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Preface

Crowd dynamics has been receiving a constantly growing attention in the last two
decades. Besides the theoretical interest, a realistic modeling of pedestrian behavior
may lead to relevant societal benefits, for example, improved design of buildings,
aircraft, and ships, with respect to their safety in the event of an emergency
evacuation and/or optimized management of a crowd during gathering events.

Modeling and simulation of human crowds pose a formidable challenge due
to the multidisciplinary approach that is involved. Indeed, the formulation of
computational models relies on “hard” natural sciences, but “soft” social sciences
are also needed, especially if one attempts to capture pedestrian behavior in crisis
situations, like a rapid evacuation due to incidents or when the crowd includes
groups of activists that confront each other.

The recent outbreak of the Covid-19 pandemic has spurred the interest for
another application of crowd dynamics, namely the prevention of the spreading of
contagious diseases. This target may be achieved by coupling a contagion model to
a model of human crowds which takes into account how social distancing as well as
the awareness to the risk of contagion affect pedestrian behavior.

This edited book comprises nine chapters with contributions from leading experts
in the field, and aims at presenting the state of the art, challenges, and future research
perspectives in the area of modeling and simulation of human crowds as well as
at providing practical guidelines for crowd management. As done in the previous
two books of this series, the topics are covered from different perspectives, thus
providing a comprehensive overview on the work carried out in this challenging
research area.

While this edited book does not cover all the possible topics, we think that it
fosters a deeper understanding of pedestrian dynamics and may help foreseeing
future research directions.

Torino, Italy Nicola Bellomo
Edinburgh, UK Livio Gibelli

September 2021
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Behavioral Human Crowds: Recent
Results and New Research Frontiers

Nicola Bellomo and Livio Gibelli

Abstract This editorial chapter provides an introduction to the contents of this
edited book and a general critical analysis which looks ahead to research per-
spectives. The presentation is organized in three parts. In the first part some key
research topics are selected based not only on their theoretical interest but also
on the potential impact that may have on the society well-being. The second part
outlines the contents of the following chapters in light of the aforementioned
key topics as well as of the preceding edited books (N. Bellomo and L. Gibelli,
Crowd Dynamics, Volume 1 - Theory, Models, and Safety Problems, Birkhäuser,
New York, 2018; L. Gibelli, Crowd Dynamics, Volume 2 - Theory, Models, and
Applications, Birkhäuser, New York, 2020). The last part speculates on promising
future research directions.

1 Introduction

Crowd dynamics has attracted enormous attention in recent years not only for
its theoretical interest but also for the potential societal benefits. As an example,
computational models of crowd movement can lead to more efficient transportation
planning, a key driver of sustainability, thus reducing the cost of transportation,
pollution, and improving the population’s quality of life. Furthermore, these tools
can contribute to city security and safety in that pedestrians/vehicles may be used as
sensors to identify threats that compromise the safety of persons and infrastructures
(e.g., in natural disasters or acts of terrorism).
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It is becoming increasingly clear that modeling and simulation of crowds is
a challenging interdisciplinary research field which requires contributions from
different disciplines, ranging from technology, which is needed to detect the main
features of crowds, to mathematics and computational sciences, which allow one to
derive models and to simulate pedestrians’ dynamics, respectively.

Human psychology can also significantly contribute to crowd modeling [42]
especially if one attempts to capture the pedestrians’ behavior in crisis situations,
like a rapid evacuation due to incidents or when the crowd includes groups of
activists that confront with each other [28]. In all these applications, the pedestrian’s
dynamics is strongly influenced by social interactions [1, 27, 34] which contribute
to spread out unusual behaviors through the crowd.

Including social interactions in the modeling and simulation of crowds requires
to adopt a behavioral perspective, namely one must include those aspects that may
explain when and why individuals behave as they do. The key concepts of behavioral
dynamics have been recently reviewed in [33] by examining more than 400 articles.
The author sharply discusses how individual behaviors are modified by interactions
within a crowd and how walkers adapt their walking strategy to the collective
dynamics.

This editorial chapter presents an overview of this edited book which addresses
various aspects of modeling, simulations, and control of the dynamics of human
crowds. Key references are the preceding Volumes 1 [9] and 2 [31] which provided
important contributions to this research area and offered insightful suggestions for
future studies.

We start by briefly presenting three key topics which will probably form the focus
of future research activities. These topics are selected according to our own bias
and, although they do not encompass all the current open problems, their discussion
paves the way to a deeper understanding of the contents of this edited book and may
help in foreseeing the future outlooks in this challenging research field.

Key Topic 1: As clearly shown by the preceding two edited volume, most of
the mathematical models of crowd dynamics have been mainly focused on safety
problems, starting from the pioneering papers by Helbing [35, 36]. These include
modeling crowd dynamics in complex environment [21, 30, 40] and crowd control
somehow related to safety [2, 3, 8, 17], to cite a few. Although, this are still crucial
applications, new research trends are arising. This raises the question: How far
can the modeling and simulation of crowd dynamics contribute to different fields of
interest for our society?

Key Topic 2: In many instances, there is a complex interplay between the dynamics
of a crowd and additional phenomena that occur within the crowd itself. A specific
example consists of crowd with emotional contagion [12, 29] as the emotions
spreading may significantly affect the pedestrians behavior and, eventually, the
whole crowd. An even more timely application, motivated by the recent outbreak
of Covid-19 pandemic, is the spreading of contagious diseases through a crowd.
This raises the question: How can the complex interplay between crowd dynamics
and emotional/contagious diseases be modeled?
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Key Topic 3: The literature on crowd modeling indicates that the derivation of
models is generally carried out at one of the three usual representation scales,
i.e., the micro-scale (individual-based models), the meso-scale (kinetic models), and
the macro-scale (hydrodynamical models). On the other hand, the human crowd
dynamics shows multiscale features that, by definition, cannot be fully capture
adopting a single representation scale as discussed in detail in [6]. This raises the
question: How can a multiscale vision be developed?

The contents of this edited book are mainly focused on the first two key topics,
albeit some contributions are also given to the third one, as all these three topics are
closely interconnected. The common feature pervading all chapters is the focus on
pedestrians’ communications which is a crucial aspect of crowds’ psychology [42].

The rest of this chapter is organized as follows. Section 2 outlines the contents
of the chapters that comprise this edited book. Section 3 proposes some perspective
speculations for carrying out a research activity with significant impact.

2 On the Contents of the Edited Book

The chapters of this edited book deal with front-edge research topics in the
modeling, simulation, and control of crowd dynamics. Some contributions refer to
new frontiers of crowd modeling, specifically the complex interplay between virus
spreading and crowd dynamics with or without awareness of the contagion issue.
These chapters closely refer to Key Topics 1 and 2.

More specifically, the first five chapters focus on methods for collecting empirical
data about pedestrians’ behavior, and on the different approaches for managing
crowds. Although, these chapters provide important contributions, there are still
many problems left open, as we will discuss in Sect. 3 referring specifically to the
multiscale approach.
Chapter “Generalized Solutions to Opinion Dynamics Models with Discontinu-
ities” is devoted to the modeling of social dynamics, specifically opinion formation.
This topic is closely related to one of the key problems posed in [1], namely
how pedestrians interact with their neighbors, and adjust their walking strategy
accordingly. This chapter considers state dependent interactions with a fixed
number of nearest neighbors and provide a sharp discussion on how to deal with
discontinuous interactions between agents.
Chapter “Crowd Behaviour Understanding Using Computer Vision and Statis-
tical Mechanics Principles” discusses the possibility of classifying crowds via
thermodynamics-like parameters, such as energy and entropy, and to measure
these parameters by means of computer vision techniques. This study is part of a
larger research program that aims at systematically detect behavior anomalies or
abnormality within a crowd.
Chapter “Applications of Crowd Dynamic Models: Feature Analysis and Process
Optimization” focuses on feature analysis and process optimization techniques for
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evacuation management. It is clearly shown that the literature in this field still suffers
from many limitations that hinder practical applications. For example, there is little
scope for error in managing crowd evacuation, and few emergencies can be dealt
with using the same approach. This chapter delineates specific tools for tackling
this key safety problem.
Chapter “Optimized Leaders Strategies for Crowd Evacuation in Unknown Envi-
ronments with Multiple Exits” investigates the role of leaders in controlling the
dynamics of a crowd. The follower-leader dynamics is initially described at the
microscopic scale by an agent-based model, and, subsequently, a mean-field type
model is derived to approximate a crowd composed of many followers. A meta-
heuristic approach is used to optimize the leaders’ walking strategy based on specific
objectives (i.e., minimization of evacuation time, maximization of evacuated pedes-
trians, optimal use of exits), and it is shown that leaders may effectively guide
pedestrians to safely egress unknown environments.

The last four chapters focus on different aspects of crowd dynamics closely
related to the contagion problem which is a hot topic since the Covid-19 pandemic
outbreak [12]. These include physical distancing in crowds and virus transmission,
crowd dynamics in the presence awareness of the risk of contagion, epidemiological
models adapted to modeling the dynamics over networks, and description of
heterogeneous populations within the agent-based modeling framework.
Chapter “The Impact of Physical Distancing on the Evacuation of Crowds” first
reviews the implications of physical distancing on crowd dynamics both in normal
conditions and emergencies. Then, it provides a detailed assessment of expected
changes on the crowd evacuation behavior due to awareness of the contagion
risk, including changes in the fundamental walking speed/density and flow/density
relationships.
Chapter “A Kinetic Theory Approach to Model Crowd Dynamics with Disease
Contagion” presents some perspective ideas on how to extend a kinetic-type model
for crowd dynamics to account for an infectious disease spreading. The authors refer
to recent developments of the mathematical theory of active particles [13] where the
modeling approach is based on kinetic theory methods, and theoretical tools of game
theory are used to model the interactions involving walkers. The model is tested on
a problem involving a small crowd walking through a corridor, but an application to
realistic scenarios is also presented, namely the passengers behavior in one terminal
of Hobby Airport in Houston.
Chapter “Toward a Quantitative Reduction of the SIR Epidemiological Model”
develops a modeling approach of SIR-type epidemiological models in the context
of dynamic networks, where model reduction and coarse-graining techniques are
applied to reduce the computational complexity of systems with a large number of
degrees of freedom. The gap between the approximate and the original observable
quantities is studied by analytic and computational methods. This approach appears
suitable to model the dynamics of large-scale highly interacting inhomogeneous
human crowds to gain a more fundamental understanding of viruses spreading.
Chapter “An Agent-Based Model of COVID-19 Diffusion to Plan and Evaluate
Intervention Policies” shows how agent-based methods, based on a sharp selection
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of behavioral and interaction rules, can describe the Covid-19 pandemic spreading.
The model uses data of Piedmont, an Italian region, albeit a straightforward
calibration is possible using data of other geographic areas as well. The authors
show how heterogeneous interacting populations can be simulated in a broad
variety of realistic scenarios. Finally, the chapter introduces strategic planning of
vaccinations using genetic algorithms. The hints delivered by this chapter, which
closes the edited book, once properly interpreted at a technical level, can become a
worthwhile legacy to scientists active in crowd modeling.

3 Research Perspectives

The contents of this edited book clearly show that Key Topics 1 and 2 are object
of constant interest. Many interesting results have already been obtained and soon
more will follow as many scientists are actively working in the field as reported
in [33].

Key Topic 1 can be considered a relatively mature research field, and many
important contributions have been given in the past decades. However, there are still
many open questions and much room for modeling improvements. As an example,
the development of discrete velocity models at the mesoscopic scale is a topic which
certainly deserves further attention. In fact, in many instances, the crowd does not
include a number of pedestrians high enough to justify the assumption of continuity
of the probability distribution over the micro-state which, instead, it is required by
the standard kinetic theory approach [10].

Discrete models are based on the idea of partitioning the velocity space into a
finite number of sub-domains so that the representation of the system is delivered
by the number of individual entities in each domain. This approach has been applied
to the modeling of vehicular traffic by two different modeling strategies, i.e., using
a fixed grid [26], and a grid depending on the local density [25]. A model with
discrete velocity directions has been proposed in [11], where the speed is related
to local density by heuristic models interpreting empirical data. Similar modeling
strategies can be envisioned for crowd dynamics.

Key Topic 2 represents a rapidly expanding research area. Not by chance, half
of this edited book is exactly about the interplay between crowd dynamics and
contagion spreading. However, note that Key Topic 2 embraces a broader range
of applications, ranging from panic arising in emergency situations [34, 43] to
emergence of violence during protests [28].

Most of the models available in the literature considers the emotional-social state
as constant parameter equally shared by all pedestrians. On the other hand, recent
studies consider the emotional-social state as a dynamical variable, based on both
continuous [14, 15, 44] and discrete [37, 38] velocity models. We do think that the
development of these latter models is a promising research direction.

Compared to others, the Key Topic 3 is relatively less developed but, hopefully,
many contributions will be given in the coming years. Indeed, the derivation of
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Fig. 1 The outbreak of the Covid-19 pandemic is not (a) a black swan but a consequence of a (b)
strongly interconnected world

macroscopic (hydrodynamic) models from the underlying description at the micro-
scale (i.e., individual-based or kinetic) remains the cornerstone for fully capture the
complexity features of the crowd dynamics.

A few pioneering papers have already been devoted to this topic, e.g., [18].
A micro-macro derivation of models in unbounded domains has been developed
in [10] referring specifically to the discrete velocity model proposed in [11]. The
analytic problem presents conceptual difficulties somehow related to the sixth
Hilbert problem, see [19, 20]. A first step of the quest towards the micro-macro
derivation consists in deriving models at each scale by the same principles and by
using parameters corresponding to the same physical dynamics [6].

As witnessed by the vast literature [33], including this series of edited books,
crowd dynamics remains an incredibly active research field. The specific feature of
this volume consists in bringing to the attention of researchers the great new variety
of physical scenarios which is added to classical topics such as collecting empirical
data [23, 24, 32, 41], studying analytic problems [4, 7, 22, 39], and developing more
realistic computational models [16]. Indeed, most of the contributions of this book
were motivated by the ongoing Covid-19 pandemic which has further increased the
fragility of our already fragile planet [5]. No space to reason about a black swan.
Arguably, modeling, simulations, and artificial intelligence can address research
activity in crowd dynamics to support the decision making of crisis managers. Then,
scientists are asked to contribute achieving this challenging objective (Fig. 1).
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Generalized Solutions to Opinion
Dynamics Models with Discontinuities

Francesca Ceragioli , Paolo Frasca , Benedetto Piccoli ,
and Francesco Rossi

Abstract Social dynamics models may present discontinuities in the right-hand
side of the dynamics for multiple reasons, including topology changes and quan-
tization. Several concepts of generalized solutions for discontinuous equations are
available in the literature and are useful to analyze these models. In this chapter,
we study Caratheodory and Krasovsky generalized solutions for discontinuous
models of opinion dynamics with state dependent interactions. We consider two
definitions of “bounded confidence” interactions, which we, respectively, call metric
and topological: in the former, individuals interact if their opinions are closer than a
threshold; in the latter, individuals interact with a fixed number of nearest neighbors.
We compare the dynamics produced by the two kinds of interactions in terms of
existence, uniqueness, and asymptotic behavior of different types of solutions.

1 Introduction and Summary of Results

In the last decades, researchers from many different fields explored the behavior
of large systems of active particles or agents. The latter entities, also called self-
propelled, intelligent, or greedy, are endowed with the capability of decision making
and, usually, of altering the energy or other (otherwise conserved) quantities of
the system. Examples include dynamics of opinions in social networks, animal
groups, networked robots, pedestrian dynamics, and language evolution. Their
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dynamics is written as an Ordinary Differential Equation (ODE in the following)
in large dimension. In order to cope with this large dimension, various mean-
field, kinetic and hydrodynamic limit descriptions were studied in the literature, see
[1, 2, 8, 13, 14, 22, 25, 37] and the references therein. The interaction among agents
may be restricted to specific regions due to the physical aspects of the modeled
phenomenon, giving rise to discontinuities. Even more, due to modeling choices
these discontinuities may appear naturally at multiple scales, see for instance [6, 23].

One of the main phenomena of active particles is self-organization of the whole
system, stemming from simple interaction rules at the particle level. Such interaction
rules are often motivated by relationships among agents; thus, corresponding
evolutions are referred to as social dynamics [5, 40, 41]. The most common self-
organized configurations are: consensus [36], i.e. all agents reaching a common
state; alignment, i.e. agents reaching consensus on a subset of the state variables
(e.g. speed) [12]; and clustering, i.e. agents grouping in a small number of well-
separated states [32, 35].

The description of social dynamics may require continuous or discrete quantities,
and the corresponding ODE may have either continuous or discontinuous vector
fields. As a matter of fact, there are multiple situations where discrete variables and
discontinuities arise. A partial list includes:

– the presence of threshold effects caused by physical, communication, or psycho-
logical barriers [30];

– the presence of quantities taking values in discrete sets, when a finite number of
choices is given (e.g. whether and which product to buy) or when communication
takes place by means of a finite set of symbols [16, 19, 34];

– the presence of a pattern of allowed/forbidden interactions, such as can be
encoded in a graph [5, 7].

The latter case includes all situations where physical or cognitive constraints limit
interactions to agents that are close to each other, either spatially or behaviorally.
When models are defined in discrete time, discontinuities of the right-hand side pose
little mathematical difficulties and are easily managed or simply ignored. Instead,
discontinuities give rise to technical difficulties in continuous time, as the study of
ODEs is deeply based on the notions of continuity and differentiability. We notice
that the problem of dealing with discontinuities is not limited to the case of ODE
models, but it also occurs at other scales for learning dynamics in crowds combined
with loss of symmetry features, see [6].

Even though discontinuities of some models can be avoided by defining suitable
smoothed counterparts, which feature continuous approximations of discontinuous
functions, the connections between continuous and discontinuous variants are not
trivial [15]. Most importantly, discontinuities cannot always be avoided. This is the
case when the agents are allowed a finite number of choices/actions/interactions.
Another, classical, example of unavoidable discontinuity in ODEs comes from
control theory. Whereas stabilizability of a system with inputs by means of a
continuous feedback law implies asymptotic controllability by means of an open-
loop control, the converse does not hold if only continuous feedback laws are
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considered. But if discontinuous feedback laws are allowed, then asymptotic
controllability does imply stabilizability [3, 20]. This example shows not only that
discontinuities cannot be avoided, but they may be helpful. This result and, more
generally, all results on discontinuous ODEs depend on the notion of generalized
solutions adopted: it is interesting to analyze and compare different notions in order
to deduce common features and differences. This is one of the objectives of the
present paper: we will make use of the main concepts of solutions that have been
defined in mathematical analysis and in control theory, and in particular we will
discuss classical, Caratheodory, Filippov, and Krasovsky solutions. We recall the
precise definitions of these solutions in Sect. 2.1 below.

We now describe more precisely the two opinion dynamics models that we
analyze in the present chapter. The fact that an individual influences those he
communicates with can be taken as a principle when describing evolution of
opinions. The most basic model which describes in a mathematical framework
this principle is usually referred to as DeGroot’s model (despite having earlier
origin in French [29]). Its main feature is that in a group of individuals that
communicate among them, consensus is achieved. On the other hand, everyone’s
experience suggests that consensus is not always achieved among individuals.
For this reason, many researchers have proposed more complex models, aiming
to describe agreement and disagreement at the same time: see [40, 41] for a
comprehensive discussion. Crucially, several of these more complex models feature
discontinuities of the right-hand side.

Here we consider a general model, which incorporates the well-known
Hegselmann-Krause model [30]. The basic idea of Hegselmann and Krause is
that trust towards others has some limitations. In their work, they assume that
an individual is influenced by others only if opinions are not too far from one
another. Here, we describe the fact that one’s confidence towards others is limited,
by describing in two different ways the set of neighbors of an individual. In the
first setting, interactions among individuals follow Hegselmann and Krause’s rule:
one’s neighbors are individuals whose opinions do not differ too much. We call this
kind of interactions metric interactions. In the second setting, we assume that an
individual follows only a fixed number of neighbors, the ones whose opinions are
the nearest to his own. We call this kind of interactions topological interactions.
Topological interactions can be motivated by the notion of Dunbar number [7, 26]
that indicates a cognitive limit in the number of significant relationships among
individuals. This concept is particularly meaningful in the contemporary world,
where potential contacts and available information seem to be unlimited.

1.1 Mathematical Models and Main Results

In the mathematical description of the bounded confidence models, we start by
considering a set V = {1, . . . , N} of N agents (also called individuals) with states
xi ∈ R

n (e.g. position, opinion, speed). Each agent i ∈ V interacts with other
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agents belonging to a subset of neighbors Ni(x) ⊆ V . The subset of neighbors
Ni(x) depends on the state and induces a graph G(x) of interactions among the
agents: V is the set of nodes and (i, j) is an edge if j ∈ Ni(x). We denote the set of
edges by E(x). The dynamics can be written in the following form:

ẋi =
∑

j∈Ni(x)

a(‖xj − xi‖)(xj − xi). (1)

The function a : [0,+∞[→ [0,+∞[ satisfies the following hypotheses:

• a is Lipschitz continuous;
• a(r) > 0 for r > 0;
• a is not decreasing.

The function a represents the strength of interactions among agents. A more general
model could be written with interaction functions aij that depend on the pair of
neighbors. Most results stated in this article remain valid in this more general setting,
provided that interactions are symmetric (aij = aji). Depending on how neighbors
Ni(x) are chosen, one obtains different bounded confidence models. From now
on, we will use the notations Nm

i ,N
t
i for the set of neighbors for the metric and

topological versions that we make explicit below.
In the metric bounded confidence model agent i’s neighbors are those whose state

is not too far from his own, namely

Nm
i (x) = {j ∈ V : ‖xj − xi‖ < 1}.

This choice implies that interactions between agent i and j are symmetric, i.e. agent
i is influenced by agent j if and only if agent j is influenced by agent i. We then
write the metric bounded confidence dynamics as follows:

ẋi =
∑

j∈Nm
i (x)

a(‖xj − xi‖)(xj − xi). (2)

As already mentioned, the first and best known version of the metric bounded
confidence model is Hegselmann-Krause’s [10, 30, 44], which corresponds to a ≡ 1
and was originally written in discrete time with states xi ∈ R. Its continuous-time
counterpart was first studied in [11].

The topological bounded confidence model is obtained when agent i interacts
only with a fixed number κ of neighbors, where 1 ≤ κ ≤ N − 1. More precisely,
for every agent i ∈ V , her neighborhood Nt

i (x) is defined in the following way. The
elements of V \ {i} are ordered by increasing values of ‖xj − xi‖; then, the first κ
elements of the list (i.e. those with smallest distance from i) form the set Nt

i (x) of
current neighbors of i. Should a tie between two or more agents arise, priority is
given to agents with lower index. We then write
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ẋi =
∑

j∈Nt
i (x)

a(‖xj − xi‖)(xj − xi). (3)

For topological interactions, agent i could be influenced by agent j without agent
j being influenced by agent i, namely interactions are not symmetric. This fact is a
major difference between the metric and topological bounded confidence models.
This model was first pointed out in [5], while several other models of opinion
dynamics and collective motion have considered topological interactions in different
forms: see [21, 42] and the references therein.

For both models, we have the following crucial observation: the right-hand side
of (2)–(3) is a discontinuous function. For this reason, one needs to carefully select
a concept of solution to such discontinuous ODE. In our opinion, this aspect has
been overlooked in the extensive literature about bounded confidence models, with
some exceptions such as [9, 11, 15]. Here, we will consider mainly Caratheodory
and Krasovsky solutions. Definitions and a brief discussion on different notions of
solutions can be found in Sect. 2.1. The first result about solutions of (1) will be the
following.

Theorem 1 (Existence and Uniqueness) Consider the bounded confidence mod-
els, either in the metric case (2) or topological case (3). Then, there exists a solution
(global in time) for every initial condition in the Krasovsky sense. Uniqueness
of solutions does not hold in general but holds for almost every initial datum.
Moreover, the same result holds for Caratheodory solution, both in the metric case
and in the topological case for κ = 1.

The full proof of the result for (2) was given in [38], which extended partial
results from [11, 15, 17]. Here we prove the corresponding claims for (3) in Sect. 3.

After solving the questions about existence and uniqueness, we focus on some
properties of such solutions that have been explored in the rich literature about social
dynamics models. We want to recall some of them. In the next definitions x(t) =
(x1(t), . . . , xN(t)) will denote a solution of an unspecified type.

P1) Average preservation. xave(t) = 1
N

∑
i xi(t) is invariant along trajectories.

P2) Contractivity of the support. For all T 2 ≥ T 1 ≥ 0, it holds

co
({

x1(T
1), x2(T

1), . . . , xN(T
1)

})
⊇ co

({
x1(T

2), x2(T
2), . . . , xN(T

2)
})

,

where co is the closed convex hull of the values in the brackets (defined in (4)
below).

P3) Convergence to cluster points. Every solution x(t) converges for t → +∞
to a cluster point, namely to a point x∞ = (x∞

1 , . . . , x∞
N ) ∈ R

nN , x∞
i ∈ R

n,
such that for every i ∈ V , for every j ∈ Ni(x

∞) it holds x∞
i = x∞

j . Every set of
agents with coincident states is said to be a cluster.

Properties P1), P2), P3) will be discussed for both metric and topological models.
Many examples will show the richness of possible behaviors, depending on the
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Table 1 This table summarizes, for the reader’s convenience, where in paper the main properties
of the bounded confidence models are proved or disproved

P1 P2 P3

Metric Caratheodory Yes Proposition 5 Yes Proposition 6 Yes Proposition 11

Metric Krasovsky Yes Proposition 5 Yes Proposition 6 Yes Proposition 11

Topological Caratheodory No Example 5 Yes Proposition 6 No Example 7

Topological Krasovsky No Example 5 Yes Proposition 6 No Example 7

Topological Caratheodory κ = 1 No Example 5 Yes Proposition 6 Yes Proposition 11

Topological Krasovsky κ = 1 No Example 5 Yes Proposition 6 No Example 8

chosen notion of solution. Indeed, the following theorem summarizes the results
that we prove in the next sections: the proof scheme is summarized in Table 1.

Theorem 2 (Properties of Solutions)

(i) Metric bounded confidence model. Caratheodory and Krasovsky solutions to
(2) satisfy properties P1)-P2)-P3).

(ii) Topological bounded confidence model. Caratheodory and Krasovsky solu-
tions to (3) satisfy property P2) and may not satisfy properties P1) and P3).

(iii) Topological bounded confidence model with one neighbor. In addition to the
previous case, Caratheodory solutions to (3) with κ = 1 satisfy property P3).

Some additional facts are easy to observe.

Remark 1 (Structure of Cluster Points, Metric Case) Note that for the metric
bounded confidence model, different values assumed by the components of a cluster
point x∞ are at a distance greater than or equal to one. Actually, they can be at
distance precisely one, as shown by Example 1 below.

Example 1 (Clusters at Distance 1) Consider the system (2) with n = 2, N = 3

and initial condition x =
(
(0, 0), (1, 1

3 ), (1,− 1
3 )

)
. There is a unique Krasovsky

(thus also Caratheodory) solution starting at x which converges to the cluster point
x∞ = ((0, 0), (1, 0), (1, 0)). Note that the distance between the first two agents in
x∞ is precisely one.

Remark 2 (Non-Exclusive Dependence of the Asymptotic State on the Initial Data)
A desirable property for solutions of any system is that the asymptotic state
depends on the initial datum only. Bounded confidence models fail to have this
property, because different solutions starting from the same initial condition can
have different asymptotic states. This is the case for Caratheodory (and a fortiori
also for Krasovsky) solutions, as shown by Example 5 below.

Complete proofs of the properties of the metric bounded confidence model can
be found in [38]. Here we recall the main ideas in order to compare metric and
topological cases. In fact, the topological bounded confidence model turns out to
be rather different and more complex to characterize. A key reason, already pointed
out, is that interactions are not symmetric. As a consequence, even a characterization
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of equilibria is not evident. Here, we construct a Lyapunov function and prove
convergence to cluster points in the case κ = 1 only. In this case, we can also
characterize the configuration of the network induced by (3) at any time, which
is a directed pseudo-forest with a cycle of length 2 in each connected component
(Proposition 12). In the general case, counterexamples show that convergence to
cluster points cannot be expected (Examples 7–8).

This picture shows the theoretical interest of these models and the long way to
go to fully understand them.

2 Generalized Solutions: Definitions and Basic Facts

In this article, we denote by λm the Lebesgue measure on R
m. For x ∈ R

m, B(x, r)
is the ball of radius r > 0 centered at x and B(r) = B(0, r) is the ball centered at the
origin. The Euclidean norm in R

m is denoted by ‖ · ‖. Given an embedded manifold
M ⊂ R

m, the symbol ∂M denotes the topological boundary. Given A ⊂ R
m, we

denote by int (A) its interior, by A its closure and we set

co(A) =
{

�∑

i=1

αixi : � ∈ N, αi ∈ [0, 1],
�∑

i=1

αi = 1, xi ∈ A

}
(4)

the convex hull of A, and denote by co(A) its closure.
We denote by AC([0, T ],Rm) the space of absolutely continuous functions

on a time interval [0, T ]. Recall that every absolutely continuous function is
differentiable for almost every time, i.e. except for times on a set of zero Lebesgue
measure. We also introduce the following:

Definition 1 (Stratified Set) A set � ⊂ R
m, � = ∪m�

i=1Mi , with m� ∈ N ∪ {+∞}
and Mi being C1 embedded manifold of dimension ni ≤ m, is stratified if:

i) The family Mi is locally finite: given a compact K , it holds K ∩ Mi �= ∅ only
for finite many i.

ii) for i �= j it holds Mi ∩ Mj = ∅, and if Mi ∩ ∂Mj �= ∅, then Mi ⊂ ∂Mj and
ni < nj .

We call maxi ni the dimension of the stratified set �.

Remark 3 For simplicity we used the definition of topological stratification, even
if the examples we consider admit Whitney stratification. We refer the reader to
[33, 39, 43] for a discussion of the different concepts and the role played for
discontinuous ODEs and optimal feedback control.

An autonomous ODE is written as:

ẋ(t) = g(x(t)), (5)



18 F. Ceragioli et al.

where x ∈ R
m and g : Rm → R

m is a measurable and locally bounded function
(defined at every point). The different concepts of solution will be discussed in the
next Sect. 2.1.

A multifunction on R
m is a function H : Rm → P(Rm), with P(Rm) being the

powerset of Rm, i.e. the set of subsets of Rm. Given a multifunction H , one can
consider the differential inclusion:

ẋ(t) ∈ H(x(t)). (6)

A solution is an absolutely continuous function x(·) which satisfies (6) for almost
every t .

We define the Hausdorff distance dH on the powerset of Rm as follows: given
x ∈ R

m and A,B ⊂ R
m we set d(x,A) = inf{d(x, y) : y ∈ A} and dH (A,B) =

sup{d(x,A), d(y, B) : x ∈ B, y ∈ A}. A multifunction H is continuous if it is
continuous for the Hausdorff distance, while H is upper semicontinuous at x if for
every ε > 0 there exists δ > 0 such that H(y) ⊂ H(x) + B(ε) for every y with
‖x − y‖ < δ.

A continuous multifunction H is also upper semicontinuous. It is well known that
if H is upper semicontinuous with compact convex values, then the corresponding
differential inclusion (6) admits solutions (locally in time) for every initial condition,
see [4]. More precisely, we state the following fact.

Proposition 1 Assume that the multifunctionH in (6) is upper semicontinuous and,
for every x ∈ R

m, H(x) is a nonempty, compact, and convex subset of Rm. Then,
for every initial condition x0 there exists a local solution to (6).

2.1 Solutions to Discontinuous Ordinary Differential
Equations

Given the ODE (5) with g discontinuous, it is convenient to define the associated
Krasovsky multifunction, defined as:

K(x) =
⋂

δ>0

co{g(y) : y ∈ (x + Bδ)}. (7)

Similarly, the Filippov multifunction is defined as:

F(x) =
⋂

δ>0

⋂

λm(N)=0

co{g(y) : y ∈ (x + Bδ \ N)}. (8)

Many definitions of solutions for (5) are then available, most of which coincide
when g is sufficiently regular (e.g. locally Lipschitz). We summarize in the
following definition the concepts we are considering in the rest of the paper.
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Definition 2 (Notions of Solution) Given the ODE (5) and T > 0 we define the
following:

1. A classical solution is a differentiable function x : [0, T ] → R
m that satisfies

(5) at every time t ∈ (0, T ). At 0 and at T the equation must be satisfied with
one-sided derivatives.

2. A Caratheodory solution is an absolutely continuous function x : [0, T ] → R
m

which satisfies (5) at almost every time t ∈ [0, T ].
3. A Krasovsky solution is an absolutely continuous function x : [0, T ] → R

m,
which satisfies:

ẋ ∈ K(x(t))

for almost every time t ∈ [0, T ], with K given by (7).
4. A Filippov solution is an absolutely continuous function x : [0, T ] → R

m,
which satisfies:

ẋ ∈ F(x(t))

for almost every time t ∈ [0, T ], with F given by (8).

We denote the sets of classical, Caratheodory, Filippov, and Krasovsky solutions
with Cl, Ca, F , and K, respectively.

The concept of classical solution is not used for discontinuous ODEs, because
of general lack of existence. In the following examples we show that both models
may not admit a classical solution for some initial condition. In these examples and
later in this paper, it will be convenient to denote the vector fields defined by the
right-hand sides of the metric model (2) and the topological model (3) by f m and
f t , respectively.

Example 2 (Non-Existence of Classical Solutions, Metric) Let N = 3, n = 1,
a ≡ 1 and consider point x = (− 1

2 , 0, 1
2 ). Let f m be the vector field defined

by the right-hand side of (2). We have f m(x) = ( 1
2 , 0,− 1

2 ), in fact agents 1
and 3 do not communicate in this configuration. As soon as t > 0 agents 1 and
3 start communicating as |x3(t) − x1(t)| < 1 for t > 0. Then we have that
limt→0+ f m(x(t)) = ( 3

2 , 0,− 3
2 ) which is different from fm(x). This proves that

a classical solution issuing from x does not exist. If we take the initial condition
(− 2

3 , 0, 2
3 ), a classical solution exists until the state x is reached but cannot be

continued up to +∞.

Example 3 (Non-Existence of Classical Solutions, Topological) Consider (3)
with N = 4, n = 2, κ = 1, a ≡ 1 and the initial condition x̄ =
((−1, 0), (0, 0), (1, 0), (1 − ε,

√
1 − ε2)) with 0 < ε < 1

2 . Then Nt
1(x̄) = {2},

Nt
2(x̄) = {1}, Nt

3(x̄) = {2}, Nt
4(x̄) = {3}. Therefore ẋ3 − ẋ2 = 0 and

(ẋ4 − ẋ3) · (x4 − x3) < 0, thus for all positive times it holds Nt
3(x(t)) = {4}

and there is no classical solution.
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Caratheodory solutions are among the ones commonly used, as they are equiva-
lent to solutions in the integral form:

x(t) = x(0) +
∫ t

0
g(x(s)) ds.

Existence theorems for Caratheodory solutions are far from trivial, as we will see in
Sect. 2.1.

The concepts of Filippov and Krasovsky solutions are often used to deal with
general discontinuous ODEs. They have the advantage of being based on the well-
developed theory of differential inclusions (6), see [4, 27]. In particular, we have the
following proposition, see [4].

Proposition 2 (Local Existence) Consider an ODE (5) with g measurable and
locally bounded. Then the corresponding Krasovsky and Filippov multifunctions
K and F defined by (7) and (8), respectively, are upper semicontinuous with
nonempty, compact and convex values. Thus, the differential inclusions ẋ ∈ K(x)

and ẋ ∈ F(x) admit local solutions for every initial condition.

Among solutions a special role is played by equilibrium solutions, whose notion
should of course be adapted to the chosen concept of solution. More precisely, we
give the following definition.

Definition 3 We call x ∈ R
m an equilibrium with respect to classical (respectively,

Caratheodory, Krasovsky, Filippov) solutions, if the function φ(t) = x is a classical
(respectively, Caratheodory, Krasovsky, Filippov) solution.

We remark that x is an equilibrium with respect to classical and Caratheodory
solutions if and only if f (x) = 0. This fact implies that Caratheodory and
classical equilibria coincide. Instead, x is an equilibrium with respect to Krasovsky
(respectively, Filippov) solutions if and only if 0 ∈ K(x) (respectively, 0 ∈ F(x)).

2.2 Inclusions Between Sets of Solutions

In this section, we study the inclusions between the different concepts of solutions
introduced above. We first recall the standard inclusions between solutions that do
not depend on the specific structure of (1). The proof is omitted, as it directly follows
from definitions.

Proposition 3 (Solution Sets) The following inclusions among sets of solutions
hold true: Cl ⊆ Ca ⊆ K and Cl ⊆ F ⊆ K.

We now prove that in the specific case of dynamics (2) and (3) the sets of Filippov
and Krasovsky solutions actually coincide. In view of this result, in the rest of this
paper we will no longer distinguish between Krasovsky and Filippov solutions and
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we will simply refer to them as to Krasovsky solutions. The proof is based on the
following fact.

Lemma 1 (Lemma 2.8 in [31]) Let f : Rm → R
m be such that:

(i) there exist Mα ⊆ R
m, α ∈ A, such that ∪αMα = R

m, Mα ∩ Mβ = ∅ for all
α, β ∈ A, α �= β, andMα ⊆ int(Mα) for all α ∈ A,

(ii) there exist fα : Rm → R
m continuous such that f (x) = fα(x) for all x ∈ Mα

and for all α ∈ A.

Then K = F for (5).

Proposition 4 (Krasovsky and Filippov Solutions Coincide) For the metric
model (2) and the topological model (3), it holds K = F .

Proof The system (1) can be written in standard form (5) by setting m = nN ,
x = (x1, . . . , xN) ∈ R

nN , f = (f1, . . . , fN) with fi : R
n → R

n given by the
right-hand side of (1).

We start considering the metric bounded confidence model (2). Given i, j ∈ V ,
i �= j , we define the subset of RnN :


m
ij = {(x1, . . . , xN) ∈ R

nN : ‖xi − xj‖ = 1}, (9)

and the union of such subsets as:


m = ∪i,j :i �=j

m
ij . (10)

The set 
m is the set of points at which the right-hand side of (2) fails to be

continuous. RnN is the disjoint union of p = 2(
N
2) sets such that f m restricted

to each of them is continuous. We can enumerate these sets by starting with
M1 = {x ∈ R

nm : ‖xi − xj‖ < 1 ∀i, j ∈ V, i �= j}, M2 = {x ∈ R
nm : ‖xi − xj‖ <

1 ∀i, j ∈ V except for ‖x1 − xN‖ ≤ 1} and finishing with Mp = {x ∈ R
nm :

‖xi − xj‖ ≥ 1 ∀i, j ∈ V }. Since M1, . . . ,Mp and f m satisfy the assumptions of
Lemma 1, then K = F for (2).

An analogous argument can be repeated for the topological bounded confidence
model (3). In this case we denote by


t
ijh = {(x1, . . . , xN) ∈ R

nN : ‖xj − xi‖ = ‖xh − xi‖} (11)

and by


t = ∪i,j,h:i �=j �=h �=i

t
ijh. (12)

Remark that the right-hand side of (3) is discontinuous on a subset of 
t . Also in
this case, RnN is the disjoint union of a finite number of sets delimited by the 
t

ijh’s
such that f t restricted to each of them is continuous. ��
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The next examples show that the inclusions Cl ⊆ Ca ⊆ K are proper for both
dynamics. It also shows that Caratheodory and Krasovsky solutions starting from
the same initial condition may converge to different equilibria.

Example 4 (Proper Inclusions Between Solution Sets, Metric) Consider (2) with
N = 3, n = 1, a ≡ 1 and the initial condition x = (− 1

3 , 0, 1). Note that x is
a discontinuity point of f m(x) as x3 − x2 = 1. We have f m(x) = ( 1

3 ,− 1
3 , 0).

In fact agent 2 and 3 do not communicate. There exists a unique classical solution
xC(t) = (− 1

6 − 1
6e

−2t ,− 1
6 + 1

6e
−2t , 1) which converges to the point (− 1

6 ,− 1
6 , 1).

If we consider Caratheodory solutions, we note that there exists one more
solution, that starts following the limit value of the vector field as x3 − x2 → 1−,
namely fm−(x) = ( 1

3 ,
2
3 ,−1): this Caratheodory solution behaves as if agents 2 and

3 communicate. Its expression is xCa(t) = ( 1
9e

−3t − 2
3e

−t + 2
9 ,− 2

9e
−3t + 2

9 ,
1
9e

−3t +
2
3e

−t + 2
9 ) and it converges to ( 2

9 ,
2
9 ,

2
9 ).

We finally consider Krasovsky solutions. Besides the ones already obtained there
exists a solution that slides on the discontinuity plane π : x3 − x2 = 1. In fact
admissible directions f̃ m at the points of π belong to the set

Kf (x)= {α(x2−x1, 1+x1−x2,−1)+(1−α)(x2−x1, x1−x2, 0) : α ∈ [0, 1]} .

Since the normal vector to π is v⊥ = (0,−1, 1), we have that v⊥·ẋ = −2α+x2−x1
is equal to zero if α = 1

2 (x2 − x1). Namely, the Krasovsky solution corresponding
to this α does not exit the discontinuity plane but slides on it. In fact the sliding
solution keeps x3 and x2 at distance 1 as ẋ3 − ẋ2 = 0. The solution can stay on the
discontinuity for arbitrarily long time: if it remains there forever, then it converges
to the point (− 1

9 ,− 1
9 ,

8
9 ). Other Krasovsky solutions may exit π at arbitrary times

T in two different ways: either agents 2 and 3 influence each other and the solution
converges to ( 2

9 ,
2
9 ,

2
9 ), or they stop interacting at all and the solution converges to

(x∗, x∗, x3(T )) with x∗ = 1
3 − x3(T )

2 .

Example 5 (Proper Inclusions Between Solution Sets, Topological) We consider (3)
with N = 3, n = 1, κ = 1, a ≡ 1 and the initial condition x = (0,−1, 1). We
remark that the vector field defined by the right-hand side of (3) is discontinuous at
x as it belongs to the plane π : (x1 − x2) − (x3 − x2) = 0. In order to have the
equation satisfied at t = 0 classical solutions must satisfy the equations

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2 − x1

ẋ2 = x1 − x2

ẋ3 = x1 − x3.

There is a unique classical solution starting from x and it converges to the

point
(
− 1

2 ,− 1
2 ,− 1

2

)
. In fact ẋ1 + ẋ2 = 0, then x1(t) + x2(t) = x̄1 + x̄2 =

limt→+∞[x1(t) + x2(t)] = −1.
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We now observe that there is a Caratheodory solution that does not satisfy the
equations at t = 0 but does for t > 0, namely the solution of the equations

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x3 − x1

ẋ2 = x1 − x2

ẋ3 = x1 − x3.

This Caratheodory solution converges to the equilibrium point
(

1
2 ,

1
2 ,

1
2

)
.

Finally we have a Krasovsky solution starting at x that slides on the plane π . In
fact, if we denote by f t−(x) and f t+(x) its limit values as x approaches the plane π
from the negative and positive sides, respectively, we have f t−(x) = (x2 −x1, x1 −
x2, x1 − x3) and f t+(x) = (x3 − x1, x1 − x2, x1 − x3). We can then compute the
Krasovsky set-valued map on π :

Kf (x) = {(αx2 + (1 − α)x3 − x1, x1 − x2, x1 − x3), α ∈ [0, 1]}.

By posing α = 1
2 we obtain the admissible direction f t

1/2(x) = (0, x1 −x2, x1 −x3)

which is parallel to π . This implies that there is a Krasovsky solution starting from
x and sliding on π , namely x1(t) = 0, x2(t) = −e−t , x3(t) = e−t , which converges
to the origin.

2.3 P1) Average Preservation

In this section, we discuss property P1) that is preservation of the average value of
the agents. We prove that P1) is satisfied for metric interaction models, while this is
not the case for topological interactions. This is one more consequence of the lack
of symmetry of topological interactions.

Proposition 5 (Average Preservation) Caratheodory and Krasovsky solution of
(2) have property P1).

The proof of Proposition 5 can be found in [15] in the case n = 1 and in [38] in
the general case. The same property does not hold for solutions of the topological
bounded confidence model, by the following example.

Example 6 (Example 5, Continued) Let x(t) be the unique classical solution
starting from the point (0,−1, 1). Observe that x(t) is such that xave(0) = 0, but
the limit of x(t) for t → +∞ is (− 1

2 ,− 1
2 ,− 1

2 ), so that limt→+∞ xave(t) = − 1
2 .
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2.4 P2) Contractivity of the Support

In this section, we prove that the support of solutions (in any sense given above)
is weakly contractive. This is a well-known property of Caratheodory solutions for
bounded confidence models, see e.g. [11]. The proof of such property for Krasovsky
solutions for the metric model (2) on the real line can be found in [15, Prop. 3.iii].

We will give a general proof for Krasovsky solutions in any dimension, both for
the metric (2) and topological models (3). The proof is similar to the one provided
in [38], thus we provide a sketch only.

Proposition 6 (Contractivity of the Support) Let x(t) = (x1(t), x2(t), . . . , xN(t))

be a solution to either (2) or (3), in any of the senses given in Definition 2. Assume
a : [0,+∞[→ [0,+∞[ continuous and 0 ≤ T 1 < T 2, then

co
({

x1(T
1), x2(T

1), . . . , xN(T
1)

})
⊇ co

({
x1(T

2), x2(T
2), . . . , xN(T

2)
})

.

(13)

Proof Let x(·) be a Krasovsky solution. DefineX(t) := co ({x1(t), x2(t), . . ., xN(t)})
and

A(T 1) :=
{
T ∈ (T 1,+∞) s.t. X(T 1) �⊇ X(T )

}
.

We claim that A(T 1) is empty, which implies (13). Otherwise, by contradiction, we
can define T 3 = infA(T 1) ≥ T 1. Following the same argument as in [38], we can
prove the following:

Claim a) It holds either inf(A(T 1)) = T 1 or inf(A(T 3)) = T 3.
Without loss of generality, we can assume T 1 = 0 or T 3 = 0, thus inf(A(0)) = 0.

Let tk ↘ 0 be such that xi(tk) �∈ X(0) for a fixed i ∈ V , then by continuity of the
trajectory it holds x̄i := xi(0) ∈ ∂X(0), where ∂ indicated the topological boundary.
Since X(0) is a convex polyhedron, it is supported by a finite number of hyperplanes
at x̄i , thus, by possibly passing to subsequences, we can find a unitary vector ν such
that (xi(tk) − x̄i ) · ν > 0 for all tk . Moreover, it holds (xj (0) − x̄i ) · ν ≤ 0 for all
j ∈ V .

Now, define φj (x) = (xj − x̄i ) · ν, and φ(x) := maxj∈V φj (x). Observe that
φ(x(0)) ≤ 0 and φ(x(tk)) > 0. We can apply Danskin Theorem [24] to φ, thus
even though φ may be not differentiable, it admits directional derivatives. Denote
by h = (h1, . . . , hN) the displacement, then by applying Danskin formula, the
directional derivative Dh along h is given by

Dhφ(x) = max
j∈Ai(x)

N∑

k=1

hk · ∇xkφj (x) = max
j∈Ai(x)

hj · ∇xj φj (x) = max
j∈Ai(x)

hj · ν,



Generalized Solutions to Opinion Dynamics Models with Discontinuities 25

where Ai(x) is the set of indexes j �= i realizing the maximum in the definition
of φ(x). Since Dhφ(x) is always defined and ẋ(t) exists for almost every t ∈
(0, T ), then also φ̇(x(t)) exists for almost every t ∈ (0, T ). Moreover, by direct
computation, we get:

lim
τ→0

φ(x(t + τ)) − φ(x(t))

τ
= lim

τ→0

φ(x(t) + τ ẋ(t) + o(τ)) − φ(x(t))

τ
(14)

= lim
τ→0

φ(x(t)) + τDẋ(t)φ(x(t)) + o(τ) − φ(x(t))

τ

= Dẋ(t)φ(x(t)),

thus it holds:

φ̇(x(t)) = max
j∈Ai(x(t))

φ̇j (t) = max
j∈Ai(x(t))

ẋj (t) · ν. (15)

Now, if x(·) is differentiable at t , and j ∈ Ai(x(t)), then for every k �= j we have

(xk(t) − xj (t)) · ν = (xk(t) − x̄i ) · ν + (x̄i − xj (t)) · ν
= φk(x(t)) − φj (x(t)) ≤ φ(t) − φ(t) = 0. (16)

Since x(·) is a Krasovsky solution, there exist bjk ≥ 0 such that ẋj =∑N
k=1 bjka(‖xk − xj‖)(xk − xj ). Substituting this expression in (15), we get:

φ̇(x(t)) = max
j s.t. φ(t)=φj (t)

N∑

k=1

bjka(‖xk − xj‖)(xk − xj ) · ν ≤ 0.

This contradicts the fact that φ(x(0)) = 0 and φ(tk) > 0. Thus (13) holds, for
the Krasovsky solution x(·). Since the proof holds for every Krasovsky solution,
by recalling the inclusions of Sect. 2.2, the statement holds for any definition of
solution. ��

3 Existence and Uniqueness of Solutions

In this section, we study existence and uniqueness of solutions, both for the metric
and the topological models.



26 F. Ceragioli et al.

3.1 Existence of Solutions

Proposition 7 (Existence of Krasovsky Solutions) For any initial condition,
equations (2) and (3) admit a Krasovsky solution defined on [0,+∞).

Proof For both (2) and (3) the right-hand side is locally bounded. The local
existence of Filippov solutions then follows from Proposition 2. By Proposition 4,
the sets of Krasovsky and Filippov solutions coincide, then local Krasovsky
solutions also exist. Proposition 6 guarantees that solutions are bounded, then they
can be continued on [0,+∞) by standard arguments. ��

In general, Krasovsky solutions are not unique, as already shown in Example 5.
In the following proposition we state the existence of Caratheodory solutions for
both metric and topological bounded confidence models. The proof for the metric
model in the case n = 1 was first given in [11] and then generalized to any n in [38].
The proof for the topological case with κ = 1 is new. We conjecture that the result
holds for κ > 1 as well, although with a more involved argument that we avoid to
develop here.

Proposition 8 (Existence of Caratheodory Solutions)

(i) Metric bounded confidence. For any initial condition, equation (2) admits a
Caratheodory solution defined on [0,+∞).

(ii) Topological bounded confidence. If κ = 1, then any initial condition (3) admits
a Caratheodory solution defined on [0,+∞).

Proof We only consider the topological bounded confidence model with κ = 1. We
build a Caratheodory solution as follows. For each initial datum x̄ = (x̄1, . . . , x̄N ),
we construct an oriented graph G for which there exists T > 0 and a curve defined
on [0, T ] having G as connectivity graph. For each index i ∈ V there exists one and
only one index that we denote with �(i), such that (i, �(i)) ∈ G. This implies that
ẋi = a(‖x�(i) − xi‖)(x�(i) − xi) for the whole time interval [0, T ]. We then need to
prove that the corresponding trajectory (x1(t), . . . , xN(t)) is indeed a Caratheodory
solution for (3). Remark that one might aim to choose �(i) as the single element
of Nt

i (x̄), that is the minimal index (in the lexicographic order) among nearest
neighbors of x̄i . In our proof, this is not the case, as one might choose �(i) not
to be the nearest neighbor with minimal index at the initial time, but to be the
nearest neighbor for all t ∈ (0, T ). We then conclude the proof by piecing together
Caratheodory solutions on time intervals [0, T1], [T1, T2], . . . to build a solution on
[0,+∞).

Let x̄ be an initial configuration, that is fixed from now on. We build an oriented
graph G recursively by selecting, for each index i ∈ V , a unique index �(i) such
that (i, �(i)) ∈ G. First define:

Ai := argminj �=i (‖x̄j − x̄i‖),

which is the set of agents realizing the minimal distance to x̄i .
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The graph G is constructed using the following algorithm:

Step 1) For all i such that Nt
i = {j}, define �(i) := j .

Step 2) WHILE there exists a pair of indexes i, j such that i �∈ G, j �∈ G and
j ∈ Ai, i ∈ Aj

DO: define �(i) := j and �(j) := i.
Step 3) IF there exists i /∈ G such that Ai = {j1, . . . , jl} and j1, . . . , jl ∈ G

DO: choose

�(i) ∈ argminj∈{j1,...,jl}ψi(j) (17)

where

ψi(l) := (xl − xi) · (a(‖x�(l) − xl‖)(x�(l) − xl) − a(‖xl − xi‖)(xl − xi)
)

(18)
Step 4) IF for all i ∈ V it holds i ∈ G, STOP.

ELSE: Go to Step 3.

Observe that the number of edges of G is increased at each step and is bounded by
N . Thus, there exists a limit graph G′, reached after a finite number of steps. We
now prove the following claim:

(C) for all i ∈ V it holds i ∈ G′.

To prove (C), assume by contradiction that there exists i /∈ G′ and, by possibly
relabeling indexes, i = 1 �∈ G′. By definition of G′, Step 3 does not add edges
to G′, in particular no edge to agent i = 1; thus A1 contains at least one index
that we relabel as 2, such that 2 �∈ G′. If 1 /∈ A2, we can find another index,
relabeled as 3, such that 3 /∈ G′ and so on. Finally there exists k �∈ G′ such that
Ak ∩ {1, 2, . . . , k− 1} �= ∅. Possibly reducing the sequence and changing the initial
element, we assume 1 ∈ Ak .

Now, if there exist i, i + 1 ∈ {1, 2, . . . , k} such that i + 1 ∈ Ai and i ∈ Ai+1,
then we are in contradiction with Step 2. Therefore, we can assume that for all
i ∈ {1, 2, . . . , k−1} it holds i �∈ Ai+1. Since i+2 ∈ Ai+1 by construction, we have

‖xi − xi+1‖ > ‖xi+1 − xi+2‖ for all i ∈ {1, 2, . . . , k − 2}. (19)

Using (19) and recalling 1 ∈ Ak we get

‖x1 − x2‖ > ‖x2 − x3‖ > . . . > ‖xk−1 − xk‖ > ‖xk − x1‖.

This implies 2 �∈ A1, achieving a contradiction. This concludes the proof of
claim (C).

Let x(·) be the curve satisfying ẋi = a(‖x�(i) − xi‖)(x�(i) − xi), i.e. with
dynamics associated with G, with initial condition x̄. We first show that there exists
a time T > 0 such that �(i) ∈ argminj �=i (‖xj (t) − xi(t)‖) for all t ∈ [0, T ].
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More precisely, for each i ∈ V , and k ∈ V \ {i, �(i)} we show that there exists
Tik > 0 such that ‖xi(t) − xk(t)‖ ≥ ‖xi(t) − x�(i)(t)‖ on [0, Tik]. Then it will be
sufficient to define T = minik Tik (with the convention that the minimum is +∞ if
all Tik = +∞).

Now, fix i ∈ V , and k ∈ V \ {i, �(i)}. Notice that if ‖x̄i − x̄k‖ > ‖x̄i − x̄�(i)‖,
then by continuity there exists Tik > 0 such that ‖xi(t)−xk(t)‖ > ‖xi(t)−x�(i)(t)‖
for all t ∈ [0, Tik]. Therefore, from now on, we assume

‖x̄i − x̄k‖ ≤ ‖x̄i − x̄�(i)‖.

By definition of Ai , this inequality is indeed an equality, otherwise �(i) �∈ Ai . We
distinguish two sub-cases:

Case 1) x̄k = x̄�(i).
Case 2) x̄k �= x̄�(i).

In Case 1) there exists a (possibly empty) set of indexes L := {l1, . . . , lr } such
that x̄k = x̄�(i) = x̄lm , hence Ak = L ∪ {�(i)}. From claim (C), for each l ∈
{k, �(i)} ∪ L the neighbor �(l) is well-defined, thus x̄l = x̄�(l) by the condition of
minimal distance. This in turn implies ẋl ≡ 0, and similarly for all other indexes
in Ak . Since all indexes l ∈ {k, �(i)} ∪ L satisfy such property, it holds Al ⊆
argminj (‖xj (t) − xl(t)‖). Observe moreover that the dynamics does not allow for
merging particles, thus the inclusion is indeed an equality. This in turn means that
xk(t) = x�(i)(t) for all t > 0, hence we can choose Tik = +∞.

Consider now Case 2). Observe that x̄k �= x̄i , otherwise ‖x̄�(i) − x̄i‖ ≤ ‖x̄k −
x̄i‖ = 0, which gives x̄�(i) = x̄i = x̄k . We now prove that there exists Tik > 0 such
that

‖xi(t) − x�(i)(t)‖ < ‖xi(t) − xk(t)‖ for all t ∈ (0, Tik]. (20)

Consider the function

φik(t) := 1
2‖x�(i)(t) − xi(t)‖2 − 1

2‖xk(t) − xi(t)‖2.

Since φik(0) = 0, to prove (20) it is enough to show φ′
ik(0) < 0. Set j = �(i), then

from (18), we get

φ′
ik(0) = (x̄j − x̄i ) · (ẋj (0) − ẋi (0)) − (x̄k − x̄i ) · (ẋk(0) − ẋi (0)) = Aijk − Bijk

with

Aijk = ψi(j) − ψi(k)

= (x̄j − x̄i ) · (a(‖x̄�(j) − x̄j‖)(x̄�(j) − x̄j ) − (x̄j − x̄i ) · a(‖x̄j − x̄i‖)(x̄j − x̄i )

−(x̄k − x̄i ) · a(‖x̄�(k) − x̄k‖)(x̄�(k) − x̄k) + (x̄k − x̄i ) · (a(‖x̄k − x̄i‖)(x̄k − x̄i )),

Bijk = (x̄k − x̄i ) · (a(‖x̄k − x̄i‖)(x̄k − x̄i )) − (x̄k − x̄i ) · (a(‖x̄j − x̄i‖)(x̄j − x̄i ))).
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The idea of the decomposition is that the last term in Aijk would correspond to
(x̄k − x̄i )ẋi (0) by choosing k as the neighbor of i. Thus, Bijk is the corrector given
by the actual choice j = �(i). We now show Aijk ≤ 0 and Bijk > 0, which implies
φ′
ik(0) < 0.

Consider first Aijk . The index j = �(i) was not chosen in Step 1 since k �= j

and k, j ∈ Ai . If j = �(i) was chosen in Step 2, then �(j) = i, and

Aijk ≤ −2‖x̄j − x̄i‖2a(‖x̄j − x̄i‖) + ‖x̄k − x̄i‖ · ‖x̄�(k) − x̄k‖a(‖x̄�(k) − x̄k‖)
+‖x̄k − x̄i‖ · ‖x̄k − x̄i‖a(‖x̄k − x̄i‖).

By definition of �(k) we have ‖x̄�(k) − x̄k‖ ≤ ‖x̄i − x̄k‖, and, since we are in Case
2, it holds ‖x̄j − x̄i‖ = ‖x̄k − x̄i‖. Recalling that a(r) is non-decreasing, we get
Aijk ≤ 0. Assume now that j = �(i) was chosen in Step 3, then, by construction
j ∈ argmin�ψi(�), thus 0 ≥ ψi(j) − ψi(k) = Aijk .

We now prove Bijk > 0. Observe that j, k ∈ Ai , hence both x̄j and x̄k lay on the
same circle centered at x̄i on the plane containing x̄i , x̄j and x̄k . Thus a(‖x̄k−x̄i‖) =
a(‖x̄j − x̄i‖). Since x̄k �= x̄j (Case 2) and x̄k �= x̄i , the amplitude α of the angle
∧

x̄j x̄kx̄i , on the plane containing x̄i , x̄j and x̄k , belongs to (−π/2, π/2), thus

Bijk = (x̄k − x̄i ) · a(‖x̄j − x̄i‖)(x̄k − x̄j )

= a(‖x̄j − x̄i‖)‖x̄k − x̄i‖ ‖x̄k − x̄j‖ cos(α) > 0.

From Aijk ≤ 0 and Bijk > 0 we get φ′
ik(0) < 0 and we are done.

We now show that x(·) is a Caratheodory solution of (3). If �(i) = Nt
i (x(t))

for all times t ∈ (0, T ), then we are done. Otherwise, there exists t ∈ (0, T ) such
that �(i) �= k = Nt

i (x(t)), thus ‖x�(i)(t) − xi(t)‖ ≥ ‖xk(t) − xi(t)‖. Recalling
the definition of Tik , we deduce that Case 1) holds, thus �(i) �= k = Nt

i (x(t)) and
x�(i)(t) = xk(t), i.e. the indexes k and �(i) are different but the agents’ positions
coincide. As a consequence, we have

ẋi = a(‖x�(i) − xi‖)(x�(i) − xi) = a(‖xk − xi‖)(xk − xi),

and (3) is satisfied.
We now prove that the trajectory can be prolonged to [0,+∞). If T = +∞,

then we are done. Otherwise, observe that the trajectory x(·) is compact, due to
contractivity of the support proved in Proposition 6, thus we can use transfinite
induction as follows. Since ẋ(·) is uniformly bounded, x(·) is a uniformly Lipschitz
function of time with Lipschitz constant L := maxij a(‖x̄i − x̄j‖), and x(T ) is well-
defined. We can apply the same algorithm at time T , and find T1 > 0 such that the
trajectory is well-defined on [T , T1]. If T1 = +∞, we are done; otherwise define
T2 < T3 < . . . in the same way and extend the trajectory to [Ti, Ti+1]. If Ti = +∞
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for some i or limi→+∞ Ti = +∞, then we are done. Assume, by contradiction that
T ∗ = limi→+∞ Ti < +∞. Then x(T ∗) is well-defined and using the algorithm we
can extend the trajectory beyond T ∗.

Using for Ti the same argument as for T , we have that x(·) is a Caratheodory
solution to (3) on each interval (Tl, Tl+1). Since {Ti} is a countable set, we are done.

��

3.2 Uniqueness for Almost Every Initial Condition

In this section, we study uniqueness of solutions. Examples 4 and 5 show that
Caratheodory solutions are not unique in general (thus neither Krasovsky). Never-
theless, uniqueness of Krasovsky (and then also Caratheodory) solutions holds for
almost all initial condition, both for metric and topological models. For the metric
case, the result was already given in [38, Prop. 6.2].

We then focus on uniqueness of Krasovsky solutions for almost every initial
datum for (3). We first set

I = {(i, j, k) : i �= j, i �= k, j �= k}

and define

M = ∪ijk∈IMijk, Mijk = {x : ‖xi − xj‖ = ‖xj − xk‖}.

Notice that M contains (in general strictly contains) the set where the right-hand
side of (3) is discontinuous.

The main reason for uniqueness is that Krasovsky solution cannot enter the
manifolds M and slide on it, except possibly on a set of codimension two. We
first show this fact for the case κ = 1 for simplicity.

Given (i, j, k) ∈ I , consider the functions

θijk(x) = ‖xj − xi‖2 − ‖xk − xi‖2 (21)

and denote by πijk the subset of the manifold Mijk where the right-hand side
f t of (3) is discontinuous and where θjvw(x)θkhu(x) is different from zero for
all v,w, h, u (that is, where the only discontinuity is due to j or k). We want to
prove that πijk cannot be attractive with respect to Krasovsky solutions. Fix x̄ a
discontinuity point for f t , thus x̄ ∈ πijk for some (i, j, k) ∈ I and either j ∈ Nt

i (x̄)

or k ∈ Nt
i (x̄). We denote by f t+(x̄) and f t−(x̄) the limit values of f t (x) as x → x̄

and θijk(x) > 0 (the neighbor of i is then k) and θijk(x) < 0 (the neighbor of
i is then j ), respectively. We denote by �(j) the neighbor of j at x̄ and by �(k)

the neighbor of k at x̄. We first denote by γ the angle between the vectors x̄j − x̄i
and x̄k − x̄i and l = ‖x̄j − x̄i‖ = ‖x̄j − x̄i‖. If l = 0, the angle is not uniquely
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defined, but this plays no role in the following. Let us compute the two quantities
∇θijk(x̄) · f t+(x̄) and ∇θijk(x̄) · f t−(x̄). We have:

∇θijk(x̄) · f+t (x̄)

= (x̄j − x̄i ) · [a(‖x̄�(j) − x̄j‖)(x̄�(j) − x̄j ) − a(‖x̄k − x̄i‖)(x̄k − x̄i )]
−(x̄k − x̄i ) · [a(‖x̄�(k) − x̄k‖)(x̄�(k) − x̄k) − a(‖x̄k − x̄i‖)(x̄k − x̄i )]
= a(‖x̄�(j) − x̄j‖)(x̄j − x̄i ) · (x̄�(j) − x̄j ) − a(l)l2 cos(γ )

−a(‖x̄�(k) − x̄k‖)(x̄k − x̄i ) · (x̄�(k) − x̄k) + a(l)l2

and

∇θijk(x̄) · f t−(x̄) = (x̄j − x̄i ) · [a(‖x̄�(j) − x̄j‖)(x̄�(j) − x̄j ) − a(‖x̄j − x̄i‖)(x̄j − x̄i )]
−(x̄k − x̄i ) · [a(‖x̄�(k) − x̄k‖)(x̄�(k) − x̄k) − a(‖x̄j − x̄i‖)(x̄j − x̄i )]

= a(‖x̄�(j) − x̄j‖)(x̄j − x̄i ) · (x̄�(j) − x̄j ) − a(l)l2

−a(‖x̄�(k) − x̄k‖)(x̄k − x̄i ) · (x̄�(k) − x̄k) + a(l)l2 cos(γ ).

We have:

∇θijk(x̄) · f t+(x̄) − ∇θijk(x̄) · f t−(x̄) = −a(l)l2 cos(γ )

+a(l)l2 + a(l)l2 − a(l)l2 cos(γ )

= 2a(l)l2(1 − cos(γ )).

First of all, we remark that ∇θijk(x̄) · f t+(x̄) − ∇θijk(x̄) · f t−(x̄) ≥ 0. Moreover
∇θijk(x̄) · f t+(x̄) − ∇θijk(x̄) · f t−(x̄) = 0 if and only if γ = 0, so that f t+(x̄)
and f t−(x̄) are parallel. In this case, πijk is crossed by Krasovsky solutions, unless
f t+(x̄) is tangent to the manifold, but this may occur only on a set of codimension
at least two. Let us then consider the case ∇θijk(x̄) ·f t+(x̄)−∇θijk(x̄) ·f t−(x̄) > 0
and analyze different possibilities.

• Case ∇θijk(x̄) · f t+(x̄) > 0. If also ∇θijk(x̄) · f t−(x̄) > 0, then Krasovsky
solutions cross πijk . If ∇θijk(x̄) · f t−(x̄) ≤ 0, then Krasovsky solutions can
either leave πijk or slide on it.

• Case ∇θijk(x̄)·f t+(x̄) ≤ 0. Then ∇θijk(x̄)·f t−(x̄) < 0 and Krasovsky solutions
cross πijk .

We conclude that solutions, which originate from outside πijk and reach it, must
cross it. Therefore, uniqueness can only fail for (sliding) solutions that originate
inside πijk . After this informal argument for κ = 1, we proceed to give a complete
proof for any κ , thereby completing the proof of Theorem 1.
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Proposition 9 (Uniqueness from Almost Any Initial Datum, Topological) The
set of initial data from which there exist more than one Krasovsky solutions for (3)
has zero Lebesgue measure in R

nN .

Proof Fix an initial condition x̄ and let Xx̄ be the set of solutions x(·) to (3) such
that x(0) = x̄ defined on [0, T (x(·))[, with 0 < T (x(·)) ≤ +∞. Define

tU = inf{t : ∃x(·), y(·) ∈ Xx̄, t ≤ min{T (x(·)), T (y(·))}, x(t) �= y(t)}, (22)

and

A = {x̄ ∈ R
nN \ M : tU < +∞}. (23)

Notice that M is a stratified set of codimension 1, thus of zero Lebesgue measure
in R

nN . Therefore the statement is equivalent to prove that A has zero Lebesgue
measure. For x̄ ∈ A, we define:

t̃ = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈ M}. (24)

Since (3) is Lipschitz continuous on R
nN \ M, there exists a unique solution in Xx̄

at least until reaching M, thus x̃ = x(t̃) ∈ M depends only on x̄. Now define the
set of indexes

J = {(i, j, k, i′, j ′, k′) : (i, j, k) �= (i′, j ′, k′)},

and the stratified sets:

Mijki′j ′k′ = Mijk ∩ Mi′j ′k′ .

We now analyze the dynamics on M \ (∪(i,j,k,i′,j ′,k′)∈JMijki′j ′k′
)

to identify a
stratified set of codimension two out of which trajectories cross M transversally.
Consider now x ∈ Mijk , assume (i, j, k) is the unique index for which x ∈ Mijk .
We also assume ‖xi − xj‖ = max�∈Nt

i (x)
‖xi − x�‖, i.e. j is among the farthest

κ ≥ 1 neighbors of i, otherwise Nt
i is constant in a neighbor of x and uniqueness

holds. Since (i, j, k) is the unique index for which x ∈ Mijk , we indeed have
that max�∈Nt

i (x)
‖xi − x�‖ is achieved exactly for indexes j and k. Now, set Pi =

Nt
i (x) \ {j, k}, Pj = Nt

j (x), Pk = Nt
k(x). Define the following:

fm(x) =
∑

�∈Pm
a(‖x� − xm‖)(x� − xm) (25)

for m = i, j, k. Then a Krasovsky solution y(·) with y(0) = x, if differentiable at
0, satisfies:
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ẏi (0) = fi(x) + α a(‖xj − xi‖)(xj − xi) + (1 − α) a(‖xk − xi‖)(xk − xi),

for some α ∈ [0, 1], and:

ẏj (0) = fj (x), ẏk(0) = fk(x).

Recall the definition of the function θijk given in (21). If θijk computed along y(·)
is differentiable at 0, then:

θ̇ijk(0) = C(x) + 2α a(‖xi − xj‖) (xj − xi) · (xk − xj )

+2(1 − α) a(‖xi − xj‖) (xk − xi) · (xk − xj ), (26)

where we used ‖xi − xj‖2 = ‖xi − xk‖2 and

C(x) = 2(fi − fj ) · (xi − xj ) − 2(fi − fk) · (xi − xk). (27)

Define the stratified sets

M̂ijk = {x ∈ Mijk : C(x) + 2 a(‖xi − xj‖) (xj − xi) · (xk − xj ) = 0,

or C(x) + 2 a(‖xi − xj‖) (xk − xi) · (xk − xj ) = 0},

and finally

M̂ = (∪ijkM̂ijk

)⋃(∪(i,j,k,i′,j ′,k′)∈JMijki′j ′k′
)
.

Notice that M̂ is of codimension 2, and we state the following claim:

Claim a) If x̃ ∈ M\M̂, then there exists ε > 0 such that x(t) /∈ M for t ∈]t̃ , t̃+ε[,
and x ≡ y on [0, t̃ + ε[ for every x(·), y(·) ∈ Xx̄ .

To prove Claim a), let (i, j, k) ∈ I be the unique triplet such that x̃ ∈ Mijk .
Assume j ∈ Nt

i (x̃) or k ∈ Nt
i (x̃), otherwise the claim is obvious. The function θijk

computed along x(·) satisfies θijk(t̃) = 0, is twice continuously differentiable on
[0, t̃[ with bounded derivatives, thus we can define ξ̃ := limt→t̃− θ̇ijk(t).

First assume ξ̃ > 0: then, there exists δ > 0 such that both θijk(t) < 0 and
j ∈ Nt

i (x(t)) on ]t̃ − δ, t̃[. Then, possibly restricting δ > 0, on ]t̃ − δ, t̃[ we have
θ̇ijk(t) = C(x(t)) + 2 a(‖xi(t) − xj (t)‖) (xj (t) − xi(t)) · (xk(t) − xj (t)) > 0 and
ξ̃ = C(x̃) + 2 a(‖x̃i − x̃j‖) (x̃j − x̃i ) · (x̃k − x̃j ) > 0. Since x(·) is a Krasovsky
solution, for almost every time θ̇ijk(t) can be computed as in (26) for some α(t) ∈
[0, 1]. From (xk − xi) = (xk − xj ) + (xj − xi), we get (xk − xi) · (xk − xj ) =
(xj − xi) · (xk − xj )+ ‖xk − xj‖2, thus θ̇ijk(t) > 0 for t sufficiently close to t̃ . This
implies that there exists ε > 0 such that θijk > 0, j /∈ Nt

i (x(t)) and k ∈ Nt
i (x(t))

for t ∈]t̃ , t̃ + ε[. Since x̃ /∈ M̂, by possibly reducing ε, it holds x(t) /∈ M̂. In
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particular, all sets Nt
�(x(t)) are constant for t ∈]t̃ , t̃ + ε[. Thus we conclude that

Claim a) holds.
The case ξ̃ < 0 can be treated similarly, while the case ξ̃ = 0 is excluded since

x̃ /∈ M̂ijk .
Now set:

tM̂ = inf{t : ∃x(·) ∈ Xx̄, x(t) ∈ M̂}, (28)

Claim a) ensures tM̂ ≤ tU , as uniqueness can be lost only when crossing M̂.
Therefore, if x̄ ∈ A, then every x(·) ∈ Xx̄ is Lipschitz continuous and coincides (at
least) up to tM̂. This implies that H 1+ε({x(t) : t ∈ [0, tM̂], x(·) ∈ Xx̄}) = 0 for
every ε > 0, where Hr is the Hausdorff measure of dimension r in R

nN . Since M̂
is of codimension 2, by Fubini Theorem, for 0 < ε < 1 we have:

HnN(A) ≤
∫

M̂

(
H 1+ε({x(t) : t ∈ [0, tM̂], x(·) ∈ Xx̄})

)
dHnN−2+ε(x̄) = 0.

The measure HnN coincides with the Lebesgue measure on R
nN , thus A has zero

Lebesgue measure.
��

4 Asymptotic Behavior of Solutions

We now study convergence to cluster points, i.e. Property P3). We first need to
investigate the relationships between cluster points and equilibria for Caratheodory
and Krasovsky solutions to (2) and (3).

4.1 Equilibria and Cluster Points

We begin by recalling that cluster points are points x∞ = (x∞
1 , . . . , x∞

N ), x∞
i ∈ R

n,
such that for every i ∈ V , for every j ∈ Ni(x

∞) it holds x∞
i = x∞

j . It is easy to
prove that cluster points are Caratheodory equilibria for both (2) and (3). One can
ask whether all equilibria are cluster points: here, the metric and topological models
are completely different. For the metric bounded confidence model, all Krasovsky
equilibria are indeed cluster points (see [38, Prop. 7.1]). Instead, for the topological
bounded confidence model, there exist equilibria that are not cluster points, in the
following cases:

• for κ > 1, for any kind of solutions, see Example 7;
• for Krasovsky solutions even with κ = 1, see Example 8.
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Instead, Caratheodory equilibria for κ = 1 are all clusters, as proved in Proposi-
tion 10.

Example 7 (Non-Convergence to Clusters, Topological κ ≥ 2) Let N = 7, n =
1, κ = 2, a ≡ 1 and consider the point x with x2 = x4 = x5 = 0, x1 = 1

2 ,
x3 = x6 = x7 = 1. It can be easily computed that f t (x) = 0 and therefore x is an
equilibrium point with respect to classical, Caratheodory, and Krasovsky solution.
Moreover, it is not a cluster point as there is just 1 < κ = 2 index with value 1

2 . We
remark that x is not locally attractive with respect to all types of solutions.

As equilibria correspond to constant solutions, this example also shows that
solutions of the topological bounded confidence model do not satisfy property P3),
in general.

In the previous example we fixed κ = 2. For κ = 1, we will show that all
classical and Caratheodory equilibria are cluster points, as stated by the following
proposition.

Proposition 10 (Caratheodory Equilibria, Topological κ = 1) If κ = 1,
Caratheodory equilibria of (3) are cluster points.

Proof As κ = 1, cluster points are such that agents can be divided into groups of at
least two agents with the same value. The i-th component of the vector field writes
f t
i (x) = a(‖x�(i) − xi‖)(x�(i) − xi), where �(i) is the (state dependent) neighbor

of i. Note that f t
i (x) is null if and only if x�(i) = xi , as a(r) > 0 for r > 0. Then,

xi = x�(i) for all i ∈ V and x is a cluster point. ��
Krasovsky equilibria which are not cluster points appear even if κ = 1, as shown

by the following example. Their existence implies that, even if κ = 1, Krasovsky
solutions do not necessarily converge to cluster points.

Example 8 (Non-Convergence of Krasovsky to Clusters, Topological κ = 1) We
consider (3) with N = 5, n = 1, κ = 1, a ≡ 1 and the initial condition
x = (−1, 1, 0, 1,−1). Observe that x is a discontinuity point of the vector field
f t . Among the limit values of the vector field f t at x there are (0, 0,−1, 0, 0) and
(0, 0, 1, 0, 0). Then 0 ∈ Kf t(x) and x is a Krasovsky equilibrium which is not a
cluster point.

4.2 P3) Convergence to Cluster Points

The following proposition summarizes our results about convergence to cluster
points. The result is the best possible one in terms of convergence to clusters, given
the above counterexamples.

Proposition 11 (Convergence to Cluster Points)

(i) Metric bounded confidence. For any Krasovsky solution of (2), Property P3)
holds.
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(ii) Topological bounded confidence. If κ = 1, for any Caratheodory solution of
(2), Property P3) holds.

The proof of (i) is given in [38, Prop. 7.1] and = is based on the observation that
(2) can be written as a gradient flow as follows. Define

�ij (r) =
{∫ r

0 a(s)s ds for r < 1
∫ 1

0 a(s)s ds for r ≥ 1

and observe that, if ‖xi − xj‖ �= 1, for every i �= j , then

ẋi = −
∑

j �=i

∇�ij (‖xi − xj‖).

This suggests to define the candidate Lyapunov function

V (x) =
∑

i,j �=i

�ij (‖xi − xj‖),

which satisfies V̇ (x(t)) ≤ 0 for a.e. time and allows (despite being nonsmooth and
non-proper) to establish an ad-hoc convergence argument.

The proof of (ii) requires a slightly different reasoning. The special case of
(piecewise) classical solutions in dimension n = 1 was proved in [18] by exploiting
the special structure of its induced graph G(x), which we describe next.

Proposition 12 (Directed Pseudo-Forest) If κ = 1, then for all n, for every
x ∈ R

nN , the interaction graph G(x) of (3) is the union of weakly connected
components, such that each component contains exactly one circuit of length 2 and
the two nodes of the circuit can be reached from all nodes of the component.

Examples of weakly connected components can be found in Figs. 1 and 2.

Proof Let x be fixed and consider a connected component of G(x), called G′. We
first prove that G′ has exactly one circuit of length 2. Let M be the number of nodes
of the connected component. As any node has exactly one out-edge, the number
of edges of the component is exactly M , then G′ contains one circuit (this kind of
graph is referred to as directed pseudo-forest). Furthermore, we can observe that the
nodes of the circuit are reachable from any node in G′. As any node has an outgoing
edge, starting from any node there exists an infinite walk. As the number of nodes
is finite, it must contain a circuit. This means that the walk contains the nodes of the
circuit.

We now prove that any circuit cannot have length greater than 2. Assume by
contradiction that there is a circuit with length p > 2. Let i1, . . . , ip be its nodes
and i1 be the smallest index. Thanks to the definition of neighbor, it must hold

‖xi1 − xi2‖ ≤ ‖xi1 − xi2‖ ≤ . . . ≤ ‖xi1 − xip‖.
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1 2 3 4 5 6

Fig. 1 Example of weakly connected component of graph G(x), where N = 6, n = 1, κ = 1,
x = (0, 10, 19, 27, 28, 30)

2

3

4

1 5 6 7

8

Fig. 2 Example of weakly connected component of graph G(x̄) where N = 8, n = 2, κ = 1, x̄ =
((0,0) (0,1),(-1,0), (0,-1), (1/2,0),(1,0),(1,1),(1,-1))

If ‖xi1 −xi2‖ < ‖xi1 −xip‖, then ip is the neighbor of i2 instead of i1, contradiction.
Then it must hold ‖xi1 −xi2‖ = ‖xi1 −xi2‖ = . . . = ‖xi1 −xip‖. In this case i1 should
be the neighbor of all nodes i3, i4, . . . , ip−1, as it is the smallest index. Finally G′
has exactly one circuit: indeed, to connect two circuits there should be a node with
out-degree at least 2 (Fig. 1). ��

An interaction graph with the structure of G(x), if kept static, would guarantee
convergence to consensus for each connected component and, therefore, conver-
gence to a cluster point. However, the graph G(x(t)) evolves with time in such a
way that connected components can split and distinct connected components can
merge. The latter phenomenon is illustrated in the following example (Fig. 2).

Example 9 (Merging Components in Caratheodory Solutions) Let N = 4, n =
1, κ = 1, a ≡ 1 and consider the initial condition x = (−1, 0, 1, 1). Consider the
Caratheodory solution x(t) = (1 − te−t − 2e−t , 1 − e−t , 1, 1). Note that x(0) = x

and x(t) that satisfies (3) at all t > 0 but not at t = 0. The graph G(x(0)) has
two connected components whose vertices are {1, 2} and {3, 4} whereas G(x(t)) is
connected for all t > 0.

This counterexample prevents leveraging the topology of G(x) to prove (ii) for
Caratheodory solutions. We therefore resort to a Lyapunov-like argument, which
is partly inspired by the one in [38] for metric interactions, but will be valid for
topological interactions in the case of κ = 1 only.
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We introduce the integral function

I (r) :=
∫ r

0
a(s)s ds

and write the candidate Lyapunov function

W(x) :=
∑

i,j∈Nt
i (x)

I (‖xj − xi‖). (29)

One might hope to write (3) as ẋ = −∇W(x), like in the metric case. This is false,
as one can easily observe that this expression entails interactions that are symmetric,
while this is not the case for (3).

We will anyway be able to prove that W(x) is a Lyapunov function for solutions
to (3). This is only the case for κ = 1 and for Caratheodory solutions, but the proof
is quite different from the case of metric bounded confidence (2), again due to the
asymmetry of the interactions. Instead, W(x) is not a Lyapunov function, neither
for Caratheodory solutions with κ > 1 nor for Krasovsky solutions with κ ≥ 1, as
shown by Examples 10 and 11 below.

Proposition 13 (W Is Lyapunov) Let κ = 1. Then, the function W(x(t)) is
continuous and non-increasing for Caratheodory solutions.

Proof The proof is based on rewriting W(x) = ∑N
i=1 Wi(x) where

Wi(x) = min
j �=i

I (‖xi − xj‖). (30)

It is clear that both I (r) and x(t) are continuous. Then, both all Wi(x(t)) and
their sum W(x(t)) are continuous too. The rest of the proof is based on Danskin
theorem1 [24] for Wi(x). Similarly to the proof of Proposition 6, even though
Wi(x) can be non-differentiable, it admits directional derivative with respect to any
direction. We apply it to our function, denoting the direction of displacement with
h = (h1, . . . , hN), where each hk is the n-dimensional direction of displacement of
the position of the agent k. By applying Danskin formula, the directional derivative
Dh along h is given by

DhWi(x) = min
j∈Ai(x)

N∑

k=1

hk · ∇xk I (‖xi − xj‖) = min
j∈Ai(x)

∑

k∈{i,j}
hk · ∇xk I (‖xi − xj‖)

= min
j∈Ai(x)

(
hi · a(‖xi − xj‖)(xi − xj ) − hj · a(‖xi − xk‖)(xi − xj )

)

= min
j∈Ai(x)

a(‖xi − xj‖)(hi − hj ) · (xi − xj ),

1 In Danskin notation, we have F = F(x, j) = I (‖xi−xj‖) maximized with respect to j ∈ V \{i}.
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where Ai(x) is the set of indexes j �= i realizing min I (‖xi − xj‖).
We now apply this formula to compute the time derivative Ẇi(x(t)), whenever

it exists. Following the same computations as for (14), we have Ẇi(x(t)) =
Dẋ(t)Wi(x(t)). Since the time derivative ẋ(t) exists for almost every time t ∈ (0, T ),
this holds for Ẇi(x(t)) too. We compute this derivative, by restricting ourselves to
Caratheodory solutions, that satisfy ẋi = a(‖xi − xk‖)(xk − xi) for almost every
time, with k ∈ Nt

i (x). Denote with L := ‖xi − xk‖ and with l the unique element
l ∈ Nt

k(x). Observe that l ∈ Nt
k(x) implies ‖xl − xk‖ ≤ ‖xi − xk‖ = L that in turn

implies a(‖xl −xk‖) ≤ a(‖xi −xk‖) = a(L) and (xl −xk) · (xi −xk) ≥ −L2. Since
k ∈ Ai(x), and using previous estimates, it holds

Dẋ(t)Wi(x(t)) = min
j∈Ai(x)

a(‖xi − xj‖)(ẋi − ẋj ) · (xi − xj ) (31)

≤ a(L)(ẋi − ẋk) · (xi − xk)

= a(L)(a(‖xi − xk‖)(xk − xi) · (xi − xk)

−a(‖xk − xl‖)(xl − xk) · (xi − xk))

≤ −a(L)2L2 + a(L)2L2 = 0.

Since Wi(x(t)) is continuous, this implies that each Wi(x(t)) is non-increasing.
Passing to W(x(t)), that is a finite sum of continuous and non-increasing

functions, the proof follows. ��
Example 10 (W(x(t)) Increasing if κ > 1) We now prove that W(x) given in (29)
is not a Lyapunov function for (3) in the case κ > 1 for Caratheodory solutions
(hence for Krasovsky solutions too). Consider the following initial configuration
of N = 8 agents on the real line with κ = 2 and a(r) ≡ 1: choose x̄ =
(−9,−9,−9,−2, 2, 9, 9, 9) and observe that the unique solution of (3) in the
Krasovsky sense (that is even classical and Caratheodory) is given by

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = ẋ2 = ẋ3 = ẋ6 = ẋ7 = ẋ8 = 0

ẋ4 = (x5 − x4) + (x1 − x4)

ẋ5 = (x4 − x5) + (x6 − x5).

(32)

By symmetries, it holds x4(t) = −x5(t), thus ẋ5 = 9 − 3x5. It then holds x5(t) =
3− e−3t . Notice that the topology does not change and the solution converges to the
equilibrium point x∞ = (−9,−9,−9,−3, 3, 9, 9, 9) which is not a cluster point.
A direct computation gives

W(x(t)) = 1
2

(
(x1(t) − x4(t))

2 + 2(x4(t) − x5(t))
2 + (x5(t) − x6(t))

2
)

= 4x2
5(t) + (9 − x5(t))

2, (33)

that satisfies Ẇ (x(t)) = (10x5(t) − 18)ẋ5(t) > 0 for all t ∈ [0,+∞).
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Example 11 (W(x(t)) Increasing for Krasovsky Solutions) We now prove that
W(x) given in (29) is not a Lyapunov function for Krasovsky solutions with κ = 1.
Consider the following initial configuration of N = 5 agents on the real line and

a(r) ≡ 1: choose x̄ = (−1 − y0,−1 + y0, 0, 1 − y0, 1 + y0) with y0 ∈
(

0, 1
17

)
.

Observe that one of the solutions of (3) in the Krasovsky sense is

x1(t)= − 1−y(t), x2(t)= − 1+y(t), x3(t)=0, x4(t)=1 − y(t), x5(t)=1 + y(t),

with y(t) = exp(−2t)y0. Indeed, for all t > 0 this solution satisfies

ẋ = 1

2
(x2 − x1, x1 − x2, x4, x5 − x4, x4 − x5)

+1

2
(x2 − x1, x1 − x2, x2, x5 − x4, x4 − x5)

= (2y(t),−2y(t), 0, 2y(t),−2y(t)) .

A direct computation gives

2W(x(t)) = 2(x1(t) − x2(t))
2 + (x3(t) − x2(t))

2 + 2(x4(t) − x5(t))
2

= 4(2y(t))2 + (1 − y(t))2 = 1 − 2y(t) + 17y(t)2.

Its derivative is 4y(t) − 17 · 4y(t)2, that is positive for y(t) ∈
(

0, 1
17

)
. This holds

whenever y0 ∈
(

0, 1
17

)
. As a consequence, W(x(t)) is strictly increasing.

We are now ready to describe the structure of the limits of Caratheodory solutions
of (3) with κ = 1 that are indeed clusters.

Proposition 14 (Convergence and Cluster Properties, Topological κ = 1) Let
x1(t), . . . , xN(t) be a Caratheodory solution of (3) with κ = 1. Then, the following
clustering properties hold:

• each agent satisfies limt→+∞ xi(t) = x∞
i for some x∞

i ∈ R
n;

• for each i ∈ V there exists at least one j �= i such that x∞
i = x∞

j .

This also implies that P3) holds andW(x∞) = 0.

Proof First recall that x(t) is bounded, due to contractivity of the support proved
in Proposition 6. This implies that a(‖xi(t) − xj (t)‖) is bounded too, as a(r)

is Lipschitz continuous by hypothesis. This in turn implies that both x(t) and
a(‖xi(t) − xj (t)‖) are Lipschitz continuous too. Boundedness also implies that the
ω-limit is bounded.

Fix now any x∗ = (x1, . . . , xN) in the ω-limit of x(t). By definition, there exists
a sequence tk → +∞ such that x(tk) → x∗. Fix ε > 0 and K = Kε sufficiently
large to have
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‖((xi(tk) − xj (tk)) · (xl(tk) − xm(tk))) − (x∗
i − x∗

j ) · (x∗
l − x∗

m)‖ < 2ε (34)

for all i, j, l, m ∈ V and k > Kε. Since trajectories are bounded and Lipschitz
continuous, there exists a uniform δ > 0 such that

‖((xi(tk+τ)−xj (tk+τ)) · (xl(tk+τ)−xm(tk+τ)))−(x∗
i −x∗

j ) · (x∗
l −x∗

m)‖ < ε (35)

for all τ ∈ (−N3Nδ,N3Nδ).
Fix now i = 1, recall (30) and consider the derivative

Dẋ(t)W1(x(t)) = min
j∈A1(x(t))

a(‖x1(t) − xj (t)‖)(ẋ1(t) − ẋj (t)) · (x1(t) − xj (t)),

(36)

whenever ẋ(t) is well-defined, i.e. for almost every t > 0. Since the number of
nearest neighbors of x1 in A1(x) is N − 1 at most, there exists at least one index jk1
such that jk1 is the minimizer in the right-hand side of (36) for all τ ∈ I

1,a
k , where

I
1,a
k ⊂ (tk −N3Nδ, tk +N3Nδ) has Lebesgue measure 2N3N−1δ. Since the number

of possible jk1 is finite, eventually passing to a subsequence in k, we assume that
jk1 = j1 is constant. By recalling that Caratheodory solutions satisfy the dynamics
(3) for almost every time, it holds

Dẋ(t)W1(x(t)) = a(‖x1(t) − xj1(t)‖)[a(‖x1(t) − xl(t)‖)(xl(t) − x1(t))

−a(‖xj1(t) − xm(t)‖)(xm(t) − xj1(t))] · (x1(t) − xj1(t)),

for almost every t ∈ I
1,a
k , where l ∈ Nt

1(x(t)) and m ∈ Nt
j1
(x(t)). Again, since

the number of possible neighbors of 1 in Nt
1(x(t)) is N − 1 at most, then there

exists lk1 such that lk1 ∈ Nt
1(x(t)) for all t ∈ I

1,b
k where I

1,b
k ⊂ I

1,a
k has Lebesgue

measure 2N3N−2δ. By passing to a subsequence in k, we can assume l1 constant.
With a similar argument, we can find m1 and I

1,c
k ⊂ I

1,b
k with Lebesgue measure

2N3N−3δ such that m1 ∈ Nt
j1
(x(t)) for all t ∈ I

1,c
k .

We now choose the index 2 and define the corresponding indexes j2, l2,m2 and
sets I 2,c ⊂ I 2,b ⊂ I

2,a
k ⊂ I

1,c
k , each with Lebesgue measure being 1/N of the

previous one. We then move to indexes 3, 4, . . . N , finally reaching Ik := I
N,c
k with

Lebesgue measure 2δ and such that, for each i ∈ V there exists corresponding
ji, li , mi such that for all τ ∈ Ik the following hold:

• the index ji is the minimizer in the right-hand side of (36);
• the index li is the unique element of Nt

i (x(τ ));
• the index mi is the unique element of Nt

ji
(x(τ )).

Fix now any i ∈ V and the corresponding ji, li , mi defined above. We now prove
that it holds

Ai := a(‖x∗
i − x∗

ji
‖)[a(‖x∗

i − x∗
li
‖)(x∗

li
− x∗

i ) · (x∗
i − x∗

ji
) (37)



42 F. Ceragioli et al.

−a(‖x∗
ji

− x∗
mi

‖)(x∗
mi

− x∗
ji
) · (x∗

i − x∗
ji
)] = 0.

By contradiction, first assume that Ai > 0: then, observe that (37) coupled with
(35), implies that there exists k̄ such that Dẋ(τ)Wi(x(τ )) > Ai/2 for every τ ∈ Ik
with k ≥ k̄. Since the set of such τ has non-zero Lebesgue measure, this contradicts
the fact that Wi(x(t)) is a non-increasing function.

Assume now Ai < 0 and use the same reasoning to prove that Dẋ(τ)Wi(x(τ )) <

−|Ai |/2 for every τ ∈ Ik with k ≥ k̄. Since for all times in (tk −N3Nδ, tk +N3Nδ)

we have Wi(x(t)) non-increasing, we can write

Wi(x(tk + N3Nδ)) ≤ Wi(x(tk − N3Nδ)) +
∫

Ik

dτ Dẋ(τ)Wi(x(τ ))

≤ Wi(x(tk − N3Nδ)) − δ|Ai |. (38)

This implies limtk→+∞ Wi(x(tk +N3Nδ)) = −∞. This contradicts the fact that
Wi is bounded from below. We have now proved (37).

We now prove that (37) ensures W(x∗) = 0. For each i ∈ V , recall the definition
of corresponding indexes ji, li , mi given above. For i = 1, condition (37) implies
one of the following cases:

• Case 1A) the index j1 satisfies ‖x∗
1 − x∗

j1
‖ = 0. This in turn implies that the

only j ∈ Nt
1(x

∗) satisfies ‖x∗
1 − x∗

j ‖ ≤ ‖x∗
1 − x∗

j1
‖ = 0. This in turn implies

a(‖x∗
1 − x∗

j ‖) = 0, i.e. W1(x
∗) = 0.

• Case 1B) the index j1 satisfies ‖x∗
i − x∗

j1
‖ �= 0. Observe that, by construction

of j1, l1, it holds ‖xi(t) − xj1(t)‖ = ‖xi(t) − xl1(t)‖, thus by continuity it holds
‖x∗

i − x∗
l1
‖ = ‖x∗

i − x∗
j1

‖ �= 0. Moreover, the definition of j in (36) implies that
the following estimate holds

a(‖x1(tk) − xj1(tk)‖)[a(‖x1(tk) − xl1(tk)‖)(xl1(tk) − x1(tk)) (39)

− a(‖xj1(tk) − xm1(tk)‖)(xm1(tk) − xj1(tk))] · (x1(tk) − xj1(tk)) ≤
a(‖x1(tk) − xl1(tk)‖)[a(‖x1(tk) − xl1(tk)‖)(xl1(tk) − x1(tk))

− a(‖xl1(tk) − xll1
(tk)‖)(xll1 (tk) − xl1(tk))] · (x1(tk) − xl1(tk)) ≤ 0,

where ll1 is the unique index in Nt
l1
(x(tk)). The last inequality can be proved as in

(31). The left-hand side of (39) converges to (37) as tk → +∞, thus it converges
to zero. Then, the middle term converges to zero too, i.e.

− a(‖x∗
1 − x∗

l1
‖)‖x∗

l1
− x∗

1‖2 = a(‖x∗
l1

− x∗
ll1

‖)(x∗
ll1

− x∗
l1
) · (x∗

1 − x∗
l1
). (40)

Here we used the fact that a(‖x∗
1 − x∗

l1
‖) �= 0. Since ‖x∗

1 − x∗
l1
‖ ≥ ‖x∗

l1
− x∗

ll1
‖ by

construction of ll1 and a is non-decreasing, the only possibility for (40) to hold is
to have ‖x∗

l1
−x∗

ll1
‖ = ‖x∗

1−x∗
l1
‖ �= 0 and (x∗

ll1
−x∗

l1
)·(x∗

1−x∗
l1
) = −‖x∗

l1
−x∗

1‖2, i.e.
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x1, xl1 , xll1
being on the same line with xl1 as middle point. This also implies that

1, l1, ll1 are all different indexes. We relabel l1, ll1 as indexes 2, l2, for simplicity
of notation.

We then apply the same idea to index 2 (either coming from relabeling or not), and
we have the following cases:

• Case 2A) The index j2 satisfies ‖x∗
2 − x∗

j2
‖ = 0. Since j2 ∈ A2(x(t)) for all

t ∈ Ik and l2 is the unique element of Nt
2(x(t)), this implies

‖x2(t) − xl2(t)‖ = ‖x2(t) − xj2(t)‖,

thus ‖x∗
2 − x∗

l2
‖ = 0 by continuity. This implies that Case 1B) is not compatible

with Case 2A): indeed, (40) implies a(‖x∗
1 − x∗

l1
‖)‖x∗

l1
− x∗

1‖2 = 0, thus ‖x∗
1 −

x∗
l1
‖ = 0 and, by continuity, it holds ‖x∗

1 − x∗
j1

‖ = 0.
• Case 2B) The index j2 satisfies ‖x∗

2 − x∗
j2

‖ �= 0. By following the reasoning of
Case 1B), we find that 2, l2, ll2 are aligned, with l2 being the middle point. This
implies that, if both Case 1B) and Case 2B) hold, then 1, 2, l2, ll2 are aligned,
each with the same distance with respect to the previous one. Like in Case 1B),
we also have that the four indexes are all distinct. This also allows to relabel l2, ll2
as 3, l3, for simplicity of notation.

We now apply the same reasoning to all indexes i = 3, . . . , N either after
relabeling (due to Case iB) or not. By incompatibility between Case iB and Case
(i + 1)A, we have the following structure: we first have i cases that are Cases
1A-2A-. . . -iA, then N − i cases that are Cases (i + 1)B-. . . -NB. We prove that
i = N , by contradiction. Observe that Cases (i+1)B-. . . -NB force us to have agents
i + 1, . . . , N, lN aligned on the same line, each with the same distance with respect
to the previous one. Since the number of agents is N , the agent lN is one among
1, . . . , N . By the alignment condition, it cannot be any of the agents i + 1, . . . , N ,
hence Case lNA holds. By incompatibility of conditions described above, Case NB
cannot hold. This raises a contradiction. As a consequence, for each i ∈ V the Case
iA is satisfied. This means that for each i ∈ V there exists j �= i such that x∗

i = x∗
j .

This also implies Wi(x
∗) = 0. In particular, x∗ satisfies the second statement of this

proposition.
We are now left to prove that the ω-limit is reduced to a single point, i.e. that

x∗ given above is x∞ in the first statement of this proposition. Define the following
equivalence relation: i ∼ j if x∗

i = x∗
j . Observe that each class of equivalence [i]∼

is composed of at least two elements. We have two possibilities:

• There exists a single class of equivalence [i]∼. Then, for each ε > 0 there exists
tk such that ‖xi(tk) − x∗

i ‖ = ‖xi(tk) − x∗
1‖ < ε. Since this holds for all indexes,

then the support of the solution x(tk) is contained in B(x∗
1 , ε). Since the support

is non-increasing, due to Proposition 6, then the solution x(t) is contained in
B(x∗

1 , ε) for all t ≥ tk . Since this condition holds for all ε > 0, then xi(t) →
x∗

1 = x∗
i .
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• There exist at least two classes of equivalence [i]∼ �= [j ]∼. Define the minimal
distance between clusters as 5λ := mini �∼j ‖x∗

i − x∗
j ‖ that satisfies λ > 0. By

convergence of xi(tk) to x∗
i , there exists k̄ sufficiently large to have ‖xi(tk̄) −

x∗
i ‖ < λ for all i ∈ V . As a consequence, the following cluster separation
condition holds:

If i ∼ j, then it holds ‖xi(tk̄) − xj (tk̄)‖ < 2λ.
If i �∼ j, then it holds ‖xi(tk̄) − xj (tk̄)‖ > 3λ.

It is now easy to prove that, for all t ≥ tk̄ , the same cluster separation condition
holds too, since interactions between agents of different clusters do not occur: the
proof is similar to Proposition 6 and is omitted. As a consequence, each of the
cluster acts as an independent system starting from tk̄ . In particular, we can apply
Proposition 6 to each cluster independently: similarly to the previous case, for
each ε > 0 there exists k ≥ k̄ such that for each class of equivalence [i]∼ the
support of {xj (t) s.t. j ∈ [i]∼} is contained in B(x∗

i , ε) for all t ≥ tk . By letting
ε → 0, we have xj (t) → x∗

i .

In both cases, we have proved that the ω-limit of x(t) is reduced to x∗. Thus, by
choosing x∞ = x∗ we have that the statement is proved. ��

5 Future Directions

In this paper we explored various concepts of solutions for discontinuous differential
equations, motivated by social dynamics models. In particular, we focused on
the so-called bounded confidence models, where each agent is interacting either
with neighbors within a fixed distance (metric case) or with the κ closest ones
(topological case). As per the concepts of solutions we focused on Caratheodory
and Krasovsky, after proving that the set of Filippov solutions coincides with that of
Krasovsky solutions for the considered models.

Existence of solutions and uniqueness for almost every initial datum are proved
in Krasovsky and Caratheodory sense for both models. We also explored properties
of solutions such as preservation of the average, contractivity of support, and
convergence to cluster points. Contractivity of the support always holds true, the
other properties hold for the metric case (and both concepts of solutions), while
they fail for the topological case with the exception of convergence to cluster points
that holds for Caratheodory solutions if κ = 1.

Future investigations may include:

• Exploring existence, uniqueness, and properties of trajectories for other concepts
of solutions, such as limit of Euler or CLSS, stratified solutions, and others [38];

• Studying the implications of our results to approximated solutions produced by
numerical schemes;
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• Considering the topological-metric case, where each agent interacts with the
closest κ neighbors if they are within a fixed distance;

• Extending the scope of our analysis to include dynamical models with other types
of discontinuities, as those generated by quantization [17] or hybrid setting [28].
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Crowd Behaviour Understanding Using
Computer Vision and Statistical
Mechanics Principles

Zoheir Sabeur and Banafshe Arbab-Zavar

Abstract Crowd behaviour understanding in computer science is a research disci-
pline which has grown rapidly in recent years. Specifically, we are currently able
to generate large and high-resolution observation data through crowd sensing in
varieties of spatial environments. This has also given us the advantage to adopt
computer vision methods for detecting human behaviour. In this study, we adopted
statistical mechanics principles with analogies of entropy and kinetic energy in
classical molecular gases to derive features which describe crowd motions. These
are implicitly measured, as basis for understanding behaviour, using a holistic
three-dimensional representation, of crowd features including structure, energy and
translation. As a result, we measured those features using computer vision in the
view of machine understanding crowd behaviour. Usual behaviour is established
from our expected crowd motions in context of the specific recipient spaces of
our experiments. The behaviour which does not fall within the expected usual
behaviour measurement is considered as an unusual behaviour. This research work
was initiated in 2013 under the eVACUATE project, while it is currently ongoing
under the S4AllCities project since 2020.

1 Introduction

The most recent development in understanding crowd behaviour using machine
intelligence over the last two decades has been boosted by the affordability and
availability of smart sensing for observing humans in spatial environments. In
particular, the deployment of smart CCTV cameras for monitoring the safety and
security of citizens in public spaces has become the regulated norm of security
modus operandi in the majority of modern cities around the world. But in order to
reach scalability in the surveillance of large crowds’ critical safety in public spaces,
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one will require the support of computer machine intelligence for focusing only on
those events where specifically detected behaviour requires attention from security
practitioners and first responders. It is in this perspective that we specialised over the
years, and since the launch of the international eVACUATE research project [1], on
the automated detection of individuals or groups of humans and unusual behaviour
in public spaces using artificial intelligence (AI). Specifically, we characterised
crowd as a dynamic system whose thermodynamic-related parameters can be
directly or indirectly measured using sensory observations including vision-based
features. These are then used for detecting and understanding human behaviour
while adapting statistical mechanics principles which relate to the state of dynamic
order or disorder of the crowd system at multiple spatial scales. This was the
foundation of our research work over the years, which is ongoing, regarding human
behaviour understanding using AI.

1.1 Definition of Crowd

The definition of crowd, for understanding crowd behaviour, requires deep insights
into the important selected features representing crowds. These should be viewed
in context of a complex dynamic system. A crowd ‘system’ can be considered
as a collection of loosely coordinated individuals who may share a common and
temporarily bound interest. This covers spectators and people moving.

From a practical sense, there are some nuances to the simple definition presented
above. Figure 1 shows two images of a pedestrian crossing at two different times.
Initially there are two distinct crowds which each desire to cross to the other side of
the road. This is shown by the two large red ellipses in Fig. 1a. After the situation
has evolved, there are a number of different possibilities as shown in the red ellipses
in Fig. 3b. These two figures show that the notion of crowd refers to a dynamically
changing system which may potentially undergo some phase transitions, in this case
crowd splitting or merging through time. The intention of each individual in the
crowd is unpredictable instantaneously, but it could become understood, therefore
possibly predictable over the time, as it is shown in Fig. 1.

1.1.1 Crowd Multiple Scales

There is also the notion of scales which needs to be considered when one tries to
understand crowd behaviour. This is indeed needed to study dynamically complex
systems. Namely, and for the case of crowd systems, the observed collective crowd
behaviour is related to the inner dynamics of each behaviour of individuals within
the crowd. It also includes the entailed learning processes between individuals and
their abilities to share a collective intelligent crowd behaviour.
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Fig. 1 Pedestrian crossing showing dynamic evolution of crowds at different times (a) and (b)

Fig. 2 Microscale view of crowd with single individuals

Crowd modelling challenges and the interpretation of empirical observation data
go hand in hand with the multi-scaling perspectives. In fact, the methods used for
understanding or modelling crowd behaviour employ multiple-scale perspectives,
in order to generate suitable mathematical structure describing crowd dynamics at
each individual spatial scale. The specific scales at which the crowd can be defined
are as follows:

Microscale Crowd structure and behaviour is identified by analysing each compos-
ite individual behaviour in the crowd. The state of each of individual behaviour
is computed using features such as position in space and velocity. These are
understood as time-dependent variables (see Fig. 2 for illustration).

Mesoscale Crowd structure and behaviour is understood through the dynamics
of distinct patterns representing clusters of individuals who may share similar
behaviour. Namely, this is represented by spatial cluster or group positions, col-
lective velocities and kinetic energies. In this case the crowd system is represented
statistically through a distribution function over the mesoscale-based states. This is
illustrated in Fig. 3.

Macroscale Crowd structure and behaviour is assimilated as a continuum (or blob),
where its dynamic state is described by average quantities such as density, central
position, velocity and kinetic energy. These features are time- and space-dependent
variables. They are statistical averages of the microscale states of individuals. This
is illustrated with two distinct crowds as shown in Fig. 4.
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Fig. 3 Mesoscale view of a crowd with a group of individuals sharing behaviour

Fig. 4 Macroscale view of a crowd with two distinct crowds (blobs)

1.1.2 Crowd Behaviour Considerations

Crowd behaviour detection requires the measurement and understanding of the
dynamic motion or mechanics of the crowd at multiple scales. This may be highly
dependent on the unfolding of contextual events and the nature of the recipient
spatial environment in which crowd evolves with time. Using a pedestrian crossing
as an example (see Fig. 4), the expected behaviour of the crowd is that they intend
to cross safely to the other side of the road. In such context of spatial environment,
human behaviour may be considered unusual if the crowd at any considered macro-,
meso- or microscale deviates from what is expected. Thus, with this example,
unusual behaviour could be the whole crowd trying to cross with the presence
of cars. Equally, groups within the crowd may want to do such thing or indeed a
single individual. But note that the so-called unusual behaviour may sometimes not
be ‘compromising to safety’, but it is just unexpected to occur given the context
of rules concerning pedestrian crossings. In much of the literature, unusualness is
also defined as a statistical deviation from what is happening overall (the so-called
‘usual’ behaviour).

Below is a set of considered definitions of pedestrian behaviour with typically
observed features for measurements and understanding:

• Pedestrians taking detours or moving in a different walking direction to the main
crowd, with the intention of taking the fastest route, than that of the crowd, in



Crowd Behaviour Understanding Using Computer Vision and Statistical. . . 53

order to reach their specific desired destination. This is also not the shortest
route spatially.

• Pedestrians in usual circumstances keep to individual optimal speeds, the value
of which is normally distributed around a mean of 1.34 m/s.

• Pedestrians, when they can, usually keep a certain distance from one another, as
well as from pavements, walls and other obstacles. This distance gets smaller,
with increasing pedestrians speed and/or density.

• Pedestrians’ speeds can considerably increase in context of a perceived situation
which may lead to compromising their safety and security. Their individual
motions will appear random to almost unpredictable.

• At sufficiently high crowd densities, the motion of pedestrians is observed to be
similar to that of fluid flows. In this case, concepts and associated features of
fluid flow turbulent diffusion and advection, i.e. dispersion, can be adopted.

• Crowd behaviour primarily including motions is not due to immediate neigh-
bours’ interactions but often distant ones too. This is often caused by so-called
behaviour propagation in the crowd.

The above-mentioned crowd behaviours are viewed under the framework of
a complex dynamic system, while simulation models use specific features to
reproduce them realistically. In other words, the following capabilities of human
behaviour in context of crowd systems should be reached while they are embedded
in performing numerical models:

• Ability to express a strategy: Humans are capable of developing specific
strategies related to their organisational ability depending on their own state and
on that of the entities in their immediate vicinity. These can be expressed without
the application of any principle imposed by the outer environment.

• Heterogeneity: Crowds, irrespective of their types, can be assumed to be hetero-
geneously distributed. This includes, in addition to different walking capabilities,
the possible presence of leaders and the individual level of experience or prior
knowledge.

• Interactions: These can involve individuals within the crowd connected to
their immediate neighbours but also distant ones. In fact, crowd systems can
be assumed to communicate at various spatial scales and may possibly choose
different interaction paths, depending on the circumstances and spatial boundary
conditions in which they could be.

Recall that there are conditions of natural groupings or clustering in crowds.
This was illustrated in Fig. 3, when we introduced crowd mesoscale behaviour
earlier. In this case, one also introduced the concepts of ‘seed’ and seed behaviour
understanding. The seed may be considered at the leading individual in a grouping
or cluster at mesoscale. The seed’s behaviour is basically the closest to the group
aggregate. Thus, the seed can be considered to influence the rest of the group and
beyond. It is understood that a seed may be the originator or the source of behaviour
which not only has the potential to lead a cluster and influence its motion, therefore
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behaviour, but also the triggering mechanism for the propagation of such behaviour
across the crowd system in the macroscale.

2 Crowd Behaviour Detection and Modelling

2.1 From Motions to Behaviour Understanding

As was discussed earlier, crowds can be viewed as complex systems, where their
behaviour is determined by the inner dynamics of the system, including those
respective to the macro-, meso- and microscales. To infer a full description of
the system’s behaviour from these dynamics remains a challenging task. It is also
worth noting that such description of system dynamics is often not fully achieved,
due to limited sensor observations for measurements and/or the constraints due to
regulations for openly experimenting on the spatial environment with crowds of
interest. Further, the full analysis of different scales and various types of dynamics
within the crowd system will require the use of different mathematical models. In an
attempt to handle the complexities and ambiguities of the realm of crowd behaviour
detection, research efforts which deal with the problem of crowd behaviour often
settle for answering specific questions about crowd behaviour instead of offering
a full description of crowd behaviour as a complete theory. Thus, some specific
questions on crowd behaviour are considered in this chapter. These are listed
below:

• Is the crowd behaving in an unusual manner?
• Is the crowd showing signs of specific behaviours (for example, panic)?
• Is the crowd changing behaviour due to the actions of an individual or group of

individuals?
• Is this change in behaviour propagating in the crowd?

2.2 Measurement of Crowd

The question of ‘how to measure a crowd’ can have many different answers. The
answer may depend on the type of information required and the level of granularity
of interest which needs to be adopted. Here, the inner workings and state of a
whole crowd is investigated. As a result, a set of features are defined for the crowd.
These features are chosen with the aim of characterising the state and type of
crowds in terms of human behaviour. Nevertheless, we will assume that the crowd
is homogeneous in type. In this, while the micro-level motions within the crowd
are observed and measured, the defined properties and features describe the overall
crowd as one type of crowd. An example of such homogeneous crowd type can be
a competitive marathon, where the crowd is composed of single individuals who all
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share the same goal. The homogeneity assumption will also hold for cases such as
a shopping mall wherein there may be small groups of people as well as individuals
while one assumes that they have the same goal of shopping in such environment.
The method proposed here is motivated by physical analogies of thermodynamics
and statistical mechanics, where the macroscopic properties of matter are derived
from microscopic properties and states of the underlying molecular systems.

2.2.1 Crowd Analogies to Physical Systems

Various physical analogies and modelling approaches have been used in crowd and
traffic modelling. A physical model requires a hypothetical structure of controlled
parameters which need to be fine-tuned for simulating crowd dynamics that is in
accord with experimental observations. In this section, some of the more popular
modelling analogies in this domain are reviewed and evaluated. These include (a)
cellular automata, (b) social force model and (c) molecular fluid dynamics.

(a) Cellular automata (CA) has been used to simulate crowd dynamics in situations
such as evacuation [2–5]. In this, CAs evaluate the feasibility of different
evacuation scenarios. It has also been shown that CA can simulate certain effects
such as line formation in the crowd [6]. However, CA does not aim to capture all
the microscopic dynamics but only that which is necessary to derive a specific
macro effect.

(b) Social force model is another popular method for crowd simulation [7, 8]. It has
also been used to detect points with high social friction within the crowd [3, 9].
In particular, Helbing et al. noted [9]:

The motion of pedestrians can be described as if they would be subject to ‘social
forces’. These ‘forces’ are not directly exerted by the pedestrians’ personal environ-
ment, but are a measure for the internal motivations of the individuals to perform
certain actions (movements).

In essence, the social force model is based on a simple model wherein the
individuals move according to their goals and environmental constraints. It is
assumed that each individual in the crowd has a desired direction and velocity
while seeking to keep a social distance from other members of the crowd as well
as avoiding hitting walls. To calculate the social force model, an estimate of
the individual goals is required. Other methods have been proposed to estimate
the individual desired directions and velocities in a crowd [3, 9]. A bag-of-
words method is used to select features from within the social force fields
in consecutive frames. These bag-of-words features are subjected to further
learning of unusualness detection in crowds using latent Dirichlet allocation
(LDA) [9].

(c) Molecular fluid dynamics has also been investigated for modelling pedestrian
motions. Henderson was the first to propose a gas-kinetic model for pedestrian
flows [10]. Using this basis of a Boltzmann-like gas-kinetic model, Helbing [11,
12] developed a special theory for pedestrians, distinguishing between different
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groups within the crowd with different types of motions and goals. Moore et
al. [13] argue against the gas-kinetic-based modelling of crowd for high-density
crowds and note that for a high-density crowd, the behaviour appears to be
liquid-like with interaction forces dominating the motion of pedestrians.

We propose to use analogies from thermodynamics and statistical mechanics
for describing the state of crowds. While thermodynamics is concerned with heat
and temperature and their relationship to energy and work at molecular matter
levels, our major interest here is to derive macroscopic properties of crowds
from statistical mechanics, in terms of the microscopic constituents of crowds.
It is this conceptual link between the microscopic constituents of matter and its
macroscopic properties that we needed to borrow while adapting thermodynamics
and statistical mechanics principles to derive macroscopic features of crowds from
their microscopic constituents. These are individuals within the crowd.

Following the above, we set up holistic features in a way that would enable us to
describe and differentiate between different kinds of crowds and also different states
of a crowd. As will be discussed in the next section, three parameters are postulated.
These are structure, energy and translation. In this case, any crowd system type
can be projected onto a point within the structure-energy-translation dimensional
space. The aim is to achieve a good separation between different types of crowd in
this three-dimensional space. These parameters are then used in a contextual crowd
behavioural model which models the normative behaviour of crowds within well-
defined situations. If there are discrepancies between the expected and the perceived
behaviours, the behaviour is deemed to be unusual.

2.2.2 Crowd Representation with Its Holistic Features

We assume that a force keeps the members of the crowd together. The strength of
connections between the members of the crowd will be referred to as structure.
Irrespective of the strength of connections, the crowd may be in an excited state,
high energy’ or a calm state, low energy. This feature of the crowd simply refers
to energy. We also consider that the crowd moves in space, while we refer to
as translation. Figure 5 shows a representation of the structure-energy-translation
crowd space.

Table 1 also illustrates a set of hypothetical examples of various types of crowds,
while Fig. 5 shows where these reside in the structure-energy-translation crowd
space.

Regarding the values of the structure parameter, it is worthy to note that a high
structure score may denote one of the two underlying reasons: (i) a high social
interaction between the members of the crowd (the members of the crowd maintain
a pattern within a crowd), or (ii) a high value for structure may also be the result
of an enforced structure by the environment (barriers, passages and doorways are
examples of elements which can impose environmental structure). The structure
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Fig. 5 Crowd space with
hypothetical examples

Table 1 Hypothetical examples of crowd states

A number of individuals walking slowly in different directions

Very unmotivated crowd at a less excited football game

Shopping centre at closing time

A group of panicking people locked in a room

People on an escalator

Crowd at a football match celebrating a winning goal

People escaping towards an exit

A bull run (when the bull arrives)

parameter only evaluates the level of structure in the crowd and does not differentiate
between the pedestrian-imposed environment structures.

As shown in Fig. 5, a crowd may reside in any location in the structure-energy-
translation crowd space. However, for any given situation, there would be an
expectation of where the crowd should be, while a divergence from this expected, or
desired, position may be a cause for alarm. Figure 6 shows sub-spaces of ‘usual’, or
expected, crowd behaviour under various contextual situations and crowd types. By
mapping the crowd into the structure-energy-translation crowd space and learning
the limits of ‘usual’ behaviour, a crowd with unusual behaviour can be defined as
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(a) Spectators at a stadium while a football match is in progress. State 1 shows the low energy state when the crowd is 
motionless, while state 2 represents a high energy state. For example when the crowd is celebrating a winning goal.

(b) Spectators at a stadium (before and after a football match). Here the crowd has a non-zero translation.

(c) Walking crowd on an escalator with high Translation and Structure, but low Energy.

(d) Walking crowd on stairs with lower Structure, as each individual is moving with respective own speed, leading to 
higher Eneries, when compared to (c).

(e) Crowd at an airport main entrance hall. Low Structure is observed, with fluctuating values for Translation and low 
to medium Energy levels.

Fig. 6 Various ‘usual’ behaviours in the structure-energy-translation crowd space. (a) Spectators
at a stadium while a football match is in progress. State 1 shows the low energy state when the
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a crowd which does not fall within the limits of perceived ‘normality’ or strictly
speaking ‘usualness’.

2.2.3 Approach

As mentioned before, we draw analogies from thermodynamics and statistical
mechanics principles. The concept of crowd energy refers to its internal energy,
while translation relates to crowd flow velocities. These velocities may be derived
at various scales. Namely, at micro-, meso- or macroscales. As for the concept of
crowd structure, it relates to the entropy of the states of a molecular system.

2.2.4 Translation Through Flow

As noted earlier, crowd flow can be derived at different scales. The most interesting
of which is the one at mesoscale, as it concerns the flow of sub-groups within a
crowd. Here, the term flow is used interchangeably with the term flow velocity. In
fluid dynamics, flow velocity, v, is defined as

v = ṁ

ρ.A
(1)

where ṁ denotes the fluid mass flow, ρ is its density and A is the flow cross-
sectional area. With consideration of a sub-group within the crowd, its density ρ

can be computed using the entire volume occupied by the sub-group. The number
of individuals crossing cross-sectional planes of the crowd flow can be counted to
find the mass flow ṁ.

In some circumstances a sub-group within the crowd can be represented by a
‘Gaussian blob’, of which its speed and direction can be denoted by the mean speed
and direction of its constituents. This will be referred to as translation. Hence,
translation is known as the measurement of how an entire sub-group (or whole
group) travels in space, while flow measures the rate at which a mass of fluid crosses
a plane.

�
Fig. 6 (continued) crowd is motionless, while state 2 represents a high energy state. For example,
when the crowd is celebrating a winning goal. (b) Spectators at a stadium (before and after a
football match). Here the crowd has a non-zero translation. (c) Walking crowd on an escalator with
high translation and structure but low energy. (d) Walking crowd on stairs with lower structure, as
each individual is moving with respective own speed, leading to higher energies, when compared
to (c). (e) Crowd at an airport main entrance hall. Low structure is observed, with fluctuating values
for translation and low to medium energy levels
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2.2.5 Internal Kinetic Energy

The internal energy U of a crowd as a thermodynamic system can be used as a
measure of how excited a crowd can be. It is defined as follows:

U = Ukinetic + Upotential (2)

Ukinetic and Upotential represent the kinetic and potential energies, respectively.
The kinetic energy Ukinetic is defined as follows:

Ukinetic = 1

2
mv2 (3)

where m and v represent the mass and internal flow velocity of a given sub-group
within the crowd system.

As for the potential energy Upotential, its calculation is substantially complex to
derive, particularly in context of crowd system thermodynamics. Its specifically
relates to molecular systems which undergo thermodynamic phase transitions,
where it is paramount to compute their potential energy.

However, some important pedestrian modelling approaches took inspiration from
molecular systems theories with thermodynamic phase transitions [11, 12]. These
postulate crowd potential energy as the ‘common sense’ of tasks pedestrians would
take for reaching their expected destination. Nevertheless, such approach is not yet
practical for us to implement in our experiments on crowd behaviour understanding.
Therefore, we have not considered it in this study.

In the next section, we will particularly discuss the notion of entropy as an
analogy to crowd structure. The computation of crowd structure while using
analogous methods for calculating entropy is discussed with results presented.

2.2.6 Structure Through Entropy

Although initially defined within thermodynamics, the concept of entropy was
generalised using Maxwell-Boltzmann classical statistical mechanics theory [14].
For example, entropy, S, is simply a measure of disorder in a molecular system:

S = −kB
∑

i
pi lnpi (4)

where for a classic molecular system with a discrete set of microstates, pi is the
probability of occurrence for microstate i. kB is the Boltzmann constant.

The same concept of entropy was also translated in 1948, under Shannon’s
information theory in computer science and informatics [15]. Entropy, mostly
denoted by H, is in this case a measure of uncertainties in random variables in data
communication systems:
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H = −
∑

i
pi logbpi (5)

Entropy is defined at a macroscopic level, where a given macroscopic state can
have varying microscopic statistical realisations. The initial definition of entropy
in statistical mechanics, S = kB ln W, connects entropy directly to the number of
microstates, W, which corresponds to the macroscopic state of the given system.

Considering the states of matter, in classical terms which are solid, liquid or gas,
the levels of entropy for these states can be intuitively understood. In a solid state,
molecules oscillate in a vicinity of a fixed location, and the entropy is low. In a
liquid state, molecules move freely but keep distances from one another, while the
entropy is intermediate in values. However, in a gas state, molecules move randomly
anywhere, while entropy increases to a higher level. Entropy, here, increases across
these three matter states, with growing uncertainties on the location the constituting
molecules of matter.

As noted above, entropy is really a measure of disorder, while in this case
structure can be canonically described as a measure of order. For a normalised
entropy in the range of [0, 1], structure and entropy are complementary and add
up to unity. One of the challenges in evaluating the value of structure using the
concept of entropy is that for each crowd example, only a sub-set of all possible
microstates represents that macro-state is observed. Therefore, it is not possible to
count the number of microstates or calculate their probabilities directly. An extra
step is required to infer a model or a description for all the possible microstates
using the observed microstates. Figure 7 shows a diagram of the required steps for
calculating the entropy of crowd using the observed set of microstates.

Fig. 7 Evaluating entropy through the observed microstates of a crowd
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Table 2 Micro-space modelling parameters

Notation Definition

Nf Number of frames in the time window which is analysed
Np Average number of individuals in Nf frames
Nl Number of spatial bins
li ith spatial bin
Y A discrete random variable defined on discrete sample space Sd
Sd A numerical and discrete sample space of densities at a location
(fY )i Probability mass function for X at bin li

Fig. 8 Crowd density map

2.2.7 Calculating Entropy

Before discussing the model, it is useful to define our notations used in the
calculation of entropy. These notations are listed in Table 2. Also, Fig. 8 illustrates
the values for crowd density at the centre of each spatial bin.

2.2.8 Approach 1: Preserving the Density Pattern

The joint entropy of a population of Np individuals scattered in Nl locations with
probability mass function (fY )i is described as follows:

H
(
X1, · · · , XNp

)
= −

∑
x1∈LX

· · ·
∑

xNp∈LX
P

(
x1, · · · , xNp

)
log

[
P

(
x1, . . . , xNp

)]
(6)
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where Xk is a triple
(
xk,LX,PXk

)
and the outcome x is the value of a random

variable, which takes on one of a set of possible values, LX = {
l1, l2, . . . , lNl

}
,

having probabilities PXk
= {

pk,1, pk,2, . . . , pk,Nl

}
, with P(xk = li) = pk, i.

Here PXk
and the joint probabilities, P

(
x1, · · · , xNp

)
, are unknown. The joint

probabilities can be calculated using the probability mass functions (fY )i. However,
the computation cost is in the order of O

(
Nl

Np
)
. More efficient algorithms can

reduce this computation cost. However, we argue against the validity of this
approach, since it is prone to over-fitting the model to the sample set of observed
microstates. Relaxing some of the conditions in this model may be favourable.

2.2.9 Approach 2: Preserving the Density Pattern with Independent
Pedestrians

One of the conditions which can be relaxed in the first approach is the assumption
of dependence between the positions of pedestrians. In the example below, it will
be shown that although there is a reason to believe that these positions are in fact
dependent, sufficient information is not available to understand their dependencies
accurately and in an unbiased manner.

In support of the dependency argument, let us consider that people in a crowd
system tend to keep distances from each other, known as personal space. Also
depending on the relationships between the pedestrians, they may tend to further
avoid other pedestrians or groupings. From a different point of view, consider the
following example: A number of clusters of pedestrians are observed in different
locations. There may be different causes for this effect. Hypothesis A: There might
be some relationship between members of the crowd (the second person goes to the
place where the first person randomly selected). In this, even if the initial selection
for the person 1 was fully random with equal chances, due to the high correlation
between the first and second persons, what is observed is an environment where a
certain location seems very popular. However, equally probable is that the location
itself is indeed popular and people cluster there for that reason (this will be called
Hypothesis B). The point is that sufficient information is not given in favour of either
Hypothesis A or B in the above example.

We propose then that when analysing crowd formation through a few correlated
frames, the simpler model which can exhibit similar outcomes is more viable.
In this model, the locations of pedestrians are considered to be independent. We
hypothesise that a pattern is formed in the crowd if each individual is bounded by the
same pattern. Also, when taking this approach, the calculation of entropy simplifies
significantly.

Let ni, j be the number of times that individual j has been observed in bin li in Nf

frames. The probability of selecting this bin, li, by individual j is

P
(
xj = li

) = ni,j

Nf

(7)
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Given that the location of individuals is considered as independent and that there
is no differentiation between individuals, the probability of any individual selecting
bin li is the same as any other. Thus, an estimate of the probability of selecting bin
li, P(x = li) , can be given by

P (x = li ) =
∑Np

k=1 P (xk = li )

Np

=
∑Np

k=1
ni,k
Nf

Np

=
∑Np

k=1 ni,k

NfNp

= ni

NfNp

(8)

where ni is the sum of all density counts at bin li in Nf frames. Since the locations
of individuals are independent of one another, the joint entropy of the crowd,
H

(
X1, · · · , XNp

)
, simplifies to the following:

H
(
X1, · · · , XNp

) =
∑Np

k=1
H (Xk) (9)

Note that the locations of all the individuals are based on the same location
probabilities, P(x = li).

Thus:

H (X1) = H (X2) = · · · = H
(
XNp

)
, (10)

H
(
X1, . . . , XNp

) = NpH(X) (11)

where X is a triple (x,LX,PX), and the outcome x is the value of a random variable,
which takes on one of a set of possible values, LX = {

l1, l2, . . . , lNl

}
, having

probabilities PX = {
p1, p2, . . . , pNl

}
, with P(x = li) = pi as was defined in Eq.

(5). The crowd entropy in Eq. (8) can be computed in linear time.

2.2.10 Pre-processing

Three pre-processing stages are required before the entropy can be computed. These
are specified as follows:

2.2.11 Real-World Pedestrian Locations

The locations of pedestrians in an image have been subjected to projective trans-
form. The real-world positions can be retrieved using the camera calibration matrix
and head-height plane homography transforms.
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2.2.12 Internal Position Estimation

The internal position of each pedestrian within the crowd, xi, is also required. If the
crowd is stationary, then the observed position, xo, is equal to the internal position
(xi = xo iff vf = 0). However if the crowd is moving with a flow velocity, vf , the
change in internal position in a time step dt can be calculated as

dxi = dxo − vf dt (12)

where vf = ṁ
ρ.A

, ṁ is the estimated mass flow, ρ is the mass density and A is the
area. For a calibrated footage and given the density maps, A and ρ can be calculated.
Given the tracks of pedestrians, the vertical and horizontal mass flows are estimated
at two vertical and horizontal surface planes through the mid-point of the crowd’s
spatial space.

2.2.13 Internal Position Density Map

Once the internal positions of individuals are known, an internal density map can be
created. Note that the size of the density map bins, wbin, is a significant parameter
in the calculation of entropy. In this, a too large bin will mask the very information
that entropy is aiming to extract, while a too small bin will be prone to noise.

In addition to the above, entropy normalisation under the concept of specific
entropy needs to be computed as follows:

2.2.14 Normalising Entropy

As well as the level of disorder in the crowd, the value of the crowd entropy depends
on:

1. The number of individuals in the crowd
2. The extent of the crowd spatial area

2.2.15 Specific Entropy

Specific entropy is the entropy per unit of mass. Let each individual to have a unit of
mass; the specific entropy, Hk, will be the entropy of one individual in this crowd:

Hk = H(X) (13)

where X is a triple (x,LX,PX), as in Eq. 8.
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2.2.16 Specific Entropy per Unit of Area

Entropy is maximised if PX is uniform:

H(X) ≤ log |LX| with equality iff ∀i ∈ {1, · · · , Nl} pi = 1
|LX | = 1

Nl

It can be seen that the maximum value of entropy increases with the increase
in the number of spatial bins, Nl. We borrow a concept from information theory
called redundancy. Redundancy is a measure for the amount of wasted space when
coding and transmitting data. The redundancy of X, R(X), on alphabet AXmeasures
the fractional difference between H(X) and its maximum possible value:

R(X) = 1 − H(X)

log | AX | (14)

Complementary to the concept of redundancy is efficiency, where the redundancy
and efficiency of a code add up to one. Our notion of normalised specific entropy,
hk, is analogous to efficiency:

hk = Hk

logNl

(15)

As noted, entropy is a measure of disorder, while structure can be described as
a measure of order. For a normalised entropy in the range of [0, 1], structure and
entropy are complementary and add up to one. Let sk be the normalised structure:

sk = 1 − hk (16)

3 Experimental Results

Three crowd examples have been used in the experiments [16]. Experiment A shows
a crowd of pedestrians climbing down a staircase. This motion of crowd is clearly
unidirectional. This example depicts an indoor scene with artificial lighting, and the
crowd is viewed from an oblique-frontal view. Similar crowds may be observed at
a metro station or a stadium. Figure 9 shows one frame example of this crowd.
This figure also shows three calibration planes. In this, the orange plane is the
reference plane drawn manually. The blue plane and the yellow plane are the
ground-level and the head-level planes, respectively, projected back to the image
plane after calibration. The red circles show the position of the pedestrians’ heads
on the head-level plane. For this experiment, people’s heads are labelled manually.
Figure 10 shows the second crowd (Experiment B) which focuses on pedestrians
on an escalator which is on the left-hand side of the same video footage. Here the
pedestrians are standing still while the escalator carries them upwards. Finally, Fig.
11 (Experiment C) shows a larger crowd of people in an open indoor space with
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Fig. 9 Crowd on stairs (Experiment A)

Fig. 10 Crowd on an escalator (Experiment B)

many pedestrians moving in different directions. This type of crowds may be found
within airports or shopping malls and so forth. Following from the examples in
Fig. 6, it is expected that (i) the crowd in Experiment B (Fig. 10) has the largest
structure, since people are standing still; (ii) the crowd in Experiment A (Fig. 9) has
a smaller structure than the crowd in Experiment B, but still larger than the crowd
in Experiment C (Fig.11); and (iii) the smallest structure is envisaged for crowd in
Experiment C.

Figure 12 shows the overall structure results from experiments A, B and C. The
experiments were carried out for varying time window sizes (wtw) and spatial bin
widths (wbin). Figure 12a shows the results, where a time window size of 5 s is used.
In this, the values of structure are as expected:

sk
(
XexpB

)
> sk

(
XexpA

)
> sk

(
XexpC

)
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Fig. 11 Crowd in an open space (Experiment C)

Figure 12b shows the structure values for the same range of spatial bins, but
the time window size has been reduced to 2 s. One can see that the order of
structure values is still as expected. Nevertheless, while the separation between
the various crowds is mostly achieved, the uncertainty on the value of structure
increased considerably. Figure 12b, c also demonstrates the effects of spatial bin-
size variations. The spatial bins in the range of 0.01 m ≤ wbin ≤ 0.6 m with a time
window size of 2 s are investigated in these two graphs. One notes that the smallest
bin size does not offer a good separation between crowds, while at the largest bin
size of 0.6 m, all crowds show the same structure values. The best separation is
achieved for bin sizes between 0.04 m and 0.1 m. Although as mentioned a time
window of 5 s offers a much better separation, it must be noted that due to observing
a non-stationary crowd with a stationary camera, it is possible that the crowd or the
section of the crowd which is being analysed would move beyond the camera’s
field of view. As a consequence, the results for Experiment B when analysed with a
5-second time window may be considered as less reliable.

4 Ongoing Research and Future Perspectives

In our subsequent works, which we conducted recently, we have also looked into
other possibilities which may provide an estimate for the structure of the crowd and
compare the respective performances of these approaches with our proposed method
over a larger set of crowd conditions. One of the methods which we have examined
is that of Zhou et al. using the concept of ‘crowd collectiveness’ [17, 18]. With it we
have been able to track individuals and groups in crowd-associated confined spaces
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(a) (b)

(c)

Fig. 12 Experiments with normalised specific entropy. (a) Experiments with a 5-second time
windows (wtw = 5s). (b) Experiments with a 2-second time windows (wtw = 2s). (c) Experiments
with larger spatial bins (0.5 m ≤ wbin ≤ 0.6 m)

such as stadium arenas and in context of the event expected activities [19–21]. The
unusualness of groups’ behaviour is detected accordingly to provide an operational
approach to security practitioners to respond in a scalable way. In this experiment,
groups panic at a segment of the stadium arena and run towards the pitch. This is
detected critically in time and produces an alert for security to focus on leading such
type of distressed crowd to safety, as shown in Fig. 13.

We have further investigated on the actual mechanics of behaviour propagation
in a crowd in recent years, particularly on behaviour which originates from a so-
called seed which represents an individual or indeed a group of people behaving
within the crowd. This is indeed of great importance to understand and capture
trends in it so that we could develop a forecasting capability of behaviour. Although
this research work is at its early stages while it is being conducted in the most
recently launched S4AllCities research project [22, 23], it is showing us some
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Fig. 13 Group panic behaviour detection in a stadium arena

encouraging findings. Namely, we are obtaining stable tracking of trajectories of
individuals as well as groups, where we could derive their parametric functions.
These will lead us onto developing data-driven models which will predict trends of
such trajectories in future time frames. These of course will be derived with growing
computed uncertainties downstream in time and space. We are therefore planning to
computationally correcting these trends once new observation measurements are
obtained in time in order to reduce and control such uncertainties, leading to a
much improved learning process for understanding intentional behaviour in the near
future.
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Applications of Crowd Dynamic Models:
Feature Analysis and Process
Optimization

Liang Li, Hong Liu, Yanbin Han, Guijuan Zhang, and Dianjie Lu

Abstract Recently, researchers studying crowd dynamics models have attempted
to build a universal system for informing pedestrian traffic management. To achieve
this goal, it is necessary to improve the research conducted on specific and detailed
problems. In this chapter, we review our research work concerning two problems
related to evacuation management: features analysis and process optimization. By
summarizing previous studies and relevant literature, we will discuss the application
of crowd dynamics models for solving the above-mentioned problems.

1 Introduction

Crowd dynamics models have developed rapidly [1, 3, 4, 35]. Owing to their
advantages, such as easy reproducibility and verifiability, these models have been
widely used in different applications. Applications of crowd dynamics models have
diverse characteristics; they can be used to not only simulate crowd movements
but also form a theoretical basis for other studies [50]. This chapter discusses the
application of crowd dynamics models to evacuation management in detail.

Research on evacuation management has received significant attention and
witnessed many achievements [5]; however, many of these results suffer from
limitations in practical applications, owing to evacuation management’s unique
characteristics. For example, there is little scope for error in managing crowd
evacuation, and few emergencies can be dealt with using the same approach. Thus,
more comprehensive evacuation-management techniques are required. In particular,
focusing on specific aspects has become a requirement for successfully conducting
such research. Herein, we focus on feature analysis and process optimization.

The evacuation process has various features, including individual and group char-
acteristics such as velocity, density, and self-organization phenomena. Given that
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evacuation in different situations is decided by diverse key features, specific-feature
analysis is important for modeling crowd dynamics and evacuation management.
However, feature analysis faces many challenges arising from the complexity of
crowd motion. First, because most features are not independent, the effects of
different characteristics on the target feature must be considered. Second, it is
necessary to ensure that the features’ mathematical expressions are correct. Finally,
efficiency is also a requirement for analysis in evacuation management. Crowd
dynamics models have gradually been reported to have applications in feature
analysis. Owing to limited research on pedestrian behavior, the existing models
usually focus on setting up the mathematical expression for one or a few features.
Therefore, feature analysis can take advantage of mathematical expressions in the
relevant crowd dynamics models, thus improving the analytical efficiency. Herein,
we review our previous work to discuss the application of crowd dynamics models
to feature analysis.

The disordered movement of pedestrians is the primary cause for direct and
indirect dangers, particularly in emergencies such as fires or epidemics [45, 46].
Thus, the major objective of evacuation management is to optimize the crowd
movement process to prevent disordered movement. As evacuation is a complex
process, optimization can be achieved using various approaches; for example,
optimization of the movement or emotional state can each improve the effec-
tiveness of evacuation management. By contrast, different process optimizations
may suffer similar problems. The main optimization problem is how to express
crowd evacuation as an optimizable process. Moreover, combining optimization
approaches such as intelligent algorithms with the understanding of crowd dynamics
is another challenge. To further illustrate the aforementioned problems, we review
some concrete work on process optimization in this chapter.

This review is mainly based on our previous papers [49–52, 87, 88] and is
organized as follows: Sect. 2 presents the research on the analysis and alleviation of
crowd congestion; Sect. 3 introduces different types of process optimizations used
evacuation management; and Sect. 4 presents the conclusions.

2 Congestion Analysis and Alleviation for Managing Crowds
During Evacuations

Congestion is a common phenomenon caused by an increase in the pedestrian
population within a limited space. During emergencies, congestion can not only
reduce the evacuation efficiency but also lead to dangerous situations; hence, many
studies have considered congestion as an important feature of crowd dynamics
[32, 33, 37, 47, 50]. In this chapter, we use our previous study on the analysis and
alleviation of congestion as an example to illustrate research problems in feature
analysis.
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2.1 Congestion Analysis

Let us begin by briefly reviewing studies on congestion analysis. Many approaches
have been developed to improve the effects of congestion analysis, and crowd
density is a commonly studied feature [15, 48, 53]. In methods focusing on crowd
density, congestion is typically used to distinguish between a crowded situation
and a normal one; however, the crowd density is not the only relevant feature in
establishing that one dense crowd is more congested than another [23]. A high level
of crowd density does not always indicate that a situation is dangerous [29].

The fundamental diagram is widely used in the transportation theory; its applica-
bility extends beyond the evaluation of pedestrian and vehicular flows. Nevertheless,
it is commonly accepted that the validity of this diagram is restricted to a uniform
steady flow, making it useless for analyzing crowds with complex interactions [85].

Reference [36] proposed the concept of crowd pressure to identify locations
responsible for crowd turbulence and calculated crowd congestion by multiplying
the crowd pressure by the local crowd density. Although this approach may be suit-
able for evaluating congestion in extremely crowded and dangerous situations, little
is known about how crowd pressure behaves at low-to-medium crowd densities. As
the crowd pressure reflects the variance in the macroscopic velocity, there are doubts
as to whether this approach is appropriate for analyzing congestion in dense crowds
with a low pedestrian velocity.

The congestion-level approach was proposed in [23] to analyze the congestion
and intrinsic risks in crowds. This approach is inspired by the crowd pressure con-
cept and defined by the velocity vector field obtained by analyzing the crowd motion
trajectory to determine a congestion threshold. Compared with other approaches, the
congestion level can better represent the crowd oscillation by varying the velocity
direction and defining the danger region in a crowd.

Reference [29] designed a controlled experiment to analyze pedestrian dynamics,
particularly its kinetic stress in the situations where swarms gather. The competitive-
ness of the pedestrians was considered to be the main cause for congestion, whereas
the kinetic stress was used to characterize pedestrian dynamics. The results reported
in [29] demonstrated that such a stress should be considered in congestion analysis.

In [90], it was shown that PDE-based models may be unable to define the
congestion of dense crowds. A catastrophe model was developed to illustrate the
congestion mechanism, demonstrating that accidents occur during the evacuation
process. This model allows for analyses of crowd congestion without considering
location or time.

Automatic detection of congestion was addressed in [85] by analyzing the
behaviors of individual pedestrians. In particular, this study considered the direction
weight calculated as the angle between two major directions (right and left) to reflect
the lateral oscillation of people’s upper bodies.

To study the press transfer in dense crowds, we presented an approach to
analyzing the congestion of individual pedestrians [50], wherein the influence
of different movement features on congestion is defined as different movement
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constraints. Although this approach can distinguish the congestion between different
pedestrians, it still experiences many limitations.

The aforementioned studies show that research on congestion analysis has
gradually developed with a focus on several key problems. The first problem is
determining what the modeling target for congestion should be. In the density and
fundamental approaches, this target is usually the entire region or crowd; in the
crowd pressure and congestion-level approaches, the target is parts of the crowd;
and in our approach, the target is individual pedestrians. Thus, the modeling target
has gradually been refined from the global to local entities and then to the individual
entity. Given that emergency situations are diversifying, the target of influence of
congestion will need further refinement. For example, because of the requirements
of epidemic prevention, the main feature influencing congestion may become the
social-distancing requirements between pedestrians, as seen in Fig. 1.

The second problem is determining how many features in the crowd’s movement
process can influence congestion. According to the congestion analysis approach, it
is obvious that refinement of the modeling target will increase the relevant features.
At first, only the local density is considered; then, other features such as the flow
velocity of the crowd, the velocity direction, and the oscillation must be added to
the congestion analysis. In our approach, we have further considered the influence
of press transfer; therefore, if we consider the congestion analysis as an equation-
solving process, then the number of features continues to increase.

Here, a derivative problem should also be discussed: how to distinguish or weigh
the influence of different features on congestion? In existing approaches (such as
our method), it is common to confirm the feature that has the most influence; the
remaining features can then be simply parameterized. As a result, there is a lack
of comparison between different features. In our opinion, the weighting of other
characteristics, influence on the target feature will become a major topic for future
research.

The third problem is how to define the influence of other features on congestion.
According to the existing approaches, there are two methods for representing this
influence: direct and indirect. As shown in Fig. 2a, the first directly uses features
to represent the congestion. For example, the final analysis of congestion in the
congestion-level approach follows eq. (l), [23].

Fig. 1 To adhere to the
requirements of epidemic
prevention, the main factor
influencing congestion may
become the overlap between
social-distancing zones
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Fig. 2 Different methods in representing the influence of other features on congestion. (a): the
direct method and (b): the indirect method

Cd = Cl · ρ, (1)

where Cd is the crowd danger (congestion), ρ is the local density, and Cl is a
comprehensive variable.

In the indirect approach, different features are first summarized as results of
crowd movement; then, the congestion is analyzed from the whole movement
system. As shown in Fig. 2b, in our approach, different features are defined as
corresponding constraints influencing the crowd motion, and the congestion is
calculated according to these constraints.

Given that the development of congestion analysis is still in its early stages,
there is no obvious evidence that proves one approach is superior to the other. The
easily applicable direct approach is widely used in the existing congestion analysis;
however, this approach may overestimate the influence of the main features, and its
parameterization depends strongly dependent upon the quality of the experiments.
Compared with the direct approach, the indirect approach is more complex because
the influence of different features on crowd movement must be considered first, for
which it is usually necessary to refer to theories in other fields such as analytical
mechanics. As a result, the indirect approach may be more logical, which complies
with the requirements of systematic construction in crowd dynamics.

The application of constraints for pedestrian movement is the main topic in
our congestion analysis research. Given that crowd movement is an objective
mechanical system, it is reasonable to apply constraints to this system, and this topic
has already been studied by many researchers [9]. Here, we focus on the problem of
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how to effectively confirm the constraints for different features. There are two main
requirements when confirming movement constraints; the first is that the constraints
should be able to accurately represent the target features, for which an adequate
understanding of crowd dynamics is required. The second is that the constraints
should be described in an effective mathematical expression to ensure that the logic
is reasonable.

Herein, we apply the existing crowd dynamics models to confirm the movement
constraints [50]. As these models (which we assume to be built with a sufficiently
high quality) are usually built according to deep research on some features or
phenomena, their mathematical expressions are also convenient for confirming
constraints. The concrete approach is to employ equations that define the target
features, which we call local simplification. For example, according to the Hughes
model, the macroscopic velocity of a pedestrian is calculated as follows:

v(ρ) = C ·
(
ρtrans · ρcrit
ρmax − ρcrit

)1/2

· (ρmax − ρ)1/2

ρ
, (2)

and their microscopic velocity is defined as follows:

vi = fi(ρ) = βi · (A − Bρ), (3)

where C, ρtrans , ρcrit , and ρmax are constants. ρtrans , ρcrit , and ρmax are set
to distinguish the different congestion situations of the crowd; and A and B are
constants. The detailed parameters are found in [38, 39]. The eq.2 and eq.3 describe
the influence of the crowd on pedestrians’ movements, although they still have their
own velocity. Furthermore, these two velocities are defined by density. Therefore,
it is possible to use the aforementioned equations as constraints on the pedestrian
velocity. Although local simplification remains a crude method, we believe that it
shows a reasonable direction for taking advantage of the existing crowd dynamics
models.

The last problem is how to summarize the influences of different features. The
problem is that it is necessary to formulate a reasonable theory to solve constraints;
as the crowd movement exhibits many similar characteristics with particle systems,
Lagrangian mechanics may be used to analyze the constraints of this system. The
aforementioned opinion has already been considered by many researchers [25].
Herein, the constraints are also analyzed according to Lagrangian mechanics, and
the relevant details can be found in [50].

Here, we also focus on a derivative problem: what is the requirement on crowd
dynamics for the Lagrangian mechanics? The application of Lagrangian mechanics
is based on the condition that some features of crowd dynamics are in a critical
state during the movement process. In our approach, the equilibrium state (which is
caused by the coordination movement of pedestrians) is considered to be the critical
feature. The equilibrium state also provides many conveniences for the previous
research work, such as macroscopic movement modeling. However, researchers
have already found that the equilibrium state will disappear with the decrease of
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crowd density [5], suggesting that our approach cannot analyze the congestion of a
crowd with low density. Therefore, confirming the critical features of a low-density
crowd is a challenging and necessary problem for congestion analysis.

2.2 Congestion Alleviation

Given the negative influence of congestion, it is necessary to determine appropriate
methods to alleviate it. Here, we focus upon congestion of a crowd that has already
gathered, such as pedestrians at a bottleneck. In such situations, pedestrians are
usually panicked and cannot be guided to change their target exit or to keep order.
Therefore, our aim is to determine feasible objective methods for alleviating crowd
congestion.

As congestion is caused by crowd motion, it can be alleviated by adjusting
pedestrians’ movement. Two main problems faced during congestion alleviation:
the first is how to adjust pedestrians’ movement. The adjustment approach should
be acceptable by pedestrians as pedestrians are in a panic, and its adjustment
on pedestrians should be stable. The second problem is how to confirm the
relationship between the microcosmic pedestrian movement and the macrocosmic
crowd congestion. As shown in Fig. 3, the adjustment of pedestrians’ movement
will change the crowd congestion via an intermediate method. In our previous work,
we provided a feasible approach for alleviating crowd congestion [49]; specifically,
we show that pedestrian movement can be adjusted by setting obstacles. The
relationship is confirmed by examining an arch formation, which is a typical self-
organization phenomenon.

Let us review studies on the setting of obstacles and arch formation. Many
researchers have found that setting obstacles in a scene is an effective means of
adjusting crowd movement. In panic situations, it is possible to increase the outflow
by appropriately placing obstacles in front of the exit [40]; in a follow-up work, it
was found that obstacles may increase pedestrian flow by 30% [36]. Reference [78]

Fig. 3 An intermediate
method is necessary for the
connection of the pedestrians’
movement and crowd
congestion
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reported that pedestrians’ mean traveling time was reduced by 25% in an experiment
when an obstacle was arranged in their path. However, obstacles with inappropriate
configurations negatively affect evacuation efficiency; for example, [89] simulated
an evacuation and found that placing obstacles symmetrically near the exit door
may be harmful for evacuation. Therefore, the configuration of obstacles should
be properly adjusted to obtain optimal results. Several studies have already been
conducted to determine the proper configurations of obstacles. Reference [42]
used a genetic algorithm to provide an obstacle layout design; however, they only
considered obstacles structured like pillars. Other differently shaped obstacles, such
as thin, flat panels, can also enhance the outflow efficiency. Reference [27] proposed
that placing an obstacle in a panic situation might prevent congestion near the exit
by absorbing pressure; consequently, the clogging effects are transferred to an early
stage. Reference [16] introduced a new modeling technique that guarantees both the
impermeability and opacity of the obstacles; their simulation results showed that the
model can reduce the evacuation time from a room by adding multiple optimally
placed and shaped obstacles to the walking area.

Our approach to addressing congestion is based on arch formation; therefore, we
present a brief review of the research on this special self-organization phenomenon
here. The arch-shaped structures (or arching phenomena) at bottlenecks are typically
found in research fields such as traffic, architecture, granular flow through a hopper,
and escape evacuation [68]. In some situations, pedestrian crowds exhibit collective
phenomena similar to those observed in granular materials (for example, evacuation
flows at bottlenecks) [17, 36, 54]. Herein, the arching effect in crowd evacuation
is called arch formation. Such a formation is difficult to avoid when panicked
pedestrians gather at an exit (Fig. 4). Arches may be formed and broken repeatedly,
and this structure decreases the flow rate and increases congestion. Therefore,
many studies have been conducted on avoiding arch formation. Reference [68]
discussed the obstacle effect from the viewpoint of arch formation using the SFM;
they discussed the possible physical mechanism behind the obstacle’s effect on a
pedestrian system and showed that it could take three forms: (i) influencing the
space around the arch formation; (ii) shifting the center of the arch formation; and

Fig. 4 Arch formation in a dense crowd. (a) An arch formation, which comprises pedestrians
shown in dark gray. (b) A snapshot of a crowd in the simulation
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(iii) distorting the arch formation. Reference [54] proposed a simple microscopic
model for arch formation at bottlenecks; the dynamics of pedestrians in front of a
bottleneck were described by a one-dimensional stochastic cellular automaton on a
semicircular geometry. This model predicted the existence of a critical bottleneck
size for a continuous evacuation flow; Reference [71] analyzed two macroscopic
crowd dynamics models and studied the evacuation of pedestrians from a room with
a narrow exit. In their simulations, the density profiles of the crowd exhibited a
congestion situation with arch formation.

Herein, congestion alleviation is based on analysis of the arch formation. When
obstacles are set in the region in which the arch is formed, they will change the
movement of pedestrians who pass by. Then, the formation position and size of the
arch will also be changed. According to previous research, crowd congestion will
vary along with arch formation. Therefore, this phenomenon connects congestion
with the movement of pedestrians.

Although the aforementioned approach can alleviate crowd congestion, it has
many limitations. First, it can only be applied in a limited bottleneck situation
wherein pedestrians gather at the exit; second, it depends hugely on the effects of
congestion analysis. When adjusting arch formation, it is necessary to calculate the
pressure acting on concrete pedestrians; thus, the aforementioned approach may be
seen as a simple application of congestion analysis.

After reviewing the research on congestion alleviation, we discuss two hypothe-
ses concerning self-organization phenomena. As phenomena such as arch formation
can connect pedestrian and crowd motion, it can be considered on the mesoscopic
scale. Research on mesoscopic models is currently an important avenue of crowd
dynamics modeling; if such models can provide concrete definitions of some self-
organization phenomena, they would be extremely helpful for feature analysis.

Herein, arch formation analysis is based on the theory for the similar phenomena
observed in the research on granular motions. According to this theory, when
a granular arch is formed, it will finally become a fixed structure, namely the
reasonable arch axis [43]. The reasonable arch axis represents the balance of
pressure. Although the arch formation in a crowd cannot always maintain its
structure, it has many similar characteristics to the granular arch. In our opinion,
arch formation can also be seen as an indication of the balance of crowd movement,
which is similar to the equilibrium state of the crowd. Therefore, it is possible to
consider arch formation, which is a self-organization phenomenon, as a critical
feature. Thus, the question becomes can we always observe some self-organization
phenomena that exist in a critical state during the crowd movement process? We
believe that doing so will provide a feasible direction for confirming the critical
features in research on a low-density crowd.
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3 Process Optimization in Evacuation Management

Optimizing the pedestrian movement process is essential in evacuation manage-
ment. Such research aims to avoid the danger caused by the gathering of panicked
pedestrians. Approaches for process optimization are usually preventive methods
such as path planning. Unlike reactive approaches such as congestion alleviation,
the preventive approach can be achieved by many subjective methods that can take
advantage of pedestrians’ rational behavior; here, the critical problem is confirming
guidance approaches. In this section, we optimize the evacuation process in two
ways: the first is to optimize the target exit and path to improve the evacuation
efficiency; the second is to control the propagation of the panic caused by the
emergency. Although the aforementioned approaches have different optimization
algorithms, both of their applications are based on concrete crowd dynamics.

3.1 Group-Based Approaches for Path Planning

Confirming the target exit for various pedestrians is an important problem for path
planning. In addition to the distance, many other factors can influence the exit
selection, such as the group phenomenon. Groups commonly form on the basis of
pedestrians’ relationships and cognition; although group formation will increase the
difficulty of exit selection, it can also improve the effectiveness and performability
of path planning. Herein, we try to study and apply the group phenomena to optimize
path planning for crowd evacuation.

3.1.1 Group-Based Approach Without Navigation

The groups mentioned here are formed by pedestrians who gather and move to
the same exit. In reality, when an emergency occurs, individuals usually attempt to
stay closer to their friends and family, forming small, self-organized groups. Most
will select the same exit and follow the leader who can reach it first; therefore, the
grouping behavior is a common phenomenon in evacuation process.

Groups have a complex influence on crowd evacuation; on the one hand, the
formation of a group can decrease the chaos level of a crowd and increase the
evacuation efficiency; this is because, when pedestrians try to gather as a group,
they will have a definite target. On the other hand, if the path and exit are not
appropriately selected for a group, it is still possible to increase the evacuation time,
leading to congestion. Thus, it is necessary to research the grouping strategy for
evacuation management.

Group behavior is an important phenomenon in path planning; thus, many studies
have focused on the influence of group behavior on the evacuation process [21,
41, 66, 86]. Crowds often comprise many small social groups based on friendship



Applications in Crowd Dynamic Models 83

or kinship [58]. Under normal circumstances, both models and experience show
that pedestrian crowds are self-organized [26]; when a social group meets severe
environmental threats, they usually show strong emotional behavior and prefer to
move together [86]. Individuals within the crowd can also form groups to cope with
the emergency, even if they are not socially connected [66]. Small social groups
based on kinship or friendships are ubiquitous in human crowds [58]; therefore, it
is necessary to study the interaction between social groups and crowd evacuation.
Reference [41] proposed a leader–follower model for crowd evacuation simulation.
A crowd includes several groups, each having a leader and some followers. Here,
leaders were responsible for determining the evacuation path for their followers. The
objective of their simulation was to show the effects of different numbers of leaders
upon the evacuation efficiency. Reference [72] proposed a cellular automaton model
for crowd movement simulation by embedding the follow-the-leader technique as
its fundamental driving mechanism. This study showed that it is possible to achieve
path planning by controlling the grouping behavior.

Herein, we focus on a grouping strategy considering the relationship and the
distance. Concretely, the individuals are grouped according to the selected exits,
as well as the distances between exits and individuals. Pedestrians related to one
another are divided into the same group. The group’s movement direction is decided
by the leader. Individuals with the smallest evacuation time, which is calculated as a
fitness function, are selected as leaders. The fitness function considers the influence
of distance and congestion; more details can be found in [52].

The application of a grouping strategy serves to simplify the evacuation process.
When the strategy is applied, the process can be divided into two periods: group
formation and movement of groups. Then, the requirement of optimal-path planning
is to identify a path of minimum length from the starting node to the target, together
with a collision-free path [56]. The advantage of this approach is that it can improve
the performability of path planning and benefit the application of optimization
algorithms. However, the definition of groups presents only an optimized state of
the crowd for evacuation management. When pedestrians are forming the group,
their movement is still influenced by the crowd dynamics. Therefore, the definition
of the grouping strategy should be continuously modified according to study of the
crowd dynamics.

After defining the group, it is necessary to discuss the main optimization problem
in this work. Although we have proposed a fitness function to choose the leaders of
every group, it is not sufficiently accurate to confirm most effective ones. Leaders
with higher fitness may have lower efficiency in leading pedestrians than those with
lower fitness. Therefore, we use this function to provide a threshold for selecting
from many candidates who are sorted by their fitness value. The optimization
problem is then to determine the leaders who can achieve the shortest evacuation
time.

Researchers have proposed various methods for solving the path planning
problem. In this section, we focus upon the application of swarm intelligence
optimization algorithms, such as the ACO [91], PSO [69], and ABC algorithm [83],
to evacuation management. Herein, we modified and applied the ABC algorithm to
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Table 1 The process of the improved ABC algorithm

Step 1: Initialize the number and position of the individuals, the number of iterations, and the
related parameters

Step 2: Evaluate the fitness value of each individual and sort the swarm in descending order
according to the result

Step 3: Select the top 50% of individuals as the lead bees from the matrix obtained in Step 2.
The individuals are grouped according to the selected exits and the distances between the exits
and individuals

Step 4: Compute the selected probability of each lead bee

Step 5: Switch the roles of the remainders to scouts or onlookers in each group

Step 6: Update the individuals’ positions according to their roles in each group

Step 7: Driven by an selected crowd dynamics model, the individuals move toward the exits

Step 8: Return to Step 2 if the iterative condition is met; otherwise, exit the iterations

optimize the selection of a leader for the evacuation process. The concrete algorithm
is shown in Table 1. Unlike the original ABC algorithm, our improved approach only
conducts an iterative calculation in every group to select the right leader. Thus, the
algorithm’s accuracy and efficiency can be improved.

After implementing the algorithm, the crowd dynamics models are applied via
the iteration computation method to calculate the evacuation times for different lead-
ers. To ensure the effect of the optimization, scholars in the fields of management
and optimization usually apply existing crowd dynamics models to calculate the
evacuation time. Therefore, the selection of an appropriate model is important for
the optimization to work appropriately. This selection is mainly influenced by two
factors: the simulation authenticity and the computational complexity.

The simulation authenticity guarantees the calculation of the evacuation time. In
a study on path planning, the requirement for the authenticity is to represent the
concrete movement behavior of pedestrians; for example, because of the influence
of a leader at a microcosmic scale, we use the social force model to simulate the
evacuation process. We have also modified this model to represent the grouping
behavior in a crowd [52]. A vision factor is added to the social force model to
represent pedestrians’ ability to determine the group leader.

As crowd evacuation is a dynamic process, it must be ensured in real time or
with a short time delay. Thus, the computational complexity of the simulation is a
critical problem facing optimization. Herein, although the social force model can
represent the group behavior, its computational complexity will rapidly increase
with the population. From the aforementioned description, we should determine a
selection that balances the requirements for simulation authenticity and computa-
tional complexity.
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3.1.2 Optimization of Grouping Behavior with Navigation Knowledge

Although we have applied the grouping behavior to improving the path planning,
there are many limitations to this approach. In this section, we focus on the following
questions to improve this approach’s effectiveness:

1. How can it be ensured that group members can always follow the leader? When
pedestrians are in emergency situations, their ability to recognize the environ-
ment may be influenced by panic. Therefore, it is difficult to ask pedestrians to
naturally remain in the group.

2. How can the groups’ evacuation processes be optimized? The initial group is
divided according to its best exit and path; however, these may change during the
evacuation process. Thus, it is necessary to improve path planning for groups by
accounting for the influence of environmental information.

In view of the aforementioned problems, we use information technology to
optimize group-based path planning. Specifically, unlike in the Sect. 3.1.1, pedes-
trians are considered able to receive messages on their mobile phones; therefore,
pedestrians can obtain the position of the group leader at any time, and this ability
is not restricted by vision or emotional state. Thus, we propose a knowledge-
based approach to improve the information utilization effect in path planning.
According to this approach, a two-layer control mechanism is built to organize and
provide the evacuation information for the group leader. This information is saved
in the knowledge base, and information transmission is achieved by navigation
agents, who correspond to the leaders. The belief space comprises different types
of information for calculating personal and global best positions. The navigation
agents conduct path planning for every leader to provide the next target position
by considering the current position and the congestion of the obstacles and exits.
Figure 5 shows the scheme of our two-layer control mechanism.

In our approach, the cultural algorithm (CA) and the agent-based model are used
to collect, analyze, and transfer information for path planning. The CA was devel-
oped to model the evolving cultural components of an evolutionary computational
system over time as it accumulates experience [18, 64]. The double-layered structure
and evolutionary mechanism of this structure have been successfully applied to
many research fields [31, 34, 51, 84]. Thus, it is possible to consider the CA as
a framework for solving crowd evacuation problems. Agent-based modeling is
an approach to modeling systems comprising individual, autonomous, interacting
agents. Such a model is based on the representation of global behavior from
the rules provided to individuals, which may enable them to view the macro-
level consequences of micro-level interactions [57]. It is obvious that agent-based
modeling is suitable for describing the crowd movement, and many scholars have
studied its application effects [20, 65, 73].

Herein, the social force model is still used as the iteration calculation approach.
As pedestrians can remain in groups using their mobile phones, the modification
of the SFM has also been simplified. Unlike in the Sect. 3.1.1, we only change
the direction of pedestrians’ driving force to represent the group behavior. In this
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Fig. 5 Scheme of the two-layer control mechanism for group-based path planning

manner, the simulation authenticity of the original SFM is ensured while reducing
the computational complexity.

To summarize, we presented a group-based approach to improving path planning
during evacuations. According to this approach, the crowd evacuation process has
been simplified to different periods. Then, intelligent algorithms can be easily
applied to guide path planning. However, when calculating the optimization results,
the complete crowd dynamics should still be considered. Therefore, the existing
crowd dynamics models are used to iteratively calculate the evacuation time. The
aforementioned work shows that the application of crowd dynamics models is a
critical foundation for path planning and the application of intelligent algorithms.
Thus, the next problem is selecting a model with the appropriate simulation
authenticity and computational complexity.

3.2 Positive Emotional Contagion During Crowd Evacuation

When pedestrians are in emergency situations, their irrational behavior may cause
dangerous situations, such as stampedes and crushes. Negative emotion has been
considered a major cause for pedestrians’ irrational behavior. Thus, it is important
for evacuation management to reduce the influence of negative emotions. In this
section, we introduce approaches that aim to optimize positive emotional contagion
to decrease the influence of negative emotions. The concrete method of these
approaches is to dispatch safety officers to calm panicked pedestrians down. Our
approaches are expected to assist in emergency preplanning and to provide guidance
for emergency management.



Applications in Crowd Dynamic Models 87

3.2.1 Strategies for Utilizing Positive Emotional Contagion

This work studies how to dispatch safety officers to avoid the danger caused
by negative emotion. Here, the term safety officer refers to a person who is
responsible for the “safety” of the people who work in or visit an area. The
positive emotions of safety officers can help to calm the crowd and assist in
an orderly evacuation, thereby effectively avoiding a stampede. To achieve the
aforementioned target, we focus on the following question: how can one describe the
process of positive emotional contagion during crowd evacuation? When modeling
pedestrians’ emotional contagion, existing studies have not fully considered the
effects of positive emotions [11]. Furthermore, because of the influence of safety
officers, other features, such as the trust relationship, should be considered. How
can the effectiveness of safety officers be optimized? The number of such officers is
usually limited, and their calming effect is limited by their physical location and the
number of pedestrians passing by.

We first briefly review studies of emotional contagion during crowd evacuation.
Many factors can influence crowd evacuation, with the leading emotion in the
crowd exerting the greatest influence upon the effectiveness of rescue work during
emergencies [75]. Thus, increasing efforts have been made to study emotional
models in recent years [2, 30, 61, 67]; for example, the OCC (Ortony, Clore, Collins)
emotional model is widely used in AI applications because of its structural, rule-
based form [62].

Research on emotional contagion is an important topic in emotional modeling,
and some previous works have investigated the dynamics of emotional contagion
within a social network [6, 7, 70, 79]. The ASCRIBE model was the first to
describe the emotional contagion within a crowd [8, 10, 59, 60, 76]; this model
assumes that the emotional contagion process among individuals is similar to
the heat dissipation phenomenon studied in thermodynamics. As an alternative
to the ASCRIBE model, many researchers have studied the process of emotional
contagion using epidemiology-based methods inspired by the spread of disease, as
described in the epidemiology literature [11, 19, 22]. In these approaches, emotional
contagion is assumed to be similar to the diffusion of infectious diseases. However,
most methods used in the field of crowd evacuation focus on the negative emotional
contagion observed in emergency situations.

Studying the problem of how the positive emotions of safety officers help to
calm a crowd is crucial in practical applications. The influence of positive emotions
has been extensively studied [22, 28]; during crowd evacuations, such emotions
can guide individuals to establish rational behaviors [12]. However, unlike the in-
depth research on negative emotional contagion, only a few studies have explored
the positive case. The predefined rules used in these methods oversimplify real-
world situations, making the analysis unquantifiable. In addition, the authors have
not studied how to maximize the influence of positive emotions.

Results show that positive emotional contagion is mainly influenced by the
trust relationships among pedestrians [87]. Here, the trust relationships represent
the probability of a pedestrian being infected by another one. For example, in
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emergency situations, people tend to be more willing to believe information
from safety officers than from ordinary people. We assumed that pedestrians can
only receive information by observing their environment; therefore, the emotional
contagion between two pedestrians is influenced by their visibility. Then, a trust-
based emotional contagion network (Trust-ECN) is developed to describe the
emotional contagion process. The Trust-ECN G(V,E) is a directed graph in which
each node v ∈ V represents an individual in the crowd and each directed edge
e(i, j) ∈ E from node i to node j denotes that j trusts i and that i is visible to j ,
meaning that j can be directly infected by the positive emotion of i.

Calculating the speed of the spread is an important step for optimizing positive
emotion. We computed the spreading speeds of emotional contagion by considering
the relevant factors. In particular, the ability to express or assimilate positive
emotions depends upon an individual’s personality.

Following the lines of [55], we apply the Big Five model to describe the influence
of pedestrians’ personalities. Extroversion is used to describe their ability to express
positive emotion, and neuroticism is used to represent their ability to assimilate
it. To facilitate analysis, we assume that both extroversion and neuroticism can be
numerically formalized by values drawn from a specified probability distribution.

We also assume that positive emotional contagion decays smoothly with increas-
ing distance between i and j because common sense suggests that our visual and
auditory systems become more likely to produce errors with the increase in the
transmission distance. After considering the aforementioned factors, the spreading
speed of emotional contagion from i to j is expressed as follows

v(ij) = εi · Rij · aj . (4)

Here, Rij represents emotional attenuation, εi denotes the ability of i to express
positive emotions, and aj denotes the ability of j to assimilate positive emotions.

The effect of the positive emotional contagion network is verified using the
number of pedestrians infected in a given time window T, see Fig. 6. The emotional
state of individual i is represented by the infection probability P(ti < T |S, V ),

Fig. 6 Emotional contagion networks and the results of positive emotional contagion from [87].
The blue markers (triangles) are safety officers, whereas the red/green markers (circles/squares)
are individuals with/without negative emotions. (a) The room network; (b) the office network; (c)
the square network (colored in the online version)
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where S is the set of m safety officers selected at time t = 0, and V is the set of
emotional contagion speeds. The infection probability of each safety officer is set to
1. As for the other pedestrians, the calculation of their infection probability is based
upon the time difference, which is a random variable associated with each edge in
G(V,E).

Given a crowd with negative emotions, a time window T , and a variable m, our
target is to select safety officers optimal positions for to maximize the “calm-down”
effect. The optimization problem is presented as follows:

S◦ = maxs=m(μ(S, T , V )) = EI (S, T , V ) =
C∑

i=1

P(ti < T |S, V ), (5)

where S◦ is the number of safety officers with optimal positions, I (S, T , V ) is
the number of individuals who can be infected up to time T, μ(S, T , V ) is the
expectation value of I (S, T , V ), which is defined by the average number of nodes
infected prior to time T, ti is the infection time of i, C is the size of the crowd,
and P(ti < T |S, V ) is the infection probability of individual i prior to T . The
positions of the safety officers can be obtained intuitively because the individuals’
initial positions are given. Herein, this problem is optimized using an artificial bee
colony optimized emotional contagion (ABCEC) algorithm.

In this section, we have proposed a feasible framework for combining the
modeling strategies and optimization algorithms for positive emotional contagion.
The dispatching of safety officers can truly improve evacuation management;
however, research on positive emotional contagion is just beginning. Therefore,
many limitations should still be considered. A critical reason for this is that
many of the features of the crowd dynamics have been ignored to simplify the
evacuation process. Given that the emotional-infection probability is influenced by
the distance between pedestrians, it is necessary to consider the crowd movement in
the iterative calculation. To improve the optimization efficiency, we define a random
variable to represent the influence of distance on the infection probability. Thus, the
iterative calculation only uses the initial distribution of pedestrians. However, the
aforementioned approach also leads to a requirement that the emotional contagion
network should be defined so as to consider more features of crowd dynamics. This
is a direction for future study.

3.2.2 Optimization of the Positive Emotional Contagion

After confirming our approach for positive emotional contagion, we focus upon
improving this method’s effectiveness. Although our previous work combined
safety officer guidance and positive influence maximization, it is limited by the
simplification of crowd dynamics. Therefore, we optimize the positive emotional
contagion by adding more features of crowd dynamics.
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Here, we focus on extending the application of positive emotional contagion to
affect more random individuals in emergency situations. To achieve this, we apply
IoT devices to capture more details of crowd dynamics and to develop an entropy-
based anisotropic emotional contagion model to account for the influence of crowd
chaos, which is a critical factor determining crowd behaviors.

Recently, IoT devices have been widely applied to capturing the complex features
of crowd movement. Research on IoT-based crowd evacuation has mostly focused
on discovering evacuation routes [24, 44, 74, 77], navigating evacuation [14, 44, 82],
and simulating crowd evacuation [13, 63, 80, 81]. In evacuation route discovery,
the predeployed IoT devices are used to explore the areas in which emergencies
occur and to discover the optimal evacuation paths from the site of the accident to
the emergency exits. In the evacuation navigation approaches, the escape indication
devices are used to guide the crowd toward the exits. Moreover, the data sensed by
IoT devices are also used to enhance the visual realism of the crowd simulation. The
aforementioned literature shows that IoT devices have sufficient accuracy to capture
real-time information to improve positive emotional contagion. Herein, we use the
data captured by IoT devices to quantify the chaos of crowd behavior, which is a
fundamental factor affecting crowd evacuation.

To further improve the positive emotional contagion, it is necessary to take
more details of crowd dynamics into account. Herein, we focus on the influence
of crowd chaos [88]; here, “chaos” refers to a nonuniform pedestrian movement.
Pedestrians in a crowd may have different directions, and their emotions are more
likely influenced by other pedestrians moving in the same direction. The positive
emotion propagates quickly in an ordered crowd; however, it plays a less important
role in crowd chaos regulation, because most individuals are already ordered.
Positive emotion has a greater calming effect in a chaotic crowd, but it propagates
slowly. Those chaotic individuals whose directions of motion are inconsistent with
the crowd cause the greatest damage to the safety of crowd evacuation. Thus,
understanding chaos can be used to define and develop new strategies that build
upon the effect of safety officers’ positive emotional contagion during crowd
evacuation.

There are many differences between crowd chaos and congestion. On the one
hand, congestion is caused by the phenomenon whereby space cannot satisfy
pedestrians’ requirements, and it is mainly embodied as an objective interaction
between pedestrians; crowd chaos, on the other hand, it is mainly embodied as the
uncertain and nonuniform movement caused by negative emotional contagion. In
our opinion, crowd chaos is similar to entropy in a thermodynamic system. Thus,
we introduce the definitions of crowd entropy to quantify crowd chaos; specifically,
during the emotional contagion process, entropy has a nonuniform impact on the
propagation rate: the larger the entropy is, the more chaotic the crowd, and the
slower the propagation rate will be.

Herein, we define the crowd entropy from both macroscopic and microscopic
perspectives [88]. The macroscopic entropy is used to measure the influence of the
whole crowd’s chaos upon the local pedestrians at the same orientation, whereas the
microscopic entropy is used to measure the degree of microchaos among individuals
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Fig. 7 The effect of crowd entropy from [88]. There are 30 particles moving at a constant speed
of 0.03, and the direction of each particle’s motion is the average direction of neighboring particles
with some random perturbation: (a) E = 1.3; (b) E = 0.34; and (c) E = 0.01

of the same orientation, and it is defined as the velocity correlation between
two pedestrians. After confirming the entropy, the emotional propagation rate is
influenced by the following rule: the smaller the entropy, the more orderly the crowd,
and the faster the propagation rate will be. The effect of the crowd’s entropy is shown
in Fig. 7; initially, the particles move randomly and their entropy attains a high
value. The particle motion becomes increasingly orderly and the entropy decreases
accordingly, showing that the proposed definition of crowd entropy effectively
quantifies the chaos of the crowd’s motion.

The crowd’s entropy represents the influence of complex dynamic features
upon positive emotional contagion. When defining the aforementioned variable,
we consider the macroscopic orientation difference and the microscopic transfer
chains; then, the effect of the crowd entropy is represented by the propagation rate
of positive emotion. In our opinion, the definition of crowd entropy accords with
the current developmental tendency (mesoscopic) of crowd dynamics modeling.
However, this definition is unable to fully take advantage of crowd dynamics. This
is attributed to the entropy being computed using a snapshot of the crowd at an
instant in time, with each individual’s motion direction assumed to be fixed. When
considering more complex crowd dynamics (e.g., dynamic evolution of chaos), the
number of microstates will become unaccountably infinite.

4 Summary

In this chapter, we reviewed several works on feature analysis and process opti-
mization to discuss the application of crowd dynamics models to evacuation
management. We first presented an introduction to research on crowd congestion.
Thus, this work has improved the effectiveness of evacuation management through
congestion analysis and alleviation. Furthermore, we have discussed several critical
problems and the role of crowd dynamics models in features analysis. The main
conclusions and hypotheses are presented as follows:
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1. It is feasible to achieve feature analysis by defining and analyzing the constraints
for crowd movement; the existing models offer definitions of the constraints.

2. The main problem in feature analysis is to confirm the critical characteristics;
this problem is also important for research on crowd dynamics.

3. The self-organization phenomenon, which is usually mesoscopic, can connect
the microscopic pedestrian movement and its macroscopic features.

We have reviewed works on process optimization in evacuation management.
The grouping behavior is used to optimize path planning to improve the evacuation
efficiency. To reduce panic during an evacuation, we also study the optimization
of positive emotional contagion. Although process optimization works usually have
different targets, there are still many similar characteristics between them. First,
the optimization is conducted on a process that is simplified from the complete
crowd movement, and the simplification is based on the analysis of a key feature;
second, with this study’s development, the optimization has to consider more details
of crowd dynamics. Finally, given that process optimization focuses more on the
application of other technologies and algorithms, the understanding and applications
of crowd dynamics are usually based on existing research. In our opinion, the
aforementioned characteristics show some feasible directions for the application for
crowd dynamics models.

Although we have applied many interdisciplinary approaches (theories and
algorithms) to research on evacuation management, their effectiveness is mainly
decided by the current understanding of crowd dynamics. For example, the effects
of congestion analysis, group behavior, and emotional contagion are all determined
by the definition of the interaction between the crowd and individual pedestrians.
Therefore, understanding the multiscale interaction remains one of the main chal-
lenges that modeling of the crowd dynamics must face in the future.
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Abstract In this chapter, we discuss the mathematical modeling of egressing
pedestrians in an unknown environment with multiple exits. We investigate different
control problems to enhance the evacuation time of a crowd of agents, by few
informed individuals, named leaders. Leaders are not recognizable as such and
consist of two groups: a set of unaware leaders moving selfishly toward a fixed
target, whereas the rest is coordinated to improve the evacuation time introducing
different performance measures. Follower-leader dynamics is initially described
microscopically by an agent-based model, subsequently a mean-field type model
is introduced to approximate the large crowd of followers. The mesoscopic scale
is efficiently solved by a class of numerical schemes based on direct simulation
Monte-Carlo methods. Optimization of leader strategies is performed by a modified
compass search method in the spirit of metaheuristic approaches. Finally, several
virtual experiments are studied for various control settings and environments.
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1 Introduction

Control methodologies for crowd motion are of paramount importance in real-life
applications for the design of safety measures and risk mitigation. The creation
of virtual models of a large ensemble of pedestrians is a first step for reliable
predictions, otherwise not easily reproducible with real-life experiments.

Pedestrians have been properly modeled by means of different agent-based
dynamics such as lattice models [21, 39], social force models [43, 50], or cellular
automata models [1, 52]. A different level of description is obtained using meso-
scopic models [2, 4, 36] where the quantities of study are densities of agents; at a
larger scale macroscopic models [20, 22, 32] describe the evolution of moments such
as mass and momentum. Multiscale models have been also considered, to account
for situations where different scales coexist, we refer in particular to [26, 27]. Such
a hierarchy of models is able to capture coherent global behaviors emerging from
local interactions among pedestrians. These phenomena are strongly influenced by
the social rules, the rationality of the crowd, and the knowledge of the surrounding
environment. In the case of egressing pedestrians in an unknown environment
with limited visibility we expect people to follow basically an instinctive behavior
[12, 20, 21, 39], whereas a perfectly rational pedestrian will compute an optimal
trajectory towards a specific target (the exit), forecasting exactly the behavior of
other pedestrians [1, 46].

In this manuscript, we focus on the evacuation problem in an unknown environ-
ment with multiple exits. We aim at influencing their behavior towards the desired
target with minimal intervention. Starting from the seminal work [4] we consider
a bottom-up approach where few informed agents are acting minimizing verbal
directives to individuals and preserving as much as possible their natural behavior.
This approach is expected to be efficient in situations where direct communication
is impossible, for example, in the case of very large groups, emergencies, violent
crowds reluctant to follow directions; or in panic situations where rational behavior
is overtaken by instinctive decisions. Furthermore, we consider few additional
agents, who are informed about the position of some exit and acting as unaware
leaders. Hence, their dynamics will influence the global behavior of the crowd,
introducing inertia that may constitute an additional difficulty in the optimization
problem, for example, increasing congestions next to the exits or increasing the
level of uncertainty.

The control problem associated with the evacuation of a crowd falls in the larger
research field aimed at investigating the control of self-organizing agents. From the
mathematical view point, this type of problem is challenging due to the presence of
non-local interaction terms and their high dimensionality. Control of alignment-type
dynamics, such as the Cucker-Smale model [29], have risen a lot of interest in the
mathematical community, where several strategies have been explored to enforce
the emergence of consensus, see, for example, [5, 11, 14, 44]. At the same time,
to cope with the high dimensionality of such optimal control problems, reduced
approaches have been explored [15, 18, 37, 38], promoting sparsity of the control
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acting only on few agents. In biological models, it has been shown that a small
percentage of individuals can influence the whole group towards a desired target,
see [23]. Similarly, leaders in crowd can act as control signals to enforce alignment
towards a desired direction as recognizable leaders [3, 9, 16, 34, 48], or moving
undercover [4, 23, 33, 40, 41], or even in a repulsive way [17]. These strategies
heavily rely on the power of the social influence (or herding effect), namely the
natural tendency of people to follow other mates in situations of emergency or doubt.

Alternative control methodologies consist in optimal design of the surrounding
environment such as obstacles [6, 24, 25], or evacuation signage [53, 54], or exit
locations [52].

The manuscript is organized as follows in Sect. 2 we introduce the mathematical
framework for the microscopic dynamics of leader-follower type and we formulate
different scenarios for the optimal control problem to be solved. In particular,
we will distinguish between minimum time of evacuation, total mass evacuated,
and optimal mass splitting among the multiple exits. In this work the word mass
denotes the total amount of pedestrians. Section 3 is devoted to the description
of the mesoscopic scale, first we introduce the mean-field type model, second we
sketch an efficient Monte-Carlo algorithm for its simulation. In Sect. 4 we focus
on the numerical realization of the optimized strategies. We start introducing the
algorithmic procedure used for the solution of the large-scale optimization problem,
and we compare microscopic and mean-field dynamics in several scenarios and with
different target functionals. Finally in Sect. 5 we outline possible extensions and
further perspectives.

2 Control of Pedestrian Dynamics Through Leaders

In this section, we focus first on the mathematical description of pedestrian
dynamics in complex environments. We consider an ensemble of agents, followers,
in an unknown environment trying to reach exit locations, at the same time the
crowd population includes few informed agents, leaders, acting as controllers but
not distinguishable from followers. In particular, we account for a mixed approach
where leaders are either aware of their role, then responding to an optimal force
as the result of an offline optimization procedure, optimized leaders, or unaware
of their role and moving with a greedy strategy towards a target exit position,
selfish leaders. The main mechanisms ruling the behaviors among the followers
are isotropic interactions with other agents based on metrical short-range repulsion,
induced by social distancing and collisional avoidance, and topological long-range
alignment dynamics. Leaders instead consider only short-range repulsion. Addition-
ally, for followers, we account self-driving forces describing the exploration phase,
preferential direction, and desired speed. The overall dynamics will be influenced
by the surrounding environment when the exits are visible or close to obstacles.

In the following sections, we describe first the microscopic dynamics of the
follower-leader system and later different control tasks for different applications.
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2.1 Microscopic Model with Leaders and Multiple Exits

Following the approach proposed in [4, 6] we model leaders by a first-order model
and followers by a second-order one, where both positions and velocities are state
variables. We denote by d the dimension of the space in which the motion takes
place (typically d = 2), by NF the number of followers and by NL � NF the
number of leaders. We also denote by � ≡ Rd the walking area, and we identify the
different exits by xτe ∈ � with To define each target’s visibility area, we consider the
set �e, with xτe ∈ �e ⊂ �, and we assume that the target is completely visible from
any point belonging to �e and completely invisible from any point belonging to
�\�e, namely we also assume that visibility areas are disjoint sets, i.e., �ei ∩�ej =
∅ for all ei, ej ∈ {1, .., Ne} .

For every i = 1, . . . , NF, let (xi(t), vi(t)) ∈ R2d denote position and velocity
of the agents belonging to the population of followers at time t ≥ 0 and, for every
k = 1, . . . , NL, let (yk(t), wk(t)) ∈ R2d denote position and velocity of the agents
among the population of leaders at time t ≥ 0. Let us also define x := (x1, . . . , xNF )

and y := (y1, . . . , yNL ).
The microscopic dynamics described by the two populations is given by the

following set of ODEs for i = 1, . . . , NF and k = 1, . . . , NL,

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = vi,

v̇i = S(xi, vi) + ∑NF
j=1 m

F
j H

F(xi , vi , xj , vj ; x, y) + ∑NL
�=1 m

L
� H

L(xi , vi , y�, w�; x, y),
ẏk = wk = ∑NF

j=1 m
F
j K

F(yk, xj ) + ∑NL
�=1 m

L
� K

L(yk, y�) + ξku
opt
k + (1 − ξk)u

self
k ,

(1)

with initial data for followers (xi(0), vi(0)) = (x0
i , v

0
i ) and leaders (yk(0), wk(0)) =

(y0
k , w

0
k). The quantities mF

i ,m
L
k weight the interaction of followers and leaders, in

what follows we will assume that mF
1 = . . . = mF

NF = mL
1 = · · · = mL

NL and the
following mass constraint holds

mF
i = ρF

NF , mL
k = ρL

NL , ρF + ρL = 1, (2)

for ρF , ρL positive quantities.

1. S is a self-propulsion term, given by the relaxation toward a random direction or
the relaxation toward a unit vector pointing to the target (the choice depends
on the position), plus a term which translates the tendency to reach a given
characteristic speed s ≥ 0 (modulus of the velocity), i.e.,

S(x, v) := Cs(s
2 − |v|2)v +

Ne∑

e=1

ψe(x)Cτ

(
xτe − x

|xτe − x| − v

)
, (3)
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where ψe : Rd → [0, 1] is the characteristic function of �e, and Cτ , Cs are
positive constants.

2. The interactions follower-follower and follower-leader account a repulsion and
an alignment component, as follows

H F(x, v, x′, v′; x, y) := −CF
r Rγ,r (x, x

′)(x′ − x)

+ (1 − ψ(x))CF
alA(x, x

′; x, y)(v′ − v),

H L(x, v, y,w; x, y) := −CL
r Rγ,r (x, y)(y − x)

+ (1 − ψ(x))CL
alA(x, y; x, y)(w − v),

(4)

for given positive constants CF
r , C

F
al, C

L
al, Cat , r, γ , and where the characteristic

function of the unknown environment �\ ∪e �e, such that

ψ(x) :=
Ne∑

e=1

ψe(x).

The first term on the right hand side of (4) represents the metrical repulsion
force, where the intensity is modulated by the function Rγ,r defined as

Rγ,r (x, y) =
{
e−|y−x|γ
|y−x| ify ∈ Br(x)\{x},

0 otherwise,
(5)

where Br(x) is the ball of radius r > 0 centered at x ∈ �. The second
term accounts for the (topological) alignment force, which vanishes inside the
visibility regions, and where

A(x, y; x, y) := χBN(x;x,y)(y), (6)

and by BN(x; x, y) the minimal ball centered at x encompassing at least N
agents.

3. The interactions leader-follower and leader-leader reduce to a mere (metrical)
repulsion, i.e., KF = KL = −CL

r Rζ,r , where CL
r > 0 and ζ > 0 are in general

different from CF
r and γ , respectively.

4. uopt
k , uself

k : R+ → R
dNL

characterize the strategies of the leaders and are
chosen in a set of admissible control functions. The parameter ξk ∈ {0, 1}
identifies for ξk = 1 leaders aware of their role, whose movements are the
result of an optimization process, and alternatively for ξk = 0 leaders moving
“selfishly” towards a specific exit. A specific description of leaders’ strategy will
be discussed in Sect. 4. Hence we account for situations where a small part of
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the mass is informed about exit positions, but policymakers have no control over
them.

Remark 1

• Differently from the model proposed in [4, 6] the dynamics do not include
random effects. However, we consider this uncertainty by assuming that the
initial velocity directions of followers are distributed according to a prescribed
density v0

i ∼ pv(R
d), for example, a uniform distribution over the unitary sphere

Sd−1 .
• The choice CF

al = CL
al leads to H F ≡ H L and, therefore, the leaders are not

recognized by the followers as special. This feature opens a wide range of new
applications, including the control of crowds not prone to follow authority’s
directives.

• The pedestrian microscopic model (1) allows agent movements in space without
any constriction. However, in real applications, dynamics are constrained by
walls or other kinds of obstacles. There are several ways of dealing with this
feature in agent-based mode and we refer to [24, Sect. 2] for a review of obstacles
handling techniques such as repulsive obstacle, rational turnaround, velocity cut-
off. The choice for obstacle handling will be discussed in Sect. 4.

2.2 Control Framework for Pedestrian Dynamics

In order to define the strategies of optimized leaders, we formulate an optimal
control problem to exploit the tendency of people to follow group mates in
situations of emergency or doubt. The choice of a proper functional to be minimized
constitutes a modeling difficulty, and it is typically a trade-off between a realistic
task and a viable realization of its minimization. In general we will set up the
following constrained optimal control problem

min
uopt(·)∈Uadm

J(uopt),

s.t. (1),
(7)

where uopt = (u
opt
k (·)) is the control vector associated with the optimized leaders,

given a set of admissible controls Uadm. In what follows we will specify different
functionals for different type of applications. For later convenience we introduced
the empirical distributions defined as follows

f NF
(·, x, v) =

NF∑

i=1

mF
i δ(x − xi(·))δ(v − vi(·)), (8)
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gN
L
(·, x, v) =

NL∑

j=1

mL
j δ(x − yj (·))δ(v − wj(·)). (9)

• Evacuation time. In a situation where egressing pedestrians are in an unknown
environment the most natural functional is the evacuation time, which we may
define as follows

J(x, y,uopt) =
{
t > 0 | (xi(t), yj (t)) /∈ � ∀i = 1, . . . NF ,∀j = 1, . . . , NL

}
,

(10)

where we explicit the dependency on the states vector of follower positions

x ∈ RdNF
. This cost functional is extremely irregular, therefore the search of

minima is particularly difficult, additionally the evacuation of the total mass in
some situations cannot be completely reached.

• Total mass with multiple exits. Instead of minimizing the total evacuation, we fix a
final time T > 0 and we aim to minimize the total mass inside the computational
domain �\∪e�e, which coincides with maximizing the mass inside the visibility
areas. The functional reads

J(x, y,uopt) =
∫

R
d

∫

�\∪e�e

(f NF
(T , x, v) + gN

L
(T , x, v))dxdv. (11)

• Optimal mass splitting over multiple exits. In complex environments, it may
happen that total mass does not distribute in an optimal way between the target
exits. This may lead to problems of heavy congestions and overcrowding around
the exits that, in real-life situations, can cause injuries due to over-compression
and suffocation. Hence we ask to distribute the total evacuated mass at final time
T among the exits according to a given desired distribution. To this end we set

J(x, y,uopt) =
Ne∑

e=1

∣∣∣MF
e (T ) −Mdes

e

∣∣∣
2
, (12)

whereMdes
e is the desired mass to be reached in the visibility area�e andMF

e (T )

is the total mass of followers and leaders who reached exit xτe up to final time T .

3 Mean-Field Approximation of Follower-Leader System

Mean-field scale limit for large number of interacting individuals has been inves-
tigated in several directions for single and multiple population dynamics, see, for
example, [19, 31], and it is a fundamental step to tame the curse of dimensionality
arising for coupled systems of ODEs.
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In the current setting, we want to give a statistical description of the followers-
leaders dynamics considering a continuous density for followers and maintaining
leaders microscopic. Hence, we introduce the non-negative distribution function of
followers f = f (t, x, v) with x ∈ Rd , v ∈ Rd at time t ≥ 0, the meso-micro system
corresponding to (1) reads as follows

∂tf + v · ∇xf = −∇v ·
(
f

(
S(x, v) +HF [f, gNL ] +HL[f, gNL ]

))
,

ẏk = wk =
∫

R
2d
KF(yk, x)f (t, x, v) dx dv +

NL∑

�=1

mL
� K

L(yk, y�)

+ ξku
opt
k + (1 − ξk)u

self
k ,

(13)

where the followers dynamics is described by a kinetic equation of Vlasov-type, and

where we use the corresponding empirical distribution for leaders gN
L

. Furthermore
we assume that the follower and leader densities are such that their number densities
are

�F =
∫

R
2d
f (t, x, v) dx dv, �L =

∫

R
2d
gN

L
(t, x, v) dx dv.

We observe that the terms S(·),KF(·) and KL(·) are defined, respectively, as in
the microscopic setting, whereas the non-local operatorsHF ,HL correspond to the
following integrals

HF [f, gNL ](t, x, v) = −CF
r

∫

R
d

∫

Br(x)

Rγ,r (x, x
′)(x′ − x)f (t, x′, v′) dx′dv′

+ CF
al(1 − ψ(x))

∫

R
d

∫

Br∗ (t,x)
(v′ − v)f (t, x′, v′) dx′dv′, (14)

HL[f, gNL ](t, x, v) = −CL
r

∫

R
d

∫

Br(x)

Rγ,r (x, x
′)(x′ − x)gN

L
(t, x′, v′) dx′dv′

+ CL
al(1 − ψ(x))

∫

R
d

∫

Br∗ (t,x)
(v′ − v)gN

L
(t, x′, v′) dx′dv′, (15)

where the first term corresponds to the metrical repulsion as in (5), and the second

part accounts the topological ball Br∗(t, x) ≡ Br∗(t, x; f, gNL
) whose radius is

defined for a fixed t ≥ 0 by the following variational problem

r∗(t, x) = arg min
α>0

{∫

R
d

∫

Bα(x)

(
f (t, x, v) + gN

L
(t, x, v)

)
dx dv ≥ �top

}
,

(16)

where �top > 0 is the target topological mass.
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Remark 2

• Rigorous derivation of the mean-field limit (13) from (1) is a challenging
task due to the strong irregularities induced by the behavior of topological-
type interactions. We refer to [42] for possible regularization in the case of
Cucker-Smale type dynamics, and to [13, 30] for alignment driven by jump-type
processes.

• Alternative derivation of mesoscopic models in presence of diffusion has been
obtained in [4], where the authors derived a Fokker-Planck equation of the
original microscopic system via quasi-invariant scaling of binary Boltzmann
interactions. This technique, analogous to the so-called grazing collision limit
in plasma physics, has been thoroughly studied in [51] and allows to pass from a
Boltzmann description to the mean-field limit, see, for example, [49].

• For optimal control of large interacting agent systems, the derivation of a mean-
field approximation involves the convergence of minimizers from microscopic
to mesoscopic scale. This problem has been addressed from different directions,
and we refer to [15, 38].

Remark 3 In order to obtain a closed hydrodynamic system for (13) a stan-
dard assumption is to assume the velocity distribution to be mono-kinetic, i.e.
f (t, x, v) = ρ(t, x)δ(v − V (t, x)), and the fluctuations to be negligible. Hence,
computing the moments of (13) leads to the following macroscopic system for the
density ρ and the bulk velocity V ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∇x · (ρV ) = 0,

∂t (ρV ) + ∇x · (ρV ⊗ V ) = Gm
[
ρ, ρL, V , V L]

ρ,

ẏk = wk =
∫

R
d
KF(yk, x)ρ(t, x) dx +

NL∑

�=1

KL(yk, y�)

+ξku
opt
k + (1 − ξk)u

self
k ,

(17)

where ρL(x, t), V L(x, t) represent the leaders macroscopic density and bulk
velocity, respectively, and Gm the macroscopic interaction operator associated with
the followers, we refer to [8, 19] for further details.

3.1 MFMC Algorithms

For the numerical solution of the mean-field followers dynamics in (13) we employ
mean-field Monte-Carlo methods (MFMCs) generalizing the approaches proposed
in [7, 49]. These methods fall in the class of fast algorithms developed for interacting
particle systems such as direct simulation Monte-Carlo methods (DSMCs), and they
are strictly related to more recent class of algorithms named Random Batch Methods
(RBMs) [45].
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In order to approximate the evolution of the followers density, first we sampleNF
s

particles from the initial distribution f 0(x, v) in the phase space, i.e., {(x0
i , v

0
i )}N

F
s

i=1.
Furthermore we consider a subsample of M particles, j1, . . . , jM uniformly without
repetition such that 1 ≤ M ≤ NF

s . In order to approximate the non-local terms
HF ,HL we evaluate the interactions with a subsample of size M at every time step.
Hence we define the discretization step as

vn+1
i = vni + 
tS(xni , v

n
i ) − 
t

[
R̂
F,n
i (X̂n

i − xni ) + R̂
L,n
i (Ŷ n

i − xni )
]

(18)

+ 
t(1 − ψ(xni ))
[
Â
F,n
i (V̂ n

i − vni ) + Â
L,n
i (Ŵ n

i − vni )
]
, (19)

where we defined the following auxiliary variables for the repulsion term (5),

R̂
F,n
i = CF

r �
F

M

M∑

k=1

Rγ,r (x
n
i , x

n
jk
), X̂n

i = CF
r �

F

M

M∑

k=1

Rγ,r (x
n
i , x

n
jk
)

R̂
F,n
i

xnjk ,

R̂
L,n
i = CL

r �
L

NL

NL∑

�=1

Rγ,r (x
n
i , y

n
� ), Ŷ n

i = CL
r �

L

NL

NL∑

k=1

Rγ,r (x
n
i , y

n
� )

R̂
L,n
i

yn� .

(20)

For the topological alignment we have

Â
F,n
i = CF

al�
F

M

M∑

k=1

χBr∗
M
(xi ;x,y)(xjk ), V̂ n

i = CF
al�

F

M

M∑

k=1

χBr∗
M
(xi ;x,y)(xjk )

Â
F,n
i

vnjk ,

Â
L,n
i = CL

al�
L

NL

NL∑

�=1

χBr∗
M
(xi ;x,y)(xjk ), Ŵ n

i = CL
al�

L

NL

NL∑

k=1

χBr∗
M
(xi ;x,y)(xjk )

Â
L,n
i

wn
� ,

(21)

where the topological ball Br∗
M
(x) is the topological ball defined over the subsample

of M agents, with radius such that

r∗
M(t, xi) = arg min

α>0

⎧
⎨

⎩
�F

M

M∑

k=1

χBα(xi )(xjk ) + �L

NL

NL∑

�=1

χBα(xi )(y�) ≥ �top

⎫
⎬

⎭ .

(22)

From the above considerations we obtain the following Algorithm in the time
interval [0, T ].
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Algorithm (MFMC Follower-Leader)

1. GivenNF
s samples v0

i , with i = 1, . . . , NF
s computed from the initial distribution

f (x, v) and M ≤ NF
s ;

2. for n = 0 to ntot

a. for i = 1 to NF
s

i. sample M particles j1, . . . , jM uniformly without repetition among all
particles;

ii. compute the quantities R̂L,n
i , R̂

F,n
i , X̂n

i and Ŷ n
i from (20);

iii. compute the quantities ÂL,n
i , Â

F,n
i , V̂ n

i and Ŵn
i from (21);

iv. compute the velocity change vn+1
i according to (18);

v. compute the position change

xn+1
i = xni + 
tvn+1

i .

end for

end for ��
Remark 4

• By using this Monte-Carlo algorithm we can reduce the computational cost due to

the computation of the interaction term from the original O
(
NF
s

2
)

to O
(
MNF

s

)
.

For M = NF
s we obtain the explicit Euler scheme for the original NF

s particle
system.

4 Numerical Optimization of Leaders Strategies

In this section we focus on the numerical realization of the general optimal control
problem of type

min
uopt(·)∈Uadm

J(uopt), (23)

constrained to the evolution of microscopic (1) or mean-field system (13). We
observe that the minimization task for evacuation time or total mass can be
extremely difficult, due to the strong irregularity and the presence of many local
minima.

In order to optimize (23) we propose instead an alternative suboptimal, but
computationally efficient strategy, named modified Compass Search (CS). This
method falls in the class of metaheuristic algorithms, it ensures the convergences
towards local minima, without requiring any regularity of the cost functional [10].
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We use the CS method in order to optimize the trajectory of the aware leaders.
The idea is to start from an initial guess u

opt,(0)
k which produces an admissible

trajectory toward a target exit, for example, as follows

uopt, (0)k(t) = β
�k(t) − yk(t)

‖�k(t) − yk(t)‖ + (1 − β)(mF (t) − yk(t)), (24)

where �k(t) is the target position at time t , depending on the environment and such
that �k(t) = xτe for t > t∗ . The parameter β ∈ [0, 1] measures the tendency of
leaders to move toward the target �k(t) or staying close to followers center of mass
mF (t).

We will refer to (24) as “go-to-target” strategy. Then CS method iteratively
modifies the current best control strategy found so far computing small random
piecewise constant variation of points on the trajectories. Then, if the cost functional
decreases, the variation is kept, otherwise it is discarded. We consider piecewise
constant trajectories, introducing suitable switching times for the leaders controls.

We summarize this procedure in the following algorithm.

Algorithm (Modified Compass Search)

1. Select a discrete set of sample times SM = {t1, t2, . . . , tM }, the parameters j = 0,
jmax and JE .

2. Select an initial strategy u∗ piecewise constant over the set SM, e.g., constant
direction and velocity speed towards a fixed target �k(t), k = 1, . . . , NL, see
Equation (24). Compute the functional J(x,u∗).

3. Perform a perturbation of the trajectories over a fixed set of points P ∗(t) on
current optimized leader trajectories with small random variations over the time-
set SM ,

P (j)(tm) = P ∗(tm) + Bm, m = 1, . . . ,M, (P)

where Bm ∼ Unif([−1, 1]d) is a random perturbation and set for m = 1, . . . ,M,

uopt,(j)(t) = P ∗(tm+1) − P ∗(tm)
‖P ∗(tm+1) − P ∗(tm)‖ , t ∈ [tm, tm+1].

Finally compute J(x,u(j)).
4. while j < jmax AND J(x,u∗) < JE

a. Update j ← j + 1.
b. Perform the perturbation (P) and compute J(x,u(j)).
c. If J(x,u(j)) ≤ J(x,u∗)

set u∗ ← u(j) and J(x,u∗) ← J(x,u(j)).

repeat ��
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Remark 5

• Compass search does not guarantee the convergence to a global minimizer, on
the other hand it offers a good compromise in terms of computational efficiency.

• Alternative metaheuristic schemes can be employed to enhance leader tra-
jectories and improve the convergence towards the global minimizer, among
several possibilities we refer to genetic algorithms, and particle swarm based
optimizations.

• The synthesis of control strategies via compass search for the microscopic and
the mean-field dynamics can produce different results, due to the strong non-
linearities of the interactions, and the non-convexity of the functional considered,
such as the evacuation time. However, in any case, the solutions retrieved by this
approach satisfy local optimality criteria by construction.

4.1 Numerical Experiments

We present three different numerical experiments at microscopic and mesoscopic
levels, corresponding to the minimization of cost functionals presented in Sect. 2.2.

Numerical Discretization The dynamics at microscopic level is discretized by a
forward Euler scheme with a time step 
t = 0.1, whereas the evolution of the
mean-field dynamics is approximated by MFMCs algorithms. We choose a sample
of O(103) particles for the approximation of the density and we reconstruct their
evolution in the phase space by kernel density estimator with a multivariate standard
normal density function with bandwidth h = 0.4. Table 1 reports the parameters of
the model for the various scenarios unchanged for every test. The number of leaders
instead changes and it will be specified later.

Obstacles Handling In order to deal with obstacles we use a cut-off velocity
approach, namely we compute the velocity field first neglecting the presence of
the obstacles, then nullifying the component of the velocity vector which points
inside the obstacle. This method is used in, e.g., [4, 26, 28] and requires additional
conditions to avoid situations where pedestrians stop walking completely because
both components of the velocity vector vanish, e.g., in presence of corners, or when
obstacles are very close to each other. We refer to [24] for more sophisticated
approaches of obstacles handling.

Table 1 Model parameters for the different scenarios

NF N CF
r CL

r CL
a CF

a Cτ Cs s2 r ≡ ζ γ

150 20 2 1.5 3 3 1 0.5 0.4 1 1
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4.1.1 Test 1: Minimum Time Evacuation with Multiple Exits

In this first test, leaders aim to minimize the time of evacuation (10), hence trying
to enforce crowd towards the exit avoiding congestion and ease the outflux of the
pedestrian. We assume that leaders informed about exits position follow ‘go-to-
target’ strategy defined as in (24), where the target is defined by the different exits
and will be specified for each leader. In what follows we account for two different
settings comparing microscopic and mesoscopic dynamics.

Setting a) Three Exits

We consider the case of a room with no obstacles and three exits located at
xτ1 = (35, 10), xτ2 = (16, 20), xτ3 = (10, 10) with visibility areas �e ={
x ∈ R2 : |x − xτe | < 5

}
. We consider two different types of leaders; we call selfish

leaders yself the agents who do not care about followers and follow the direction
that connects their positions to the exits. While the optimized leaders yopt are aware
of their role and they move with the aim to reach the exits and to maintain contact
with the crowd, only the trajectories of this type of leaders will be optimized. The
admissible leaders trajectories are defined as in Eq. (24), we choose β = 1 for selfish
leaders, β = 0.6 for optimized leaders and the target position as �k(t) = xτe ∀t and
for every leader k. At initial time leaders and followers are uniformly distributed
in the domain [17, 29] × [6.5, 13.5] where followers velocities are sampled from a
normal distribution with average −0.5 and variance 0.1, hence biased towards the
wrong direction. We report in Fig. 1 the initial configuration for both microscopic
and mesoscopic dynamics.

Microscopic Case We consider NL = 9 leaders, three optimized and six unaware
leaders. Each leader is associated with an exit: unaware leaders move towards the
nearest exit, whereas each optimized leader is assigned to a different exit.

Fig. 1 Test 1a. Minimum time evacuation with multiple exits, initial configuration
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Figure 2 shows the evolution of the agents with the go-to-target strategy on the
left and with the optimal strategy obtained by the compass search algorithm on the
right. As it can be seen in Fig. 2 with the go-to-target strategy the whole crowd
reaches the exit, after 850 time steps. We distinguish optimized leaders yopt with
a dashed black line. Optimized movements for leaders are retrieved by means of
Algorithm 4, with initial guess go-to-target strategy, we report in Fig. 3 the decrease
of the performance function (10) as a function of the iterations of compass search.
Eventually optimized leaders influence the crowds for a larger amount of time and
the total mass is evacuated after 748 time steps, as shown in Table 2. Figure 4
compares the evacuated mass and the occupancy of the exits visibility zone as a
function of time for the uncontrolled case, the go-to-target strategy and the optimal
compass search strategy. Dashed lines indicate times of total mass evacuation.

Fig. 2 Test 1a. Microscopic case: minimum time evacuation with multiple exits. On the left the
uncontrolled case, in the center the go-to-target and on the right the optimal compass search
strategy

Fig. 3 Test 1a. Microscopic case: decrease of the value function (10) as a function of compass
search iteration



112 G. Albi et al.

Table 2 Test 1a. Performance of leader strategies over microscopic dynamics

Uncontrolled Go-to-target CS (50 it)

Evacuation time (time steps) > 1000 850 748

Evacuated mass (percentage) 46% 100% 100%

Only followers
Go-to-target
Compass search

Only followers
Go-to-target
Compass search

Only followers
Go-to-target
Compass search

Only followers
Go-to-target
Compass search

Fig. 4 Test 1a. Microscopic case: minimum time evacuation with multiple exits. Evacuated mass
(first row), occupancy of the visibility area �1 (second row, left), �2 (second row, center), and �3
(second row, right) as a function of time for uncontrolled, go-to-target and optimal compass search
strategies. The dot line denotes the time step in which the whole mass is evacuated, the line is black
for the go-to-target and red for the optimal compass search strategy

Table 3 Test 1a. Performance of leader strategies over mesoscopic dynamics

Uncontrolled Go-to-target CS (50 it)

Evacuation time (time steps) > 1000 > 1000 897

Evacuated mass (percentage) 84% 99% 100%

Mesoscopic Case We consider now a continuous density of followers, in the same
setting of the previous microscopic case: we account for NL = 9 microscopic
leaders moving in a room with no obstacles and three exits. Hence we compare
uncontrolled dynamics, go-to-target strategies, and optimized strategies with com-
pass search. In Table 3 we show that without any control followers are unable
to reach the total evacuation reaching 84% of total mass evacuated. Go-to-target
strategy improves total mass evacuated, however, a small part of the mass spreads
around the domain and is not able to reach the target exit. Eventually, with optimized
strategies, we reach the evacuation of the total mass in 897 simulation steps. The
better performance of the optimized strategy can be observed directly from Fig. 5,
where functional (10) is evaluated at subsequent iterations of Algorithm 4. In Fig. 6
we show three snapshots of the followers density comparing leaders with different
strategies and the uncontrolled case. In the upper row, we report the evolution
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Fig. 5 Test 1a. Mesoscopic case: minimum time evacuation with multiple exits. Decrease of the
value function (10) as a function of attempts

without any control. The middle row shows leaders driven by a go-to-target strategy
promoting evacuation of followers density. At time t = 50 leaders are moving to
influence the followers towards the three exits. At time t = 100, the followers mass
splits and starts to reach the exits. At time t = 1000, complete evacuation is almost
reached. The bottom row depicts improved strategies of leaders, where total mass is
evacuated at time step 912.

Finally in Fig. 7 we summarize the results showing the evacuated mass as the
cumulative distribution of agents who reached the exit, and the occupancy of the
visibility areas in terms of total mass percentage for the various exits. Dashed red
line indicates time of complete evacuation.

Setting b) Two Exits in a Closed Environment

Assume now to have a room with walls that contains two exits, xτ1 = (50, 0) and
xτ2 = (30, 50). Followers are uniformly distributed in [0, 10] × [0, 10]. Assume
that initially two unaware leaders yself move towards exit xτ1 with selfish strategy,
i.e., β = 0 in (24). Hence the goal is to minimize the total evacuation time as
reported in (10) introducing two additional leaders yopt moving towards exit xτ2 , for
these two leaders we choose the parameter β = 0.6 in (24). The target position is
�k(t) = xτe ∀t and for every leader k. Figure 8 shows the initial configuration in the
microscopic and mesoscopic case, and with an initial position of NL = 4 unaware
and aware leaders.

Microscopic Case In Fig. 9 we report the crowd’s evolution in various scenarios:
left plot shows the trajectories where only unaware leaders are present, in this case,
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Fig. 6 Test 1a. Three snapshots taken at time t = 50, t = 100, t = 1000 of the mesoscopic
densities for the minimum time evacuation with multiple exits. In the upper row the uncontrolled
case, in the central row the three aware leaders, follows a go-to-target strategy, whereas in the
bottom row their trajectories are optimized according to CS algorithm

the whole crowd reaches the exit xτ1 ; central and right plots show the influence of
two aware leaders moving to xτ2 , respectively, with fixed and optimized strategies.
Unaware leaders influence the whole crowd to move towards the exit, however,
generating overcrowding at xτ1 and leaving some agents getting lost. Introducing
two aware leaders with fixed strategies the whole mass is evacuated in 1966
time steps, with optimized strategies evacuation time is further reduced to 1199
time steps. In these last cases, the mass is split between the two exits and hence
overcrowding phenomena are reduced. In Table 4 the total evacuation time and
the corresponding evacuated mass for the three scenarios are reported, where we
indicate that optimized strategy is obtained after 50 iterations of compass search.
Finally, in Fig. 10 we report the occupancy of the visibility areas and the cumulative
distribution of the mass evacuate as a function of time for the various scenarios.

Mesoscopic Case We consider now the mean-field approximation of the micro-
scopic setting. We report in Fig. 11 three snapshots of followers density and
trajectories of leaders, for each scenario. In this case, unaware leaders moving
selfishly towards exit xτ1 are able to influence followers and evacuate 81% at
final time, whereas the rest of the mass is congested around the exit. Introducing
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Only followers
Go-to-target
Compass search

Only followers
Go-to-target
Compass search

Only followers
Go-to-target
Compass search

Only followers
Go-to-target
Compass search

Fig. 7 Test 1a. Mesoscopic case: minimum time evacuation with multiple exits. Evacuated mass
(first row), occupancy of the visibility area �1 (second row, left), �2 (second row, center) and �3
(second row, right) as a function of time for go-to-target and optimal compass search strategies.
The dot line denotes the time step in which the whole mass is evacuated with the optimal compass
search strategy

Fig. 8 Test 1b. Minimum time evacuation with multiple exits and obstacles, initial configuration
for microscopic and mesoscopic case

two aware leaders with a fixed strategy toward xτ2 is not sufficient to reach total
evacuation at final time which is and at final time 95% of the mass is evacuated. The
bottom row depicts the case with optimized leaders strategies, in this case, the total
mass is evacuated at time step 1750. We summarize the performances of the results
in Table 5, and in Fig. 12 we report the occupancy of the visibility areas and the
cumulative distribution of mass evacuated as a function of time.
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Fig. 9 Test 1b. Microscopic case: minimum time evacuation with multiple exits and obstacles.
Go-to-target NL = 2 (left), go-to-target NL = 4 (center), optimal compass search (right)

Table 4 Test 1b. Performance of leader strategies over microscopic dynamics

Go-to-target NL = 2 Go-to-target NL = 4 CS (50 it)

Evacuation time (time steps) >2000 1966 1199

Evacuated mass (percentage) 99% 100% 100%

Fig. 10 Test 1b. Microscopic case: minimum time evacuation with multiple exits and obstacles.
Evacuated mass (left), occupancy of the visibility area �1 (center) and �2 (right) as a function of
time for go-to-target and optimal compass search strategies. The black and red dot lines denote
the time step in which the whole mass is evacuated with the go-to-target (NL = 4) and optimal
compass search strategy, respectively

4.1.2 Test 2: Mass Evacuation in Presence of Obstacles

We consider two rooms, one inside the other, where the internal room is limited by
three walls while the external one is bounded by four walls. We assume that walls are
nonvisible obstacles, i.e., people can perceive them only by physical contact. This
corresponds to an evacuation in case of null visibility (but for the exit points which
are still visible from within �1 and �2). Consider the case of two exits, xτ1 = (2, 78)
and xτ2 = (45, 2) positioned in the external room. Figure 13 provides a description
of the initial configuration. Note that in order to evacuate, people must first leave
the inner room, in which they are initially confined, and then search for exits.
Evacuation in presence of obstacles is not always feasible. Instead of minimizing
the total evacuation time as in Sect. 4.1.1, we aim to minimize the total mass inside
the domain as reported in (11) and hence to maximize the total evacuated mass.
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Fig. 11 Test 1b. Mesoscopic case: minimum time evacuation with multiple exits and obstacles.
Three snapshots taken at time t = 50, t = 500, t = 2000 with the go-to-target strategy in the case
NL = 2 (upper row), NL = 4 (central row) and with the optimized compass search strategy (lower
row)

Table 5 Test 1b. Performance of leader strategies over mesoscopic dynamics

Go-to-target NL = 2 Go-to-target NL = 4 CS (50 it)

Evacuation time (time steps) >2000 >2000 1750

Evacuated mass 81% 95% 100%

Each leader will move toward one of the exits following a go-to-target, similar to
(24), and such that it is admissible for the configuration of the obstacles. We choose
β = 1 for every leader. The target position is �k(t) = xτe for t > t∗, while for t < t∗
we consider one intermediate point in order to let the leaders to evacuate the inner
room.

Microscopic Case We consider NL = 6 leaders, with two aware leaders. Initially,
followers have zero velocity. Three leaders, only one aware, will move towards exit
xτ1 , and the remaining towards exit xτ2 . We report in Fig. 14 the evolution with the
go-to-target strategy on the left, and with optimized strategies for the two aware
leaders on the right. With go-to-target strategy leaders first leave the room and then
move towards the exits. Since leaders move rapidly towards the exits, their influence
over followers vanishes after a certain time. Indeed, part of the followers hits the
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Fig. 12 Test 1b. Mesoscopic case: minimum time evacuation with multiple exits and obstacles.
Evacuated mass (left), occupancy of the visibility area �1 (center) and �2 (right) as a function of
time for go-to-target and optimal compass search strategies. The red dot line denotes the time step
in which the whole mass is evacuated with the optimal compass search strategy

Fig. 13 Test 2. Maximization of mass evacuated in presence of obstacles, initial configuration

Fig. 14 Test 2. Microscopic case: mass maximization in presence of obstacles. On the left, go-to-
target. On the right, optimal compass search

right boundary wall and does not reach the exits. Instead, with optimized strategies,
leaders are slowed down, as consequence followers are influenced by leaders for
a larger amount of time. Table 6 reports the comparison between two strategies
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Table 6 Test 2. Performance
of various strategies for
obstacle case with two exits
in the microscopic case

Go-to-target CS (3 it)

Evacuation time (time steps) >3000 2948

Evacuated mass (percentage) 42% 100%

Go-to-target
Compass search

Go-to-target
Compass search

Go-to-target
Compass search

Fig. 15 Test 2. Microscopic case: mass maximization in presence of obstacles. Evacuated mass
(left), occupancy of the visibility area �1 (center) and �2 (right) as a function of time for go-to-
target and optimal compass search strategies

in terms of evacuated mass, where with only three iterations of the optimization
method total evacuation is accomplished. In Fig. 15 we compare the cumulative
distribution of evacuated mass and the occupancy of the exits visibility areas as a
function of time for go-to-target strategy and optimized strategy. We remark that
with minimal change of the fixed strategy we reach evacuation of the total mass.

Mesoscopic Case Consider now the case of continuous mass of followers, and the
equivalent setting as in the microscopic case. Initial configuration is reported in
Fig. 13. We report the evolution of the two scenarios in Fig. 16, where in the upper
row we depict three different time frames of the dynamics obtained with go-to-
target strategy. Once leaders have moved outside the inner room, at time t = 1400,
followers mass splits into two parts. However, only leaders moving towards the
lower exit xτ2 are able of steering the followers towards the target, the rest of the
followers moving upwards get lost and at final time t = 3000 is located close to
the left wall. Hence, partial evacuation of followers is achieved, as shown in Table 7
we retrieve 78.8% of total mass evacuated. Only one exit is used, this may cause
problems of heavy congestion around the exits. Bottom row of Fig. 16 shows the
situation with optimized leaders strategy. Differently from the previous case at time
t = 2380 the whole mass has been evacuated, part of the followers mass reaches the
lower exits and the remaining mass reaches xτ1 after a while. In Table 7 we reported
the performances of the two approaches. In Fig. 17 we compare the evacuated mass
and the occupancy of the exits visibility zone as a function of time for go-to-target
strategy and optimized strategy after 5 iterations of compass search method.
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Fig. 16 Test 2. Mesoscopic case: mass maximization in presence of obstacles. Upper row: three
snapshots taken at time t = 100, t = 1400, t = 3000 with the go-to-target strategy. Lower row:
three snapshots taken at time t = 100, t = 1400, t = 3000 with the optimized compass search
strategy

Table 7 Test 2.
Performances of total mass
evacuation problems in the
mesoscopic case

Go-to-target CS (5 it)

Evacuation time (time steps) >3000 2380

Evacuated mass (percentage) 78,8% 100%

4.1.3 Test 3: Optimal Mass Splitting over Multiple Exits

Problems of heavy congestion and overcrowding around the exits arise naturally
in evacuation and, in real-life situations, they can cause injuries due to over-
compression and suffocation. Instead of maximizing the total evacuated mass or
the minimum time, we ask to distribute the total evacuated mass at final time T

between all the exits as reported in (12). The choice of mass redistribution among
the different exits can be done according to the specific application and environment.
In what follows we consider two different examples, both with two exits, and we will
require that mass splits uniformly between the two targets.

Setting 1) Two Exits in a Close Environment

As first example we consider the same setting of Test 2, where complete evacuation
was achieved, but all followers were directed toward a single exit. In this case we
aim to optimize leaders strategies in order to equidistribute the total mass of follower
among the two exits.

Microscopic Case In Fig. 18 we depict the scenario for the fixed strategy and
the optimized one. We observe that again with go-to-target strategy the complete
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Go-to-target
Compass search

Go-to-target
Compass search

Go-to-target
Compass search

Fig. 17 Test 2. Mesoscopic case: mass maximization in presence of obstacles. Evacuated mass
(left), occupancy of the visibility area �1 (center) and �2 (right) as a function of time for go-to-
target and optimal compass search strategies

Fig. 18 Test 3a. Microscopic case: mass splitting in presence of obstacles. On the left, go-to-target.
On the right, optimal compass search

Table 8 Test 3a.
Performances of mass
splitting in the microscopic
case

Go-to-target CS (50 it)

Evacuation time (time steps) > 3000 2704

Mass evacuated from E1 0% 45%

Mass evacuated from xτ2 72% 55%

Total mass evacuated 72% 100%

evacuation is not achieved. Moreover, since the vast majority of followers reach the
lower exit xτ2 , heavy congestion is formed in the visibility area�2. On the other hand
with an optimized strategy two aware leaders slow down their motion spending more
time inside the inner room. In this way, followers are split between the two exits,
and the entire mass is evacuated at final time. In Table 8 we report the performances
of the two strategies, where for optimized strategy we have 45% of mass in xτ1 and
55% in xτ2 . In Fig. 19 we report the evacuated mass and the occupancy of the exits
visibility zone as a function of time for go-to-target strategy and optimal compass
search strategy. Note that, with the compass search strategy, the whole mass is split
between the two exits reducing the overcrowding in the visibility region.
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Go-to-target
Compass search

Go-to-target
Compass search

Go-to-target
Compass search

Fig. 19 Test 3a. Microscopic case: mass splitting in presence of obstacles. Evacuated mass (left),
occupancy of the visibility area �1 (center) and �2 (right) as a function of time for go-to-target
and optimal compass search strategies

Fig. 20 Test 3a. Mesoscopic case: mass splitting in presence of obstacles. Three snapshots taken
at time t = 100, t = 1400, t = 3000 with the optimal compass search strategy. For the go-to-target
case we refer to the first row of Fig. 16

Table 9 Test 3a.
Performances of mass
splitting in the mesoscopic
case

Go-to-target CS (50 it)

Evacuation time (time steps) > 3000 > 3000

Mass evacuated from xτ1 0% 49%

Mass evacuated from xτ2 78, 8% 50%

Total mass evacuated 78,8% 99%

Mesoscopic Case We report now the case of a continuum density of followers. For
the go-to-target strategy, we consider the same dynamics of the previous test, in
this case the mass of followers does not split between the two exits, as shown in
Fig. 16, and the 78, 8% reaches exit xτ2 . In Fig. 20, three snapshots were taken at
three different times with the compass search strategy. At time t = 100, leaders
move to evacuate the followers mass out of the inner room. At time t = 1400,
the followers mass splits in two masses, one moving towards the upper and the
other towards the lower exits. At time t = 3000, almost all the followers mass is
evacuated. The mass is split between the two exits as shown in Table 9. In Fig. 17
we compare the evacuated mass and the occupancy of the exits visibility zone as a
function of time for go-to-target strategy and optimal compass search strategy. With
the compass search technique the occupation of the visibility areas is reduced since
the splitting of the total mass between the two exits is optimized. Hence, the risk of
injuries due to overcrowding in real-life situations should be reduced, as depicted in
(Fig. 21).
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Go-to-target
Compass search

Go-to-target
Compass search

Go-to-target
Compass search

Fig. 21 Test 3a. Mesoscopic case: mass splitting in presence of obstacles. Evacuated mass (left),
occupancy of the visibility area �1 (center) and �2 (right) as a function of time for go-to-target
and optimal compass search strategies

Fig. 22 Test 3b. Mass splitting in presence of staircases, initial configuration

Setting b) Two Exits with Staircases

Consider two rooms and two exits, limited by walls, positioned at different floors,
and connected by a staircase. Each room has an exit located in the bottom right
corner. We assume followers and leaders to be uniformly distributed in a square
inside the first room. Similar to the previous case, we assume that the model includes
eight unaware and two aware leaders in total NL = 10. The admissible leaders
trajectories are defined as in Eq. (24), we choose β = 1 for every leaders. The
target position is �k(t) = xτ1 ∀t for the leaders moving towards the exit in the first
room. While for the others is �k(t) = xτ2 for t > t∗ and for t < t∗ we select two
intermediate points in such a way that first leaders reach the staircases and then the
second room. Indeed, to evacuate, agents must either reach the exit in the first room,
called exit xτ1 , or move towards the staircase, reach the second room and then search
for the other exit, called exit xτ2 . The initial configuration is shown in Fig. 22.

Microscopic Case Consider NL = 10 leaders. Assume that two leaders are aware
of their role while the remaining are selfish leaders. Exits for every leader are chosen
at time t = 0 in such a way that five unaware leaders move toward exit xτ1 and the
remaining toward exit xτ2 . Among them, one of the two aware leaders moves towards
one exit and the other towards the other exit.
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Fig. 23 Test 3b. Microscopic case: mass splitting in presence of staircases. On the left, go-to-
target. On the right, compass search

Table 10 Test 3b.
Performances of mass
splitting in the microscopic
case

Go-to-target CS (50 it)

Evacuation time (time steps) > 3000 2627

Mass evacuated from xτ1 57% 62%

Mass evacuated from xτ2 0% 38%

Total mass evacuated 57% 100%

In the case of go-to-target strategy, leaders drive some followers to exit xτ1 and
some others to the staircase. The ones that reach the staircase move from the upper
to the lower room and then are driven by leaders to exit xτ2 . As shown in Fig. 23 on
the left, some followers are able to reach exit xτ1 and some others to reach the second
room. However, since the vast majority of leaders are unaware and move selfishly
towards the exits, followers do not evacuate completely. Hence the only exit useful
for evacuation is the one placed in the first room, exit xτ1 , whose visibility area
is overcrowded. On the right of Fig. 23 leaders movement follows an optimized
strategy allowing followers to split between the two exits. In this case, complete
evacuation is achieved. Table 10 reports the performances of the two strategies.
With the go-to-target strategy, all the evacuated followers reach the visibility area
�1 and hence are evacuated from exit xτ1 . With an optimized strategy instead, a
larger amount of followers is evacuated and the overcrowding of the visibility areas
is reduced.

In Fig. 24 we compare the evacuated mass and the occupancy of the exits
visibility zone as a function of time for go-to-target strategy and optimal compass
search strategy. Note that, with the compass search strategy, the whole mass is
split between the two exits while with the go-to-target strategy the evacuated mass
reaches only exit xτ1 .

Mesoscopic Case Consider the case of a continuous mass of followers. Similar to
the microscopic case we observe in Fig. 25 the evolution of the dynamics with fixed
strategy and with the optimized one. The upper row shows that with the go-to-target
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Go-to-target
Compass search

Go-to-target
Compass search

Go-to-target
Compass search

Fig. 24 Test 3b. Microscopic case: mass splitting in presence of obstacles. Evacuated mass (left),
occupancy of the visibility area �1 (center) and �2 (right) as a function of time for go-to-target
and compass search strategies

Fig. 25 Test 3b. Mesoscopic case: mass splitting in presence of staircases. Upper row: three
snapshots taken at time t = 500, t = 1400, t = 3000 with the go-to-target strategy. Lower
row: three snapshots taken at time t = 500, t = 1400, t = 3000 with the optimized compass
search strategy

strategy the total evacuated mass is not split between the two exits since just the
1, 2% of mass reaches exit xτ2 . However, as shown in Table 11 a larger percentage
of followers reaches exit xτ1 and the remaining part spreads in the second room
without evacuate.

The lower row of Fig. 25 shows the dynamics obtained with the optimized
compass search strategy. At the time t = 500 a larger follower mass is moving
towards the staircase. At time t = 3000 almost all the mass is evacuated and split
between the two exits. In Table 11 we compare the two strategies showing that with
the compass search technique it is possible to improve the mass splitting.

In Fig. 26 we compare the evacuated mass and the occupancy of the exits
visibility zone as a function of time for go-to-target strategy and optimal compass
search strategy. Note that, with the compass search strategy a larger percentage of
mass reaches exit xτ2 than with the go-to-target strategy.
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Table 11 Test 3b.
Performances of mass
splitting in the mesoscopic
case

Go-to-target CS (50 it)

Evacuation time (time steps) > 3000 > 3000

Mass evacuated from xτ1 46, 6% 51%

Mass evacuated from xτ2 1, 2% 48%

Total mass evacuated 47, 8% 99%

Go-to-target
Compass search

Go-to-target
Compass search

Go-to-target
Compass search

Fig. 26 Test 3b. Mesoscopic case: mass splitting in presence of obstacles. Evacuated mass (left),
occupancy of the visibility area �1 (center) and �2 (right) as a function of time for go-to-target
and optimal compass search strategies

4.2 Discussion and Comparison

In the previous tests we have considered different scenarios to create more complex
situations in relation to the functionals chosen, [55]. In general, given a certain
setting, it is difficult to choose the optimal number of leaders that guarantee evac-
uation, and a high number of leaders does not necessarily imply better evacuation
efficiency, see, for example, [47]. Another challenging aspect is to give a uniform
measure of the performance of the different strategies in such different contexts. A
viable option is to quantify the congestion around the exits to exclude dangerous
situations. Following the idea in [35] we consider the congestion value

cong�i
(t) = ρ�i

(t)var�i
(v(t)),

where ρ�i
(t) is the number of agents (mass) in the microscopic (mesoscopic) case

inside �i at time t and

var�i
(v(t)) = 1

ρ�i
(t)

∑

j∈�i

(|vj (t)| − s
)2
.

We consider also m�i
the maximum number of pedestrians over time inside the

visibility area �i and l�i
the percentage of time in which the visibility area �i

is not empty, finally we denote by M�i
the percentage of mass inside �i in the

mesoscopic case.
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Table 12 Comparison of the congestion in the visibility areas for the microscopic case. In red the
maximum value of cong�i

among the visibility areas �i

cong�1 cong�2 cong�3 m�1 m�2 m�3 l�1 l�2 l�3

Test 1a 0.039 0.011 0.012 40 19 17 0.73 0.51 0.33

Test 1b 0.013 0.009 −− 27 16 – 0.36 0.22 −−
Test 2 0.009 0.056 −− 20 54 – 0.13 0.31 −−
Test 3a 0.035 0.027 −− 43 26 – 0.19 0.29 −−
Test 3b 0.024 0.006 −− 41 20 – 0.28 0.16 −−

Table 13 Comparison of the congestion in the visibility areas for the mesoscopic case. In red the
maximum value of cong�i

among the visibility areas �i

cong�1 cong�2 cong�3 M�1 M�2 M�3 l�1 l�2 l�3

Test 1a 0.025 0.005 0.016 0.22 0.6 0.16 0.88 0.79 0.75

Test 1b 0.010 0.005 −− 0.1 0.08 −− 0.51 0.26 −−
Test 2 0 0.009 −− 0 0.12 −− 0 0.36 −−
Test 3a 0.005 0.011 −− 0.07 0.12 −− 0.3 0.32 −−
Test 3b 0.013 0.004 −− 0.2 0.1 −− 0.41 0.3 −−

Fig. 27 Test 1a. Microscopic case: number of agents and mean velocity of the visibility areas

In this way we can compare the congestion of the various exits for different
settings, showing that the more desirable situations are when cong�i

and m�i
(M�i

)
are small and l�i

is high. We reported in Tables 12 and 13, respectively, the values
for the microscopic and the mesoscopic setting.

Finally, Figs. 27, 28 show the mean velocity and the congestion level for the case
of evacuation with three exits (Test 1a) in the microscopic and mesoscopic case,
respectively. These plots underline that if the congestion level is higher then the
mean velocity is lower.

5 Conclusions

This work has been devoted to the study of optimized strategies for the control
of egressing pedestrians in an unknown environment. In particular, we studied
situations with complex environments where multiple exits and obstacles are
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Fig. 28 Test 1a. Mesoscopic case: mass of agents and mean velocity of the visibility areas

present. Few informed agents act as controllers over the crowd, without being
recognized as such. Indeed it has been shown that minimal intervention can change
completely the behavior of a large crowd, and at the same time avoiding adversarial
behaviors. On the other hand, we observed that if part of the informed agents moves
without coordinated action, this may cause critical situations, such as congestion
around the exit. Hence it is important to have a clear understanding of different
strategies to enhance the safe evacuation of the crowd. To this end, we explored
various optimization tasks such as minimum time evacuation, maximization of mass
evacuated, and optimal mass distribution among exits.

We investigated these dynamics at the various scales: from the microscopic
scale of agent-based systems to the statistical description of the system given by
mesoscopic scale. Numerically we proposed an efficient scheme for the simulation
of the mean-field dynamics, whereas we use a metaheuristic approach for the
synthesis of optimized leaders strategies. The proposed numerical experiments
suggest that the optimization of leaders movements is enough to de-escalate critical
situations.

Different questions arise at the level of control through leaders with multiple
exits and obstacles. In such a rich environment several research directions can be
explored, such as optimal positioning and amount of leaders within the crowd,
or different type of cooperative strategies among different groups of leaders to
optimally distribute the followers crowd.
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The Impact of Physical Distancing
on the Evacuation of Crowds

Enrico Ronchi, Daniel Nilsson, Ruggiero Lovreglio, Mikayla Register,
and Kyla Marshall

Abstract One of the key implications of COVID-19 is the adoption of physical
distancing provisions to minimise the risk of virus transmission. Physical distancing
can have significant consequences on crowd movement both in normal conditions
and during emergencies. The impact of physical distancing is discussed in this
chapter by first presenting an overview of its implications on crowd dynamics
and space usage. This is followed by an assessment of expected changes in
crowd behaviour, including changes in the fundamental walking speed/density and
flow/density relationships. Findings from an experiment investigating the impact of
physical distancing on flow rates through doors are presented. In addition, a set of
recommendations concerning modifications of the hand calculations currently used
for evacuation design (e.g. hydraulic models) are presented alongside a discussion
on possible modifications to agent-based crowd models. A verification test to
evaluate the results produced by crowd evacuation modelling tools considering
physical distancing is also presented. This chapter highlights the importance of
considering the increased movement time due to physical distancing in evacuation
design and provides insights on how to account for this issue in crowd modelling.

1 Introduction

The COVID-19 pandemic has had a significant impact on any stakeholder dealing
with crowds and building usage. The spread of the SARS-CoV-2 virus since Decem-
ber 2019 has pushed many countries all around the world to enforce restrictions
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such as cancelling or postponing events involving large crowds and reducing and/or
denying access to public buildings [1]. One of the main restrictions adopted is
physical distancing (also called social distancing) [2]. Physical distancing has been
proven to be an effective way to mitigate the spread of viruses before COVID-19
pandemic [3]. Similar results have shown that SARS-CoV-2 transmission has been
reduced by physical distancing when implemented in conjunction with testing and
contact tracing of all suspected cases [4].

While the World Health Organization [5] recommended keeping a distance
of at least 1m from others, countries around the world have provided different
distancing requirements during the pandemic, for instance, 1m (China, Denmark,
France, Singapore), 1.4 m (South Korea), 1.5 m (Australia, Germany, Italy, Spain),
1.8m (USA) and 2 m (Canada, UK, NZ) [6]. Physical distancing is raising many
challenges for the use of space as it significantly decreases the density of people
allowed in the built environment [7, 8]. Compliance with those measures is currently
under scrutiny [9], as the type of walking behaviour may impact resulting density
and inter-person distance [10]. Physical distancing is creating challenges for crowd
management both in normal conditions and during emergencies. In fact, in pandemic
times, the safety of built environments needs to account for multiple concurrent
threats such as virus transmission and fires or terrorist attacks [11].

To date, several epidemiological modelling studies have been conducted to
investigate the impact that different provisions may have on the pandemic at
different scales [12]. Nevertheless, only a few studies have investigated the use of
crowd modelling for pandemic scenarios. Ronchi and Lovreglio [1] have proposed
a modelling solution to retrofit crowd models to assess building occupant exposure
to a virus in confined spaces. Ronchi et al. [11] have provided insights on how to
use crowd evacuation models in times of pandemic. A risk analysis methodology
for the use of crowd modelling tools during the COVID-19 pandemic and its
implementation have also been proposed [8]. D’Orazio et al. [13] proposed a
probabilistic simulation model based on consolidated proximity and exposure-time-
based rules for virus transmission which is applied for university buildings. Crowd
modelling was also adopted to estimate the spread of the virus in touristic spaces
[14]. Garcia et al. [15] proposed a method for calculating the maximum capacity of
public spaces constrained to physical distancing, while Xu and Chraibi [16] used
crowd modelling to test the effectiveness of different measures to reduce the contact
of customers in supermarkets. Another crowd modelling approach available in the
literature includes the implementation of different social and physical pedestrian
sizes to investigate their impact on pedestrian behaviour [17].

The existing literature shows how crowd modelling can provide insightful
outputs to assess the space usage in normal conditions, as well as assessing the time
required to evacuate a building in case of physical distancing. To date, many of the
most known and used crowd evacuation models [18] have been modified to consider
physical distancing requirements. However, these models generally rely on the use
of crowd movement relationships which were generated with data collected without
any ongoing pandemic [19, 20]. Similarly, algorithms for route choice are based
on pre-pandemic conditions [21–23]. The use of crowd models without a careful



The Impact of Physical Distancing on the Evacuation of Crowds 135

re-evaluation of their inputs and assumptions due to physical distancing provisions
may lead to misleading results [11]. As such, there is the need for a comprehensive
evaluation of the impact of physical distancing on the evacuation of crowds as well
as a need to provide an answer to the following question: What is the impact of
physical distancing on crowd evacuation movement?

To date, there is no research investigating to which extent people comply with
physical distancing provisions during an emergency. Nevertheless, it is deemed
important to assess what possible implications physical distancing may have,
especially given the fact that buildings are currently being designed with the help of
crowd models that are calibrated with data obtained in pre-pandemic conditions.

This chapter provides an overview of the implications of physical distancing
on crowd evacuation, in which the crowd movement is mainly uni-directional.
It starts with a general introduction concerning the issues related to physical
distancing provisions, including a brief description of existing efforts aimed at
modelling crowd movement in pandemic scenarios as well as measuring pedestrian
movement behaviour experimentally. This is followed by the description of a set
of issues related to crowd dynamics and physical distancing, such as the changes
in local densities and occupant load, changes in crowd movement, route and
exit choice and group behaviour. Furthermore, an experiment performed to study
the impact of physical distancing on crowd evacuation movement is presented.
More specifically, the experiment explored the fundamental walking speed/density
and flow/density relationships for different physical distancing recommendations
(0 m, 1 m and 2 m). Based on the experimental results presented in the original
publication, it is highlighted how crowd evacuation movement may change due
to physical distancing and, in turn, how this information can be implemented in
evacuation models. This includes changes in fundamental walking speed/density
and flow/density relationships [24]. This work also proposes a verification test for
evacuation modelling tools used for representing crowd movement under physical
distancing restrictions. The chapter is concluded with a general discussion con-
cerning existing and future research on crowd evacuation movement and modelling
considering physical distancing.

2 Crowd Dynamics and Physical Distancing

Different assumptions can be used for the calculation of physical distance. They
concern the representation of the body size and the reference point used for
its estimation. It should also be noted that physical distance calculations are
generally performed in two dimensions (i.e. the projection of people on a 2D
plane). People may be represented considering a top view of their body and could
be approximated with different body shapes. Common shapes include elliptical
or circular representations [25, 26]. Simpler approximations of body size would
assume common dimensions for all individuals, for instance, circles with a radius in
the order of magnitude between 0.25 cm and 0.45 m [27, 28].
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Different reference points can be used for physical distance estimations. This
can include the distance between different parts of the body (e.g. noses, arms, feet,
etc.) and an ideal reference point, for instance, the centre point of two people or
the closest points between people. The former is often defined as contact distance,
while the latter is called inter-person distance [29]. Under certain assumptions, the
orientation of the bodies can impact the calculated distances.

Based on the physical distancing under consideration, several changes may occur
concerning crowd evacuation dynamics. Those changes relate primarily to:

1. Local and global densities (i.e. the occupant load expected in a given area)
2. Crowd movement, intended as the fundamental speed/density and flow/density

relationships
3. Route and exit choice
4. Group behaviour

In addition, the implementation of a target physical distance for a crowd in
motion during an evacuation may require higher distance provisions. This has been
investigated experimentally, and it is discussed in Sect. 3.

2.1 Changes in Local Densities and Occupant Load

The need to ensure physical distancing has several consequences on space usage,
among which the first key aspect strictly linked to evacuation is the expected
occupant load (or global density, considering the static crowd) in a given space
(a whole building, area or portion of a building/area) and the maximum local
densities during movement. In fact, physical distancing can be considered assuming
a static crowd (e.g. sitting, standing) or a moving crowd (e.g. walking, running,
queuing with stop-and-go behaviour). In the case of evacuation design, we generally
refer to a moving crowd. This implies that the crowd may need more space to
keep a given target physical distance. Nevertheless, occupant loads are generally
calculated assuming an initial static position of people. Therefore, depending on the
assumptions in use, the resulting maximum allowed number of people in a given
confined or open space area could greatly impact crowd evacuation.

Another key aspect concerning occupant load and local density estimation is the
expected initial location of people. Occupant load can be calculated considering
the free area around a person. Individuals can then be assumed to be uniformly
distributed (with different patterns, i.e. along a virtual chessboard or in an alternated
chevron pattern, as shown in Fig. 1), considering the placing from the corners or
not, the impact of physical obstructions avoiding virus transmission and placed
individually or in clusters/groups. The resulting distribution of people could greatly
affect density estimations, thus modifying the occupant loads in a given space and
the maximum achievable local densities. Based on Fig. 1, Eqs. 1 and 2 represent
examples of methods to calculate density based on a uniform squared packing or
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Fig. 1 Possible assumptions for people distributions in occupant load and local density calcula-
tions. The figure on the left indicates a hypothetical uniform squared packing, and the figure on the
right indicates a hypothetical circular packing approximated with a hexagon

Fig. 2 Relationship between maximum density dmax and physical distance according to the
circular packing assumption with the approximation presented in Eq. 2

circular packing (here with an approximation to a hexagonal shape), respectively.
In addition, the occupant load calculations could be made considering different
assumptions regarding the area required by each individual (e.g. circular or squared,
as shown in Fig. 2) and the size of the pre-set groups which are considered to be
together during their movement being those not required to keep physical distance.
Occupant load calculation can then be implemented either considering the area per
person (generally in m2 per person) or the person per area (person per m2):
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dmax = 9

(3Pd)2 (1)

dmax = 2√
3Pd2

(2)

Where:

dmax is the maximum density
Pd is the physical distance

In the present work, the use of circular packing has been adopted. The resulting
relationship between maximum density dmax (pers/m2) and physical distance Pd (m)
according to Eq. 2 is shown in Fig. 2.

2.2 Changes in Crowd Movement

Physical distancing can have a direct impact on crowd evacuation movement. In
fact, each individual may change their speed and/or direction of movement in an
attempt to keep a given distance from other people. The movement of an evacuating
crowd is generally governed by a set of self-organising rules, which include (but are
not limited to) lane formation, which is the tendency to follow people ahead and
form lanes when moving in a crowd [30], and clogging effects at bottlenecks [31].
The current understanding is based on experiments or real-world data collected in
pre-pandemic conditions, and given the scarcity of data currently available, there
is limited knowledge about the self-organisation rules during a pandemic. A clear
example of this issue is lane formation, as this rule may change due to the need to
maximise physical distance while moving [32].

During an evacuation, crowd movement is expected to mostly happen consid-
ering uni-directional flows, so this is the main focus of this work. Nevertheless,
there may be conditions in which bi-directional flows may occur (e.g. during rescue
service interventions) [33].

An important implication of physical distancing is that the fundamental
speed/density and flow/density relationships [24] may need to be modified. Several
aspects would be affected by physical distancing, namely, (1) the maximum
achievable local density (see Sect. 2.1) and (2) the assumed density range in which
walking speed is affected by others. The maximum achievable local density will be
directly affected by the maximum physical distance provision (and the compliance
with it by the evacuating crowd), and it can be calculated based on the assumptions
adopted concerning space usage. The transition between unimpeded walking speed
and impeded walking speed would instead depend on the local conditions. It is
indeed possible that people may start decreasing their speed at lower-density values
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Pre-pandemic overtaking

Overtaking during pandemic

Fig. 3 Hypothetical overtaking movement path in uni-directional flows in pre-pandemic (above)
and pandemic (below) conditions

than in pre-pandemic conditions, in order to maintain a larger contact distance from
people ahead of them. Possible modifications in the fundamental relationships are
discussed in Sect. 4.

At a local crowd movement level, the process of collision avoidance [34] may
be impacted by physical distancing. In fact, people may be more prone to avoid
face-to-face contact with people (the expected changes would be more visible in
bi-directional flows, but this may also impact uni-directional flows), thus altering
their movement direction to achieve this goal (see Fig. 3). In general, people may
attempt navigating around other people keeping larger contact distances than in a
pre-pandemic scenario. A similar issue could be expected during the process of
queueing.
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2.3 Route and Exit Choice

The understanding of the route and exit choice adopted by crowds during evacuation
is currently based on pre-pandemic conditions. This can generally include different
aspects such as distance to the exit, expected queuing, route familiarity, route
availability, social influence, signage, etc. In pre-pandemic conditions, the analysis
of the overall navigation in space does not generally consider the proximity to other
people as a deterrent to select a given route/exit. It is therefore important to consider
the need to keep physical distancing during the evaluation of the routes possibly
adopted by an evacuating crowd.

A complete understanding of route and exit choice during a pandemic would need
to take into account people movement and the locations of each individual/groups
over time. This is particularly important when attempting an evaluation of queuing.
In fact, pedestrians may be more likely to change their initial chosen direction of
movement in order to avoid approaching congested areas.

During a pandemic, it is currently not known to which extent the probability
of choosing a given route/exit is affected by the presence of other people. This
increased uncertainty in route choice decisions may lead to the need to investigate
the impact of the variability in route choice decisions to perform a comprehensive
assessment of credible crowd evacuation scenarios.

2.4 Group Behaviour

A key aspect to consider when estimating the impact of physical distancing on
crowd dynamics is group behaviour [35]. In fact, established groups (e.g. groups
of family members, people sharing the same space, etc.) are not required to keep
physical distance, thus having a direct impact on all aspects related to crowd
dynamics during a pandemic. The assumptions in use concerning the size and
characteristics of the groups can therefore have a significant influence on crowd
evacuation. Different occupancy types may have different typical groups (e.g.
larger groups may be expected in a shopping mall compared to smaller groups
or individuals moving in a transient space like a train station). Different variables
can be affected by the nature of groups and their behaviour. This includes the
maximum achievable local densities, occupant load, space usage/navigation and
collision avoidance with other groups/individuals.

3 An Experiment on Physical Distancing

One of the best ways to determine the influence of physical distancing recommen-
dations on crowd flow characteristics is to perform realistic pedestrian movement
experiments. However, these types of experiments are arguably unethical to perform
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Fig. 4 Schematic representation of the geometry used in the experiment

during a pandemic, as they may lead to the spread of the disease. At the same time,
performing experiments in countries that have not been affected by the pandemic
may lead to unrealistic behaviour, as participants will have no experience of physical
distance keeping.

Given the difficulties highlighted above, New Zealand was in a unique position
in 2020. Although it experienced a very limited spread of COVID-19 in 2020
(e.g. 2200 cases over a population lower than 5 million people1), the country
was in lockdown for a significant time early in the year. People living in New
Zealand, therefore, had the experience of physical distancing recommendations,
but by September 2020, restriction in most of the country had been relaxed2. For
this very reason, experiments on crowd movement in simulated pandemic situations
were performed at the University of Canterbury on Thursday 17 September 2020
[36].

The experiments [36] were performed in the Engineering Core building at the
University of Canterbury (Christchurch, New Zealand). A classroom configuration
was chosen, namely, an open plan classroom with an exit leading to a corridor. The
area in front of the door was filmed by a total of four cameras, although only the
video recording from an overhead camera was eventually used for the analysis (see
Fig. 4).

A total of 47 participants took part in the study. Participants were mainly univer-
sity students and hence represented a relatively young population. The age ranged
from 18 to 36 years, with an average age of 21 years. Twenty-seven participants
were men, 19 were women and 1 identified as non-binary. All participants were
reimbursed with a coffee voucher worth 5 NZD.

1 https://coronavirus.jhu.edu/region/new-zealand
2 https://covid19.govt.nz/alert-system/history-of-the-covid-19-alert-system/

https://coronavirus.jhu.edu/region/new-zealand
https://covid19.govt.nz/alert-system/history-of-the-covid-19-alert-system/
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A total of four scenarios were evaluated, although only two of the scenarios are
deemed relevant for the current publication, namely:

• Scenario 1 m – Participants were told to keep a distance of 1 m while moving out
through the exit wearing a face mask.

• Scenario 2 m – Participants were told to keep a distance of 2 m while moving out
through the exit wearing a face mask.

In both Scenario 1 m and 2 m, the door opened outwards and was held open (see
Fig. 4). All scenarios were repeated five times but in a randomised order. The total
time for all the participants to walk out from the room through the exit was measured
for each iteration of Scenario 1 m and 2 m. In addition, a software called Kinovea3

was used to measure the inter-person distance between each participant standing in
the exit doorway to the participant immediately behind them (l). In addition, the time
from the participant standing in the exit doorway until the participant immediately
behind had moved to the exit doorway (
t) was measured. The speed of the person
immediately behind (s) was then being calculated according to Eq. 3:

v = l


t
(3)

This calculation of speed was done for all participants walking through the
exit, except for the first participant exiting the room. In addition, the inter-person
distance was used to calculate the corresponding occupant density according to the
previously mentioned circular packing model (see Fig. 1).

As mentioned previously, each scenario was repeated five times (called iterations
1 to 5). The total time to empty the room varied between 60 and 77 s, with an average
time of 68 s, for Scenario 1 m. For Scenario 2 m, the time varied between 87 and
99 s, with an average time of 95 s. The average inter-person distance for each of the
iterations of the experiment for the two scenarios can be seen in Table 1.

As shown in Table 1, people kept an average distance of 1.2 m for Scenario 1 m
and an average distance of 1.8 for Scenario 2 m. Hence, participants seem to have
left a bit more space to the person in front in the 1 m case, as opposed to the 2
m case. The histograms of inter-person distances for scenarios 1m and 2m can be
found in Figs. 5 and 6 together with normal distributions obtained with the method
of moments considering the average of all the data points (μ = 1.246 and 1.793,
respectively) along with the calculated standard deviations (SD = 0.332 and 0.319,
respectively).

Figure 7 shows the correlation between speed and density measured in the
experiment together with equivalent data curves from Predtechenskii and Milinskii
[19] for horizontal movement and movement through openings (exits). For the data
curves, a body area of 0.1 m2 was assumed when converting from dimensionless
density. The value of 0.1 m2 is based on the dimension of people in summer clothes,

3 https://www.kinovea.org/

https://www.kinovea.org/
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Table 1 Average
inter-person distance for each
iteration for Scenario 1 m and
2 m

Inter-person distance (m)
Iteration Scenario 1 m Scenario 2 m

1 0.99 1.83
2 1.07 1.77
3 1.29 1.84
4 1.40 1.76
5 1.46 1.92
Averagea 1.24 1.82

aThe average is here intended as the value
obtained considering aggregated data points
for each iteration

Fig. 5 Distribution of inter-person distance in Scenario 1 m

Fig. 6 Distribution of inter-person distance in Scenario 2 m
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Fig. 7 Participants’ data points on speed vs density from the experiments by Marshall and Register
[36] and the data correlation curves for horizontal movement and movement through openings from
Predtechenskii and Milinskii [19] (P&M in the figure)

according to Predtechenskii and Milinskii [19]. Figure 7 shows that the general
trend of the experimental data seems to be in line with the curves proposed by
Predtechenskii and Milinskii [19]. This is also confirmed by a residual analysis
carried out with the data for both scenarios. The results for Scenario 1 m indicate
that the residual average is 0.03 m/s, while for Scenario 2 m, the residual average is
0.04 m/s. This suggests that a cropped version of the design curve proposed in the
hydraulic model adopted for engineering design [20] (i.e. stopping at a given density
threshold given physical distancing) could be used rather than modifying the shape
of the correlation between speed and density.

4 Updated Relationships Between Speed/Flow and Density

This section presents possible modifications to be performed on the simple macro-
scopic speed/density and flow/density relationships in light of physical distancing.
The hand calculation method under consideration is commonly used in evacuation
design, namely, the hydraulic model from the Society of Fire Protection Engineers
(SFPE) Handbook [20]. This calculation method is here updated considering the
case of movement along with horizontal egress components (i.e. corridors, doors,
etc.).
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4.1 The SFPE Hydraulic Model Considering Physical
Distancing

The original hydraulic model is a simplified engineering calculation method for
evacuation design. It includes a theoretical maximum density (corresponding to an
impeded speed of 0 m/s) equal to 3.8 people/m2. Considering physical distancing, a
new maximum density dmax would have to be calculated depending on the physical
distancing Pd and the assumptions adopted for this calculation. This will result in a
value equal to or lower than the original threshold value (see Eq. 4):

dmax = f (Pd) ≤ 3.8
people

m2 (4)

The SFPE model also includes a so-called minimum density dm which corre-
sponds to the start of a decrease in the unimpeded speed. This corresponds in
the original model to a value of 0.54 people/m2. The updated density to start the
impeded speed can be assumed to be a number between 0 and 0.54 people/m2 (see
Eq. 5):

0 ≥ dm ≥ 0.54
people

m2
(5)

Theoretically, the speed reduction in relation to density may then be different
than the one considered in the original hydraulic model (see dashed line in Fig. 8),
depending on the assumption in use. The first assumption would be to keep the speed
unimpeded until the same value of density adopted in the SFPE hydraulic model (see
the solid black line in Fig. 8 considering the example of a corridor) and then decrease
the speed linearly until dmax (this is equal to 1.15 pers/m2 in this example; this is
the value corresponding to Pd = 1 m assuming the theoretical circular packing).
The second assumption is to consider the walking speed starting a decrease linearly
from the value of unimpeded speed corresponding to density equal to 0 people/m2

(the unimpeded speed is assumed 1.19 m/s in the original SFPE model; see dotted
line in Fig. 8) until dmax. The last assumption would be to identify the new value of
dmax which should be considered as the maximum threshold, considering the same
curve as the original model cropped at dmax. Given the experimental data presented
in the previous section, the latter approach is recommended. It should be noted that
the original SFPE hydraulic model does not differentiate the case of doors/openings
from the case of horizontal movement in corridors.

The range of densities in the fundamental relationships between speed and
densities in which speed is impeded can therefore be obtained according to Eq. 6:

dm ≤ d ≤ dmax (6)
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Fig. 8 Examples of changes in speed/density relationship in a corridor depending on the assump-
tions on density levels corresponding to a start of the decrease in speed. The dashed line represents
the original design curve of the hydraulic model, and the solid and dotted lines represent two
alternative approaches to modify the speed/density relationship based on different assumptions for
dm and dmax [20]

Considering that the curve will follow the same trend as the original hydraulic
model and be applicable only until a certain maximum density dmax based on
physical distancing, Equation 4 can be used to calculate the speed:

v = k − akd (7)

Where:

a = 0.266 for metric applications.
k = constant which changes depending on the type of egress component (see [20]

for more information).
d is in the interval [0, dmax], where dmax = 2√

3Pd 2 assuming circular packing.

A similar approach can be used to update the corresponding fundamental
flow/density relationships, i.e. flowrates can be updated in accordance with physical
distancing. The specific flow can be simply obtained by multiplying the speed
obtained in Eq. 7 with the corresponding density within the same density interval
[0, dmax]. The specific flow is therefore calculated as in Eq. 8:

Fs = vd (8)
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Fig. 9 Examples of cropped speed/density relationships based on physical distances equal to 1m
(red line) and 2 m (black line). The dashed blue line represents the original model
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Fig. 10 Examples of cropped flow/density relationships based on physical distances equal to 1m
(red line) and 2 m (black line). The dashed blue line represents the original model

An example of resulting cropped speed/density and flow/density relationships
corresponding to the physical distances of 1m and 2m (this is calculated based on
the theoretical assumption of circular packing) is presented in Figs. 9 and 10.
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Once more experimental data become available, it will be possible to confirm
the extent to which the shape of the speed/density and flow/density relationships
accounting for physical distancing correspond to the pre-pandemic shape. This
will allow confirming that the limit for the so-called capacity drop [37] may not
be reached due to the lower maximum achievable local density. In addition, data
from evacuation drills or actual emergencies could be used to check to which extent
people comply with physical distancing provisions, thus being able to identify if the
pre-pandemic capacity drop is reached.

5 Crowd Evacuation Modelling

Evacuation modelling can be used to investigate the safety conditions of a confined
or open space. In fact, they are useful tools to avoid congestions during the planning
of space usage for pedestrians during an evacuation or within a performance-based
design approach. The former analysis is used to optimise flows and reduce high-
density conditions; the latter is used to address different types of concurrent threats
along with the pandemic, such as terrorist attacks [38], toxic releases [39] or fires
[40].

A pandemic scenario can impact the whole range of behaviours that can be
represented within a crowd evacuation model, including reduced achievable density
ranges, modified space usage, collision avoidance, route choice and flow rates.
Of particular interest is the representation of the fundamental speed/density and
flow/density relationships.

The crowd model developer may need indeed to modify the fundamental
modelling methods which govern crowd movement in case of a pandemic. This
is linked to the type of crowd evacuation model in use, e.g. coarse network, fine
network or continuous model [41]. For instance, in a coarse network model, the
required changes include the need to cap the capacity of a node (pers/node) and
the need to change the capacity of the links (pers/s). In a fine network model
adopting a grid, the cell size would have to be increased to reduce the maximum
achievable density. The flow through exits would also need to be modified (i.e.
reduced) to account for the impact of physical distancing. In a continuous model,
the fundamental speed/density and flow/density relationships would have to be
modified, and a minimum distance to others should be defined.

In general terms, the modifications required by a crowd evacuation model can
be performed explicitly or implicitly. An explicit representation of the impact of the
pandemic at a macroscopic level would lead to adopting dedicated speed/density or
flow/density relationships based on physical distance and modified group interac-
tions. These can be imposed within the model or represented through modifications
of the underlying algorithms in use for the representation of movement and collision
avoidance between pedestrians (in both cases of uni- and bi-directional flows).
Commonly adopted microscopic methods for the representation of crowd movement
include the social force model [42] or the steering model [43]. The changes needed
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would therefore result in a modification of the forces and/or rules adopted for
modelling the interactions between agents in order to represent the changes due
to physical distancing.

Crowd evacuation models would likely have issues (especially network models)
in representing the case of groups that are not required to keep physical distancing,
as they may require ad hoc modelling implementations which may not be possible
to implement just for specific groups.

Existing models are calibrated and validated with collision avoidance rules based
on pre-pandemic scenarios. Collision avoidance may depend on several factors [34],
such as local density [44], assumed representation of the body size and personal
space [45, 46]. During a pandemic, pedestrians may modify their movement to
a lower or greater extent in relation to the physical distancing provisions and
compliance with them. For this reason, local interactions may greatly be affected
during a pandemic in an attempt to increase the distance towards others.

An implicit representation of the impact of the pandemic would require the user
to adapt existing or dedicated inputs to consider the impact of the pandemic. This
could include, for instance, enforcing a given physical distance between agents
during movement and modelling the likelihood of the agents to comply with it. This
type of solution may have an impact on several variables related to crowd movement
(e.g. walking speed, acceleration, route choice, etc.) and during queuing. In fact, the
agents may need to wait until a space gets free from the presence of other people
(or groups of people) before proceeding in a given direction or decide to re-route in
another direction with lower congestion.

Regardless of the method in use, the model developers/users should make sure
that the simulated behaviour corresponds to the intended one. For this reason, it
is advisable to run a dedicated set of tests to evaluate the updated fundamental
relationships in use by the crowd evacuation model. Different tests and procedures
are available in the literature to evaluate the predictive capabilities of crowd
evacuation models. In particular, a wide range of verification tests are available to
ensure that the conceptual models are correctly implemented and are in line with
the intended use of the model [47]. Those procedures include tests from the RIMEA
Guidelines for Microscopic Evacuation Analysis [48], the documentation provided
by the International Maritime Organization (IMO) [49] and the National Institute of
Standards and Technology (NIST) [50]. Most recently, the International Standards
Organization (ISO) has released a document providing a comprehensive list of tests
that are based on the above-mentioned existing documentation [51].

An example of the use of verification tests to consider the impact of physical
distancing is presented here. This concerns the fundamental relationship between
walking speed and density for uni-directional flows, and it is based on Test 13 of the
ISO document 20414, which is dedicated to this scope (this is a modified version
of Test 4 available in the RIMEA Guidelines). The scope of this test is to verify
the ability of crowd models to represent the expected uni-directional movement,
considering the impact of physical distance. Here there is a description of the test,
including the test name, objective, geometry, scenarios expected result, test method
and user’s actions.
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Fig. 11 Schematic geometric layout of the test (top view)

Test name: Relationship between walking speed, uni-directional flow and density
considering physical distance.

Objective: Assess qualitative consistency between the relationships of walking
speed, uni-directional flow and density assignment and model representation in
case of physical distance provisions.

Geometry: A corridor is represented in accordance with Fig. 11, and it is divided
into three zones, namely, zone 1 (white), zone 2 (light grey) and zone 3 (white).

Scenarios: Fill in the entire corridor (zones 1, 2 and 3 in Figure 11) with the
maximum allowed number of people in accordance with your assumed starting
physical distance (people can be placed at random in the space). They have a pre-
evacuation time equal to 0 seconds, and a walking speed of 1 m/s is assigned to
the entire crowd. Step 1: The occupants move to the right towards the exit of the
corridor. Place the last occupant in zone 2 near line A, measure the time that it
takes from line A to line B and estimate the associated walking speed. Measure the
average occupant flows in line B (with a time interval decided by the tester) starting
from the beginning of the simulation until the last occupant in zone 2 arrives at line
B. People densities in zone 2 are recorded when the last occupant in zone 2 reaches
the centre of zone 2. Step 2: Step 1 is repeated with a number of occupants equal
to the double of the original number (i.e. to verify if the model allows an initial
density higher than the physical distance provision in use and how people adjust
their position to maintain the physical distance), three-quarter of occupants, half the
occupants, one-quarter of occupants and one-eight of the occupants.
Expected result: The relationship between walking speeds and people densities in

zone 2 as well as the flows in line A vs people densities in zone 2 are plotted and
compared with the underlying assumptions used in the evacuation model.

Test method: The test method is a qualitative verification of the crowd movement.
User’s actions: The tester may show results in relation to different time intervals

adopted for the estimation of flows, people densities and walking speeds.
Different methods for the implementation of physical distance in the model can
be used (e.g. enforcing distance between agents, setting up the speed/density
relationship within the model). Further testing can be done by modifying this test
to consider the impact of people with movement disabilities (i.e. some evacuees
may have a slower speed and/or occupy a larger space) and attempting to modify
the initial number of people further and their initial location.
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This test can provide useful information to the crowd evacuation model user
concerning the performance of a model considering the physical distance. This
test allows, in fact, to investigate maximum achievable flow rates, along with
the relationships between the main variables concerning movement (flow, walking
speed and density). Similar modified tests could be designed for other key variables
which may be impacted by physical distance. This can include testing route choice
(i.e. modelling the likelihood of people to re-route due to the presence of congested
area), group behaviour (investigating the interactions of people interacting with
in-group and out-group members) and flowrates in different components and
conditions (e.g. bi-directional flows, flows on vertical components such as stairs).

6 Discussion

This chapter discusses the impact of physical distancing on crowd evacuation
movement [36]. Experimental findings concerning people movement at openings
assuming two physical distancing provisions (1 m and 2 m) have been used to
identify possible implications. The experimental findings indicate that, given our
current understanding, a suitable approach is to use the existing design relationships
[20] cropped at a given maximum density level (which depends on physical
distancing), as shown in [36].

It should be noted that experimental data showed that 1 m of target physical
distance might correspond to a slightly higher actual average physical distance
(1.24 m), while the 2 m of target physical distance may correspond to a slightly
lower actual average distance (1.82 m). This would mean that a user may decide
to calibrate the maximum achievable density based on equation 1 or 2 (depending
on the assumption on squared or circular packing) but adopting an experimentally
observed distance rather than a theoretical one. This would imply that the maximum
density at which the curves are cropped would be higher or lower than the theoretical
ones. From an evacuation perspective, a conservative assumption would be to
assume the higher value of physical distancing between the two of them (e.g. the
theoretical or experimental value) since this would yield the lowest density level.
This would correspond to a lower value of flow and subsequently higher evacuation
times. Nevertheless, it is currently unclear to which extent people would comply
with physical distancing provisions in case of emergency and how this is linked to
risk perception. For this reason, the current study should be considered applicable
for normal circulation conditions, but its use for emergency evacuation scenarios
should be the object of further investigation.

A limitation of the experiments in [36] is that they have been conducted
with a student population, which is likely to be less compliant to the physical
distancing provisions provided [52]. A more compliant population may lead to even
higher observed physical distances and, in turn, lower flows. Future studies should
investigate a wider variety of population, considering possibly different compliance
behaviours, physical and psychological characteristics (including investigating
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crowd movement at different times of the pandemic and in different countries).
Similarly, different physical distancing provisions would need to be investigated.

The experimental data collected also seem to indicate that when people move
through doors without reaching the maximum density (e.g. capacity drop), their
behaviour tends to be consistent with the pre-pandemic conditions (e.g. the
speed/density and flow/density relationships would not need to be completely
modified as people tend to decrease their speed at the same density threshold).
Nevertheless, the main update in the curve is related to the fact that the capacity
drop may not be reached at all [37] due to the lower values of achievable maximum
density. Considering, for example, the hydraulic model in the SFPE Handbook
[20], the maximum flow is achieved at a density level of approximately 2 m, which
would not be achievable considering a physical distance equal to or higher than 1
m considering the circular packing assumption (i.e. 2 m of density corresponds to a
physical distance of 0.76 m).

On the positive side, lower local densities can be achieved (and possibly lower
occupant loads). This would imply that, in principle, a lower number of people may
be present in a given space (this being a positive aspect from the crowd evacuation
perspective). For example, an area of 100 m2 would contain only 29 people (0.29
people/m2), considering a physical distance of 2 m and assuming the hypothetical
cylindrical packing. These 29 people would take 83 s to pass through a 1 m door
considering the maximum allowed flow of 0.35 pers/m*s of the cropped SFPE
curve for a physical distance equal to 2 m. The same space could contain a much
larger number of people assuming a higher local density (e.g. 1–2 pers/m2 would
correspond to 100–200 people). This crowd would take 75 s (100 people) or 150 s
(200 people), assuming the maximum flow through a door in the SFPE curve (1.33
pers/m*s). This means that there would be a need to revise current evacuation design
in case occupant loads would return to normal, but physical distancing provisions
would be kept (as this would generate delays in evacuation).

The current experiments and modelling implications discussed in this chapter
focus only on uni-directional flows. This is in contrast with previous research
studies which have investigated random walks and crossing flows [9, 10]. For this
reason, the findings discussed here are deemed relevant for this type of movement. It
should also be noted that the experiments and modelling implications described are
focused on horizontal movement. The SFPE design curve [20] does not differentiate
between doors/openings and corridors, while the experiments seem to indicate that
the dataset concerning speed vs inter-person distance (as expected) seems to be more
in line with movement at openings rather than in corridors (according to the work
by [19]). Therefore, future studies should investigate physical distancing behaviour
considering a variety of horizontal and vertical egress components (e.g. staircases).

Crowd models cannot be directly used as they are in the presence of phys-
ical distancing, but there is a need by the developers to modify some of their
modelling assumptions (e.g. linked to the relationships between speed/density and
flow/density, route choice, queuing, etc.), or users would need to modify the existing
models to implicitly represent the behaviour that may be observed in a pandemic
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scenario. In this context, the verification test presented here is deemed useful to
evaluate the results produced by evacuation models.

It is important to note that the focus of the current chapter has been on the
movement of people in isolation, i.e. the behaviour of pre-existing or emerging
groups has not been investigated in detail. This is deemed to have a significant
impact on crowd evacuation during a pandemic since physical distancing may be
kept by clusters of people rather than individuals. Future research should focus on
studying how the nature, type and characteristics of groups can affect evacuation
movement.

7 Conclusions

This chapter presents key implications of physical distance related to evacuation
design. This includes a discussion on the decrease in the maximum achievable
local density, which in turn contributes to decreasing occupant loads, reduced
maximum flows and longer evacuation times. This chapter highlights the need for
modifying current engineering tools used to design evacuation and the importance
of considering the consequences of the impact of physical distancing on the tools
adopted (either hand calculation methods or evacuation simulators).
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A Kinetic Theory Approach to Model
Crowd Dynamics with Disease Contagion

Daewa Kim and Annalisa Quaini

Abstract We present some ideas on how to extend a kinetic-type model for crowd
dynamics to account for an infectious disease spreading. We focus on a medium
size crowd occupying a confined environment where the disease is easily spread.
The kinetic theory approach we choose uses tools of game theory to model the
interactions of a person with the surrounding people and the environment, and
it features a parameter to represent the level of stress. It is known that people
choose different walking strategies when subjected to fear or stressful situations.
To demonstrate that our model for crowd dynamics could be used to reproduce
realistic scenarios, we simulate passengers in one terminal of Hobby Airport in
Houston. In order to model disease spreading in a walking crowd, we introduce
a variable that denotes the level of exposure to people spreading the disease. In
addition, we introduce a parameter that describes the contagion interaction strength
and a kernel function that is a decreasing function of the distance between a person
and a spreading individual. We test our contagion model on a problem involving a
small crowd walking through a corridor.

1 Introduction

We are interested in studying the early stage of an infectious disease spreading
in an intermediate size population occupying a confined environment, such as an
airport terminal or a school, for a short period of time (minutes or hours). Classical
models in epidemiology use mean-field approximations based on averaged large
population behaviors over a long time span (typically weeks or months). Obviously,
such models fail when population size is small to medium. Our overarching goal is
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to model the spreading of a disease in a walking crowd by extending a kinetic theory
approach for crowd dynamics that compares favorably with experimental data for
a medium-sized population [22]. In this chapter, we present the key features of our
crowd dynamics model and preliminary ideas for the extension, which are tested in
1D cases. We assume that the disease is such that it spreads with close proximity of
individuals, like, e.g., measles, influenza, or COVID-19.

The reason why we focus on a mesoscopic model for crowd dynamics is related
to our interest in confined environments and medium-sized crowds. In broad terms,
the large variety of models proposed over the years can be divided into three main
categories depending on the (microscopic, mesoscopic, or macroscopic) scale of
observation [4]. Macroscopic models (see, e.g., [16, 20, 27]) treat the crowd as a
continuum flow, which is well suited for large-scale dense crowds. Microscopic
models (see, e.g., [3, 5, 14, 15, 17, 19, 25, 30], and the references therein) use
Newtonian mechanics to interpret pedestrian movement as the physical interaction
between the people and the environment. Mesoscale models (see, e.g., [1, 6–8, 10–
12]) use a Boltzmann-type evolution equation for the statistical distribution function
of the position and velocity of pedestrians, in a framework close to that of the
kinetic theory of gases. There is one key difference though: the interactions in
Boltzmann equations are conservative and reversible, while the interactions in the
kinetic theory of active particles are irreversible, non-conservative, and, in some
cases, non-local and nonlinearly additive. An important consequence is that often
for active particles the Maxwellian equilibrium does not exist [2]. Another reason
why we choose to work with a kinetic-type model is the flexibility in accounting for
multiple interactions (hard to achieve in microscopic models) and heterogeneous
behavior in people (hard to achieve in macroscopic models). Finally, we would
like to mention that multiscale approaches are possible as well. See, e.g., [4] for
a multiscale vision to human crowds which provides a consistent description at the
three possible modeling scales.

The first part of this manuscript is dedicated to a description of a crowd dynamics
model. The model, first presented in [22], is based on earlier works [1, 10] and is
capable of handling evacuation from a room with one or more exits of variable
size and in presence of obstacles. The main ingredients of the model are the
following: (i) discrete velocity directions to take into account the granular feature
of crowd dynamics, (ii) interactions modeled using tools of stochastic games, and
(iii) heuristic, deterministic modeling of the speed corroborated by experimental
evidence [26]. In [22], we show that for groups of 40 to 138 people the average
people density and flow rate computed with our kinetic model are in great agreement
with the respective measured quantities reported in a recent empirical study focused
on egressing from a facility [28].

To demonstrate that our model for crowd dynamics could be used to reproduce
realistic scenarios, we simulate passengers in one terminal of Hobby Airport in
Houston (USA). In a first set of tests, the passengers from two planes at the opposite
ends of the terminal walk through the terminal to reach the exit. In the second set
of tests, we add a group of passengers that enters the terminal through the entrance
at the same time as the other two groups deplane and is directed to a gate. The aim
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of both sets of tests is to understand how the presence of obstacles in the terminal
affects the egress time. Obviously, the longer one stays in the terminal in close
proximity with other individuals the more likely he/she gets infected. Thus, the
egress time from a potentially crowded confined environment, such as an airport
terminal, is a key factor in the early spreading of an airborne disease. This is why
we chose these tests and how they are connected to the second part of the chapter.

In order to model disease spreading in a walking crowd, we take inspiration
from the work on emotional contagion (i.e., spreading of fear or panic) in [29].
We introduce a variable that denotes the level of exposure to people spreading
the disease, with the underlying idea that the more a person is exposed the more
likely they are to get infected. The model features a parameter that describes the
contagion interaction strength and a kernel function that is a decreasing function of
the distance between a person and a spreading individual. As a simplification, we
assume that walking speed and direction are given. We will show preliminary results
for a problem involving a small crowd walking through a corridor. The simplifying
assumption will be removed in a follow-up paper, where the people dynamics will be
provided by the complex pedestrian model described in the first part of the chapter.
The approach we have in mind is different from what we used in [23]. Therein, we
coupled the pedestrian dynamics model to a disease contagion model, while in the
future we intend to add to the pedestrian dynamics model terms that account for
disease spreading.

For related work on coupled dynamics of virus infection and healthy cells,
see, e.g., [13], and the references therein. A multiscale model of virus pandemic
accounting for the interaction of different spatial scales (from the small scale of the
virus itself and cells to the large scale of individuals and further up to the collective
behavior of populations) is presented in [9].

The chapter is organized as follows. Section 2 describes the crowd dynamics
model and its full discretization and shows numerical results in an airport terminal.
In Sect. 3, we introduce our simplified contagion model. The discretization and
preliminary results are also shown in Sect. 3. Conclusions are drawn in Sect. 4.

2 A Kinetic Model for Crowd Dynamics

Let � ⊂ R
2 denote a bounded domain where people are walking to reach an exit E

that is either within the domain or belongs to the boundary ∂�. The case of multiple
exits (i.e., E is the finite union of disjoint sets) can be easily handled as well. The
rest of the boundary is made of walls, denoted with W . Walls and other kinds of
obstacles could be present within the domain. Let x = (x, y) denote position and
v = v(cos θ, sin θ) denote velocity, where v is the velocity modulus and θ is the
velocity direction. For a large group of people inside �, let

f = f (t, x, v, θ) for all t ≥ 0, x ∈ �, v ∈ [0, VM ], θ ∈ [0, 2π),
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where VM is the largest speed a person can reach in low density and optimal envi-
ronmental conditions. Under suitable integrability conditions, f (t, x, v, θ)dxdvdθ

represents the number of individuals who, at time t , are located in the infinitesimal
rectangle [x, x + dx] × [y, y + dy] and have a velocity belonging to [v, v + dv] ×
[θ, θ + dθ ].

For simplicity and following [1], we make two simplifying assumptions on the
velocity vector:

1. Variable θ is discrete, i.e., it can take values in the set:

Iθ =
{
θi = i − 1

Nd

2π : i = 1, . . . , Nd

}
,

where Nd is the maximum number of possible directions.
2. People adjust their walking speed v depending on the level of congestion around

them, i.e., v is treated as a deterministic variable.

The second assumption is corroborated by experimental studies that show that
the walking speed mainly depends on the local level of congestion. Given the
deterministic nature of the variable v, the distribution function can be written as

f (t, x, θ) =
Nd∑

i=1

f i(t, x)δ(θ − θi), (1)

where f i(t, x) = f (t, x, θi) represents the people that, at time t and position x,
move with direction θi . In Eq. (1), δ denotes the Dirac delta function.

In the rest of the chapter, we will work with dimensionless variables. To this
purpose, we introduce the following reference quantities:

– D: the largest distance a pedestrian can cover in domain �

– T : a reference time given by D/VM (recall that VM is the largest speed a person
can reach)

– ρM : the maximal admissible number of pedestrians per unit area

The dimensionless variables are then: position x̂ = x/D, time t̂ = t/T , velocity
modulus v̂ = v/VM , and distribution function f̂ = f/ρM . For ease of notation,
the hats will be omitted with the understanding that all variables are dimensionless
from now on.

Due to the normalization of f and the fi , i = 1, . . . , Nd , the dimensionless local
density is obtained by summing the distribution functions over the set of directions:

ρ(t, x) =
Nd∑

i=1

f i(t, x). (2)
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Following assumption 2 mentioned above, the walking speed is given by v =
v[ρ](t, x), where square brackets are used to denote that v depends on ρ in a
functional way. For instance, v can depend on ρ and on its gradient.

In order to define the walking speed, we introduce a parameter α ∈ [0, 1] to
represent the quality of the walkable domain: where α = 1 people can walk at the
desired speed (i.e., VM ) because the domain is clear, while where α = 0 people
are forced to slow down or stop because an obstruction is present. For simplicity,
we assume that the maximum dimensionless speed a person can reach is equal to
α. Let ρc be a critical density value such that for ρ < ρc we have free flow regime
(i.e., low density condition), while for ρ > ρc, we have a slowdown zone (i.e., high
density condition). Following the experimentally measured values of ρc reported in
[26], we set ρc = α/5. Then, we set the walking speed v equal to α in the free flow
regime and equal to a heuristic third-order polynomial in the slowdown zone:

v = v(ρ) =
{
α for ρ ≤ ρc(α) = α/5

a3ρ
3 + a2ρ

2 + a1ρ + a0 for ρ > ρc(α) = α/5,
(3)

where ai is constant for i = 0, 1, 2, 3. To set the value of these constants, we impose
the following conditions: v(ρc) = α, ∂ρv(ρc) = 0, v(1) = 0, and ∂ρv(1) = 0,
which lead to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0 = (1/(α3 − 15α2 + 75α − 125))(75α2 − 125α)

a1 = (1/(α3 − 15α2 + 75α − 125))(−150α2)

a2 = (1/(α3 − 15α2 + 75α − 125))(75α2 + 375α)

a3 = (1/(α3 − 15α2 + 75α − 125))(−250α).

(4)

Figure 1a shows v as a function of ρ for α = 0.3, 0.6, 1.

2.1 Modeling Interactions

Let us consider the scenario depicted in Fig. 1b, where there is a person Located at a
point x that needs to reach exit E. We model the path this person takes as the result
of four factors:

(F1) The goal to reach the exit
(F2) The desire to avoid collisions with the walls
(F3) The tendency to look for less congested areas
(F4) The tendency to follow the stream or herding

Factors F1 and F2 are related to geometric aspects of the domain, while factors
F3 and F4 consider that people’s behavior is strongly affected by the surrounding
crowd. These last two factors are dominant in different situations: F4 emerges in
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Fig. 1 (a) Dependence of the dimensionless walking speed v on the dimensionless density ρ for
different values of the parameter α, which represents the quality of the walkable domain. (b) Sketch
of computational domain � with exit E and a pedestrian located at x, moving with direction θh.
The pedestrian should choose direction uE to reach the exit, while direction uW is to avoid collision
with the wall. The distances from the exit and from the wall are dE and dW , respectively

stressful situations, while F3 characterizes normal behavior. To weight between
F3 and F4, we use parameter ε ∈ [0, 1] with ε = 0 (respectively, ε = 1) if F3
(respectively, F4) prevails.

In order to explain how the four factors are modeled, we need to introduce some
terminology. Interactions involve three types of people:

– Test people with state (x, θi): they are representative of the whole system.
– Candidate people with state (x, θh): they can reach, in probability, the state of

the test people after individual-based interactions with the environment or with
field people.

– Field people with state (x, θk): their interactions with candidate people trigger a
possible change of state.

We note that while the candidate person modifies their state, in probability, into that
of the test person due to interactions with field people, the test person loses their
state as a result of these interactions.

Next, we introduce some notation. Given a candidate person at point x in the
walkable domain �, we define the distance to the exit as

dE(x) = min
xE∈E ||x − xE ||,

and we consider the unit vector uE(x), pointing from x to the exit; see Fig. 1b. Both
dE and uE will be used to model (F1).

Assume that the candidate person at x is moving with direction θh. We define the
distance dW (x, θh) from the person to a wall at a point xW(x, θh) where the person
is expected to collide with the wall if they do not change direction. The unit tangent
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vector uW(x, θh) to ∂� at xW points to the direction of the exit; see Fig. 1b. Vector
uW is used to avoid a collision with the walls, i.e., to model (F2).

In order to model (F3), i.e., the decision of candidate person (x, θh) to change
direction in order to avoid congested areas, we use the direction that gives the
minimal directional derivative of the density at the point x. We denote such direction
by unit vector uC(θh, ρ).

Finally, we introduce unit vector uF = (cos θk, sin θk) to model (F4), i.e., the
decision of candidate person with direction θh to follow a field person with direction
θk with whom they came into contact.

2.1.1 Interaction with the Walls

We assume that people change direction, in probability, only to an adjacent
clockwise or counterclockwise direction in set Iθ . This means a candidate person
with walking direction θh may choose directions θh−1, θh+1 or keep direction θh.
For h = 1, we set θh−1 = θNd

, and for h = Nd , we set θh+1 = θ1. Let Ah(i) be the
transition probability, i.e., the probability that a candidate person with direction θh
adjusts their direction to θi (the direction of the test person) due to the presence of
walls and/or an exit. The following constraint for Ah(i) has to be satisfied:

Nd∑

i=1

Ah(i) = 1 for all h ∈ {1, . . . , Nd}.

The set of all transition probabilities A = {Ah(i)}h,i=1,...,Nd
forms the so-called

table of games that models the game played by active people interacting with the
walls.

We define the vector

uG(x, θh) = (1 − dE(x))uE(x) + (1 − dW (x, θh))uW(x, θh)

||(1 − dE(x))uE(x) + (1 − dW (x, θh))uW(x, θh)|| = (cos θG, sin θG). (5)

Here, θG is the geometrical preferred direction, which is the ideal direction that a
person should take in order to reach the exit (factor F1) and avoid the walls (factor
F2) in an optimal way. Notice that the closer a person is to an exit (respectively, a
wall), the more direction uE (respectively, uW ) weights.

A candidate person with direction θh will change their direction by choosing
the angle closest to θG among the three allowed directions θh−1, θh, and θh+1. The
transition probability is given by

Ah(i) = βh(α)δs,i + (1 − βh(α))δh,i , i = h − 1, h, h + 1, (6)

where
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s = arg min
j∈{h−1,h+1}

{d(θG, θj )},

with

d(θp, θq) =
{

|θp − θq | if |θp − θq | ≤ π,

2π − |θp − θq | if |θp − θq | > π.
(7)

In (6), δ denotes the Kronecker delta function. Coefficient βh is defined by

βh(α) =
⎧
⎨

⎩
α if d(θh, θG) ≥ 
θ,

α
d(θh, θG)


θ
if d(θh, θG) < 
θ,

where 
θ = 2π/Nd . The role of βh is to allow for a transition to θh−1 or θh+1
even in the case that the geometrical preferred direction θG is closer to θh. Such a
transition is more likely to occur the more distant θh and θG are.

2.1.2 Interaction with Obstacles

In [22], we introduced a strategy to handle obstacles within domain �. This strategy
uses three ingredients to exclude the real obstacle area from the walkable domain:

1. An effective area: an enlarged area that encloses the real obstacle
2. A definition of uW to account for the effective area
3. A setting of the parameter α in the effective area depending on the shape of the

obstacle

The effective area is necessary especially if the obstacle is close to an exit: it allows
to define uW with respect to a larger area than the obstacle area itself to achieve the
goal of having no people walk on the real obstacle area. In [22], we found that the
goal is successfully achieved with an effective area four times bigger than the real
obstacle area.

Since some pedestrians will walk on part of the effective area, one needs to set
parameter α in a suitable way. For a discussion on how to set α to realize different
obstacle shapes, we refer to [22].

2.1.3 Interactions Between Pedestrians

As a candidate person with direction θh walks, they interact with a field person
that moves with direction θk . As a result of this interaction, the candidate person
can change their direction to θi (direction of the test person) in the search for less
congested areas if their stress level is low or change to θk (direction of the field
person) if their stress level is high. The transition probability is given by Bhk(i)[ρ].
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The following constrain for Bhk(i) has to be satisfied:

Nd∑

i=1

Bhk(i)[ρ] = 1 for all h, k ∈ {1, . . . , Nd},

where again the square brackets denote the dependence on the density ρ. Of course,
we are still under the assumption that people change direction, in probability, only
to an adjacent clockwise or counterclockwise direction in set Iθ .

To take into account the search for a less congested area (factor F3) and the
tendency to herd (factor F4), for a candidate person with direction θh interacting
with a field person with direction θk , we define the vector

uP (θh, θk, ρ) = εuF + (1 − ε)uC(θh, ρ)

||εuF + (1 − ε)uC(θh, ρ)|| = (cos θP , sin θP ),

where the subscript P stands for people. Direction θP is the interaction-based
preferred direction, obtained as a weighted combination between the direction of the
field person (i.e., uF = (cos θk, sin θk)) and the direction pointing to a less crowded
area (i.e., uC). The latter direction can be computed for a candidate pedestrian with
direction θh and located at x, by taking

C = arg min
j∈{h−1,h,h+1}

{∂jρ(t, x)},

where ∂jρ denotes the directional derivative of ρ in the direction given by angle θj .
We have uC(θh, ρ) = (cos θC, sin θC).

The transition probability is given by

Bhk(i)[ρ] = βhk(α)ρδr,i + (1 − βhk(α)ρ)δh,i , i = h − 1, h, h + 1,

where r and βhk are defined by

r = arg min
j∈{h−1,h+1}

{d(θP , θj )},

βhk(α) =
⎧
⎨

⎩
α if d(θh, θP ) ≥ 
θ

α
d(θh, θP )


θ
if d(θh, θP ) < 
θ.

We recall that d(·, ·) is defined in (7).
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2.2 Mathematical Model

Two last ingredients are needed before we can state the mathematical model. These
are:

– The interaction rate with geometric features μ[ρ]: it models the frequency of
interactions between candidate people and the walls and/or obstacles. If the local
density is lower, it is easier for pedestrians to see the walls and doors. Thus, we
set μ[ρ] = 1 − ρ.

– The interaction rate with people η[ρ]: it defines the number of binary encounters
per unit time. If the local density increases, then the interaction rate also
increases. For simplicity, we take η[ρ] = ρ.

The mathematical model is derived from a suitable balance of people in an
elementary volume of the space of microscopic states, considering the net flow into
such volume due to transport and interactions. We obtain

∂f i

∂t
+ ∇ ·

(
vi[ρ](t, x)f i(t, x)

)

= J i[f ](t, x)
= J i

G[f ](t, x) + J i
P [f ](t, x)

= μ[ρ]
(

n∑

h=1

Ah(i)f
h(t, x) − f i(t, x)

)

+ η[ρ]
⎛

⎝
n∑

h,k=1

Bhk(i)[ρ]f h(t, x)f k(t, x) − f i(t, x)ρ(t, x)

⎞

⎠ (8)

for i = 1, 2, . . . , Nd . Functional J i[f ] represents the net balance of people that
move with direction θi due to interactions. Since we consider both the interaction
with the environment and with the surrounding people, we can write J i as J i =
J i
G + J i

P , where J i
G is an interaction between candidate people and the geometry

of the environment and J i
P is an interaction between candidate and field people.

Equation (8) is completed with Eq. (2) for the density and eqs. (3) and (4) for the
velocity. In the next section, we will discuss a numerical method for the solution of
problem (2), (3), (4), (8).

2.3 Full Discretization

The approach we consider is based on a splitting method that decouples the
treatment of the transport term and the interaction term in Eq. (8). As usual with
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splitting methods, the idea is to split the model into a set of subproblems that are
easier to solve and for which practical algorithms are readily available. Among the
available operator splitting methods, we chose the Lie splitting scheme because it
provides a good compromise between accuracy and robustness, as shown in [18].

Let 
t > 0 be a time discretization step for the time interval [0, T ]. Denote
tk = k
t , with k = 0, . . . , Nt , and let φk be an approximation of φ(tk). Given
an initial condition f i,0 = f i(0, x), for i = 1, . . . , Nd , the Lie operator splitting
scheme applied to problem (8) reads: for k = 0, 1, 2, . . . , Nt − 1, perform the
following steps:

– Step 1: Find f i , for i = 1, . . . , Nd , such that

⎧
⎨

⎩

∂f i

∂t
+ ∂

∂x

(
(v[ρ] cos θi)f i(t, x)

) = 0 on(tk, tk+1),

f i(tk, x) = f i,k.

(9)

Set f i,k+ 1
3 = f i(tk+1, x).

– Step 2: Find f i , for i = 1, . . . , Nd , such that

⎧
⎪⎨

⎪⎩

∂f i

∂t
+ ∂

∂y

(
(v[ρ] sin θi)f i(t, x)

) = 0 on(tk, tk+1),

f i(tk, x) = f i,k+ 1
3 .

(10)

Set f i,k+ 2
3 = f i(tk+1, x).

– Step 3: Find fi , for i = 1, . . . , Nd , such that

⎧
⎨

⎩

∂f i

∂t
= J i[f ](t, x) on(tk, tk+1),

f i(tk, x) = f i,k+ 2
3 .

(11)

Set f i,k+1 = f i(tk+1, x).

Once f i,k+1 is computed for i = 1, . . . , Nd , we use Eq. (2) to get the density
ρk+1 and Eqs. (3) and (4) to get the velocity magnitude at time tk+1.

To complete the numerical method, we need to pick an appropriate numerical
scheme for each subproblem.

For simplicity, we present space discretization for computational domain [0, L]×
[0,H ], with L and H given. We mesh the domain by choosing 
x and 
y to
partition interval [0, L] and [0,H ], respectively. Let Nx = L/
x and Ny = H/
y.
We define the discrete mesh points xpq = (xp, yq) by

xp = p
x with p = 0, 1, . . . , Nx, yq = q
y with q = 0, 1, . . . , Ny.

It is also useful to define
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xp+1/2 = xp + 
x/2 =
(
p + 1

2

)

x, yq+1/2 = yq + 
y/2 =

(
q + 1

2

)

y.

In order to simplify notation of the fully discrete steps 1–3, let us set φ = f i ,
θ = θi , t0 = tk , and tf = tk+1. Let M be a positive integer (≥ 3, in practice). We
associate with M a time discretization step τ = (tf − t0)/M and set tm = t0 +mτ .
The fully discretized version of the Lie splitting algorithm is as follows.

Discrete Step 1
Let φ0 = f i,k . Problem (9) can be rewritten as

⎧
⎨

⎩

∂φ

∂t
+ ∂

∂x
((v[ρ] cos θ)φ(t, x)) = 0 on(t0, tf ),

φ(t0, x) = φ0.

(12)

We adopt a finite difference method that produces an approximation �m
p,q ∈ R of

the cell average:

�m
p,q ≈ 1


x 
y

∫ yq+1/2

yq−1/2

∫ xp+1/2

xp−1/2

φ(tm, x, y)dx dy,

where m = 1, . . . ,M , 1 ≤ p ≤ Nx − 1, and 1 ≤ q ≤ Ny − 1. Given an initial
condition φ0, function φm will be approximated by �m with

�m

∣∣∣∣[xp−1/2, xp+1/2]×[yq−1/2, yq+1/2]
= �m

p,q .

The Lax–Friedrichs method for problem (12) can be written in conservative form
as follows:

�m+1
p,q = �m

p,q − τ


x

(
F(�m

p,q,�
m
p+1,q ) − F(�m

p−1,q ,�
m
p,q)

)
,

where

F(�m
p,q,�

m
p+1,q ) = 
x

2τ
(�m

p,q − �m
p+1,q )

+1

2

(
(v[ρmp,q ] cos θ)�m

p,q + (v[ρmp+1,q ] cos θ)�m
p+1,q

)
.

Discrete Step 2
Let φ0 = f i,k+ 1

3 . Problem (10) can be rewritten as

⎧
⎨

⎩

∂φ

∂t
+ ∂

∂y
((v[ρ] sin θ)φ(t, x)) = 0 on(t0, tf ),

φ(t0, x) = φ0.
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Similarly to step 1, we use the conservative Lax–Friedrichs scheme:

�m+1
p,q = �m

p,q − τ


y

(
F(�m

p,q,�
m
p,q+1) − F(�m

p,q−1�
m
p,q)

)
,

where

F(�m
p,q,�

m
p,q+1) = 
y

2τ
(�m

p,q − �m
p,q+1)

+1

2

(
(v[ρmp,q ] sin θ)�m

p,q + (v[ρmp,q+1] sin θ)�m
p,q+1

)
.

Discrete Step 3
Let J = J i and φ0 = f i,k+ 2

3 . Problem (11) can be rewritten as

⎧
⎨

⎩

∂φ

∂t
= J [f ](t, x) on(t0, tf ),

φ(t0, x) = φ0.

For the approximation of the above problem, we use the forward Euler scheme:

�m+1
p,q = �m

p,q + τ
(
J m[Fm]

)
,

where Fm is the approximation of the reduced distribution function (1) at time tm.
For stability, the subtime step τ is chosen to satisfy the Courant–Friedrichs–Lewy

(CFL) condition (see, e.g., [24]):

max

{
τ


x
,

τ


y

}
≤ 1.

2.4 Numerical Results

We consider a part of Houston’s William P. Hobby Airport as the walkable domain.
The terminal has an upside down V shape with eight gates (four per wing) and
an entrance/exit at the top, which is 6.8 m wide; see Fig. 2 (top left panel). The
shape and the size of the terminal (each wing is about 136 m long and 20 m wide)
are realistic, while the number of gates is reduced for simplicity. We consider the
following geometries:

– Configuration a: no obstacle in the terminal; see Fig. 2 (top left panel).
– Configuration b: waiting area chairs are located near each terminal; see Fig. 3

(top left panel).
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Fig. 2 Test 1a: evacuation process of 404 people grouped into two clusters with initial directions
θ3 (group in the left wing) and θ7 (group in the right wing)

Fig. 3 Test 1b: evacuation process of 404 people grouped into two clusters with initial directions
θ3 (group in the left wing) and θ7 (group in the right wing)

– Configuration c: in addition to the waiting area chairs, a large obstacle, like a
temporary store, is located at the intersection of the two wings; see Fig. 4 (top
left panel).

In these configurations, we run two sets of simulations:

– Test 1: a total of 404 passengers from two planes at the opposite ends of the
terminal walk through the terminal to reach the exit.
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– Test 2: the 404 passengers have the same target as in test 1, but there is an
additional group of 202 passengers that enter the terminal through the entrance
and are directed to a gate.

The aim is to compute the egress time, i.e., the total time it takes all the passengers
to leave the terminal through either the exit or a gate.

For all the simulations, we consider eight different velocity directions Nd = 8 in
the discrete set:

Iθ =
{
θi = i − 1

8
2π : i = 1, . . . , 8

}
.

In order to work with dimensionless quantities, we define the following reference
quantities: D = 137.5 m, VM = 2 m/s, and ρM = 7 people/m2. Once the results are
computed, we convert them back to dimensional quantities.

We consider a mesh with 
x = 
y = 1.9 m. The time step is set to 
t = 5.7 s,
and we choose M = 3. Figures 2, 3, and 4 show the density computed at different
times for tests 1a, 1b, and 1c, respectively. For the large obstacle in configuration
c, we use an effective area that is a square with side 15.2 m, while the actual
obstacle is a rectangle with dimensions of 9.5 m in length and 4.75 m in width.
The reader interested in learning more about how obstacles are handled is referred
to [22]. In configuration a, we observe a denser crowd only when the several
passengers reach the exit, as shown in Fig. 2 (lower right panel). Configuration b

creates dense gatherings also when passengers deplane and their motion is restricted
by the waiting area chairs. See Fig. 3 for times t = 11.4, 22.8 s. Nonetheless, we
observe a similar evacuation dynamics between configurations a and b, indicating
that the waiting area chairs do not hinder the evacuation process. Compare Fig. 2
with Fig. 3. This is confirmed by Fig. 5, which shows the number of passengers
inside the terminal over time for all the tests. The curves for tests 1a and 1b are
either superimposed or very close to each other over the entire time interval. On the
other hand, we see that the presence of a large obstacle at the intersection of the two
terminal wings increases the egress time by over 10 s. Also, compare Fig. 3 with
Fig. 4, bottom right panels.

Because of the similarities in the evacuation process for tests 1a and 1b, we
decided to run test 2 only in configurations a and c. The density computed at
different times for these two tests is shown in Figs. 6 and 7. In test 2, the exit
size is halved because half of the top corridor is used as an entrance. From Figs. 6
and 7 (second row, right panel), we see that by time t = 45.6 s, the two groups of
passengers with opposite directions (heading to the exit vs to the gate) have met. As
expected, halving the exit size leads to a longer evacuation process (for example,
compare Figs. 2 and 6) and creates a dense crowd at the exit; see Figs. 6 and 7
(bottom right panel). From Fig. 5, we see that the increase in ingress time from test
1a to 2a is about 30s, while it is about 40s from test 1c to 2c.

The results presented in this subsection corroborate the effectiveness of some
strategies adopted in airports during the COVID-19 pandemic: dedicated, distant
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Fig. 4 Test 1c: evacuation process of 404 people grouped into two clusters with initial directions
θ3 (group in the left wing) and θ7 (group in the right wing)

Fig. 5 Number of passengers
inside the terminal over time
for tests 1a, 1b, 1c, 2a, and 2c

sites for entrances and exits, and minimization of the obstacles inside the terminal.
These strategies are conducive to short egress times and limit congregation points,
thereby containing the spreading of COVID-19.

3 Contagion Model in One Dimension

We start from an agent-based model at the microscopic level. We consider a group
of N people, Nh of whom are healthy or not spreading the disease yet, while the
remaining Ns = N − Nh are in the spreading phase of the disease. If person n
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Fig. 6 Test 2a: evacuation process of 404 people grouped into two clusters with initial directions
θ3 (group in the left wing) and θ7 (group in the right wing) at the same time as a third group of 202
people with initial direction θ7 enters the airport and is directed to a gate in the left wing

belongs to the former group, we denote with qn ∈ [0, 1) their level of exposure
to people spreading the disease, with the underlying idea that the more a person is
exposed the more likely they are to get infected. If person n belongs to the latter
group, then qn = 1, and this value stays constant throughout the entire simulation
time. In addition, let xn(t) and vn(t) denote the position and speed of person n.

The microscopic model reads, for n = 1, 2, 3, . . . , N ,

dxn

dt
= vn cos θn,

dqn

dt
= γ max{(q∗

n − qn), 0}, q∗
n =

∑N
m=1 κn,mqm∑N
m=1 κn,m

, (13)

where the walking speed vn and walking direction θn are given. In the future, we
will combine the model in this section with the model presented in Sect. 2 that will
provide walking speed and direction. In model (13), q∗

n corresponds to a weighted
average “level of sickness” surrounding person n, with κn,m that serves as the weight
in the average. We define κn,m as follows:

κn,m = κ(|xn − xm|) = R

(|xn − xm|2 + R2)π
. (14)
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Fig. 7 Test 2c: evacuation process of 404 people grouped into two clusters with initial directions
θ3 (group in the left wing) and θ7 (group in the right wing) at the same time as a third group of 202
people with initial direction θ7 enters the airport and is directed to a gate in the left wing

Notice that the interaction kernel is a decreasing function of mutual distance
between two people and is parametrized by an interaction distance R, set so that
the value of κn,m is “small” at about 6 ft or 2 m. Parameter γ in (13) describes the
contagion interaction strength: for γ = 0 there is no contagion, while for γ �= 0
the larger the value of γ the faster the contagion. Note that obviously the level of
exposure can only increase over time. The second equation in (13) also ensures that
the people spreading the disease will constantly have qn = 1 in time.

From the agent-based model (13), we derive a model at the kinetic level. Denote
the empirical distribution by

hN = 1

N

N∑

n=1

δ(x − xn(t))δ(q − qn(t)),

where δ is the Dirac delta measure. We assume that the people remain in a fixed
compact domain (xn(t), qn(t)) ∈ � ⊂ R

2 for all n and for the entire time interval
under consideration. Prohorov’s theorem implies that the sequence {hN } is relatively
compact in the weak∗ sense. Therefore, there exists a subsequence {hNk }k such that
hNk converges to h with weak∗-convergence in P(R2) and pointwise convergence
in time as k → ∞. Here, P(R2) denotes the space of probability measures on R

2.
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Let ψ ∈ C1
0(R

2) be a test function. We have

d

dt
〈hN ,ψ〉x,q = d

dt

〈
1

N

N∑

n=1

δ(x − xn(t))δ(q − qn(t)), ψ

〉

x,q

= d

dt

1

N

N∑

n=1

ψ(xn(t), qn(t))

= 1

N

N∑

n=1

(
ψxvn cos θn + ψqγ max{(q∗

n − qn), 0})

= 〈hN ,ψxv cos θn〉x,q + γ

N

N∑

n=1

ψq max

{(∑N
m=1 κn,mqn∑N
m=1 κn,m

− qn

)
, 0

}
, (15)

where 〈·〉x,q means integration against both x and q.
Let us define

ρ(x) = 1

N

N∑

n=1

δ(x − xn)

and

m(x) =
〈
q,

1

N

N∑

m=1

δ(x − xm)δ(q − qm)

〉

x,q

= 1

N

N∑

m=1

δ(x − xm)qm.

We have

1

N

N∑

m=1

κ(|xn − xm|) =
〈
κ(|xn − x̃|), 1

N

N∑

m=1

δ(x̃ − xm)

〉

x

= κ ∗ ρ(xn),

1

N

N∑

m=1

κ(|xn − xm|)qm =
〈
κ(|xn − x̃|), 1

N

N∑

m=1

δ(x̃ − xm)qm

〉

x

= κ ∗ m(xn),

where 〈·〉x means integration only in x. Then, we can rewrite Eq. (15) as

d

dt
〈hN,ψ〉x,q = 〈hN,ψxv cos θ〉x,q + γ

〈
hN,ψq max

{
κ ∗ m
κ ∗ ρ − q, 0

}〉

x,q

.

(16)
Via integration by parts, Eq. (16) leads to

hNt + (v cos θ hN)x + γ (max{(q∗ − q), 0}hN)q = 0, (17)

where q∗ is the local average sickness level weighted by (14):
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q∗(t, x) =
∫∫

κ(|x − x|)h(t, x, q)qdqdx∫∫
κ(|x − x|)h(t, x, q)dqdx . (18)

Sick people that are in the spreading phase of the disease weight more in the average
since they have the highest value of q, nonetheless exposed people contribute to the
average level of sickness too since they might spread the virus they recently got
exposed to (recall we are simulating short periods of time), e.g., by close contact.

Now letting k → ∞, the subsequence hNk formally leads to the limiting kinetic
equation

ht + (v cos θ h)x + γ (max{(q∗ − q), 0}h)q = 0, (19)

where h(t, x, q) is the probability of finding at time t and position x a person with
level of exposure q if q ∈ [0, 1) or a person spreading the disease if q = 1.

Finally, we note that while modeling motion and disease spreading in one
dimension (spatial variable x), Eq. (19) is a 2D problem in variables x and q.
Modeling pedestrian motion in two dimensions would lead to a 3D problem that
requires a carefully designed numerical scheme to contain the computational costs.
This is currently under investigation.

3.1 Full Discretization

We present a space and time discretization for Eq. (19). Let x ∈ [0,D] and q ∈
[0, 1]. Given Nx = D/
x, the discrete mesh points xp are given by

xp = p
x, xp+1/2 = xp + 
x

2
=

(
p + 1

2

)

x, (20)

for p = 0, 1, . . . , Nx . We partition [0, 1] into subintervals [q
l− 1

2
, q

l+ 1
2
], with l ∈

1, 2, . . . , Nq , where

ql = l
q, ql+1/2 = ql + 
q

2
=

(
l + 1

2

)

q.

For simplicity, we assume that all subintervals have equal length 
q. The two
partitions induce a partition of domain [0,D] × [0, 1] into cells. The time step 
t

is chosen as


t ≤ min

{

x

maxp vp
,


q

2γ maxl ql

}

to satisfy the Courant–Friedrichs–Lewy (CFL) condition.
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Let us denote hj,l = h(t, xj , ql) and q∗
j = q∗(t, xj ). We consider a first-order

semi-discrete upwind scheme for Eq. (19) adapted from one of the methods used in
[29], which reads

∂thj,l + ηj,l − ηj−1,l


x
+ γ

ξ
j,l+ 1

2
− ξ

j,l− 1
2


q
= 0, (21)

where

ηj,l = vj cos θj hj,l,

ξ
j,l+ 1

2
= max

{(
q∗
j − q

l+ 1
2

)
, 0

}
hj,l .

For the time discretization of problem (21), we use the forward Euler scheme:

hm+1
j,l = hmj,l − 
t

(
ηmj,l − ηmj−1,l


x
+ γ

ξm
j,l+ 1

2
− ξm

j,l− 1
2


q

)
. (22)

The discretization scheme in this section is only first order in space and time. The
numerical errors are expected to introduce significant dissipation in the numerical
solution. Extension to higher order discretization schemes is possible (see, e.g., [21,
23, 29]) but will not be considered for this chapter.

3.2 Numerical Results

We test the approach presented in Sect. 3.1 on a series of 1D problems, correspond-
ing to unidirectional pedestrian flow in a narrow corridor. For all the problems, the
computational domain in the xq-plane is [0, 10] × [0, 1], and it is occupied by a
group of 40 people. We set R = 1 m since this choice makes the value of the
kernel function relatively small at a distance of 2 m (or about 6 ft); see Fig. 8. The
dimensionless quantities are obtained by using the following reference quantities:
D = 10 m, VM = 1 m/s, T = 10 s, and ρM = 4 people/m. In all the tests, we take
the initial density to be constant in space and equal to ρM .

We take 
x = 0.1 m and 
q = 0.01. We will consider two values for contagion
strength γ = 100 and γ = 50, with the associated respective time steps 
t =
0.00005 s and 
t = 0.0001 s. First, we keep the group of people still (i.e., v = 0)
to observe how the level of exposure to the disease evolves. Then, in a second set of
tests, we change to v = 1 m/s and see how the motion affects the spreading. We run
each simulation for t ∈ (0, 10] s.
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Fig. 8 Kernel function vs the
distance between people for
interaction radius
R = 1, 1.5, 2

Tests with v = 0 We consider two initial conditions:

– IC1: people that are certainly spreading (i.e., q = 1) are located at x ∈ [0, 4] m
and x ∈ [6, 10] m, while in x ∈ (4, 6) m we place people that have certainly not
been exposed (i.e., q = 0).

– IC2: people that are certainly spreading (i.e., q = 1) are located at x ∈ [0, 2]
m and x ∈ [8, 10] m, while the rest of the people located in x ∈ (2, 8) m have
certainly not been exposed (i.e, q = 0).

All the healthy people in IC1 are exposed to both groups of spreading people, while
in IC2 some healthy people are exposed to one group of spreading people and the
centrally located healthy people are not exposed.

Figure 9 shows the evolution of the distribution density h for initial condition
IC1 with γ = 100, 50 and for initial condition IC2 with γ = 50. We see that the
level of exposure of the central group of healthy people in IC1 increases quickly. It
increases faster the closer people are to the group of sick people and the larger γ is.
Parameter γ plays a central role in the spreading of the disease and would have to
be carefully tuned in the future for more realistic applications. The rise in the level
of exposure is much slower for the simulation with initial condition IC2. Compare
center and bottom rows in Fig. 9. In particular, we notice that the increase in q is
very small for the centrally located group of healthy people, as we expected.

This first set of tests was meant to verify our implementation of method described
in Sect. 3.1 and to check that the disease spreading term in Eq. (17) (i.e., the third
term on the left-hand side) produced the expected outcomes. Next, we are going to
get people in motion.

Tests with v = 1 m/s We assign to all people walking direction θ = 0, as if
they were headed to an exit located at x = 10 m. Once spreading people have left
the domain, we assume they cannot spread the disease to the people in the domain
anymore. We consider IC1 and IC2 and set γ = 50.
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Fig. 9 Tests with v = 0: evolution of the distribution density h for initial condition IC1 with
γ = 100 (top) and γ = 50 (center) and for initial condition IC2 with γ = 50 (bottom). The white
dashed line represents q∗

Figure 10 shows the evolution of the distribution density h for initial conditions
IC1 and IC2. We observe that the motion contributes to lowering the exposure
level in both the cases, since some of the spreading people leave the domain first.
Compare the top and bottom rows of Fig. 10 with the central and bottom rows of
Fig. 9.

Finally, we experiment with a slight modification of the initial conditions to show
that our model can handle scenarios with uncertainty. The initial conditions are
changed:

– IC1-bis: people are positioned like in IC1, but the probabilities of finding people
with q = 1 and q = 0 are reduced from 100% to 60%, and another value of q
for a given x is assigned; see Fig. 11 (left panel).

– IC2-bis: people are positioned like in IC2, but the probabilities of finding people
with q = 1 and q = 0 are reduced from 100% to 60%, and another value of q
for a given x is assigned; see Fig. 11 (right panel).

Figure 12 shows the evolution of the distribution density h for initial conditions
IC1-bis and IC2-bis.
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Fig. 10 Tests with v = 1 m/s: evolution of the distribution density h for initial condition IC1 (top)
and IC2 (bottom). In both cases, we set γ = 50. The white dashed line represents q∗

Fig. 11 Tests with v = 1 m/s: initial conditions IC1-bis (left) and IC2-bis (right)

4 Conclusions

This chapter is divided into two parts. In the first part, we presented a kinetic-type
model for crowd dynamics, while in the second part we introduced a simplified
model for disease contagion in a crowd walking through a confined environment.

Kinetic (or mesoscopic) approaches to simulate the motion of medium-sized
crowds are appealing because of their flexibility in accounting for multiple interac-
tions (hard to achieve in microscopic models) and heterogeneous behavior in people
(hard to achieve in macroscopic models). The particular kinetic model we chose
was also shown to compare favorably with experimental data for a medium-sized
population. Previously, this model had been used to simulate simple scenarios such
as evacuation with a room. In this chapter, we showed that realistic scenarios, such
as passengers walking in an airport terminal, can be handled as well.
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Fig. 12 Tests with v = 1 m/s: evolution of the distribution density h for initial conditions IC1-bis
(top) and IC2-bis (bottom). In both cases, we set γ = 50. The white dashed line represents q∗

The simplifying assumptions that we used in the model for disease contagion
are that people’s walking speed and direction are given. The disease spreading
is modeled using three main ingredients: an additional variable that denotes the
level of exposure to people spreading the disease, a parameter that describes the
contagion interaction strength, and a kernel function that is a decreasing function of
the distance between a person and a spreading individual. We tested the proposed
contagion model and numerical approach on simple 1D problems.

The obvious next step is to combine the kinetic-type model for crowd dynamics
in the first part of the chapter with the disease contagion model in order to drop the
simplifying assumption, i.e., walking speed and direction are provided by the model
instead of being given.
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Toward a Quantitative Reduction of the
SIR Epidemiological Model

Matteo Colangeli and Adrian Muntean

Abstract Motivated by our intention to use SIR-type epidemiological models in
the context of dynamic networks, we investigate in this framework possibilities to
reduce the classical SIR model to a representative evolution model for a suitably
chosen observable. For selected scenarios, we provide practical a priori error
bounds between the approximate and the original observables. Finally, we illustrate
numerically the behavior of the reduced models compared to the original ones. As a
long-term goal, we would like to apply such techniques in the context of large-scale
highly interacting inhomogeneous human crowds.

1 Introduction

The quest of a reduced description from a microscopic dynamics characterized by a
large number of degrees of freedom is one of the classical problems of statistical and
many-body physics, where model reduction and coarse-graining techniques proved
to be a central tool underpinning renormalization group methods [26, 33]. Recently,
model reduction techniques also found relevant applications in meteorology [16]
and in physical and chemical kinetics [21]. One example is represented by the
derivation of the hydrodynamic laws, described in terms of a restricted set of
fields (e.g., density, momentum, and temperature), from a kinetic description based
on an extended set of moments or on the Boltzmann equation [10–12, 27]. With
this occasion, we shall discuss the application of one such method of reduced
description, called invariant manifold (IM) method [19], to the SIR model, which
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stands as one of the historical benchmarks in the field of epidemic modelling.
The approach can be adapted to our epidemiological models described by coupled
systems of nonlinear differential equations. As discussed in the sequel, the rationale
behind the IM method is based on the identification of a restricted set of fields whose
evolution, when observed in the appropriate timescale, captures some distinctive
features of the microscopic dynamics of the system.

This work belongs to the recent attempts of the applied mathematics community
to understand, from a more fundamental perspective, the spread of viruses, like
COVID-19, which are drastically affecting the well-being of our society; see, e.g.,
[1, 2, 23, 24, 28, 31, 34, 35], to cite but a few. Our own motivation stems from
the potential use of SIR-type epidemiological models in the context of dynamic
networks as provided by large-scale highly interacting inhomogeneous human
crowds. In this framework, we identify possibilities to reduce the classical SIR
model to a representative evolution model for a suitably chosen observable. It
is worth remarking that, in general, the identification of the relevant observables
is a central step of the model reduction procedure, which necessarily requires
some physical intuition and some insight into the properties of the system under
investigation [30]. One basic guiding principle, in nonequilibrium thermodynamics,
relies on distinguishing between slow and fast variables and on retaining only the
slowest ones.

The chapter is organized as follows: after a brief discussion of the SIR model
and ideas for a reduction is done in Sect. 2, our derivation of simple quantitative
estimates allows us to bound from above in Sect. 3.3 the a priori error produced
by the proposed reduction strategy. We present in Sects. 4.1 and 4.2 how the
Mori–Zwanzig formalism and, respectively, the invariant manifold method work
for a simple linear case. Inspired by such an analysis, we propose in Sect. 4.3 an
improved reduction method that we test numerically. We close the chapter with a
few observations listed in Sect. 5.

2 Basic SIR Model and Its Quantitative Reduction

We focus our attention on the structure of the celebrated SIR model. We refer the
reader, for instance, to [8] for a nice description of the modelling ideas behind SIR
as well as to [34, 35] for a number of qualitative properties of the solutions to SIR,
SIRD, SEIR, and closely related models.

We consider three populations of individuals belonging to a larger population
whose total number of individuals is fixed. We shall denote by S, I , and R the
fraction of susceptible, infected, and removed individuals, respectively, such that
S + I + R = 1.

The model equations entering the SIR model are
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dS

dt
= −b S I, (1)

dI

dt
= b S I − γ I, (2)

dR

dt
= γ I, (3)

where the initial conditions are prescribed as S(0) = S0, I (0) = I0, and R(0) = R0
such that S0+I0+R0 = 1. Furthermore, b and γ are here strictly positive parameters
that refer to as constant averaged infection rate and constant averaged recovery rate,
respectively. As a natural consequence, we see that if S0 + I0 + R0 = 1 holds, then
we have that also the mass conservation law S(t) + I (t) + R(t) = 1 holds for any
t ∈ (0, T ), where T > 0 is arbitrarily fixed.

We refer to the system of ODEs (1)–(3) as the original dynamics.
In this framework, we will offer a couple of reduced variants of this SIR model.

In all cases, we rely on the existence and uniqueness of classical positive solutions
to the used models.

To obtain a reduced description from the original dynamics, we make the
following ansatz: we assume that a suitable timescale exists, in which the time
evolution of the driven observables is ruled by the dynamics of the leading
observable.

For the SIR model, we may identify the leading observable either with Î (t) or
with Ŝ(t), and hence we have the two options:

Ŝ(t) = �[Î (t)] and R̂(t) = �[Î (t)] (4)

or

Î (t) = �[Ŝ(t)] and R̂(t) = �[Ŝ(t)]. (5)

The discussion of the reduction method based on Eq. (4) is given in Sect. 3, while
the analysis of the model corresponding to Eq. (5) is deferred to Sect. 4.3.

3 Using the Constitutive Law Ŝ(t) = �[Î (t)]

The time evolution of the observables Ŝ(t), Î (t), and R̂(t) is dictated by the original
dynamics, Eqs. (1)–(3), complemented by the ansatz (4). In particular, the dynamics
of Î (t) reads

dÎ

dt
= b �[Î ] Î − γ Î . (6)
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Equation (7) corresponds to the desired reduced description of the original SIR
model, in which an expression for the constitutive law �[Î ] is yet to be found. The
dynamics of the driven observables Ŝ(t) and R̂(t) is given by

dŜ

dt
= −b �[Î ] Î (7)

dR̂

dt
= γ Î . (8)

The initial value problem for the system (6)–(8) is defined by fixing the values
Ŝ(0) = Ŝ0, Î (0) = Î0, and R̂(0) = R̂0. Furthermore, we also set �[Î (0)] = �0 and
�[Î (0)] = �0.

We look for the exact expression of the functional �[Î ] or, at least, a good
approximate version thereof. To this aim, using the ansatz (4), we may also write
the time derivative of the observable Ŝ(t) by relying on the chain rule, namely we
have

dŜ

dt
= dÎ

dt
�′[Î ], (9)

with �′[Î ] := d�[Î ]/dÎ , whereas the time derivative of Î is given by (6).
The IM reduction method stipulates the equality of the two expressions of the

time derivative of Ŝ(t) given in Eqs. (7) and (9). This procedure thus leads to the
invariance equation [19, 20], which reads

− b �[Î ] = �′[Î ](b �[Î ] − γ ). (10)

While Eq. (10) attains an exact, although not explicit, solution in terms of the
Lambert W function [18], we wish to follow here another route and look for
approximate, possibly explicit, solutions to Eq. (10). We can then integrate the latter
by separation of variables, thus obtaining

log
�[Î (t)]
�0

= b

γ
(�[Î (t)] − �0]) + (Î (t) − Î0)). (11)

We note in passing that, by proceeding in the same manner with the observable
R̂, we obtain the corresponding invariance equation

�′[Î (t)]
(
b

γ
�[Î (t)] − 1

)
= 1. (12)

Using now (10), we can rewrite (12) in the form
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�′[Î ] = −γ�′[Î (t)]
b �[Î (t)] , (13)

which yields the expression

log
�[Î (t)]
�0

= − b

γ

[
�[Î (t)] − �0

]
. (14)

Finally, letting

�0 = Ŝ0 and �0 = R̂0 (15)

and using (11) and (14), we obtain the consistency relation

ˆS(t) + ˆI (t) + ˆR(t) = Ŝ0 + Î0 + R̂0, (16)

which shows that the conservation of the total number of individuals in the
population is inherited by the reduced description.

Next, in order to determine an explicit approximate expression of the functional
�[Î ], we seek approximate solutions of Eq. (11) obtained via an iteration method.
As a possible choice of the iteration method, we propose

log
�(i+1)[Î (t)]

�0
= b

γ

[(
Î (t) − Î0

)
+

(
�(i)[Î (t)] − �0

)]
. (17)

For instance, by setting the initial condition for the recurrence equation (17) equal
to �(0)[Î (t)] = Î (t), we find, when setting i = 0, the solution

�(1)[Î (t)] = �0 exp

{
b

γ
(2Î (t) − Î0 − �0)

}
. (18)

A natural question thus arises: what do we learn from approximate solutions? It will
turn out that the better we can approximate the exact solution of Eq. (11), given
in terms of the Lambert W function, the better we can reduce the SIR model; see
Claim 3 later on.

3.1 A Direct Short-Time Estimate

We now aim at estimating the nearness of the solution S(t) to Eq. (1) with initial
datum S(0) = S0, and the constitutive law �[Î (t)], defined in Eq. (4) with initial
datum �[Î (0)] = �0. It will turn out that our bound is meaningful only for a small
time interval of observation and for a convenient parameter regime.



190 M. Colangeli and A. Muntean

For an arbitrarily fixed value δ > 0 with t∗ ∈ (0, δ), we can derive for any
t ∈ (0, δ) the next upper bound:

|S(t) − �[I (t)]| = |S0 +
∫ t

0
(−bSI) dτ − �[I (t)]|

= |S0 +
∫ t

0
(−bSI) dτ − �

[
I0 +

∫ t

0
(bSI − γ I) dτ

]
|

≤ O(δ2) + |S0 − �[I0]| + | (−bS(t∗)I (t∗)
)
δ|

+ |�′ [I0]
(
bS(t∗)I (t∗) − γ I (t∗)

)
δ|.

≤ |S0 − �[I0]| + c∗δ, (19)

where c∗ > 0 is a constant depending on the parameters of the model, as well as on
a priori uniform bounds on S, I and on the smoothness of �.

The last term comes from the Taylor expansion of �[I (t)], while the term
involving the point evaluation in t∗ is the result of the application of the mean-value
theorem. Based on the rough estimate (19), we observe that the quantity

e(t) := |S(t) − �[I (t)]|

can be made small if δ > 0 is sufficiently small, � is at least twice differentiable,
and S(t) and I (t) are bounded positive continuous functions. Note, however, that
the smallness of e(t) strongly depends on the choice of the parameters b and γ . For
instance, in the limit of large values of γ , most likely the quantity e(t) will grow.
On the other hand, if γ takes moderate values, then we expect e(t) ∼ O(δ) for
sufficiently small t and e(t) ∼ O(δT ) for t ∈ (0, T ).

Remark 1

(i) The structure of the original ODE system indicates that if the functionals �[·]
and �[·] are suitable exponentials (obtained by integrating the equations for S
and R), then e(t) = 0 for any t ∈ (0, T ).

(ii) We expect that instead of estimating from above the quantity e(t), it is more
practical to bound the quantity |S(t) − �[Î (t)]| for t ∈ (0, τ ), with τ fixed.

3.2 An Indirect Large-Time Estimate

The dynamics of I (t) is governed by

dI

dt
= b S I − γ I, (20)

where I (0) = I0. The starting point of this discussion is the fact that besides
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dÎ

dt
= b �[Î ] Î − γ Î , (21)

we may also consider

dĨ

dt
= b�(n)[Ĩ ]Ĩ − γ Ĩ , (22)

where �(n) is the solution to our iterative method at the step n ∈ N. We provide also
the information on the initial data I (0), Î (0), and Ĩ (0).

Claim 1 The iteration method works such that for any r ∈ [0, ||I ||∞], it holds

|�(r) − �(n)(r)| ≤ εn, (23)

with limn→∞ εn = 0. Here, || · ||∞ denotes the standard uniform norm on C[0, T ].
The previous work done in the existing literature on the rigorous numerical

approximation of the Lambert function gives trust in this claim; see, for instance,
[18] and the references cited therein. Therefore, we omit to prove here this
statement.

Claim 2 Under the assumptions for which Claim 1 holds, there exist constants ĉ1 >

0 and ĉ2 > 0 such that

|I (t) − Ĩ (t)| ≤ eĉ1T
(
|I (0) − Ĩ (0)| + ĉ2T εn

)
(24)

holds for any t ∈ (0, T ). Here, ĉ1 and ĉ2 are independent of t and T .

Proof of Claim 2 We observe firstly that

|�(I) − �(n)(Ĩ )| = |�(I) − �(Ĩ ) + �(Ĩ ) − �(n)(Ĩ )| ≤ |�(I) − �(Ĩ )|
+ |�(Ĩ ) − �(n)(Ĩ )| ≤

≤ ||�′||∞|I − Ĩ | + εn.

Subtracting (22) from (21) gives

d

dt
(I − Ĩ ) = γ (Ĩ − I ) + b

[
�(I)I − �(n)(Ĩ )Ĩ

]
.

Noting that

�(I)I − �(n)(Ĩ )Ĩ = I
(
�(I) − �(n)(Ĩ )

)
+ �(n)(Ĩ )(I − Ĩ )

leads to
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d

dt
|I − Ĩ | ≤ (γ + |�(n)(Ĩ )|)|Ĩ − I | + ||I ||∞

(
||�′||∞|I − Ĩ | + εn

)
≤

≤ εn||�′||∞ + (γ + |�(n)(Ĩ )|(1 + ||I ||∞))|Ĩ − I |.

Now, using Grönwall’s inequality (cf., e.g., Appendix B in [17]) gives

|I (t) − Ĩ (t)| ≤ e

∫ t
0

(
γ+|�(n)(Ĩ (τ ))|(1+||I ||∞)

)
dτ

[
|I (0) − Ĩ (0)| + ||�′||∞T εn

]
.

Choosing now ĉ1 := γ + ||�(n)||∞|(1 + ||I ||∞) and ĉ2 := ||�′||∞ leads to the
desired estimate proposed by Claim 2.

3.3 Estimate on the Error of the Reduction Method

In this section, we aim to bound from above the error produced by the reduction
method proposed within this framework.

Claim 3 Assume the hypothesis of Claim 2 to be true. Let τ > 0 be arbitrarily fixed.
Then, there exist strictly positive constants ĉ1, ĉ2, and ĉ3 such that the following a
priori estimate holds:

∫ τ

0
|S(s) − �(Î (s))|ds ≤ ĉ1|I − Î | + ĉ2

∫ τ

0
|I (s) − Î (s)|ds

+ ĉ3|I (0) − Î (0)|, (25)

where I and Î satisfy (2) and, respectively, (51).

Proof of Claim 3 We have

bSÎ − b�(Î )Î + Sb(I − Î ) = d

dt
(I − Î ) + γ (I − Î ).

By a direct manipulation of the structure of equations (2) and (51), we obtain

S − �(Î ) = 1

b

1

Î

[
d

dt
(I − Î ) + (γ − Sb) (I − Î )

]
,

which by integration on [0, τ ] leads to

∫ τ

0
|S(s) − �(Î (s))|ds ≤ 1

b

∫ τ

0
| 1

Î (s)
(γ − S(s)b) |ds
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+ 1

b
|
∫ τ

0

1

Î (s)

d

dt
(I (s) − Î (s))ds|. (26)

As the first term on the right-hand side of the last inequality can be bounded above
by (γ + ||S||∞b) 1

β

∫ τ

0 |I (s) − Î (s)|ds (with 0 < β ≤ I (t)) and, respectively,

the last term by 2
b

(
|I (τ ) − Î (τ )| + |I (0) − Î (0)|

)
, the claim is now proven by

choosing correspondingly the constants ĉ1, ĉ3, and ĉ3.

Remark 2 Combining the statements of Claim 3 and Claim 2, we note that there
exists a constant c > 0 such that

∫ τ

0
|S(s) − �(Î (s))|ds ≤ c

(
εn + |I (0) − Î (0)|

)
. (27)

This is obtained by adding and subtracting an Ĩ in each term on the right-hand
side of the estimate provided by Claim 3 and employing conveniently the statement
of Claim 2. Note that the estimate (27) is quite practical. It basically tells that if
I (0) = Î (0), then the quality of the reduction method depends mostly on the quality
of the numerical approximation of the constitutive law �n.

The inequality (27) is an a priori bound on the error produced by the reduction
strategy. This simply gives confidence that the reduction question makes sense in
the SIR context.

4 Ideas for an Improved Reduced Description

The analysis of the SIR model, developed in Sect. 2, has shed light on the conditions
under which one may hope to quantitatively capture the features of the original
dynamics by using a reduced description based on the IM method. We shall now
turn our attention to another model, amenable to an analytical solution, which will
also clarify the strengths and limitations of the IM method.

4.1 An Instance of the Mori–Zwanzig Method

The Mori–Zwanzig method, in its essence, performs a partition of the dynamical
variables into two subsets corresponding to the “relevant” and the “irrelevant”
variables. Suitable projection operators are then employed to project the original
dynamics onto the subspace of the relevant variables [32]. The simplest case in
which this method can be discussed is a linear system of coupled first-order ODEs:

ẋ = L11x + L12y (28)
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ẏ = L21x + L22y (29)

with x(0) = x0 and y(0) = y0, and where Lij , i, j = 1, 2, are real parameters.
Here, x(t) and y(t) are regarded, respectively, as the “relevant” and the “irrelevant”
variables.

Using the set-up of Sect. 2, we may also regard y(t) as the dynamical variable
whose time evolution is driven by x(t).

In this case, the original dynamics, given by Eqs. (28)–(29), is amenable to an
analytical solution; namely, we can first solve (29) for y(t):

y(t) = exp{L22t}y0 +
∫ t

0
exp{L22(t − s)}L21x(s)ds, (30)

which represents the exact constitutive law linking y(t) to x(t). We can plug, next,
(30) into (28) to obtain a closed ODE for x(t), which reads

ẋ = L11x + L12

∫ t

0
exp{L22(t − s)}L21x(s)ds + L12 exp{L22t}y0 . (31)

Equation (31) represents the exact reduced description in terms of the relevant
variable x(t). The price we paid to get a reduced description, in this example,
amounts to the presence of a memory term in the evolution equation for x(t), which
echoes the dynamics of the irrelevant variables.

We point out that, in the modelling of multiscale phenomena, the choice of the
relevant dynamical variables is not always supported by guiding thermodynamic
principles [22]. In fact, an improper choice of the relevant variables may not
lead, eventually, to a successful reduced description [29]. On the other hand, a
meaningful selection of the relevant variables proved to be extremely important,
in statistical mechanics, to establish general results such as the Fluctuation–
Dissipation Relations and the Fluctuation Relations in nonequilibrium systems
[13, 14].

4.2 Using the Invariant Manifold Method

We shall now discuss the application of the IM method to the system (28)–(29).
To get started, we focus on a perturbative method known as the Chapman–Enskog
expansion, which stems from the geometrical theory of singular perturbations [25];
namely, we introduce a singular perturbation into the equation of y(t) as follows:

ẏ = L21x + 1

ε
L22y, (32)
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where ε > 0 is a small parameter. Proceeding as in Sect. 2, we introduce the new
variable ŷ such that

ŷ(t) = �[x̂(t)], (33)

where x̂(t) is defined via its ODE

˙̂x = L11 x̂ + L12 �[x̂]. (34)

The dynamics of ŷ(t) can be described equivalently using the following two
equations:

dŷ

dt
= L21 x + 1

ε
L22 �[x̂] (35)

dŷ

dt
= dx̂

dt
�′[x̂]. (36)

We then impose the equality of two expressions of the time derivative of ŷ(t), (35)
and (36), thus obtaining the invariance equation

L21 x̂ + 1

ε
L22 �[x̂(t)] = �′[x̂] (

L11 x̂ + L12 �[x̂]) . (37)

In the Chapman–Enskog method, the solution of Eq. (37) is sought by expanding
the variable ŷ in a form of a series in powers of the number ε, i.e.,

�[x̂] = �(0)[x̂] +
∞∑

i=1

εi�(i)[x̂]. (38)

Thus, Eq. (37) takes the form

L21x̂ + 1

ε
L22(�

(0) + ε�(1) + ε2�(2) + . . .)

= d(�(0) + ε�(1) + ε2�(2) + . . .)

dx̂
×

×[L11x̂ + L12(�
(0) + ε�(1) + ε2�(2) + . . .)], (39)

which must be solved order by order by equating terms on both sides of the equation.
At the lowest orders of ε, one finds the following sequence of constitutive laws:

orderε−1: �(0)[x̂] = 0 (40)

orderε0: �(1)[x̂] = −L21

L22
x̂ (41)
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orderε: �(2)[x̂] = −L21L11

L2
22

x̂ (42)

orderε2: �(3)[x̂] = L21

L3
22

(L12L21 − L2
11)x̂. (43)

An inspection of the structure of the approximated solutions in Eqs. (40)–(43) gives
us a hint on the structure of the solution of the invariance equation (37) when no
singular perturbation is introduced in Eq. (32) (i.e., when setting ε = 1 in Eq. (32))
[20]. Therefore, we seek for a constitutive law (33) endowed with the linear structure

�[x̂] = A x̂, (44)

where A(L11, L12, L21, L22) is an unknown function of the parameters Lij , i, j =
1, 2, yet to be determined. Hence, Eq. (37) takes the form

L21 x̂ + L22 A x̂ = A (L11 x̂ + L12 A x̂). (45)

Equation (45) becomes the quadratic equation

L12 A
2 + (L11 − L22) A − L21 = 0, (46)

whose roots are

A∗ = −(L11 − L22) ± √
(L11 − L22)2 + 4L12L21

2L12
. (47)

Thus, the IM method leads to the following constitutive law:

ŷ = A∗x̂, (48)

which should be compared with the exact constitutive law (30).
Using (48), we can now rewrite (34) as follows:

˙̂x = A∗x̂, (49)

where we have setA∗ = L11 + L12A
∗.

Figure 1 shows the behavior of x(t), obtained by integration of Eq. (31), and of
the real part %(x̂(t)) of the solution of the reduced system (49), with an initial datum
x0 = x̂0 = 1, for two different values of the coupling parameter L21. In particular,
Fig. 1 evidences that fixing a larger value of L21, while keeping the other parameters
fixed, leads to a better performance of the IM reduction method. The reason is that a
larger value of L21, in (29), makes the time derivative of y(t) more strongly affected
by the behavior of x(t). This, hence, fits nicely with the ansatz (33), which requires
the dynamics of ŷ(t) to be driven by x̂(t).
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Fig. 1 Left panel: behavior of x(t) (black dashed line), obtained from Eq. (31), and %(x̂(t)) (gray
solid line), obtained from Eq. (49), with x0 = x̂0 = 1, L11 = −0.1, L12 = −1, and L22 = −0.5
and with L21 = 1 (left panel) and L21 = 30 (right panel)

4.3 Back to the SIR Model

In this concluding section, we return to the SIR model of Sect. 2 and discuss the
application of the IM method by using the ansatz (5). It will turn out that, in this
case, the IM method may yield an exact reduced description.

The dynamics of the field Ŝ(t) now reads

dŜ

dt
= −b Ŝ �[Ŝ(t)] (50)

with Ŝ(0) = Ŝ0. We also fix �[Ŝ(0)] = �0 and �[Ŝ(0)] = �0.
In the present case, Eq. (50) corresponds to the reduced description of the original

SIR model, Eqs. (1)–(3). To find an explicit expression for the constitutive law �[Ŝ],
we write, first, the dynamics of the driven observable Î (t) as

dÎ

dt
= b Ŝ �[Ŝ(t)] − γ �[Ŝ(t)]. (51)

Next, as in Sect. 3, we also write the time derivative of Î (t) by using the chain
rule, i.e.,

dÎ

dt
= dŜ

dt
� ′[Ŝ]. (52)

We thus obtain the invariance equation:

� ′[Ŝ(t)] = −1 + γ

b Ŝ(t)
. (53)

We can then integrate Eq. (53) by separation of variables, thus obtaining
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�[Ŝ(t)] = �0 − (Ŝ(t) − Ŝ0) + γ

b
log

Ŝ(t)

Ŝ0
. (54)

In a similar fashion, we find

�[Ŝ(t)] = �0 − γ

b
log

Ŝ(t)

Ŝ0
. (55)

Finally, by setting

�0 = Î0 and �0 = R̂0 (56)

and by summing up (54) and (55), we obtain

Ŝ(t) + Î (t) + R̂(t) = Ŝ0 + Î0 + R̂0, (57)

which yields, again, the conservation of the total number of individuals in the
reduced dynamics. In Fig. 2, the behavior of S(t), obtained by integration of the
original SIR model, Eq. (1)–(3), is compared with the solution Ŝ(t) of Eq. (50),
equipped with the constitutive law (54). Figure 2 shows that the behavior of Ŝ(t)
recovers with striking accuracy that of S(t). Moreover, the two panels of Fig. 3 show
the parametric plots of the I (t) vs. S(t) (left panel) and R(t) vs. S(t) (right panel)
for the original SIR model and for the reduced description.

We would like, however, to point out that the nice agreement between original
and reduced dynamics outlined above might easily be lost when considering time-
dependent parameters b = b(t) and γ = γ (t), for t > 0. A careful rewriting of the
invariance equation is demanded to handle such a case. We will discuss this scenario
elsewhere.

Fig. 2 Behavior of S(t) for
the original dynamics, Eq. (1)
(black dashed line), and for
the reduced description (gray
solid line), obtained from
Eqs. (50) and (54). We fixed
S0 = Ŝ0 = 0.99 and
�0 = Î0 = 0.01, with b = 1
and γ = 0.2
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Fig. 3 Left panel: parametric plots of I (t) vs S(t) for the original dynamics, Eqs. (1)–(2) (black
dashed line) and for the reduced description (gray solid line), obtained from Eq. (54). Right panel:
parametric plot of R(t) vs S(t) for the original dynamics (black dashed line) and for the reduced
description (gray solid line), obtained from Eq. (55). We fixed I0 = Î0 = �0 = 0.01 and R0 =
R̂0 = �0 = 0

5 Conclusion

We have succeeded to identify constitutive laws to reduce the presence of either the
fraction of the susceptible or the infected individuals in the standard SIR model.
The reduced descriptions, obtained using the IM method, agree via numerical
simulations and practical a priori error bounds with what is expected from the
original SIR dynamics.

Our work opens the possibility to use the reduced SIR dynamics for reading
off data available, for instance, on demonstrated COVID-19 infections and deaths
and, based on a parameter identification approach done at this level, produce a new
forecast on the effects of the pandemic evolution.

From a long-term research perspective, the method discussed in these notes
indicates new routes to be exploited to obtain reduced descriptions in yet uncharted,
or only partially explored, territories, such as the mathematical modelling of crowd
dynamics [5–7, 15], electronic transport [3], and uphill diffusions [4, 9], in the
framework of interacting particle systems.
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An Agent-Based Model of COVID-19
Diffusion to Plan and Evaluate
Intervention Policies

Gianpiero Pescarmona, Pietro Terna, Alberto Acquadro, Paolo Pescarmona,
Giuseppe Russo, Emilio Sulis, and Stefano Terna

Abstract A model of interacting agents, following plausible behavioral rules into a
world where the Covid-19 epidemic is affecting the actions of everyone. The model
works with (i) infected agents categorized as symptomatic or asymptomatic and
(ii) the places of contagion specified in a detailed way. The infection transmission
is related to three factors: the characteristics of both the infected person and
the susceptible one, plus those of the space in which contact occurs. The model
includes the structural data of Piedmont, an Italian region, but we can easily
calibrate it for other areas. The micro-based structure of the model allows factual,
counterfactual, and conditional simulations to investigate both the spontaneous or
controlled development of the epidemic.

The model is generative of complex epidemic dynamics emerging from the
consequences of agents’ actions and interactions, with high variability in outcomes
and stunning realistic reproduction of the successive contagion waves in the
reference region. There is also an inverse generative side of the model, coming
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from the idea of using genetic algorithms to construct a meta-agent to optimize
the vaccine distribution. This agent takes into account groups’ characteristics—by
age, fragility, work conditions—to minimize the number of symptomatic people.

1 A Quick Introduction to Our Agent-Based Epidemic
Model

The starting point is a compartmental model with Susceptible, Infected, and
Recovered people (S.I.R.), but adding both a more detailed breakdown of the
subjects involved in the contagion process [1] and a multi-scale framework to
account for the interaction at different dimensional, and spatial levels [2]. From
the virus micro-level, we move to individuals and up to the collective behavior of
the population.

Following [3], we know that the analysis based on the assumption of heterogene-
ity strongly differs from S.I.R. compartmental structures modeled by differential
equations. The authors of this work argue when it is best to use agent-based
models and when it would be better to use differential equation models ponder
when it is better to use agent-based models and when it would be better to use
differential equation models. Differential equation models assume homogeneity and
perfect mixing of characteristics within compartments, while agent-based models
can capture heterogeneity in agent attributes and the structure of their interactions.
We follow the second approach (about agent-based approach, see Sect. 1.1).

• Our model takes into consideration:

(i) infected agents categorized as symptomatic or asymptomatic and
(ii) the places of contagion specified in a detailed way, thanks to agent-based

modeling capabilities.

• The infection transmission is related to three factors: the infected person’s
characteristics and those of the susceptible one, plus those of the space in which
a contact occurs.

Finally, we subscribe the call of [4] to «cover the full behavioural and social
complexity of societies under pandemic crisis» and we work arguing that «the
study of collective behavior must rise to a “crisis discipline” just as medicine,
conservation, and climate science have, with a focus on providing actionable insight
to policymakers and regulators for the stewardship of social systems», as in [5].

A look at the structure of the whole presentation. In Sect. 1.1, we discuss models
and specifically agent-based models; in Sect. 1.2, the molecular support to agents’
intrinsic susceptibility construction; in Sect. 1.3, the structure of the model, with the
daily sequence of the agents’ actions. Section 2 introduces a detailed description of
the internal model mechanisms, with: conditional actions in Sect. 2.1, parameters in
Sect. 2.2 and agents’ interaction in Sect. 2.3.
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A technique for contagion representation is introduced in Sect. 3. Then we
explore simulation cases in Sect. 4, building several batches of runs and comparing
extreme situations in Sect. 4.1.

Section 4.2 reports the actual epidemic data in the reference region. With
those data, we verify factual and counterfactual analyses in Sect. 5. Considering
the possibility of calculating infection indicators without delays (Sect. 5.4), we
experiment with the effect of adopting the control measure with 20 days of
anticipation (Sect. 5.5). In Sect. 5.6 we verify another counterfactual policy, that
of concentrating the efforts uniquely in defense of fragile persons. Section recap 5.7
summarizes these results.

The final application of the model is dedicated to a planning exercise on
vaccination campaigns (Sect. 7). We introduce an analysis of the vaccine mechanism
in the perspective of our model (Sect. 7.1), using both planned strategies (Sects. 7.4
and 7.5) and genetic algorithms (Sect. 7.6). The GAs goal is to optimize the behavior
of a meta-agent, deciding the sequence of the vaccinations.

1.1 Why Models? Why Agents? Why Another Model?

Why another model, and most of all, why models? With [6]:

The choice (. . . ) is not whether to build models; it’s whether to build explicit ones. In
explicit models, assumptions are laid out in detail, so we can study exactly what they entail.
On these assumptions, this sort of thing happens. When you alter the assumptions that is
what happens. By writing explicit models, you let others replicate your results.

With even more strength:

I am always amused when these same people challenge me with the question,“Can you
validate your model?” The appropriate retort, of course, is,“Can you validate yours?” At
least I can write mine down so that it can, in principle, be calibrated to data, if that is what
you mean by “validate” a term I assiduously avoid (good Popperian that I am).

To reply to “why agents?”, with [7] we define in short what an agent-based model
is:

An agent-based model consists of individual agents, commonly implemented in software
as objects. Agent objects have states and rules of behavior. Running such a model simply
amounts to instantiating an agent population, letting the agents interact, and monitoring
what happens. That is, executing the model—spinning it forward in time—is all that is
necessary in order to “solve” it.

More in detail:

There are, ostensibly, several advantages of agent-based computational modeling over
conventional mathematical theorizing. First, [. . . ] it is easy to limit agent rationality in
agent-based computational models. Second, even if one wishes to use completely rational
agents, it is a trivial matter to make agents heterogeneous in agent-based models. One
simply instantiates a population having some distribution of initial states, e.g., preferences.
That is, there is no need to appeal to representative agents. [. . . ] Finally, in most social
processes either physical space or social networks matter. These are difficult to account for
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mathematically except in highly stylized ways. However, in agent-based models it is usually
quite easy to have the agent interactions mediated by space or networks or both.

In [8] we have a relevant step ahead, considering inverse generative social
science:

The agent-based model (ABM) is the principal scientific instrument for understanding
how individual behaviors and interactions, the micro-world, generates change and stasis
in macroscopic social regularities. So far, agents have been iterated forward to generate
such explananda as settlement patterns, scaling laws, epidemic dynamics, and many other
phenomena [6]. But these are all examples of the forward problem: we design agents and
grow the target phenomenon. The motto of generative social science is: “If you didn’t grow
it, you didn’t explain it.” [9] But there may be many ways to grow it! How do we find ‘all’
the non-trivial generators? This is inverse generative social science—agent architectures as
model outputs not model inputs—and machine learning can enable it.

And now, “why another?” As a commitment to our creativity, using our
knowledge to understand what is happening. Indeed, with arbitrariness: it is up to
others and time to judge.

As any model, also this one is based on assumptions: time will tell whether these
were reasonable hypotheses. Modeling the Covid-19 pandemic requires a scenario
and the actors. As in a theater play, the author defines the roles of the actors and the
environment. The characters are not real, they are prebuilt by the author, and they act
according to their peculiar constraints. If the play is successful, it will run for a long
time, even centuries. If not, we will rapidly forget it. Shakespeare’s Hamlet is still
playing after centuries, even if the characters and the plot are entirely imaginary.
The same holds for our simulations: we are the authors, we arbitrarily define the
characters, we force them to act again and again in different scenarios. However,
in our model, the micro-micro assumptions are not arbitrary but based on scientific
hypotheses at the molecular level, the micro agents’ behaviors are modeled in an
explicit and realistic way. In both plays and simulations, we compress the time: a
whole life to two or three hours on the stage. In a few seconds, we run the Covid-19
pandemic spread in a given regional area.

1.2 The Molecular Basis of SARS-CoV-2 Infection

To fully understand what the word infection means, we have previously to define
the scenario where life takes place.

We start with the properties of life on earth’s surface [10]. Making a long
story short, basically life is a dissipative process fueled by energy supplied by the
sun. As the sun has been shining for billions of years the biological systems on
earth expanded exponentially in a finite environment, and they became limited in
their growth due to the shortage of available atoms/molecules (“nutrients”). The
competition for the limiting nutrients in each local environment (“niche”) will
locally drive the selection and will explain the complexity of the interactions of the
different organisms in any environment, from the microscopic to the social level.
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The ground, the soil, and the ponds are overcrowded with bacteria, algae, molds,
insects, and so on. They help to keep the ground healthy and ready for cultivation.
We too are populated by microorganisms, the gut, the mucosae, the skin. But when
we feel healthy we do not realize they are there; but sometimes we do not feel well,
we are sick. We have a disease, we need a culprit: somebody different from us, a
virus, a bacterium, a protozoan that infected us.

In most cases, the same agent is shared by people surrounding us, but most of
them are healthy, few are sick. The coexistence/cooperation between organisms
sharing the same “niche” is the rule after billions of years of evolution. The disease is
the exception. The asymptomatic infection is the rule, the symptomatic infection is
the disease. The simplest explanation for the rise of the symptoms is the competition
of different organisms for a limiting “nutrient.”

In the case of the Herpesvirus family and man, the limiting “nutrient” is Iron.
Virus Ribonucleotide reductase is an enzyme with an affinity for iron higher than
human cells. Infected cells survive quite well until iron availability covers the needs
of both host and virus. In the case of iron shortage (evaluated as the level of
serum ferritin) the infected cells are forced to reduce heme synthesis, necessary
for the respiratory chain, and hence ATP synthesis. Less ATP, loss of many cellular
functions, symptoms. In our experience, most of the people seropositive to HSV
had no symptoms, provided they had serum ferritin levels ≥90 ug/dl. The lower the
ferritin level, the higher the frequency of the symptoms. The level of ferritin depends
on genetic, dietary, environmental factors, explaining the variability of the clinical
manifestations [11].

In the case of HSV, the virus metabolism is well known and studied for tens of
years. In the case of SARS-CoV-2 our experience is in the range of months and the
identification of the limiting “nutrient” is only speculative.

On the basis of the data collected up to now, Cysteine could be the most relevant.
One of the co-authors here, G. Pescarmona, with other contributors, has recently
developed a software able to easily compare the amino acids (AA) percentage and
some selected ratios between couples of them, using Uniprot proteins repository
as data source [12]. Using this software, it has been possible to compare the AA
percentage in different tissues [13] demonstrating the limiting role of AA local
availability on the synthesis of specific proteins.

From the beginning of the pandemic, it has been clear that ACE2 was the
preferred ligand for the Spyke protein and that cells expressing it were the perfect
host for the fast synthesis of viral protein [14]. Our working hypothesis is that the
best host cell is one producing a protein with a similar AA percentage. From Fig. 1
we can extract the following info: most AA percentages of the viral proteins are
similar, with the exception of Cysteine (lower) and Methionine and Tryptophan
(higher) to the ACE2. Higher methionine associates with faster protein synthesis,
higher Tryptophan with higher nucleic acid synthesis. A perfect environment for
replication of both RNA and virus proteins. Expression of viral proteins with high
Cysteine decreases free cysteine and therefore Glutathione (GSH) synthesis, with
impaired antioxidant defense and increased ROS activity. Increased ROS activity
has been one of the first well-identified mechanisms of viral infection [15] and their
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Fig. 1 Comparison of the Amino Acids percentage in the most representative SARS-Cov-2
proteins and the human ACE2, receptor on the surface of host cells

scavenging by GSH has been proposed as a preventive/therapeutic approach to the
symptomatic disease [16].

Also, the ratio between AA couples, in Fig. 2, shows good similarity with
the exception of the Spyke protein, as far as the ratios including glutamate are
involved, but the almost perfect coincidence between the catalytic proteins of the
virus and ACE2 explains the reproductive advantage of entering a cell expressing
it. The interesting information that we get from this approach is that the cysteine
deprivation of the naturally infected cells is shared also by cells induced to produce
Spyke protein, independently by the vector used. Moreover, whilst the full virus
enters the cells expressing on the outer surface ACE2, and we can identify them and
try to imagine the long-term effects of infection, in the case of vaccines the synthetic
vectors should allow the entry in any kind of cells.

In conclusion, we can expect oxidative damage (ROS increase and inflammation)
in any kind of cell in our body. The extent of the inflammation will vary according
to so many variables: age, diet, drugs, previous silent sites of inflammation, to make
almost impossible the prediction of the localization and gravity of the side effects.

The Cytokine Storm
The cytokine storm is a synthetic definition of the set of reactions leading to the
symptomatic COVID-19 and to death. The core process of the infection is the
unbalance between ACE/ACE2. SARS-CoV-2 binds to ACE-2 and sequester it,
causing an ACE prevalence and a sharp increase of ROS [17, 18]. All pre-existing
processes leading to the prevalence of ACE are pro-inflammatory, those leading to
a prevalence of ACE2, are anti-inflammatory. A low level of the active Vitamin
D (1,25-dihydroxy-Vitamin D) leads to an increased expression of ACE. Cortisol
has the same, but with an independent mechanism, effect on ACE expression and,
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Fig. 2 Comparison of some ratios between selected Amino Acids in the most representative
SARS-Cov-2 proteins and the human ACE2, receptor on the surface of host cells. These ratios
supply specific information about the local metabolic condition inside the cell [13]

additionally, decreases the expression of ACE2. In all the cases the ROS released
by ACE activity are scavenged by GSH and its ancillary enzymes. Downstream of
ROS, the inflammatory pathway includes NF-kB, TNF-alpha, IL-6, PLA2, COX1,
and COX2.

From the clinical point of view the COVID-19 pandemic is affecting differently
the world population: in presence of conditions such as aging, diabetes, obesity,
and hypertension the virus triggers a lethal cytokine storm and patients die from
acute respiratory distress syndrome, whereas in many cases the disease has a mild or
even asymptomatic progression [19]. The identification of the biochemical patterns
underlying the severe disease may allow the identification of fragile people in need
of more accurate protection.

Combining the biochemical determinants listed in Table 1 within the model
described in Fig. 3 is possible to evaluate the risk for every individual, or class of
similar individuals, of developing a severe form of the disease.

DHEA is an adrenal hormone, a precursor of testosterone and estrogens, that
activates heme synthesis. Heme is required for plenty of reactions, including the res-
piratory chain (ATP synthesis) and Vitamin D activation. ATP is required for GSH
synthesis, BMR reflects the activity of the respiratory chain and therefore depends
again on heme. Heme synthesis requires iron, whose availability depends on diet,
correct digestion, and absorption. Table 1 lists also some of the environmental
factors that can interfere with the molecules involved in the COVID-19 dependent
inflammatory response. Environmental pollution and drugs abuse in older people are
among the factors that can explain the excess mortality in developed countries. The
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Fig. 3 All the main agents
involved in the inflammatory
response during COVID-19
are depicted here, with their
relationships (reprinted with
permission from [16])

Table 1 A synopsis of all the
metabolic features associated
with the clinical conditions
favoring a severe COVID-19
development. DHEA:
Dehydroepiandrosterone,
GSH: Glutathione, Vit D:
25(OH)-Vitamin D, BMR:
Basal Metabolic Rate

Risk factors DHEA Cortisol GSH Vit D BMR

Aging Low High Low Low Low

Diabetes Low High Low Low Low

Hypertension Low High Low Low ?

Obesity Low High Low Low Low

Diuretics – High – – ?

Drugs – – Low Low ?

Air pollution – – Low – ?

Paracetamol – – Low – ?

Chloroquine – – Low – ?

Glucocorticoids – High – – ?

Ibuprofen – – – – ?

Aspirin

therapeutic use of paracetamol, chloroquine, and glucocorticoids to prevent severe
symptoms looks inappropriate on the basis of their action mechanism.

This set of considerations can be used to tentatively identify and protect
fragile people but can be easily modified according to the epidemiological data.
Unfortunately, up to now, the prevailing approach has been different, and not so
much data about the characteristics of the patients severely ill have been published
to allow validation of our criteria for fragility.

1.3 Our Model

With our model, we move from a macro compartmental vision to a meso and micro-
analysis capability. Its main characteristics are:
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• scalability: we take into account the interactions between virus and molecules
inside the host, determining individual susceptibility; the interactions between
individuals in more or less restricted contexts; the movement between different
environments (home, school, workplace, open spaces, shops); the movements
occur in different parts of the daily life, as in [20]; in detail, the scales are:

– micro, with the internal biochemical mechanism involved in reacting to the
virus, as in [16], from where we derive the critical importance assigned to an
individual attribute of intrinsic susceptibility related to the age and previous
morbidity episodes; the model indeed incorporates the medical insights and
consistent perspectives of one of its co-authors, former full professor of
clinical biochemistry, signing also the quoted article; a comment on Lancet
[21] consistently signals the syndemic character of the current event: «Two
categories of disease are interacting within specific populations—infection
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and an
array of non-communicable diseases (NCDs)»;

– meso, with the open and closed contexts where the agents behave, as reported
above;

– macro, with the emergent effects of the actions of the agents;

• granularity: at any level, the interactions are partially random and therefore the
final results will always reflect the sum of the randomness at the different levels;
changing the constraints at different levels and running multiple simulations
should allow the identification of the most critical points, where to focus the
intervention.

Summing up, S.I.s.a.R. (https://terna.to.it/simul/SIsaR.html) is an agent-based
model designed to reproduce the diffusion of the COVID-19 using agent-based
modeling in NetLogo [22]. We have Susceptible, Infected, symptomatic, asymp-
tomatic, and Recovered people: hence the name S.I.s.a.R. The model works on the
structural data of Piedmont, an Italian region, but we can quite easily calibrate it
for other areas. It reproduces the events following a realistic calendar (national or
local government decisions, as in Sect. 2.2), via its script interpreter. At the above
address, it is also possible to run the code online without installation. Into the Info
sheet of the model, we have more than 20 pages of Supporting Information about
both the structure and the calibration of the model.

The micro-based structure of the model allows factual, counterfactual, and con-
ditional simulations. Examples of counterfactual situations are those considering:

(i) different timing in the adoption of the non-pharmaceutical containment mea-
sures;

(ii) an alternative strategy, focusing exclusively on the defense of fragile people.

The model generates complex epidemic dynamics, emerging from the conse-
quences of agents’ actions and interactions, with high variability in outcomes, and
with a stunning realistic reproduction of the contagion waves that occurred in the
reference region.

https://terna.to.it/simul/SIsaR.html
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We take charge of the variability of the epidemic paths within the simulation,
running batches of executions with 10,000 occurrences for each experiment.

Following [8], the AI and inverse generative side of the model comes from con-
structing a meta-agent optimizing the vaccine distribution among people groups—
characterized by age, fragility, work conditions—to minimize the number of
symptomatic people (as deceased persons come from there).

We can characterize the action of the planner both:

(i) introducing ex-ante rules following “plain” or “wise” strategies that we imagine
as observers or

(ii) evolving those strategies via the application of a genetic algorithm, where the
genome is a matrix of vaccination quotas by people groups, with their time
range of adoption.

2 How S.I.s.a.R. Works

We have two initial infected individuals in a population of 4350 individuals, on a
scale of 1:1000 with Piedmont. The size of the initial infected group is out of scale:
it is the smallest number ensuring the epidemic’s activation in a substantial number
of cases. Initial infected people bypass the incubation period. For plausibility
reasons, we never choose initial infected people among persons in nursing homes
or hospitals. The presence of agents in close spaces—such as classrooms, factories,
homes, hospitals, nursing homes—is set with realistic numbers, out of scale: e.g.,
a classroom contains 25 students, a home two persons, large factories up to 150
employees, small ones up to 15, etc.; the movements occur in different parts of the
daily life, as in [20].

In Fig. 4 we have a 3D representation of the model world, with one of the
possible random maps that the simulation generates. Persons are in gray, houses
in cyan, nursing homes in orange, hospitals in pink, schools in yellow, factories
(with shops and offices) in brown. Persons have a cylinder as shape, if regular
or robust (young); a capital X if fragile; temporary their colors can be: red, if
symptomatic; violet, if asymptomatic; turquoise, if symptomatic recovered; green,
if asymptomatic recovered.

Doing the batches of repetitions of the simulation, we use random maps to have
a neutral effect of the structure of the space.

We can set:

• min and max duration of the individual infection;
• the length of the incubation interval;
• the critical distance, i.e., the radius of the possibility of infection in open air, with

a given probability;
• the corrections of that probability, due to the personal characteristics of both

active and the passive agents;
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Fig. 4 A live 3D picture of the model world

– active agents can be symptomatic or asymptomatic, with different spreading
characteristics (see (ii) in Sect. 2.2);

– passive agents, as receivers, can be robust (young), regular, fragile, and extra
fragile.

We have two main types of contagion: (a) within a radius, for people moving
around, temporary in a house/factory/nursing home/hospital; (b) in a given space
(room or apartment) for people resident in their home or in a hospital or in a nursing
home or being in school or in a working environment.

People in hospitals and nursing homes can be infected in ways (a) and (b).
Instead, while people are at school, they can only receive the disease from people in
the same classroom, where only teachers and students are present, so this is a third
infection mechanism (c). In all cases, the personal characteristics of the recipients
are decisive.

We remark that workplaces are open to all persons, as clients, vendors, suppliers,
external workers can go there. In contrast, schools are reserved for students and
school operators.

All agents have their home, inside a city, or a town. The agents also have usual
places (UPs) where they act and interact, moving around. These positions can be
interpreted as free time elective places. When we activate the schools, students
and teachers have both UPs and schools; healthcare operators have both UPs and
hospitals or nursing homes; finally, workers have both UPs and working places. In
each day (or tick of the model), we simulated full sequences of actions.

Figure 5 describes what happens during every day in our simulated world, with
the daily sequences of actions.
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2.1 Conditional Actions

Agents’ movements in space, to go to work, school, and other UPs are subject to
two interrelated general conditions.

I Symptomatic persons are at home or in a hospital or a nursing home and do not
move.

II People not constrained by condition I can move if (primary rule) there are no
general limitations (e.g., lockdown) OR if one of the following sub-conditions
applies:

(a) agents who are hospital healthcare operators or nursing home healthcare
operators;

(b) all people, according to the probability of moving of the whole non-
symptomatic agents (Sect. 2.2, (iv));

(c) regular people, according to the probability of moving of the regular non-
symptomatic agents (Sect. 2.2, (v));

(d) workers, if all the factories are open or it is open their own workplace
(Sect. 2.2, (vi));

(e) teachers, if the schools are open (Sect. 2.2, (vii));
(f) students, if the schools are open, but with a possible quota limitation

(Sect. 2.2, (viii)).

2.2 Parameter Definition

We define the parameters of Fig. 5, also with their short names used in program
scripts, in round brackets. The values of the parameters are reported in detail in
Appendix 1—Parameter values (Sect. 9).

(i) probabilityOfGettingInfection (prob) is the base probability of getting
infected, to be multiplied by the intrinsicSusceptibility factor (iii); it is
activated if the subject is within a circle of radius (ix) with an infected
person; values at (Sect. 9, (i));

(ii) D%, without the short name, is the percent increasing or decreasing factor
of the contagion spread of an asymptomatic subject, compared to that of a
symptomatic one, value at (Sect. 9, (ii));

(iii) the intrinsicSusceptibility in defined in Eq. (1)

intrinsicSusceptibility = intrinsicSusceptibilityFactorgroupFragility

(1)
with intrinsicSusceptibilityFactor set to 5, and groupFragility exponent set
to:
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1 for extra-fragile persons,
0 for fragile persons,
−1 for regular persons,
−2 young people from 0 to 24 years old;

(iv) %PeopleAnyTypeNotSymptomaticLeavingHome (%PeopleAny) deter-
mines, in a probabilistic way, the number of people of any kind going around
in case of limitations/lockdown; the limitations operate only if the lockdown
is on (into our simulated world, from day 20); values at (Sect. 9, (iv));

(v) %PeopleNotFragileNotSymptomaticLeavingHome (%PeopleNot) deter-
mines, in a probabilistic way, the number of regular people going around
in case of limitations/lockdown; as above, the limitations operate only if
the lockdown is on (into our simulated world, from day 20); values at
(Sect. 9, (v)); we try to reproduce the uncertainty of the decisions in the real
world into the model via frequent changes of the parameters (iv) and (v);

NB, the parameters (iv) and (v) produce independent effects, as in the
following examples: (a) the activation of %PeopleAny at 31, 0 and, simulta-
neously, of %PeopleNot at 31, 80, means that people had to stay home on that
day, but people specifically not fragile could go out in 80% of the cases; (b)
%PeopleAny at 339, 80 and, simultaneously, %PeopleNot at 339, 100 means
that fragile and not fragile persons cannot always go around, but only in the
80% of the cases; instead, considering uniquely non-fragile persons they are
free to go out; the construction is an attempt to reproduce a fuzzy situation; in
future versions of the model, we will define the quotas straightforwardly:

• %FragilePeopleNotSymptomaticLeavingHome;
• %NotFragilePeopleNotSymptomaticLeavingHome;

(vi) %openFactoriesWhenLimitationsOn (%Fac) determines, in a probabilistic
way, the factories (small and large industries, commercial surfaces, private
and government offices) that are open when limitations are on; if the factory
of a worker is open, the subject can go to work, not considering the restrictions
(but uniquely in the first step of activity of each day); values at (Sect. 9, (vi));

(vii) stopFragileWorkers (sFW) is off (set to 0) by default; if on (set to 1), fragile
workers (i.e., people fragile due to prior illnesses) can move out of their
homes following the (iv) and (v) parameters, but cannot go to work; in the
off case, workers (fragile or regular) can go to their factory (if open) also
when limitations are on; values at (Sect. 9, (vii)); alternatively, we also have
the fragileWorkersAtHome parameter; if on (set to 1) the total of the
workers is unchanged, but the workers are all regular; we can activate this
counterfactual operation uniquely at the beginning of the simulation;

(viii) when activateSchools (aSch) is on (set to 1), teachers and students go to
school avoiding restrictions (but uniquely in the first step of activity of each
day); %Students (%St) sets the quota of the students moving to school; the
residual part is following the lessons from home; values at (Sect. 9, (viii));
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(ix) following radiusOfInfection (radius), the effect of the contagion—outside
enclosed spaces, or there, but for temporary presences—is possible within
that distance; values at (Sect. 9, (ix));

(x) asymptomaticRegularInfected% and asymptomaticFragileInfected% are the
parameters determining the percentage of asymptomatic persons after a
contagion for non-fragile (all cases) or fragile people; they are without short
names, as they come directly from the model interface; we can see the
interface online, activating the model at https://terna.to.it/simul/SIsaR.html;
values at (Sect. 9, (x)).

2.3 Agents’ Interaction

We underline that our simulation tool is not based on micro-simulation sequences,
calculating the contagion agent by agent, on the base of their characteristics and
ex-ante probabilities. It implements a true agent-based simulation, with the agents
acting and, most of all, interacting. The effect is that of generating continuously
contagion situations.

Each run creates a population with expected characteristics, but also with random
specifications, to assure the heterogeneity in agents. The daily choices of the agents
are partially randomized, to reproduce real-life variability.

Contagions arise from agents’ interactions, in four time phases, as specified in
Fig. 5:

A in houses (at night), hospitals, nursing homes;
B in schools and workplaces in general, among people stable there;
C in the places above (excluding schools) by people temporary there and in open

spaces (UPs above);
D interactions mainly in open spaces (UPs above).

3 Contagion Representation

We introduce a tool analyzing the contagions’ sequences in simulated epidemics
and identifying the places where they occur.

• We represent each infected agent as a horizontal segment (from the starting
date to the final date of the infection) with vertical connections to other agents
receiving the disease from it.

• We represent the new infected agents via further segments at an upper level.
• We display multiple information using three elements.

https://terna.to.it/simul/SIsaR.html
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– Colors in horizontal segments (areas of the infections): black for unknown
places, gray for open spaces, cyan for houses, orange for nursing homes, pink
for hospitals, yellow for schools, brown for factories, with shops and offices.

– Vertical connecting segments keep the same color of the horizontal generating
one.

– Line thickness; proportional to fragility.
– Styles: dotted lines for incubation, dashed lines for asymptomatic subjects,

solid lines of symptomatic ones.

• This graphical presentation enables understanding at a glance how an epidemic
episode is developing. In this way, it is easier to reason about countermeasures
and, thus, to develop intervention policies.

At https://github.com/terna/contagionSequence we have the program sequential-
Records.ipynb, generating these sequences.

Figure 6 is useful as an example. We start with two agents from the outside, with
black as the color code (unknown place). The first one is young—as reported by the
thickness of the segment, with the infection starting at day 0 and finishing at day
22—and asymptomatic (dashed line); it infects no one. The second one—regular,
as reported by the thickness of the segment, with the infection starting at day 0 and
finishing at day 15—is asymptomatic (dashed line) and infects four agents on day
2. All the four infected agents receive the infection at work (brown color) and turn
to be asymptomatic after the days of incubation (dotted line); the first and the fourth
are regular agents; the second and the third are fragile ones.

Continuing the analysis: on day 3, the second agent infects three other agents (at
home, at work, at work) [. . . ]; on day 13, agent number five infects seven regular
agents at work and an extra-fragile one in a nursing home (orange color), etc.

If a vertical segment changes its color, we have an agent in an upper layer
infecting someone on the same day of the infection transmitted by an agent in a
lower row, so we lose some graphical information.

In Fig. 7 we see the example of an epidemic with non-pharmaceutical contain-
ment measures in adoption: a first wave shows an interlaced effect of contagions at
home, in nursing homes, and at work. After a phase in which contagions develop
mainly at home, a skinny bridge connects the first wave to a second one, which
restarts from workplaces. The thickness of the snake of the contagions measures
the stock on infects agents on a given date; the slope reports the speediness of the
epidemic development; the upper vertical coordinate reports the cumulative number
of infected people.

In Appendix 2—A gallery of contagion sequences (Sect. 10), we have several
examples of contagion sequences.

https://github.com/terna/contagionSequence
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Fig. 6 A case with containment measures, first 40 infections: workplaces (brown) and nursing
homes (orange) interweaving

Fig. 7 A case with containment measures, the whole epidemics: workplaces (brown) and nursing
homes (orange) and then houses (cyan), with a bridge connecting two waves

4 Exploring Scenarios with Simulation Batches

The sequences described in Sect. 3 suggest possible interventions, but are single
cases. To explore systematically the introduction of factual, counterfactual, and
prospective actions, we need to analyze batches of simulations. In this perspective,
each simulation run—whose length coincides with the disappearance of symp-
tomatic or asymptomatic contagion cases—is a datum in a set of different duration
and contagion outcomes. To compare the consequences of each batch’s basic
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Fig. 8 Starting our analyses: 10,000 epidemics in Piedmont. (a) Outbreaks without non-
pharmaceutical containment measures. (b) Outbreaks with non-pharmaceutical containment
measures

assumptions, we need to represent compactly the results emerging from simulation
repetitions.

We use blocks of ten thousand repetitions. Besides summarizing the results with
the usual statistical indicators, we adopt the technique of the heat-maps. With [23],
our goal is that of making comparative analyzes, not forecasts. This consideration
is consistent with the enormous standard deviation values that are intrinsic to the
specific reality.

At https://github.com/terna/readSIsaR_BatchResults we have the codes produc-
ing the maps of the batches. A heat-map is a double histogram: in our application,
it displays each simulated epidemic’s duration in the x axis and the total number
of the symptomatic, asymptomatic, and deceased agents in the y axis (on a scale of
1:1000). Each cell contains the number of epidemics with x duration and y outcome.
Besides the number, a logarithmic color scale improves the readability of the maps.

4.1 Epidemics Without and With Control Measures

As a starting point, we compare the situations represented in Fig. 8a, b. In Fig. 8a,
the heat-map reports the distribution in duration and infection causation of 10,000
simulated outbreaks left to spread without any control; coherently, with the school
always open. The results in Table 2 are scary. The concentration of the cases in the
heat-map shows that, except a few instances spontaneously concluding in a short
period (left bottom corner), produces a heavy cloud of cases lasting one year or one
year and a half, hitting (as symptomatic, asymptomatic, and deceased) from 2000 to
3500 persons on a total of 4350 in the region (scale of 1:1000).

In Fig. 8b and the related Table 3, we report a similar simulation batch of
10,000 runs of the model, but with the adoption of the basic non-pharmaceutical
containment measures, registered in the values of the parameters in Appendix 1—
Parameter values (Sect. 9). A calendar is at https://terna.to.it/simul/calendario092.pdf,

https://github.com/terna/readSIsaR_BatchResults
https://terna.to.it/simul/calendario092.pdf
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Table 2 Mean values and
standard deviations in Fig. 8a
cases

(000) Symptomatic Totalinfected&Deceased Duration

Mean 969.46 2500.45 303.10

Std 308.80 802.88 93.50

Table 3 Mean values and
standard deviations in Fig. 8b
cases

(000) Symptomatic Totalinfected&Deceased Duration

Mean 344.22 851.64 277.93

Std 368.49 916.41 213.48

and the model—version 0.9.6—is updated until April 2021. The results are
dramatically different, showing the efficacy of the containment measures.

4.2 Actual Data

The critical points for our simulation experiments in Piedmont are Summer and
Fall 2020 in Fig. 9a, where we have the time series of the first part of Piedmont’s
actual epidemic. The blue line represents the cumulative number of infected persons.
Initially, only symptomatic cases were accounted for, but after the 2020 Summer,
with more generalized tests, also asymptomatic patients are included:

• from http://www.protezionecivile.it/web/guest/department, the Italian Civil Pro-
tection Department web site, we find at https://github.com/pcm-dpc/COVID-1,
i.e., the repository of regional data;

• we observe data about symptomatic infected people in the first wave, but from
October 2020, data are mixed: in the above git repository, in October and Novem-
ber, we had “Positive cases emerged from clinical activity,” unfortunately then
reported as “No longer populated” (from the end of November, our observation)
and “Positive cases emerging from surveys and tests, planned at national or
regional level,” again “No longer populated” (from the end of November, our
observation);

• as a consequence, the subdivision between symptomatic and asymptomatic cases
is impossible after that date.

Considering the dynamic of the data in Fig. 9a, we search within the simulation
batch for cases with both:

(i) numbers of infected persons quite similar at cp2 and at cp3; besides, numbers
not too different from those of the figure; (with cp, we indicate the internal
check points of the simulation program; in Fig. 9a we also report the number of
days from the beginning of the epidemic for each check point);

(ii) the number of infected persons at cp4 has to be significantly greater than those
at the previous check point.

http://www.protezionecivile.it/web/guest/department
https://github.com/pcm-dpc/COVID-19
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Fig. 9 Actual data. (a) Critical points in epidemic dynamic in Summer and Fall 2020 in Piedmont.
(b) Data in Piedmont until July 2021, showing three waves

In a lot of cases, epidemics satisfying condition (i) fail to match condition (ii);
both the situations happen only in less than the 1.5% of the instances in a batch of
ten thousand epidemic. We can guess that the second wave registered in Piedmont
after the Summer “pause” is due to new infected agents coming from outside and
restarting the contagion process.

Other critical points in our analysis are the day on which the vaccination
campaign starts, 373 of the simulation (Feb. 12th, 2021), and the day of the
effectiveness of the initial vaccinations, 40 days later, day 413 (Mar. 22nd, 2021). At
those dates, within the simulations, we can find either the presence of many infected
agents or of few ones, as effectively was the situation in Piedmont.

NB, we concluded model calculations in April 2021. In Fig. 9b, the time series
covering the whole period.

5 Factual and Counterfactual Analyses

In Fig. 10 we collect the heat-maps of the experiments:

• observing the emergence of spontaneous second waves, in the absence of specific
control measures (Sect. 5.1);

• causing the emergence of the second wave through infections from outside, again
in the absence of specific control measures (Sect. 5.2);

• causing the emergence of the second wave through infections from outside, in
the presence of specific control measures (Sect. 5.3);

• reproducing the case of Sect. 5.3, anticipating by twenty days the start and end
of all control measures (Sect. 5.5);

• reproducing the case of Sect. 5.3, limiting the control measures to fragile workers
and other fragile people (Sect. 5.6).
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Fig. 10 Heat-maps of the factual and counterfactual analyses. (a) First wave with non-
pharmaceutical containment measures, spontaneous second wave, without specific measures. (b)
First wave with non-pharmaceutical containment measures, forcing the second wave, without spe-
cific measures. (c) First wave with non-pharmaceutical containment measures, forcing the second
wave, with new specific non-ph. containment measures. (d) First wave with non-pharmaceutical
cont. meas„ forcing the second w., with new specific non-ph. cont. meas., acting 20 days in
advance. (e) First wave with non-ph. cont. meas., forcing the sec. wave; in sec. wave, uniquely
stopping fragile people, including fragile workers

5.1 Spontaneous Second Wave, Without Specific Containment
Measures

In an initial plain batch of runs of the Piedmont model, we count only 140 cases
of epidemics with both the absence of new contagions in Summer 2020 and their
explosion in Fall, as in Fig. 9a.
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The steps are:

• we select, first of all, the 170 cases of epidemics that have, on June 1st, a
number of symptomatic agents in the (10, 70] interval (with mean: 37.9) and, on
September 20th, a number of symptomatic agents in the (20, 90] interval (with
mean: 60.4);

• due to the lack of data described in Sect. 4.2, to compare December 15th
and September 20th situations, we use symptomatic plus asymptomatic agents’
count;

• we observe the existence of 140 outbreaks with the required characteristics; the
December mean of the infected agents is 648.7, sensibly larger than the actual
value: ≈200.0.

We overestimate the reality being the long-lasting simulated outbreaks, the larger
ones, and, most of all, having no containment measures operating in the simulations.

Figure 10a and Table 4 show the outbreaks with similar cumulative numbers
before and after the Summer 2020 “pause” (170 cases), with the second wave (140
cases) in the absence of containment measures.

140 out of 10,000, i.e., 1.4%, is a very light spontaneous ratio for the second
wave occurred in the Fall. The transition to the third wave, that we see in Fig. 9b, is
easy to explain, as the second wave never completely ended.

5.2 Second Wave, New Infections from Outside, Without
Specific Containment Measures

To generate a framework consistent with the presence of a second wave after a
period of substantial inactivity of the epidemic, we introduced two cases of infected
persons coming back from outside after Summer vacancies, conventionally on
September 1st, 2020.

As above, the steps are:

• we select, first of all, the 1407 cases of epidemics that. on June 1st have, a
number of symptomatic agents in the (10, 70] interval (with mean: 35.6) and, on
September 20th, a number of symptomatic agents in the (20, 90] interval (with
mean: 40.0);

• due to the lack of data described in Sect. 4.2, to compare December 15th
and September 20th situations, we use symptomatic plus asymptomatic agents’
count;

• we observe the existence of 1044 outbreaks with the required characteristics; the
December mean of the infected agents is 462.1, again sensibly larger than the
actual value: ≈200.0.

We overestimate the reality being the simulations run without the adoption of
containment measures.

Both Fig. 10b and Table 5 show the outbreaks with similar cumulative numbers
before and after the Summer 2020 “pause” (1407 cases), with the second wave of
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1044 cases. In the absence of containment measures, we have a heavy cloud as that
of Fig. 8a, with infected people of any kind in a range approximately of 1500 to
2800 realizations, with an equivalence, to the Piedmont scale, to 1.5–2.8 millions of
subjects.

The number of cases is now sufficient to evaluate the effects of factual (Sect. 5.3
and counterfactual (Sects. 5.5 and 5.6) simulation experiments.

5.3 Second Wave, New Infections from Outside, with New
Specific Containment Measures

Repeating the third step above:

• we observe the existence of 874 outbreaks with the required characteristics;
the December mean of the infected agents is 340.6, closer to the actual value
(≈200.0) due to the introduction into the simulation of specific control measures
for the second wave.

We always overestimate the reality because the surviving epidemics are the larger
ones.

In Fig. 10c we see that the heavy cloud of the previous figure dissolved, and
in Table 6 the numbers in italic emphasize the positive effects of the containment
interventions on the cases of epidemic continuation (which have also dropped in
quantity).

5.4 Calculating the Reproduction Number Without Delays

The reproduction number Rt [24, 25]

is the average number of secondary cases of disease caused by a single infected individual
over his or her infectious period

and is defined as follows:

Rt = It∑t
s=1 wsIt−s

, (2)

where:

• It is the number of new infected individuals at time t
• ws = �(s;α, β) is the infectivity profile, usually approximated with the serial

interval distribution [25]; it shapes the infectious period of each individual by
weighting the infected individuals so that when their period is over, they do not
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Fig. 11 Naive Rt calculated on raw infected cases by symptoms onset date, data-set by ISS

count any more in the sum; it is usually assumed to be the Gamma distribution
[25]

– there is great uncertainty on the parameters of the Gamma distribution, which
have been fitted to different values on different national data-sets ([26], table
1 page 25)

– following the Istituto Superiore di Sanità (ISS), italian Rt estimates are based
on the parameters fitted in [27], namely α = 1.87 and β = 0.28

While Eq. (2) could in principle be applied naively to any time series of the new
infected cases, it usually leads to noisy results caused by the noise contained in the
original raw series, as can be seen in Fig. 11. Moreover, despite the noisy content
of the original signal, the naive approach does not give any clue on the confidence
interval of the result, which is fundamental if the reproduction number has to be
used to take decisions about the restrictions.

The most widely adopted approach to extract statistics about the Rt estimate, and
hence its confidence interval, is to apply Bayesian statistical inference, assuming a
prior distribution for the serial interval and a posterior for the reproduction number
[25].

While Bayesian inference allows us to compute any kind of statistics on the
estimate, it still fails dealing with the noise in the original signal, leading again
to spiky estimates of Rt .

The standard solution to smooth out the noise is to assume that the transmissibil-
ity is constant over a time window (e.g., a week): we can then estimate the average
Rt over the time window [25], by computing the total number of new infected cases
over a window τ instead of those of each single day: Ît,τ = ∑t

s=t−τ Is and replacing
it to It in Eq. (2); note that this is equivalent to compute Rt on the average of It over
the window, as Eq. (2) is invariant under constant scaling of It .

The result is smoothed, but it turns out that it is delayed by the size of the
windows. Figure 12 shows Rt calculated over a 14-day rolling window (14 days is
the window size officially adopted in Italy); it is clearly visible that the average Rt

is systematically delayed: maximizing the cross correlation of the signals confirms
a measure of the delay of 14 days.
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Fig. 12 In black Rt calculated on raw infected cases, in red the average Rt calculated over a
window of 14 days; both series are by symptoms onset date, data-set by ISS

Official Data-Sets
Data used in all the computations refers to the following sources:

• data-set by ISS: count of new infected individuals by symptoms onset date,
at https://github.com/tomorrowdata/COVID-19/blob/main/data/sources/ISS/
covid_19-iss_2021-07-30T22:34:44%2B00:00.inizio_sintomi.csv downloaded
on Jul 30

• data-set by Protezione Civile: count of new infected individuals by notification
date, at https://github.com/pcm-dpc/COVID-19 downloaded on Jul 31

5.4.1 Tikhonov Regularization to Smooth the Original Signal

As an alternative solution to averages, we adopt Tikhonov regularization to the
original signal, which does not introduce delays.

It is smoothed by fitting a series to represent the derivative of It and then
integrating it back to the original signal, which then results in a smoothed one.

We search for the differential signal ω such that:

I = X · ω,

where I denotes the array of elements It and X is the matrix representing the
integration operator:

X =

⎡

⎢⎢⎣

1 0 . . . 0
1 1 . . . 0
. . . . . . . . . . . .

1 1 . . . 1

⎤

⎥⎥⎦

ω is obtained by minimizing the following cost function:

F(ω) = ‖I − X · ω‖2 + α2 ‖� · ω‖2 . (3)

https://github.com/tomorrowdata/COVID-19/blob/main/data/sources/ISS/covid_19-iss_2021-07-30T22:34:44%2B00:00.inizio_sintomi.csv
https://github.com/tomorrowdata/COVID-19/blob/main/data/sources/ISS/covid_19-iss_2021-07-30T22:34:44%2B00:00.inizio_sintomi.csv
https://github.com/pcm-dpc/COVID-19
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Fig. 13 In black Rt calculated on raw infected cases, in red the average Rt calculated over a
window of 14 days; in green R̄t calculated on the signal smoothed with Tikhonov regularization;
each series is by symptoms onset date, data-set by ISS

Hence the derivative ω is fitted using a Ridge regression with a generalized
Tikhonov regularization factor:

• �: the Tikhonov regularization matrix, chosen to be the second derivative
operator;

• α: the regularization factor.

The regularization factor penalizes the spikes in the second derivative, forcing the
derivative to be a smoothed signal. Once the derivative is fitted, the original signal
is reconstructed by applying again the integral matrix to the differentiated smoothed
signal; denoting the smoothed signal by Ī:

Ī = X · ω.

The parameter α can be obtained by searching the maximal smoothness con-
strained to the desired degree of information still available in the signal. It can be
shown empirically that α = 100 represents a reasonable trade-off.

Once we have Īt it can be fed into Eq. (2) to obtain the reproduction number
computed on the smoothed signal, which we denote by R̄t .

Figure 13 shows in green the result of calculating R̄t on the signal smoothed by
minimizing Eq. (3). It is clearly visible that the green line anticipates the red one:
maximizing the cross correlation of the original noisy Rt wrt R̄t confirms a measure
of the delay of 0 days.

5.4.2 Do Not Wait for the Symptoms Onset Date

Delays are not as important in literature, where we usually look at historical data, as
they are in policy making, where we do need near real-time data.

Figure 14 shows the zoom of the series in Fig. 13 to the “present” days (which
is Jul 30 at the time of writing). The last available “consolidated” count of new
infected cases dates back to Jul 15, as the full process of data collection must be
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Fig. 14 Zoom of Fig. 13 to the most recent data available and consolidated, data-set by ISS

Fig. 15 In red the average Rt calculated over a window of 14 days on the symptoms onset
distribution, data-set by ISS; in green R̄t calculated on the symptoms onset distribution smoothed

with Tikhonov regularization, data-set by ISS; in blue ˆ̄Rt calculated on the notification date
distribution smoothed, data-set by Protezione Civile

completed if we want to know the symptoms onset date. This problem, known as
right censoring, is true for every country, with delays which vary depending on
the particular data collection process. Moreover, it is well known in Italy that the
collection process greatly depends on the pressure that the epidemic is producing
on the Health System.

Instead of using the distribution of new infected cases by symptoms onset date,
we propose to adopt the smoothed distribution by notification date as the input for

Eq. (2), to obtain ˆ̄Rt . The difference is that as soon as a case is detected, it is notified.
The advantage that the series is consolidated by definition, without the need of past
revisions, comes with the following drawbacks:

1. there is a certain amount of delay from the symptoms onset date to the
notification date;

2. the series accounts for more noise, as it makes no distinctions between symp-
tomatic cases and asymptomatic cases.

Figure 15 shows the comparison of three Rt calculations: average Rt calculated
on a 14-day window (in red), R̄t calculated on smoothed cases by symptoms onset

date (in green) and ˆ̄Rt calculated on smoothed cases by notification date (in blue).
The blue line exhibits a delay wrt the green one, but it is still anticipating the red line.
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Maximizing the cross correlations provides the following measures of the relative
delays:

• R̄t anticipates ˆ̄Rt by 8 days, but the last available value of R̄t dates back 15 days
prior to the present;

• ˆ̄Rt anticipates Rt (calculated on a 14-day window) by 6 days.

Hence, we can conclude that, thanks to the smoothing procedure without delays
(via Tikhonov regularization), we can replace the distribution of new cases by
symptoms onset date with the distribution by notification date, obtaining the
following advantages:

1. earn 6 days of anticipation with respect to the averaged Rt ;
2. being able to compute the reproduction number up to the present, without having

to wait for varying consolidation times in the data collection processes.

5.4.3 Residuals

As the original raw series are noisy and uncertain, we want a method to extract
the noise and use it to calculate confidence intervals on the estimated Rt , in
a way such that confidence intervals can directly reflect the uncertainty in the
effective measuring process. This is much more relevant as we plan to estimate the
reproduction number on the series of new infected cases by notification date, which
includes both symptomatic and asymptomatic cases, with the latter exhibiting high
noise.

The noise can be measured by the relative residuals of the signal with respect to
its smoothed version, εt = (It − Īt )/Īt .

Figure 16 shows that the distribution of εt calculated on the series of new infected
cases by notification date is unbalanced.

It turns out that the unbalancing is directly related to the weekly seasonality
which affects the series (the seasonality can be seen in Fig. 11 or Fig. 12). The reason
is that the smoothing obtained by Eq. (3) is not able to capture the seasonality.

Fig. 16 Distribution of εt = (It − Īt )/Īt calculated on the series of new infected cases by
notification date, data-set by Protezione Civile



234 G. Pescarmona et al.

5.4.4 Deseasoning via Singular Value Decomposition

Standard techniques to deal with seasonality, like SARIMA (Seasonal Autoregres-
sive Integrated Moving Average), rely on moving averages.

To avoid the delays introduced by moving averages, we instead adopt Regular-
ized Singular Value Decomposition (RSVD) proposed by Lin, Huang and Mcelroy
in [28]. RSVD allows to detect the seasonal component of the signal by casting
the signal vector into a matrix whose columns are the seasons and the rows are the
repetitive periods of a complete series of seasons. Singular Value Decomposition is
then applied to the matrix so that singular values represent the seasonal component
of the signal. Each seasonal component is regularized via Tikhonov regularization,
following the hypothesis that each seasonal component must change smoothly,
period after period. The Tikhonov regularization parameter is fitted via “leave one
out cross validation.”

The advantage of this method with respect to the SARIMA approach is that we do
not need to take moving averages, and we do not need to tune any meta-parameter
of the model.

The python porting of the original R code is available in the supplemen-
tary material at https://github.com/tomorrowdata/COVID-19, within the library
covid19_pytoolbox. The following features have been added to the original
work:

• take the logarithm of the seasonal series, to remove exponential trends;
• differentiate the signal to a desired degree, to remove non-stationary trends in

the original data, with an augmented Dickey–Fuller (ADF) test to check if any
non-stationary component is present;

• apply Tikhonov regularization to the deseasoned signal to obtain the trend.

Denoting by Ĩt the trend of the raw signal It after removing the seasonality, we
obtain the following decomposition of the original series:

It = Ĩt + St + Ẽt (4)

where St is the seasonal component and Ẽt is the residual after deseasoning.
Figure 17 shows the result of applying RSVD to the series of new infected

cases by notification date. RSVD has been applied to the logarithm of the second
difference of the original series, with the ADF test confirming the removal of any
non-stationary component. The smoothness of the seasonal components can be
noted clearly.

5.4.5 Residuals of the Deseasoned Series

Now that we have removed the seasonality, we can look at the distribution of
the residuals again. Figure 18 shows the distribution of the relative residuals after

https://github.com/tomorrowdata/COVID-19
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Fig. 17 Raw series It of new infected cases by notification date (in black), its trend Ĩt after
removing the seasonal component (in blue), the seasonal components St (in red); data-set
Protezione Civile

Fig. 18 Distribution of ε̃t = Ẽt /Ĩt calculated on the series of new infected cases by notification
date, data-set by Protezione Civile

removing the seasonal component: removing the seasonality produced a much more
balanced, almost gaussian, distribution, if compared to Fig. 16.

5.4.6 Putting it All Together with Markov Chain Monte Carlo

We start from the series It of new infected cases by notification date, as explained in
Sect. 5.4.2. We then apply RSVD to obtain the deseasoned smoothed trend Ĩt of the
series and the respective relative residuals ε̃t = Ẽt /Ĩt , as explained in Sect. 5.4.4.

With those ingredients, we can setup Markov chain Monte Carlo simulations
to sample multiple chains of Rt values, as follows, denoting by C(·) the chains
obtained via sampling:

1. C(Rt ) chains are sampled from a prior normal distribution, with μ = 1.3 and
σ = 10; a Gaussian process could be used instead, but it is less computationally
efficient; the length of the chains is the same as the length of It ;

2. C(ε̃t ) chains are sampled from a prior normal distribution, with μ =
∑t

s=t−7 ε̃s/7 and σ =
√∑t

s=t−7(ε̃s − μ)2/7; the length of the chains is the
same as the length of It ;
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Fig. 19 In blue, the Rt values as reported by the Istituto Superiore di Sanità and in
red the anticipated calculation published regularly, from the end of November 2020, at
https://mondoeconomico.eu by Stefano Terna

3. C(Ĩt ), the chains of new cases with random noise, are obtained as Ĩt+Ĩt ·C(ε̃t );
• note: this is where the original noise of the series is transferred to the

simulation, so that the confidence interval will account for uncertainties in
the original series;

4. the estimated count Tt of new cases in each day of the chain is calculated from
Eq. (2) as C(Tt ) = C(Rt ) · ∑t

s=1 wsC(Ĩt−s);
5. finally, a posterior Poisson distribution is tested via Monte Carlo, between the

estimated cases, Tt , and the expected ones, Ĩt .

We sample 4 chains with 1000 iterations each discarded for tuning, and 500
iterations each kept for sampling. The final data-set contains 2000 samples from
which day by day statistics, like the confidence interval, can be calculated.

Figure 19 shows the result, where the confidence interval (in violet) succeeds in
representing periods of higher uncertainty in the data.

5.5 Second Wave, New Infections from Outside, Introducing 20
Days in Advance the New Specific Containment Measures

The counterfactual situation described in this section—inspired by Sect. 5.4—is
related to the start and end dates of the actions of containment, both occurring 20
days in advance, with a natural barrier set on October 5th, 2020. Before that date,
no one could plan to start new control measures.

As in the last two sections, we have 1407 cases of epidemics alive at the critical
dates of June 1st and September 20th, after a Summer interval characterized by a
quiet phase. Considering December 15th and September 20th situations, the second

https://mondoeconomico.eu
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wave epidemics are 769, again decreasing because the anticipated actions have
eliminated some other cases. The December mean of the infected agents is 294.2,
still higher than the actual value (≈200.0). We always overestimate the mean of the
epidemic effects, being the surviving epidemics the larger ones.

Comparing Fig. 10d and c the difference is not evident; instead, the italic figures,
and most of all, the red bold ones—in Table 7—report clearly the comparative
advantage of this counterfactual experiment with respect to the values of Table 6.

5.6 Second Wave, New Infections from Outside, with a Unique
Intervention Measure: Stopping Fragile People for 60 Days

The second counterfactual experiment is based on an immediate stop to the
circulation of fragile persons and specifically of fragile workers, plus isolating
nursing homes and hospitals. Schools are always open in this experiment. The
decision is activated on October 5th, 2020, when the second wave was becoming
evident. In [29] we have important consideration suggesting the importance of
taking into account fragility in a long-term fighting perspective against this kind
of epidemics.

As in the last three sections, we have 1407 cases of epidemics alive at the
critical dates of June 1st and September 20th, after a Summer interval characterized
by a quiet phase. Considering December 15th and September 20th situations, the
second wave epidemics are 886, lightly above the values of Sects. 5.3 and 5.5, but
without locking the economy and the society as a whole. The December mean of
the infected agents is 326.3, higher than the actual value (≈200.0) for the explained
overestimation bias.

Comparing Fig. 10e and c the difference is not evident; instead, the italic figures,
and most of all, the violet bold ones—in Table 8—signal the close proximity of the
effects of this counterfactual experiment with those of Table 6.

5.7 To Recap

Table 9 reports the different cases synthetically and, most of all allows an easy
comparative interpretation of the actual and counterfactual situations.

6 Economic Analysis of the of Interventions

The pandemic has an impact on the general economy. First, we take into account
the additional health expenditure, which in Piedmont has risen from e 8880 million
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Table 9 Report of the key results, with count, mean, and std

Dec 15, 20 Dec 15, 20 to end

Scenarios Sympt. Totalinf. Sympt. Totalinf. Days

No containment Count 140.0 140.0 140.0 140.0 140.0

In spontaneous Mean 248.4 648.7 701.1 1757.9 594.2

Second wave Std 167.4 424.3 246.4 599.7 118.9

No containment Count 1044.0 1044.0 1044.0 1044.0 1044.0

In forced Mean 180.4 462.1 726.6 1810.9 620.9

Second wave Std 134.6 354.6 221.9 544.0 110.8

Basic containment Count 874.0 874.0 874.0 874.0 874.0

In forced Mean 130.0 340.6 252.7 666.4 494.1

Second wave Std 83.9 232.6 156.8 416.4 122.7

−20 days cont. Count 769.0 769.0 769.0 769.0 769.0

In forced Mean 112.2 294.2 248.9 663.4 499.3

Second wave Std 66.8 188.4 158.0 417.5 124.1

Frag. subj. & workers control Count 886.0 886.0 886.0 886.0 886.0

In forced Mean 128.1 326.3 301.1 792.3 515.5

Second wave Std 89.6 234.2 170.7 450.2 116.9

to e 9200 million, with an increase in pressure on GDP of 0.2%. It is an increment
that cannot be generalized. In other regions and States, health expenditure has even
decreased, due to the lower demand for diagnostic and treatment services, precisely
because of the pandemic and the precautionary reduced access to health services.
Apart from the additional health expenditure, the main impact to be considered is
the loss in production induced by the contagion containment measures, i.e., the so-
called lockdown of the economy and the associated mobility bans.

The impact assessment of production stoppages and mobility bans can be
measured by applying an Input-Output model. The main quality of Input-Output
models is the possibility of determining the total effect of changes in output in
all sectors of the economy due to a unit change in final demand in a given sector.
This is achieved by applying a matrix of multipliers, i.e., Leontief’s inverse matrix,
to a sectoral vector of demand changes. The inverse matrix makes it possible to
calculate the sum of the direct impact of the stopped productions, sector by sector,
and the indirect impact, due to the infinite feedback on the purchases of the affected
sectors from the first drop in demand received. However, the standard representation
is not complete. The literature tends to extend these effects to consider the feedback
not only by the purchases of the impacted sectors but also by the drop in the final
demand of households affected by the unexpected change in income through their
marginal propensity to consume. This third effect is the so-called induced impact.

The matrix of direct, indirect, and induced impacts of the Piedmont economy in
Table 10 has been originally estimated by one of the authors.

As we can see, the economic effects of lockdowns can be very different
depending on whether they selectively affect one sector (normally the sectors most
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Table 10 Multipliers of direct, indirect, and induced impact, and overall impact as well added
value (GDP) multipliers per 1 euro of final demand change, related to each of the five sectors on
the rows

Total

Final/total Direct Induced Production Added value

demand impact Indirect impact impact multiplier multiplier

Agriculture 0.53 1.40 0.50 1.30 3.20 1.40

Manufacturing 0.33 1.80 1.20 1.60 4.50 1.60

Construction 0.38 1.70 0.90 1.60 3.20 1.60

Distribution 0.53 1.40 0.50 1.30 3.10 1.60

Services 0.50 1.50 0.50 1.40 3.40 1.50

affected are the last two, distribution and services), or whether all sectors are
affected. The manufacturing sector, which is strongly linked with other sectors, has
a total, direct, indirect, and induced multiplication coefficient of 4.5 times the initial
reduction in final demand. Therefore, to calculate the impacts, we started from three
different assumptions, or scenarios, which we have called A, B, and C.

[A] The restrictions affected all economic activities that could be stopped, safe-
guarding only those businesses that were essential. This meant stopping
approximately half of the regional production system. Schooling was only
permitted with distance learning. This case occurred in the period from 9 March
2020 to the end of April 2020.

[B] Only businesses in sectors whose activities were rated with a high risk of
contagion were stopped: these activities included non-food retail trade, the
tourism restaurant and hotel sector, the sport, recreation and entertainment
sector, the cultural sector, and, of course, the whole education system, that was
served by distance learning. The transportation sector was legally active but still
impacted by an almost obligatory drop in demand. This case actually occurred
at different times during 2020 and 2021 and significantly from October 2020
until spring 2021, with a break of a few weeks during the winter.

[C] Purely theoretical and not put in place, it was considered to stop only the fragile
workers, leaving intact the education and all the activities stopped in case B.
In this case, fragile workers are estimated to be 14% of the total, based on a
national projection of the total number of 5.6 million fragile people under 65 in
Italy. To make the calculation of the impact realistic, we assume that all fragile
workers received sickness compensation equal to the lost wage that impacted
on the overall tax loss, increasing it; we also assume that half of the production
of fragile workers could still be produced with overtime or temporary work by
other workers.

The results of the simulations are reported in Table 11 and are expressed in points
per thousand of Piedmont’s GDP.

In Table 11, each day of closure of productive activities (leaving only the
essential ones and schools closed, i.e., open for distance learning) to counter the
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Table 11 Economic impacts
of the pandemic with three
hypotheses of
non-pharmaceutical
containment measures
applied; values are expressed
in GDP points/1000

Scenario A Scenario B Scenario C

Daily impacts

Total production −4.86 −1.23 −0.69

Added value −2.12 −0.55 −0.30

Taxes −0.91 −0.24 −0.35

Monthly impacts

Total production −145.7 −36.9 −20.7

Added value −63.7 −16.6 −9.1

Taxes −27.4 −7.1 −10.6

contagion and allow access to hospitals produces a loss of income (added value)
equal to 2.1 per thousand of GDP and a worsening of the fiscal budget by 0.9 per
thousand of GDP. One month of total closures, therefore, would cost an income
loss of 6.4% and a worsening of the fiscal balance of 2.7% (Scenario A, actually
implemented in Italy from 9 March 2020 to April).

Conversely, limiting closures to only distribution activities (non-food), as well
as to school (open as distance learning), sports, culture and leisure, tourism, and
restaurant services (as in the light lockdown established in October 2020 and
subsequent months, Scenario B) would have produced a daily income loss of 0.55
per thousand of GDP (equivalent to 1.6% per month) and a fiscal loss of 0.24 per
thousand per day and 0.7% of GDP per month.

The solution of protecting at home (and paying) only fragile workers, leaving
all schools and productive activities open, would reduce the loss of income to 0.3
per thousand per day (0.91% per month). Although this solution (Scenario C, never
actually implemented) is more convenient concerning the overall income loss, even
1/7 of that of scenario A and 1/2 of that of scenario B, it costs slightly more in fiscal
terms than scenario B (−0.35 per thousand per day, instead of −0.24). However, it
would seem preferable because it is the only option of the three that would allow the
regular operation of the schools. According to the reliable Invalsi tests performed in
2021, the percentage of pupils in Italian schools who have not reached the minimum
learning standards has increased by 10 percentage points based on the total number
of pupils. If we were to put this loss of human capital on an economic balance sheet,
we would have to consider the full cost of an additional year of schooling for 10%
of the school population, both in terms of the cost of additional education plus the
income lost for a 1-year delay in subsequent employment. A raw estimate of this
cost would appear to be 1.3% of GDP, of which 0.58% for the additional cost of
education and 0.75% for the income lost by postponing entry into employment by
1-year.

Following Table 12, in a C scenario, the cost of pandemic restrictions, for 3
months (hypothesis), would be 0.2% of annual GDP for increased health expendi-
tures +2.7% of direct, indirect, and induced value-added (GDP) losses, plus 3.19%
of GDP of public budget deterioration, while there would be no human capital
losses. The total losses in scenario C would be 6.1% of annual GDP for three full
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Table 12 Total losses simulating the three scenarios A, B, C, from activity and mobility
restrictions, in GDP points/1000

Scenario A Scenario B Scenario C

three months three months three months

More health expenditure −2.0 −2.0 −2.0

Added value or GDP loss −191.0 −49.8 −27.2

Tax loss −82.1 −21.4 −31.9

Human capital loss −13.4 −13.4 0.0

Total loss (GDP/1000) −288.6 −86.6 −61.1

months of restrictions. In scenarios B and A the total loss would have been much
higher and specifically 8.6% and 28.8% of the pre-Covid GDP, respectively. It is
also worth noting the distribution of losses by row. In scenario C, the losses in
value-added, and thus the recession damage to the economy to be recovered, would
be minimal, and the losses due to insufficient human capital formation would be
zero. Nevertheless, the policies adopted have preferred the adoption of scenarios A
and B.

7 Planning Vaccination Campaigns

7.1 Some Notes on Vaccines

Vaccines are biological products made from killed or attenuated microorganisms,
from viruses or from some of their components (antigens), or from substances
they produce made safe by chemical (e.g., formaldehyde) or heat treatment, while
maintaining their immunogenic properties (https://www.who.int/vaccines); today,
vaccines can be composed of proteins obtained by recombinant DNA techniques
using genetic engineering approaches.

They usually contain, in addition to the antigenic fraction, sterile water (or
a saline-based physiological solution), adjuvants, preservatives, and stabilizers.
Adjuvants are included in the vaccine in order to enhance the immune system
response; preservatives are added to prevent contamination of the preparate by
bacteria; stabilizers are introduced to increase the shelf life of the product and to
maintain the properties of the vaccine during storage.

How Vaccines Work: A Step Back in the Eighteenth Century
Although early forms of empirical immunization appear to have been present
in different cultures (India and China; [30]), the creation of the first vaccine
(for smallpox immunization) dates back to 1798 by Edward Jenner, an English
physician. Jenner had noticed that milkmaids who became infected with cowpox
(Vaccinia Virus), a virus that causes similar symptoms to human smallpox (Variola
Virus or Smallpox virus) but not fatal, did not subsequently develop the disease [31].

https://www.who.int/vaccines
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This suggested that Cowpox inoculation could protect against Smallpox. Jenner
decided to test his theory by inoculating an eight-year-old boy, the son of his
gardener (sic!), James Phipps, with material taken from the cowpox lesions of a
local milkmaid. As expected, James developed few local lesions and a modest fever.
Two months later Jenner inoculated James with variolous matter from a case of
human smallpox, without a sensible effect was produced: Jenner had proved that
the boy had been immunized. By definition, all subsequent immunizations would be
called vaccinations as in 1881 Louis Pasteur proposed it as a general term for the
new protective inoculations, in honor of Jenner.

Once inoculated, vaccines (all of them), mimicking the first contact between
man and pathogen, are able to stimulate an immunological response (humoral and
cellular) as if this occurred through a natural contagion, although not leading to
disease and without giving the associated complications. The rationale behind this
phenomenon is immunological memory: the body/immune system that has already
experienced a pathogenic microorganism, treasures the experience by responding
rapidly to the same microorganism (the absence of immunological memory is the
reason why Covid-19 emerged as a problem for humans). For some vaccines it is
necessary to make recalls at a distance of time. Normally our body reacts to an
unwanted host, but it can take up to two weeks to produce a sufficient amount of
antibodies versus the pathogen. In the absence of vaccination, in this interval of
time a pathogen can create damage to the body and even lead to death.

Types of Vaccines
A long way has been covered since 1798, and technologies have steadily improved
to arrive at hi-tech vaccines such as those we are using today to fight Covid. The
types of vaccine that exist today are:

• live attenuated vaccines (e.g., measles and tuberculosis): these are produced from
infectious agents that have been rendered non-pathogenic;

• inactivated vaccines (e.g., poxvirus): these are produced using infectious agents
killed by heat or chemicals;

• purified antigen vaccines (e.g., anti-meningococcal): these are produced by
purifying specific components (bacterial or viral);

• anatoxin vaccines (e.g., tetanus): these are produced using molecules from the
infectious agent, which are not capable of causing the disease on their own, but
which can stimulate/activate the immune defenses of the vaccinee;

• recombinant protein vaccines (e.g., hepatitis B): these are produced using
recombinant DNA technology, which involves inserting genetic material coding
for the antigen (a protein/peptide) into microorganisms capable of producing the
antigen specifically, allowing it to be purified;

• recombinant mRNA vaccines (e.g., Pfizer/BioNTec and Moderna): these are
produced using an mRNA coding for a target gene encapsulated nanoparticle
made with lipid bilayers; this information is able to drive the synthesis of
an antigenic protein, through the cell machinery, and the triggering of the
immunitary system;
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• recombinant viral vector vaccines (e.g., Astrazeneca/Oxford): these are produced
using an DNA coding for a target gene carried within a defective adenovirus
(from human or from chimpanzee), able to vehicle the gene within the cell
nucleus. This information is able to drive the synthesis of an antigenic protein,
through the cell machinery, and the triggering of the immunitary system.

The latter types of vaccine (mRNA and Adenoviral vector-based) were today
adopted mainly because they can be manufactured very quickly, and being their
production process highly standardized. As a matter of fact, they are the fastest way
to create a vaccine in the middle of a pandemic.

mRNA and Adenovirus-Based Vaccines
Let us take a step back. The CoV-SARS-2019 virus has on its surface a protein
called Spike (S-protein), that it uses to enter a human cell via binding to the ACE2
receptor (Fig. 3). The S-protein has therefore been chosen as the specific target to
produce a vaccine since it is exposed in large quantities on the surface of the virus.

mRNA-based and adenovirus-based vaccine for Covid target the S-protein
through the production of a RNA messengers (mRNAs), the classical molecule that
routinely instructs all the cells what to build. Once the S-protein is produced within
the body and presented the immune system, it is considered an antigen, and the
body starts producing antibodies against it. The same thing can be done by using a
pre-made protein and injecting it, but its production, testing and approval is longer
(years to decades) and more expensive.

In a mRNA-based vaccine (e.g., Pfizer/Moderna) the mRNA coding for the Cov-
Sars-2019 spike (S-protein) is encapsulated in lipid nanoparticles. This preparate is
then injected (usually in the deltoid muscle). After that, the nanoparticles fuse with
the cell membranes and mRNA is released into the cell cytoplasm, without entering
in the nucleus nor getting incorporated into the genomic DNA. In an adenovirus-
based vaccine (e.g., AstraZeneca) the gene coding for the spike protein is inglobated
as DNA in a defective Chimpanzee adenovirus which is not able to proliferate,
alone. This virus once injected latch on the host cell and released DNA (carrying
the spike protein gene) in the cell cytoplasm. DNA then migrates to the nucleus
where it is transcribed into mRNA, which will migrate to the cytoplasm.

In both the vaccines, at this particular stage the mRNA coding for the Spike uses
the cellular machinery (e.g., ribosomes) for being translated into protein, imitating
virus-infection-like humoral immunity and cellular immunity [32]. Both mRNA-
based and adenovirus-based vaccines are able to increase the host’s anti-virus effects
by increasing T cells’ antigen reactiveness [33]. Normally, are these white blood
cells, as the first defenses of the body, to “detect” the presence of the pathogen and
to organize a protection by generating specific antibodies to combat it through B-
lymphocytes, as particular blood cells deputed to antibody production [34] These
antibodies cover the virus and prevent it from attacking our body.

The immune system memory can be compared to a human’s memory. Once it
encounters an unwanted visitor, it will remember it and will be able to recognize it
in the future. This process typically takes a few weeks for the body to produce the
antibodies, but these cells will be there to guard the body for a long time.
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7.2 Planning a Vaccination Campaign Using Genetic
Algorithms, with Non-pharmaceutical Containment
Measures in Action

We compare the effect of choosing the vaccination quotas via genetic algorithms
(GAs) with two predetermined strategies. Our model considers three hypotheses:
vaccinated people still spread the contagion; they do not spread the contagion; they
do it in the 50% of the case. We show here only the results of the first case, the worst
(as we write, the Delta variant is spreading, with vaccinated people transmitting the
infection).

The parameters of the GAs side of the model are contained in a special file, as
described in the Info sheet of the model; at https://terna.to.it/simul/SIsaR.html start
the model and look at the Info paragraph named Using Genetic Algorithms.

Important dates:

• in the internal calendar of the model, day 373 is February 12th, 2021; it is the
starting point of the vaccinations in Piedmont;

• the effectiveness of the initial vaccinations, 40 days later, starts on day 413
(March 22nd, 2021).

A technical detail: we simulate the vaccination campaigns with the GAs using
the BehaviorSearch program, https://www.behaviorsearch.org, strictly related to
NetLogo.

7.2.1 Vaccination Groups

We take into consideration seven groups, in order of decreasing fragility, also
considering the exposure to contagions:

g1 Extra-fragile people with three components;

• due to intrinsic characteristics: people in living in nursing homes;
• due to risk exposure:

– nursing homes operators;
– healthcare operators;

g2 teachers;
g3 workers with medical fragility;
g4 regular workers;
g5 fragile people without special characteristics;
g6 regular people, not young, not worker, and not teacher;
g7 young people excluding special activity cases (a limited number in g1).

https://terna.to.it/simul/SIsaR.html
https://www.behaviorsearch.org
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Fig. 20 Crucial dates: blue line for the starting point of the vaccination campaign and red line for
the start of the effectiveness of the initial vaccinations; all the situations without vaccination

7.3 A Specific Realistic Case

The description of the vaccination effects on an outbreak is quite lengthy. Consid-
ering the collection at https://terna.to.it/simul/GAresultPresentation.pdf, we report
here a unique case: the experiment I reported there, maintaining the reference to
I in the titles of the figures. Considering the adoption of the government non-
pharmaceutical measures, we search—in the batch of the 10,000 outbreaks of
Sect. 5.3—for realizations of sequences similar to the actual events that occurred
in Piedmont. As we see in Fig. 20 and the related Fig. 21, the artificial case that we
adopt for the GAs exploration has the following critical characteristics:

(i) numbers of infected persons quite similar at cp2 and at cp3 in Fig. 9a; besides,
numbers not too different from those of the same figure;

(ii) number of infected persons at cp4 significantly greater than those at the
previous checkpoint.

In Fig. 21, without vaccinations, we have the first wave in Spring 2020, a larger
one in Fall 2020, a limited one between the end of 2020 and the beginning of 2021;
then, a relatively quiet interval and successively, just while we write these notes,
some restarting signals; finally, a fourth wave. Currently, it is in the future, relative
to both the time of writing and the time when the calculations were completed (see
NB at the end of Sect. 4.2). Very realistic with Piedmont’s actual situation, the
limited thickness of the snake of Fig. 20, when vaccinations start and when their
effectiveness develops. The hole in the series identifies a period of quasi-extinct
epidemics. Then it restarts with the arrival of infected persons from outside.

https://terna.to.it/simul/GAresultPresentation.pdf
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Fig. 21 Base symptomatic series; the vertical line at day 413 is not relevant here

Here and in the following sections, we analyze the count of symptomatic persons,
being the goal of our simulated vaccination campaign exactly that of decreasing the
number of symptomatic people, as deceased persons come from there.

7.4 Vaccination Quotas, Plain Strategy

The vaccination plans are related to the first dose; the second dose is supposed to be
automatically scheduled, with an independent supply. The vaccinated person starts
to benefit from immunity 40 days after the first dose.

Considering a plain option as that adopted in Table 13 with, in each day, the
quantities of doses of the first column, we will primarily vaccinate the left column
groups to move gradually to people of the other columns, as those on the left have
already received the vaccine. The order is (g1) extra-fragile people, (g2) teachers,
(g3) fragile workers, (g4) regular workers, (g5) fragile people, (g6) regular people,
(g7) young people. In Table 14 we have numbers both of persons in each category
at the beginning of this experiment (and in the following ones) and when the
vaccination campaign starts.

Some of the coefficients in Table 13, and all the successive similar ones, are not
used in two situations:

(i) when the persons of a group are fully vaccinated, the quotas in the rows below
that day are not relevant;

(ii) when the people in the columns to the left of a given column completely absorb
the available doses of vaccine on that day (the quotas in that column have
unimportant values).



An Agent-Based Model of COVID-19 Diffusion 249

Table 13 From the day of the first column, considering the quantity of the second column (000),
the vaccination of each group follows the quotas of the related columns

From day Q. of vaccines (000) g1 g2 g3 g4 g5 g6 g7

373 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1

433 10 0.1 0.1 0.1 0.1 0.1 0.1 0.1

493 10 0.1 0.1 0.1 0.1 0.1 0.1 0.1

553 10 0.1 0.1 0.1 0.1 0.1 0.1 0.1

613 20 0.1 0.1 0.1 0.1 0.1 0.1 0.1

738 End

Table 14 Susceptible persons at the beginning of the simulation and when the vaccination
campaign starts, day 373, Feb. 12th, 2021

(000) g1 g2 g3 g4 g5 g6 g7

Susc. at t = 0 133 84 240 1560 1179 254 900

Susc. when vacc. starts 124 81 162 1234 1032 245 891

We anticipate that the GAs procedure does not optimize the coefficients of
cases (i) and (ii).

The series that we introduce hereafter are significant from day 413, March
22nd, when the initial vaccinations’ effectiveness begins, after 40 days from initial
vaccinations.

In Fig. 22a we have the effects of the vaccination plan as numbers of vaccinated
persons by groups. In Fig. 22b we have the most important outcome: the no
vaccination test-bed is that of Fig. 21. We note the waves after the vertical line—
when vaccinations start to operate—are lower than in the test plot, but anyway,
those further waves are there.

7.5 Vaccination Quotas,Wise Strategy

Considering now a wise option, as an attempt to mimic the actual (and complex)
vaccine distribution in the region, we use the quotas of Table 15, with the exact
mechanism of the previous section. We primarily vaccinate the left column groups
to move gradually to other columns, but postponing group g4 (regular workers),
g6 (regular people), and g7 (young people). In Table 14 we have numbers both of
persons in each category at the beginning of this experiment (and in the following
ones) and when the vaccination campaign starts. The considerations sub (i) and (ii)
in Sect. 7.4 apply also here.

In Fig. 22c we have the effects of the vaccination plan as numbers of vaccinated
persons by groups. In Fig. 22d we have the experiment outcome: the no vaccination
test-bed is that of Fig. 21. We note the waves after the vertical line—when
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Fig. 22 Vaccination sequences and time series. (a) Plain vaccination sequence; on the y axis the
number of vaccinated subjects of each group (if vaccination is complete, the line is horizontal). (b)
Plain vaccination symptomatic series; the vertical line is at day 413, when the effectiveness of first
vaccination starts. (c) Wise vaccination sequence; on the y axis the number of vaccinated subjects
of each group (if vaccination is complete, the line is horizontal). (d) Wise vaccination symptomatic
series; the vertical line is at day 413, when the effectiveness of first vaccination starts. (e) GA
vaccination sequence; on the y axis the number of vaccinated subjects of each group (if vaccination
is complete, the line is horizontal). (f) GAs vaccination symptomatic series; the vertical line is at
day 413, when the effectiveness of first vaccination starts

vaccinations start to operate—are lower than in the test plot, but we have significant
further waves in this case too.
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Table 15 From the day of the first column, considering the quantity of the second column (000),
the vaccination of each group follows the quotas of the related columns

From day Q. of vaccines (000) g1 g2 g3 g4 g5 g6 g7

373 5 0.1 0.1 0.1 0.0 0.1 0.0 0.0

433 10 0.1 0.1 0.1 0.0 0.1 0.0 0.0

493 10 0.1 0.1 0.1 0.1 0.1 0.1 0.1

553 10 0.1 0.1 0.1 0.1 0.1 0.1 0.1

613 20 0.1 0.1 0.1 0.1 0.1 0.1 0.1

738 End

7.6 GAs Quotas in the Experiment, with Vaccinated People
Spreading the Infection

Finally, this whole section’s objective is to use GAs to evolve populations of models
by choosing “genetically” the parameters to decide daily vaccination. Initially, on a
random basis and successively considering them as a genetic chromosome of each
model, re-productively crossed with those of other models. The search is for the
best fitness related to the goal of reducing the number of symptomatic persons.
[35], also quoted at https://www.behaviorsearch.org, is a helpful introduction to the
methodology; the sources of the GAs used here are at https://github.com/terna/GAs.
The GAs action, determining the vaccination quotas, optimizes the behavior of a
deciding meta-agent, in a sort of inverse generative social science perspective [36].

With the GAs option, we use the quotas of Table 16, with the exact mechanism of
the previous section. The considerations sub (i) and (ii) in Sect. 7.4 also apply here.
We underline that the GAs procedure does not optimize the coefficients of those
two cases, because they do not affect the fitness related to the goal of minimizing
the number of symptomatic subjects.

In Table 14 we have numbers both of persons in each category at the beginning
of the experiment and when the vaccination campaign starts.

In Fig. 22e we have the effects of the vaccination plan as numbers of vaccinated
persons by groups. The main attention of the GAs is initially related to the groups:
g4 (workers), g1 (extra-fragile persons), g3 (fragile workers), g2 (teachers). Then
g5 (fragile people), finally g6 (regular people), and g7 (young people). The priority
is for highly circulating persons (workers and teachers), then for fragile persons.

In Fig. 22f we have the crucial result of this experiment: the no vaccination
test-bed is always that of Fig. 21. With GAs’ choices, the waves after the vertical
line—when vaccinations start to operate—disappear, and the whole outbreak is a
lot shorter.

https://www.behaviorsearch.org
https://github.com/terna/GAs
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Table 16 GAs best strategy with vaccinated people still spreading the infection: from the day
of the first column, considering the quantity of the second column, the vaccination of each group
follows the quotas of the related columns

From day Q. of vaccines (000) g1 g2 g3 g4 g5 g6 g7

373 5 0.01 0 0 0.79 0.18 0.38 0.19

433 10 0.94 0.06 0.32 0.54 0.19 0.83 0.5

493 10 0.97 0.97 0.74 0.79 0.2 0.14 0.52

553 10 0.98 0.83 0.02 0.39 0.99 0.04 0.48

613 20 0.52 0.01 0.83 0.6 1 0.27 0.9

738 End

8 A New Model and Future Developments

Using SLAPP, https://terna.github.io/SLAPP/ a second model is under development,
with a ratio of 1:100 to the Piedmont population, so 43,500 agents. It will contain
the same items as the current one, plus transportation and aggregation places: happy
hours, nightlife, sports, stadiums, discotheques, etc. We will also consider networks
as family networks, professional networks, high-contact individual networks [37].
Finally, we will take into consideration the socioeconomic conditions of the
individuals.

As seen, the S.I.s.a.R. model is a tool for comparative analyses, not for
forecasting, mainly due to the enormous standard deviation values intrinsic to the
problem.

The model is highly parametric, and more it will be, precisely in the comparative
perspective. It also represents a small step in using artificial intelligence tools and
the inverse generative perspective [8] in agent-based models.

9 Appendix 1—Parameter Values

We report here the values of parameters of Fig. 5, with their short names used
in program scripts, in round brackets. Look at Sect. 2.2 for the definition. Day
numbering is related to actual dates via Table 17. Day 1 is February 4th, 2020.

The values adopted in the experiments reported in this work are the following.

https://terna.github.io/SLAPP/
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Table 17 The days of the simulation and their equivalent dates in the calendar

Day Date Day Date Day Date Day Date

25 28-2-2020 200 21-8-2020 375 12-2-2021 550 6-8-2021

50 24-3-2020 225 15-9-2020 400 9-3-2021 575 31-8-2021

75 18-4-2020 250 10-10-2020 425 3-4-2021 600 25-9-2021

100 13-5-2020 275 4-11-2020 450 28-4-2021 625 20-10-2021

125 7-6-2020 300 29-11-2020 475 23-5-2021 650 14-11-2021

150 2-7-2020 325 24-12-2020 500 17-6-2021 675 9-12-2021

175 27-7-2020 350 18-1-2021 525 12-7-2021 700 3-1-2022

(i) The values of probabilityOfGettingInfection (prob) are: 0.05 (starting
phase); 0.02 at day 49 (adoption of non-pharmaceutical measures); 0.035 at
day 149 (some relaxation in compliance); 0.02 at day 266 (again, compliance
to rules).

(ii) The value of D% is −50 in all the runs.
(iii) intrinsicSusceptibility is set discussing Eq. (1) in Sect. 2.2.
(iv) The values of %PeopleAnyTypeNotSymptomaticLeavingHome (%PeopleAny)

are: at (day) 20, 90; at 28, 80; at 31, 0; at 106, 80; at 110, 95; at112, 85; at
117, 95; at 121, 90; at 259, 90; at 266, 80; at 277, 50; at 302, 70; at 320, 90;
at 325, 50; at 329, 80; at 332, 50; at 336, 80; at 337, 50; at 339, 80.

(v) The values of %PeopleNotFragileNotSymptomaticLeavingHome (%PeopleNot)
are: at (day) 31, 80; at 35, 70; at 36, 65; at 38, 15; at 42, 25; at 84, 30; at 106,
0; at 302, 90; at 325, 50; at 332, 50; at 337, 50; at 339, 100; at 349, 90.

(vi) The values of %openFactoriesWhenLimitationsOn (%Fac) are: at (day) 38,
value4 0; at 49, 20; at 84, 70; at 106, 100; at 266, 90; at 277, 70; at 302, 80;
at 320, 90; at 325, 30; at 329, 90; at 332, 30; 336, 90; at 337, 30; at 339, 100.

(vii) stopFragileWorkers (sFW): by default, 0; in one of the experiments we used
sFW with set to 1 (on) at day 245 and to 0 (off) at day 275.

(viii) The values of activateSchools (aSch) are: at (day) 1, on; at 17, off; at 225,
on; at 325, off; at 339, on; the values of %Students (%St) are: at (day) 0, 100;
at 277, 50; at 339, 50; at 350, 50 (repeated values are not relevant for the
model, but for the use of the programmer-author).

(ix) The value of radiusOfInfection (radius) is 0.2; in the model, space is
missing of a scale, but forcing the area to be in the scale of a region
as Piedmont, 0.2 is equivalent to 20 m; we have to better calibrate this
measure with movements and probabilities; this is a critical step in future
developments of the model.

(x) The values of asymptomaticRegularInfected% and asymptomaticFragileIn-
fected% are 95 and 20.
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10 Appendix 2—A Gallery of Contagion Sequences

The gallery of contagion sequences, reported in Table 18, shows the vast variety
of situations generated by our agent-based simulations. What is significant is the
variety of the situations.

Table 18 Gallery of sequences, symptomatic, and asymptomatic agents
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(1a) An outbreak without containment measures, with a unique wave, but very
heavy: contagions are in nursing homes (orange), workplaces (brown), homes
(cyan), hospitals (pink).

(1b) This is the previous epidemic without containment measures, considering the
first 200 infections, with the main contribution of nursing homes (orange) and
workplaces (brown).

(1c) Another outbreak, always without containment measures: nursing homes
(orange) as a starter.

(2a) The (1c) epidemic, without containment measures, first 200 infections: nursing
homes (orange) as a starter; around day 70, a unique contagion at home makes
the epidemic continue.

(2b) Another case without containment measures showing the initial action of
contagions in workplaces (brown) and homes (cyan).

(2c) Here we see the first 200 infections showing that the initial profound effects
of contagions in workplaces (brown) and homes are due, in the beginning, to
fragile persons, also asymptomatic,

(3a) An outbreak with containment measures, where we see another influential con-
tribution of workplaces (brown) and homes (cyan) to the epidemic diffusion.

(3b) Here the first 200 infections: after day 100, we observe many significant cases
of fragile workers diffusing the infection.

(3c) In this outbreak, with containment measures, the infections arise from work-
places (brown), nursing homes (orange), and homes (cyan), but also hospitals
(pink).

(4a) Here we explore the first 200 infections of (3c): in the beginning, workplaces
(brown), hospitals (pink), nursing homes (orange), and homes (cyan) are
interweaving.

(4b) An outbreak with containment measures where the effect of the contagions in
workplaces (brown), nursing homes (orange), and homes (cyan) is evident.

(4c) In the first 200 infections of (4b), workplaces (brown) and nursing homes
(orange) are strictly interweaving.

(5a) An outbreak with containment measures where the effect of nursing homes
(orange) is prevalent.

(5b) An outbreak with containment measures with a highly significant effect from
workplaces (brown).

(5c) Stopping fragile workers at day 20 in the previous case, we obtain a beneficial
effect, but home contagions (cyan) keep alive the pandemic, which explodes
again in workplaces (brown).

(6a) Exploring the first 200 infections of the case (5c), we have evidence of the
event around day 110 with the new phase due to a unique asymptomatic
worker.

(6b) Finally, the same epidemic stopping fragile workers and any fragility at day 15
case and isolating nursing homes.

(6c) An outbreak with containment measures spontaneously stopping in a short
period.
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