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Abstract. Language is our main communication tool. Deep understand-
ing of its evolution is imperative for many related research areas including
history, humanities, social sciences, etc. To this end, we are interested
in the task of segmenting long-term document archives into naturally
coherent periods based on the evolving word semantics. There are many
benefits of such segmentation such as better representation of content
in long-term document collections, and support for modeling and under-
standing semantic drift. We propose a two-step framework for learning
time-aware word semantics and periodizing document archive. Encour-
aging effectiveness of our model is demonstrated on the New York Times
corpus spanning from 1990 to 2016.

Keywords: Dynamic word embedding · Temporal document
segmentation · Knowledge discovery in digital history

1 Introduction

Language is an evolving and dynamic construct. The awareness of the necessity
and possibilities of large scale analysis of the temporal dynamics on linguistic
phenomena has increased considerably in the last decade [26,29,30]. Temporal
dynamics play an important role in many time-aware information retrieval (IR)
tasks. For example, when retrieving documents based on their embeddings, one
needs accurate representations of content by temporal embedding vectors.

It is intuitive that, if an IR system is required to effectively return information
from a target time period Ta in the past, it may fail to do so if it is unable to
capture the change in context between Ta and the current time Tb. To which
extent is the context of Ta different from that of Tb? Are there any turning points
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in the interval between Ta and Tb when a significant context change occurred, or
rather do Ta and Tb belong to the same stage in the evolving process of language?
Being capable of answering such questions is crucial for effective IR systems
when coping with time-aware tasks. However, to the best of our knowledge,
the research problem of distinguishing key stages in the evolution’s trajectory of
language still remains a challenge in the field of temporal IR and text mining.

Traditionally, a language’s diachrony is segmented into pre-determined peri-
ods (e.g., the “Old”, “Middle” and “Modern” eras for English) [24], which is
problematic, since such an approach may yield results concealing the true tra-
jectory of a phenomenon (e.g., false assumption on abrupt turning point about
the data). Moreover, these traditional segments are very coarse as well as can
be easily obscured and derived from arbitrary and non-linguistic features [7].
Thanks to accumulated large amounts of digitized documents from the past, it
is possible now to employ large scale data-driven analyses for uncovering patterns
of language change. In this study, we propose a data-driven approach for seg-
menting a temporal document collection (e.g., a long-term news article archive)
into natural, linguistically coherent periods. Based on our method, we can both
capture the features involved in diachronic linguistic change, as well as identify
the time periods when the changes occurred. Our approach is generic and can be
applied to any diachronic data set. The detected periods could be then applied in
diverse time-aware downstream tasks, such as temporal analog retrieval, archival
document recommendation, and summarization.

Our method is based on the computation of dynamic word embeddings.
Semantic senses of words are subject to broadening, narrowing or other kinds
of shifts throughout time. For instance, Amazon originally referred to mythical
female warriors (in ancient Greek mythology), while it assumed a new sense of
a rainforest in South Africa since around 16th century, and a large e-commerce
company since middle 1990s. Additionally, different words may become concep-
tually equivalent or similar across time. For example, a music device Walkman
played a similar role of mobile music playing device 30 years ago as iPod plays
nowadays. Such phenomenon of evolving word semantics is however rarely con-
sidered in the existing corpus periodization schemes.

In this paper, we structure document collections by periodizing the evolving
word semantics embodied in the corpus. Specifically, for a long-term document
corpus, our goal is to split the entire time span into several consecutive periods,
where we assume within the same period most words do not undergo significant
fluctuations in term of their senses, while linguistic shifts are on the other hand
relatively prevalent across different periods. In other words, a word is represented
by an identical vector in the same period, while it may have fairly different rep-
resentations in different periods (see Fig. 1).

The problem of document collection periodization based on evolving word
semantics is however not trivial. In order to solve this problem, we address the
following two research questions:
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Fig. 1. Conceptual view of our task. Our goal is to identify latent periods in the input
document collection, such that word semantics are relatively stable within the same
period (i.e., a word is represented by the same embedding vector), and major linguistic
shifts exist between different periods (i.e., a word may be represented by fairly different
vectors in different periods).

a. How to compute temporal-aware word embeddings (Task 1)?
b. How to split the document collection based on learned word embeddings

(Task 2)?

Our main technical contribution lies in a two-step framework for answering
the above questions. First of all, we develop an anchor-based joint matrix factor-
ization framework for computing time-aware word embeddings. More specifically,
we concurrently factorize the time-stamped PPMI (positive pointwise mutual
information) matrices, during which we utilize shared frequent terms (see Sect. 3)
as anchors for aligning word embeddings of all time to the same latent space.
Secondly, we formulate the periodization task as an optimization problem, where
we aim to maximize the aggregation of differences between the word semantics
of any two periods. To get the optimal solution, we employ three classes of algo-
rithms which are based on greedy splitting, dynamic programming and iterative
refinement, respectively.

In the experiments, we use the crawled and publicly released New York Times
dataset [29], which contains a total of 99,872 articles published between January
1990 and July 2016. To evaluate the periodization effectiveness, we construct
the test sets by utilizing New York Times article tags (see Sect. 5), and evaluate
the analyzed methods based on two standard metrics: Pk [2] and WinDiff [22],
which are commonly reported in text segmentation tasks.

In summary, our contributions are as follows:

– From a conceptual standpoint, we introduce a novel research problem of peri-
odizing diachronic document collections for discovering the embodied evo-
lutionary word semantics. The discovered latent periods and corresponding
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temporal word embeddings can be utilized for many objectives, such as track-
ing and analyzing linguistic and topic shifts over time.

– From a methodological standpoint, we develop an anchor-based joint matrix
factorization framework for computing time-aware word embeddings, and
three classes of techniques for document collection periodization.

– We perform extensive experiments on the New York Times corpus, by which
the encouraging effectiveness of our approach is demonstrated.

2 Problem Definition

We start by presenting the formal problem definition.

Input: The input are documents published across time. Formally, let D =
{D1,D2, ...,DN} denote the entire article set where Di represents the subset
of documents belonging to the time unit ti. The length of a time unit can be at
different levels of granularity (months, years, etc.)

Task 1: Our first task is to embed each word in the corpus vocabulary V =
{w1, w2, ..., w|V |} 1 into a d-dimensional vector, for each time unit ti(i = 1, ..., N),
respectively. Thus, the expected output is a tensor of size N ×|V |× d, which we
denote by A. Ai the embedding matrix for ti, thus Ai is of size |V | × d.

Task 2: Based on Task 1, our second goal is to split the text corpus D into
m latent periods Θ = (P1, P2, ..., Pm) and compute their corresponding word
embedding matrix Ei, i = 1, ...,m. Each period Pi = [τ i

b , τ
i
e] is expressed by

two time points representing its beginning date τ i
b and the ending date τ i

e. Let
L(Θ) = (τ1

b , τ2
b , ..., τm

b ) denote the list of beginning dates of all periods, notice
that searching for Θ is equivalent to searching for L(Θ).

3 Temporal Word Embeddings

In this section, we describe our approach for computing dynamic word embed-
dings (solving Task 1 in Sect. 2), which captures word semantic evolution across
time.

3.1 Learning Static Embeddings

The distributional hypothesis [10] states that semantically similar words usu-
ally appear in similar contexts. Let vi denote the vector representing word wi,
then vi can be expressed by the co-occurrence statistics of wi. In this study, we
compute the PPMI (positive pointwise mutual information) matrix for obtaining
such inter-word co-occurrence information, following previous works [13,16,29].
Moreover, for word vectors vi and vj , we should have PPMI[i][j] ≈ vi · vj , thus
static word vectors can be obtained through factorizing the PPMI matrix.
1 The overall vocabulary V is the union of vocabularies of each time unit, and thus

it is possible for some w ∈ V to not appear at all in some time units. This includes
emerging words and dying words that are typical in real-world news corpora.
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3.2 Learning Dynamic Embeddings

We denote PPMIi as the PPMI matrix for time unit ti, then word embedding
matrix Ai at ti should satisfy PPMIi ≈ Ai · AT

i .
However, if Ai is computed separately for each time unit, due to the invariant-

to-rotation nature of matrix factorization, these learned word embeddings Ai are
non-unique (i.e., we have PPMIi ≈ Ai · AT

i = (AiW
T ) · (WAT

i ) = ÃiÃT
i for any

orthogonal transformation W which satisfies WT · W = I). As a byproduct,
embeddings across time units may not be placed in the same latent space. Some
previous works [13,15,30] solved this problem by imposing an alignment before
any two adjacent matrices Ai and Ai+1, resulting in Ai ≈ Ai+1, i = 1, ..., N − 1.

Instead of solving a separate alignment problem for circumventing the non-
unique characteristic of matrix factorization, we propose to learn the temporal
embeddings across time concurrently. Intuitively, if word w did not change its
meaning across time (or change its meaning to very small extent), we desire
its vector to be close among all temporal embedding matrices. Such words are
regarded as anchors for aligning various embedding matrices, in our joint fac-
torization framework.

Essentially, we assume that very frequent terms (e.g., man, sky, one, water)
did not experience significant semantic shifts in the long-term history, as their
dominant meaning are commonly used in everyday life and used by so many
people. This assumption is reasonable as it has been reported in many languages
including English, Spanish, Russian and Greek [17,20]. We refer to these words
as SFT, standing for shared frequent terms. Specifically, we denote by ASFT

i the
|V | × d embedding matrix whose i-th row corresponds to the vector of word wi

in Ai, if wi is a shared frequent term, and corresponds to zero vector otherwise,
for time unit ti. Our joint matrix factorization framework for learning temporal
word embeddings is then shown as follows (see Fig. 2 for an illustration):

A1, ..., AN = arg min
N∑

i=1

∥∥PPMIi − Ai · AT
i

∥∥2

F

+ α ·
N∑

i=1

‖Ai‖2F + β ·
N−1∑

i=1

N∑

j=i+1

∥∥ASFT
i − ASFT

j

∥∥2

F

(1)

Here ‖·‖F represents the Frobenius norm.
∥∥ASFT

i − ASFT
j

∥∥2

F
is the key

smoothing term aligning shared frequent terms in all time units, thus places
word embeddings across time in the same latent space. The regularization term
‖Ai‖2F is adopted to guarantee the low-rank data fidelity for overcoming the
problem of overfitting. α and β are used to control the weight of different terms
to achieve the best factorization performance. Finally, we iteratively solve for Ai

by fixing other embedding matrices as constants, and optimizing Eq. (1) using
the block coordinate descent method [27].
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Fig. 2. Illustration of our joint matrix factorization model. Shared frequent terms (e.g.,
sky, one, water) in all time units are aligned to similar positions, which leads word
embeddings across time in the same latent semantic space.

4 Document Collection Periodization

In this section, we explain how to split the document collection based on learned
temporal word embeddings (solving Task 2 in Sect. 2).

4.1 Scoring

In general, we prefer the embedding matrices of different periods to be char-
acterized by high inter-dissimilarity. Thus, the objective Obj(Θ) for an over-
all segmentation is given by aggregating the dissimilarity between all pairs of
period-specific embedding matrices, as follows:

Obj(Θ) = Obj(L(Θ)) =
m−1∑

i=1

m∑

j=i+1

‖Ei − Ej‖2F (2)

Here Ei is measured as the average of embeddings in period Pi:

Ei =
1

τ i
e − τ i

b + 1

τ i
e∑

t=τ i
b

At (3)

The segmentation that achieves the highest score of Eq. (2) will be adopted.

4.2 Periodization

Greedy Algorithm Based Periodization. At each step, this algorithm
inserts a new boundary (which is the beginning date of a new period) to the
existing boundaries to locally maximize the objective function, until desired m
periods are discovered. The process is formulated in Algorithm1, where L(Θ)i

denotes the list of boundaries at the i-th step, and L(Θ)0 = {t1}.
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Algorithm 1: Greedy algorithm based periodization
input : L(Θ)0; m
output: L(Θ)m−1

1 for i ← 0 to m − 2 do
2 max score ← 0;
3 next boundary ← 0;
4 for tp ← t1 to tN do
5 �Find the best local boundary;

6 if tp ∈ L(Θ)i then
7 continue
8 end

9 score ← Obj(L(Θ)i ∪ {tp});
10 if score > max score then
11 max score ← score;
12 next boundary ← tp;

13 end

14 end

15 L(Θ)i+1 ← L(Θ)i ∪ {next boundary};

16 end

Dynamic Programming Based Periodization. The core idea of this algo-
rithm is to break the overall problem into a series of simpler smaller segmentation
tasks, and then recursively find the solutions to the sub-problems. Let Θl

k denotes
the segmentation of the first l time slices of the entire time span into k peri-
ods, the computational process of dynamic programming based periodization is
expressed in Algorithm 2, where Θl

1 = [t1, tl] and L(Θl
1) = {t1}, l = 1, ..., N .

Iterative Refinement Based Periodization. The iterative refinement frame-
work starts with the greedy segmentation. At each step, after the best avail-
able boundary is found, a relaxation scheme which tries to adjust each segment
boundary optimally while keeping the adjacent boundaries to either side of it
fixed, is applied. This method can improve the performance of the greedy scheme,
while at the same time partially retain its computational benefit. Let L(Θ)i

G[j]
denote the j-th element in L(Θ)i after the i-th greedy search step, the refinement
process for finding L(Θ)i[j] is shown in Algorithm 3:
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Algorithm 2: Dynamic programming based periodization
input : L(Θl

1), l = 1, ..., N ; m
output: L(ΘN

m)
1 for row ← 2 to m do
2 for col ← row to N do
3 �Recursively find the solutions to the sub-problems;
4 max score ← 0;
5 next boundary ← 0;
6 subtask ← 0;
7 for j ← row − 1 to col − 1 do

8 score ← Obj(L(Θj
row−1) ∪ {tj+1});

9 if score > max score then
10 max score ← score;
11 next boundary ← tj+1;
12 subtask ← j;

13 end

14 end

15 L(Θcol
row) ← L(Θsubtask

row−1 ) ∪ {next boundary}
16 end

17 end

Algorithm 3: Iterative refinement based periodization
input : L(Θ)0; m
output: L(Θ)m−1

1 for i ← 0 to m − 2 do
2 next boundary, max score ← Greedy(L(Θ)i);

3 L(Θ)i+1 ← L(Θ)i ∪ {next boundary};
4 for j ← 1 to i do
5 �Iteratively refine the previous boundaries;

6 new boundary ← L(Θ)i+1[j];

7 tbegin ← L(Θ)i+1[j − 1];

8 tend ← L(Θ)i+1[j + 1];
9 for tp ← tbegin to tend do

10 score ← Obj(L(Θ)i+1 − L(Θ)i+1[j] ∪ {tp});
11 if score > max score then
12 max score ← score;
13 next boundary ← tp;

14 end

15 end

16 L(Θ)i+1 ← (L(Θ)i+1 − L(Θ)i+1[j]) ∪ {new boundary};

17 end

18 end
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4.3 Analysis of Time Complexity

For greedy periodization, it requires m − 1 steps and the i-th step calls scoring
function Eq. (2) N − i times. In total, it is O(Nm − N − m2 + m/2). In the
case of N � m, the greedy periodization algorithm takes O(Nm). For dynamic
programming based periodization, it requires O(Nm) states and evaluating each
state involves an O(N) calling of Eq. (2). Then the overall algorithm would take
O(N2m). Finally, for iterative refinement based periodization, an upper bound
on its time complexity is O(

∑m−1
i=1 (N − i) ∗ i) = O(Nm2).

5 Periodization Effectiveness

5.1 Datasets

News corpora, which maintain consistency in narrative style and grammar, are
naturally advantageous to studying language evolution [29]. We thus perform the
experiments on the New York Times Corpus, which has been frequently used to
evaluate different researches on temporal information processing or extraction in
document archives [4]. The dataset we use [29] is a collection of 99,872 articles
published by the New York Times between January 1990 and July 2016. For
the experiments, we first divide this corpus into 27 units, setting the length of
time unit to be 1 year. Stopwords and rare words (which have less than 200
occurrences in entire corpus) were removed beforehand, following the previous
work [29,30]. The basic statistics of our dataset are shown in Table 1.

Table 1. Summary of New York Times dataset.

#Articles #Vocabulary #Word Co-occurances #Time units Range

99,872 20,936 11,068,100 27 Jan. 1990 - Jul. 2016

5.2 Experimental Settings

For the construction of PPMI matrix, the length of sliding window and the value
of embedding dimension is set to be 5 and 50, respectively, following [29]. During
the training process of learning dynamic embeddings, the values of parameters
α and β (see Eq. (1)) are set to be 20 and 100, respectively, as the result of a
grid search. The selection of shared frequent terms used as anchors is set to be
the top 5% most frequent words in the entire corpus, as suggested by [30].

5.3 Analyzed Methods

Baseline Methods. We test four baselines as listed below.

– Random: The segment boundaries are randomly inserted.
– VNC [12]: A bottom-up hierarchical clustering periodization approach.
– KLD [7]: An entropy-driven approach which calculates the Kullback-Leibler

Divergence (KLD) between term frequency features to segment.
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– CPD [15]: An approach which uses statistically sound change point detection
algorithms to detect significant linguistic shifts.

Proposed Methods. We list three proposed methods below (see Sect. 4.2).

– G-WSE: Greedy periodization based on word semantic evolution.
– DP-WSE: Dynamic programming periodization based on word semantic

evolution.
– IR-WSE: Iterative refinement based on word semantic evolution.

5.4 Test Sets

As far as we know, there is no standard testsets for New York Time Corpus, we
then manually create test sets. The collected news articles dataset is associated
with some metadata, including title, author, publish time, and topical section
label (e.g., Science, Sports, Technology) which describes the general topic of news
articles. Such section labels could be used to locate the boundaries.

Naturally, if a word w is strongly related to a particular section s in year t,
we associate w, s and t together and construct a <w, s, t> triplet. A boundary
of w is registered if it is assigned to different sections in two adjacent years (i.e.,
both triplet <w, s, t> and <w, s′, t + 1> hold and s �= s′). Some examples of
words changing their associated section in adjacent years are shown in Table 2.

For each word w in the corpus vocabulary V , we compute its frequency in
all sections for each year t, and w is assigned to the section in which w is most
frequent. Note that this word frequency information is not used in our learning
model. In this study we utilize the 11 most popular and discriminative sections
2 of the New York Times, following previous work [29].

Recall that parameter m denotes the number of predefined latent periods.
For each different m, we first identify the set of words Sm characterized by the
same number of periods. Then for each method and each value of m, we test
the performance of such method by comparing the generated periods with the
reference segments of each word in Sm, and then take the average. In this study,
we experiment with the variation in the value of m, ranging from 2 to 10.

Table 2. Example words changing their associated section for evaluating periodization
effectiveness.

Word Year Section Year Section

cd 1990 Arts 1991 Technology

seasoning 2002 Home and Garden 2003 Fashion and Style

zoom 2008 Fashion and Style 2009 Technology

roche 2009 Business 2010 Health

viruses 2009 Health 2010 Science

uninsured 2014 Health 2015 U.S.

2 These sections are Arts, Business, Fashion & Style, Health, Home & Garden, Real
Estate, Science, Sports, Technology, U.S., World.
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5.5 Evaluation Metrics

We evaluate the performance of analyzed methods with respect to two standard
metrics commonly used in text segmentation tasks: Pk [2] and WinDiff [22].
Both metrics use a sliding window over the document and compare the machine-
generated segments with the reference ones. Within each sliding window, if the
machine-generated boundary positions are not the same as the reference, Pk will
register an error. If the number of boundaries are different, WinDiff will register
an error. Both Pk and WinDiff are scaled to the range [0, 1] and equal to 0 if an
algorithm assigns all boundaries correctly. The lower the scores are, the better
the algorithm performs.

5.6 Evaluation Results

Table 3 and Table 4 summarize the Pk and WinDiff scores for each method,
respectively. Based on the experimental results we make the following analysis.

– The proposed methods exhibit the overall best performance regarding both
Pk and WinDiff. More specifically, they outperform the baselines under 7 of 9
predefined numbers of periods in terms of Pk, and 6 of 9 in terms of WinDiff.
Such encouraging observations demonstrate the effectiveness of our proposed
periodization frameworks.

– Regarding baseline methods, Random achieves the worst performance. CPD
and KLD show competitive performance under certain settings. CPD gets
two wins in terms of Pk, and KLD obtains three wins in terms of WinDiff.

– DP-WSE is the best performer among all three proposed periodization algo-
rithms. It contributes 6 best performance in terms of Pk, and 5 in terms of
WinDiff. Moreover, when compared to G-WSE and IR-WSE, DP-WSE shows
a 3.79% and 3.24% increase in terms of Pk, and a 7.77% and 6.46% increase
in terms of WinDiff, respectively. This observation is in good agreement with
the theoretical analysis, which states that dynamic programming based seg-
mentation sacrifices certain computational efficiency for the globally optimal
splitting.

– The operation of iterative refinement indeed improves the performance of
greedy periodization in some cases, though many results generated by IR-
WSE and by G-WSE are the same.

6 Related Work

6.1 Text Segmentation

The most related task to our research problem is text segmentation. Early text
segmentation approaches include TextTiling [14] and C99 algorithm [5], which
are based on some heuristics on text coherence using a bag of words representa-
tion. Furthermore, many attempts adopt topic models to tackle the segmentation
task, including [9,23]. [1] is a segmentation algorithm based on time-agnostic
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Table 3. Performance comparison by each method using Pk.

Acronym Number of periods

2 3 4 5 6 7 8 9 10

Random 0.467 0.474 0.545 0.522 0.542 0.480 0.480 0.480 0.539

VNC 0.385 0.253 0.249 0.290 0.282 0.302 0.302 0.294 0.303

KLD 0.385 0.278 0.244 0.270 0.276 0.278 0.284 0.290 0.304

CPD 0.238 0.234 0.246 0.260 0.282 0.263 0.249 0.299 0.338

G-WSE 0.115 0.201 0.248 0.282 0.300 0.310 0.312 0.292 0.303

DP-WSE 0.115 0.230 0.236 0.251 0.271 0.290 0.291 0.286 0.296

IR-WSE 0.115 0.201 0.244 0.279 0.300 0.304 0.312 0.292 0.303

Table 4. Performance comparison by each method using WinDiff.

Acronym Number of periods

2 3 4 5 6 7 8 9 10

Random 0.467 0.474 0.545 0.478 0.542 0.480 0.480 0.480 0.500

VNC 0.417 0.346 0.396 0.416 0.426 0.434 0.439 0.435 0.388

KLD 0.417 0.343 0.383 0.384 0.428 0.437 0.434 0.430 0.384

CPD 0.414 0.386 0.387 0.394 0.430 0.430 0.430 0.432 0.385

G-WSE 0.383 0.430 0.435 0.449 0.456 0.449 0.447 0.432 0.387

DP-WSE 0.383 0.336 0.387 0.403 0.423 0.422 0.430 0.431 0.388

IR-WSE 0.383 0.405 0.428 0.449 0.456 0.449 0.447 0.421 0.387

semantic word embeddings. Most text segmentation methods are unsupervised.
However, neural approaches have recently been explored for domain-specific text
segmentation tasks, such as [25]. Many text segmentation algorithms are greedy
in nature, such as [5,6]. On the other hand, some works search for the optimal
splitting for their own objective using dynamic programming [11,28].

6.2 Temporal Word Embeddings

The task of representing words with low-dimensional dense vectors has attracted
consistent interest for several decades. Early methods are relying on statistical
models [3,18], while in recent years neural models such as word2vec [19], GloVE
[21] and BERT [8] have shown great success in many NLP applications. More-
over, it has been demonstrated that both word2vec and GloVE are equivalent
to factorizing PMI matrix [16], which primarily motivates our approach.

The above methods assume word representation is static. Recently some
works explored computing time-aware embeddings of words, for analyzing lin-
guistic change and evolution [13,15,29,30]. In order to compare word vectors
across time most works ensure the vectors are aligned to the same coordinate



Diachronic Linguistic Periodization of Temporal Document Collections 15

axes, by solving the least squares problem [15,30], imposing an orthogonal trans-
formation [13] or jointly smoothing every pair of adjacent time slices [29]. Dif-
ferent from the existing methods, in this study we inject additional knowledge
by using shared frequent terms as anchors to simultaneously learn the temporal
word embeddings and circumvent the alignment problem.

7 Conclusion

This work approaches a novel and challenging research problem - diachronic lin-
guistic periodization of temporal document collections. The special character of
our task allows capturing evolutionary word semantics. The discovered latent
periods can be an effective indicator of linguistics shifts and evolution embodied
in diachronic textual corpora. To address the introduced problem we propose
a two-step framework which consists of a joint matrix factorization model for
learning dynamic word embeddings, and three effective embedding-based peri-
odization algorithms. We perform extensive experiments on the commonly-used
New York Times corpus, and show that our proposed methods exhibit superior
results against diverse competitive baselines.

In future, we plan to detect correlated word semantic changes. We will also
consider utilizing word sentiments in archive mining scenarios.

Acknowledgement. This paper is based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial Technology Develop-
ment Organization (NEDO).
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