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Abstract. Personal data is becoming one of the most essential resources
in today’s information-based society. Accordingly, there is a growing
interest in data markets, which operate data trading services between
data providers and data consumers. One issue the data markets have to
address is that of the potential threats to privacy. Usually some kind
of protection must be provided, which generally comes to the detriment
of utility. A correct pricing mechanism for private data should therefore
depend on the level of privacy. In this paper, we propose a model of data
federation in which data providers, who are, generally, less influential on
the market than data consumers, form a coalition for trading their data,
simultaneously shielding against privacy threats by means of differen-
tial privacy. Additionally, we propose a technique to price private data,
and an revenue-distribution mechanism to distribute the revenue fairly
in such federation data trading environments. Our model also motivates
the data providers to cooperate with their respective federations, facil-
itating a fair and swift private data trading process. We validate our
result through various experiments, showing that the proposed methods
provide benefits to both data providers and consumers.

Keywords: Data trading · Federated data market · Differential
privacy · Revenue splitting mechanism · Game theory

1 Introduction

The use of data analytics is growing, as it plays a crucial role in making deci-
sions and identifying social and economical strategies. Not all data, however,
are equally useful, and the availability of accurate data is crucial for obtaining
high-quality analytics. In line with this trend, data are considered an asset and
commercialized, and data markets, such as Datacoup [1] and Liveen [15], are on
the rise.

Unlike traditional data brokers, data markets provide a direct data trading
service between data providers and data consumers. Through data markets, data
providers can be informed of the value of their private data, and data consumers
can collect and process personal data directly at reduced costs, as intermediate
entities are not needed in this model.
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Two important issues that need to be addressed for the success of such data
markets are (a) the prevention of privacy violation, and (b) an appropriate pric-
ing mechanism for personal data. Data owners are increasingly aware of the pri-
vacy risks, and are less and less inclined to expose their sensitive data without
proper guarantees. If the data market cannot be trusted concerning the protec-
tion of the sensitive information, the data providers will not be willing to trade
their data. For example, Cambridge Analytica collected millions of Facebook
users’ profiles under the pretext of using them for academic purposes, while in
reality they used this information to influence the 2016 US presidential election
[8]. When media outlets broke news of Cambridge Analytica’s business practices,
many Facebook users felt upset about the misuse of their data and left Facebook.

Differential privacy [3] can prevent exposure of personal information while
preserving statistical utility, hence it is a good candidate to protect privacy in
the data market. Another benefit of differential privacy is that it provides a
metric, i.e., the parameter ε, which represents the amount of obfuscation, and
therefore the level of privacy and utility of the sanitized data. Hence ε can be
used directly to establish the price of personal data as a function of the level of
privacy protection desired by an individual.

We envision a data trading framework in which groups of data providers ally
to form federations in order to increase their bargaining power, following the
traditional model of trade unions. At the same time, federations guarantee that
the members respect their engagement concerning the trade. Another important
aspect of the federation is that the value of the collection of all data is usually
different from the sum of the values of all members’ data. It could be larger,
for instance because the accuracy of the statistical analyses increases with the
size of the dataset, or could be smaller, for instance because of some discount
offered by the federation. Data consumers are supposed to make a collective deal
with a federation rather than with the individual data providers, and, from their
perspective, this approach can be more reliable and efficient than dealing with
individuals. Thus, data trading through federations can benefit both parties.

Given such a scenario, two questions are in order:

1. How is the price of data determined in a federation environment?
2. How does the federation fairly distribute the earnings to its members?

In this paper, we consider these issues, and we provide the following contri-
butions:

1. We propose a method to determine the price of collective data based on the
differential privacy metric.

2. We propose a distribution model based on game theory. More precisely, we
borrow the notion of Shapley value [18,20] from the theory of cooperative
games. This is a method to determine the contribution of each participant to
the payoff, and we will use it to ensure that each member of the federation
receives a compensation according to his contribution.

The paper is organized as follows: Sects. 2 recalls some basic notions about
differential privacy and Shapley values. Section 3 summarizes related works.
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Section 4 describes the federation-based data trading and our proposal for the
distribution of the earnings. Section 5 validates the proposed technique through
experiments. Section 6 concludes and discusses potential directions for future
work.

2 Preliminaries

In this section, we recall the basics about differential privacy and Shapley values.

2.1 Differential Privacy

Differential privacy (DP) is a method to ensure privacy on datasets based on
obfuscating the answers to queries. It is parametrized by ε ∈ R

+, that represents
the level of privacy. We recall that two datasets D1 and D2 are neighboring if
they differ by only one record.

Definition 1 (Differential privacy [3]). A randomized function R provides
ε-differential privacy if for all neighboring datasets D1 and D2 and all S ⊆
Range(R), we have

P[R(D1) ∈ S] ≤ eε × P[R(D2) ∈ S]

For example, if we have D as the space of all datasets, and some m ∈ N, then
the randomized function R : D �→ R

m could be such that R(D) = Q(D) + X,
where Q is a statistical query function executed on D, such as the counting or
histogram query, and X is some added noise to the true query response. For
ΔQ = max

D,D′∈D

|Q(D) − Q(D′)|, if X ∼ Lap(0, ΔQ
ε ), R will guarantee ε-DP.

DP is typically implemented by adding controlled random noise to the true
answer to the query before reporting the result. ε is a positive real number
parameter, and the value of ε affects the amount of privacy, which decreases as ε
increases. For simplicity of discussion, we focus on the non-interactive and pure
ε-differential privacy.

Recently, a local variant of differential privacy (LDP), in which the data
owner directly obfuscate their data, has been proposed [5]. This variant consid-
ers the individual data points (or records), rather than queries on datasets. Its
definition is as follows:

Definition 2 (Local differential privacy [5]). A randomized function R sat-
isfies ε-local differential privacy if, for all pairs of individual data x and x′, and
for any subset S ⊆ Range(R), we have

P[R(x) ∈ S] ≤ eε · P[R(x′)] ∈ S,

When the domain of data points is finite, one of the simplest and most used
mechanisms for LDP is kRR [12]. In this paper, we assume that all data providers
use this mechanism to obfuscate their data.
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Definition 3 (kRR Mechanism [12]). Let X be an alphabet of size k < ∞.
For a given privacy parameter ε, and given an input x ∈ X , the kRR mechanism
returns y ∈ X with probability:

P(y|x) =
1

k − 1 + eε

{
eε, if y = x

1, if y 	= x

2.2 Shapley Value

When participating in data trading through a federation, Pareto efficiency and
symmetry are the important properties for the intra-federation earning distri-
bution. Pareto efficiency means that at the end of the distribution process, no
change can be made without making participants worse off. Symmetry means
that all players who make the same contribution must receive the same share.
Obviously, the share should vary according to the member’s contribution to the
collective data.

The Shapley value [18,20] is a concept from game theory named in honor
of Lloyd Shapley, who introduced it. Thanks to this achievement, Shapley won
the Nobel Prize in Economics in 2012. The Shapley value applies to coopera-
tive games, and it is a method to distribute the total gain that satisfy Pareto
efficiency, symmetry, and differential distribution according to a player’s contri-
bution. Thus, all participants have the advantage of being fairly incentivized.
The solution based on the Shapley value is unique. Due to these properties,
the Shapley value is regarded as an excellent approach to design a distribution
method.

Let N = {1, . . . , n} be a set of players involved in a cooperative game and
M ∈ R

+ be a financial revenue from the data consumer. Let v : 2N �→ R
+ be

the characteristic function, mapping each subset S ⊆ N to the total expected
sum of payoffs the members of S can obtain by cooperation. (i.e., v(S) is the
total collective payoff of the players in S). According to the Shapley value, the
benefit received by player i in the cooperative game is given follows:

ψi(v,M) =
∑

S⊆N\{i}

|S|! × (n − |S| − 1)!
n!

(v(S ∪ {i}) − v(S))

We observe that v(A) > v(B) for any subsets B ⊂ A ⊆ N , and hence,
v(S ∪ {i}) − v(S) is positive. We call this quantity the marginal contribution
of player i in a given subset S. Note that ψi(v,M) is the expected marginal
contribution of player i over all subsets S ⊆ N .

In this paper, we use the Shapley value to distribute the earnings according
to the contributions of the data providers in the federations.

3 Related Works

Data markets, such as Datacoup [1] and Liveen [15], need to provide privacy
protection in order to encourage the data owners to participate. One of the key
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questions is how to appropriately price data obfuscated by a privacy-protection
mechanism. When we use differential privacy, the accuracy of data depends on
the value of the noise parameter ε, which determines the privacy-utility trade-
off. Thus, this question is linked to the problem of how to establish the value
of ε. Researchers have debated how to choose this value since the introduction
of differential privacy, and there have been several proposals [2,9,13,19]. In par-
ticular, [13] showed that the privacy protection level by an arbitrary ε can be
infringed by inference attacks, and it proposed a method for setting ε based on
the posterior belief. [2] considered the relation between differential privacy and
t-closeness, a notion of group privacy which prescribes that the earth movers dis-
tance between the distribution in any group E and the distribution in the whole
dataset does not exceed the threshold t, and showed that both ε-differential
privacy and t-closeness are satisfied when the t = maxE

|E|
N

(
1 + N−|E|−1

|E| )eε
)

where N is the number of records of the database.
Several other works have studied how to price the data according to the

value of ε [6,7,10,11,14,16,17,21]. The purpose of these studies is to determine
the price and value of the ε according to the data consumer’s budget, accuracy
requirement of information, the privacy preference of the data provider, and the
relevance of the data. In particular, the study in [21] assumed a dynamic data
market and proposed an incentive mechanism for data owners to truthfully report
their privacy preferences. In [16], the authors proposed a framework to find the
balance between financial incentive and privacy in personal data markets where
data owners sell their own data, and suggested the main principles to achieve
reasonable data trading. Ghosh and Roth [7] proposed a pricing mechanism
based on auctions that maximizes the data accuracy under the budget constraint
or minimizes the budget for the fixed data accuracy requirement, where data is
privatized with differential privacy.

Our study differs from previous work in that, unlike the existing approaches
assuming a one-to-one data trading between data consumers and providers, we
consider trades between a data consumer and a federation of data providers. In
such a federated environment, the questions are (a) how to determine the price
of the collective data according to the privacy preferences of each member, and
(b) how to determine the individuals’ contribution to the overall data value, in
order to receive a share of the earnings accordingly.

In this paper, we estimate the value of ε for the kRR mechanism [12], and
we fairly distribute the earnings to the members of the federations using the
Shapley value. We propose a valuation function that fits the characteristics of
differential privacy. For example, increasing value of ε does not infinitely increase
the price (we will elaborate on this in Sect. 4). Furthermore, we characterize the
conditions required for setting up the earning distribution schemes.
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4 Differentially Private Data Trading Mechanism

4.1 Mechanism Outline

Overview: We focus on an environment with multiple federations of data
providers and one data consumer who interacts with the federations in order
to obtain information (data obfuscated using kRR mechanism with varying val-
ues of ε) in exchange of financial revenues. We assume that federations and
consumer are aware that the data providers use kRR mechanism, independently
and with their desired privacy level (which can differ from provider to provider).
Our method provides a sensible way of splitting the earnings using the Shapley
value. In addition, it also motivates an individual to cooperate with the federa-
tion she is a part of, and penalises intentional and recurring non-cooperation.

Notations and Set-up: Let F = {F1, . . . , Fk} be a set of k federations of data
providers, where each federation Fi has nFi

members for each i ∈ {1, . . . , k}.
For a federation F ∈ F , let its members be denoted by F = {pF

1 , . . . , pF
nF

}.
And finally, for every federation F , let pF

∗ ∈ F be an elected representative of F
interacting with the data consumer. This approach to communication benefits
both the data consumer and the data providers because (a) the data consumer
minimizes her communication cost by interacting with just one representative of
the federation, and (b) the reduced communication induces an additional layer
of privacy.

We assume that each member p of a federation F has a maximum privacy
threshold εT

p with which she, independently, obfuscates her data using the kRR
mechanism. We also assume that p has dp data points to potentially report.

We know from [4] that if there are m data providers reporting d1, . . . , dm

data points, independently privatizing them using the kRR mechanism with the
privacy parameters ε1, . . . , εm, the federated data of all the m providers also
follow a kRR mechanism with the privacy parameter defined as:

eε =
1∑m

i=1 di

m∑
i=1

di
eε
i

k − 1 + eε
i

.

We call the quantity dpε
T
p the information limit of data provider p ∈ F , and

ηT
F =

∑
p∈F

dp
eεT

p

k − 1 + eεT
p

the maximum information threshold of the federation F .
We now introduce the concept of valuation function f(.), that maps financial

revenues to information, representing the amount of information to be obtained
for a given price. It is reasonable to require that f(.) is strictly monotonically
increasing and continuous. In this work we focus on the effect on the privacy
parameter, hence we regard the collection of data points as a constant, and
assume that only ε can vary. We will call f(.) the privacy valuation function.
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Definition 4 (Privacy valuation function). A function f : R+ �→ R
+ is a

privacy valuation function if f(.) is strictly monotonically increasing and con-
tinuous.

As f(.) is strictly monotonically increasing and continuous, it is also invert-
ible. We denote the inverse of f(.) as f−1(.), where f−1 : R+ �→ R

+, maps a
certain privacy parameter ε to the financial revenue evaluated with selling data
privatized using kRR mechanism with ε as the privacy parameter.

As f(.) is essentially determining the privacy parameter of a differentially
private mechanism (kRR, in this case), it is reasonable to assume that f(.) should
be not only increasing, but also increasing exponentially for a linear increase of
money. In fact, when ε is high, it hardly makes any difference to further increase
its value. For example, when ε increases from 200 to 250, it practically makes no
difference to the data as they were already practically no private. On the other
hand, if we increase ε from 0 to 50, it creates a huge difference, conveying much
more information. Therefore, it makes sense to set f(.) to increase exponentially
with a linear increase of the financial revenue.

An example of a privacy valuation function that we consider in this paper
is f(M) = K1(eK2M − 1), taking the financial revenue M ∈ R

+ as its argu-
ment, satisfying the reasonable assumptions of evaluating the differential privacy
parameter that should be used to privatize the data in exchange of the financial
revenue of M . Here the parameters K1 ∈ R

+ and K2 ∈ R
+ are decided by the

data consumer according to her requirements (Fig. 1).

Fig. 1. Some examples of the privacy valuation function f(.) illustrated with different
values of K1 and K2. The data consumer decides the values of the parameters K1

and K2 according to her requirement, and broadcasts the determined function to the
federations.

Finalizing and Achieving the Deal: Before the private-data trading commences,
the data consumer, D, truthfully broadcasts her financial budget, $B, and a
privacy-valuation function, f(.), chosen by her to all the federations. At this
stage, each federation computes their maximum privacy threshold. In particular,
for a federation F with members F = {p1, . . . , pn}, and a representative p∗, pi



Establishing the Price of Privacy in Federated Data Trading 239

reports dpi
and εT

pi
to p∗ for all i ∈ {1, . . . , n}. p∗ computes the maximum

information threshold,

ηT
F =

n∑
i=1

dpi

eεT
pi

k − 1 + eεT
pi

,

of federation F .
At this point, p∗ places a bid to D to obtain $M , which maximises the

earning for F under the constraint of their maximum privacy threshold and the
maximum budget available from D, i.e., p∗ wishes to maximize M within the
limits M ≤ B and f(M) ≤ εT

F . Thus, p∗ bids for sending data privatized using
the kRR mechanism with εT

F in exchange of f−1(εT
F ).

At the end of this bidding process by all the federations, D ends up with
ε = {εT

F1
, . . . , εT

Fk
}, the maximum privacy thresholds of all the federations. At

this stage D must ensure that
∑k

i=1 f−1(εT
Fi

) ≤ B, adhering to her financial
budget. In all probability,

∑k
i=1 f−1(εT

Fi
) is likely to exceed B in a realistic setup.

Here, D needs a way to “seal the deal” with the federations staying within her
financial budget, maximizing her information gain, i.e., maximizing

∑k
i=1 dFi

εFi
,

where dFi
is the total number of data points obtained from the ith federation

Fi, and εFi
is the overall privacy parameter of the kRR differential privacy with

the combined data of all the members of Fi.
A way D could finalize the deal with the federations is by proposing to receive

information obfuscated with w∗εT
Fi

using kRR mechanism to Fi ∀i ∈ {1, . . . , k},
where

w∗ = max

⎧⎨
⎩w :

∑
i∈{1,...,k}

f−1(wεT
Fi

) ≤ B,w ∈ [0, 1]

⎫⎬
⎭ ,

i.e., proportional to every federation’s maximum privacy threshold ensuring that
the price to be paid to the federations is within D’s budget. Note that w ∈
[0, 1] guarantees that wεT

F ≤ εT
F for every federation F , making the proposed

privacy parameter possible to achieve by every federation, as it’s within their
respective maximum privacy thresholds. Let the combined privacy parameter for
federation Fi, proposed by D to successfully complete the deal, be εP

Fi
= w∗εT

Fi

∀i ∈ {1, . . . , k}.
The above method to scale down the maximum privacy parameters to

propose a deal, maximizing D’s information gain, is just one of the possible
approaches. In theory, any method that ensures the total price to be paid to all
the federations, in exchange of their data, is within D’s budget, and the privacy
parameters proposed are within the corresponding privacy budgets of the fed-
erations, could be implemented to propose a revised set of privacy parameters
and, in turn, the price associated with them.

Definition 5 (Seal the deal). When all the federations are informed about
the revised privacy parameters desired of them, and they agree to proceed with
the private-data trading with the data consumer by achieving the revised privacy



240 K. Jung et al.

parameter by combining the data of their members, we say the deal has been
sealed between the federations and the data consumer.

Once the deal is sealed between the federations and the data consumer, Fi is
expected to provide data gathered from its members with an overall obfuscation
with the privacy parameter εP

Fi
using the kRR mechanism, in exchange of a

price M i = f−1(εP
Fi

) for every i ∈ {1, . . . , k}. Failing to achieve this parameter
of privacy for any federation results in a failure to uphold the conditions of the
“deal” and makes the deal void for that federation, with no price received.

A rational assumption made here is that if a certain federation F fails to
gather data from its members such that the overall kRR privacy parameter
of F is less than εP

F , then F doesn’t receive any partial compensation for its
contribution, as it would incur an increase in communication cost and time for
the data consumer in proceeding to this stage and “seal a new deal” with F ,
instead of investing the revenue to a more responsible federation.

The rest of the process consists in collecting the data and it takes place within
every federation F which has sealed the deal. At the tth round, for t ∈ {1, 2, . . .},
any member p of F has the freedom of contributing dt

p ≤ dp−
∑t−1

i=1 di
p data points

privatized using kRR mechanism with any parameter εt
p. The process continues

until the overall information collected until then achieves an information of at
least ηT

F . Let T denote the number of rounds needed by F to achieve the required
privacy level. As per the deal sealed between F and D, F needs to submit
DF =

∑
p∈F

∑T
i=1 di

p data points to D such that the overall kRR privacy level
of the collated data,

ηF =
∑
p∈F

T∑
t=1

dt
p

eεt
p

k − 1 + eεt
p

is at least ηT
F , and in return F receives a financial revenue of $M from D.

4.2 Earning Splitting

We use the Shapley value to estimate the contribution of each data provider
of the federation, in order to split the whole earning M , which F would receive
from D at the end of the trade. Let ψ : R+×R

+ �→ R
+ be the valuation function

used for evaluating the Shapley values of the members after each contribution.
If a certain member, p, of F reports d differentially private data points with
privacy parameter ε, ψi(v) should give the share of “contribution” made by p
over the total budget, M , of F , to be split across all its members. It is assumed
that each member, p, of F computes her Shapley value, knows what share of
revenue she would receive by contributing her data privatized with a chosen
privacy parameter, and uses this knowledge to decide on εt

p at every round t,
depending on her financial desire. In our model, characteristic function v(S) is
as follows:

v(S) =

{
M, if εF ≥ εP

F

0, if εF < εP
F

where n is the number of data provider in subset S .
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Example 1. As an example, let us assume that there are p1, p2, p3, and each

provider’s contribution
∑T

t=1 dt
p

e
εt
p

k−1+e
εt
p

are 1.0, 0.5 and 0.3. And we assume

that εP
F is 1.4 and financial revenue of M is 60. In this case, the calculation of

each provider’s revenue using Shapley value is as follows:

Case 1) Only one data provider participates:

p1 : v(p1) = 0
p2 : v(p2) = 0
p3 : v(p3) = 0

Case 2) Two providers participate: v(p1+) = 0,v(p2) = 0,

p1 : v(p1 + p2) − v(p2) = M,v(p1 + p3) − v(p3) = M

p2 : v(p1 + p2) − v(p1) = M,v(p2 + p3) − v(p3) = 0
p3 : v(p1 + p3) − v(p1) = 0, v(p2 + p3) − v(p2) = 0

Case 3) All providers participate:

p1 : v(p1 + p2 + p3) − v(p2 + p3) = M

p2 : v(p1 + p2 + p3) − v(p1 + p3) = M

p3 : v(p1 + p2 + p3) − v(p1 + p2) = 0

According to the above results, the share of each user, according to their Shapley
values, is as follows:

ψ1(v) =
0!2!
3!

0 +
1!1!
3!

M +
1!1!
3!

M +
2!0!
3!

M =
4M

6
= 40

ψ2(v) =
0!2!
3!

0 +
1!1!
3!

M +
1!1!
3!

0 +
2!0!
3!

M =
2M

6
= 20

ψ3(v) =
0!2!
3!

0 +
1!1!
3!

0 +
1!1!
3!

0 +
2!0!
3!

0 =
0M

6
= 0

In this example, p3 has no effect on achieving the ηT
F . Thus, p3 is excluded

from the revenue distribution. If the revenue were distributed proportionally,
without considering the Shapley values, the revenue of p1 would be 33, p2 is
17, and p3 is 10. It would mean p1 and p2 would receive lower revenues even
though their contribution are sufficient to achieve the ηT

F , irrespective of the
participation of p3. The Shapley value enables the distribution of revenues only
for those who have contributed to achieving the goal.

One of the problems of computing the Shapley values is the high computa-
tional complexity involved. If there is a large number of players, i.e., the size
of a federation is large, the total number of subsets to be considered becomes
considerably large, engendering a limitation to real-world applications. To over-
come this, we use a pruning technique to reduce the computational complexity
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of the mechanism. A given federation F receives revenue M only when ηF ≥ ηT
F ,

as per the deal sealed with the data consumer. Therefore, it is not necessary to
calculate for Shapley values for the cases where ηF < ηP

F , since such cases do not
contribute towards the overall Shapley value evaluated for the members of F .

It is reasonable to assume this differentially private data trading between
the data consumer and the federations would continue periodically for a length
of time. For example, Acxiom, a data broker company, periodically collects and
manages personal data related to daily life, such as consumption patterns and
occupations. Periodic data collection has higher value than one-time data col-
lection because it can track temporal trends. For simplicity of explanation, let’s
assume that the trading occurs ever year. Hence, we consider a yearly period to
illustrate the final two steps of our proposed mechanism - “swift data collection”
and the “penalty scheme”. This would ensure that the data collection process is
as quick as possible for every federation in every year. Additionally, this would
motivate the members to cooperate and act in the best interests of their respec-
tive federations by not, unnecessarily, withholding their privacy contributions
to hinder achieving the privacy goals of their group, as per the deal finalized
with D.

Let R ∈ N be the “tolerance period”. For a member p ∈ F , we denote
d(m)i

p to be the number of data points reported by p in the ith round of data
collection of year m and we denote ε(m)i

p to be the privacy parameter used by p

to obfuscate the data points in the ith round of data collection of year m. Let Tm

be the number of rounds of data collection needed in year m by federation F to
achieve their privacy goal. We denote the total number of data points reported
by p in the year m by d(m)p, and observe that d(m)p =

∑Tm

i=1 d(m)i
p. Let ε(m)P

denote the value of the privacy parameter of the combined kRR mechanism of
the collated data that F needs, in order to successfully uphold the condition of
the deal sealed with D.

Definition 6 (Contributed privacy level). For a given member p ∈ F , we
define the contributed privacy level of p in year m as

ε(m)p =
∑

ε(m)i
p

.

Definition 7 (Privacy saving). For a given member p ∈ F , we define the
privacy saving of p over a tolerance period R (given by a set of some previous
years), decided by the federation F , as

Δp =
∑
m∈R

(
d(m)pε

T
p − d(m)pε(m)p

)

Swift Data Collection: It is in the best interest of F , and all its members, to
reduce the communication cost, time, and resources over the data collection
rounds, and achieve the goal of εP as soon as possible, to catalyze the trade
with D, and receive the financial revenue. We aim to capture this through our
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mechanism, and enable the members not to “hold back” their data well below
their capacity.

To do this, in our model we design the Shapley valuation function, ψ(.),
such that for p ∈ F , in year m, ψ(Npε(m)t+1

p , d(m)p,M) = ψ(ε(m)t
p, d(m)p,M),

where Np ∈ Z
+ is the catalyzing parameter of the data collection, decided by the

federation, directly proportional to Δp. In particular, for p ∈ F , and a tolerance
period R decided, in prior, by F , it is a reasonable approach to make Np ∝ Δp,
as this would mean that any member p ∈ F , reporting d(m)p data points, would
need to use Np times higher value of ε in the (t+1)st round of data collection in
the year m, as compared to that in the tth round for the same number of data
points reported to get the same share of the benefit of the federation’s overall
revenue, where Np is decided by how much privacy savings p has had over a
fixed period of R.

This is made to ensure that if a member of a federation has been holding
back her information by using high values of privacy parameters over a period of
time, she should need to compensate in the following year by helping to quicken
up the process of data collection of her federation. This should motivate the
members of F to report their data with a high value of the privacy parameter
in earlier rounds than later, staying within their privacy budgets, so that the
number of rounds needed to achieve ε(m)P is reduced.

Penalty Scheme: It is also desirable to have every member of any given federation
to cooperate with the other members of the same federation, and facilitate the
trading process in the best interest of the federation, to the best of their ability.
That is why, in our mechanism, we incorporate an idea of a “penalty scheme”
for the members of a federation who are being selfish by keeping a substantial
gap between their maximum privacy threshold and their contributed privacy
level, wishing to enjoy benefits of the revenue at an unfair cost of other members
providing information privatized with almost their maximum privacy threshold.
To prevent such non-cooperation and attempted “free ride”, we design a “penalty
scheme” in the mechanism.

Definition 8 (Free rider). We call a certain member p ∈ F to be a free rider
if Δp ≥ δF , for some δF ∈ R

+. Here, δF is a threshold decided by the federation
F beforehand and informed to all the members of F .

Thus, in the ideal case, every member of F would have their privacy sav-
ings to be 0 if everyone contributed information to the best of their abilities,
i.e., provided data obfuscated with their maximum privacy parameter. But as
a federation, a threshold amount of privacy savings is tolerated for every mem-
ber. Under the “penalty scheme”, if a certain member p ∈ F qualifies as a
free rider, she is excluded from the federation, and is given a demerit point
by the federation, that can be recorded by a central system keeping a track of
every member of every federation, preventing p from getting admission to any
other federation for her tendency to free ride. This would mean p and has the
responsibility of trading with the data consumer by herself. We could define the
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Shapley valuation function used to determine the share of p’s contribution such
that f−1(εT

p ) < ψ(v,M), implying that the revenue to be received by p dealing
directly with D, providing one data point obfuscated with her maximum privacy
threshold with respect to the privacy valuation function f(.), would be giving
a much lower revenue than what p would receive being a member of federation
F .1

Theorem 1. If the privacy valuation function used by the data consumer, D,
is f(m) = K1(eK2m − 1), in order to impose the penalty scheme to any member
p ∈ F of a federation F , the Shapley valuation function, ψ(.), chosen by F , must

satisfy
ln(

εT
p

K1
+1)

K2
< ψ

(
εT
p ,

ln(
w∗εT

p
K1

+K)

K2

)
, where K =

∑
p′ �=p∈F dp′ εT

p′
K1

+ 1, dπ is the

number of data points reported by any π ∈ F , and w∗ is the suggested scaling
parameter computed by D to propose a realistic deal, as described in Sect. 4.1.

Proof. See Appendix A �

Imposing the “penalty scheme” is expected to drive every member of a given
federation to be cooperating with the interests of the federation and all the other
fellow members to the best of their abilities, preventing potential free riders.

We show the pseudocode for the entire process in Algorithm 1 and describe
the swift data collection and penalty scheme in Algorithm 2 and 3.

Algorithm 1: Federation based data trading algorithm
Input: Federation F , Data consumer D;

Output: εPF and M ;
D broadcasts total budget B and f(.);

Federation F computes the εTF =
∑n

i=1 dpiε
T
pi

;
p∗ places a bid to D to obtain revenue M ;

F and D “seal the deal” to determine the εPF and M ;

while εF ≤ εPF and t ≤ T do
SwiftDataCollection(F , εPF );
p∗ computes the overall privacy εF

if εF ≥ εPFi
then

F receives the revenue M ;
p∗ computes the Shapley value ψi(v, M);
pi get their share of the revenue M

else
deal fails

1 Here, v(.) is the characteristic function of ψ(.), depending on εTp .
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Algorithm 2: Swift data collection algorithm
Input: F = {p1, . . . , pnF },εPF ;
Output: ε(m)tp;

Function SwiftDataCollection(F ,εPF ):
while i ≤ nF do

Compute Δpi ;
Compute the catalyzing parameter Npi ;
Determine the ε(m)tpi

= Npiε(m)t−1
pi

Algorithm 3: Penalty scheme
Input: F = {p1, . . . , pnF },ΔF = {Δp1 , . . . , ΔpnF

}, δF ;

Output: Updated F ;
while i ≤ nF do

if Δpi ≥ δF then
F \ {i}

5 Experimental Results

5.1 Experimental Environments

In this section, we show some experiments that support the claim that proposed
method succeeds to obtain the promised ε and reduce the computation time for
Shapley value evaluation. The number of data providers constituting the fed-
eration is set to 25, 50, 75, and 100, respectively. The value of εT

p is selected
from the normal distribution between 1 and 10 with mean 5 and standard devi-
ation 1 independently for all participants p in the federation. The experimental
environment is a Intel(R) i5-9400H CPU and 16 GB of memory.

5.2 Number of Rounds Needed for Data Collection

Achieving the ηT
F is the key for the participation of F in the data trading. If ηT

F

is not achieved as the collated information level for the federation, there is no
revenue from the data consumer. Thus, it is important to encourage the data
providers to report sufficient data in order to reach the goal of the deal sealed
with the data consumer. The swift data collection is a way to catalyze the
process of obtaining data from the members of every federation F , minimising
the number of rounds of data-collection, to achieve ηT

F . Furthermore, we set
Np = Δp

d(m)pεT
p

for a certain member p in federation F , to motivate the data
providers who have larger privacy savings to provide more information per round.

In the experiment, ηT
F is set to be 125, 250, 375 and 500, respectively. Data

provider p determines ε(m)t
p randomly in first round, and then computes ε(m)t

p

according to Np, for every p in the federation. We compare two cases, the cat-
alyzing method and the non-catalyzing method.
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Fig. 2. Experimental results for combined ε. Combined ε refers to the amount of infor-
mation provided by the data providers.

As illustrated in Fig. 2, the experimental results show that both catalyzing
data collection and its non-catalyzing counterpart achieve the promised epsilon
values within 5 rounds, but it can be seen that the catalyzing method achieves
εP
F in an earlier round because data providers decide the privacy level used to

obfuscate their data with, considering their privacy savings, resulting in a swift
data collection.

5.3 Number of Free Riders by Penalty Scheme

Fig. 3. Experimental results for number of free riders. We compared the number of
free riders incurred by the penalty scheme in catalyzing and non-catalyzing methods
for cases where the number of data providers is 50 and 100.

The penalty scheme that prevents free riders is based on the premise that
trading data by participating in a federation is more beneficial than trading data
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directly with data consumers (Theorem 1). We evaluated the number of free
riders in the catalyzing and non-catalyzing methods according to the increase of
the threshold δF in the experiment.

As shown in the Fig. 3, we can see that the number of free riders increases
in both techniques as the threshold value δF is increased to 1,2,3. However, the
non-catalyzing method makes more free riders than the catalyzing method that
changes the amount of provided information according to privacy saving ΔP . In
other words, the catalyzing method and penalty scheme help to keep members
in the federation by inducing them to reach the target epsilon in an earlier time.

5.4 Reduced Shapley Value Computation Time

As mentioned in Sect. 4.2, one of the limitations of Shapley value evaluation is to
compute it for all combinations of subsets. Through this experiment, we demon-
strate that the proposed pruning technique reduces the computation time for
calculating the Shapley values. We compared the computation times of the pro-
posed method with brute force method that calculates all the cases by increasing
the number of data providers in the federation, by 3, from 15 to 27 (Table 1).

Table 1. Computation time of brute force and proposed pruning method

# of data providers Brute force (Sec) Pruning method (Sec)

15 0.003 0.0007

18 0.02 0.001

21 0.257 0.0049

24 2.313 0.009

27 19.706 0.019

As shown in the table, the computation time of Shapley value evaluation
increases exponentially because the total number of subsets to be considered
does the same. The proposed method can calculate the Shapley values in less
time by removing unnecessary computations.

6 Conclusion

With the spreading of data-driven decision making practices, the interest in
personal data is increasing. The data market gives a new opportunity to trade
personal data, but a lot of research is still needed to solve privacy and pricing
issues. In this paper, we have considered a data market environment in which
data providers form federations and protect their data with the locally differ-
entially private kRR mechanism, and we have proposed a pricing and earnings-
distribution method. Our method integrates different data providers’ values of
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the privacy parameter ε and combines them to obtain the privacy parameter of
the federation. The received earning is distributed using the Shapley values of
the members, which guarantees the Pareto efficiency and symmetry. In addi-
tion, we have proposed a swift data collection mechanism and a penalty scheme
to catalyze the process of achieving the target amount of information quickly,
by penalizing the free riders who do not cooperate with their federation’s best
interest.

Our study has also disclosed new problems that need further investigation.
Firstly, we are assuming that the data providers keep the promise for the “seal
the deal”, but, in reality, the data providers can always add more noise than what
they promised. We plan to study how to ensure that data providers uphold their
data trading contracts. Another direction for future work is considering more
differential privacy mechanisms, other than kRR.

Appendix A Proofs

Theorem 1. If the privacy valuation function used by the data consumer, D,
is f(m) = K1(eK2m − 1), in order to impose the penalty scheme to any member
p ∈ F of a federation F , the Shapley valuation function, ψ(.), chosen by F , must

satisfy
ln(

εT
p

K1
+1)

K2
< ψ

(
εT
p ,

ln(
w∗εT

p
K1

+K)

K2

)
, where K =

∑
p′ �=p∈F dp′ εT

p′
K1

+ 1, dπ is the

number of data points reported by any π ∈ F , and w∗ is the suggested scaling
parameter computed by D to propose a realistic deal, as described in Sect. 4.1.

Proof. Using the privacy valuation function f(m) = K1(eK2m − 1), we have

f−1(ε) =
ln( ε

K1
+1)

K2
. Let p be an arbitrary member of F with a maximum privacy

threshold εT
p . Therefore, in order to impose a penalty scheme on p, it needs to

be ensured that

ln( εT
p

K1
+ 1)

K2
< ψ(v,M)

=⇒
ln( εT

p

K1
+ 1)

K2
< ψ(v, f−1(εP

F ))

[w∗ ∈ [0, 1] is the scaling parameter chosen by D and εP
F = w∗εT

F ]

=⇒
ln( εT

p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln( εP
F

K1
+ 1)

K2

⎞
⎠
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=⇒
ln( εT

p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(C0+w∗εT
p

K1
+ 1)

K2

⎞
⎠

[ where C0 =
∑

p′ �=p∈F

d′
pε

T
p′ is a constant]

=⇒
ln( εT

p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(C0+w∗εT
p

K1
+ 1)

K2

⎞
⎠

ln( εT
p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(w∗εT
p

K1
+ K)

K2

⎞
⎠

(1)

[for the constant K =
C0

K1
+ 1.]
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