consid-
ering two sets of meta-features: the 112 standard meta-features (described in
Sect. 2.1) and the full set of 130 meta-features (incorporating the 18 clustering
measures from Sect. 2.2). Figure 2 shows the average normalized mean squared
error (NMSE) of each meta-regressor on predicting the expected accuracy of the
classifiers for each set of meta-features, estimated by 10-fold cross-validation.

Fig. 2. The log-scaled NMSE for each combination of meta-feature set, classification
and regression models.

The boxplots indicate that all meta-regressors provided better predictions
than the baseline approaches (with the exception of a single observation for the
MLPR regressor). RFR seems to have a slight advantage when compared to the
other regressors, for both sets of features. MLPR, CART, DWNN and SVR show
a similar performance distribution in most cases, with MLPR having a higher
interquartile range and a few outliers.

Although visual inspection does not necessarily provide a clear winner
between the two sets of meta-features, it is sufficient to indicate that: (i) they
are clearly less error-prone than the baselines, and (ii) their NMSE values show
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a relatively low variance. More objectively, an ANOVA model followed by Dun-
nett pairwise comparisons indicates a statistically significant difference at the
95% confidence level between the MtL algorithms (in aggregate) against the two
baselines (p < 10−10 for both the MtL×DF and MtL×RD comparisons). The
effects of different meta-feature sets, classifier methods and distinct replicates
were removed by blocking [23].

A second analysis was conducted to investigate the effect of adding the clus-
tering meta-features on the predictive ability of the meta-regressors. This anal-
ysis was performed by removing the two baseline methods and fitting a blocked
ANOVA model [23] on rank-transformed data (required in this case to meet the
ANOVA assumptions), with the meta-feature sets as the experimental factor
and the classifier methods, meta-regressors, and replicates as blocking factors.
This test reveal a statistically significant positive effect of adding the clustering
ones on the performance of the best regressor, RFR, across all classifiers (paired
t-test for standard×full meta-feature sets, p = 0.036).

Figure 3 shows the results of a direct comparison between the recommended
classifier. The x-axis lists the meta-regressors and the y-axis shows the percent
differences in accuracy, averaged over all datasets. As seen in the analysis of Fig. 2
there is a noticeable advantage of using the MtL approaches over the random
baseline (RD), as well as against the fixed choice of RF, which is best overall
classifier (DF), in the case of the three most successful regressors. The magnitude
of the gains is also substantial, with 40–50% gains over RD and 10–20% gains
over DF in the case of DWNN, RFR and SVR.
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Fig. 3. Differences between base-classifier accuracies over baselines. Vertical lines rep-
resent standard errors.

The impact of the meta-features can be further investigated via the analysis
of the RFR model. Figure 4 shows the most relevant meta-features, according to
their individual contribution to the reduction of the mean squared error, MSE
(measured as the increase in MSE when that meta-feature was omitted), as well
as their corresponding groups. The x-axis lists the meta-features in decreasing
order of relevance, with the mean change in MSE shown in the y-axis. Vertical
bars indicate standard errors of estimation.
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Fig. 4. Top-ranked meta-features selected by the RFRs in log-scale, based on the aver-
age increase in MSE when the meta-feature is omitted.

The standard meta-features are more strongly represented, as expected due
to their informative value [31]. Some meta-features appear more than once due
to distinct summarization functions being used. Landmarking measures, which
mainly relate to the performance of simple meta-models induced by the kNN,
Näıve Bayes and simple node DT algorithms, represent over half of the top
features. Interestingly, six of the 18 clustering features are ranked in the 20 most
relevant for the RFR model, in this order: sil, ch, ray, vdb, c index and nre. This
suggests that these features are relevant to the MtL task, at least for the case of
the RFR meta-regressor, which would corroborate the result of the hypothesis
test performed on the data of Fig. 2.

Finally, the practical applications of using clustering meta-features for a MtL
recommender system must consider the computational costs involved. The trade-
off between the runtime of the characterization process and the evaluation of all
alternative data modeling algorithms considered to solve the task under study
should favor the former in order to make the recommendation system useful.

Figure 5 presents the results of a runtime analysis to evaluate this trade-off
for the proposed approach. This analysis exhaustively compared the single-thread
runtime cost for extraction of the standard and clustering meta-features to the
cost for running all classification algorithms. In the figure, each point represents
the cost for processing a dataset in a log×log scale. The x-axis shows the cost
for running all classifiers while the y-axis shows the cost for extracting the meta-
features. This enables a straightforward visual analysis: if a point is above the
line, the y value is less than the x value, thus running the classifiers is more
expensive than extracting the features.

The standard meta-features are cheaper than running all classification algo-
rithms in around 89% of the cases. The clustering features are considerably
cheaper than that running all classification algorithms. This low cost in compu-
tation, associated with the informative nature of some of the clustering meta-
features (seen in Fig. 4), suggests their usefulness in, and their potential for,
improving MtL recommender systems.



Evaluating Clustering Meta-features for Classifier Recommendation 465

Classifiers

S
ta

nd
ar

d 
m

et
a −

fe
at

ur
es

1e+01 1e+03 1e+05

1e+01

1e+03

1e+05

Elapsed Time (seconds in log−scale)

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
 in

 lo
g−

sc
al

e)

(a) Runtime of the standard
meta-features.

Classifiers

C
lu

st
er

in
g 

m
ea

su
re

s

1e+01 1e+03 1e+05

1e+01

1e+03

1e+05

Elapsed Time (seconds in log−scale)

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
 in

 lo
g−

sc
al

e)

(b) Runtime of the clustering
meta-features.

Fig. 5. Execution times for computing meta-features compared to applying all classi-
fiers.

5 Conclusions and Future Works

This work investigated both the gains in performance associated with MtL in
general, and the use of clustering meta-features in a recommender system for
classification algorithms. Experimental results showed that the selected classi-
fiers were adequate for a recommender system and that using the recommended
model resulted in improvements over a random or fixed (best expected) algo-
rithm choice.

The results presented in this paper suggest two tentative conclusions: (i) that
meta-learning, as an approach to recommend classifiers for unseen problems,
has the potential to provide good choices with a reduced computational budget;
and (ii) that clustering-based meta-features are suitable to enhance this MtL
task, which may indicate that they are able to capture relevant properties from
datasets to describe the performance of classifiers.

Future works include investigating the impact of the underlying grouping
structure of the datasets in the adequacy of the clustering meta-features, as well
as investigating the correlations of the meta-features to enable the selection of
a more efficient, parsimonious subset of meta-feature. The incorporation of a
more diverse set of classification algorithms for the recommender system and
the incorporation of hyper-parameter tuning for the classifiers and regressors
also represent interesting new areas for research.
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Abstract. Mobility data analysis has received significant attention in
the last few years. Enriching spatial-temporal trajectory data with
semantic information, which is the definition of Multiple Aspect Trajec-
tories, presents lots of opportunities, but also many challenges. Regarding
trajectory classification, the state-of-the-art method called MASTER-
Movelets has shown to have the best classification accuracy over sev-
eral datasets. Indeed, this method generates interpretable patterns called
movelets which are the most discriminant sequences of points. Despite
its increased performance, the method is computationally expensive and
does not scale well, which makes its application unfeasible for large
datasets. In this paper we propose a pivot based approach to reduce the
search space, selecting only most promising trajectory points to extract
movelets. We additionally provide a method to define a limited number of
semantic dimensions for movelets. Experiments show that the proposed
method is at least 50% faster for extracting the movelets, and shows a
average drop of 82% of input to the classification models while keeping a
similar classification accuracy level. Additionally, our scalability analysis
with respect to computation time shows that the proposed method scales
better than the other methods as the dataset grows in number of points,
trajectories and dimensions.

Keywords: Trajectory classification · Multiple aspect trajectories ·
Data mining · Movelets

1 Introduction

Mobility data analysis is important to different purposes and applications. The
movement of people, vehicles, ships, and hurricanes are examples of mobility
data. This data are represented as a sequence of points located in space and
time, called moving object trajectories.

In 2016 emerged the concept of multiple aspect trajectories [3,10], a broader
concept in which spatio-temporal points can be enriched with several semantic
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Fig. 1. Example of multiple aspect trajectory.

aspects, as shown in Fig. 1. The meaning of semantic aspect is any type of
information that is neither spatial nor temporal. This information represents any
aspect as the name of a visited place or Point of Interest (POI), the price or rate
of the place, the weather condition, the transportation mode, the individual’s
mood, etc. This new trajectory representation poses new challenges on trajectory
data mining, specially in classification, which is the problem we focus in this
paper.

Trajectory classification is the task of finding the class label of the moving
object based on its trajectories [8]. It is important for identifying the strength
level of a hurricane [8], the transportation mode of a moving object [2], the
type of a vessel (cargo, fish, tourism, etc.) [8], the user that is the owner of a
trajectory [5], etc. The great challenge related to multiple aspect trajectory clas-
sification is the large number and the heterogeneity of the dimensions associated
to each trajectory point. Most works for trajectory classification have developed
methods for a specific problem or application, and considered only space and
time information, as summarized in [9]. On the contrary of traditional classifi-
cation literature that propose new classifiers, trajectory classification relies on
developing new methods for feature extraction to feed a classifier.

A recent method designed for robust trajectory classification and that has
been specifically developed for multiple aspect trajectories is MASTERMovelets
[5]. It extracts the subtrajectories that better discriminate each class, which
are called movelets, and that are used as input to classification algorithms.
MASTERMovelets automatically explores all possible dimension combinations
in each subtrajectory of any size in the dataset, while seeking for the best sub-
trajectories for representing the classes. The movelets represent the behavior of
a class, and they are normally frequent subtrajectories inside a class, i.e., they
are movement subsequences that are recurrent patterns of a class and not com-
mon to other classes. A subtrajectory may have any length in terms of number
of points, and MASTERMovelets explores all possible subtrajectory sizes (e.g.
one point, two points, etc.). Indeed, it explores all dimension combinations (e.g.
space; space and time; space, time and POI category, etc.) in order to choose the
most discriminant ones, what makes the method very robust, but also very time
consuming. Therefore, to use it on real world datasets, more efficient strategies
must be developed for extracting movelets.
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In this work we propose a new method for discovering movelets, that is based
on [5], and uses a pivot strategy, called SUPERMovelets. The pivots are the
trajectory parts (or subtrajectories) inside a class that will potentially generate
the best movelet candidates. By introducing this concept, initially our approach
reduces the search space for movelet discovery by computing the distance of one
subtrajectory only to subtrajectories within the same class, finding the pivots.
Moreover, instead of using all dimensions, our method automatically selects the
number of dimensions that better characterize each class. As a consequence, the
proposed method contributes to a significant dimensionality reduction in terms
of movelets that will be used by the classifier for reducing the classification
training time. In summary, we make the following contributions: (i) we propose
a new and more efficient method for discovering movelets, maintaining similar
accuracy levels; (ii) propose a smart strategy that automatically selects the best
number of dimensions for each class; (iii) mitigate the curse of dimensionality
problem, by reducing the number of movelets; (iv) present a robust experimental
evaluation to show the computational time reduction and scalability.

The rest of the paper is organized as follows: Sect. 2 presents the main works
related to multiple aspect trajectory classification, Sect. 3 presents the main
concepts for understanding our approach, Sect. 4 describes our method, Sect. 5
presents the experimental evaluation, and Sect. 6 concludes the paper.

2 Related Works

Existing methods for trajectory classification do not propose new classifiers.
The focus is usually on discovering a set of discriminant features that better
characterize a trajectory class [4,8,9]. In this paper we limit the state of the art
to works that consider semantic aspects of trajectories. A complete list of works
for both raw and multiple aspect trajectory classification can be found in [9].

The first works to use some semantic information for classification are
reported in [14,15]. These works collected data from smartphones such as lati-
tude, longitude, altitude, and date, plus deriving other features like speed, and
matching bus or metro lines to classify the user movement in walking, running,
or driving. The works of [6,7,19] consider only semantic dimensions. In [7] the
authors use the semantics of the roads to segment trajectories for classification of
vehicles. The methods presented in [6] and [19] use the POI identifier to classify
the moving object.

The algorithms Movelets [4] and MASTERMovelets [5] discover relevant sub-
trajectories, which are called movelets, without the need of extracting other fea-
tures. However, the processing time and computational cost are extremely high.
The main difference between these methods is that Movelets encapsulates the
distances of all trajectory dimensions in a single distance value, while MASTER-
Movelets (that has a higher complexity) keeps the distance of each dimension in a
vector of distances, and therefore achieves a much better accuracy than Movelets
when using all data dimensions. MASTERMovelets [5] was specifically developed
for multiple aspect trajectory classification, and it largely outperformed state-
of-the-art methods in terms of accuracy. Furthermore, the resulting movelets
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are interpretable, giving insights about the data, so the classification results are
explainable.

The work of [16] performs much faster than Movelets [4], providing a similar
classification accuracy level, but for a single dimension. When combining several
dimensions, the user must manually test and select the best dimension combina-
tions, while MASTERMovelets is able to automatically select the best dimension
combinations and generate movelets with heterogeneous and different numbers
and types of dimensions. Another recent work is MARC [12], which uses word
embeddings and encapsulates all trajectory dimensions including space, time and
semantics to feed a neural network classifier. On the spatial dimension this is the
first work that uses the geoHash [11] combined to other dimensions. It reaches a
very high accuracy, outperforming the Movelets [4] when using all dimensions,
but as the classifier is limited to neural networks, the resulting patterns are not
interpretable.

3 Basic Concepts

This section presents the main concepts that are necessary for better under-
standing this work, and are based on [5], as they share the same structures. We
start with the concept of trajectory in Definition 1:

Definition 1. Multiple Aspect Trajectory: a multiple aspect trajectory Ti is a
sequence of m elements Ti = 〈e1, e2, ..., em〉, where each element is characterized
by a set of l dimensions D = {d1, d2, ..., dl}, also called aspects.

In order to simplify the problem, we assume that all trajectory elements
have the same number of aspects. Hereafter we will refer to trajectory aspects
as dimensions.

The behavior patterns of moving objects are normally characterized by a
trajectory part, and not an entire trajectory. A trajectory part is called subtra-
jectory. The subtrajectory concept is detailed in Definition 2:

Definition 2. Subtrajectory: given a trajectory Ti of size m, a subtrajectory
sa,b = 〈ea, ea+1..., eb〉 is a contiguous subsequence of Ti starting at element ea
and ending at element eb, where 1 ≤ a ≤ b ≤ m. The subtrajectory sa,b can
be represented by all the dimensions D or a subset of dimensions D′ ⊆ D.
The length of the subtrajectory is defined as w = |sa,b|. In addition, the set of
all subtrajectories of length w in Ti is represented by Sw

Ti
, and the set of all

subtrajectories of all lengths in Ti is S∗
Ti
.

To generate every possible subtrajectory from each trajectory of the dataset,
it is necessary to consider all possible subtrajectory sizes and combination of
dimensions. Since an element has multiple and heterogeneous dimensions, first
the distances between all elements in the trajectories are calculated, as defined
in Definition 3. The dimensions often store different data types, e.g., categorical,
numerical and so on. Hence, using a vector of distances instead of one aggre-
gated value enable the analysis of different dimensions combinations, and the
use custom distance functions for each dimension.
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Definition 3. Distance vector between two multidimensional elements: the dis-
tance between two multidimensional elements ei and ej represented by c dimen-
sions is dist e(ei, ej), that returns a distance vector V = (v1, v2, ..., vc), where
each vk = distk e(ei, ej) is the distance between the two elements at dimension
k, and respects the property of symmetry distk e(ei, ej) = distk e(ej , ei).

In order to perform trajectory classification, it is necessary to seek for simi-
larities among trajectories of the same class, and compare subtrajectories of the
same length. One way is to seek a position with the minimum distance vector
between a subtrajectory and a trajectory, this position is called best alignment.
Furthermore, the best alignment implies pairing a subtrajectory to a trajectory
either in a subset or all dimensions together. It begins with calculating distances
between the elements of the subtrajectory and a trajectory Ti. For subtrajecto-
ries of two or more elements, each alignment position use a representative vector
of distances that is a sum of element distances for each dimension. Then, the
best alignment consists in ranking the distances vector in each dimension for all
possible positions, and getting the average rank of distance with the lowest value.
As an example of pairing a subtrajectory into a trajectory, Fig. 2 (left) presents
the best alignment of a subtrajectory (movelet candidate) in the trajectory Ti,
in the spatial dimension. We can see that the best alignment, highlighted with a
rectangle, is the position where the distance between subtrajectory of M1 and
the trajectory is minimal.
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Fig. 2. (left) Example of subtrajectory best alignment. (right) Example of split point
selection for a movelet candidate with the dimensions time and POI rating.

The combination of subtrajectories with a subset of the trajectory dimen-
sions are called movelet candidates, and they are evaluated and pruned in order
to identify the most representative subtrajectories of each class. The movelet
candidates are described in Definition 4:

Definition 4. Movelet Candidate: a movelet candidate M from a subtrajectory
sstart,end is a tuple M = (Ti, start, w,C,W, quality, sp), where Ti is a trajectory
of the dataset T; start is the position in Ti where the subtrajectory begins, and
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w is the subtrajectory length (w = |sstart,end|); C is a subset of dimensions such
that C ⊆ D; W is a set of pairs (W s

Tj
, classTj

), where W s
Tj

is a distance vector of
the subtrajectory s(start,end) to each trajectory Tj in T. The distances are calcu-
lated using the best alignment between s(start,end) and each trajectory Tj; quality
is a relevance score given to the candidate M; sp is a set of distance values,
called split points, that better divide the classes used to measure the candidate
relevance.

The set W is the movelet candidate best alignments, it represents the dis-
tances (for each dimension) to all trajectories in the dataset, and one best align-
ment is selected as the split point vector sp. The split point sp is a given point
that divides the multiple dimensional space. Figure 2 (right) presents an example
of split point selection for a given movelet candidate extracted from the class
represented by the x class. This split point is the best alignment in a trajectory
of an opposite class o that best separates the classes considering dimensions
together, which is a similar concept used in Support Vector Machines (SVM).
In the example, we evaluate each trajectory from the o class (t4, t5, t6) using the
values of their best alignment to separate the classes. The split point is selected
by calculating the F-score value for each trajectory that is not the target class.
The chosen split point is the one point that represents the alignment between
the movelet candidate and the trajectory t5, once it gives the best F-score value.
After qualifying each movelet candidate, only those with the best quality, with-
out point overlapping in the trajectory Ti from where it was extracted, are kept
and are called movelets.

Definition 5. Movelet: given a trajectory Ti, and a movelet candidate Mx con-
taining a subtrajectory s with sa,b ⊆ Ti, Mx is a movelet if for each movelet
candidate My containing a subtrajectory uf,g with uf,g ⊆ Ti that overlaps sa,b
in at least one element, Mx.quality > My.quality.

The output is a table |T| × |M| that will be used as input for training the
classification algorithms. Each row of the table is a trajectory, each column is a
movelet from the set of movelets M, and the table values are 1 and 0, in order
to represent the presence or absence of a movelet in a trajectory. A movelet is
present in a trajectory when its best alignment distances to that trajectory is
lower than the split point values. It means that the movelet covers the trajectory
considering the movelet dimensions C and sp values.

4 SUPERMovelets

In this Section we propose SUPERMovelets1, a new method for reducing the
search space and the computational cost for finding movelets. Our method is
inspired by [18] and [13], and finds pivots, which are the relevant trajectory
parts for extracting the movelets. SUPERMovelets also automatically finds a

1 Source code will be published if accepted for publication.
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Fig. 3. Overview of our proposed method.

threshold λ for limiting the maximum number of trajectory dimensions required
in each movelet candidate, as an alternative for not exploring all dimension com-
binations. The pivots and maximum number of dimensions λ are extracted for
each class individually. The SUPERMovelets can be divided in three main steps:
(i) pivot finding, (ii) the automatic selection of λ and (iii) movelets extraction.

Figure 3 presents an overview of our method. Given a trajectory dataset
T, the algorithm starts selecting the trajectories of one class T’ (step 1) for
extracting the pivots. For each trajectory Ti in the class trajectory set, SUPER-
Movelets extracts all movelet candidates (step 2). The method calculates the
relative frequency to each movelet candidate, with respect to the trajectories
of the same class as Ti (step 3) and a threshold τ , the most frequent ones
will become the pivot candidates. After finding the candidates, SUPERMovelets
performs the pivot candidate pruning, where the ones with relative frequency
less than τ are removed (step 4). This step is detailed in Sect. 4.1. Next, it selects
only the pivot candidates with higher frequency that repeats at least once in the
class trajectories (step 5). We suppose that the most discriminant trajectory
parts are the ones that repeat in total or partially in the trajectories of the same
class. It calculates the λ threshold based on the common number of dimensions
in the pivots (step 6), detailed in Sect. 4.2. The pivot points are compared and
merged into SUPER-Pivots when they are neighbors or have overlapping points
(step 7). For last (step 8), the SUPER-Pivots and the maximum number of
dimensions λ will be used for movelet extraction following the same steps as the
MASTERMovelets method, which for each trajectory outputs the movelets and
aggregates the result to the class set of movelets M’ (step 9).

4.1 Pivot Finding

In order to reduce the number of subtrajectories tested for generating movelets,
SUPERMovelets identifies the most promising ones of each class, called pivots
(Definition 6). The pivots are defined by the frequency they appear in each
trajectory, assuming that most frequent subtrajectories are more relevant for
movelet extraction. By doing so, the movelets search space is reduced, and so
is the computational cost, making trajectory classification using movelets faster
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and scalable. Assuming that moving objects have recurrent movement patterns,
and that these patterns are more frequent in trajectories of each individual
and less frequent in trajectories of other individuals, and considering several
data dimensions, we hypothesize that frequent subtrajectories in a class are very
discriminant and can lead to similar classification accuracy results as MASTER-
Movelets while reducing its computational cost.

Definition 6. Pivot Candidate: a pivot candidate is a tuple P = (Ti, s(start,end),
C,W, qualitypiv), where Ti is a trajectory from T; sstart,end is a subtrajectory
extracted from Ti, C is a subset with the candidate dimensions, C ⊆ D; W is
a set of pairs (W s

Tj
, classTj

), that contains the distances of the best alignment
of P to every trajectory T’ that belongs to the same class as Ti. The W s

Tj
is a

distance vector of the subtrajectory s(start,end) to each trajectory Tj in T’. The
qualitypiv is the relative frequency of the P in its class.

The pivot candidates represent subtrajectories of different sizes and with
any dimension combination from trajectories of a given class, and their quality
is based on the relative frequency that they appear in the class. The quality
of the pivots is measured considering all dimensions that are present in the
subtrajectory that originates the pivot candidate. Equation (1) describes this
quality function for a pivot candidate (P) of a class:

qualitypiv =
∑d=|C|

d=1 freqpiv(P, d,T’)
|C| (1)

Where C is the set of trajectory dimensions of P, and the quality is the
average proportion that P occurred in trajectories of the class in each dimension
d of C. As there are different combinations of dimensions in each P, we measure
the relative frequency as the average count that a P occurred in each dimension,
as described in (2).

freqpiv(P, d,T’) =

∑i=|T’|
i=1

{
1, W s

Ti
[d] = 0

0, otherwise.
|T’| (2)

Considering that W s
Ti

[d] is the distance of the pivot candidate for dimension
d, and that |T’| is the number of trajectories of a given class. The relative
frequency of freqpiv(P, d,T’) is the average occurrence of P in each trajectory
of its class. Figure 4 (a) presents an example of the quality given to two pivot
candidates with a single dimension each, both extracted from trajectories of
Class 4 in the figure, which has five trajectories in total (T7 to T11). The first
pivot candidate piva (Fig. 4a) has two points, and was extracted from trajectory
T7. It occurred in trajectories T7, T8, T9 and T11, which represent 80% of the
trajectories from Class 4, thus the quality of this pivot candidate is 0.8. The
second pivot candidate pivb has three points, and was extracted from trajectory
T9. It occurred in trajectories T9 and T11, which represent 40% of the trajectories
of Class 4, thus the quality of this pivot candidate is 0.4.
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(a) (b)

Fig. 4. Filtering by: (a) quality proportion of the pivot candidates; (b) redundant pivot
candidates, both of the same size and trajectory dimensions.

After qualifying each pivot candidate, they are filtered by low quality and
redundancy. The first filter consists in discarding pivot candidates that have
quality lower than τ . The second filter consists in the application of a duplicate
search function over the pivot candidates that passed from the first filter, i.e.,
keeping only pivot candidates that occur at least two times. Figure 4 (b) presents
an example of the redundancy that is tackled by the second filter. The pivot
candidates pivc and pivd are considered redundant when both have the same
size (two trajectory points) and the same trajectory dimensions with the same
values (equal POI names and equal weather conditions).

Finally, the Pivot Finding merges the resultant pivots for identifying in each
trajectory which are the SUPER-Pivots. The main objective of this merging
step is to identify consecutive pivots or the ones that overlap. If two pivots are
consecutive in the trajectory or they share the same point (they have overlapping
points), then the SUPERMovelets ensembles them into one SUPER-Pivot.

4.2 Selection of λ Threshold

To combine all trajectory dimensions to generate all possible subtrajectories,
seeking for the best dimension combination in each movelet candidate, means
that for each subtrajectory there is an explosion of dimension combinations. To
limit this combinatorial explosion, the SUPERMovelets automatically selects the
maximum number of dimensions that a movelet candidate can have based on the
set of pivots, by counting the absolute number of dimensions that each pivot
has, as given in (3). The mode of the number of dimensions present in the set
of pivots of a class is chosen as the threshold λ, given in (4). It means that the
movelet candidates extracted from the trajectories of that class will not have
more dimensions than λ.

freqP(dim) =
i=|P|∑

i=1

{
1, Pi.|C| = dim
0, otherwise. (3)

λ = argmax
dim

freqP(dim) (4)
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4.3 Movelets Extraction

The last step of SUPERMovelets is to extract the movelets. This process follows
the same steps as described in Sect. 3 and MASTERMovelets [5], with the dif-
ference that the movelet candidates are only extracted from the SUPER-Pivots,
and the dimension combination is limited to λ. With this, we aim to make the
trajectory classification faster, scalable and to maintain the same accuracy level
obtained when used the original, and larger, dataset.

5 Experimental Evaluation

We used four datasets publicly available and commonly used by state-of-the-
art methods. They are check-in trajectories enriched with semantic dimensions
from three different Location-Based Social Networks (LBSN). These datasets
were also used in [5] to evaluate MASTERMovelets, which makes fairer and
easier to compare the results. The trajectories were split in weeks in order to
have many trajectory examples for each user as necessary for classification tasks.
The class label is the user which is the owner of the trajectories. Table 1 shows
the characteristics of each dataset, with the number of trajectories, the size of
the smallest and the longest trajectory, the attributes of the dataset and their
classes. All datasets have a large number of classes, ranging from 193 to 300.

Table 1. Summary of the used datasets.

Dataset Description Dataset Description

Brightkite Traj. size 10–50 Gowalla Traj. size 10–50

Trajectories: 7,911 Trajectories: 5,329

Attributes Lat, Lon, POI, Time, Weekday Attributes Lat, Lon, POI, Time, Weekday

Foursquare NY Traj. size 10–144 Foursquare Generic Traj. size 10–144

Trajectories: 3,079 Trajectories: 3,079

Lat, Lon, POI, POI Category

Attributes: Time, Weekday, Weather, Attributes: POI Category, Time, Weekday,

Price, Rating Weather, Price, Rating

Brightkite: is a social media [1] that provides the anonymized user that made
the check-in, the POI semantic reference and the spatio-temporal information of
where and when the check-in was made. We used a total of 300 random users for
analysis, with a filter of a minimum of 10 points and maximum of 50 points per
trajectory to guarantee consistency. Trajectories were enriched with the semantic
information of the weekday of each check-in, and the resultant dataset has a total
of 7, 911 trajectories, with trajectory sizes varying from 10 to 50 points.

Gowalla: has users around the world [1] and has the same dimensions as the
Brightkite. From this dataset we also extracted a total of 300 random users, while
limiting the trajectory sizes for a minimum of 10 and maximum of 50 points, also
enriched with the semantic information of the weekday. The resultant dataset
has a total of 5, 329 trajectories, with sizes ranging from 10 to 50 points.
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Foursquare: dataset from the Foursquare social media with multiple aspect
trajectories in New York, USA [17]. It provides the anonymized user that made
the check-in, the POI and the spatial position in time when the check-in was
made. We considered trajectories with at least 10 check-ins, resulting in 193
users for this dataset. The points were enriched with the semantic information
of the weekday, the POI category from Foursquare API2, the numerical informa-
tion of the price and rating of the POIs, and the Weather from Wunderground
API3. The resultant dataset has a total of 3079 trajectories, with trajectory sizes
varying from 10 to 144. The Foursquare Generic is composed by the same
trajectories from the Foursquare NY, but it consists of a harder problem, where
we removed the specific information of spatial position (lat, lon), and the specific
semantics of the POI, keeping only the POI Category.

5.1 Experimental Setup

We use three evaluation metrics to assess the performance of the SUPER-
Movelets approach: (i) computational cost, (ii) classification Accuracy (ACC)
and (iii) F-Score. The datasets were split using stratified holdout with 70% of
the data for training and 30% for test. After movelet extraction, we used the
Multilayer-Perceptron (MLP), as it is commonly used and achieved the best
results in [5,9]. The model was implemented using Python language, and the
keras4 package. The MLP has a fully-connected hidden layer with 100 units, a
Dropout Layer rate of 0.5, learning rate of 10−3 and Output Layer with softmax
activation. The network was trained using Adam Optimization to improve the
learning time and to avoid categorical cross entropy loss, with 200 of batch size,
and a total of 200 epochs for each training.

In the experiments, we calculated the distance for each dimension by using:
(i) euclidean distance for the space, (ii) difference for the numerical, and (iii)
simple equality (if is equal or not) for the semantics. The experiments were
performed in an Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz, with 4 cores and
main memory of 32 GB.

5.2 Results and Discussion

After running MASTERMovelets for movelet extraction with and without using
SUPERMovelets, we compare the time spent for completing trajectory classi-
fication, the number of movelet candidates generated, the number of movelets
extracted and the accuracy and F-Score obtained in the trajectory classifica-
tion. We tested the movelet extraction with and without using the natural to
log limit the size of subtrajectories (denoted by the -Log suffix) which was orig-
inally designed to improve the movelets extraction speed. Table 2 summarizes
the results. As we can see, the main conclusion is that the SUPERMovelets

2 https://developer.foursquare.com/.
3 https://www.wunderground.com/weather/api/.
4 https://keras.io/.

https://developer.foursquare.com/
https://www.wunderground.com/weather/api/
https://keras.io/
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method makes the movelet extraction at least 70% faster than the cases in which
MASTERMovelets is used alone and at least 50% faster than the MASTER-
Movelets-Log, while maintaining the same accuracy level.

Table 2. Comparison between the number of candidates, computational time, accuracy
and F-Score of each technique.

Dataset MASTERMovelets MASTERMovelets-Log SUPERMovelets SUPERMovelets-Log

Brightkite Candidates 13,997,595 4,264,230 757,488 213,002

Movelets 54,739 56,739 5,514 3,540

Time 17 h 45 m 9 h 45 m 01 h 29 m 00 h 35 m

ACC 95.09 94.58 95.63 95.38

F-Score 95.01 94.37 95.81 95.52

Gowalla Candidates 11,409,135 3,239,865 628,864 211,090

Movelets 52,460 54,739 5,576 3,702

Time 07 h 20 m 3 h 20 m 00 h 55 m 00 h 21 m

ACC 91.72 91.72 91.32 90.91

F-Score 92.22 91.84 92.09 91.61

Foursquare

NY

Candidates 187,853,655 40,680,660 33,922,970 18,819,626

Movelets 35,824 36,874 9,444 8,320

Time 54 h 33 m 18 h 41 m 14 h 40 m 9 h 11 m

ACC 97.27 96.88 97.18 97.76

F-Score 96.53 96.48 95.86 96.72

Foursquare

generic

Candidates 45,723,636 9,981,405 6,257,312 3,191,411

Movelets 20,068 23,975 6,861 5,399

Time 07 h 11 m 02 h 50 m 02 h 04 m 01 h 21 m

ACC 74.20 74.29 74.59 74.39

F-Score 74.56 74.47 74.60 73.22

The most expressive difference in processing time is in the Brightkite dataset,
where the SUPERMovelets-Log completed the task in 35 m, 94% faster than the
MASTERMovelets-Log that made it in 9 h 45. The less expressive difference
is found in the Foursquare NY dataset, where the SUPERMovelets-Log took
9 h 11 to finish the task, while the MASTERMovelets-Log took 18 h 41, a
reduction of 50.84% in time. An important observation is that besides of the time
reduction obtained, and the reduced number of movelet candidates, for any of
the classification results the accuracy loss was less than 1.00% for every dataset.
The fastest method, the SUPERMovelets-Log even increased the accuracy by
0.9% in the Foursquare NY dataset.

Movelet Candidate Generation Analysis. We evaluated the number of
movelet candidates generated by each technique, and the subsequently number
of movelets found. The most expressive difference is in the Brightkite dataset
that SUPERMovelets reduced in 94%, reducing at least 53% (Foursquare NY)
in number of generated movelet candidates (Table 2).
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The proposed method reduce the number of movelets, which are the
attributes that are used for training the classifier, in at least 65% in comparison
to the MASTERMovelets. For example, in the Brightkite dataset, MASTER-
Movelets produced a total of 54, 739 movelets, while SUPERMovelets outputted
5, 514, a reduction of 89.92%, while the SUPERMovelets-Log produced 3, 540,
a reduction of 93.76% compared to MASTERMovelets-Log. This means that
besides reducing the movelet extraction time, it reduced also the dimension-
ality of the classification task, which is inherently high when using movelets.
Indeed, the smallest dimensionality reduction achieved by the SUPERMovelets
was 65, 81% in the Foursquare Generic dataset, in which the MASTERMovelets-
Log method produced 20, 068 movelets, against 6, 861 generated by SUPER-
Movelets, and the SUPERMovelets-Log produced 5, 399, a reduction of 77, 48%.

Scalability Performance Comparison. We evaluate how SUPERMovelets
improves the scalability of movelet extraction over different dataset configura-
tions. We used three synthetic datasets with different characteristics, as designed
in [5]: (i) with fixed number of 200 trajectories and variation in the trajectory
size from 10 to 400 points with 1 dimension, (ii) with fixed trajectory size of
50 points and variation in the number of trajectories in the dataset from 100 to
4000 trajectories with also 1 dimension, and (iii) with fixed number of 200 tra-
jectories and fixed trajectory size of 50 points, but with variation in the number
of dimensions, from 1 to 5.

Figure 5 shows the scalability results for each dataset. In any of the datasets,
we can see that the time spent by MASTERMovelets increases faster than the
others, requiring computational power in a greater scale as the dataset increases.
On the other hand, the time spent by SUPERMovelets-Log increases in a smaller
scale in every dataset, and is the faster compared technique, as it demands
less computation time, with a time reduction of 98.0% in comparison to the
MASTERMovelets, and 80.48% in comparison to the MASTERMovelets-Log.

The MASTERMovelets-Log and SUPERMovelets are in middle-term, where
the MASTER Movelets-Log outperforms the SUPERMovelets in the dataset of
variational trajectory size presented in Fig. 5 (a), as this is the most effective
scenario for limiting the movelet candidate size to the ln of the trajectory size.
It is noteworthy that SUPERMovelets outperforms the MASTERMovelets-Log
in the dataset of fixed trajectory size presented in Fig. 5 (b) and has a similar
behavior in the dataset of varied trajectory dimensions of Fig. 5 (c).
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Fig. 5. Scalability of running time varying (a) the size of the trajectories, (b) the
number of trajectories and (c) the number of dimensions.

6 Conclusion

In this paper we proposed a new method for extracting movelets, as the use of
the best subtrajectories is currently a promising approach for multiple aspect
trajectory classification. Both Movelets and MASTERMovelets generate subtra-
jectories of any size and from every position of the trajectories for finding the
movelets. Our method does not generate the distance matrix of a trajectory point
to all other trajectory points in the dataset, but to the points of the trajectories
of a single class. It extracts movelets only from subtrajectories that occur more
frequently in the trajectories of the same class, that are the SUPER-Pivots.
Indeed, it limits the number of trajectory dimensions in each movelet candidate
by counting the most frequent number of dimensions that appear in the class.
Experimental results show that the proposed method is much faster for both
extracting the movelets and building the classification models. Furthermore,
scalability experiments show how well the proposed method scales compared to
the state-of-the-art method for multiple aspect trajectory classification.



482 T. T. Portela et al.

Acknowledgments. This work has been partially supported by the Brazilian agencies
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Finance Code
001), CNPQ (Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico) and
FAPESC (Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina -
Project Match - Co-financing of H2020 Projects - Grant 2018TR 1266).

References

1. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090.
ACM (2011)

2. Etemad, M., Soares Júnior, A., Matwin, S.: Predicting transportation modes of
GPS trajectories using feature engineering and noise removal. In: Bagheri, E.,
Cheung, J.C.K. (eds.) Canadian AI 2018. LNCS (LNAI), vol. 10832, pp. 259–264.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89656-4 24

3. Ferrero, C.A., Alvares, L.O., Bogorny, V.: Multiple aspect trajectory data analysis:
research challenges and opportunities. In: GeoInfo, pp. 56–67 (2016)

4. Ferrero, C.A., Alvares, L.O., Zalewski, W., Bogorny, V.: MOVELETS: exploring
relevant subtrajectories for robust trajectory classification. In: Proceedings of the
33rd ACM/SIGAPP Symposium on Applied Computing, Pau, France, pp. 9–13
(2018)

5. Ferrero, C.A., Petry, L.M., Alvares, L.O., da Silva, C.L., Zalewski, W., Bogorny, V.:
MasterMovelets: discovering heterogeneous movelets for multiple aspect trajectory
classification. Data Min. Knowl. Discov. 34(3), 652–680 (2020)

6. Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying human
mobility via trajectory embeddings. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1689–1695. AAAI Press (2017)

7. Lee, J.G., Han, J., Li, X., Cheng, H.: Mining discriminative patterns for classify-
ing trajectories on road networks. IEEE Trans. Knowl. Data Eng. 23(5), 712–726
(2011)

8. Lee, J., Han, J., Li, X., Gonzalez, H.: TraClass: trajectory classification using hier-
archical region-based and trajectory-based clustering. Proc. VLDB Endow. 1(1),
1081–1094 (2008)

9. Leite da Silva, C., May Petry, L., Bogorny, V.: A survey and comparison of tra-
jectory classification methods. In: 2019 8th Brazilian Conference on Intelligent
Systems (BRACIS), pp. 788–793, October 2019

10. Mello, R.d.S., et al.: MASTER: a multiple aspect view on trajectories. Trans. GIS
23, 805–822(2019)

11. Niemeyer, G.: Geohash (2008). https://en.wikipedia.org/wiki/Geohash
12. Petry, L.M., Silva, C.L.D., Esuli, A., Renso, C., Bogorny, V.: MARC: a robust

method for multiple-aspect trajectory classification via space, time, and semantic
embeddings. Int. J. Geogr. Inf. Sci. 0(0), 1–23 (2020)

13. Sugiyama, M.: Local fisher discriminant analysis for supervised dimensionality
reduction. In: Proceedings of the 23rd International Conference on Machine Learn-
ing, pp. 905–912 (2006)

14. Tragopoulou, S., Varlamis, I., Eirinaki, M.: Classification of movement data con-
cerning user’s activity recognition via mobile phones. In: Proceedings of the 4th
International Conference on Web Intelligence, Mining and Semantics (WIMS14),
p. 42. ACM (2014)

https://doi.org/10.1007/978-3-319-89656-4_24
https://en.wikipedia.org/wiki/Geohash


Fast Movelet Extraction for Traj. Classification 483

15. Varlamis, I.: Evolutionary data sampling for user movement classification. In: 2015
IEEE Congress on Evolutionary Computation (CEC). IEEE (2015)

16. Vicenzi, F., Petry, L.M., da Silva, C.L., Alvares, L.O., Bogorny, V.: Exploring
frequency-based approaches for efficient trajectory classification. In: The 35th
ACM/SIGAPP Symposium on Applied Computing, online event, SAC 2020, Brno,
Czech Republic, 30 March–3 April 2020, pp. 624–631. ACM (2020)

17. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man
Cybern. Syst. 45(1), 129–142 (2015)

18. Zhang, Z., Zhang, H., Wen, Y., Zhang, Y., Yuan, X.: Discriminative extraction of
features from time series. Neurocomputing 275, 2317–2328 (2018)

19. Zhou, F., Gao, Q., Trajcevski, G., Zhang, K., Zhong, T., Zhang, F.: Trajectory-user
linking via variational autoencoder. In: IJCAI, pp. 3212–3218 (2018)



Interpreting Classification Models Using Feature
Importance Based on Marginal Local Effects

Rogério Luiz Cardoso Silva Filho1,2(B) , Paulo Jorge Leitão Adeodato2,
and Kellyton dos Santos Brito3

1 Instituto Federal do Norte de Minas Gerais – IFNMG, Montes Claros, Brazil
rogerio.luiz@ifnmg.edu.br

2 Centro de Informática, Universidade Federal de Pernambuco – UFPE, Recife, Brazil
3 Universidade Federal Rural de Pernambuco – UFRPE, Recife, Brazil

Abstract. Machine learningmodels arewidespread inmanydifferent fields due to
their remarkable performances in many tasks. Some require greater interpretabil-
ity, which often signifies that it is necessary to understand the mechanism under-
lying the algorithms. Feature importance is the most common explanation and is
essential in data mining, especially in applied research. There is a frequent need
to compare the effect of features over time, across models, or even across studies.
For this, a single metric for each feature shared by all may be more suitable. Thus,
analystsmay gain better first-order insights regarding feature behavior across these
different scenarios. The β-coefficients of additive models, such as logistic regres-
sions, have been widely used for this purpose. They describe the relationships
among predictors and outcomes in a single number, indicating both their direc-
tion and size. However, for black-box models, there is no metric with these same
characteristics. Furthermore, even the β-coefficients in logistic regression models
have limitations. Hence, this paper discusses these limitations together with the
existing alternatives for overcoming them, and proposes new metrics of feature
importance. As with the coefficients, these metrics indicate the feature effect’s
size and direction, but in the probability scale within a model-agnostic frame-
work. An experiment conducted on openly available breast cancer data from the
UCI Archive verified the suitability of these metrics, and another on real-world
data demonstrated how they may be helpful in practice.

Keywords: Feature importance · Explainable artificial intelligence · ALE plots

1 Introduction

Explainable artificial intelligence (XAI) is an emerging research area that enables black-
box models to become trustworthy for humans. With a growing interest in explaining
machine learning (ML)models to fill the gap between interpretability and prediction per-
formance, over the past few years, many techniques have been proposed, and explain-
ability has become an essential subfield of ML [1]. This combination has helped the
spread of ML in applied research areas even more, such as in education, healthcare,
finance, and social media.
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For instance, simply classifying a patient in a hospital into a particular health status
is not particularly helpful. It is more desirable to investigate the conditions that have
contributed to this [2] and would even become compulsory should any legal matters
arise. Additionally, in the education domain, discovering why a student will drop out
is more valuable than just predicting it [3, 4] because, as in medicine, the treatment
depends on the probable cause. Similarly, auditing the behavior of machine learning bot
detectors in social media is valuable in order to improve the models for new kinds of
bots [5, 6].

Explanations may be expressed in many forms. For classification problems, specif-
ically, feature importance is widely used [7, 8], and demonstrates the global impact of
single features in the model predictions. A wide variety of different methods with dif-
ferent feature importance representations have been proposed for this purpose [9–11].
Despite these advances, there is still a lack of understanding as to how these methods
are related and whether one method is preferable over another [12].

In applied research it is often necessary to track feature importance over time, across
models or even across studies. Therefore, a method that enables the global feature con-
tribution to be represented by a single metric is more suitable than multiple metrics or
graphical representation, otherwise interpretability may be challenging to understand
when handling several features in several models.

A standard single metric of feature importance is the coefficients of additive models
such as linear and logistic regressions. This coefficient represents the weight of each
feature in the additive function, which describes the relationship among features and
outcome.However, for generalized linearmodels (GLM),which involve transformations
of this linear predictor into other discrete outcomes, such as logistic regressions, the
coefficient interpretability is not straightforward. Moreover, the coefficients are highly
sensitive to unobserved heterogeneity [13] and data scale [14].

To circumvent these limitations, marginal effects (MEs) have long been proposed
[14] in the traditional statistical literature. Marginal effects use the prediction function
to calculate the differences in probabilities of the outcome when the features partially
change fromone specified value to another.However,MEs fail to isolate the feature effect
when data are correlated [15]. This problem arises when the computation of the feature
effect uses conditional distribution. Thus, since correlated features move in tandem, it
is unable to distinguish which feature value changes influence the model probabilities.

For black-box models however, the permutation feature importance (PFI) derived
from tree-based algorithms is a standard single metric used to report feature contribution
in classification problems. However, this kind of metric is linked to model error, which
cannot be a metric of interest for analysts [15]. Furthermore, it does not report the
direction of the feature effect, which may be critical for actionable research. Recently,
SHapley Additive exPlanations (SHAP) [12] have been pointed out as the most common
explainability technique in organizations [1]. This technique uses game theory (Shapley
Values) to measure the contribution of each data point to each feature value. Thus, it can
deliver explanations in fine grain, and by means of the average, report the global feature
contributions, including their direction. Unfortunately, calculating the exact Shapley
value is computationally expensive [15], and several approximations have been proposed
[16].
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Moreover, both PFI and SHAP are permutation-based techniques, and so, they are
able to randomly sample from the marginal distribution considering unrealistic data
points that are not present on training data. Therefore, they extrapolate in areas where
the model was trained with either little or no training data, which may cause misleading
explanations [17].

Recent advances in the interpretable machine learning field, such as accumulated
local effects (ALE) plots, have put forward relevant contributions in this direction. They
have shed light on detecting a more reliable feature effect with low computational cost
when features are correlated. However, ALEs have only been used to visualize the feature
effects across different values by plots, which are not visually friendly when the analyst
compares the feature importance across multiple models.

Thus, this paper proposes new metrics of feature importance as a valuable option
when compared to those already in existence. They allow direct interpretation in the
probability scale, are more realistic when dealing with correlated data and are modeled
in a model-agnostic framework. Although these metrics may be extrapolated for any
class of supervised models, in this paper they are focused only on binary classification.
Experiments use open-access data from the UCI Archive to introduce differences among
provided metrics for logistic regression coefficients and random forest permutation fea-
ture importance. Lastly, real-world data are used to demonstrate how theymay be helpful
in a practical problem.

The remainder of this paper is organized as follows: Sect. 2 provides a background
of the theory related to this work. Section 3 introduces and explains the proposed met-
rics. Section 4 presents the experiments, results, and interpretation, and lastly, Sect. 5
summarizes the main findings, future work, limitations, and conclusions.

2 Background

There are several goals for explaining prediction models. In this paper, the main goal of
this paper is to support applied research providing single metrics that, in a more realistic
scenario, are able to report the overall contribution of model features. Hence, this section
defines feature importance, and reports the main existing metrics and methods for this
goal, which are directly related to this work.

2.1 Feature Importance

The most common explanation for the classification model is feature importance. Also
known as the feature-level interpretation or saliency method, the method is the most
well-studied explainability technique. It explains the decision of an algorithm by assign-
ing values that reflect the importance of input components in their contribution to the
decisions. Regardless of the mechanism to calculate it, its common meaning is related
to the individual contribution of the corresponding feature for a particular classifier [8].

This individual contribution may be derived from the global perspective, where the
feature importance is related to the whole model, and from the local perspective, where
the importance is derived for a specific data point [18]. Moreover, it may be internal to
the model (intrinsically) as the coefficients of linear models, or by applying methods
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that analyze the model after training (post hoc). Another criterion to classify these
methods is related to their generalizability, whether they are model-specific or model-
agnostic. While every intrinsic method is specific, all model-agnostic work is in a post
hoc framework [15].

2.2 Marginal Effects

Marginal effects are a general concept and have different meanings depending on the
discipline. This Subsection defines it according to econometrics, as the “additional”
effect. On the other hand, in Subsect. 2.3, theword “marginal” is related to the probability
distribution of a feature as well.

Given a features set X = (x1, x2), and the predicted function y
∧ = f

∧

(X ), the marginal
effects (ME) with respect to x1 at a specific value corresponds to the changes in the
outcome y

∧

, given that x1 changes in one unit. In other words, it is the first derivative of
f
∧

(X )with respect to a x1 at a specified value of the input space. However, if x1 is discrete
or binary, the computation is more straightforward, and the finite difference is applied,
rather than the derivative [4].

For linear and additive models, MEs are constant across the feature values and are
exactly the sameas the regression estimated slopes (coefficients) [14].However, forGLM
models MEs take different values across feature distribution. For a logistic regression
model, MEs reflects the logit shape, and are small when the probability is close to 0 or 1
and relatively large when close to 0.5 [18]. Thus, to summarize theMEs of x1 the average
of all MEs (AMEs) is commonly used [14]. Moreover, there are other alternatives that
may be more suitable depending on the researcher’s questions.

Summary Metrics of ME
AverageMarginal Effects (AMEs) are howmuch the outcome y changes on averagewhen
x1 varies in small changes. Thus, the derivative is computed for every small change on x1
for every data point and averaged. In practice, the numerical derivative is implemented
across the observed values of x1. A step (h) is defined for continuous features, and the
MEs become close to their theoretical value on the limit, as h tends to 0. The Equations
below demonstrate this beyond the simplified computation of AMEs.

ME = f
∧

(x) = lim
h→0

(
f (x + h) − f (x)

h

)

(1)

AMEs = 1

n

n∑

i=1

MEi

Marginal Effect at the Mean (MEM) is simply the computation of the MEs around
the mean of the feature distribution. In practice, MEM is close to the AME if f

∧

(x) is not
too noisy and more feasible to compute, since evaluating the derivatives at the means is
easier than taking the mean of each derivative [19].

Marginal Effect at the Representative Value (MER) is a simplification of MEM
calculation for a value that could be an interesting operation point for the research
domain. Themarginal effect is calculated for each variable at a particular combination of



488 R. L. C. Silva Filho et al.

X values. Thus,MER provides ameans to understand and communicate model estimates
at theoretically important combinations of feature values [20].

These metrics were essential to shed light on those proposed in this paper since they
are based on solid statistical theory [14]. In addition to XAI advances, it is possible to
report a less-biased feature effect which could play an important role for ML applied
researchers.

2.3 Marginal Local Effects

The concept of local effects was brought in [21] and is a fundamental part of their
accumulated local effects (ALEs) plots. ALE plots were presented as an alternative for
visualizing the effects of features in black-box supervised learning models instead of
partial dependence plots (PDPs).

The PDPs, introduced by Friedman [22], are widely used to visualize the influence
of features in supervisedMLmodels, and have even been considered a causal interpreter
for black-box models [23]. For a prediction function y

∧ = f
∧

(X ), where y
∧

is a scalar
response variable and X = (x1, x2), PDPs illustrate the relationship between x1 and the
outcome, marginalizing f

∧

(X ) over the distribution of x2. Hence, the PDPs function at a
particular value of x1 represent the average prediction from f

∧

(X ) if all data points take
that value for x1. This process takes into account unlikely combinations of X, building
unrealistic plots when data are dependent.

As with MEs, ALEs use the conditional instead of marginal distribution. Thus, to
overcome the intrinsic problems of MEs, as mentioned in Subsect. 2.2, ALEs use the
averaged differences in f

∧

(X ) across intervals of the training data (local effect). This
hack allows the extraction of isolated effects of features within the intervals. Lastly,
it accumulates this averaged local effect and center subtracting the mean using the
equations below.

(2)

(3)

where k is the interval of data and nj(k) is the neighborhood. Hence, the ALE method
calculates the differences in predictions, whereby the features of interest are replaced
by grid values of z. The difference in prediction is the effect that features have for an
individual instance in a specific interval. The sum on the right in (2) adds up the effects
of all instances, which is divided by the number of instances in the interval k to produce
the average. Finally, the ALE is vertically centered (3) in the sense that the mean ALEs
of xj and xl on are both zero.

Figure 1 presents a better insight into the computation of the local effect for the
function f

∧

(x1, x2). The feature range of x1 was subdivided into k bins with roughly the
same number of points indexed by N (k). Focusing on bin N (4), for each point falling
into this bin, f

∧

(x1, x2) have their x1 held by the left and right endpoints of the interval z3
and z4. Next, the differences of the predictions of these points were averaged by dividing
their sum by the number of points in N (4). The same was carried out for all intervals
and summed up. Finally, the expectation over p(x1) was subtracted.



Interpreting Classification Models Using Feature Importance 489

Fig. 1. Illustration of the ALE estimation. Excerpt from [21]

2.4 Summary of Metrics for Explainability

Marginal effects have been discussed in traditional statistical literature as an alterna-
tive for the coefficients of the GLM models due to their direct interpretability on the
probability scale. In addition, they are less sensitive to the differences of data scale
and unobserved heterogeneity than coefficients [10]. Summary metrics of MEs use the
conditional distribution and are not robust against correlated data.

In the field of explainable machine learning field, PDPs have been widely used to
report the feature effect. However, they extrapolated their results when using the density
function and took into account an unreliable combination of data in their computation.
ALE plots recently brought the new concept of local MEs and overcame both the afore-
mentioned problems. Thus, this paper claims that the ALEs theory [21] is a good starting
point together with the existing traditional metrics of MEs [14] to propose new global
features importance which is able to fill the gap of robustness regarding the size and
direction of feature effects on a binary classification model.

3 Proposed Metrics

This section proposes four new metrics that are suitable for applied research when
comparing the feature effects across multiple models. These metrics are based on the
ME and the shape of ALE plots that may be used to report the feature contribution on
binary classification problems. Three of them possess explainability in terms of size and
direction of the feature effect, while one accounts only for the contribution amount.

3.1 Average Uncentered ALE (AUA)

Average is a natural metric to summarize a distribution (first-order momentum) and
leverages great insights regarding the size and directions of the feature mean effects.

(4)

This is close to the MEs for linear models and AMEs for GLMs since it uses the average
conditional distribution of the observed training data. However, it accounts for each local
effect and may be somewhat different for noisy models.
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3.2 Uncentered ALE at a Specific Value (UAS)

The UAS is an arbitrary choice of a specific value to calculate the uncentered ALE. In
practice, it requires splitting the data into k intervals and calculating the uncentered ALE
with (3) up to the interval where the choice values fall. This metric may be helpful when
the analyst has sufficient domain knowledge or is verifying hypotheses.

(5)

3.3 Maximum Uncentered ALE (MUA)

This metric is more actionable and consists of extracting the maximum change in pre-
dicting the outcome for the feature xi. As the maximum may be positive or negative
related to the outcome, it requires a previous absolute comparison in order to achieve
the highest value.

(6)

3.4 ALE Absolute Average (AABSA)

This metric is a non-directional metric and highlights the overall feature importance.
It measures, on average, how far the prediction changes away from the ALE average.
Unlike the others, the centered ALE is considered, which has a mean zero.

(7)

3.5 Summary of the Novelty of the Proposal

In order to clarify the novelty and issues addressed by the proposal, Table 1 summarizes
themain differences of each proposedmetric and of those that already exist. In particular,
the β- coefficients of logistic regression (LR) and permutation feature importance (PFI)
from tree-based algorithms were considered, both widely used in the machine learning
field as a global metrics and reported by a single parameter.

4 Experiments

To introduce the new metrics, two experiments were conducted1. The goal of the exper-
iments was two-fold. First, to compare the proposed metrics in this paper with intrinsic
model metrics. More specifically, it considered the widespread β-coefficients and the
permutation feature importance derived from LR and random forest (RF), respectively.

1 The implementation code can be found in this repository: https://github.com/rogerioluizsi/sum
mary_ale.git.

https://github.com/rogerioluizsi/summary_ale.git
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Table 1. Differences among proposed methods and similar existing methods in the ML field

Metric Report Concern about

Size Direction Dependence data Report in probability
scale

Model-agnostic

AUA v v v v v

UAS v v v v v

MUA v v v v v

AABSA v v v v

β – LR v v

PFI v

Thus, it was possible to evaluate whether or not the metrics highlight the features in a
similar manner. An open-access breast cancer dataset was used. This dataset is available
ready for modeling binary classification and is a linearly separable problem with highly
correlated data [24].

Second, a dataset was used from theNational Brazilian Test for Secondary Education
(ENEM), and the School Census from the 2009–2019 period. The goal here was to
demonstrate how the proposed metrics may be helpful in a real-world problem. Thus,
a data mining solution was developed to explore which and how the most important
variables associated with school performance behave over the years. The report aimed
at yielding valuable and actionable results for decision-makers through a single feature
importance metric. These summary measures may enhance the analytical ability of the
researcher when comparing the feature effects across supervised models, whichever the
algorithm chooses to fit the data.

TheALIBI package [25],which has implemented theALEplots, supports the compu-
tation of themetrics proposed in this paper. Therefore, all themechanisms intrinsic to the
ALEs theory, such as the interval definition, numerical derivation, and the computation
of the local effects, follow the software implementation. In this paper, the performance
of the models was not reported since the goals were limited to analyzing the model
explicability.

4.1 Breast Cancer Data

The breast cancer data included benign and malignant cell samples from 369 patients,
212 with cancer, and 157 with fibrocystic breast masses. Each sample contained thirty
features, and LR and RF predicted the patient class in a 5-fold cross-validation setting
with random sampling stratified by the target class. Therefore, both algorithms were
applied for the same folds, and the mean was adopted as feature importance for each
metric.

Figure 2 shows the LR coefficients in red and the four proposed metrics. For the
metrics that illustrate the direction of the relationship, there is a high correlation and
close magnitude. However, there were some discrepancies. This could have been due
to highly paired correlated data (e.g. perimeter vs. radius), and so logistic regression
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arbitrarily chose one of these (e.g. radius) to highlight the coefficient [26]. Also, the
p-values were not checked in this experiment, and maybe some highlighted coefficients
were statistically insignificant. However, neither of these are of concern for our metrics.

Fig. 2. β-coefficients and the proposed metrics of LR model for the breast cancer data

Figure 3 illustrates the permutation feature importance from the RF and the proposed
metrics. The features set highlighted by all metrics is similar with a high correlation. In
addition, surprisingly, the AABSA is fairly close to the permutation feature importance.
Both are only positive and only account for the amount of feature contributions.However,
they are built differently. While AABSA metrics the average change from the expected
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ALEs mean (ALE 0), permutation is related to increasing the prediction error after
permuting a feature. Hence, it may be due to the simplicity of the classification task on
the cancer data [24].

Fig. 3. Feature importance and the proposed metrics of RF model for the breast cancer data

4.2 Brazilian Secondary Educational Data

The second part of the experiment demonstrates how single feature importance may be
helpful in practice. The data was taken from the 2009–2019 period of the largest test for
secondary education in Brazil. The dataset contained demographic and socioeconomic
information on students, and school characteristics over 32 features. The data included
more than ten million students and was preprocessed to the school grain. The school
was classified as good or bad in relation to the average scores achieved by their students
in the test. To highlight the model-agnostic framework, two tree-based classifiers (RF
and AdaBoost (AB)) were applied combined in a 10-fold cross-validation setting, and
the overall mean was adopted for each metric.

Thus, systematized temporal data mining evaluated how the main features related to
the performance of the school had behaved over the years. Due to space limitations, only
the Max Uncentered ALE - MUA was reported by three plots presenting the outputs, as
discussed below.

Figure 4 presents a box plot with the MUA for each feature. The clarity of colored
dots illustrates the evolutionary directions of the variable over the years. The income per
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Fig. 4. Feature importance (MUA) during the period (RF and AB means) (Color figure online)

capita of students is the feature with the highest importance during the whole period.
This is followed by parent’s education and the students’ race (brown students’ negative
effects). The importance of student computers seems to be a growing tendency over the
years.

Figure 5 separates a selected set of features to obtain a better understanding of their
behavior during the period. The computer lab has a higher positive slope, while faculty
jobs (the number of schools where teachers work) have a higher negative.

Lastly, in Fig. 6, temporality was disregarded, and the features were organized
for an overview of their importance in the following groups: non-actionable features
(race and gender), school features (infrastructure), student features (parent’s education
and income) and teacher features. In general, the group of features related to students
demonstrated more potential to improve the quality of schools than others. Additionally,
non-actionable features had a strong influence, both negative and positive.

5 Discussion and Conclusion

This paper has proposed newmodel-agnostic metrics of feature importance in an attempt
to circumvent the drawbacks and constraints of the existingmethods, such as the β- coef-
ficients of additive models and feature importance from tree-based algorithms, widely
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Fig. 5. Evolution of the feature importance (MUA) of a selected features set (RF and AB means)

Fig. 6. Feature importance (MUA) by groups during the period (RF and AB means)

used for this purpose. This paper has proposed other options with a number of advan-
tages, such as being agnostic to models, interpretable in the probability scale, and more
reliable under correlated data.

The accumulated local effects are the key trick for isolating themain effect of the vari-
able even in correlated data. The four proposedmetricswere validated in two experiments
that illustrated their suitability to actual data mining applications.

In the first experiment, breast cancer data were used to compare the proposedmetrics
with the coefficients of logistic regression and the permutation feature importance of
random forest. The results illustrated that the proposed metrics are robust when facing
correlated data and did not suffer the effects experienced by logistic regression (LR).
All the proposed metrics captured the desired aspects of the attributes and were highly
correlated. The AABSA proposed metric, which is directly comparable to the random
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forest (RF), since the permutation feature importance is only positive, captured very
similar attribute importance.

Nevertheless, the comparisons were limited, and more tests are required to evaluate
the metric behavior in other situations. For example, the LR coefficients are known to
be sensitive to unobserved heterogeneity. Hence, when features are added to the model
and improve the predictions, the remaining coefficients may change, even if this feature
is not correlated with others [13]. Despite the marginal effects (a key to the proposed
metrics) being more robust in this situation [26], there was no empirical evidence of this
in our context. Additionally, an empirical test of the robustness in a scenario of correlated
data compared to existing metrics is required since this paper only considered the theory
inherited from ALE plots. Thus, we intend to make more analyses on a large scale in
future work, including other XAI approaches.

It should be mentioned that this paper has not yet compared the proposed metrics
across algorithms, since the algorithms are able to use the input features in a totally dif-
ferent manner to achieve similar results, it was already known as the “Rashomon” effect
[27]. Thus, even though the metrics proposed here are model-agnostic, the comparisons
across different algorithms must be interpreted with caution, even on the same data.

In addition, despite the motivation to compare feature importance across models,
the results must be interpreted with care, and validation by domain experts is required.
For example, in the second experiment, the data set was scaled equally for each year,
and the set of variables was the same with the same values. Even after these careful
transformations, the comparisonmay be inappropriate, and a piece of domain knowledge
may help to reduce the risks of misinterpretation.

The main limitation of the proposed metrics would be the extrapolation of the local
effect out of the interval where it was computed. The local effect is averaged across the
conditional distribution and may only hold when the predictors X jointly fall within the
same bin. Thus, there may be a problem if bin widths are too small and the predictive
function is too noisy. Furthermore, local effects may be unreliable if the quantity of data
points into the underlying bin is very small on the training data. Although this paper has
used deciles to equally subdivide the feature distribution in order to minimize this risk,
together with cross-validation for more reliable results, caution must be always taken in
the interpretation with the validation of the domain expert.
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Abstract. An effective way to cope with classification problems, among
others, is by using Fuzzy Rule-Based Classification Systems (FRBCSs).
These systems are composed by two main components, the Knowledge
Base (KB) and the Fuzzy Reasoning Method (FRM). The FRM is
responsible for performing the classification of new examples based on
the information stored in the KB. A key point in the FRM is how the
information given by the fired fuzzy rules is aggregated. Precisely, the
aggregation function is the component that differs from the two most
widely used FRMs in the specialized literature. In this paper we provide
a revision of the literature discussing the generalizations of the Choquet
integral that has been applied in the FRM of a FRBCS. To do so, we
consider an analysis of different generalizations, by t-norms, copulas, and
by F functions. Also, the main contributions of each generalization are
discussed.

Keywords: Choquet integral · Generalizations choquet integral ·
Pre-aggregation function

1 Introduction

A classification problem [1] is a research field in the area of data mining [2], which
can be tackled in two different ways. An approach to deal with this problem is
known as supervised learning, where a function (classifier) is generated from the
available and labeled data (classes). Then, when a new example needs to be
classified, the learned classifier is responsible to perform the prediction.

In the literature it is possible to find several methods that aim to cope with
these problems using supervised learning, such as Support Vector Machines
(SVM) [3], decisions trees [4] and neural networks [5]. Here, the focus is on
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Fuzzy Rule-Based Classification Systems (FRBCCs) [6], because they provide
the user with interpretable models by using linguistic labels [7] in their rules.
Another reason is related with their accurate results and versatility, as shown in
the many different fields where they have been applied like health [8], security [9],
economy [10], food industry [11].

An important role in any FRBCS is played by the Fuzzy Reasoning Method
(FRM) [12]. This method is responsible to perform the classification of new
examples. For that, it makes usage of the information available in the rule base
and the database. Moreover, in order to perform the classification, this mecha-
nism uses an aggregation operator in order to aggregate, by classes, the infor-
mation provided by the fired fuzzy rules when classifying new examples.

A widely used FRM considers the function Maximum as aggregation oper-
ator. By using this aggregation function, for each class, the FRM performs the
selection of the best fired rule since it has the highest compatibility with the
example [13]. The issue of this inference method is that the information pro-
vided by the remainder fired fuzzy rules is ignored. The Maximum is an averag-
ing aggregation operator, since the obtained result is within the range between
the minimum and the maximum of the aggregated values (in this case, obviously,
the result is always the maximum).

To avoid the problem of ignoring information, it was proposed a FRM that
applies the normalized sum [12] to perform the aggregation of the available
information given by the fired rules. In this way, for each class, all information
is taken into account in the aggregation step. This aggregation operator is con-
sidered as non-averaging since the result of this function can leave the range
minimum–maximum.

In [14] the authors introduced a FRM considering the usage of the Choquet
integral (CI) [15], which is an averaging operator. In this way, this approach
mixes the characteristics of the previous FRMs considering an averaging oper-
ator that uses the information provided by all the fired rules of the system.
Moreover, the CI is defined in terms of a fuzzy measure, which provides it with
the nice properties to take into account the interaction among the data to be
aggregated [15].

The objective of this paper is to discuss different methodologies that change
the aggregation step performed in the FRM, when considering different gen-
eralizations of the CI, which are supported by solid theoretical studies [16],
varying from the generalization by t-norms (CT -integrals) [17], by copulas (CC-
integrals [18–20]) and functions F(CF -integrals [21] and CF1F2-integrals [22,23]).
Moreover, for each generalization it is provided provide a discussion of the main
obtained results of each study (we highlight that our focus here are related with
the main conclusions and not the specific obtained results of each approach).

This paper is organized as follows. Section 2 present the main components
of a FRBC, showing an example of how the aggregation function is used in
this context. Sections 3–6 discuss the theoretical and applied contributions of
different generalizations of the CI. Section 8 is the conclusion.
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2 The Role of Aggregation Functions in the FRM

Fuzzy Rule-Based Classification Systems (FRBCSs) [6] are extensions of the
rule-based system by using fuzzy sets in the antecedents of the rules. The best-
known FRBCSs are the ones defined by Takagi-Sugeno-Kang (TSK) [24] and
Mamdani [25], which is the one that it is adopted. The standard architecture of
the Mamdani method is presented in Fig. 1.

  Input 
(Pa�ern) 

Fuzzy Rule-Based Classifica�on Systems 

Inference 
Process 

Fuzzyfica�on 
Interface 

Output 
(Class) 

Knowledge Base 

Rule Base Data Base 

Fig. 1. A structure of FRBCS of the Mamdani type.

Where the Knowledge Base (KB) is composed by:
Data Base (DB) – Stores the membership functions associated with the lin-
guistic labels considered in the fuzzy rules.
Rule Base (RB) – Is composed by a collection of linguistic fuzzy rules that
are joined by a connective (operator and). Here we consider that a classification
problem ins composed by t training patterns xp = (xp1, . . . , xpm), p = 1, 2, . . . , t.
where xpi is the i-th attribute and with the rules having the following structure:

Rule Rj : Ifx1 is Aj1 and . . . and xn is Ajn (1)
then Class is Cj with RWj ,

where Rj is the label of the j-th rule, Aji is a fuzzy set modeling a linguistic term,
modeled by a triangular shaped function. Cj is the class label and RWj ∈ [0, 1]
is the rule weight [26].

The fuzzyfication interface converts the inputs (real values) into fuzzy val-
ues. In case of categorical variables, each value is modeled by a singleton and,
consequently, its membership value is either 1 or 0. Once the input is fuzzified,
the inference process is the mechanism responsible for the use of the information
stored in the KB to determine the class in which the example will be classified.
The generalizations discussed in this paper are applied at this point.
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Once the knowledge has been learnt and a new example xp = xp1, . . . , xpn

has to be classified, the FRM [27] is applied to perform this task, where M is
the number of classes of the problem and L is the number of rules that compose
the RB. The stages of the FRM are:

Matching Degree: It represents the importance of the activation of the if-part
of the rules for the example to be classified xp, using a t-norm as conjunction
operator:

μAj
(x) = T (μAj1(x1), . . . , μAjn

(xn)). (2)

with j = 1, . . . , L. and μAj1 as the membership function with relation to a
membership function.

Association Degree: For each rule, the matching degree is weighted by its rule
weight:

bkj (x) = μAj
(x) · RW k

j , (3)

with k = Class(Rj) and j = 1, . . . , L.

Example Classification Soundness Degree for All Classes: For each class
k, the positive information bkj (x) > 0, given by the fired fuzzy rules of the
previous step, is aggregated by an aggregation function A:

Sk(x) = Ak

(
bk1(x), . . . , bkL(x)

)
, (4)

with k = 1, . . . , M.
In what follows, three different well-known FRMs are presented. Observe that

their main difference is in the use of a different aggregation function to perform
the aggregation of the information provided by the rules:
Winning Rule (WR) – For each class, it only considers the rule having the
maximum compatibility with the example.

Sk(x) = max
Rjk

∈RB;
bj(x). (5)

Additive Combination (AC) – It aggregates all the fired rules, for each class k,
by using the normalized sum.

Sk(x) =

∑Rjk
∈RB

j=1 bj(x)
f1max

, (6)

where f1max
= maxk=1,...,M

∑Rjk
∈RB

j=1 bj(x).

The Choquet integral (CI) – It is the function Cm : [0, 1]n → [0, 1], defined, for
all of x ∈ [0, 1]n, by:

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

) · m
(
A(i)

)
, (7)
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Table 1. Association degrees for each class.

C1 C2 C3

Ra 0.94 0.15 0.89

Rb 0.10 0.40 0.88

Rc 0.25 0.10 0.85

where N = {0, . . . , n}, m : 2N → [0, 1] is a fuzzy measure1,
(
x(1), . . . , x(n)

)
is

an increasing permutation on the input x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with
x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices corresponding to the
n − i + 1 largest components of x. Then:

Sk(x) =
Rjk

∈RB∑

j=1

Cm(bj(x)). (8)

where C is the standard CI and m the fuzzy measure.

Classification: For the final decision, the class that maximizes all the example
classification soundness degrees is considered, using the function F : [0, 1]M →
{1, . . . , M}:

F (S1, . . . , SM ) = arg max
k=1,...,M

(Sk). (9)

To exemplify the role of different aggregation operator in the FRM, consider
a classification problem composed by 3 classes (C1, C2 and C3). For each one,
3 generic fuzzy rules, Ra, Rb and Rc are fired when classifying a new example
(they can be different for each class). We present the information about this
problem in Table 1. Notice that the numbers in this table represent the positive
association degree (Step 2 of the FRM) obtained for each fired rule. Having
into account that three fuzzy rules are fired for each class, by columns, three
aggregations have to be computed (one for each class).

Since the CI is defined with respect to a fuzzy measure, in this example
the standard cardinality (see [28]) is considered as fuzzy measure. The values
computed for each class using these three FRMs are the following ones:

– C1

• WR = 0.94
• AC = 0.94+ 0.1+ 0.25

2.62 = 0.49
• Choquet = ((0.1 − 0) 33 ) + ((0.25 − 0.1) 23 ) + ((0.94 − 0.25) 13 ) = 0.43

– C2

• WR = 0.4
• AC = 0.15+ 0.4+ 0.1

2.62 = 0.24
• Choquet =0 ((0.1 − 0) 33 ) + ((0.15 − 0.1) 23 ) + ((0.4 − 0.15) 13 ) = 0.21

1 A fuzzy measure m is an increasing function on 2N such that m(∅) = 0 and m(N) = 1.
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– C3

• WR = 0.89
• AC = 0.89+ 0.88+ 0.85

2.62 = 1.0
• Choquet = ((0.85 − 0) 33 ) + ((0.88 − 0.85) 23 ) + ((0.89 − 0.88) 13 ) = 0.87

Once the example classification soundness degree for each class has been
computed, the predicted class is the one associated with the largest value (step
4 of the FRM):

– WR = arg max[0.94, 0.4, 0.89] = C1

– AC = arg max[0.49, 0.24, 1.0] = C3

– Choquet = arg max[0.43, 0.21, 0.87] = C3

It is observable that the usage of the maximum as an aggregation operator
predicts class 1, since it only considers the information provided by one fuzzy
rule (having the maximum compatibility). However, if we look in detail at the
association degrees presented in Table 1, this prediction may not be ideal, since
that class 1 has one rule having high compatibility whereas class 3 has three
rules having high compatibilities (slightly less than that of class 1). Then, class
3 seems to be the most appropriated option. This fact is taken into account
by the CI and the AC, since the information given by all the fuzzy rules and
not only by the best one is considered and, consequently, the prediction assigns
class 3.

In this example, it is noticeable the non-averaging behavior of AC. Observe
that the result of this function for class C3 is greater than the maximum value.
This fact does not occur for averaging functions. In the case of WR, the result
is always the maximum, meanwhile for the CI the result is a value between
the minimum and the maximum. Another interesting point that raises with this
example, is that the usage of different aggregation in the FRM is directly related
with the performance of the classifier.

3 The CT -integral and Pre-aggregations

This study was originally based on [14], where the authors modified the FRM
of the Chi et al. algorithm [29] by applying the CI to aggregate all available
information for each class. Furthermore, they introduced a learning method using
a genetic algorithm in which the most suitable fuzzy measure for each class
was computed. We highlight that this fuzzy measure is considered in all the
applications of the generalizations of the Choquet integral.

For the first proposed generalization, the product operator of the standard
CI was replaced by different other t-norms [30]. In this way, the manner how the
information was aggregated would be different, consequently leading into differ-
ent FRMs that could present performances even more accurately. The Choquet
integral generalized by t-norms T , known as CT -integral [17], is defined as:



504 G. Lucca et al.

Definition 1. [17] Let m : 2N → [0, 1] be a fuzzy measure and T : [0, 1]2 → [0, 1]
be an t-norm. A CT -integral is the function CT

m : [0, 1]n → [0, 1], defined, for all
x ∈ [0, 1]n, by

CT
m(x) =

n∑

i=1

T
(
x(i) − x(i−1),m

(
A(i)

))
, (10)

where x(i) and A(i) are defined as in Eq. (7).

Observe that some CT -integrals are not aggregation function. E.g., take the
minimum t-norm TM (x, y) = min(x, y) and the cardinality measure (see [17,28]),
and consider x1 = (0.05, 0.2, 0.7, 0.9) and x2 = (0.05, 0.1, 0.7, 0.9), where x1 >
x2. However, CTM

m (x1) = 0.7 and CTM
m (x2) = 0.8. Thus, the primordial condition

of increasingness of any aggregation function is not fulfilled by CTM
m .

Yet, it is noticeable that the monotonicity property is not crucial for aggre-
gation functions. Take for example a well-known statistical tool, the mode. It is
not considered as an aggregation since the monotonicity of this function is not
fulfilled, although it is useful. In [31], Bustince et al. introduced the notion of
directional monotonicity, which allows monotonicity to be fulfilled along (some)
fixed ray. So, with this in mind, the concept of pre-aggregation functions was
introduced in [17]. These functions respect the boundary condition as any aggre-
gation function, however, they are directional increasing:

Definition 2. [31] Let �r = (r1, . . . , rn) be a real n-dimensional vector, �r �=
�0. A function F : [0, 1]n → [0, 1] is directionally increasing with respect to �r
(�r-increasing, for short) if for all (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that
(x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). (11)

Similarly, one defines an �r-decreasing function.

Now, as the Chi algorithm it is not a state-of-the-art fuzzy classifier, the
CT -integrals were applied in the FRM of a powerful fuzzy classifier like FARC-
HD [32]. The quality of the proposal was analyzed by applying these general-
izations to cope with 27 classification problems. The considered datasets are
available in KEEL [33] dataset repository. When comparing the different gener-
alizations among themselves, it can be noticed that the one based on Hamacher
t-norm was superior to the remaining ones. This fact occurred with four out the
five considered fuzzy measures. The best accuracy was obtained when combining
the Hamacher product with the power measure. To evaluate the quality of this
best generalization, the study has compared it against the classical FRM of WR,
since both FRMs apply averaging aggregation functions. In this comparison, it
was empirically demonstrated that this generalization is statistically superior to
WR and the standard CI.

4 Copulas and CC-integrals

The usage of the generalizations of the CI in a powerful fuzzy classifier has pro-
duced satisfactory results to cope with classification problems. However, these
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generalizations were pre-aggregation functions, that is, the monotonicity is not
satisfied. Then, with this in mind, generalizations that are idempotent and aver-
aging aggregation functions were developed. For that, in Eq. (7), firstly the dis-
tributivity property of the product operation is considered with the subtraction
and then replaced the two instances of the product by copulas [30], obtaining
the CC-integrals [18]:

Definition 3. Let m : 2N → [0, 1] be a fuzzy measure and C : [0, 1]2 → [0, 1] be
a bivariate copula. The CC-integral is defined as a function CC

m : [0, 1]n → [0, 1],
given, for all x ∈ [0, 1]n, by

CC
m(x) =

n∑

i=1

C
(
x(i),m

(
A(i)

)) − C
(
x(i−1),m

(
A(i)

))
, (12)

where x(i) and A(i) are defined as in Eq. (7).

To demonstrate the efficiency of the CC-integrals to tackle classification prob-
lems, an experimental study considering 30 numerical datasets is considered.
This study was conducted in two different ways. The first one was focused on
comparisons per family of copulas (t-norms, overlap functions [34,35] and spe-
cific copulas), in order to find the function that presented the best generalization.
Then, this best generalization is compared with 1) the classical FRM of WR
(considering that both functions are averaging); 2) to the standard CI and 3)
the best pre-aggregation function achieved in the previous study (CT -integral),
the one based on the Hamacher t-norm. The best CC-integral is the CMin-
integral, constructed with the Minimum copula2. The obtained results showed
that the CMin-Integral is statistically equivalent to the CI and the CT -integral
and superior than the WR.

5 CF -integrals

The acquired knowledge from the previous studies shows that the function
responsible to generalize the CI is very important. At this point only general-
izations with averaging characteristics were presented. Having this in mind, the
CI was generalized by special functions, in order to produce more competitive
generalizations, allowing to produce non-averaging integrals. To achieve it, its
used a family of left 0-absorbing aggregation functions F , which satisfy: (LAE)
∀y ∈ [0, 1] : F (0, y) = 0. Moreover, the following two basic properties are also
important:
(RNE) Right Neutral Element: ∀x ∈ [0, 1] : F (x, 1) = x;
(LC) Left Conjunctive Property: ∀x, y ∈ [0, 1] : F (x, y) ≤ x;

Any bivariate function F : [0, 1]2 → [0, 1] satisfying both (LAE) and (RNE)
is called left 0-absorbent (RNE)-function.

2 Examples of special CC-integrals were studied in [19,20].
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Then, the so-called CF -integral [21] is defined as:

Definition 4. [21] Let F : [0, 1]2 → [0, 1] be a bivariate function and m : 2N →
[0, 1] be a fuzzy measure. The CF -integral is the function CF

m : [0, 1]n → [0, 1],
defined, for all x ∈ [0, 1]n, by

CF
m(x) = min

{

1,

n∑

i=1

F
(
x(i) − x(i−1),m

(
A(i)

))
}

, (13)

where x(i) and A(i) are defined as in Eq. (7).

In [21, Theorems 1 and 2], it was proved that the set of conditions that the
function F should fulfill for the CF -integral to be a pre-aggregation function
is one of the following ones: Theorem 1 ((LAE) and (RNE)) or Theorem 2
((LAE), F (1, 1) = 1 and (1, 0)-increasingness). Moreover, for the CF -integral to
be averaging F must satisfy (RNE) and (LC). This means that there exist a lot
of non-averaging CF -integrals.

The quality of the CF -integrals to cope with classification problems was
tested considering 33 different datasets. The experimental study was conducted
considering CF -integrals with and without averaging characteristics. Considering
the non-averaging functions, six CF -integrals were studied. In order to support
the quality of this approach, a comparison with the best non-averaging CF -
integral with the FRM of AC and a FRM considering the probabilistic sum
- PS (since it is an operator with non-averaging characteristics) is provided.
The results showed that the non-averaging CF -integrals-integrals, as expected,
offer a performance superior than the averaging ones, and the best CF -integral,
based on the function FNA23 provides results that are statistically superior than
all classical FRMs, and also, very competitive with the classical non-averaging
FRMs like AC or PS.

6 CF1F2-integrals

The previous study demonstrated that the generalization of the standard Cho-
quet integral by functions F resulted in satisfactory results. Then, this study
combine the ideas of previous approaches, precisely, it take the same idea of
CC-integrals, generalizing the each of the two instances of copulas by a pair of
functions F , called F1 and F2, as consequence obtaining the CF1F2 -integrals [22]:

Definition 5. Let m : 2N → [0, 1] be a symmetric fuzzy measure and F1, F2 :
[0, 1]2 → [0, 1] be two fusion functions fulfilling:

(i) F1-dominance (or, equivalently, F2-Subordination): F1 ≥ F2;
(ii) F1 is (1, 0)-increasing,
3 The function FNA2 : [0, 1]2 is defined, for all x, y ∈ [0, 1] by F (0, y) = 0, F (x, y) =

x+y
2

if 0 < x ≤ y and F (x, y) = min(x
2
, y), otherwise, which satisfies the conditions

of [21, Theorems 2].
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A CF1F2-integral is defined as a function C
(F1,F2)
m : [0, 1]n → [0, 1], given, for all

x ∈ [0, 1]n, by

C
(F1,F2)
m (x) = (14)

min

{

1, x(1)+
n∑

i=2

F1

(
x(i),m

(
A(i)

)) −F2

(
x(i−1),m

(
A(i)

))
}

,

where x(i) and A(i) are defined as in Eq. (7).

In this paper, twenty-three different functions, F , were considered. As con-
sequence, 201 different pairs of functions that could be used as F1 and F2 could
be combined, respecting the dominance property. An important question that
could appear is related to the choice of the function to be selected as F1 and the
one to act as F2. Therefore, a methodology to reduce the scope of the study have
been proposed by using the concept of Dominance and Subordination Strength
degree, DSt and SSt respectively.

Definition 6. Let F = {F1, . . . , Fm} be a set of m fusion functions. The dom-
inance and subordination strength degrees, DSt and SSt, of a fusion function
Fi ∈ F are defined, respectively, for j ∈ {1, . . . , m}, by as follows:

DSt(Fi) =
1
m

m∑

j=1

{
1 if Fi ≥ Fj ,
0 otherwise · 100%

SSt(Fi) =
1
m

m∑

j=1

{
1 if Fi < Fj ,
0 otherwise. · 100%

The generalizations provided in this study are non averaging. Moreover, they
satisfy the boundary conditions of any (pre) aggregation function. However, con-
sidering the monotonicity, we observed that these functions are neither increasing
nor directional increasing. In fact, they are Ordered Directionally (OD) mono-
tone functions [36]. These functions are monotonic along different directions
according to the ordinal size of the coordinates of each input.

The CF1F2 -integrals were used to cope with classification problems in 33
different datasets. When analyzing the results that were obtained by the usage
of these generalizations, it is noticeable that the combination of a function having
a high dominance as F1 combined with a function with high subordination as
F2 presented the best results of this study (from the top ten of the best global
accuracies from the 81 pairs, eight have this characteristic). We also observed
that the opposite, for each function F2, is also true and that its best results are
achieved when using a F1 with a high dominance.

The performance of this proposal is analyzed by comparing them against
distinct state-of-the-art FRBCSs, namely: FARC-HD [32], FURIA [37],
IVTURS [38], a classical non-averaging aggregation operator like the probabilis-
tic sum, P ∗, and, the best CF -integral that was selected from the previous study,
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FNA2. In this comparison, FURIA was the fuzzy classifier that achieved the high-
est accuracy mean, however, our new approach achieved a close classification
rate. Furthermore, the number of specific datasets where the performance of our
generalization is the worst among all the methods in the comparison is less than
that of FURIA. The function representing the CF -integrals also achieved good
results, meanwhile the remainder cases (IVTURS, P ∗ and FARC-HD) where
inferior and similar among themselves.

The 81 pairs of combinations considered to construct CF1F2 -integrals were
compared against IVTURS, P ∗, FARC-HD and FNA2. The results highlighted
the quality of our new method because an equal or greater average result was
obtained by 39, 36, 34 and 12 different combinations in these comparisons.

Finally, from the considered pairs, it was observed that five different CF1F2 -
integrals were considered as control variable in the statistical test in which all
methods are compared, including FURIA. The last generalization only presented
statistical differences with respect to FARC-HD. However, for any remaining
pair, it is statistically equivalent when compared to FURIA and to FNA2 and
superior to IVTURS, P ∗ and FARC-HD.

7 Detailed Results

In this section the results obtained by the usage of different aggregation operator
are shown. We highlight that these results consider the same 33 datasets as in [21,
22] and [28]. Also, the results are related with the power measure, as mentioned
previously, take into consideration the 5-fold cross validation technique [2] and
are applied in the FRM of the FARC-HD [32] fuzzy classifier4.

The results are provided in Table 2 where each cell correspond to the mean
accuracy among all folds, the rows are related with the different considered
datasets and the columns are the results obtained by classical FRMs such as: of
the Additive Combination (AC), Probabilistic Sum (PS), Winning Rule (WR),
Choquet integral (CI), CT -integrals (due to lack of space were summarized to
int, in all integrals) with is defined by the Hamacher product t-norm, CC-integral
that use the copula of the minimum, CF -integral considering the FNA2 function
and CF1F2 -integrals using the pair GM–FBPC.

From the detailed results, we can noticed that classic FRM of the WR is
the one that achieved the lowest global mean, indicating that the usage of all
information related with the problem is an interesting alternative. Moreover, it is
also observable that all non-averaging generalizations (AC, PS, CF -integrals and
CF1F2-integrals) presents superior results when compared against the averaging
ones (WR, IC, CT -integral and CC-integral).

The results also showed that the generalizations of the CI (CT , CC, CF ,
CF1F2-integrals) provided a superior performance in comparison to the standard
CI. Finally, as mentioned before, the largest performance is obtained when the
CF1F2-integral is used to cope with classification problems.
4 The considered datasets and the fuzzy classifier are available in KEEL repository.

Available at https://www.keel.es.

https://www.keel.es
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Table 2. Detailed results achieved in test by different generalizations of the CI.

Dataset AC PS WR CI CT -int CC-int CF -int CF1F2 -int

App 83.03 85.84 83.03 80.13 82.99 85.84 85.84 86.80

Bal 85.92 87.20 81.92 82.40 82.72 81.60 88.64 89.12

Ban 85.30 84.85 83.94 86.32 85.96 84.30 84.60 84.79

Bnd 68.28 68.82 69.40 68.56 72.13 71.06 70.48 71.30

Bup 67.25 61.74 62.03 66.96 65.80 61.45 64.64 66.96

Cle 56.21 59.25 56.91 55.58 55.58 54.88 56.55 56.22

Con 53.16 52.21 52.07 51.26 53.09 52.61 53.16 54.72

Eco 82.15 80.95 75.62 76.51 80.07 77.09 80.08 81.86

Gla 65.44 64.04 64.99 64.02 63.10 69.17 66.83 68.25

Hab 73.18 69.26 70.89 72.52 72.21 74.17 71.87 72.53

Hay 77.95 77.95 78.69 79.49 79.49 81.74 79.43 78.66

Ion 88.90 88.32 90.03 90.04 89.18 88.89 89.75 88.33

Iri 94.00 95.33 94.00 91.33 93.33 92.67 94.00 94.00

Led 69.60 69.20 69.40 68.20 68.60 68.40 69.80 70.00

Mag 80.76 80.39 78.60 78.86 79.76 79.81 79.70 80.86

New 94.88 94.42 94.88 94.88 95.35 93.95 96.28 96.74

Pag 95.07 94.52 94.16 94.16 94.34 93.97 94.15 95.25

Pen 92.55 93.27 91.45 90.55 90.82 91.27 92.91 92.91

Pho 81.70 82.51 82.29 82.98 83.83 82.94 81.44 81.42

Pim 74.74 75.91 74.60 74.60 73.44 75.78 74.61 75.38

Rin 90.95 90.00 90.00 90.95 88.78 87.97 89.86 91.89

Sah 68.39 69.69 68.61 69.69 70.77 70.78 70.12 71.43

Sat 79.47 80.40 79.63 79.47 80.40 79.01 80.41 79.47

Seg 93.12 92.94 93.03 93.46 93.33 92.25 92.42 93.29

Shu 95.59 94.85 96.00 97.61 97.20 98.16 97.15 96.83

Son 78.36 82.24 77.42 77.43 79.34 76.95 83.21 85.15

Spe 77.88 77.90 77.90 77.88 76.02 78.99 79.77 79.39

Tit 78.87 78.87 78.87 78.87 78.87 78.87 78.87 78.87

Two 90.95 90.00 86.49 84.46 85.27 85.14 92.57 92.30

Veh 68.56 68.09 66.67 68.44 68.20 69.86 68.08 68.20

Win 96.03 94.92 96.60 93.79 96.63 93.83 96.08 95.48

Wis 96.63 97.22 96.34 97.22 96.78 95.90 96.78 96.78

Yea 58.96 59.03 55.32 55.73 56.53 57.01 57.08 58.56

Mean 80.12 80.07 79.15 79.22 79.69 79.58 80.52 81.02
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8 Conclusions

The application of the Choquet integral (CI) in the Fuzzy Reasoning Method
(FRM) of Fuzzy Rule-Based Classification Systems (FRBCSs) modified the way
in which the information was used and enhanced the system quality. After that,
many generalizations of the CI were proposed and also applied in FRM, obtaining
success as well. In this paper the main contributions, theoretical and applied, of
the generalizations are summarized and discussed.

The first generalization was built by the replacement of the product operator
of the standard CI by different t-norms. These generalizations were supported by
an important theoretical concept known as pre-aggregation functions. Differently
from a simple aggregation function, a pre-aggregation function is monotonic only
in a determined direction. This first generalization produced averaging functions
and its applications to cope with classification problems showed that the gener-
alization by the Hamacher product t-norm was superior than the FRM of the
Winning Rule (WR) and the CI.

The second step aimed in generalizations of the CI that produce aggregation
functions. To do so, the IC was used in its expanded form and generalized by
copula functions, introducing the concept of Choquet-like Copula-Based aggrega-
tion functions, the so called CC-integrals. These functions also present averaging
characteristics. The results of their applications demonstrated that the classical
WR was statistically overcame.

It is observable that up to this point only generalizations with averaging
characteristics were presented. On the otter hand, fuzzy classifiers known as
state-of-the-art take into account the usage of non-averaging functions. Thus, to
produce more competitive generalizations, a family of fusion functions F were
introduced. The generalization of the Choquet integral by F functions introduced
the concept of CF -integrals. This generalization has averaging and non-averaging
characteristics, it depends on the considered function. It was observed that the
application of any non-averaging function statistically overcome any averaging
one. Also, the developed operators outperforms the classical WR and Additive
Combination (AC).

The generalization of the expanded CI by two functions F , F1 and F2, intro-
duced the concept of CF1F2 -integrals. These functions present an Ordered Direc-
tional increasing functions (OD increasing) and, therefore, represent a different
level of aggregation operators. The summit of the performance in the classifi-
cation problems was reached in this generalization. To do so, a methodology
to select different functions as F1 and F2 were presented, based on the concept
of degrees of dominance and subordination. For the considered CF1F2 -integrals,
in five different cases the generalizations are equivalent, or even superior, in
comparison with fuzzy classifiers found in the literature.

Taking as basis the analysis provided by this paper, some interesting research
points emerge. For example, the application of these generalizations in the FRM
of different fuzzy classifiers. Also, considering that the generalizations are based
on the Choquet integral, the usage of a different operator, such as the Sugeno
integral can produce even more powerful operators. Finally, the combinations
with different fuzzy measures are an alternative with great potential.
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Abstract. Semi-supervised learning has received attention from researchers, as
it allows one to exploit the structure of unlabeled data to achieve competitive clas-
sification results with much fewer labels than supervised approaches. The Local
and Global Consistency (LGC) algorithm is one of the most well-known graph-
based semi-supervised (GSSL) classifiers. Notably, its solution can be written as
a linear combination of the known labels. The coefficients of this linear combi-
nation depend on a parameter α, determining the decay of the reward over time
when reaching labeled vertices in a random walk. In this work, we discuss how
removing the self-influence of a labeled instance may be beneficial, and how
it relates to leave-one-out error. Moreover, we propose to minimize this leave-
one-out loss with automatic differentiation. Within this framework, we propose
methods to estimate label reliability and diffusion rate. Optimizing the diffusion
rate is more efficiently accomplished with a spectral representation. Results show
that the label reliability approach competes with robust �1-norm methods and
that removing diagonal entries reduces the risk of overfitting and leads to suitable
criteria for parameter selection.

Keywords: Machine learning · Leave-one-out · Semi-supervised learning ·
Graph-based approaches · Label propagation · Eigendecomposition

1 Introduction

Machine learning (ML) is the subfield of Computer Science that aims to make a com-
puter learn from data [11]. The task we’ll be considering is the problem of classification,
which requires the prediction of a discrete label corresponding to a class.

Before the data can be presented to an ML model, it must be represented in some
way. Our input is nothing more than a collection of n examples. Each object of this
collection is called an instance. For most practical applications, we may consider an
instance to be a vector of d dimensions. Graph-based semi-supervised learning (GSSL)
relies a lot on matrix representations, so we will be representing the observed instances
as an input matrix

X ∈ R
n×d. (1)
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A ML classifier should learn to map an input instance to the desired output. To do this,
it needs to know the labels (i.e. the output) associated with instances contained in the
training set. In semi-supervised learning, only some of the labels are known in advance
[3]. Once again, it is quite convenient to use a matrix representation, referred to as the
(true) label matrix

Yij =

{
1 if the i-th instance is associated with the j-th class

0 otherwise
(2)

Most approaches are inductive in nature so that we can predict the labels of instances
not seen before deployment. However, most GSSL methods are transductive, which
simply means that we are only interested in the fixed but unknown set of labels corre-
sponding to unlabeled instances [17]. Accordingly, we may represent this with a clas-
sification matrix:

F ∈ R
n×c (3)

In order to separate the labeled data L from the unlabeled data U , we divide our
matrices as following:

X =
[
XL�,XU �

]�
(4)

Y =
[
YL�,YU �

]�
(5)

F =
[
FL�,FU �

]�
(6)

The idea of SSL is appealing for many reasons. One of them is the possibility to inte-
grate the toolset developed for unsupervised learning. Namely, we may use unlabeled
data to measure the density P (x) within our d-dimensional input space. Once that is
achieved, the only thing left is to take advantage of this information. To do this, we
have to make use of assumptions about the relationship between the input density P (x)
and the conditional class distribution P (y |x). If we are not assuming that our datasets
satisfy any kind of assumption, SSL can potentially cause a significant decrease com-
pared to baseline performance [14]. This is currently an active area of research: safe
semi-supervised learning is said to be attained when SSL never performs worse than
the baseline, for any choice of labels for the unlabeled data. This is indeed possible
in some limited circumstances, but also provably impossible for others, such as for a
specific class of margin-based classifiers [9].

In Fig. 1, we illustrate which kind of dataset is suitable for GSSL. There are two
clear spirals, one corresponding to each class. In a bad dataset for SSL, we can imag-
ine the spiral structure to be a red herring, i.e. something misguiding. A very common
assumption for SSL is the smoothness assumption, which is one of the cornerstones
for GSSL classifiers. It states that “If two instances x1, x2 in a high-density region
are close, then so should be the corresponding outputs y1, y2” [3]. Another important
assumption is that the (high-dimensional) data lie (roughly) on a low-dimensional man-
ifold, also known as the manifold assumption [3]. If the data lie on a low-dimensional
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manifold, the local similarities will approximate the manifold well. As a result, we can,
for example, increase the resolution of our image data without impacting performance.

Graph-based semi-supervised learning has been used extensively for many differ-
ent applications across different domains. In computer vision, these include car plate
character recognition [19] and hyperspectral image classification [13]. GSSL is partic-
ularly appealing if the underlying data has a natural representation as a graph. As such,
it has been a promising approach for drug property prediction from the structure of
molecules [8]. Moreover, it has had much application in knowledge graphs, such as the
development of web-scale recommendation systems [16].

(a) Ground truth (b) Observed labels

Fig. 1. An ideal scenario for semi-supervised learning

GSSL methods put a greater emphasis on using geodesics by expressing connec-
tivity between instances through the creation of a graph. Many successful deep semi-
supervised approaches use a similar yet slightly weaker assumption, namely that small
perturbations in input space should cause little corresponding perturbation on the out-
put space [12].

It turns out that we can best express our concepts by defining a measure of similarity,
instead of distance. In particular, we search for an affinity matrix W ∈ R

n×n, such
that

Wij =

{
w(xi,xj) ∈ R if xi and xj are considered neighbors

0 otherwise
(7)

where w is some function determining the similarity between any two instances xi,xj .
When constructing an affinity matrix in practice, instances are not considered neighbors
of themselves, i.e. we have ∀i ∈ {1..n} : Wii = 0.

The specification of an affinity matrix is a necessary step for any GSSL classi-
fier, and its sparsity is often crucial for reducing computational costs. There are many
ways to choose a neighborhood. Most frequently, it is constructed by looking at the
K-Nearest neighbors (KNN) of a given instance.

One last important concept to GSSL is that of the graph Laplacian operator. This
operator is analogue to the Laplace-Beltrami operator on manifolds. There are a few
graph Laplacian variants, such as the combinatorial Laplacian
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LC = D − W (8)

where D, called the degree matrix, is a diagonal matrix whose entries are the sum of
each row ofW. There is also the normalized Laplacian, whose diagonal is the identity
matrix I:

LN = I − D− 1
2 WD− 1

2 = D− 1
2 LCD− 1

2 (9)

Each graph Laplacian L induces a measure of smoothness with respect to the graph
on a given classification matrix F, namely

S̃L(F) =
1
2

c∑
k=1

(F[:,k])�L(F[:,k]) =
1
2
tr(F�LF) (10)

where tr is the trace of the matrix and c the number of classes. If we consider each col-
umn f ofF individually, then we can express graph smoothness of each graph Laplacian
as

f�LCf =
∑

1≤i,j≤n

Wij(fi − fj)2 (11)

f�LNf =
∑

1≤i,j≤n

(
Wij√
Dii

fi − Wij√
Djj

fj

)2

(12)

Each graph Laplacian also has an eigendecomposition:

L = UΛU� (13)

where the set of columns of U is an orthonormal basis of eigenfunctions, with Λ a
diagonal matrix with the eigenvalues. As U is a unitary matrix, any real-valued func-
tion on the graph may be expressed as a linear combination of eigenfunctions. We
map a function to the spectral domain by pre-multiplying it by U� (also called graph
Fourier transform, also known as GFT). Additionally, pre-multiplying by U gives us
the inverse transform. This spectral representation is very useful, as eigenfunctions that
are smooth with respect to the graph have smaller eigenvalues. Outright restricting the
amount of eigenfunctions is known as smooth eigenbasis pursuit [6], a valid strategy
for semi-supervised regularization.

In this work, we explore the problem of parameter selection for the Local and Global
Consistency model. This model yields a propagation matrix, which itself depends on a
fixed parameter α determining the diffusion rate. We show that, by removing the diag-
onal in the propagation matrix used by our baseline, a leave-one-out criterion can be
easily computed. Our first proposed algorithm attempts to calculate label reliability by
optimizing the label matrix, subject to constraints. This approach is shown to be com-
petitive with robust �1-norm classifiers. Then, we consider the problem of optimizing
the diffusion rate. Doing this in the usual formulation of LGC is impractically expen-
sive. However, we show that the spectral representation of the problem can be exploited
to easily solve an approximate version of the problem. Experimental results show that
minimizing leave-one-out error leads to good generalization.
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The remaining of this paper is organized as follows. Section 2 summarizes the key
ideas and concepts that are related to our work. Section 3 presents our two proposed
algorithms: LGC LVO AutoL for determining label reliability, and LGC LVO AutoD
for determining the optimal diffusion rate parameter. Our methodology is detailed in
Sect. 4, going over the basic framework and baselines. The results are presented in
Sect. 5. Lastly, concluding remarks are found in Sect. 6.

2 Related Work

In this section, we present some of the algorithms and concepts that are central to our
approach. We describe the inner workings of our baseline algorithm, and how eliminat-
ing diagonal entries of its propagation matrix may lead to better generalization.

2.1 Local and Global Consistency

The Local and Global Consistency (LGC) [17] algorithm is one of the most widely
known graph-based semi-supervised algorithms. It minimizes the following cost:

Q(F) =
1
2

(
tr(F�LNF) + μ

∥∥F − Y
∥∥2

)
(14)

LGC addresses the issue of label reliability by introducing the parameter μ ∈ (0,∞).
This parameter controls the trade-off between fitting labels, and achieving high graph
smoothness.

LGC has an analytic solution. To see this, we take the partial derivative of the cost
with respect to F:

∂Q
∂F

=
1
2

∂tr(F�LNF)
∂F

+
1
2
μ

∂
∥∥F − Y

∥∥2

∂F
(15)

= ((1 + μ)I − S)F − μY (16)

where S = D− 1
2 WD− 1

2 = I − LN. By dividing the above by (1+ μ), we observe that
this derivative is zero exactly when

(I − αS)F = βY (17)

with

α =
1

1 + μ
∈ (0, 1) (18)

and
β = 1 − α (19)

The matrix (I − αS) can be shown to be positive-definite and therefore invertible, so
the optimal F can be obtained as

F = β(I − αS)−1Y (20)
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We hereafter refer to (I − αS)−1 as the propagation matrix P. Each entry Pij rep-
resents the amount of label information from Xj that Xi inherits. It can be shown that
the inverse is a result of a diffusion process, which is calculated via iteration:

F (0) = Y (21)

F (t+1) = αSF (t) + (1−α)Y (22)

Moreover, it can be shown that the closed expression for F at any iteration is

F (t) = (αS)t−1Y + (1 − α)
t−1∑
i=0

(αS)iY (23)

S is similar to D−1W , whose eigenvalues are always in the range [−1, 1] [17]. This
ensures the first term vanishes as t grows larger, whereas the second term converges to
PY . Consequently, P can be characterized as

P = (1 − α) lim
t→∞

t∑
i=0

(αS)i (24)

= (1 − α) lim
t→∞

t∑
i=0

αiD
1
2 (D−1W)iD− 1

2 (25)

The transition probability matrix W̃ = D−1W makes it so we can interpret the pro-
cess as a random walk. Let us imagine a particle walking through the graph according
to the transition matrix. Assume it began at a labeled vertex va, and at step i it reaches
a labeled vertex vb, initially labeled with class cb. When this happens, va receives a
confidence boost to class cb. Alternatively, one can say that this boost goes to the entry
which corresponds to the contribution from vb to va, i.e. Pab. This boost is proportional
to αi. This gives us a good intuition as to the role of α. More precisely, the contribution
of vertices found later in the random walk decays exponentially according to αi.

2.2 Self-influence and Leave-One-Out-Error

There is one major problem with LGC’s solution: the diagonal of P. At first glance, we
would think that “fitting the labels” means looking for a model that explains our data
very well. In reality, this translates to memorizing the labeled set. The main problem
resides within the diagonal of the propagation matrix. Any entry Pii stores the self-
influence of a vertex, which is calculated according to the expected reward obtained by
looping around and visiting itself. The optimal solution w.r.t. label fitting occurs when
α tends to zero. For labeled instances, an initial reward is given for the starting vertex
itself, and the remaining are essentially ignored.

We argue that the diagonal is directly related to overfitting. It essentially tells the
model to rely on the label information it knows. There are a few analogies to be made:
say that we are optimizing the number of neighbors k for a KNN classifier. The analog
of “LGC-style optimal label fitting” would be to include each labeled instance as a
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neighbor to itself, and set k = 1. This is obviously not a good criterion. The answer that
maximizes a proper “label fitting” criteria, in this case, is selecting k that minimizes
classification error with the extremely important caveat: directly using each instance’s
own label is prohibited.

In spite of the problems we have presented, the family of LGC solutions remains
very interesting to consider. We will have to eliminate diagonals, however. Let

H(α) :=
(
(I − αS)−1 − diag((I − αS)−1)

)
L YL (26)

By eliminating the diagonal, we obtain, for each label, its classification if it were not
included in the label propagation process. As such, it can be argued that minimizing∥∥H(α) − YL

∥∥2
(27)

also minimizes the leave-one-out (LOO) error. There is an asterisk: each instance is
still used as unlabeled data, but this effect should be insignificant. It is also interesting
to row-normalize (a small constant ε may be added for stabilization) the rows, so that
we end up with classification probabilities.

Previously, we developed a semi-supervised leave-one-out filter [2,4]. We also man-
aged to reduce the amount of storage used by only calculating a propagation sub-
matrix. The LOO-inspired criterion encourages label information to be redundant, so
labels that are incoherent with the implicit model are removed.

The major drawback of our proposal is that it needs an extra parameter r, which is
the number of labels to remove. The optimal r is usually around the number of noisy
labels, which is unknown to us. This was somewhat addressed in [4]: we can instead
use a threshold, which tells us how much labels can deviate from the original model.
Nonetheless, it is desirable to solve this problem in a way that removes such a parameter.
We will do this by introducing a new optimization problem.

3 Proposal

In this work, we consider the optimal value of α for our LOO-inspired loss [4]. The
objective is to develop a method to minimize surrogate losses based on LOO error for
the LGC GSSL classifier and evaluate the generalization of its solutions.

We use the term “surrogate loss” [9] to denote losses such as squared error, cross-
entropy and so on. We use this term to purposefully remind that the solution H(α)
that minimizes the loss on the test set does not also necessarily be the one that maxi-
mizes accuracy. We use automatic differentiation as our optimization procedure. As
such, we call our approach LGC LVO AutoL and LGC LVO AutoD when learning
label reliability and diffusion rate, respectively. We exploit the fact that we can com-
pute the gradients of our loss.

3.1 LGC LVO AutoL: Automatic Correction of Noisy Labels

Let P be the propagation matrix, whose submatrix PLL corresponds to kernel values
between labeled data only. Then, the modified LGC solution is given by P̃YL, where

P̃ := (PLL − diag(PLL)) (28)
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Our optimization problem is to optimize a diagonal matrix Ω indicating the updated
reliability of each label:

min
Ω

LOSS(deg(P̃ΩYL)−1P̃ΩYL, YL) such that ∀i : Ωii ≥ 0 (29)

where LOSS denotes some loss function such as squared error or cross-entropy.

3.2 LGC LVO AutoD: Automatic Choice of Diffusion Rate

In [4], we use a modified version of the power method to calculate the submatrix PL.
This is enough to give us the answer in a few seconds for a fixed α, but would quickly
turn into a huge bottleneck if we were to constantly update α. Our new approach uses
the graph Fourier transform. In other words, we adapt the idea of smooth eigenbasis
pursuit to this particular problem. Let us write the propagation matrix using eigenfunc-
tions:

P =
∞∑
t=0

αtSt (30)

=
∞∑
t=0

αt(I − LN)t (31)

Using the graph Fourier transform, we have that

LN = UΛU� (32)

I = UIU� (33)

So it follows that

P = UΛ̃U� (34)

where ∀i ∈ {1..N}:

Λ̃ii =
∞∑
t=0

(α(1 − Λii))t (35)

{∥∥α(1 − Λii)
∥∥ < 1} =

1
1 − (α(1 − Λii))

(36)

=
1

(1 − α) × 1 + (α) × Λii
(37)

In practice, we can assume that U is an l×p matrix, with l the number of labeled
instances and p the chosen amount of eigenfunctions. The diagonal entries are given by

Pii = (UΛ̃U�)ii (38)

= (U�)[:,i]Λ̃(U�)[:,i] (39)

= Σp
i=1U

2
ikΛ̃kk (40)

= (U[i,:])(U[i,:]Λ̃)� (41)
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Next, we’ll analyze the complexity of calculating the leave-one-out error for a given
diffusion rate α, given that we have stored the first p eigenfunctions in the matrixU. Let
UL ∈ R

p×l be the matrix of eigenfunctions with domain restricted to labeled instances.
Exploiting the fact that YU = 0, it can be shown that

PLL = ULΛ̃(U�
LYL) (42)

We can precompute (U�
LYL) ∈ R

p×c with O(plc) multiplications. For each diffusion
rate candidate α, we obtain ULΛ̃ ∈ R

l×p by multiplying each restricted eigenfunction
with its new eigenvalue. The only thing left is to post-multiply it by the pre-computed
matrix. As a result, we can compute the leave-one-out error for arbitrary α with O(plc)
operations.

We have shown that, by using the propagation submatrix, we can re-compute the
propagation submatrix PLL in O(plc) time. In comparison, the previous approach [4]
requires, for each diffusion rate, a total of O(tknlc) operations, assuming t iterations
of the power method and a sparse affinity matrix with average node degree equal to k.
Even if we use the full eigendecomposition (p = n), this new approach is significantly
more viable for different learning rates. Moreover, we can lower the choice of p to use
a faster, less accurate approximation.

4 Methodology

Basic Framework. We have a configuration dispatcher which enables us to vary a
set of parameters (for example, the chosen dataset and the parameters for affinity matrix
generation).

We start out by reading our dataset, including features and labels. We use the ran-
dom seed to select the sampled labels, and create the affinity matrix W necessary for
LGC. For automatic label correction, we assume that α is given as a parameter. For
choosing the automatic diffusion rate, we need to extract the p smoothest eigenfunc-
tions as a pre-processing step. Next, we repeatedly calculate the gradient and update
either α or Ω to minimize LOO error. After a set amount of iterations, we return the
final classification and perform an evaluation on unlabeled examples.

The programming language of choice is Python 3, for its versatility and sup-
port. We also make use of the tensorflow-gpu [1] package, which massively speeds up
our calculations and also enables automatic differentiation of loss functions. We use a
Geforce GTX 1070 GPU to speed up inference, and also for calculating the k-nearest
neighbors of each instance with the faiss-gpu package [7].

Evaluation and Baselines. In this work, our datasets have a roughly equal number of
labels for each class. As such, we will report the mean accuracy, as well as its standard
deviation. However, one distinction is that we calculate the accuracy independently on
labeled and unlabeled data. This is done to better assess whether our algorithms are
improving classification on instances outside the labeled set, or if it outperforms its
LGC baseline only when performing diagnosis of labels.
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Our approach, LGC LVO Auto, is compatible with any differentiable loss function,
such as mean squared error (MSE) or cross-entropy (xent). The chosen optimizer was
Adam, with a learning rate of 0.7 and 5000 iterations. For the approximation of the
propagation matrix in LGC LVO AutoL, we used t = 1000 iterations throughout.

Perhaps the most interesting classifier to compare our approach to is the LGC algo-
rithm, as that is the starting point and the backbone of our own approach. We will also
be comparing our results with the ones reported by [6]. These include: Gaussian Fields
and Harmonic Functions (GFHF) [18], Graph Trend Filtering [15], Large-Scale Sparse
Coding (LSSC) [10] and Eigenfunction [5].

5 Results

This section presents the results of employing our two approaches LGC LVO AutoL
and LGC LVO AutoD on ISOLET and MNIST datasets, compared to other graph-
based SSL algorithms from the literature.

5.1 Experiment 1: LGC LVO AutoL on ISOLET

Experiment Setting. In this experiment, we compared LGC LVO AutoL to the base-
lines reported in [6], specifically for the ISOLET dataset. Unlike the authors, our 20
different seeds also control both the label selection and noise processes. The graph
construction was performed exactly as in [6], a symmetric 10-nearest neighbors graph
with the width σ of the RBF kernel set to 100. We emphasize that the reported results
by the authors correspond to the best-performing parameters, divided for each indi-
vidual noise level. In [6], λ1 is set to 105, 102, 102 and 102 for the respective noise
rates of 0%, 20%, 40% and 60%; λ2 is kept to 10, and the number of eigenfunctions is
m = 30. We could not find any implementation code for SIIS, so we had to manually
reproduce it ourselves. As for parameter selection for LGC LVO AutoL, we simply set
α = 0.9 (equivalently, μ = 0.1111). We reiterate that having a single parameter is a
strength of our approach. In future work, we will try to combine LGC LVO AutoL
with LGC LVO AutoD to fully eliminate the need for parameter selection.

Experiment Results. The results are contained in Tables 1a and b. With respect to the
accuracy on unlabeled examples, we observed that:

– SIIS appeared to have a slight edge in the noiseless scenario.
– LGC’s own inherent robustness was evident. When 60% noise was injected, it
went from 84.72 to 70.69, a decrease of 16.55%. In comparison, SIIS had a decrease
of 14.39%; GFHF a decrease of 22.08%; GTF a decrease of 21.82%.

– With 60% noise, LGC LVO AutoL(xent) decreased its accuracy by 11.52%, so
LGC LVO AutoL(xent) had the lowest percentual decrease.

– LGC LVO AutoL(MSE) disappointed for both labeled and unlabeled instances.
– LGC LVO AutoL was not noticeably superior to LGC when there was less than

60% noise.

With respect to the accuracy on unlabeled examples, we observed that:
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– LGC was unable to correct noisy labels.
– LGC LVO AutoL(xent) discarded only 5% of the labels for the noiseless scenario,

which is better than SIIS and LSSC.
– Moreover, LGC LVO AutoL(xent) had the highest average accuracy on labeled
instances for 20%, 40%, 60% label noise.

Table 1. Accuracy on ISOLET dataset

(a) Accuracy on unlabeled examples only

Dataset Noise level LSSC GTF GFHF SIIS

0% 84.8 ± 0.0 70.1 ± 0.0 86.5 ± 0.0 85.4 ± 0.0
ISOLET 20% 82.8 ± 0.3 69.9 ± 0.2 81.6 ± 0.4 84.9 ± 0.6
(1040/7797 labels) 40% 78.5 ± 0.6 59.8 ± 0.3 79.7 ± 1.0 80.2 ± 1.3
reported results 60 % 67.5 ± 1.8 54.8 ± 0.5 67.4 ± 1.5 74.9 ± 1.4

Dataset Noise Level LGC LGC LVO AutoL(MSE) LGC LVO AutoL(XENT) SIIS

0% 84.71 ± 0.56 84.21±0.4 84.22±0.45 85.24 ± 0.32
ISOLET 20% 82.89 ± 0.59 81.6±0.63 82.56±0.62 83.69 ± 0.33
(1040/7797 labels) 40% 79.33 ± 0.92 77.73±0.96 80.23±0.74 80.88 ± 0.77
our results 60% 70.69 ± 1.01 68.98±1.81 74.51±1.75 72.97 ± 1.16

(b) Accuracy on labeled examples after label correction

Dataset Noise level LSSC GTF GFHF SIIS

0% 89.9 ± 0.0 95.8 ± 0.0 100.00 ± 0.0 91.1 ± 0.0

ISOLET 20% 87.7 ± 0.3 79.8 ± 0.7 80.00 ± 0.00 90.5 ± 0.8
(1040/7797 labels) 40% 82.9 ± 0.9 63.3 ± 0.4 60.00 ± 0.00 83.6 ± 1.0
reported results 60 % 71.8 ± 1.7 55.3 ± 0.6 40.00 ± 0.00 77.4 ± 1.0

Dataset Noise level LGC LGC LVO AutoL(MSE) LGC LVO AutoL(XENT) SIIS

0% 99.9 ± 0.02 97.36±0.52 95.01±0.58 90.24 ± 0.69
ISOLET 20% 80.84 ± 0.27 90.93±1.28 91.52±0.79 88.5 ± 1.07

(1040/7797 labels) 40% 60.24 ± 0.20 82.54 ± 0.92 87.19±0.89 85.25 ± 0.96
our results 60% 40.00 ± 0.04 71.16 ± 1.79 79.14±1.72 76.34 ± 1.53

5.2 Experiment 2: LGC LVO AutoL on MNIST

Experiment Setting. This experiment was based on [10], where a few classifiers were
tested on the MNIST dataset subject to label noise. In that paper, the parameters for the
graph were tuned to minimize cross-validation errors. Moreover, an anchor graph was
used, which is a large-scale solution. We did not use such a graph, as our TensorFlow
iterative implementation of LGC LVO AutoLwas efficient enough to perform clas-
sification on MNIST in just a few seconds. As we also included the results for LGC
(without anchor graph), it is interesting to observe that its accuracy decreases similarly
to the previously reported results: the main difference is better performance for the
noiseless scenario, which is to be expected (the anchor graph is an approximation).

Once again, we simply set α = 0.9 for LGC LVO AutoL. We used a symKNN
matrix with k = 15 neighbors, and a heuristic sigma σ = 423.57 obtained by taking
one-third of the mean distance to the 10th neighbor (as in [3]).
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Table 2. Accuracy on MNIST dataset

(a) Accuracy on unlabeled examples only

Dataset Noise level LSSC* Eigenfunction* LGC* (anchor graph)

MNIST 0% 93.1 ± 0.7 73.8 ± 1.6 90.4 ± 0.7

(100/70000 labels) 15% 91.1 ± 2.0 68.6 ± 2.8 83.5 ± 1.6
reported results 30% 89.0 ± 3.6 61.9 ± 4.0 74.4 ± 2.8

Dataset Noise level LGC LVO AutoL(MSE) LGC LVO AutoL(XENT) LGC

MNIST 0% 91.7 ± 0.7 92.69 ± 1.19 93.09 ± 0.92
(100/70000 labels) 15% 86.48 ± 2.59 90.45 ± 2.13 85.40 ± 1.66
our results 30% 81.33 ± 4.43 84.46 ± 3.89 74.58 ± 2.6

(b) Accuracy on labeled examples after label correction

Dataset Noise level LGC LVO AutoL(MSE) LGC LVO AutoL(XENT) LGC

MNIST 0% 99.5 ± 0.59 98.05 ± 0.59 100.00 ± 0.0
(100/70000 labels) 15% 95.05 ± 2.01 96.10 ± 1.3 85.00 ± 0.0
our results 30% 85.55±4.88 89.75 ± 4.06 70.00 ± 0.0

Experiment Results. The results are found in Tables 2a and b. With respect to the
accuracy on unlabeled examples, we observed that:

– LGC LVO AutoL with cross-entropy improved the LGC baseline significantly
on unlabeled instances. For 30% label noise, mean accuracy increases from
74.58% to 84.46%.

– Themean squared error loss is once again consistently inferior to cross-entropy
when there is noise.

– LGC LVO AutoL was not able to obtain better results than LSSC.

With respect to the accuracy on labeled examples, we observed that:

– LGC was not able to correct the labeled instances.
– LGC LVO AutoL with cross-entropy improved the LGC baseline significantly

on labeled instances. With 30% noise, accuracy goes from 70.00% to 89.75%.

5.3 Experiment 3: LGC LVO AutoD on MNIST

Experiment settings were kept the same as Experiment 2 (without noise), and p = 300
eigenfunctions were extracted. In Fig. 2, we show accuracy on the labeled set as red,
and on the unlabeled set as purple. The x values on the horizontal axis relate to α as
following: α = 2−1/x. Looking at Fig. 2b, we can see that, if we do not remove the
diagonal, there is much overfitting and the losses reach their minimum value much ear-
lier than does the accuracy on unlabeled examples. When the diagonal is removed, the
loss-minimizing estimates for α get much closer to the optimal one (Fig. 2a). Moreover,
by removing the diagonal we obtain a much better estimation of the accuracy on unla-
beled data. Therefore, we can simply select the α corresponding to the best accuracy on
known labels.
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(a) Diagonal removed (b) Diagonal NOT removed

Fig. 2. LGC LVO AutoD on MNIST. The x coordinate on the horizontal axis determines diffu-
sion rate α = 2−1/x for x ≥ 1. The orange, blue and green curves represent the surrogate losses:
mean absolute error, mean squared error, cross-entropy. Moreover, the accuracy on the known
labeled data is shown in red, and the accuracy on unlabeled data in purple. (Color figure online)

6 Concluding Remarks

We have proposed the LGC LVO Auto framework, based on leave-one-out valida-
tion of the LGC algorithm. This encompasses two methods, LGC LVO AutoL and
LGC LVO AutoD, for estimating label reliability and diffusion rates. We use automatic
differentiation for parameter estimation, and the eigenfunction approximation is used to
derive a faster solution for LGC LVO AutoD, in particular when having to recalculate
the propagation matrix for different diffusion rates.

Overall, LGC LVO AutoL produced interesting results. For the ISOLET dataset, it
was very successful at the task of label diagnosis, being able to detect and remove
labels with overall better performance than every �1-norm method. On the other hand,
did not translate too well for unlabeled instance classification. For the MNIST
dataset, performance is massively boosted for unlabeled instances as well. In spite
of outperforming its LGC baseline by a wide margin, it could not match the reported
results of LSSC on MNIST. Preliminary results showed that LGC LVO AutoD is a
viable way to get a good estimate of the optimal diffusion rate, and removing the diag-
onal entries proved to be the crucial step for avoiding overfitting.

For future work, we will be further evaluating LGC LVO AutoD. We will also try to
integrate LGC LVO AutoD and LGC LVO AutoL together into one single algorithm.
Lastly, we will aim to extend LGC LVO AutoD to a broader class of graph-based ker-
nels, in addition to the one resulting from the LGC baseline.
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Abstract. Tactical asset allocation is an essential method for defin-
ing a profitable portfolio for a given period. An analyst usually creates
a tactical asset portfolio through technical analysis, a process subjec-
tive to the analyst’s knowledge and interpretations. Another aspect that
can directly influence the quality of a portfolio is the number of assets
considered for analysis. Human analysts tend to focus on a pre-defined
group of assets, limiting choices, and, consequently, the possibility of bet-
ter results. This work proposes the Stock Network Portfolio Allocation
(SNPA) algorithm for the automatic recommendation of a stock portfo-
lio, aiming to maximize profit and minimize risk. The proposed method
considers a possibly large set of assets represented as a complex net-
work. In which the nodes represent assets, and the edges stand for the
correlation between their returns. Portfolio allocation is done through a
random walk on the stock network, selecting, in the end, the most visited
nodes (stocks). We conducted investment simulations on Brazilian stocks
from the IBrX100 index, for 24 month periods, from Jan. 2018 to Dec.
2019. We compare the results with portfolio strategies: Ibovespa index
(IBOV), classic Markowitz’s mean-variance portfolio (MV), Mean Abso-
lute Deviation (MAD) portfolio, Conditional Value at Risk (CVaR), and
Hierarchical Risk Parity (HRP). The Shape Ratio (SR), Maximum Draw-
down (MDD), and Cumulated Wealth (CW) were used as performance
metrics. The SNPA algorithm demonstrated its effectiveness, presenting
a CW of 236.3%, being 203.5% above MV portfolio; 181.7% above CVaR
portfolio; 175.6% above MAD portfolio, 184.6% above IBOV index, and
165.1% above HRP. SNPA also surpassed the benchmarks considering the
performance metrics SR and MDD, with values 0.67 and −1.37 respec-
tively, the best results among the benchmarks were observed by the HRP
strategy, with 0.48 in SR index, and MV with −1.39 in MDD index.

Keywords: Tactical asset allocation · Stock networks · Random
walks · Portfolio management · Markowitz portfolio

1 Introduction

Portfolio management is one of the major problems in today’s competitive finan-
cial environment [4,16]. Due to stock market volatility as well as diverse factors
related to human, political, and economic behavior, creating and managing portfo-
lios successfully becomes an increasingly challenging practice. Since the precursor
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works of Markowitz [13,14] referring to portfolio selection and modern portfolio
theory, many researchers have been striving to find an ideal solution to create an
efficient asset portfolio that maximizes return and minimizes risks.

To cope with market instability, researchers use different methods such as
modeling the correlation between asset pricing, listening to human interactions
in specialized forums, clustering assets according to their performance and, ana-
lyzing machine learning predictions [2,11]. Among the portfolio allocation meth-
ods, Tactical Asset Allocation (TAA) is an asset management investment method
that consists of readjusting the proportions of each category of assets, based on a
signal that indicates which asset class will perform best in the upcoming period
[1]. Particularly, systematic TAA strategies involve a quantitative, data-driven
investment model to identify trends and perform forecasts to aid portfolio man-
agement.

One aspect that can directly influence the quality of a portfolio is the number
of assets considered for analysis. Human analysts tend to focus on a pre-defined
group of assets, limiting choices, and, consequently, the possibility of better
results. While most automated portfolio management systems may exhibit pro-
hibitive computational costs associated with optimization procedures when deal-
ing with a large set of assets [18].

In this paper, we propose the Stock Network Portfolio Allocation (SNPA)
algorithm for the automatic recommendation of a stock portfolio, aiming to
maximize profit and minimize risk. The motivation for this study is to efficiently
cover a large number of assets by modeling them as a complex network. In
this network, each node represents an asset, and edges are established accord-
ing to the correlation between their returns. Portfolio selection is then made
through a random walk on the network, selecting, in the end, the most visited
assets. Investment simulations have shown a return higher than the benchmarks:
the Ibovespa, classic Markowitz’s mean-variance portfolio (MV), Mean Absolute
Deviation (MAD) portfolio, Conditional Value at Risk (CVaR) portfolio, and
Hierarchical Risk Parity (HRP).

The remainder of this paper is organized as follows. In Sect. 2, we present
a literature review on some topics related to this work as methods for tactical
asset allocation, stock correlation analyzes, and stock networks. In Sect. 3, we
detail the SNPA algorithm. In Sect. 4, we conduct some analysis with the hyper-
parameters of the model. Section 5 we describe the portfolio strategies found in
the literature and used in the present work to compare with the proposed algo-
rithm. The performance metrics used in the comparisons are also presented. We
present and discuss the result of experiments in Sect. 6. Finally, Sect. 7 concludes
the paper.

2 Related Works

Network analysis is commonly used to describe the characteristics or behavior
of complex networks. Some research has been conducted to model the stock
market using networks [15], where the stock market is presented through a min-
imal spanning tree (MST) obtained from the matrix of correlation coefficients
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calculated between all pairs of stocks in a portfolio, considering stock returns.
MST-type networks have also been implemented to demonstrate the impact of
the new coronavirus pandemic on the financial market [26].

George and Changat [7] emphasize that stock network analysis can play an
important role in the stock market study. They created a network of stocks
with a set of data from the period of one year, their objective was to identify
the structural properties of the market. His work was able to reveal important
inputs for decision making, such as, for example, creating a portfolio of more
relevant sectors.

Ben-Jacob et al. [20] analyzed stock index correlations, nested stock corre-
lations, and correlations after subtraction of the index return from the stocks’
returns, they showed that the behavior of the stock market could not be under-
stood and predicted only based on individual stocks; rather, system-level analysis
methods need to be devised to analyze the stock market as a whole. Kim and
Jeong [8] proposed improved methods to identify stock groups using the correla-
tion matrix of stock price changes, they identified the multiple groups of stocks
from the empirical correlation matrix of stock price changes in the New York
Stock Exchange.

Chen et al. [5] discuss the stock network construction problem under simul-
taneous consideration of linear and nonlinear relations between stocks. The
results showed that the proposed multi-layer network better balances the rela-
tion between prediction accuracy and the number of predictable nodes. Hong et
al. [10] consider cross-correlations among stock prices in the Korean stock mar-
ket. They used the daily Korean stock market prices of KOSPI200 for four years
from Jan. 2000 to Dec. 2004. They observed the behavior of the stock network
specifying a threshold for the correlation between the nodes of that network, so
a scale-free network was obtained by the cross-correlation coefficient.

3 The Stock Network Portfolio Allocation Algorithm

Prior to detail the Stock Network Portfolio Allocation (SNPA) algorithm, we
shall present some concepts about asset return, risk, portfolio return, and
weighted stock network.

Measuring the asset return is the way to determine its performance over time.
Let Rt,i be the observed return of the asset i at time t ∈ {1, 2, . . . , τ} considering
historical data over the time horizon τ . Here, t can represent a day, a week, a
month, a quarter or a year, according to the study interval.

From time t − 1 to time t, the returns from a set of N stocks accessible to
investors is denoted as Rt = [Rt,1, . . . , Rt,i, . . . , Rt,N ]. The return Rt,i for the
i-th asset is calculated by Eq. (1).

Rt,i =
prt,i − prt−1,i

prt−1,i
(1)

where prt,i and prt−1,i represent the closing prices of the ith asset at times t and
t − 1, respectively.
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The cumulative wealth of a given asset i during the analyzed period t is
denoted as cwt,i, and can be calculated according Eq. (2).

cwt,i =
τ∏

t=1

(1 + Rt,i) − 1 (2)

The standard deviation, σi, and the variance, σ2
i , of the return for asset i,

can be used to measure the risk of a given asset. Let μi = 1
τ

∑τ
i=1 Rt,i be the

average of returns for asset i over time horizon τ , the variance of the returns for
the asset i is given by Eq. (3)

σ2
i =

1
τ

τ∑

i=1

(Rt,i − μi)2 (3)

We denote ωt = [ωt,1, . . . , ωt,i, ..., ωt,N ] as the weights from set of N stocks
of the portfolio at time t, such that

∑
ωt = 1; ωt,i represents the allocation

percentage of the i-th asset in the portfolio. Having obtained the set of returns
and the set of weights of the assets in the portfolio, we can calculate the return
of the portfolio in time t, noted as rt through Eq. (4).

rt =
∑

Rtωt (4)

A weighted stock network is denoted as G = (V,E,Z,W ), where V is the set
with n nodes, E is the set of m edges, Z is the set of z nodes weights and W
is the set of w edges weights. The network G is obtained through a correlation
matrix Mt, as shown in Eq. (5), and obtained by Eq. (6).

Mt =

⎡

⎢⎢⎢⎢⎢⎣

c11 c12 c13 · · · c1N

c21 c22 c23 · · · c2N

c31 c32 c33 · · · c3N

...
...

...
. . .

...
cN1 cN2 cN3 · · · cNN

⎤

⎥⎥⎥⎥⎥⎦
(5)

cij =
∑τ

t=1(Rt,i − μi)(Rt,j − μj)√∑τ
t=1(Rt,i − μi)2

∑τ
t=1(Rt,j − μj)2

(6)

To suggest a portfolio for the following month, the algorithm represents the
set of assets as an undirected complex network. The most visited assets compose
the portfolio after a random walk takes place. Therefore, the proposed approach
can be addressed into two parts, building the network from a set of assets and
traversing the network to find out the portfolio.

Given a set of assets A = {1, . . . , N}, the network is built as follows:

1. each asset i ∈ A is abstracted to a node vi.
2. given the correlation between assets i and j, ci,j (Eq. (6)), each pair of nodes

vi and vj is connected if cij < λn or cij > λp.
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In item 2, λn and λp are thresholds on the value of the correlation of the
returns. The rationale of those parameters is to avoid values of correlations close
to zero, keeping only significant values of correlation between returns. Notice that
their values directly interfere with the structure of the network, consequently,
they need to be chosen considering the algorithm performance and restraining
to values that generate connected networks.

SNPA uses the asset cumulative wealth, Eq. (5), of the analyzed period as a
node weight. So node vi has as an associated weight, zi, its cumulative wealth
cwt,i. In this work, the historical series of the last five years prior to the date
on which the portfolio is to be generated is used. Let Γi be the set of neighbors
of vertex vi. The way the network is built, for each node vi, Γi may have nodes
whose correlation to vi is positive or negative. Supposing vj ∈ Γi, the probability
of the particle to visit vj , noted by Pij , can be calculated by the softmax function
as in Eq. (7). The reason to consider the softmax function is that cwt,j may be
negative.

Pij =
ecwt,i

∑
vj∈Γi

ecwt,j
(7)

Figure 1(a) shows the paths that can be taken by the particle starting from
node v1 and the cumulative wealth cwi,j for each asset represented in node
vj . Figure 1(b) shows the transition probabilities from node v1 to each of its
neighbors v2, v3 and v4 as given by Eq. (7).

v2

v1

v4

v3

cw12 = 0.43

cw13 = 0.71

cw14 = 0.88

(a)

v2

v1

v4

v3

P12 = 0.26

P13 = 0.34

P14 = 0.40

(b)

Fig. 1. Example of selecting a neighbor using cumulative wealth probability

Algorithm 1 presents the details of the proposed method. The algorithm has
as inputs: the set of stocks A, the number of iterations k, the thresholds on the
correlation values λp, and λn. The number of stocks in the portfolio, q, can be
either given as an input and in this way, the algorithm will search for a portfolio
with q stocks. Or, if it is not given, the algorithm outputs the portfolio with the
highest return considering any possible value of q. The most costly part of the
algorithm is to calculate the transition probabilities, which requires to access
every edge of the graph.
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Algorithm 1: The SNPA Algorithm

Input:
A: set of stocks
k: number of iterations
λp: positive correlation threshold
λn: negative correlation threshold
q number of stocks in the portfolio (optional)
Output: A portfolio S and the assets’ weights ω, (S, ω)

1 begin
2 Calculate the correlation between all asset in A obtaining M (Eq. (5)).
3 Build the network, G, from M, with respect to λn and λp

4 for all i ∈ A do
5 for all j ∈ Γi do
6 Calculate Pij as in Eq. (7)
7 end

8 end
9 Select a random node vi in G to start

10 while k > 0 do
11 Proceed to the next node, say vj , according to Pij

12 Increment the visits number ηj to vj , i.e., ηj = ηj + 1
13 j = i
14 k = k − 1

15 end
16 Sort the nodes in descending order according to their number of visits.
17 if q has been given then
18 Define S = Sq as the set of stocks represented by the q top visited nodes
19 Define ωj =

ηj∑
i∈Sq

ηi
as the weights for each asset j in portfolio S

20 end
21 else
22 for q = 1 → N do
23 Calculate the return of portfolio Sq, with the stocks represented by

the top q visited nodes
24 end
25 Define S = max(Sq) as the set of stocks represented by the portfolio

with the highest return
26 Define ωj =

ηj∑
i∈Sq

ηi
as the weights for each asset j in portfolio S

27 end
28 return (S, ω).

29 end

Once all the probabilities have been defined, a random walk takes place. The
walk proceeds in the network by following the nodes according to the transition
probabilities, while the algorithm keeps track of the number of visits each node
had. In the end, the stocks represented by the most visited nodes are chosen to
compose the portfolio, and the weight of each asset corresponds to the proportion
of the total number of visits. The selected stocks tend to have a high return and
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be highly correlated to each other (positively and negatively). At the same time,
the randomness of the algorithm allows us to consider different but also profitable
portfolios.

4 Hyperparameter Analysis

To define the hyperparameters values of the algorithm, experiments were carried
out with available stocks from IBrX100 index (approximately 100 stocks). Ten
experiments were performed to mitigate the effect of randomization. The exper-
iments consider build a portfolio for Jan. 2020 using stock data of the period
from Jan. 2019 to Dec. 2019. The datasets used in this work were built with
information from the Yahoo Finance [https://finance.yahoo.com/lookup].

First, consider analysing how each parameter relates to each other and to
portfolio return. For this analysis, experiments to find a portfolio have been
conducted considering several parameters settings. The number of iterations k
varied in the range {50, 100, . . . , 1000}, threshold values λp and λn were evalu-
ated in {0.1, 0.2, . . . , 1}. The number of assets in the portfolio, q, was given by
the algorithm along with the best portfolio return. To each parameter setting,
risk has been calculated as the standard deviation of returns among ten runs.
Node average degree in the stock network have also been considered for analysis.

Figure 2 shows some pairwise correlations, considering hyperparameters,
return, risk and node average degree. It is possible to observe a strong posi-
tive correlation between risk and return (0.63), i.e., the higher the return, the
higher the risk. Also, a strong negative correlation between λp and node average
degree in the network, because as the value of λp as increases, less nodes are
connected. It is also interesting to note the positive correlation between λn and
risk and return, the greater the value of λn the greater the value of the return,
although the risk also increases, the increase in risk is less than the increase in
return.

Table 1 displays a summary of the main statistical measures obtained through
the experiments. The most relevant are the average return and standard devia-
tion, 0.164 ± 0.106. Another relevant information is about the hyperparameter
q, although the range was between 2 and 29, most portfolios were composed of
2 assets, as can be seen in the measurement of the median.

With the data from the experiments it is possible to identify the best values
for hyperparameters. Figure 3 presents the mean return against the standard
deviation of the returns for each value of k and varying λp and λn in the set
{0.1, 0.2, . . . , 1}. Each result is the average of 10 realizations.

For k = 950 we have a value with less risk and for k = 350 portfolios with
higher mean return. It is a trade-off matter between risk and return. Whereas
we aim to maximize the return and the difference in risk is small between the
two values, the value of 350 was chosen for the hyperparameter k.

https://finance.yahoo.com/lookup
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Fig. 2. Hyperparameters correlations

Table 1. Statistical summary

Range Mean Median Sd

λp 0.1/1 0.55 0.5 ±0.29

λn −1/−0.1 −0.51 −0.5 ±0.26

k 50/1000 525 525 ±288

q 2/29 2.5 2 ±1.43

Return −0.089/0.363 0.164 0.141 ±0.106

Average degree 2.1/141.2 48.9 37.1 ±41.0

Visited nodes 2/52 9.5 7 ±6.9

Having defined the value of k, we can obtain the values of λp and λn. Figure 4
shows the portfolio average returns for k = 350, considering different combina-
tion of λp and λn. In the figure, only those return values that are within the
range 0.164 ± 0.106 are shown, in order to stay close to average returns and
avoid outliers.

As can be seen in Fig. 4, the best result obtained with the experiment is the
mean return for λp = 0.9 and λn = −0.3. These are the values of the hyperpa-
rameters that will be used in Sect. 6 about experimental result. Hyperparameters
λp and λn are very relevant in the decision process of the algorithm, by defining
these hyperparameters, the number of paths in the network and the interconnec-
tion between nodes are defined. Setting hyperparameters at random can result
in an ineffective portfolio at the end process.
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Fig. 3. Estimated mean return and standard deviation for different values of k.

Fig. 4. Estimated portfolio return for when varying λp and λn and k = 350.

5 Methodology

In this section, we describe the main characteristics of the benchmarks used
in the present work, which will be compared with the proposed algorithm:
Markowitz’s classic mean-variance (MV) [14] portfolio; MAD portfolio (Mean
Absolute Deviation) [9]; CVaR portfolio (Conditional Value-at-Risk) [19] and
Hierarchical Risk Parity (HRP) portfolio [17]. The performance metrics method-
ologies that are used to compare these portfolio strategies with the proposed
algorithm are also presented.

5.1 Portfolio Allocation Methods

Markowitz’s Classic Mean-Variance (MV): Markowitz has developed a
mathematical model showing a reduction in the volatility of a portfolio through
the combination of investments [13,14]. He assumed that portfolios could be
entirely characterized by their mean return and variance (or risk).
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Mean Absolute Deviation (MAD): In 1991, Konno & Yamazaki [9] sug-
gested a linear programming model in which portfolio risk is measured with the
Mean Absolute Deviation (MAD) instead of Markowitz’s variance-based portfo-
lio. The purpose of the proposal was to remove most of the difficulties associated
with the classical Markowitz’s model.

Conditional Value-at-Risk (CVaR): In 2000, Rockafellar & Uryasev [19]
introduced a new approach to optimizing a portfolio to reduce the risk of high
losses. Value-at-Risk (VaR) played a relevant role in their approach, but the
emphasis was on conditional value-at-risk (CVaR) [19,25].

Hierarchical Risk Parity (HRP): portfolio optimization method suggested
by Lopez de Prado [17] in 2016. HRP applies modern concepts on graph theory
and machine learning techniques to build a diversified portfolio based on the
information contained in the asset return matrix.

5.2 Portfolio Performance Metrics

To measure the performance of stock portfolios, some methods can be used, such
as: the Sharpe ratio, the maximum drawdown (difference between the highest
and lowest value in a given period) and the cumulative wealth. These indicators
are widely used in works involving asset portfolio performance analysis and can
be found in [3,6,22,24].

Sharpe Ratio (SR): was created by the Nobel William Forsyth Sharpe [21],
it is the most widely adopted index for measuring the risk and return ratio of
a portfolio. The SR provides a measure of risk-adjusted return for a portfolio
strategy [23]. The higher the SR index the better.

The SR can be obtained using Eq. (8), where rτ is the average of rt returns
from portfolios for the time horizon τ (Eq. (9)), and στ is the standard deviation
of portfolio returns (Eq. (10)).

SR =
rτ

στ
(8)

rτ =
1
τ

τ∑

t=1

rt (9)

στ =
√

σ2
τ , σ2

τ =
1
τ

τ∑

t=1

(rt − rτ )2 (10)

Maximum drawdown (MDD) the maximum drawdown is a risk measure
widely used by fund managers, as a very high drawdown usually triggers fund
redemptions by investors [12]. To obtain the value of the MDD, the Eq. (11) can
be used, where min(rt) is the lowest value observed in the portfolio returns and
max(rt) the highest value found. The lower the MDD index the better.

MDD =
max(rt) − min(rt)

max(rt)
(11)
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Cumulative Wealth (CW): is the cumulative wealth of stock portfolio over
the period τ . Measures the aggregate amount that the investment has gained or
lost over time. CW can be calculated by Eq. (12). The higher the CW index the
better.

CW =
τ∏

t=1

(1 + rt) − 1 (12)

6 Experimental Result

The experiments were performed using the hyperparameters values presented in
Table 2, and found as described in Sect. 4.

Table 2. Hyperparameters summary for experiments

Hyperparameter Description Value

k Iterations 350

λp Positive correlation threshold 0.9

λn Negative correlation threshold −0.3

A Set of stocks ≈96

The hyperparameter k is the number of iterations that will be performed on
the network. The set of stocks A is formed by the stocks in the IBrX100 index.
This index is composed by the 100 most traded stocks on the Brazilian stock
market. For the purpose of this work, however, the number of stocks used in the
experiment was 96 stocks, due to data availability.

The experiments consist in finding a portfolio for the next month, t + 1, giving
the stock information (time series) from the previous five years. Experiments
were analyzed with the base period January 2018 to December 2019. When
analyzing a period with these reference months, for example, October 2019, the
time series analyzed was from September 2014 to September 2019, and the month
that wanted the best result is October 2019.

The results is the month return averaged for 10 times. To evaluate the pro-
posed approach, the SNPA algorithm is compared with the following bench-
marks: the Ibovespa index (IBOV), classic Markowitz’s mean-variance portfolio
(MV), Mean Absolute Deviation (MAD) portfolio, Conditional Value at Risk
(CVaR) portfolio and Hierarchical Risk Parity (HRP). The results are separated
into two sections; Sect. 6.1 focuses on returns, while Sect. 6.2 presents perfor-
mance analysis.

6.1 Return-Based Results

Table 3 shows the summary results for each portfolio analyzed. As can be seen,
the SNPA algorithm obtained the highest mean return when compared to the
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benchmarks, it also presents a balanced risk value (sd - standard deviation). The
value q̄ is the average number of assets each portfolio has suggested.

Table 3. Summary results

Mean return Risk(sd) q̄

IBOV 1.88% ±5.16% 75

MV 1.28% ±4.40% 7.3

CVaR 2.17% ±8.70% 9.5

MAD 2.23% ±7.04% 12.3

HRP 2.41% ±5.23% 59.5

SNPA 5.48% ±8.17% 8.8

Table 4 shows the monthly returns obtained by the algorithm under compar-
ison. As can be seen, SNPA presented higher results in 11 out of the 24 analysed
months. Conversely, SNPA have performed worse than all the other in 2 out of
the 24 analysed months. It is important to note that in August 2018 the algo-
rithm obtained a positive return, while all the others presented negative values.
At last, the SNPA algorithm obtained negative results in 5 of the 24 months eval-
uated, that is, in 21% of the cases. The benchmarks were, on average, negative
9 months, that is, 37.5%.

Figure 5 shows the cumulative portfolio’s return to the analyzed period. In
the cumulative wealth, the algorithm SNPA demonstrated its effectiveness, pre-
senting a total return of 236.3%, being 203.5% above MV portfolio; 181.7% above
CVaR portfolio; 175.6% above MAD portfolio, 184.6% above IBOV index and
165.1% above HRP.
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Table 4. Monthly returns for the algorithms under comparison. Best results are bold
faced and worse results are highlighted in red

t + 1 IBOV MV CVaR MAD HRP SNPA

2018-01 11.14% 6.04% 2.67% 7.71% 4.33% 2.38%

2018-02 0.67% −3.72% −1.68% −0.50% −1.06% −3.59%

2018-03 −0.13% −1.10% −6.44% −5.17% 0.79% −3.73%

2018-04 0.88% −0.23% 5.18% −0.22% 0.06% 3.53%

2018-05 −10.87% −4.90% −6.70% −12.83% −9.79% −8.41%

2018-06 −5.20% −4.03% −12.71% −3.51% −4.97% −1.83%

2018-07 8.87% 8.28% 24.66% 9.25% 6.42% 15.03%

2018-08 −3.21% −0.57% −0.55% −6.83% −2.01% 2.59%

2018-09 3.47% −4.27% −3.24% −3.15% −2.46% 3.30%

2018-10 10.19% 9.30% 23.15% 21.56% 12.71% 21.43%

2018-11 2.38% 2.56% 3.43% 0.31% 3.09% −3.97%

2018-12 −1.81% 2.19% 2.88% 3.91% 1.39% 7.78%

2019-01 10.82% 0.13% 9.46% 14.64% 13.32% 5.37%

2019-02 −1.86% −1.55% −1.79% 4.27% −2.49% 1.40%

2019-03 −0.18% 0.77% 1.67% −3.13% −0.27% 2.42%

2019-04 0.98% 0.23% −10.25% −1.21% 3.46% 4.82%

2019-05 0.70% −1.08% 2.29% 4.08% 4.13% 0.46%

2019-06 4.06% 4.68% 1.92% 4.98% 4.89% 8.62%

2019-07 0.84% −0.01% 1.06% 4.71% 5.45% 15.00%

2019-08 −0.66% −1.74% −3.20% 2.77% 1.79% 5.49%

2019-09 3.57% 3.94% 1.02% 0.24% 3.81% 1.34%

2019-10 2.36% 2.61% 5.97% 3.18% 1.25% 17.76%

2019-11 0.77% 0.65% 1.70% 1.77% 3.84% 11.51%

2019-12 7.33% 12.51% 11.61% 6.58% 10.06% 22.80%

6.2 Performance-Based Results

Here are presented the results based on the performance of each portfolio strategy
and the suggested algorithm. The results are compared with the benchmarks
considering the performance metrics: Shape Ratio (SR), Maximum Drawdown
(MDD) and cumulated wealth (CW).

Table 5 shows the results obtained by the algorithm proposed in the present
work comparing with the benchmarks. The numbers highlighted were the best
observed values.

Table 5. Summary of portfolio performance

IBOV MV CVaR MAD HRP SNPA

SR 0.36 0.29 0.25 0.32 0.48 0.67

MDD −1.98 −1.39 −1.52 −1.60 −1.73 −1.37

CW 51.8% 32.8% 54.6% 60.8% 71.2% 236.3%
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It is possible to observe in Table 5 that the performance of the algorithm pro-
posed is predominant, obtaining the best values considering all the performance
metrics evaluated: SR, MDD and CW with the values 0.67, −1.37 and 236.3%
respectively.

The second best performance was obtained by the HRP strategy, considering
the performance metrics SR and CW, with the values 0.48 and 71.2% respec-
tively. In the case of MDD, the second best performance was obtained by the
MV strategy, with a value of −1.39.

7 Conclusion

We propose the Stock Network Portfolio Allocation (SNPA) algorithm to recom-
mend a profitable stock portfolio. SNPA can efficiently handle a large set of assets
by representing them as a complex network, where nodes represent assets and
edges how their returns correlate. A random walk process carried in this network
defines a portfolio. Simulated investment results show the proposed algorithm
presented superior performance when compared to the benchmarks: Ibovespa
index (IBOV), classic Markowitz’s mean-variance portfolio (MV), Mean Abso-
lute Deviation (MAD) portfolio, Conditional Value at Risk (CVaR) and Hier-
archical Risk Parity (HRP). The results were compared with the benchmarks
considering the performance metrics: Shape Ratio (SR), Maximum Drawdown
(MDD), and Cumulated Wealth (CW). The performance of the algorithm pro-
posed was predominant, obtaining the best values considering all the perfor-
mance metrics. SNPA demonstrated its effectiveness, presenting a CW of 236.3%,
being 203.5% above MV portfolio; 181.7% above CVaR portfolio; 175.6% above
MAD portfolio, 184.6% above IBOV index and 165.1% above HRP. The pro-
posed algorithm also surpassed the benchmarks considering the performance
metrics SR and MDD, with values 0.67 and −1.37 respectively, the best results
among the benchmarks observed by the HRP strategy, with 0.48 and −1.73
respectively. The downside of the proposed algorithm is its computational com-
plexity due to the calculation of the return matrix and the length of the random
walk. Future work includes analyzing larger periods of time considering all stocks
from a particular market, for more markets. And, also consider machine learning
predictions of the return in place of historical data.
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