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Abstract Crowd behaviour understanding in computer science is a research disci-
pline which has grown rapidly in recent years. Specifically, we are currently able
to generate large and high-resolution observation data through crowd sensing in
varieties of spatial environments. This has also given us the advantage to adopt
computer vision methods for detecting human behaviour. In this study, we adopted
statistical mechanics principles with analogies of entropy and kinetic energy in
classical molecular gases to derive features which describe crowd motions. These
are implicitly measured, as basis for understanding behaviour, using a holistic
three-dimensional representation, of crowd features including structure, energy and
translation. As a result, we measured those features using computer vision in the
view of machine understanding crowd behaviour. Usual behaviour is established
from our expected crowd motions in context of the specific recipient spaces of
our experiments. The behaviour which does not fall within the expected usual
behaviour measurement is considered as an unusual behaviour. This research work
was initiated in 2013 under the eVACUATE project, while it is currently ongoing
under the S4AllCities project since 2020.

1 Introduction

The most recent development in understanding crowd behaviour using machine
intelligence over the last two decades has been boosted by the affordability and
availability of smart sensing for observing humans in spatial environments. In
particular, the deployment of smart CCTV cameras for monitoring the safety and
security of citizens in public spaces has become the regulated norm of security
modus operandi in the majority of modern cities around the world. But in order to
reach scalability in the surveillance of large crowds’ critical safety in public spaces,
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one will require the support of computer machine intelligence for focusing only on
those events where specifically detected behaviour requires attention from security
practitioners and first responders. It is in this perspective that we specialised over the
years, and since the launch of the international eVACUATE research project [1], on
the automated detection of individuals or groups of humans and unusual behaviour
in public spaces using artificial intelligence (AI). Specifically, we characterised
crowd as a dynamic system whose thermodynamic-related parameters can be
directly or indirectly measured using sensory observations including vision-based
features. These are then used for detecting and understanding human behaviour
while adapting statistical mechanics principles which relate to the state of dynamic
order or disorder of the crowd system at multiple spatial scales. This was the
foundation of our research work over the years, which is ongoing, regarding human
behaviour understanding using AI.

1.1 Definition of Crowd

The definition of crowd, for understanding crowd behaviour, requires deep insights
into the important selected features representing crowds. These should be viewed
in context of a complex dynamic system. A crowd ‘system’ can be considered
as a collection of loosely coordinated individuals who may share a common and
temporarily bound interest. This covers spectators and people moving.

From a practical sense, there are some nuances to the simple definition presented
above. Figure 1 shows two images of a pedestrian crossing at two different times.
Initially there are two distinct crowds which each desire to cross to the other side of
the road. This is shown by the two large red ellipses in Fig. 1a. After the situation
has evolved, there are a number of different possibilities as shown in the red ellipses
in Fig. 3b. These two figures show that the notion of crowd refers to a dynamically
changing system which may potentially undergo some phase transitions, in this case
crowd splitting or merging through time. The intention of each individual in the
crowd is unpredictable instantaneously, but it could become understood, therefore
possibly predictable over the time, as it is shown in Fig. 1.

1.1.1 Crowd Multiple Scales

There is also the notion of scales which needs to be considered when one tries to
understand crowd behaviour. This is indeed needed to study dynamically complex
systems. Namely, and for the case of crowd systems, the observed collective crowd
behaviour is related to the inner dynamics of each behaviour of individuals within
the crowd. It also includes the entailed learning processes between individuals and
their abilities to share a collective intelligent crowd behaviour.
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Fig. 1 Pedestrian crossing showing dynamic evolution of crowds at different times (a) and (b)

Fig. 2 Microscale view of crowd with single individuals

Crowd modelling challenges and the interpretation of empirical observation data
go hand in hand with the multi-scaling perspectives. In fact, the methods used for
understanding or modelling crowd behaviour employ multiple-scale perspectives,
in order to generate suitable mathematical structure describing crowd dynamics at
each individual spatial scale. The specific scales at which the crowd can be defined
are as follows:

Microscale Crowd structure and behaviour is identified by analysing each compos-
ite individual behaviour in the crowd. The state of each of individual behaviour
is computed using features such as position in space and velocity. These are
understood as time-dependent variables (see Fig. 2 for illustration).

Mesoscale Crowd structure and behaviour is understood through the dynamics
of distinct patterns representing clusters of individuals who may share similar
behaviour. Namely, this is represented by spatial cluster or group positions, col-
lective velocities and kinetic energies. In this case the crowd system is represented
statistically through a distribution function over the mesoscale-based states. This is
illustrated in Fig. 3.

Macroscale Crowd structure and behaviour is assimilated as a continuum (or blob),
where its dynamic state is described by average quantities such as density, central
position, velocity and kinetic energy. These features are time- and space-dependent
variables. They are statistical averages of the microscale states of individuals. This
is illustrated with two distinct crowds as shown in Fig. 4.
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Fig. 3 Mesoscale view of a crowd with a group of individuals sharing behaviour

Fig. 4 Macroscale view of a crowd with two distinct crowds (blobs)

1.1.2 Crowd Behaviour Considerations

Crowd behaviour detection requires the measurement and understanding of the
dynamic motion or mechanics of the crowd at multiple scales. This may be highly
dependent on the unfolding of contextual events and the nature of the recipient
spatial environment in which crowd evolves with time. Using a pedestrian crossing
as an example (see Fig. 4), the expected behaviour of the crowd is that they intend
to cross safely to the other side of the road. In such context of spatial environment,
human behaviour may be considered unusual if the crowd at any considered macro-,
meso- or microscale deviates from what is expected. Thus, with this example,
unusual behaviour could be the whole crowd trying to cross with the presence
of cars. Equally, groups within the crowd may want to do such thing or indeed a
single individual. But note that the so-called unusual behaviour may sometimes not
be ‘compromising to safety’, but it is just unexpected to occur given the context
of rules concerning pedestrian crossings. In much of the literature, unusualness is
also defined as a statistical deviation from what is happening overall (the so-called
‘usual’ behaviour).

Below is a set of considered definitions of pedestrian behaviour with typically
observed features for measurements and understanding:

• Pedestrians taking detours or moving in a different walking direction to the main
crowd, with the intention of taking the fastest route, than that of the crowd, in
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order to reach their specific desired destination. This is also not the shortest
route spatially.

• Pedestrians in usual circumstances keep to individual optimal speeds, the value
of which is normally distributed around a mean of 1.34 m/s.

• Pedestrians, when they can, usually keep a certain distance from one another, as
well as from pavements, walls and other obstacles. This distance gets smaller,
with increasing pedestrians speed and/or density.

• Pedestrians’ speeds can considerably increase in context of a perceived situation
which may lead to compromising their safety and security. Their individual
motions will appear random to almost unpredictable.

• At sufficiently high crowd densities, the motion of pedestrians is observed to be
similar to that of fluid flows. In this case, concepts and associated features of
fluid flow turbulent diffusion and advection, i.e. dispersion, can be adopted.

• Crowd behaviour primarily including motions is not due to immediate neigh-
bours’ interactions but often distant ones too. This is often caused by so-called
behaviour propagation in the crowd.

The above-mentioned crowd behaviours are viewed under the framework of
a complex dynamic system, while simulation models use specific features to
reproduce them realistically. In other words, the following capabilities of human
behaviour in context of crowd systems should be reached while they are embedded
in performing numerical models:

• Ability to express a strategy: Humans are capable of developing specific
strategies related to their organisational ability depending on their own state and
on that of the entities in their immediate vicinity. These can be expressed without
the application of any principle imposed by the outer environment.

• Heterogeneity: Crowds, irrespective of their types, can be assumed to be hetero-
geneously distributed. This includes, in addition to different walking capabilities,
the possible presence of leaders and the individual level of experience or prior
knowledge.

• Interactions: These can involve individuals within the crowd connected to
their immediate neighbours but also distant ones. In fact, crowd systems can
be assumed to communicate at various spatial scales and may possibly choose
different interaction paths, depending on the circumstances and spatial boundary
conditions in which they could be.

Recall that there are conditions of natural groupings or clustering in crowds.
This was illustrated in Fig. 3, when we introduced crowd mesoscale behaviour
earlier. In this case, one also introduced the concepts of ‘seed’ and seed behaviour
understanding. The seed may be considered at the leading individual in a grouping
or cluster at mesoscale. The seed’s behaviour is basically the closest to the group
aggregate. Thus, the seed can be considered to influence the rest of the group and
beyond. It is understood that a seed may be the originator or the source of behaviour
which not only has the potential to lead a cluster and influence its motion, therefore
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behaviour, but also the triggering mechanism for the propagation of such behaviour
across the crowd system in the macroscale.

2 Crowd Behaviour Detection and Modelling

2.1 From Motions to Behaviour Understanding

As was discussed earlier, crowds can be viewed as complex systems, where their
behaviour is determined by the inner dynamics of the system, including those
respective to the macro-, meso- and microscales. To infer a full description of
the system’s behaviour from these dynamics remains a challenging task. It is also
worth noting that such description of system dynamics is often not fully achieved,
due to limited sensor observations for measurements and/or the constraints due to
regulations for openly experimenting on the spatial environment with crowds of
interest. Further, the full analysis of different scales and various types of dynamics
within the crowd system will require the use of different mathematical models. In an
attempt to handle the complexities and ambiguities of the realm of crowd behaviour
detection, research efforts which deal with the problem of crowd behaviour often
settle for answering specific questions about crowd behaviour instead of offering
a full description of crowd behaviour as a complete theory. Thus, some specific
questions on crowd behaviour are considered in this chapter. These are listed
below:

• Is the crowd behaving in an unusual manner?
• Is the crowd showing signs of specific behaviours (for example, panic)?
• Is the crowd changing behaviour due to the actions of an individual or group of

individuals?
• Is this change in behaviour propagating in the crowd?

2.2 Measurement of Crowd

The question of ‘how to measure a crowd’ can have many different answers. The
answer may depend on the type of information required and the level of granularity
of interest which needs to be adopted. Here, the inner workings and state of a
whole crowd is investigated. As a result, a set of features are defined for the crowd.
These features are chosen with the aim of characterising the state and type of
crowds in terms of human behaviour. Nevertheless, we will assume that the crowd
is homogeneous in type. In this, while the micro-level motions within the crowd
are observed and measured, the defined properties and features describe the overall
crowd as one type of crowd. An example of such homogeneous crowd type can be
a competitive marathon, where the crowd is composed of single individuals who all
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share the same goal. The homogeneity assumption will also hold for cases such as
a shopping mall wherein there may be small groups of people as well as individuals
while one assumes that they have the same goal of shopping in such environment.
The method proposed here is motivated by physical analogies of thermodynamics
and statistical mechanics, where the macroscopic properties of matter are derived
from microscopic properties and states of the underlying molecular systems.

2.2.1 Crowd Analogies to Physical Systems

Various physical analogies and modelling approaches have been used in crowd and
traffic modelling. A physical model requires a hypothetical structure of controlled
parameters which need to be fine-tuned for simulating crowd dynamics that is in
accord with experimental observations. In this section, some of the more popular
modelling analogies in this domain are reviewed and evaluated. These include (a)
cellular automata, (b) social force model and (c) molecular fluid dynamics.

(a) Cellular automata (CA) has been used to simulate crowd dynamics in situations
such as evacuation [2–5]. In this, CAs evaluate the feasibility of different
evacuation scenarios. It has also been shown that CA can simulate certain effects
such as line formation in the crowd [6]. However, CA does not aim to capture all
the microscopic dynamics but only that which is necessary to derive a specific
macro effect.

(b) Social force model is another popular method for crowd simulation [7, 8]. It has
also been used to detect points with high social friction within the crowd [3, 9].
In particular, Helbing et al. noted [9]:

The motion of pedestrians can be described as if they would be subject to ‘social
forces’. These ‘forces’ are not directly exerted by the pedestrians’ personal environ-
ment, but are a measure for the internal motivations of the individuals to perform
certain actions (movements).

In essence, the social force model is based on a simple model wherein the
individuals move according to their goals and environmental constraints. It is
assumed that each individual in the crowd has a desired direction and velocity
while seeking to keep a social distance from other members of the crowd as well
as avoiding hitting walls. To calculate the social force model, an estimate of
the individual goals is required. Other methods have been proposed to estimate
the individual desired directions and velocities in a crowd [3, 9]. A bag-of-
words method is used to select features from within the social force fields
in consecutive frames. These bag-of-words features are subjected to further
learning of unusualness detection in crowds using latent Dirichlet allocation
(LDA) [9].

(c) Molecular fluid dynamics has also been investigated for modelling pedestrian
motions. Henderson was the first to propose a gas-kinetic model for pedestrian
flows [10]. Using this basis of a Boltzmann-like gas-kinetic model, Helbing [11,
12] developed a special theory for pedestrians, distinguishing between different
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groups within the crowd with different types of motions and goals. Moore et
al. [13] argue against the gas-kinetic-based modelling of crowd for high-density
crowds and note that for a high-density crowd, the behaviour appears to be
liquid-like with interaction forces dominating the motion of pedestrians.

We propose to use analogies from thermodynamics and statistical mechanics
for describing the state of crowds. While thermodynamics is concerned with heat
and temperature and their relationship to energy and work at molecular matter
levels, our major interest here is to derive macroscopic properties of crowds
from statistical mechanics, in terms of the microscopic constituents of crowds.
It is this conceptual link between the microscopic constituents of matter and its
macroscopic properties that we needed to borrow while adapting thermodynamics
and statistical mechanics principles to derive macroscopic features of crowds from
their microscopic constituents. These are individuals within the crowd.

Following the above, we set up holistic features in a way that would enable us to
describe and differentiate between different kinds of crowds and also different states
of a crowd. As will be discussed in the next section, three parameters are postulated.
These are structure, energy and translation. In this case, any crowd system type
can be projected onto a point within the structure-energy-translation dimensional
space. The aim is to achieve a good separation between different types of crowd in
this three-dimensional space. These parameters are then used in a contextual crowd
behavioural model which models the normative behaviour of crowds within well-
defined situations. If there are discrepancies between the expected and the perceived
behaviours, the behaviour is deemed to be unusual.

2.2.2 Crowd Representation with Its Holistic Features

We assume that a force keeps the members of the crowd together. The strength of
connections between the members of the crowd will be referred to as structure.
Irrespective of the strength of connections, the crowd may be in an excited state,
high energy’ or a calm state, low energy. This feature of the crowd simply refers
to energy. We also consider that the crowd moves in space, while we refer to
as translation. Figure 5 shows a representation of the structure-energy-translation
crowd space.

Table 1 also illustrates a set of hypothetical examples of various types of crowds,
while Fig. 5 shows where these reside in the structure-energy-translation crowd
space.

Regarding the values of the structure parameter, it is worthy to note that a high
structure score may denote one of the two underlying reasons: (i) a high social
interaction between the members of the crowd (the members of the crowd maintain
a pattern within a crowd), or (ii) a high value for structure may also be the result
of an enforced structure by the environment (barriers, passages and doorways are
examples of elements which can impose environmental structure). The structure
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Fig. 5 Crowd space with
hypothetical examples

Table 1 Hypothetical examples of crowd states

A number of individuals walking slowly in different directions

Very unmotivated crowd at a less excited football game

Shopping centre at closing time

A group of panicking people locked in a room

People on an escalator

Crowd at a football match celebrating a winning goal

People escaping towards an exit

A bull run (when the bull arrives)

parameter only evaluates the level of structure in the crowd and does not differentiate
between the pedestrian-imposed environment structures.

As shown in Fig. 5, a crowd may reside in any location in the structure-energy-
translation crowd space. However, for any given situation, there would be an
expectation of where the crowd should be, while a divergence from this expected, or
desired, position may be a cause for alarm. Figure 6 shows sub-spaces of ‘usual’, or
expected, crowd behaviour under various contextual situations and crowd types. By
mapping the crowd into the structure-energy-translation crowd space and learning
the limits of ‘usual’ behaviour, a crowd with unusual behaviour can be defined as
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(a) Spectators at a stadium while a football match is in progress. State 1 shows the low energy state when the crowd is 
motionless, while state 2 represents a high energy state. For example when the crowd is celebrating a winning goal.

(b) Spectators at a stadium (before and after a football match). Here the crowd has a non-zero translation.

(c) Walking crowd on an escalator with high Translation and Structure, but low Energy.

(d) Walking crowd on stairs with lower Structure, as each individual is moving with respective own speed, leading to 
higher Eneries, when compared to (c).

(e) Crowd at an airport main entrance hall. Low Structure is observed, with fluctuating values for Translation and low 
to medium Energy levels.

Fig. 6 Various ‘usual’ behaviours in the structure-energy-translation crowd space. (a) Spectators
at a stadium while a football match is in progress. State 1 shows the low energy state when the
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a crowd which does not fall within the limits of perceived ‘normality’ or strictly
speaking ‘usualness’.

2.2.3 Approach

As mentioned before, we draw analogies from thermodynamics and statistical
mechanics principles. The concept of crowd energy refers to its internal energy,
while translation relates to crowd flow velocities. These velocities may be derived
at various scales. Namely, at micro-, meso- or macroscales. As for the concept of
crowd structure, it relates to the entropy of the states of a molecular system.

2.2.4 Translation Through Flow

As noted earlier, crowd flow can be derived at different scales. The most interesting
of which is the one at mesoscale, as it concerns the flow of sub-groups within a
crowd. Here, the term flow is used interchangeably with the term flow velocity. In
fluid dynamics, flow velocity, v, is defined as

v = ṁ

ρ.A
(1)

where ṁ denotes the fluid mass flow, ρ is its density and A is the flow cross-
sectional area. With consideration of a sub-group within the crowd, its density ρ

can be computed using the entire volume occupied by the sub-group. The number
of individuals crossing cross-sectional planes of the crowd flow can be counted to
find the mass flow ṁ.

In some circumstances a sub-group within the crowd can be represented by a
‘Gaussian blob’, of which its speed and direction can be denoted by the mean speed
and direction of its constituents. This will be referred to as translation. Hence,
translation is known as the measurement of how an entire sub-group (or whole
group) travels in space, while flow measures the rate at which a mass of fluid crosses
a plane.

�
Fig. 6 (continued) crowd is motionless, while state 2 represents a high energy state. For example,
when the crowd is celebrating a winning goal. (b) Spectators at a stadium (before and after a
football match). Here the crowd has a non-zero translation. (c) Walking crowd on an escalator with
high translation and structure but low energy. (d) Walking crowd on stairs with lower structure, as
each individual is moving with respective own speed, leading to higher energies, when compared
to (c). (e) Crowd at an airport main entrance hall. Low structure is observed, with fluctuating values
for translation and low to medium energy levels
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2.2.5 Internal Kinetic Energy

The internal energy U of a crowd as a thermodynamic system can be used as a
measure of how excited a crowd can be. It is defined as follows:

U = Ukinetic + Upotential (2)

Ukinetic and Upotential represent the kinetic and potential energies, respectively.
The kinetic energy Ukinetic is defined as follows:

Ukinetic = 1

2
mv2 (3)

where m and v represent the mass and internal flow velocity of a given sub-group
within the crowd system.

As for the potential energy Upotential, its calculation is substantially complex to
derive, particularly in context of crowd system thermodynamics. Its specifically
relates to molecular systems which undergo thermodynamic phase transitions,
where it is paramount to compute their potential energy.

However, some important pedestrian modelling approaches took inspiration from
molecular systems theories with thermodynamic phase transitions [11, 12]. These
postulate crowd potential energy as the ‘common sense’ of tasks pedestrians would
take for reaching their expected destination. Nevertheless, such approach is not yet
practical for us to implement in our experiments on crowd behaviour understanding.
Therefore, we have not considered it in this study.

In the next section, we will particularly discuss the notion of entropy as an
analogy to crowd structure. The computation of crowd structure while using
analogous methods for calculating entropy is discussed with results presented.

2.2.6 Structure Through Entropy

Although initially defined within thermodynamics, the concept of entropy was
generalised using Maxwell-Boltzmann classical statistical mechanics theory [14].
For example, entropy, S, is simply a measure of disorder in a molecular system:

S = −kB

∑
i
pi lnpi (4)

where for a classic molecular system with a discrete set of microstates, pi is the
probability of occurrence for microstate i. kB is the Boltzmann constant.

The same concept of entropy was also translated in 1948, under Shannon’s
information theory in computer science and informatics [15]. Entropy, mostly
denoted by H, is in this case a measure of uncertainties in random variables in data
communication systems:
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H = −
∑

i
pi logbpi (5)

Entropy is defined at a macroscopic level, where a given macroscopic state can
have varying microscopic statistical realisations. The initial definition of entropy
in statistical mechanics, S = kB ln W, connects entropy directly to the number of
microstates, W, which corresponds to the macroscopic state of the given system.

Considering the states of matter, in classical terms which are solid, liquid or gas,
the levels of entropy for these states can be intuitively understood. In a solid state,
molecules oscillate in a vicinity of a fixed location, and the entropy is low. In a
liquid state, molecules move freely but keep distances from one another, while the
entropy is intermediate in values. However, in a gas state, molecules move randomly
anywhere, while entropy increases to a higher level. Entropy, here, increases across
these three matter states, with growing uncertainties on the location the constituting
molecules of matter.

As noted above, entropy is really a measure of disorder, while in this case
structure can be canonically described as a measure of order. For a normalised
entropy in the range of [0, 1], structure and entropy are complementary and add
up to unity. One of the challenges in evaluating the value of structure using the
concept of entropy is that for each crowd example, only a sub-set of all possible
microstates represents that macro-state is observed. Therefore, it is not possible to
count the number of microstates or calculate their probabilities directly. An extra
step is required to infer a model or a description for all the possible microstates
using the observed microstates. Figure 7 shows a diagram of the required steps for
calculating the entropy of crowd using the observed set of microstates.

Fig. 7 Evaluating entropy through the observed microstates of a crowd
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Table 2 Micro-space modelling parameters

Notation Definition

Nf Number of frames in the time window which is analysed
Np Average number of individuals in Nf frames
Nl Number of spatial bins
li ith spatial bin
Y A discrete random variable defined on discrete sample space Sd
Sd A numerical and discrete sample space of densities at a location
(fY )i Probability mass function for X at bin li

Fig. 8 Crowd density map

2.2.7 Calculating Entropy

Before discussing the model, it is useful to define our notations used in the
calculation of entropy. These notations are listed in Table 2. Also, Fig. 8 illustrates
the values for crowd density at the centre of each spatial bin.

2.2.8 Approach 1: Preserving the Density Pattern

The joint entropy of a population of Np individuals scattered in Nl locations with
probability mass function (fY )i is described as follows:

H
(
X1, · · · , XNp

)
= −

∑
x1∈LX

· · ·
∑

xNp ∈LX
P

(
x1, · · · , xNp

)
log

[
P

(
x1, . . . , xNp

)]
(6)
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where Xk is a triple
(
xk,LX,PXk

)
and the outcome x is the value of a random

variable, which takes on one of a set of possible values, LX = {
l1, l2, . . . , lNl

}
,

having probabilities PXk
= {

pk,1, pk,2, . . . , pk,Nl

}
, with P(xk = li) = pk, i.

Here PXk
and the joint probabilities, P

(
x1, · · · , xNp

)
, are unknown. The joint

probabilities can be calculated using the probability mass functions (fY )i. However,
the computation cost is in the order of O

(
Nl

Np
)
. More efficient algorithms can

reduce this computation cost. However, we argue against the validity of this
approach, since it is prone to over-fitting the model to the sample set of observed
microstates. Relaxing some of the conditions in this model may be favourable.

2.2.9 Approach 2: Preserving the Density Pattern with Independent
Pedestrians

One of the conditions which can be relaxed in the first approach is the assumption
of dependence between the positions of pedestrians. In the example below, it will
be shown that although there is a reason to believe that these positions are in fact
dependent, sufficient information is not available to understand their dependencies
accurately and in an unbiased manner.

In support of the dependency argument, let us consider that people in a crowd
system tend to keep distances from each other, known as personal space. Also
depending on the relationships between the pedestrians, they may tend to further
avoid other pedestrians or groupings. From a different point of view, consider the
following example: A number of clusters of pedestrians are observed in different
locations. There may be different causes for this effect. Hypothesis A: There might
be some relationship between members of the crowd (the second person goes to the
place where the first person randomly selected). In this, even if the initial selection
for the person 1 was fully random with equal chances, due to the high correlation
between the first and second persons, what is observed is an environment where a
certain location seems very popular. However, equally probable is that the location
itself is indeed popular and people cluster there for that reason (this will be called
Hypothesis B). The point is that sufficient information is not given in favour of either
Hypothesis A or B in the above example.

We propose then that when analysing crowd formation through a few correlated
frames, the simpler model which can exhibit similar outcomes is more viable.
In this model, the locations of pedestrians are considered to be independent. We
hypothesise that a pattern is formed in the crowd if each individual is bounded by the
same pattern. Also, when taking this approach, the calculation of entropy simplifies
significantly.

Let ni, j be the number of times that individual j has been observed in bin li in Nf

frames. The probability of selecting this bin, li, by individual j is

P
(
xj = li

) = ni,j

Nf

(7)
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Given that the location of individuals is considered as independent and that there
is no differentiation between individuals, the probability of any individual selecting
bin li is the same as any other. Thus, an estimate of the probability of selecting bin
li, P(x = li) , can be given by

P (x = li ) =
∑Np

k=1 P (xk = li )

Np

=
∑Np

k=1
ni,k

Nf

Np

=
∑Np

k=1 ni,k

Nf Np

= ni

Nf Np

(8)

where ni is the sum of all density counts at bin li in Nf frames. Since the locations
of individuals are independent of one another, the joint entropy of the crowd,
H

(
X1, · · · , XNp

)
, simplifies to the following:

H
(
X1, · · · , XNp

) =
∑Np

k=1
H (Xk) (9)

Note that the locations of all the individuals are based on the same location
probabilities, P(x = li).

Thus:

H (X1) = H (X2) = · · · = H
(
XNp

)
, (10)

H
(
X1, . . . , XNp

) = NpH(X) (11)

where X is a triple (x,LX,PX), and the outcome x is the value of a random variable,
which takes on one of a set of possible values, LX = {

l1, l2, . . . , lNl

}
, having

probabilities PX = {
p1, p2, . . . , pNl

}
, with P(x = li) = pi as was defined in Eq.

(5). The crowd entropy in Eq. (8) can be computed in linear time.

2.2.10 Pre-processing

Three pre-processing stages are required before the entropy can be computed. These
are specified as follows:

2.2.11 Real-World Pedestrian Locations

The locations of pedestrians in an image have been subjected to projective trans-
form. The real-world positions can be retrieved using the camera calibration matrix
and head-height plane homography transforms.
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2.2.12 Internal Position Estimation

The internal position of each pedestrian within the crowd, xi, is also required. If the
crowd is stationary, then the observed position, xo, is equal to the internal position
(xi = xo iff vf = 0). However if the crowd is moving with a flow velocity, vf , the
change in internal position in a time step dt can be calculated as

dxi = dxo − vf dt (12)

where vf = ṁ
ρ.A

, ṁ is the estimated mass flow, ρ is the mass density and A is the
area. For a calibrated footage and given the density maps, A and ρ can be calculated.
Given the tracks of pedestrians, the vertical and horizontal mass flows are estimated
at two vertical and horizontal surface planes through the mid-point of the crowd’s
spatial space.

2.2.13 Internal Position Density Map

Once the internal positions of individuals are known, an internal density map can be
created. Note that the size of the density map bins, wbin, is a significant parameter
in the calculation of entropy. In this, a too large bin will mask the very information
that entropy is aiming to extract, while a too small bin will be prone to noise.

In addition to the above, entropy normalisation under the concept of specific
entropy needs to be computed as follows:

2.2.14 Normalising Entropy

As well as the level of disorder in the crowd, the value of the crowd entropy depends
on:

1. The number of individuals in the crowd
2. The extent of the crowd spatial area

2.2.15 Specific Entropy

Specific entropy is the entropy per unit of mass. Let each individual to have a unit of
mass; the specific entropy, Hk, will be the entropy of one individual in this crowd:

Hk = H(X) (13)

where X is a triple (x,LX,PX), as in Eq. 8.
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2.2.16 Specific Entropy per Unit of Area

Entropy is maximised if PX is uniform:

H(X) ≤ log |LX| with equality iff ∀i ∈ {1, · · · , Nl} pi = 1
|LX | = 1

Nl

It can be seen that the maximum value of entropy increases with the increase
in the number of spatial bins, Nl. We borrow a concept from information theory
called redundancy. Redundancy is a measure for the amount of wasted space when
coding and transmitting data. The redundancy of X, R(X), on alphabet AXmeasures
the fractional difference between H(X) and its maximum possible value:

R(X) = 1 − H(X)

log | AX | (14)

Complementary to the concept of redundancy is efficiency, where the redundancy
and efficiency of a code add up to one. Our notion of normalised specific entropy,
hk, is analogous to efficiency:

hk = Hk

logNl

(15)

As noted, entropy is a measure of disorder, while structure can be described as
a measure of order. For a normalised entropy in the range of [0, 1], structure and
entropy are complementary and add up to one. Let sk be the normalised structure:

sk = 1 − hk (16)

3 Experimental Results

Three crowd examples have been used in the experiments [16]. Experiment A shows
a crowd of pedestrians climbing down a staircase. This motion of crowd is clearly
unidirectional. This example depicts an indoor scene with artificial lighting, and the
crowd is viewed from an oblique-frontal view. Similar crowds may be observed at
a metro station or a stadium. Figure 9 shows one frame example of this crowd.
This figure also shows three calibration planes. In this, the orange plane is the
reference plane drawn manually. The blue plane and the yellow plane are the
ground-level and the head-level planes, respectively, projected back to the image
plane after calibration. The red circles show the position of the pedestrians’ heads
on the head-level plane. For this experiment, people’s heads are labelled manually.
Figure 10 shows the second crowd (Experiment B) which focuses on pedestrians
on an escalator which is on the left-hand side of the same video footage. Here the
pedestrians are standing still while the escalator carries them upwards. Finally, Fig.
11 (Experiment C) shows a larger crowd of people in an open indoor space with
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Fig. 9 Crowd on stairs (Experiment A)

Fig. 10 Crowd on an escalator (Experiment B)

many pedestrians moving in different directions. This type of crowds may be found
within airports or shopping malls and so forth. Following from the examples in
Fig. 6, it is expected that (i) the crowd in Experiment B (Fig. 10) has the largest
structure, since people are standing still; (ii) the crowd in Experiment A (Fig. 9) has
a smaller structure than the crowd in Experiment B, but still larger than the crowd
in Experiment C (Fig.11); and (iii) the smallest structure is envisaged for crowd in
Experiment C.

Figure 12 shows the overall structure results from experiments A, B and C. The
experiments were carried out for varying time window sizes (wtw) and spatial bin
widths (wbin). Figure 12a shows the results, where a time window size of 5 s is used.
In this, the values of structure are as expected:

sk
(
XexpB

)
> sk

(
XexpA

)
> sk

(
XexpC

)
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Fig. 11 Crowd in an open space (Experiment C)

Figure 12b shows the structure values for the same range of spatial bins, but
the time window size has been reduced to 2 s. One can see that the order of
structure values is still as expected. Nevertheless, while the separation between
the various crowds is mostly achieved, the uncertainty on the value of structure
increased considerably. Figure 12b, c also demonstrates the effects of spatial bin-
size variations. The spatial bins in the range of 0.01 m ≤ wbin ≤ 0.6 m with a time
window size of 2 s are investigated in these two graphs. One notes that the smallest
bin size does not offer a good separation between crowds, while at the largest bin
size of 0.6 m, all crowds show the same structure values. The best separation is
achieved for bin sizes between 0.04 m and 0.1 m. Although as mentioned a time
window of 5 s offers a much better separation, it must be noted that due to observing
a non-stationary crowd with a stationary camera, it is possible that the crowd or the
section of the crowd which is being analysed would move beyond the camera’s
field of view. As a consequence, the results for Experiment B when analysed with a
5-second time window may be considered as less reliable.

4 Ongoing Research and Future Perspectives

In our subsequent works, which we conducted recently, we have also looked into
other possibilities which may provide an estimate for the structure of the crowd and
compare the respective performances of these approaches with our proposed method
over a larger set of crowd conditions. One of the methods which we have examined
is that of Zhou et al. using the concept of ‘crowd collectiveness’ [17, 18]. With it we
have been able to track individuals and groups in crowd-associated confined spaces



Crowd Behaviour Understanding Using Computer Vision and Statistical. . . 69

(a) (b)

(c)

Fig. 12 Experiments with normalised specific entropy. (a) Experiments with a 5-second time
windows (wtw = 5s). (b) Experiments with a 2-second time windows (wtw = 2s). (c) Experiments
with larger spatial bins (0.5 m ≤ wbin ≤ 0.6 m)

such as stadium arenas and in context of the event expected activities [19–21]. The
unusualness of groups’ behaviour is detected accordingly to provide an operational
approach to security practitioners to respond in a scalable way. In this experiment,
groups panic at a segment of the stadium arena and run towards the pitch. This is
detected critically in time and produces an alert for security to focus on leading such
type of distressed crowd to safety, as shown in Fig. 13.

We have further investigated on the actual mechanics of behaviour propagation
in a crowd in recent years, particularly on behaviour which originates from a so-
called seed which represents an individual or indeed a group of people behaving
within the crowd. This is indeed of great importance to understand and capture
trends in it so that we could develop a forecasting capability of behaviour. Although
this research work is at its early stages while it is being conducted in the most
recently launched S4AllCities research project [22, 23], it is showing us some
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Fig. 13 Group panic behaviour detection in a stadium arena

encouraging findings. Namely, we are obtaining stable tracking of trajectories of
individuals as well as groups, where we could derive their parametric functions.
These will lead us onto developing data-driven models which will predict trends of
such trajectories in future time frames. These of course will be derived with growing
computed uncertainties downstream in time and space. We are therefore planning to
computationally correcting these trends once new observation measurements are
obtained in time in order to reduce and control such uncertainties, leading to a
much improved learning process for understanding intentional behaviour in the near
future.
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