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Abstract. Named entity recognition (NER) is an information extrac-
tion technique that aims to locate and classify named entities (e.g., orga-
nizations, locations, ...) within a document into predefined categories.
Correctly identifying these phrases plays a significant role in simplifying
information access. However, it remains a difficult task because named
entities (NEs) have multiple forms and they are context dependent.
While the context can be represented by contextual features, the global
relations are often misrepresented by those models. In this paper, we
propose the combination of contextual features from XLNet and global
features from Graph Convolution Network (GCN) to enhance NER per-
formance. Experiments over a widely-used dataset, CoNLL 2003, show
the benefits of our strategy, with results competitive with the state of
the art (SOTA).

Keywords: NER · XLNet · GCN · Contextual embeddings · Global
embeddings

1 Introduction

The proliferation of large digital libraries has spurred interest in efficient and
effective solutions to manage the collections of digital contents (documents,
images, videos, etc.) which are available, but not always easy to find. As an
alternative to better handle information in digital libraries, named entity recog-
nition (NER) was introduced.

NER is an information extraction technique that aims to locate named enti-
ties (NEs) in text and classify them into predefined categories. Correctly iden-
tifying entities plays an important role in natural language understanding and
numerous applications such as entity linking, question answering, or machine
translation, to mention a few.
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A crucial component that contributes to the recent success of NER progress
is how meaningful information can be captured from original data via the word
embeddings, which can be divided into two major types: global features and
contextual features (in the scope of this paper, “features” and “embeddings” are
interchangeable terms).

– Global features [30] capture latent syntactic and semantic similarities. They
are first constructed from a global vocabulary (or dictionary) of unique words
in the documents. Then, similar representations are learnt based on how fre-
quently the words appear close to each other. The problem of such features
is that the words’ meaning in varied contexts is often ignored. That means,
given a word, its embedding always stays the same in whichever sentence
it occurs. Due to this characteristic, we can also define global features as
“static”. Some examples are word2vec [4], GloVe [30], and FastText [13].

– Contextual features [6] capture word semantics in context to address the
polysemous and context-dependent nature of words. By passing the entire
sentence to the pretrained model, we assign each word a representation based
on its context, then capture the uses of words across different contexts. Thus,
given a word, the contextual features are “dynamically” generated instead of
being static as the global one. Some examples are ELMo [31], BERT [6], and
XLNet [40].

In terms of global features, there exist several tokens that are always parts of
an entity. The most obvious cases, as an example in the CoNLL 2003 dataset, are
the names of countries include U.S. (377 mentions), Germany (143 mentions),
Australia (136 mentions), to mention a few. However, it is not true for all tokens
in an entity. The token may or may not be part of an entity (e.g., “Jobs said”
vs. “Jobs are hard to find”) and may belong to different entity types depending
on the context (e.g., “Washington” can be classified as a person or a location).
Meanwhile, the contextual features are based on neighboring tokens, as well as
the token itself. They aim to represent word semantics in context to solve the
problem of using global features, so as to improve the prediction performance
(e.g., “Jobs” in “Jobs said” and “Jobs are hard to find” will have different
representations).

In this paper, we present a joint architecture to enhance the NER perfor-
mance simultaneously with static and dynamic embeddings1. Extensive experi-
ments on CoNLL 2003 dataset suggest that our strategy surpasses the systems
with standalone feature representation. The main contributions of this paper
are:

– We introduce a new architecture that combines the contextual features from
XLNet and the global features from GCN to enhance NER performance.

– We demonstrate that our model outperforms the systems using only con-
textual or global features alone and has a competitive result compared with
SOTAs on CoNLL 2003 dataset.

1 Link to the code: github.com/honghanhh/ner-combining-contextual-and-global-feat
ures.

https://github.com/honghanhh/ner-combining-contextual-and-global-features
https://github.com/honghanhh/ner-combining-contextual-and-global-features
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This paper is organised as follows: Sect. 2 presents the related work, which
leads to our approach’s descriptions in Sect. 3 and the corresponding experimen-
tal details in Sect. 4. The results are reported in Sect. 5, before we conclude and
present future works in Sect. 6.

2 Related Work

2.1 Named Entity Recognition

The term “named entity” (NE) first appeared in the 6th Message Understand-
ing Conference (MUC-6) [9] to define the recognition of the information units.
Regarding the surveys on NER techniques [18,29,39], we can broadly divide them
into four categories: Rule-based, unsupervised learning, feature-based supervised
learning, and deep learning based approaches.

Rule-Based Approaches. Rule-based NER is the most traditional technique
that does not require annotated data as it relies on manually-crafted rules well-
designed by the domain experts (e.g., LTG [26], NetOwl [14]). Despite good per-
formance when the lexicon is exhaustive, such systems often achieve high preci-
sion and low recall due to the limitation on domain-specific rules and incomplete
dictionaries.

Unsupervised Learning. Another approach that also needs no annotated data
is unsupervised learning, typically NE clustering [5]. The key idea is to extract
NEs from the clustered groups based on context similarity. The lexical resources,
lexical patterns, and statistics are computed on a large corpus and then applied
to infer mentions of NEs. Several works proposed the unsupervised systems to
extract NEs in diverse domains [8,28].

Feature-Based Supervised Learning. Given annotated data, features are
carefully designed so that the model can learn to recognize similar patterns from
unseen data. Several statistical methods have been proposed, notably Markov
models, Conditional Random Fields (CRFs), and Support Vector Machines
(SVMs). Among them, CRF-based NER has been widely applied to identify
entities from texts in various domains [21,33,34]. However, these approaches
depend heavily on hand-crafted features and domain-specific resources, which
results in the difficulty to adapt to new tasks or to transfer to new domains.

Deep Learning. Neural networks offer non-linear transformation so that the
models can learn complex features and discover useful representations as well
as underlying factors. Neural architectures for NER often make use of either
Recurrent Neural Networks (RNNs) or Convolution Neural Networks (CNNs) in
conjunction with CRFs [3] to extract information automatically. With further
researches on contextual features, RNNs plus LSTM units and CRFs have been
proposed [15] to improve the performance. Moreover, the conjunction of bidirec-
tional LSTMs, CNNs, and CRFs [25] is introduced to exploit both word- and
character-level representations. The combination of Transformer-based models,
LSTMs, and CRFs [20] is also applied to extract knowledge from raw texts and
empower the NER performance.



Named Entity Recognition Architecture 267

2.2 Embeddings

A key factor that contributes to the success of NER is how we capture mean-
ingful information from original data via word representations, especially global
features and contextual features.

Global Features. Global features are context-free word representations that
can capture meaningful semantic and syntactic information. It can be repre-
sented at different levels such as word-level features [19], lookup features [10],
document and corpus features [12]. Recently, the global sentence-level repre-
sentation [42] has been proposed to capture global features more precisely and
it outperforms various sequence labeling tasks. Furthermore, the Graph Neural
Network [41] is getting more attention to not only have rich relational structure
but also preserve global structure information of a graph in graph embeddings.

Contextual Features. Contextual features are context-aware word represen-
tations that can capture word semantics under diverse linguistic contexts. That
is, a word can be represented differently and dynamically under particular cir-
cumstances. The contextual embeddings are often pretrained on large-scale unla-
belled corpora and can be divided into 2 types: unsupervised approaches [16,17]
and supervised approaches [36].

The contextual embeddings succeed in exploring and exploiting the polyse-
mous and context-dependent nature of words, thereby moving beyond global
word features and contributing significant improvements in NER. In contrast,
the global features are still less-represented.

3 Methodology

In this section, we explain how we extract global as well as contextual features
and how to combine them. For global features, we take advantage of GCN [2,35]
to better capture the correlation between NEs and the global semantic informa-
tion in text, and to avoid the loss of detailed information. For contextual features,
we apply XLNet [40], a Transformer-XL pretrained language model that exhibits
excellent performance for language tasks by learning from bi-directional context.
The details are explained in the following subsections.

3.1 GCN as Global Embeddings

Graph Convolutional Network (GCN) aims to learn a function of signals/features
on a graph G = (V,E) with V as Vertices and E as Edges. Given N as number of
nodes, D as number of input features, and F as the number of output features per
node, GCN takes 2 inputs: (1) An N ×D feature matrix X as feature description;
(2) An adjacency matrix A as representative description of the graph; Finally,
it returns as output Z, an N × F feature matrix [7].

Every neural network layer can then be written in the form of a non-linear
function:

H(l+1) = f(H(l), A) (1)

where H(0) = X, H(L) = Z, L being the number of layers.
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In our specific task, we capture the global features by feeding feature matrix
X and adjacent matrix A into a graph using two-layer spectral convolutions
in GCN. Raw texts are first transformed into word embeddings using GloVe.
Then, universal dependencies are employed so that the input embeddings are
converted into graph embeddings where words become nodes and dependencies
become edges. After that, two-layer GCN is applied to the generated matrix of
nodes feature vectors X and the adjacent matrix A to extract meaningful global
features.

Mathematically, given a specific graph-based neural network model f(X,A),
spectral GCN follows the layer-wise propagation rule:

H(l+1) = σ(D̃
−1
2 ÃD̃

−1
2 H(l)W (l)) (2)

where A is the adjacency matrix, X is the matrix of node feature vectors (given
sequence x), D is the degree matrix, f(·) is the neural network like differentiable
function, Ã = A + IN is the adjacency matrix of the undirected graph G with
added self-connections, IN is the identity matrix of N nodes, D̃i =

∑
j Ãij , W (l)

is the layer-specific trainable weight matrix, σ(·) is the activation function, and
H(l) ∈ R

(N×D) is the matrix of activation in the lth layer (representation of the
lth layer), H(0) = X.

After calculating the normalized adjacency matrix D̃
−1
2 ÃD̃

−1
2 in the prepro-

cessing step, the forward model can be expressed as:

Z = f(X,A) = softmax(ÃReLU(ÃXW 0)W 1) (3)

where W (0) ∈ RC×H is the input-to-hidden weight matrix for a hidden layer
with H feature maps and W (1) ∈ RH×F is the hidden-to-output weight matrix.

W (0) and W (1) are trained using gradient descent. The weights before feeding
into Linear layer with Softmax activation function are taken as global features to
feed into our combined model. We keep the prediction results of GCN after feed-
ing weights to the last Linear layer to compare the performance and prediction
qualities with our proposed architecture’s results.

3.2 XLNet as Contextual Embeddings

XLNet is an autoregressive pretraining method based on a novel generalized per-
mutation language modeling objective. Employing Transformer-XL as the back-
bone model, XLNet exhibits excellent performance for language tasks involving
long context by learning from bi-directional context and avoiding the disadvan-
tages in the autoencoding language model.

The contextual features are captured from the sequence using permutation
language modeling objective and two-stream self-attention architecture, integrat-
ing relative positional encoding scheme and the segment recurrence mechanism
from Transformer-XL [40]. Given a sequence x of length T, the permutation
language modeling objective can be defined as:
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max
θ

Ez∼ZT

[
T∑

t=1

log pθ (xzt
| xz<t

)

]

(4)

where ZT is the set of all possible permutations of the index sequence of length
T [1, 2, ..., T ], zt is the tth element of a permutation z ∈ ZT , z < t is the first
(t − 1)th elements of a permutation z ∈ ZT , and pθ is the likelihood. θ is the
parameter shared across all factorization orders during training so xt is able to
see all xi �= xt possible elements in the sequence.

We also use two-stream self-attention to remove the ambiguity in target pre-
dictions. For each self-attention layer m = 1, ...,M , the two streams of represen-
tation are updated schematically with a shared set of parameters:

g
(m)
zt ← Attention

(
Q = g

(m−1)
zt ,KV = h(m−1)

z<t ; θ
)

h
(m)
zt ← Attention

(
Q = h

(m−1)
zt ,KV = h(m−1)

z≤t ; θ
) (5)

where g
(m)
zt is the query stream that uses zt but cannot see xzt

, h
(m)
zt is the

content stream that uses both zt and xzt
, and K, Q, V are the key, query, value,

respectively.
To avoid slow convergence, the objective is customized to maximize the log-

likelihood of the target sub-sequence conditioned on the non-target sub-sequence
as in Eq. 6.

max
θ

Ez∼ZT

[
log pθ

(
xz>c

| xz≤c

)]
= Ez∼ZT

⎡

⎣
|z|∑

t=c,the+1

log pθ (xzt
| xz<t)

⎤

⎦ (6)

where z>c is the target sub-sequence, z≤c is the non-target one, and c is the
cutting point.

Furthermore, we make use of the relative positional encoding scheme and
the segment recurrence mechanism from Transformer-XL. While the position
encoding ensures the reflection in the positional information of text sequences,
the attention mask is applied so the texts are given different attention during
the creation of input embedding. Given 2 segments x = s1:T and x = sT :2T

from a long sequence s, z and z referring to the permutations of [1 ... T] and [T
+ 1 ... 2T], we process the first segment, and then cache the obtained content
representations h(m) for each layer m. After that, we update the attention for
the next segment x with memory, which can be expressed as in Eq. 7.

h(m)
zt

← Attention
(
Q = h(m−1)

zt
,KV =

[
h̃(m−1),h(m−1)

z≤t

]
; θ

)
(7)

Similar to global features, we capture the weights before feeding to the last
Linear layer and use it as contextual embeddings of our combined model. For
the purpose of comparison, we also keep the prediction results of XLNet after
feeding weights to the last Linear layer.
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3.3 Joint Architecture

Given global and contextual features from GCN and XLNet, respectively, we
concatenate and feed them into a Linear layer, which is simplest way to show the
most evident impact of these features to the NER task. The proposed approach
is presented in Fig. 1.

4 Experimental Setup

In this section, we describe the dataset, the evaluation metrics, as well as present
our implementations and experimental configurations on XLNet, GCN, and the
joint models in detail.

Fig. 1. Visualization of the global architecture of our proposed approach.

4.1 Dataset

We opted for the CoNLL 2003 [38], one of the widely-adopted benchmark
datasets for NER tasks. The English version is collected from the Reuters Corpus
with news stories between August 1996 and August 1997. The dataset concen-
trates on 4 types of NEs: persons (PER), locations (LOC), organizations (ORG),
and miscellaneous (MISC).

4.2 Implementation Details

Global Embeddings with GCN. The sentences are annotated with universal
dependencies from spaCy to create a graph of relations where words become
nodes and dependencies become edges. The dataset is then converted into 124
nodes and 44 edges with the training corpus size of approximately 2 billion words,
the vocabulary size of 222,496, and the dependency context vocabulary size of
1,253,524. Next, the graph embeddings are fed into 2 Graph Convolution layers
with a Dropout of 0.5 after each layer to avoid overfitting. The global features
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are captured before the last Linear layer. We perform batch gradient descent
using the whole dataset for every training iteration, which is a feasible option as
long as the dataset fits in memory. We take advantage of TensorFlow for efficient
GPU-based implementation of Eq. 2 using sparse-dense matrix multiplications.

Contextual Embeddings with XLNet. We have investigated on diverse
embeddings such as FastText [27]2, Flair [1]3, Stanza [32]4 and XLNet [40]5

pretrained embeddings. Preliminary results suggest that XLNet (XLNet-Base,
Cased) outperforms others, therefore, is chosen for our final implementation.
The word embedding of size 768 with 12 layers were used for XLNet. Each
layer consists of 3 sublayers: XLNet Relative Attention, XLNet Feed Forward,
and Dropout layer. The XLNet Relative Attention is a two-stream self-attention
mechanism as mentioned in Eq. 7. A Normalization layer with element-wise affine
and a Dropout layer are employed around this sub-layer. Meanwhile, XLNet
Feed Forward is a fully connected feed-forward network, whose outputs are also
of dimension 768, the same as the outputs of the embedding layers. Like the
previous sublayers, the Feed Forward layer is surrounded by a Normalization
layer and a Dropout layer, however, another 2 Linear layers are added between
them. Then, an additional Dropout layer is counted. It is notable that we only
take the rate of 0.1 for every Dropout layer inside our model, from sublayers to
inside sublayers. After 12 XLNet layers, another Dropout layer is added before
the last Linear layer. We capture the intermediary output before the last Linear
layer as the contextual features.

Proposed Model. Additional steps were taken to maintain alignments between
input tokens and their corresponding labels as well as to match corresponding
representations from global features to contextual features in the same sentence.
First, we define an attention mask in XLNet as a sequence of 1s and 0s, with
1s for the first sub-word as the whole word embedding after tokenization and 0s
for all padding sub-words. Then, in GCN features, we map the corresponding
word representation at the position that the XLNet attention mark returns 1s
and pad 0 otherwise. Therefore, each sentence has the same vector dimension in
both global and contextual embeddings, which simplifies the concatenation.

In our implementation, we used a GPU 2070 Super and a TitanX GPU with
56 CPUs, 128 GB RAM. The hyperparameters were 300 as embedding size, 16
as batch size, 5e-5 as learning rate, 0.5 as dropout rate, 4 for number of epochs.

4.3 Metrics

We choose “relaxed” micro averaged F1-score, which regards a prediction as
the correct one as long as a part of NE is correctly identified. This evaluation
metric has been used in several related publications, journals, and papers on
NER [11,15,25,37].
2 https://fasttext.cc/.
3 https://github.com/flairNLP/flair.
4 https://github.com/stanfordnlp/stanza.
5 https://github.com/zihangdai/xlnet.

https://fasttext.cc/
https://github.com/flairNLP/flair
https://github.com/stanfordnlp/stanza
https://github.com/zihangdai/xlnet
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5 Results

We conducted multiple experiments to investigate the impact of global and con-
textual features on NER. Specifically, we implemented the architecture with only
global features, only contextual features, and then the proposed joint architec-
ture combining both features.

As shown in Table 1a, the proposed model achieves 93.82% in F1-score,
which outperforms the two variants using global or contextual features alone. In
terms of recognition of specific entity types, the details are provided in Table 1b,
showing that PER is the category where the best results are achieved, while
the lowest results are with the MISC, that is, the category of all NEs that do
not belong to any of the three other predefined categories. Note that using only
training data and publicly available word embeddings (GloVe), our proposed
model has competitive results without the need of adding any extra complex
encoder-decoder layers.

Table 1. Evaluation on the prediction results of our proposed model.

(a) Results of the proposed joint architecture com-
pared to only contextual or only global features.

Embeddings F1 scores
Global features 88.63
Contextual features 93.28
Global + contextual features 93.82

(b) Performance evaluation per entity type.

Entity types Precision Recall F1-score
LOC 94.15 93.53 93.83
MISC 81.33 81.89 81.62
ORG 88.97 92.29 90.60
PER 96.67 97.09 96.88

Furthermore, the benefit of the joint architecture is illustrated in Fig. 2. While
contextual features (XLNet), which is used in the majority of recent SOTA
approaches, misclassifies the entity, the prediction from GCN and the combined
model correctly tags “MACEDONIA” as the name of a location, confirming our
hypothesis on the effect of global features.

Fig. 2. XLNet, GCN, and the combined model’s prediction on CoNLL 2003’s example.

In Fig. 3, we compare our results with reported SOTA results on the same
dataset from 2017 up to now. It can be observed that our results are competi-
tive compared with SOTA approaches as the difference is by a small margin (the
current benchmark is 94.3% F1-score, compared to 93.82% achieved by our app-
roach). Moreover, we notice that NER performance can be boosted with external
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knowledge (i.e. leveraging pretrained embeddings), as proven in our approach as
well as in top benchmarks [22–24]. More importantly, complex decoder layers
(CRF, Semi-CRF, ...) do not always lead to better performance in comparison
with softmax classification when we take advantage of contextualized language
model embeddings.

Fig. 3. Comparison of our proposal against SOTA techniques on the CoNLL 2003
dataset in terms of F1-score. Values were taken from original papers and sorted by
descending order.

6 Conclusion and Future Work

We propose a novel hierarchical neural model for NER that uses both global fea-
tures captured via graph representation and contextual features at the sentence
level via XLNet pretrained model. The combination of global and contextual
embeddings is proven to have a significant effect on the performance of NER
tasks. Empirical studies on the CoNLL 2003 English dataset suggest that our
approach outperforms systems using only global or contextual features, and is
competitive with SOTA methods. Given the promising results in English, our
future work will consist of adapting the method to other languages, as well to
a cross-lingual experimental setting. In addition, we will consider further devel-
oping the method by also incorporating background knowledge from knowledge
graphs and ontologies.
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