
Daniel Dougherty
José Meseguer
Sebastian Alexander Mödersheim
Paul Rowe (Eds.)

Protocols, Strands,
and Logic

Fe
st

sc
hr

ift
LN

CS
 1

30
66

Essays Dedicated to Joshua Guttman
on the Occasion of his 66.66th Birthday

Lecture Notes in Computer Science 13066

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Daniel Dougherty • José Meseguer •

Sebastian Alexander Mödersheim •

Paul Rowe (Eds.)

Protocols, Strands,
and Logic
Essays Dedicated to Joshua Guttman
on the Occasion of his 66.66th Birthday

123

Editors
Daniel Dougherty
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA, USA

José Meseguer
Th.M. Siebel Center for Computer Science
University of Illinois Urbana-Champaign
Urbana, IL, USA

Sebastian Alexander Mödersheim
Institute of Mathematics and Computer
Science
Technical University of Denmark
Kongens Lyngby, Denmark

Paul Rowe
J83K
The MITRE Corporation
Bedford, MA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91630-5 ISBN 978-3-030-91631-2 (eBook)
https://doi.org/10.1007/978-3-030-91631-2

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
Chapter “Cryptographic Protocol Analysis and Compilation Using CPSA and Roletran” is licensed under the
terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Cover Illustration: CPSA output from Joshua Guttman’s work.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6901-8319
https://doi.org/10.1007/978-3-030-91631-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Joshua D. Guttman

Preface

This volume contains papers written in honor of Dr. Joshua Guttman on the occasion of
his 66.66th birthday, in recognition of his seminal contributions to the foundations of
computer security and in celebration of the generosity of spirit that his friends and
colleagues have enjoyed over many years.

Joshua, as Research Professor at Worcester Polytechnic Institute and Senior
Principal Researcher at The MITRE Corporation, has been for many years a leader in
the field of formal methods for security. He has generated foundational notions and
results and has led the development of several tools for the analysis of systems.
Through this entire time he has been a vital presence in the global community, forming
collaborations, facilitating the creation and maintenance of conferences and workshops,
and mentoring young researchers.

Computer security has become a rich and varied field, with an ever-expanding array
of problems and techniques for their solution. Security protocols, sometimes called
cryptographic protocols, are communication protocols designed to achieve goals such
as authentication, confidentiality, and integrity. The problem of reasoning about
security protocols has received considerable attention over the past 30 years and var-
ious algorithms and tools for checking security properties have been developed.
A notable aspect of research in security is that it features the interaction between
sophisticated mathematical theories and powerful software tools.

Perhaps Joshua’s most influential and enduring contribution to the field has been the
development of the strand space formalism for analyzing cryptographic protocols. It is
one of several “symbolic approaches” to security protocol analysis in which the
underlying details of cryptographic primitives are abstracted away, allowing a focus on
potential flaws in the communication patterns between participants. In the strand space
formalism, the history of individual protocol participants is organized into patterns of
message transmissions and receptions called “strands.” A network adversary’s capa-
bilities are naturally represented by strands as well. The strand space formalism lies at
the foundation of at least three separate automated protocol analysis tools (CPSA,
Maude-NPA, and Scyther).

The characteristic feature of Joshua’s research approach is the recognition of the
core principles involved in a research question and the consequent emphasis on
understanding these key elements. This has resulted in research contributions to a
variety of domains beyond the confines of cryptographic protocol analysis, including
such topics as policy analysis for Security Enhanced Linux and Software Defined
Networks, information flow, and remote attestation.

His attention to the underlying logic of strand spaces has also allowed him to merge
domain-specific reasoning about protocols with general purpose, first-order logical
theories. This enables analyses that explore the protocol in the base theory of strand
spaces, but also reason about higher-level system processes (e.g. policies based on the
protocols) in the more generic logic.

Indeed, this has led to recent work that weaves many of the threads of research
described above into a single approach for analyzing Intel’s SGX attestation mecha-
nism. The power of Joshua’s clarity of thought is exemplified by this combination of
protocol analysis, remote attestation, and policy analysis ideas into a single approach.

The identification of clear principles in a domain paves the way to automated
reasoning, and Joshua has been a leader in the development and distribution of several
tools for security analysis.

Joshua is a principal architect of the Cryptographic Protocol Shapes Analyzer
(CPSA). The crucial aspect of CPSA is that it provides users with the ability to play
“what if?” with protocols. Users not trained in formal logic can explore the expected—
and unexpected—behaviors of a protocol without necessarily having to specify formal
properties they hope to be true.

In the mid 2000’s Dr. Guttman, with coworkers at MITRE, designed the
Cryptographic Protocol Programming Language (CPPL), a domain-specific program-
ming language for expressing cryptographic protocols. The key innovation of CPPL is
the ability to associate trust management assertions with protocol actions, so that the
actions of each agent are compatible with its own trust policy.

The Security-Enhanced Linux Analysis Tool (SLAT), he developed with colleagues
in the early 2000’s, is a tool for verifying information-flow properties of access-control
policies in the highly-influential SELinux operating system.

In the early 1990’s Joshua, with colleagues William Farmer and F. Javier Thayer,
developed the Interactive Mathematical Proof System (IMPS). IMPS was a novel
approach to interactive theorem proving, based on higher-order classical logic, an
interesting treatment of partiality, and proof tactics.

Alongside Joshua’s research contributions stands the equally important impact he
has had through his service and personal relationships with members of the community.
Joshua was one of the founders of the Computer Security Foundations Workshop (now
Symposium), and of the Principles of Security and Trust workshop. As a faculty
member at Worcester Polytechnic Institute he has advised undergraduate and graduate
students, at MITRE he has worked with a stream of summer interns and beginning
researchers, and he routinely serves as an external committee member on international
PhD committees.

We are honored to consider Joshua a colleague and friend, and it has been a pleasure
to edit this volume celebrating his achievements. We thank all the authors who con-
tributed articles and also those who helped us review them.

December 2021 Daniel Dougherty
José Meseguer

Sebastian Mödersheim
Paul Rowe

viii Preface

Contents

Securing Node-RED Applications . 1
Mohammad M. Ahmadpanah, Musard Balliu, Daniel Hedin,
Lars Eric Olsson, and Andrei Sabelfeld

Protocol Analysis with Time and Space . 22
Damián Aparicio-Sánchez, Santiago Escobar, Catherine Meadows,
José Meseguer, and Julia Sapiña

Searching for Selfie in TLS 1.3 with the Cryptographic Protocol
Shapes Analyzer . 50

Prajna Bhandary, Edward Zieglar, and Charles Nicholas

A Tutorial-Style Introduction to DY* . 77
Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do,
Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim Würtele

Security Protocols as Choreographies. 98
Alessandro Bruni, Marco Carbone, Rosario Giustolisi,
Sebastian Mödersheim, and Carsten Schürmann

How to Explain Security Protocols to Your Children 112
Véronique Cortier and Itsaka Rakotonirina

Verifying a Blockchain-Based Remote Debugging Protocol
for Bug Bounty . 124

Pierpaolo Degano, Letterio Galletta, and Selene Gerali

Quantum Machine Learning and Fraud Detection . 139
Alessandra Di Pierro and Massimiliano Incudini

Model Finding for Exploration . 156
Daniel J. Dougherty

Secure Key Management Policies in Strand Spaces 175
Riccardo Focardi and Flaminia L. Luccio

A Declaration of Software Independence . 198
Wojciech Jamroga, Peter Y. A. Ryan, Steve Schneider,
Carsten Schürmann, and Philip B. Stark

Formal Methods and Mathematical Intuition . 218
Dale M. Johnson

Establishing the Price of Privacy in Federated Data Trading 232
Kangsoo Jung, Sayan Biswas, and Catuscia Palamidessi

On the Complexity of Verification of Time-Sensitive Distributed Systems . . . 251
Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, Andre Scedrov,
and Carolyn Talcott

Adapting Constraint Solving to Automatically Analyze UPI Protocols 276
Sreekanth Malladi and Jonathan Millen

Three Branches of Accountability . 293
Sebastian Mödersheim and Jorge Cuellar

Benign Interaction of Security Domains . 312
Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson

Probabilistic Annotations for Protocol Models:
Dedicated to Joshua Guttman . 332

Dusko Pavlovic

Joshua Guttman: Pioneering Strand Spaces. 348
Sylvan Pinsky

Cryptographic Protocol Analysis and Compilation Using CPSA
and Roletran. 355

John D. Ramsdell

On Orderings in Security Models . 370
Paul D. Rowe

Prototyping Formal Methods Tools: A Protocol Analysis Case Study 394
Abigail Siegel, Mia Santomauro, Tristan Dyer, Tim Nelson,
and Shriram Krishnamurthi

Principles of Remote Sattestation . 414
Paul Syverson

Author Index . 425

x Contents

Securing Node-RED Applications

Mohammad M. Ahmadpanah1(B), Musard Balliu2, Daniel Hedin1,3,
Lars Eric Olsson1, and Andrei Sabelfeld1

1 Chalmers University of Technology, Gothenburg, Sweden
mohammad.ahmadpanah@chalmers.se

2 KTH Royal Institute of Technology, Stockholm, Sweden
3 Mälardalen University, Väster̊as, Sweden

Abstract. Trigger-Action Platforms (TAPs) play a vital role in fulfill-
ing the promise of the Internet of Things (IoT) by seamlessly connecting
otherwise unconnected devices and services. While enabling novel and
exciting applications across a variety of services, security and privacy
issues must be taken into consideration because TAPs essentially act as
persons-in-the-middle between trigger and action services. The issue is
further aggravated since the triggers and actions on TAPs are mostly pro-
vided by third parties extending the trust beyond the platform providers.

Node-RED, an open-source JavaScript-driven TAP, provides the
opportunity for users to effortlessly employ and link nodes via a graphi-
cal user interface. Being built upon Node.js, third-party developers can
extend the platform’s functionality through publishing nodes and their
wirings, known as flows.

This paper proposes an essential model for Node-RED, suitable to
reason about nodes and flows, be they benign, vulnerable, or malicious.
We expand on attacks discovered in recent work, ranging from exfil-
trating data from unsuspecting users to taking over the entire platform
by misusing sensitive APIs within nodes. We present a formalization of
a runtime monitoring framework for a core language that soundly and
transparently enforces fine-grained allowlist policies at module-, API-,
value-, and context-level. We introduce the monitoring framework for
Node-RED that isolates nodes while permitting them to communicate
via well-defined API calls complying with the policy specified for each
node.

1 Introduction

Trigger-Action Platforms (TAPs) play a vital role in fulfilling the promise of the
Internet of Things (IoT). TAPs empower users by seamlessly connecting other-
wise unconnected trigger and action services. Popular TAPs like IFTTT [24] and
Zapier [57], as well as open-source alternatives like Node-RED [36], offer users
the ability to operate simple trigger-action applications (or, for short, apps)
such as “Tweet your Instagrams as native photos on Twitter” �, “Get emails
via Gmail with new files added to Dropbox’’ �, and “Covid-19 live Ticker via
Twitter” �.
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 1–21, 2021.
https://doi.org/10.1007/978-3-030-91631-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_1&domain=pdf
https://ifttt.com/applets/aVxGRrtD-tweet-your-instagrams-as-native-photos-on-twitter
https://zapier.com/apps/dropbox/integrations/gmail/241/get-emails-via-gmail-with-new-files-added-to-dropbox
https://flows.nodered.org/flow/2f2e67189934325d1051c8fff28a5ec7
https://doi.org/10.1007/978-3-030-91631-2_1

2 M. M. Ahmadpanah et al.

Trigger ActionApp

App

Malicious app maker

TAP

Trigger Action

Fig. 1. Threat model of a malicious app deployed on a single-user TAP [3].

A TAP is effectively a “person-in-the-middle” between trigger and action
services. While greatly benefiting from the possibility of apps to run third-party
code, TAPs are subject to critical security and privacy concerns. Attacks by
third-party app makers on the platform may lead to compromising the integrated
trigger and action services. Figure 1 illustrates how a malicious app deployed by a
user on a TAP like Node-RED can compromise the associated trigger and action
services, another installed app, and the platform [3]. Depending on the security
configuration of the TAP’s deployment, the attacker may also compromise the
underlying system.

In contrast to proprietary centralized platforms such as IFTTT and Zapier,
Node-RED can be entirely run on a user’s own server. Node-RED is an open-
source platform built on top of Node.js, enabling users to inspect and customize
the source code of the platform and the apps as desired. Moreover, Node-RED
relies on JavaScript packages from third parties to facilitate the integration of
new functionalities. In fact, Node.js nodes are the basic building blocks of Node-
RED apps (also named as flows), freely available on the Node Package Manager
(NPM) [43] and automatically added to the Node-RED Library [41]. Node-RED
is inspectable and thus can be verified by users in terms of the platform’s cor-
rectness and security. Third-party apps integrated into the underlying platform,
however, can still threaten the security of the users and the entire system.

The starting point of this paper is the recently identified attacks on Node-
RED by malicious nodes, ranging from exfiltrating users’ sensitive data to taking
over the platform and the host system [3]. A Node-RED flow is technically a
static representation of how nodes are wired together; therefore, a malicious
node controlled by an attacker can be employed in any user-defined or third-
party flows, resulting in malicious behaviors.

This observation motivates the need for controlling APIs invoked in nodes
to ensure the security of the platform and the users. Although the enforcement
mechanism must guarantee security, it also should restrict access only if it is
against the node’s policy, according to the least privilege principle [47]. Only
the APIs which are necessary for the intended functionality should be accessible
in a node; thus, if none of the APIs of a module are required, loading of the
module must be denied. In some cases, the interaction through APIs needs to be

Securing Node-RED Applications 3

Fig. 2. Node-RED architecture [3].

value-sensitive when an API call should be permitted only with a list of defined
arguments, for instance, when it comes to allowing a node to make an HTTPS
request to a specific trusted domain. Furthermore, Node-RED makes use of both
message passing and the shared context [40] to exchange information between
nodes and flows, and both types of exchange need to be secured. Previous work
proposes SandTrap [3], a runtime monitor for JavaScript-driven TAPs. However,
SandTrap’s security guarantees are argued only informally.

Motivated by SandTrap, this work is a step toward formally understanding
how to monitor Node-RED apps. We present a sound and transparent monitoring
framework for Node-RED for enforcing fine-grained allowlist policies at module-
, API-, value-, and context-level. In the following, we discuss Node-RED along
with overviewing platform- and app-level vulnerabilities and attacks (Sect. 2);
propose an essential model for Node-RED, suitable to reason about nodes and
flows, be they benign, vulnerable, or malicious; and present a monitoring frame-
work to express and enforce fine-grained security policies, proving its soundness
and transparency (Sect. 3).

2 Node-RED Vulnerabilities

Node-RED is “a programming tool for wiring together hardware devices, APIs
and online services”, which provides a way of “low-code programming for event-
driven applications” [36]. As an open-source platform, Node-RED is mainly tar-
geted for deployment as a single-user platform, although it is also available on the
IBM Cloud platform [23]. We overview the architecture of Node-RED (Sect. 2.1)
and explain two types of vulnerabilities with respect to our attacker model, i.e.,
malicious app makers: (i) platform-level isolation vulnerabilities (Sect. 2.2) and
(ii) application-level context vulnerabilities (Sect. 2.3). Our discussion expands
the condensed presentation of these vulnerabilities from previous work [3].

4 M. M. Ahmadpanah et al.

Fig. 3. Node-RED node structure.

2.1 Node-RED Platform

Figure 2 illustrates the Node-RED architecture, consisting of a collection of apps,
known as flows, linking components called nodes. The Node-RED runtime is
built on the Node.js environment and can run multiple flows simultaneously. It
supports inter-node and inter-flow communication via direct messages through
the wiring between nodes in a flow, while the flow and the global contexts [40]
are alternative communication channels between the nodes of a flow and across
the nodes of different flows, respectively.

A node is a reactive Node.js application triggered by receiving messages on at
most one input port (dubbed source) and sending the results of (side-effectful)
computations on output ports (dubbed sinks), which can be potentially multiple,
unlike the input port. Figure 3 illustrates the code structure of a Node-RED node.
A special type of node without sources and sinks, called configuration node, is
used for sharing configuration data, such as login credentials, between multiple
nodes.

A flow is a representation of nodes connected together. End users can either
create their own flows on the platform’s environment or deploy existing flows
provided by the official Node-RED catalog [33] and by third parties [41]. As
shown in Fig. 4, flows are JSON files wiring node sinks to node sources in a graph
of nodes where messages, represented by JavaScript objects, are passed between.
Multiple messages can be sent by any given node, although instances of a single
message can be repeatedly sent to multiple nodes as well. To facilitate end-user
programming [55], flows can be shown visually via a graphical user interface and
deployed in a push-button fashion. As an example, Fig. 5 demonstrates a flow
that retrieves earthquake data for logging and notifying the user whenever the
magnitude exceeds a threshold. Specifically, the flow retrieves data of the recent
quakes (either periodically or by clicking on the button), parses the given CSV
file, and shows the data (stored in msg.payload) to the user. For each magnitude
value exceeding the specified threshold, it also branches and the payload triggers
an alarm notification.

Securing Node-RED Applications 5

Fig. 4. Node-RED flow structure.

Fig. 5. Earthquake notification and logging �.

In Node-RED, contexts provide a shared communication channel between
different nodes without using the explicit messages that pass through a flow [40].
Therefore the node wiring visible in the user interface reflects only a part of the
information flows that are possible in the flow. It introduces an implicit channel
that is not visible to the user via the graphical interface of a flow. Node-RED
defines three scope levels for the contexts: (i) Node, only visible to the node that
sets the value, (ii) Flow, visible to all nodes on the same flow, and (iii) Global,
visible to all nodes on any flow. For instance, a sensor node may regularly update
new values in one flow, while another flow may return the most recent value via
HTTP. By storing the sensor reading in the global shared context, the data is
accessible for the HTTP flow to return.

Node-RED security relies on the platform running on a trusted network,
ensuring that users’ sensitive data is processed in an environment controlled
by the users. The official documentation [37] also includes programming pat-
terns for securing Node-RED apps. These patterns include basic authentication
mechanisms to control access to nodes and wires. The official node Function �
runs user-provided code in a vm sandbox [42], suggesting that it may protect
the user from unauthorized access. However, the vm’s sandbox “is not a security
mechanism” [42], and there are known breakouts [26].

TAPs generally lack the means to specify user’s security policies [9]. Fortu-
nately, Node-RED’s user-centric setting enables us to interpret intended security
policies. In fact, Node-RED’s GUI for flows provides an intuitive way to inter-

https://nodered.org/docs/tutorials/second-flow
https://nodered.org/docs/user-guide/nodes#function

6 M. M. Ahmadpanah et al.

Fig. 6. Node-RED vulnerabilities: (a) Isolation vulnerabilities; (b) Context vulnerabil-
ities [3].

pret top-level user policies; it is reasonable to consider that the user endorses
the flow of information between the nodes connected by the graph that depicts a
flow in the GUI. For instance, the Earthquake notification flow in Fig. 5 implies
a policy where notification data may only flow to the notification message. Only
the Inject node can trigger updates. The policy allows no other node (from any
flow) to tamper with the Recent Quakes node, preventing any malicious node
from corrupting the source of quake information. Such an interpretation pro-
vides us with a baseline security policy. For more fine-grained policies, e.g., the
list of permitted URLs to retrieve the recent quakes, it is reasonably presumed
that the node developer designs these advanced policies since they know the
precise specification of the node. The provided policies can later be vetted by
the platform and the user, before deploying the node. SandTrap [3] offers a pol-
icy generation mechanism to aid developers in designing the policies, enabling
both baseline and advanced policies customized by developers or users to express
fine-grained app-specific security goals.

In the following, we discuss Node-RED attacks and vulnerabilities that moti-
vate enriching the policy mechanism with different granularity levels. These poli-
cies will further be formalized in Sect. 3.

2.2 Platform-Level Isolation Vulnerabilities

While facilitating the integration and automation of different services and
devices, due to imposing insufficient restrictions on nodes, Node-RED is
exploitable by malicious node makers. All APIs provided by the underlying
runtimes, Node-RED and Node.js, are accessible for node developers, as well
as the incoming messages within a flow. As shown in Fig. 6a, there are vari-
ous attack scenarios for malicious nodes [3]. At the Node.js level, an attacker
can create a malicious Node-RED node including powerful Node.js libraries like
child_process, allowing the attacker to execute arbitrary shell commands with
exec, e.g., taking full control of the user’s system [44]. Restricting library access
is laborious in Node-RED; while access to a sensitive library like child_process is
required for the functionality of Node-RED, attackers can exploit trust propaga-
tion due to transitive dependencies in Node.js [45,58]. A malicious node enables

Securing Node-RED Applications 7

the attacker to compromise the confidentiality and integrity of sensitive data and
libraries stored by other flows in the global context. A malicious node within a
sensitive flow may also indirectly read and modify sensitive data by manipulating
the flow context.

At the platform level, the main object in the Node-RED structure, named
RED [39], is also vulnerable. There are different ways for a malicious node to
misuse the RED object, such as aborting the server (e.g., by RED.server._events

= null) or introducing a covert channel shared between multiple instances of the
node in different flows by modifying existing properties or adding new properties
to the RED object (like RED.dummy). Therefore, access control at the level of modules
and shared objects is necessary for Node-RED nodes.

On the other hand, a malicious node can directly manipulate incoming mes-
sages resulting in accessing or tampering with the sensitive data. As a subtle
example of this scenario to invade users’ privacy, the official Node-RED email �
can be modified to send the email body to the original recipient and also forward
a copy of the message to an attacker’s address. The benign code sets the sending
options sendopts.to to contain only the address of the intended recipient:

sendopts.to = node.name || msg.to; // comma separated list

of addresses

It can be modified to the following by a malicious node maker to include the
attacker’s address as well:

sendopts.to = (node.name || msg.to) + ", me@attacker.com";

In this example, we demonstrate that an attacker can alter the value that is
placed as the argument of an API call, which is necessary for the functionality
of the node, to steal sensitive information of the user without being noticed.
As a result, the combination of function identity and its arguments needs to be
considered in security checks. This attack motivates us to provide fine-grained
access control at the level of APIs and their input parameters.

We refer the interested reader to other types of investigated vulnerabilities in
Node-RED [3], such as the impact of compromised package repository and name
squatting [58] attack. The latter is critical since the “type” of nodes (what flows
use to identify them) is simply a string, which multiple packages can possibly
match. A flow defined by a third party can include the attacker’s malicious node
unless the user inspects each and every node to verify that there are no deviations
from the expected “type” string.

The empirical study shows the implications of such attacks [3]: privacy viola-
tions may occur in 70.40% of Node-RED flows and integrity violations in 76.46%.
The vast number of privacy violations in Node-RED reflects the power of mali-
cious developers to exfiltrate private information.

2.3 Application-Level Context Vulnerabilities

Node-RED uses various levels of the shared context to exchange data across
nodes and flows in an implicit manner. Figure 6b depicts the attack scenarios to

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

8 M. M. Ahmadpanah et al.

exploit vulnerabilities by reading and writing to libraries and variables shared
in the global and flow contexts [3]. The Node context shares data with the
node itself; thus only the shared contexts at the levels of Flow and Global are
intriguing to investigate. Malicious nodes in these scenarios can exploit other
vulnerable Node-RED nodes, even if the platform is secured against attacks in
Sect. 2.2.

Several Node-RED core nodes [38] make use of the shared context for their
purposes, including the nodes executing any JavaScript function (Function), trig-
gering a flow (Inject), generating text to fill out a template (Template), routing
outgoing messages to branches of a flow by evaluating a set of rules (Switch),
and modifying message properties and setting context properties (Change). It is
shown that more than 228 published flows utilize flow or global context in at
least one of the member nodes and more than 153 of the published Node-RED
packages directly read from or modify the shared context [3].

The main purpose of using the shared context is data communication between
nodes. Malicious operations on the shared data, such as tampering, adding, or
erasing, may lead to integrity and availability attacks, as well as to disrupting
the functionality entirely. As a real-world example, the Node-RED flow “Water
Utility Complete Example” � is vulnerable considering misuse of the Global
context. Targeting SCADA systems, this flow manages two tanks and two pumps;
the first pump pumps water from a well into the first tank, and the second pump
transfers water from the first to the second tank. The status of the tanks are
stored in globally shared variables as follows:

global.set("tank1Level", tank1Level);

global.set("tank1Start", tank1Start);

global.set("tank1Stop", tank1Stop);

Later, to determine whether a pump should start or stop, the flow retrieves the
shared status from the Global context:

var tankLevel = global.get("tank1Level");

var pumpMode = global.get("pump1Mode");

var pumpStatus = global.get("pump1Status");

var tankStart = global.get("tank1Start");

var tankStop = global.get("tank1Stop");

if (pumpMode === true && pumpStatus === false && tankLevel

<= tankStart){

// message to start the pump

}

else if (pumpMode === true && pumpStatus === true &&

tankLevel >= tankStop){

// message to stop the pump

}

A malicious node installed by the user and deployed in the platform could alter
the context relating to the tank’s reading to either exhaust the water flow (never
start) or cause physical damage through continuous pumping (never stop).

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Securing Node-RED Applications 9

One can also use the context feature to share resources such as common
libraries. In addition to integrity and availability concerns, this approach opens
up possibilities for exfiltrating private data. An attacker can encapsulate a library
to collect any sensitive information sent to the library. For instance, by modifying
the opencv shared library inside a malicious node, the attacker can exfiltrate
private information of video streaming for motion detection �. More details
and examples of such vulnerabilities are also studied [3].

These vulnerabilities motivate the need for monitoring access control at the
level of context.

3 Formalization

Section 2 motivates the need for secure integration of untrusted code in gen-
eral and restricting node-to-node and node-to-environment communications (i.e.,
between nodes, library functions, and contexts) for Node-RED in particular. To
achieve this, we propose a runtime monitoring framework capable of enforcing
allowlist policies at the granularity of modules, APIs and their input parameters,
and variables used in the shared context. Our runtime framework formalizes the
core of the flow-based programming model of Node-RED and was the basis when
developing the JavaScript monitor SandTrap [3].

This section presents a security model for Node-RED apps and characterizes
the essence of a fine-grained access control monitor for the platform. We show
how to formalize and enforce security policies for nodes at the level of APIs and
their values, along with the access rights to the shared context. Our main formal
results are the soundness and transparency of the monitor.

3.1 Language Syntax and Semantics

Syntax. We define a core language to capture the reactive nature of nodes
and flows. Nodes are reactive programs triggered by input messages to execute
the code of an event handler and potentially produce an output message. Flows
model connections between nodes by specifying the destination nodes for each
node’s output port. Given the set of member nodes with their handlers, it is
sufficient to state the successor nodes on each output port to construct a flow.

A flow is syntactically defined as a set of nodes, written F = {Nk | k ∈ K},
where K is a finite subset of N, and k indicates a unique node identifier. A
Node-RED environment may execute flows simultaneously and the global envi-
ronment is defined by a set of flows, written G = {Fl | l ∈ L}, where L is a finite
subset of N, and l denotes a unique flow identifier. Based on a generalization
of Node-RED nodes, Fig. 7 presents the syntax of a reactive language inspired
by Devriese and Piessens [17], where V al, V ar, and Fun denote the set of all
possible values, variables, and functions, respectively. A handler handler (x){c}
is defined by an input parameter x, which is bound in a command c to perform
a computation. While most commands are standard imperative constructs, we

https://flows.nodered.org/flow/33a93ac5418009993d38c00009ef453e

10 M. M. Ahmadpanah et al.

use command send(e, i) to pass the value of expression e to the node’s out-
put port identified by i. For simplicity, we use functions f(e) to model module
imports, API calls, user-defined functions, and primitive operations such as addi-
tion and concatenation. To model the shared context, we distinguish between
node variables V arN , flow variables V arF , and global variables V arG such that
V ar = V arN � V arF � V arG.

Fig. 7. Syntax of node handlers.

Semantics. We model the execution of Node-RED apps by defining the node
semantics, flow semantics, and global semantics, respectively. Our trace-based
semantics records the sequence of events produced during the execution of a flow.
We use these events to define a semantic security condition that our monitor will
enforce in a sound and transparent manner.

Node Semantics. A node N = 〈config, wires, l〉k is defined by a node config-
uration config, an array wires that specifies the connected nodes in the flow
associated with output ports, an identifier l that indicates the flow that the node
belongs to, and a unique node identifier k. Index k refers to an element of node
Nk, as in configk for the configuration of node k.

A node configuration config = 〈c,M, I,O〉 stores the state of the node dur-
ing the execution, where c is a command, a handler, or a termination signal
(stop), M = [mN ,mF ,mG] represents the memory for the three scopes of node
(mN : V arN → V al), flow (mF : V arF → V al), and global (mG : V arG → V al),
where V arN , V arF , and V arG are disjoint sets, I is the input channel, and O
is the array of output channels, reflecting that a node has one input port and
as many output ports as it requires . We model an input (output) channel as a
sequence of values that a node receives (sends). A class of nodes, called inject
nodes, is triggered by external events such as button click or time. Inject nodes
send new messages to a flow, thus triggering the execution of the flow. The
wires array records the nodes that can read the content of the output channel
for the corresponding output port. A node receives a message if the node identi-
fier is listed in wires among the recipients of the output port assigned in a send
command.

Trace-Based Semantics. Figure 8 illustrates the small-step semantics of nodes.
We annotate transitions with the trace of events thus generated, where
−→ ⊆Config × Config and ⇓ : (Exp × Mem) → V al. A trace T is a finite
sequence of events tk ∈ E defined by variable reads Rk(x), variable writes Wk(x),
or function calls fk(v) generated by the execution of node k in a flow.

Securing Node-RED Applications 11

Fig. 8. Node semantics.

Expression evaluation is standard and records the sequence of events pro-
duced during the evaluation, where Mk denotes the memory M in 〈c,M, I,O〉k.
Command evaluation models the execution of a node’s handler. The handler
executes whenever there is a message in the input channel I by consuming the
message and updating the memory accordingly. Assignments operate in a similar
manner and record the trace of events produced by variable reads and writes. An
assignment updates the memory Mk to M ′

k, subsequently triggering an update
of the flow and global memories, as stated in the rule (Step) in Fig. 9 and in
the rule (Global) in Fig. 10. Send commands evaluate the expression e in the
current memory, update the associated output channel, and record the trace of
events. The index k distinguishes between events of different nodes. We write −→∗

for the reflexive and transitive closure of the −→ relation, and −→n for the n-step
execution of −→.

12 M. M. Ahmadpanah et al.

Flow and Global Semantics. We lift node semantics to formalize the semantics
of flows and the environment. A global configuration G = 〈mG, {Fl | l ∈ L}〉 con-
sists of a global shared memory mG and a finite set of flows that are executing
concurrently, where L ⊂ N is the set of flow identifiers. A flow configuration
F = 〈mF , {Nk| k ∈ K}}〉l is a tuple consisting of a flow shared memory mF , a
finite set of nodes where K ⊂ N is the set of node identifiers, and l is the flow
identifier. We use Nodes(Fl) for the set of nodes in a specific flow and Flows(G)
for the set of flows in the environment. Nodes are distinguished by unique node
identifiers in the environment and the node Nk can be present in only one flow.
To unify the trigger point of the flow, we assume that a flow has only one inject
node and denote it by Nl where Nl ∈ Nodes(Fl); in practice, it can be consid-
ered as a dummy node which is the predecessor of all the inject nodes of the
flow.

We model a flow by linking the output channels of a node to the input
channels of the next ones based on the flow specification. Note that a node can
have more than one output channel but only one input channel. The inject node
of a flow, which does not appear in any of the wires arrays, triggers the flow
execution by injecting a new message. An initial value is assigned to the input
channel of the inject node to model the behavior of the external event such as
a button click. We write Exec(Fl, vl) to refer to executions of a flow Fl with an
initial value vl. Also, Exec(G,V) denotes executions of the environment G with
the set of initial values V = {(Nl, vl) |Fl ∈ Flows(G)} for the member flows.

We remark that message passing in Node-RED is asynchronous and message
objects traverse the graph in a non-deterministic manner, as reported in the
documentation (“no assumptions should be made about ordering once a flow
branches” [35] and “flows can be cyclic” [34]). Hence, we model the execution of
nodes in a flow and the environment, as shown in Figs. 9 and 10, respectively. We
overload the notation −→ for transitions between flow and global configurations.
In a nutshell, the flow and global semantics implements the non-deterministic
behavior of flows and the environment, and lifts the node semantics to ensure
that the flow of messages follows the flow specification.

The intuition of the rules is that the inject node of a flow, i.e., the node Nl

of the flow Fl, starts the execution by consuming the initial value (rule Init),
and then the execution continues according to the node semantics (rule Step).
When a node reaches a send command, it adds the output value to the input
channels of the next nodes in the flow; the output value transmits out to the
output channel indicated by the send command and the input channels of all
nodes in the corresponding elements of the array wires get updated with the
value (rule Send); wiresk denotes the array wires in 〈config, wires, l〉k. The
execution proceeds until it terminates and gets back to the initial state, ready
to consume the next value in the input channel (rule Term). Note that nodes
are running concurrently; any of the ready nodes can make one execution step.
The only rule in the global semantics (rule Global) shows that any of the flows
with at least one ready node can make an execution step.

Securing Node-RED Applications 13

Fig. 9. Flow semantics.

Fig. 10. Global semantics.

Generally speaking, any node that is able to progress continues the execution
for one execution step, and it might affect the flow and global contexts. An
execution step of a node corresponds to one execution step of the flow it belongs
to and one execution step of the environment. Considering the non-deterministic
behavior of Node-RED’s scheduler, any ready node can be selected for the next
execution step.

3.2 Security Condition and Enforcement

We leverage our trace-based semantics to define a semantics-based security con-
dition. The condition is parametric on node-level security policies, represented
as allowlists of API calls and accesses to the shared context. Then, we present

14 M. M. Ahmadpanah et al.

the semantics of a fine-grained node-level monitor and prove its soundness and
transparency with respect to the security condition.

Security Condition. We extend the definition of nodes with allowlist poli-
cies N = 〈config, wires, l, P, V, S〉k, where P ⊆ APIs ⊆ Fun describes permit-
ted API functions, V : P → 2V al defines the allowlist of arguments for each API
function, and S specifies read/write permissions on the shared global and flow
variables, such that S = {(x,RW) |x ∈ V arF � V arG, RW ∈ {R,W}}.

The security condition matches the trace of events produced by the semantics
with the allowlist policies to check that any event produced by an execution is
permitted by the policy.

Definition 1 (Event Security). Let tk be an event emitted from an execu-
tion of node Nk. We define a secure event with respect to 〈Pk, Vk, Sk〉, written
secure(tk, 〈Pk, Vk, Sk〉), as follows:

secure(Rk(x), 〈Pk, Vk, Sk〉) Δ= x∈ V arF ∪ V arG ⇒(x,R)∈ Sk

secure(Wk(x), 〈Pk, Vk, Sk〉) Δ= x∈ V arF ∪ V arG ⇒(x,W)∈ Sk

secure(fk(v), 〈Pk, Vk, Sk〉) Δ= f ∈ APIs ⇒ f ∈ Pk ∧ v ∈ Vk(f).

We lift the security of events to define the security condition for node traces
secure(TN), flows traces secure(TF), and global traces secure(TG) as expected.
A finite sequence of events forms a trace. Hence a trace is secure if all its events
are secure. We define trace security by the conjunction of security checks on the
composing events.

Definition 2 (Trace Security). Trace T is secure, written secure(T), if

T = tk.T
′ ⇒ secure(tk, 〈Pk, Vk, Sk〉) ∧ secure(T ′).

A node starts executing when it receives a value over its input channel. An
execution of a node is secure if the corresponding trace is secure, according to
the node policy.

Definition 3 (Node-Level Security). The execution of a node
Nk = 〈config, wires, l, P, V, S〉kwith an input message I = v is secure with regard
to 〈Pk, Vk, Sk〉 if each step of the node execution complies with 〈Pk, Vk, Sk〉, i.e.,

∀〈c′,M ′, I ′, O′〉k . 〈handler (x){c},M, v,O〉k Tk−→∗ 〈c′,M ′, I ′, O′〉k ⇒ secure(Tk).

We now define the security of Node-RED app executions based on the flow and
global semantics. The inject node of a flow initiates the flow execution, and it
triggers other nodes by traversing the flow graph. At the global level, nodes in
flows generate events while they are executing concurrently in the environment.
We present flow and global execution security for the trace of events produced
by their nodes at each execution step.

Securing Node-RED Applications 15

Fig. 11. Excerpt of monitor semantics.

Definition 4 (Flow-Level Security). LetFl be a flow and vl be an initial value
for the inject node of the flow, i.e.,Nl =〈〈handler(x){c},M, vl, O〉l, wires, l〉l. We
define flow executions Exec(Fl, vl) secure if

Nl ∈ Nodes(Fl) ∧∀F ′
l . Fl

TF−−→∗ F ′
l ⇒ secure(TF).

The trace TF is secure if secure(TF) holds, i.e., every event of the trace is secure
according to the security policy of the corresponding node.

Definition 5 (Global-Level Security). Let G be an environment and Vinit be
a set of initial values for the inject nodes of the flows in G, i.e., ∀(Nj , vj) ∈ Vinit.
Fj ∈ Flows(G) ∧ Nj ∈ Nodes(Fj)∧Nj = 〈〈handler(x){c},M, vj , O〉j, wires, j〉j.
We define global executions Exec(G,Vinit) secure if

∀G′. G TG−−→∗ G′ ⇒secure(TG).

Enforcement Mechanism. Figure 11 presents the core of our fine-grained
monitor to enforce the above-mentioned security condition with respect to
allowlist policies. We annotate evaluation relations with M to distinguish
between the monitored behavior and the original one. We only present the rules
that differ from the semantic rules given in Fig. 8; we replace −→ with −→M, and
⇓ with ⇓M. We add security constraints to the semantic rules for reading a
variable from the shared context (rule ReadM), calling an API function (rule
CallM), and writing to a shared variable (rule WriteM).

For the email example � in Sect. 2, the policy requires allowlisting the API
for sending the message and the list of intended recipients. The monitor inter-
venes whenever the API is called and ensures that the recipient is in the allowlist
policy. An execution of a flow containing the malicious email node will be sup-
pressed because the attacker’s email address is not listed in the permitted val-
ues of the API call. The malicious event is detected by the rule CallM, i.e.,
sendMail ∈ Pk ∧ "me@attacker.com" /∈ Vk(sendMail).

https://github.com/node-red/node-red-nodes/blob/master/social/email/61-email.js

16 M. M. Ahmadpanah et al.

For context vulnerabilities, such as Water Utility Complete Example �, the
allowlist consists of access rights to shared variables for each node deployed in
the environment. The monitor observes the interaction of nodes with the shared
context and blocks the execution whenever the allowlist policy does not permit
access to the shared variable. The attack scenario in the vulnerable water utility
flow can also be prevented by specifying an allowlist policy (tank1Level,W) only
for the nodes that must write to a shared variable, which stops any attempt from
other nodes to write to the global context (rule WriteM).

We prove the soundness and transparency properties of our monitor. The
soundness theorem shows that any global traces produced by an execution of
the monitor are secure with respect to the allowlist policy.

Theorem 1 (Soundness). The monitor enforces global-level security for any
finite executions,

∀(G,V).∀G′. G TG−−→∗
M G′ ⇒ secure(TG).

The transparency theorem shows that if a monitored execution is secure, the
monitor semantics and the original semantics generate the same trace. Moreover,
if both semantics run under the same scheduler, the monitor preserves the longest
secure prefix of a trace.

Theorem 2 (Transparency). The monitor preserves the longest secure prefix
of a trace yielded by an execution,

∀(G0, V).∀n ∈ N. G0
T−→n Gn ⇒ ∃m ≤ n.G0

T ′
−−→m

M Gm ∧[(
secure(T) ⇒ T = T ′ ∧ n = m

)
∨

((∃i < n.G0
Tpre−−−→i Gi ∧ Gi

Ti−→ Gi+1 ∧ Gi+1
Tpost−−−→n−i−1 Gn ∧ secure(Tpre) ∧

¬secure(Ti)
) ⇒ T ′ = Tpre ∧ i = m

)]
.

The proofs of the theorems are reported in the online appendix [2].

4 Related Work

We discuss the most closely related work on Node-RED security and modeling,
monitor implementation, and securing trigger-action platforms in general. We
refer the reader to surveys on the security of IoT app platforms [7,13] for further
details.

Node-RED Security and Modeling. Ancona et al. [5] investigate runtime
monitoring of parametric trace expressions to check the correct usage of API
functions in Node-RED. Trace expressions allow for rich policies, including tem-
poral patterns over sequences of API calls. By contrast, our monitor supports
both coarse and fine access control granularity of modules, functions, and con-
texts. Schreckling et al. [49] propose COMPOSE, a framework for fine-grained

https://flows.nodered.org/flow/b1d00d13f1db357ac686f9379731060c

Securing Node-RED Applications 17

static and dynamic enforcement that integrates JSFlow [21], an information-flow
tracker for JavaScript. COMPOSE focuses on data-level granularity, whereas our
monitoring framework supports module- and API-level granularity.

Clerissi et al. [15] use UML models to generate and test Node-RED flows to
provide early system validation. A preliminary set of guidelines has also been
proposed to assist Node-RED flow makers in terms of user comprehension and
for testing activities [16]. Focusing more on end users and less on developers,
Kleinfeld et al. [27] introduce an extension of Node-RED called glue.things,
enabling Node-RED easier to use by predefined trigger and action nodes. Black-
stock and Lea [12] propose a distributed runtime for Node-RED apps such that
flows can be hosted on various platforms. Tata et al. [53] propose a formal mod-
eling for decomposing process-aware applications deployed in IoT environments
using Petri nets; Node-RED indeed fits in this setup, thus extended as a proto-
type for their approach [25].

In terms of modeling, Node-RED can be intrinsically seen as a concurrent
system, thus our approach shares similarities with the broad range of formal
approaches such as process calculi [8,46], CSP [22], and CCS [31]. In the same
spirit, our formalization is targeted to capture the execution model of Node-RED
flows consisting of concurrent node executions that trigger the execution of code
upon receiving messages, and modify, create, and dispatch messages to the next
nodes. In contrast, our modeling is explicit and it captures the essence of the
execution semantics of Node-RED. Focusing on security policies in concurrent
systems, KLAIM [11,32] is a programming language providing a mechanism
to customize access control policies. The mechanism, based on a hierarchical
capability-based type system, enforces policies that control resource usage and
authorize migration and execution of processes. While KLAIM is designed for
programming distributed applications with agents and code mobility, our Node-
RED model is simple and expressive enough to describe the API-based access
control enforcement mechanism.

Monitor Implementation. Regarding the possible candidates for implement-
ing our theoretical framework, it should be noted that the dynamic nature
of JavaScript requires more precise analysis provided by dynamic approaches.
Andreasen et al. [6] survey available methods for dynamic analysis for JavaScript,
and outline three general categories: runtime instrumentation, source code
instrumentation, and metacircular interpreters.

DProf [19] and NodeProf [52] are two well-known runtime instrumentation
tools. DProf instruments a program at the instruction level, targeting a vari-
ety of languages, including JavaScript. NodeProf instead instruments a program
at the abstract syntax tree (AST) level and is specifically made as a dynamic
analysis framework for Node.js. However, some important Node.js features, such
as module.exports, commonly used in Node-RED nodes, are not supported by
NodeProf yet. In addition, to obtain the desired results, it requires the instru-
mentation of the entire Node-RED environment. NodeMOP [48] is a Monitoring-
Oriented Programming (MOP) tool built on top of NodeProf that also looks
interesting for our purposes, while the challenges in practice remain unresolved.

18 M. M. Ahmadpanah et al.

Ferreira et al. [18] propose a lightweight permission system to enforce the
least-privilege principle at the Node.js packages level at runtime, restricting
access to security-critical APIs and resources. Sharing some of our motivations,
however, this work does not enforce access control policies at the context and
value levels. Pyronia [29] is a fine-grained access control system for IoT applica-
tions restricting access at the function level via runtime and kernel modifications.
To detect access to sensitive resources, Pyronia leverages OS-level techniques
such as system call interposition and stack inspection. By contrast, our monitor
needs to be implemented in language-level isolation to prevent access to sensitive
resources at different levels of granularity.

Membrane-based approaches [1,3,20,30,50] seem to be the most promising
compared to other techniques. Membranes are a “defensive programming pat-
tern used to intermediate between sub-components of an application” [54]. This
pattern is implemented in Node.js by recursively wrapping an object in a proxy
with respect to prototype hierarchies such that the wrapped object can only
be modified in protected ways. Staicu et al. [51] provide an example of this
technique applied to Node.js, isolating libraries to extract taint specifications
automatically.

SandTrap [3] combines the Node.jsvm module with fully structural proxy-
based two-sided membranes to enforce fine-grained access control policies. Sand-
Trap has been integrated with Node-RED and evaluated on a set of flows while
enforcing a variety of policies yet incurring negligible runtime overhead. Our
framework is a step toward providing the formal grounds for characterizing the
soundness and transparency of the SandTrap instantiation to Node-RED. The
formalization can be further enhanced by modeling the Node.js environment and
full-featured JavaScript [28].

Securing Trigger-Action Platforms. IoTGuard [14] is a monitor for enforc-
ing security policies written in the IoTGuard policy language. Security policies
describe valid transitions in an IoT app execution. Bastys et al. [9,10] study
attacks by malicious app makers in IFTTT and Zapier. They develop dynamic
and static information flow control (IFC) in IoT apps and report on an empirical
study to estimate to what extent IFTTT apps manipulate sensitive information
of users. Wang et al. [56] develop NLP-based methods to infer information flows
in trigger-action platforms and check cross-app interaction via model checking.
Alpernas et al. [4] propose dynamic coarse-grained IFC for JavaScript in server-
less platforms. Our presented monitor is based on access control rather than
IFC. Hence, these works are complementary, focusing on information flow after
access is granted. IFC supports rich dependency policies, yet arduous to track
information flow in JavaScript without breaking soundness or giving up preci-
sion.

5 Conclusion

We have investigated the security of Node-RED, an open-source JavaScript-
driven trigger-action platform. We have expanded on the recently-discovered

Securing Node-RED Applications 19

critical exploitable vulnerabilities in Node-RED, where the impact ranges from
massive exfiltration of data from unsuspecting users to taking over the entire
platform. Motivated by the need for a security mechanism for Node-RED, we
have proposed an essential model for Node-RED, suitable to reason about nodes
and flows, be they benign, vulnerable, or malicious. We have formalized a prin-
cipled framework to enforce fine-grained API control for untrusted Node-RED
applications. Our formalization for a core language shows how to soundly and
transparently enforce global security properties of Node-RED applications by
local access checks, supporting module-, API-, value-, and context-level policies.

Acknowledgments. This work was partially supported by the Swedish Foundation
for Strategic Research (SSF), the Swedish Research Council (VR), and Digital Futures.

References

1. Agten, P., Van Acker, S., Brondsema, Y., Phung, P.H., Desmet, L., Piessens, F.:
JSand: complete client-side sandboxing of third-party JavaScript without browser
modifications. In: ACSAC (2012). https://doi.org/10.1145/2420950.2420952

2. Ahmadpanah, M.M., Balliu, M., Hedin, D., Olsson, L.E., Sabelfeld, A.: Securing
Node-RED Applications. Proofs. https://www.cse.chalmers.se/research/group/
security/SandTrap/proofs.pdf (2021)

3. Ahmadpanah, M.M., Hedin, D., Balliu, M., Olsson, L.E., Sabelfeld, A.: SandTrap:
securing JavaScript-driven trigger-action platforms. In: USENIX Security (2021).
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah

4. Alpernas, K., et al.: Secure serverless computing using dynamic information flow
control. In: OOPSLA (2018). https://doi.org/10.1145/3276488

5. Ancona, D., Franceschini, L., Delzanno, G., Leotta, M., Ribaudo, M., Ricca, F.:
Towards runtime monitoring of node.js and its application to the internet of things.
In: ALP4IoT@iFM (2017). https://doi.org/10.4204/EPTCS.264.4

6. Andreasen, E., et al.: A survey of dynamic analysis and test generation for
JavaScript. ACM Comput. Surv. (2017). https://doi.org/10.1145/3106739

7. Balliu, M., Bastys, I., Sabelfeld, A.: Securing IoT Apps. IEEE S&P Magazine
(2019). https://doi.org/10.1109/MSEC.2019.2914190

8. Balliu, M., Merro, M., Pasqua, M., Shcherbakov, M.: Friendly fire: cross-app inter-
actions in IoT platforms. ACM Trans. Priv. Secur. (2021). https://doi.org/10.
1145/3444963

9. Bastys, I., Balliu, M., Sabelfeld, A.: If this then what? controlling flows in IoT
apps. In: CCS (2018). https://doi.org/10.1145/3243734.3243841

10. Bastys, I., Piessens, F., Sabelfeld, A.: Tracking information flow via delayed output
- addressing privacy in IoT and emailing apps. In: NordSec (2018). https://doi.org/
10.1007/978-3-030-03638-6 2

11. Bettini, L., et al.: The klaim project: theory and practice. In: Global Computing
(2003). https://doi.org/10.1007/978-3-540-40042-4 4

12. Blackstock, M., Lea, R.: Toward a distributed data flow platform for the web of
things (distributed node-RED). In: WoT (2014). https://doi.org/10.1145/2684432.
2684439

13. Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., McDaniel, P.D.: Program analysis of
commodity IoT applications for security and privacy: challenges and opportunities.
ACM Comput. Surv. (2019). https://doi.org/10.1145/3333501

https://doi.org/10.1145/2420950.2420952
https://www.cse.chalmers.se/research/group/security/SandTrap/proofs.pdf
https://www.cse.chalmers.se/research/group/security/SandTrap/proofs.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://doi.org/10.1145/3276488
https://doi.org/10.4204/EPTCS.264.4
https://doi.org/10.1145/3106739
https://doi.org/10.1109/MSEC.2019.2914190
https://doi.org/10.1145/3444963
https://doi.org/10.1145/3444963
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1007/978-3-030-03638-6_2
https://doi.org/10.1007/978-3-030-03638-6_2
https://doi.org/10.1007/978-3-540-40042-4_4
https://doi.org/10.1145/2684432.2684439
https://doi.org/10.1145/2684432.2684439
https://doi.org/10.1145/3333501

20 M. M. Ahmadpanah et al.

14. Celik, Z., Tan, G., McDaniel, P.: IoTGuard: dynamic enforcement of security and
safety policy in commodity IoT. In: NDSS (2019). https://doi.org/10.14722/ndss.
2019.23326

15. Clerissi, D., Leotta, M., Reggio, G., Ricca, F.: Towards an approach for developing
and testing node-RED IoT systems. In: EnSEmble@ESEC/SIGSOFT FSE (2018).
https://doi.org/10.1145/3281022.3281023

16. Clerissi, D., Leotta, M., Ricca, F.: A set of empirically validated development guide-
lines for improving node-RED flows comprehension. In: ENASE (2020). https://
doi.org/10.5220/0009391101080119

17. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: S&P
(2010). https://doi.org/10.1109/SP.2010.15

18. Ferreira, G., Jia, L., Sunshine, J., Kästner, C.: Containing malicious package
updates in NPM with a lightweight permission system. In: ICSE (2021). https://
doi.org/10.1109/ICSE43902.2021.00121

19. Gregg, B., Mauro, J.: DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X, and
FreeBSD. Prentice Hall Professional (2011)

20. Groef, W.D., Massacci, F., Piessens, F.: NodeSentry: least-privilege library inte-
gration for server-side JavaScript. In: ACSAC (2014). https://doi.org/10.1145/
2664243.2664276

21. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information
flow in JavaScript and its APIs. In: SAC (2014). https://doi.org/10.1145/2554850.
2554909

22. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM (1978).
https://doi.org/10.1145/359576.359585

23. IBM Cloud (2021). https://cloud.ibm.com/
24. IFTTT: If This Then That (2021). https://ifttt.com
25. Jain, R., Klai, K., Tata, S.: Formal modeling and verification of scal-

able process-aware distributed iot applications. In: ISPA/BDCloud/Social-
Com/SustainCom (2019). https://doi.org/10.1109/ISPA-BDCloud-SustainCom-
SocialCom48970.2019.00047

26. jcreedcmu: Escaping NodeJS vm (2018). https://gist.github.com/jcreedcmu/
4f6e6d4a649405a9c86bb076905696af

27. Kleinfeld, R., Steglich, S., Radziwonowicz, L., Doukas, C.: glue.things: a mashup
platform for wiring the internet of things with the internet of services. In: WoT
(2014). https://doi.org/10.1145/2684432.2684436

28. Maffeis, S., Mitchell, J.C., Taly, A.: An operational semantics for JavaScript. In:
APLAS (2008). https://doi.org/10.1007/978-3-540-89330-1 22

29. Melara, M.S., Liu, D.H., Freedman, M.J.: Pyronia: intra-process access control for
IoT applications. CoRR abs/1903.01950 (2019). http://arxiv.org/abs/1903.01950

30. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control. Ph.D. thesis, Johns Hopkins University (2006)

31. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

32. Nicola, R.D., Ferrari, G.L., Pugliese, R.: Programming access control: the KLAIM
experience. In: CONCUR (2000). https://doi.org/10.1007/3-540-44618-4 5

33. Node-RED: Community Node Module Catalogue (2021). https://github.com/
node-red/catalogue.nodered.org

34. Node-RED: Cyclic Flows (2021). https://groups.google.com/g/node-red/c/
C6M3HokoSTI/m/B2tqcb cAQAJ

35. Node-RED: Making Flows Asynchronous by Default (2021). https://nodered.org/
blog/2019/08/16/going-async

https://doi.org/10.14722/ndss.2019.23326
https://doi.org/10.14722/ndss.2019.23326
https://doi.org/10.1145/3281022.3281023
https://doi.org/10.5220/0009391101080119
https://doi.org/10.5220/0009391101080119
https://doi.org/10.1109/SP.2010.15
https://doi.org/10.1109/ICSE43902.2021.00121
https://doi.org/10.1109/ICSE43902.2021.00121
https://doi.org/10.1145/2664243.2664276
https://doi.org/10.1145/2664243.2664276
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/359576.359585
https://cloud.ibm.com/
https://ifttt.com
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00047
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00047
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://gist.github.com/jcreedcmu/4f6e6d4a649405a9c86bb076905696af
https://doi.org/10.1145/2684432.2684436
https://doi.org/10.1007/978-3-540-89330-1_22
http://arxiv.org/abs/1903.01950
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-44618-4_5
https://github.com/node-red/catalogue.nodered.org
https://github.com/node-red/catalogue.nodered.org
https://groups.google.com/g/node-red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ
https://groups.google.com/g/node-red/c/C6M3HokoSTI/m/B2tqcb_cAQAJ
https://nodered.org/blog/2019/08/16/going-async
https://nodered.org/blog/2019/08/16/going-async

Securing Node-RED Applications 21

36. Node-RED (2021). https://nodered.org/
37. Node-RED: Securing Node-RED (2021). https://nodered.org/docs/user-guide/

runtime/securing-node-red
38. Node-RED: The Core Nodes (2021). https://nodered.org/docs/user-guide/nodes
39. Node-RED: The RED Object (2021). https://github.com/node-red/node-red/

blob/master/packages/node modules/node-red/lib/red.js
40. Node-RED: Working with Context (2021). https://nodered.org/docs/user-guide/

context
41. Node-RED Library (2021). https://flows.nodered.org/
42. Node.JS: VM (executing JavaScript) (2021). https://nodejs.org/api/vm.html#

vm vm executing javascript
43. NPM: Node Package Manager (2021). https://www.npmjs.com/
44. OWASP: NodeJS Security Cheat Sheet (2021). https://cheatsheetseries.owasp.org/

cheatsheets/Nodejs Security Cheat Sheet.html#do-not-use-dangerous-functions
45. Pfretzschner, B., ben Othmane, L.: Identification of Dependency-based Attacks on

Node.js. In: ARES (2017). https://doi.org/10.1145/3098954.3120928
46. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR (1997)
47. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.

Proc. IEEE (1975). https://doi.org/10.1109/PROC.1975.9939
48. Schiavio, F., Sun, H., Bonetta, D., Rosà, A., Binder, W.: NodeMOP: runtime veri-

fication for node.js applications. In: SAC (2019). https://doi.org/10.1145/3297280.
3297456

49. Schreckling, D., Parra, J.D., Doukas, C., Posegga, J.: Data-centric security for the
IoT. In: IoT 360 (2) (2015). https://doi.org/10.1007/978-3-319-47075-7 10

50. Simek, P.: Proposal for VM2: advanced vm/sandbox for Node.js (2021). https://
github.com/patriksimek/vm2

51. Staicu, C., Torp, M.T., Schäfer, M., Møller, A., Pradel, M.: Extracting taint specifi-
cations for JavaScript libraries. In: ICSE (2020). https://doi.org/10.1145/3377811.
3380390

52. Sun, H., Bonetta, D., Humer, C., Binder, W.: Efficient dynamic analysis for
Node.js. In: CC (2018). https://doi.org/10.1145/3178372.3179527

53. Tata, S., Klai, K., Jain, R.: Formal model and method to decompose process-aware
IoT applications. In: OTM (2017). https://doi.org/10.1007/978-3-319-69462-7 42

54. Van Cutsem, T.: Isolating Application Sub-components with Membranes (2018).
https://tvcutsem.github.io/membranes

55. Ur, B., McManus, E., Ho, M.P.Y., Littman, M.L.: Practical trigger-action pro-
gramming in the smart home. In: CHI (2014). https://doi.org/10.1145/2556288.
2557420

56. Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., Gunter, C.A.: Charting the
attack surface of trigger-action IoT platforms. In: CCS (2019). https://doi.org/10.
1145/3319535.3345662

57. Zapier (2021). https://zapier.com
58. Zimmermann, M., Staicu, C., Tenny, C., Pradel, M.: Small world with high risks:

a study of security threats in the NPM ecosystem. In: USENIX Security (2019).
https://dl.acm.org/doi/10.5555/3361338.3361407

https://nodered.org/
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/runtime/securing-node-red
https://nodered.org/docs/user-guide/nodes
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://github.com/node-red/node-red/blob/master/packages/node_modules/node-red/lib/red.js
https://nodered.org/docs/user-guide/context
https://nodered.org/docs/user-guide/context
https://flows.nodered.org/
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://nodejs.org/api/vm.html#vm_vm_executing_javascript
https://www.npmjs.com/
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://cheatsheetseries.owasp.org/cheatsheets/Nodejs_Security_Cheat_Sheet.html#do-not-use-dangerous-functions
https://doi.org/10.1145/3098954.3120928
https://doi.org/10.1109/PROC.1975.9939
https://doi.org/10.1145/3297280.3297456
https://doi.org/10.1145/3297280.3297456
https://doi.org/10.1007/978-3-319-47075-7_10
https://github.com/patriksimek/vm2
https://github.com/patriksimek/vm2
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.1145/3377811.3380390
https://doi.org/10.1145/3178372.3179527
https://doi.org/10.1007/978-3-319-69462-7_42
https://tvcutsem.github.io/membranes
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1145/3319535.3345662
https://doi.org/10.1145/3319535.3345662
https://zapier.com
https://dl.acm.org/doi/10.5555/3361338.3361407

Protocol Analysis with Time and Space

Damián Aparicio-Sánchez1, Santiago Escobar1, Catherine Meadows2(B),
José Meseguer3, and Julia Sapiña1

1 VRAIN, Universitat Politècnica de València, Valencia, Spain
{daapsnc,sescobar,jsapina}@upv.es

2 Naval Research Laboratory, Washington DC, USA
meadows@itd.nrl.navy.mil

3 University of Illinois at Urbana-Champaign, Champaign, USA
meseguer@illinois.edu

Abstract. We present a formal framework for the analysis of cryp-
tographic protocols that make use of time and space in their execu-
tion. In a previous work we provided a timed process algebra syntax
and a timed transition semantics. The timed process algebra only made
message sending-and-reception times available to processes whereas the
timed transition semantics modelled the actual time interactions between
processes. In this paper we extend the previous process algebra syntax to
make spatial location information also available to processes and provide
a transition semantics that takes account of fundamental properties of
both time and space. This time and space protocol framework can be
implemented either as a simulation tool or as a symbolic analysis tool in
which time and space information are not represented by specific values
but by logical variables, and in which the properties of time and space are
reasoned about in terms of constraints on those time and space logical
variables. All these time and space constraints are carried along the sym-
bolic execution of the protocol and their satisfiability can be evaluated
as the analysis proceeds, so attacks that violate the laws of physics can
be discarded as impossible. We demonstrate the feasibility of our app-
roach by using the Maude-NPA protocol analyzer together with an SMT
solver that is used to evaluate the satisfiability of timing and location
constraints. We provide a sound and complete protocol transformation
from our time and space process algebra to the Maude-NPA syntax and
semantics, and we prove its soundness and completeness. We analyze two
protocols using time and space constraints.

1 Introduction

The laws of physics are an important aspect of many cryptographic protocols,
and there has been increasing interest in the formal analysis of protocols that

This work has been partially supported by the EU (FEDER) and the Spanish MCIU
under grant RTI2018-094403-B-C32, by Generalitat Valenciana under grant PROM-
ETEO/2019/098, by EIG-CONCERT-JAPAN under grant PCI2020-120708-2, and by
NRL under contract number N00173-17-1-G002. Julia Sapiña has been supported by
the Generalitat Valenciana APOSTD/2019/127 grant.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 22–49, 2021.
https://doi.org/10.1007/978-3-030-91631-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_2

Protocol Analysis with Time and Space 23

require them to function properly. Model checking of protocols that use time and
space can be done using either an explicit model with time and space informa-
tion, or by using an untimed model and showing it is sound and complete with
respect to a time and space model. The former is more intuitive for the user, but
the latter is often chosen because not all cryptographic protocol analysis tools
support reasoning about either time or space.

In [1], we provided a framework for analyzing protocols involving time. We
combined the advantages of both approaches: an explicit timed specification lan-
guage was developed with a timed syntax and semantics, and was automatically
and faithfully translated into an existing untimed language. We applied this
approach to the Maude-NPA tool by taking advantage of its built-in support for
constraints and analyzed Mafia fraud and distance hijacking attacks on a suite
of distance-bounding protocols.

We celebrate Joshua Guttman with a paper on a tool and approach based
on one of his most important contributions to security: the strand space model
introduced by Thayer, Herzog, and Guttman in [21]. In this graph-based model
both protocol roles and adversarial actions are represented by strands, which
are lists of terms sent and received by a principal in the order that they occur.
A protocol execution (or bundle) is constructed by matching sent terms with
received terms in different strands. We have used strand spaces as the basis
of Maude-NPA syntax and semantics [9], and have found that they allow us
to represent them in a very natural way. We have also found [23], that this
syntax and semantics can be naturally extended to a process algebra syntax and
semantics. Moreover, strand spaces are very amenable to extension via adding
constraints to the strand space implementation. In particular, we have found
this approach useful for adding features such as state space reduction [10,11],
deterministic and nondeterministic choice [23], timed protocols [1], and now,
protocols that use both space and time.

In [1], we assumed a metric space with a distance function such that (i)
d(A,A) = 0, (ii) d(A,B) = d(B,A), and (iii) d(A,B) ≤ d(A,C)+d(C,B). In this
paper, we actually compute the real distances according to a three-dimensional
space: d(A,B)2 = (Ax−Bx)2+(Ay −By)2+(Az −Bz)2. We extend the previous
process algebra syntax to make spatial location information also available to
processes and provide a transition semantics that takes account of fundamental
properties of both time and location. The new time and space protocol framework
clearly subsumes and extends the previous time framework.

As it already happened in [1], this time and space protocol framework can
be implemented either as a simulation tool or as a symbolic analysis tool in
which time and space information is not represented by specific values but by
logical variables, and in which the properties of time and space are represented
as constraints on those time and space logical variables. All these time and
space constraints are carried along the symbolic execution of the protocol and
their satisfiability can be evaluated as the analysis proceeds, so attacks that
violate the laws of physics can be discarded as impossible. We realize the time
and space semantics by translating it into the semantics of the Maude-NPA

24 D. Aparicio-Sánchez et al.

protocol analysis tool, in which time and space are expressed as constraints. The
constraints generated during the Maude-NPA search are then checked using an
embedded SMT solver.

We believe that this approach can be applied to other tools that support con-
straint handling as well. Many tools support constraint handling, e.g., Maude-
NPA [11] and Tamarin [14]. The laws of physics can be naturally added to a pro-
cess algebra. Many tools support processes, e.g., Maude-NPA [23] and AKISS [8].

The rest of this paper is organized as follows. In Sect. 2, we present our two
running examples: the Brands-Chaum protocol and a secure localization proto-
col. In Sect. 3, we present the time and space process algebra with its intended
semantics. In Sect. 4, we present a sound and complete protocol transformation
from our time and space process algebra to an untimed process algebra with
constraints. In Sect. 5, we present a second transformation from the untimed
process algebra into Maude-NPA strand notation. We conclude in Sect. 6.

1.1 Related Work

There are a number of security protocols that make use of time. In general,
there are two types: those that make use of assumptions about time, most often
assuming some sort of loose synchronization, and those that guarantee these
assumptions. The first kind includes protocols such as Kerberos [15], which uses
timestamps to defend against replay attacks, the TESLA protocol [18], which
relies on loose synchronization to amortize digital signatures, and blockchain
protocols, which use timestamps to order blocks in the chain. The other kind
provides guarantees based on physical properties of time: for example, distance
bounding, which guarantees that a prover is within a certain distance of a ver-
ifier, and secure time synchronization, which guarantees that the clocks of two
different nodes are synchronized within a certain margin of error. We refer the
reader to [1] for a discussion on timed protocols.

For location-based protocols, the concepts of physical proximity, secure local-
ization, secure neighbor discovery and secure distance measurement are used
quite often. In [2,3,19], Basin et al. define formal models for reasoning about
physical properties of security protocols, including timing and location, using
Isabelle/HOL and a technique similar to Paulson’s inductive approach [17]. The
notion of secure distance measurement has been studied in [5–7,12]. In [12],
Message Time Of Arrival Codes (MTACs) are developed, a new class of crypto-
graphic primitives that allow receivers to verify if an adversary has manipulated
the message arrival time in a similar way to how Message Authentication Codes
protect message integrity.

2 Two Time and Space Protocols

Example 1. The Brands-Chaum protocol [4] specifies communication between a
verifier V and a prover P. P needs to authenticate itself to V, and also needs
to prove that it is within a distance “d” of it. A typical interaction between

Protocol Analysis with Time and Space 25

the prover and the verifier is as follows, where NA denotes a nonce generated
by A, SA denotes a secret generated by A, X;Y denotes concatenation of two
messages X and Y , commit(N,S) denotes commitment of secret S with a nonce
N , open(N,S,C) denotes opening a commitment C using the nonce N and
checking whether it carries the secret S, ⊕ is the exclusive-or operator, and
sign(A,M) denotes A signing message M .

P → V : commit(NP , SP)
//The prover sends his name and a commitment

V → P : NV

//The verifier sends a nonce and records the time when this message was sent
P → V : NP ⊕ NV

//The verifier checks the answer message arrives within two times a fixed distance

P → V : SP

//The prover sends the committed secret and the verifier opens the commitment

P → V : signP (NV ; NP ⊕ NV)
//The prover signs the two rapid exchange messages

In [1], we already considered this Brands-Chaum protocol. We assumed the
participants were located at an arbitrary given topology (participants do not
move from their assigned locations) with distance constraints, where time and
distance are equivalent for simplification and are represented by a real number.
We assumed a metric space with a distance function d : A × A → Real from a
set A of participants such that d(A,B) ≥ 0, d(A,A) = 0, d(A,B) = d(B,A),
and d(A,B) ≤ d(A,C) + d(C,B).

In this paper, we assume coordinates Px, Py, Pz for each participant P and
the distance function d : A×A → Real calculated from the positions of the par-
ticipants. From now on, we will use the following notation in order to improve
readability: �d(A,B)� that provides the set of constraints associated to a sym-
bolic distance between participants A and B and d((x, y, z), (x′, y′, z′)) that
calculates the actual distance between participants A and B from their given
concrete coordinates:

�d(A,B)� := (d(A,B) ≥ 0∧ d(A,B)2 = (Ax −Bx)2 +(Ay −By)2 +(Az −Bz)2)

d((x, y, z), (x′, y′, z′)) :=
√

(x − x′)2 + (y − y′)2 + (z − z′)2

The previous informal Alice&Bob notation was naturally extended to include
time in [1] and we further extend it here to include both time and location.
First, we add the time when a message was sent or received as a subindex
Pt1 → Vt2 . Second, the sending and receiving times of a message differ by the
distance between them just by adding the location constraints �d(A,B)�. Third,
the distance bounding constraint of the verifier is represented as an arbitrary
distance d. Time and space constraints are written using quantifier-free formulas
in real arithmetic. For convenience, we allow both 2 ∗ x = x + x and the monus
function x−̇y = if y < x then x − y else 0 as definitional extensions.

26 D. Aparicio-Sánchez et al.

Fig. 1. Mafia attack Fig. 2. Hijacking attack

In the following time and space sequence of actions, a vertical bar differenti-
ates between the process and corresponding constraints associated to the metric
space. We remove the constraint open(NP , SP , commit(NP , SP)) for simplifica-
tion. The following action sequence differs from [1] only on the terms �d(P, V)�.

Pt1 → Vt′
1

: commit(NP , SP) | t′
1 = t1 + d(P, V) ∧ �d(P, V)�

Vt2 → Pt′
2

: NV | t′
2 = t2 + d(P, V) ∧ t2 ≥ t′

1 ∧ �d(P, V)�
Pt3 → Vt′

3
: NP ⊕ NV | t′

3 = t3 + d(P, V) ∧ t3 ≥ t′
2 ∧ �d(P, V)�

V : t′
3 −̇ t2 ≤ 2 ∗ d

Pt4 → Vt′
4

: SP | t′
4 = t4 + d(P, V) ∧ t4 ≥ t3 ∧ �d(P, V)�

Pt5 → Vt′
5

: signP (NV ; NP ⊕ NV) | t′
5 = t5 + d(P, V) ∧ t5 ≥ t4 ∧ �d(P, V)�

The Brands-Chaum protocol is designed to defend against mafia frauds,
where an honest prover is outside the neighborhood of the verifier (i.e., d(P, V) >
d) but an intruder is inside (i.e., d(I, V) ≤ d), pretending to be the honest prover
as depicted in Fig. 1. The following is an example of an attempted mafia fraud, in
which the intruder simply forwards messages back and forth between the prover
and the verifier. We write I(P) to denote an intruder pretending to be an honest
prover P .

Pt1→It2 : commit(NP , SP) | t2 = t1 + d(P, I) ∧ �d(P, I)�
I(P)t2→Vt3 : commit(NP , SP) | t3 = t2 + d(V, I) ∧ �d(V, I)�

Vt3→I(P)t4 : NV | t4 = t3 + d(V, I) ∧ �d(V, I)�
It4→Pt5 : NV | t5 = t4 + d(P, I) ∧ �d(P, I)�
Pt5→It6 : NP ⊕ NV | t6 = t5 + d(P, I) ∧ �d(P, I)�

I(P)t6→Vt7 : NP ⊕ NV | t7 = t6 + d(V, I) ∧ �d(V, I)�
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5 ∧ �d(P, I)�
I(P)t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7 ∧ �d(V, I)�
I(P)t12→Vt13 : signP (NV ; NP ⊕ NV)| t13 = t12 + d(V, I) ∧ t13 ≥ t11 ∧ �d(V, I)�

This attack is physically unfeasible, since it would require that 2 ∗ d(V, I) + 2 ∗
d(P, I) ≤ 2 ∗ d, which is unsatisfiable by d(V, P) > d > 0 and the triangular
inequality d(V, P) ≤ d(V, I) + d(P, I), satisfied in three-dimensional space. This
attack was already unfeasible in [1] using only the metric space assumptions.

Protocol Analysis with Time and Space 27

Fig. 3. Trilateration Fig. 4. Insecure Fig. 5. Secure

However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable), as depicted in Fig. 2, where an intruder located out-
side the neighborhood of the verifier (i.e., d(V, I) > d) succeeds in convincing
the verifier that he is inside the neighborhood by exploiting the presence of an
honest prover in the neighborhood (i.e., d(V, P) ≤ d) to achieve his goal. The
following is an example of a successful distance hijacking, in which the intruder
listens to the exchanges messages between the prover and the verifier but builds
the last message.

Pt1 → Vt2 : commit(NP , SP) | t2 = t1 + d(P, V) ∧ �d(P, V)�
Vt2 → Pt3 , It′

3
: NV | t3 = t2 + d(P, V) ∧ �d(P, V)�

| t′
3 = t2 + d(I, V) ∧ �d(V, I)�

Pt3 → Vt4 , It′
4

: NP ⊕ NV | t4 = t3 + d(P, V) ∧ �d(P, V)�
| t′

4 = t3 + d(I, P) ∧ �d(I, P)�
V : t4 −̇ t2 ≤ 2 ∗ d

Pt5 → Vt6 : SP | t6 = t5 + d(P, V) ∧ �d(P, V)�
| t5 ≥ t3 ∧ t6 ≥ t4

I(P)t7 → Vt8 : signI(NV ; NP ⊕ NV) | t8 = t7 + d(I, V) ∧ �d(I, V)�
| t7 ≥ t′

4 ∧ t8 ≥ t6

This attack was feasible in [1] using the metric space assumptions, and it is
also possible in three-dimensional space. Note that an attack may be possible
in some metric space but it may not be possible in all metric spaces, let alone
in Euclidean metric spaces like three-dimensional space. This inspired us to add
location to our previous framework, as motivated by the following protocol.

Example 2. A secure localization protocol determines the physical location of
a mobile device such as a sensor, a mobile phone, or a small computer with
applications to location-based access control and security. In [20], a malicious
device may lie about its location in an environment with different beacons to
appear either farther away than its true location or closer than it really is.

We consider a very simple protocol in two-dimensional space. A device sends
a timestamp to different beacons. All beacons are honest and receive the times-
tamp. Figure 3 shows how three beacons infer the position of the device by
trilateration, i.e., the intersection of the hyperbolas associated to the distance
travelled from the device’s location. There is a base station that receives the
positions inferred by the beacons and checks whether they coincide or not.

28 D. Aparicio-Sánchez et al.

D → Bei : timestamp
//The device broadcasts a timestamp, maybe different to its
//actual time to appear farther or closer than its true location

Bei → Ba : timediff ; Bei
x ; Bei

y

//Each beacon sends to a base station the difference between
//the received timestamp and the actual reception time plus
//her position.

An informal Alice-Bob presentation with time and location is as follows, where
(Di

x,Di
y) is the inferred location of the device D according to beacon Bei. The

base calculates whether the positions of the device inferred by the beacons coin-
cide, in symbols D1

x = · · · = Dn
x and D1

y = · · · = Dn
y .

Dt1 → Bei
t′
1

: t | t′
1 = t1 + d(D,Bei) ∧ �d(D,Bei)�

Bei : t̄ = t −̇ t′
1 | t̄ ≥ 0

Bei
t2 → Bat′

2
: t̄ ; Bei

x ; Bei
y | t′

2 = t2 + d(Bei,Ba) ∧ �d(Bei,Ba)�
Ba : t̄2 = (D1

x − Be1x)2 + (D1
y − Be1y)2

...
Ba : t̄2 = (Dn

x − Ben
x)2 + (Dn

y − Ben
y)2

Ba : D1
x = · · · = Dn

x ∧ D1
y = · · · = Dn

y

If the device is honest, the constraints on the real numbers computed by the base
station are always satisfied. If the device is malicious, [20] shows two interesting
configurations.

(i) (Insecure configuration) If the beacons are in the same lobe of a hyperbola,
as shown in Fig. 4, it is possible for a malicious device at position P to
choose a timestamp to pretend to be at position P ′.

(ii) (Secure configuration) If there are four beacons and they form a rectangle,
shown in Fig. 5, then [20] proves that the device is always caught by the
base station.

Note that these two statements, (i) an attack and (ii) the absence of any attack,
are verified by our time and space process algebra below without requiring exact
positions. That is, (i) is verified just by showing an execution where the computed
time and space constraints are satisfied and (ii) is verified by obtaining a finite
search space where all the computed time and space constraints are unsatisfiable.

3 A Time and Space Process Algebra

In [1] we provided a timed process algebra syntax and a timed transition seman-
tics. The timed process algebra only made message sending-and-reception times
available to processes whereas the timed transition semantics modelled the
actual time interactions between processes under metric space constraints. In
this section, we extend the previous process algebra syntax to make spatial

Protocol Analysis with Time and Space 29

location information also available to processes and provide a transition seman-
tics that models the actual time and space interactions between processes and
Euclidean space constraints.

3.1 New Syntax for Location

In our time and space protocol process algebra, the behaviors of both hon-
est principals and the intruders are represented by labeled processes. Therefore,
a protocol is specified as a set of labeled processes. Each process performs a
sequence of actions, namely sending (+m) or receiving (−m) a message m, but
without knowing who actually sent it or received it. Each process may also per-
form deterministic or non-deterministic choices. We define a protocol P in the
time and space protocol process algebra, written PTPA, as a pair of the form
PTPA = ((ΣTPAP , ETPAP), PTPA), where (ΣTPAP , ETPAP) is the equational the-
ory specifying the equational properties of the cryptographic functions and the
state structure, and PTPA is a ΣTPAP -term denoting a well-formed time and
space process. The time and space protocol process algebra’s syntax ΣTPA is
parameterized by a sort Msg of messages. Moreover, time and coordinates are
represented by a new sort Real, since we allow conditional expressions on time
and location to be constraints in real polynomial arithmetic.

Similar to [1,23], processes support four different kinds of choice: (i) a pro-
cess expression P ? Q supports explicit non-deterministic choice between P and
Q; (ii) a choice variable X? appearing in a send message expression +m sup-
ports implicit non-deterministic choice of its value, which can furthermore be
an unbounded non-deterministic choice if X? ranges over an infinite set; (iii) a
conditional if C then P else Q supports explicit deterministic choice between P
and Q determined by the result of its condition C; and (iv) a receive message
expression −m(X1, ...,Xn) supports implicit deterministic choice about accept-
ing or rejecting a received message, depending on whether or not it matches
the pattern m(X1, ...,Xn). This deterministic choice is implicit, but it could be
made explicit by replacing −m(X1, ...,Xn) · P by the semantically equivalent
conditional expression −X. if X = m(X1, ...,Xn) then P else nilP , where X is
a variable of sort Msg, which therefore accepts any message.

The time and space process algebra has the following syntax, also similar to
that of [1,23] plus the addition of the suffix @Real to the sending and receiving
actions:

ProcConf ::= LProc | ProcConf & ProcConf | ∅
ProcId ::= (Role,Nat)
LProc ::= (ProcId ,Nat ,Real ,Real ,Real) Proc
Proc ::= nilP | + (Msg@Real) | − (Msg@Real) | Proc · Proc |

Proc ? Proc | if Cond then Proc else Proc

– ProcConf stands for a process configuration, i.e., a set of labeled processes,
where the symbol & is used to denote set union for sets of labeled processes.

30 D. Aparicio-Sánchez et al.

– ProcId stands for a process identifier, where Role refers to the role of the
process in the protocol (e.g., prover or verifier) and Nat is a natural number
denoting the identity of the process, which distinguishes different instances
(sessions) of a process specification.

– LProc stands for a labeled process, i.e., a process Proc with a label (ProcId , J).
For convenience, we sometimes write (Role, I, J, x, y, z), where J indicates
that the action at stage J of the process (Role, I) will be the next one to be
executed, i.e., the first J − 1 actions of the process for role Role have already
been executed. The three Real elements x, y, z represent the coordinates on
three-dimensional space. Note that the I and J of a process (Role, I, J, x, y, z)
are omitted in a protocol specification.

– Proc defines the actions that can be executed within a process, where
+Msg@T , and −Msg@T respectively denote sending out a message or receiv-
ing a message Msg . Note that T must be a variable where the underlying
Euclidean space determines the exact sending or receiving time, which can
be used later in the process. Moreover, “Proc · Proc” denotes sequential
composition of processes, where symbol _._ is associative and has the empty
process nilP as identity. Finally, “Proc ? Proc” denotes an explicit nondeter-
ministic choice, whereas “if Cond then Proc else Proc” denotes an explicit
deterministic choice, whose continuation depends on the satisfaction of the
constraint Cond . Note that choice is explicitly represented by either a non-
deterministic choice between P1 ? P2 or by the deterministic evaluation of
a conditional expression if Cond then P1 else P2, but it is also implicitly
represented by the instantiation of a variable in different runs.

In all process specifications we assume five disjoint kinds of variables, similar to
the variables of [23] plus time variables as in [1] and location coordinate variables:

– fresh variables: each one of these variables receives a distinct constant value
from a data type Vfresh, denoting unguessable values such as nonces. Through-
out this paper we will denote this kind of variables as f, f1, f2,

– choice variables: variables first appearing in a sent message +M , which can
be substituted by any value arbitrarily chosen from a possibly infinite domain.
A choice variable indicates an implicit non-deterministic choice. Given a
protocol with choice variables, each possible substitution of these variables
denotes a possible run of the protocol. We always denote choice variables by
letters postfixed with the symbol “?” as a subscript, e.g., A?,B?,

– pattern variables: variables first appearing in a received message −M .
These variables will be instantiated when matching sent and received mes-
sages. Implicit deterministic choices are indicated by terms containing pat-
tern variables, since failing to match a pattern term leads to the rejection
of a message. A pattern term plays the implicit role of a guard, so that,
depending on the different ways of matching it, the protocol can have differ-
ent continuations. Pattern variables are written with uppercase letters, e.g.,
A,B,NA,

– time variables: a process cannot access the global clock, which implies that
a time variable T of a reception or sending action +(M@T) can never appear

Protocol Analysis with Time and Space 31

in M but can appear in the remaining part of the process. Also, given a
receiving action −(M1@t1) and a sending action +(M2@t2) in a process of
the form P1 ·−(M1@t1)·P2 ·+(M2@t2)·P3, the assumption that timed actions
are performed from left to right forces the constraint t1 ≤ t2. Time variables
are always written with a (subscripted) t, e.g., t1, t

′
1, t2, t

′
2,

– coordinate variables: a process can only access its own coordinates x, y,
and z. Its coordinates can be sent and coordinate variables can be received,
sent again and used in comparisons. The location of a process never changes,
so coordinate variables can never be updated. Coordinate variables are always
written with a (subscripted) x, y or z, e.g., x1, x

′
1, y2, z

′
2,

These requirements about variables are formalized by the function wf :
Proc → Bool for well-formed processes given in [1]. The definition of wf uses an
auxiliary function shVar : Proc → VarSet also given in [1].

Example 3. Let us specify the Brands and Chaum protocol of Example 1, where
variables are distinct between processes. A nonce is represented as n(A?, f),
whereas a secret value is represented as s(A?, f). The identifier of each process is
represented by a choice variable A?. Recall that there is an arbitrary distance d >
0. Since participants in this protocol do not make use of their own coordinates,
the following specification is identical to that of [1].

(Verifier , x, y, z) : −(Commit@t1) ·
+(n(V?, f1)@t2) ·
−((n(V?, f1) ⊕ NP)@t3) ·
if t3−̇t2 ≤ 2 ∗ d

then −(SP @t4) ·
if open(NP , SP ,Commit)

then −(sign(P, n(V?, f1); NP ⊕ n(V?, f1))@t5)

(Prover , x, y, z) : +(commit(n(P?, f1), s(P?, f2))@t1) ·
−(NV @t2) ·
+((NV ⊕ n(P?, f1))@t3) ·
+(s(P?, f2)@t4) ·
+(sign(P?, NV ; n(P?, f1) ⊕ NV)@t5)

Example 4. Let us specify the secure localization protocol of Example 2 for four
beacons. The timestamp is represented by variable t.

32 D. Aparicio-Sánchez et al.

(Bei, x, y, z) : −(t@t1) ·
+(((t−̇t1) ; x ; y)@t2) ·
−((ok@t3) · nilP

(Ba, x, y, z) : −((t′
1 ; x1 ; y1)@t1) ·

−((t′
2 ; x2 ; y2)@t2) ·

−((t′
3 ; x3 ; y3)@t3) ·

−((t′
4 ; x4 ; y4)@t4) ·

if ∃dx, dy : (t′
1)

2 = (dx − x1)
2 + (dy − y1)

2∧
(t′

2)
2 = (dx − x2)

2 + (dy − y2)
2∧

(t′
3)

2 = (dx − x3)
2 + (dy − y3)

2∧
(t′

4)
2 = (dx − x4)

2 + (dy − y4)
2 then +(ok@t5) else nilP

3.2 Time and Space Intruder Model

The active Dolev-Yao intruder model is followed, which implies that an intruder
can intercept, forward, or create messages from received messages. We assume
that intruders are located and cannot change their location, as in [1]. In par-
ticular, they cannot change the physics of the metric space, e.g., cannot send
messages from a different location or intercept a message that it is not within
range.

In our time and space intruder model, we consider several located intrud-
ers, each with its own coordinates, with a family of capabilities (concatenation,
deconcatenation, encryption, decryption, etc.), and each capability may have
arbitrarily many instances. The combined actions of two intruders requires time,
i.e., their distance; but a single intruder can perform many actions in zero time1.
Note that, unlike in the standard Dolev-Yao model, we cannot assume just one
intruder, since the time required for a principal to communicate with a given
intruder is an observable characteristic of that intruder. Thus, although the
Mafia fraud and distance hijacking attacks of the Brands and Chaum protocol
and the insecure and secure configurations of the secure localization protocol
only require one intruder, the framework itself allows general participant con-
figurations with multiple intruders; although one intruder co-located with each
honest participant is enough [16].

Example 5. In our timed process algebra, the family of capabilities associated
to an intruder k are also described as processes. For instance, concatenating two
received messages is represented by the process2

(k .Conc, x, y, z) : −(X@t1) · −(Y @t2) · +(X;Y @t3)

and extracting one of them from a concatenation is described by the processes

(k .DeconcLeft , x, y, z) : −(X;Y @t1) · +(X@t2)
1 Adding time cost to single-intruder actions could be done with additional time con-

straints, but is outside the scope of this paper.
2 Time variables t1, t2, t3 as well as its coordinates are not actually used by the intruder

but could be in the future.

Protocol Analysis with Time and Space 33

(k .DeconcRight , x, y, z) : −(X;Y @t1) · +(X@t2)

Roles of intruder capabilities include the identifier of the intruder, and it is pos-
sible to combine several intruder capabilities from the same or from different
intruders. For example, we may say that the +(X;Y @t) of a process I1 .Conc
associated to an intruder I1 may be synchronized with the −(X;Y @t′) of a pro-
cess I2 .DeconcLeft associated to an intruder I2. The physical space determines
that t′ = t + d(I1, I2), where d(I1, I2) > 0 if I1 �= I2 and d(I1, I2) = 0 if
I1 = I2.

As presented in [1], a special forwarding intruder capability, not considered in
the standard Dolev-Yao model, has to be included in order to take into account
the time travelled by a message from an honest participant to the intruder and
later to another participant, possibly another intruder.

(k .Forward , x, y, z) : −(X@t1) · +(X@t2)

3.3 Time and Space Process Semantics

A state of a protocol P consists of a set of (possibly partially executed) labeled
processes, a set of terms in the network {Net}, and the global clock. That is, a
state is a term of the form {LP1 & · · · &LPn | {Net} | t̄}.

In [1], the only time information available to a process is the variable T
associated to input and output messages M@T ; the global clock is inaccessible.
However, once these messages have been sent or received, we included them in the
network Net with extra information. When a message M@T is sent, we stored
M @ (A : t → ∅) denoting that message M was sent by process A at the global
time clock t, and propagated T �→ t within the process A. When this message
is received by an action M ′@T ′ of process B (honest participant or intruder)
at the global clock time t′, M is matched against M ′ modulo the cryptographic
functions, T ′ �→ t′ is propagated within the process B, and B : t′ is added to the
stored message, following the general pattern M @ (A : t → (B1 : t1 · · · Bn : tn)).

In our new time and space process algebra, we simply annotate stored mes-
sages with the coordinates from where the message was sent and, when the
message is received by another process, we calculate actual distances between
the stored coordinates and the coordinates of the current process. When a mes-
sage M@T is sent by process (A, x, y, z), we store M @ (A : x, y, z, t → ∅)
denoting that message M was sent at the global time clock t from location
(x, y, z). When this message is received by an action M ′@T ′ of process B (hon-
est participant or intruder) at the global clock time t′, M is matched against
M ′ modulo the cryptographic functions, T ′ �→ t′ is propagated within the pro-
cess B, and B : t′ is added to the stored message, following the general pattern
M @ (A : x, y, z, t → (B1 : t1 · · · Bn : tn)). No reception coordinates are stored,
but we check that process B is reachable from process A at distance t′ − t, i.e.,
(t′ − t)2 = (Bx − Ax)2 + (By − Ay)2 + (Bz − Az)2.

34 D. Aparicio-Sánchez et al.

The rewrite theory (ΣTPAP+State , ETPAP , RTPAP) characterizes the behavior
of a protocol P, where ΣTPAP+State extends ΣTPAP , by adding state constructor
symbols. We assume that a protocol run begins with an empty state, i.e., a
state with an empty set of labeled processes, an empty network, and at time
zero. Therefore, the initial empty state is always of the form {∅ | {∅} | 0.0}.
Note that, in a specific run, all the distances are provided a priori according
to the Euclidean space and a chosen topology, whereas in a symbolic analysis,
they will be represented by variables, probably occurring within space and time
constraints.

State changes are defined by a set RTPAP of rewrite rules given below. Each
transition rule in RTPAP is labeled with a tuple (ro, i , j , a,n, t), where:

– ro is the role of the labeled process being executed in the transition.
– i denotes the instance of the same role being executed in the transition.
– j denotes the process’ step number since its beginning.
– a is a ground term identifying the action that is being performed in the

transition. It has different possible values: “+m” or “−m” if the message m
was sent (and added to the network) or received, respectively; “m” if the
message m was sent but did not increase the network, “?” if the transition
performs an explicit non-deterministic choice, “T” if the transition performs
an explicit deterministic choice, “Time” when the global clock is incremented,
or “New” when a new process is added.

– n is a number that, if the action that is being executed is an explicit choice,
indicates which branch has been chosen as the process continuation. In this
case n takes the value of either 1 or 2. If the transition does not perform any
explicit choice, then n = 0.

– t is the global clock at each transition step.

Note that in the transition rules RTPAP shown below, Net denotes the net-
work, represented by a set of messages of the form M @ (A : x, y, z, t → (B1 :
t1 · · · Bn : tn)), P denotes the rest of the process being executed and PS denotes
the rest of labeled processes of the state (which can be the empty set ∅).

– Sending a message is represented by the two transition rules below, depending
on whether the message M is stored, (TPA++), or is just discarded, (TPA+).
In (TPA++), we store the sent message with its sending information, (ro, i) :
t̄, and add an empty set for those who will be receiving the message in the
future (Mσ′@(ro, i) : x, y, z, t̄ → ∅).

Protocol Analysis with Time and Space 35

{(ro, i, j, x, y, z) (+M@t · P) & PS | {Net} | t̄}
−→(ro,i,j,+(Mσ′),0,t̄)

{(ro, i, j + 1, x, y, z) Pσ′ & PS | {(Mσ′@(ro, i) : x, y, z, t̄ → ∅), Net} | t̄}
if (Mσ′ : (ro, i) : x, y, z, t̄ → ∅) /∈ Net

where σ is a ground substitution binding choice variables in M

and σ′ = σ {t �→ t̄} (TPA++)

{(ro, i, j, x, y, z) (+M@t · P) & PS | {Net} | t̄}
−→(ro,i,j,Mσ′,0,t̄)

{(ro, i, j + 1, x, y, z) Pσ′ & PS | {Net} | t̄}
where σ is a ground substitution binding choice variables in M

and σ′ = σ {t �→ t̄} (TPA+)

– Receiving a message is represented by the transition rule below. We add the
reception information to the stored message, i.e., we replace (M ′@((ro′, k) :
x′, y′, z′, t′ → AS)) by (M ′@((ro′, k) : x′, y′, z′, t′ → (AS (ro, i) : t̄)).

{(ro, i, j, x, y, z) (−(M@t) · P) & PS |
{(M ′@((ro′, k) : x′, y′, z′, t′ → AS)), Net} | t̄}

−→(ro,i,j,−(Mσ′),0,t̄)

{(ro, i, j + 1, x, y, z) Pσ′ & PS |
{(M ′@((ro′, k) : x′, y′, z′, t′ → (AS (ro, i) : t̄)), Net} | t̄}

IF ∃σ : M ′ =EP Mσ, t̄ = t′ + d((x, y, z), (x′, y′, z′)), σ′ = σ {t �→ t̄} (TPA-)

– An explicit deterministic choice is defined as follows. More specifically, the
rule (TPAif1) describes the then case, i.e., if the constraint T is satisfied,
then the process continues as P , whereas rule (TPAif2) describes the else
case, that is, if the constraint C is not satisfied, the process continues as Q.

{(ro, i, j, x, y, z) ((if C then P else Q) · R) & PS | {Net} | t̄}
−→(ro,i,j,C,1,t̄) {(ro, i, j + 1, x, y, z) (P · R)& PS | {Net} | t̄} IF C (TPAif1)
{(ro, i, j, x, y, z) ((if C then P else Q) · R) & PS | {Net} | t̄}
−→(ro,i,j,C,2,t̄) {(ro, i, j + 1, x, y, z) (Q · R) & PS | {Net} | t̄} IF ¬C (TPAif2)

– An explicit non-deterministic choice is defined as follows. The process can
continue either as P , denoted by rule (TPA?1), or as Q, denoted by
rule (TPA?2).

{(ro, i, j, x, y, z) ((P ? Q) · R) & PS | {Net} | t̄}
−→(ro,i,j,?,1,t̄) {(ro, i, j + 1, x, y, z) (P · R) & PS | {Net} | t̄} (TPA?1)

{(ro, i, j, x, y, z) ((P ? Q) · R) & PS | {Net} | t̄}
−→(ro,i,j,?,2,t̄) {(ro, i, j + 1, x, y, z)(Q · R) & PS | {Net} | t̄} (TPA?2)

– Global Time advancement is represented by the transition rule below that
increments the global clock enough to make one sent message arrive to its
closest destination.

{PS | {Net} | t̄} −→(⊥,⊥,⊥,Time,0,t̄+t′) {PS | {Net} | t̄ + t′}
IF t′ = mte(PS, Net, t̄) ∧ t′ �= 0 (PhyTime)

36 D. Aparicio-Sánchez et al.

where the function mte is defined as follows:

mte(∅, Net, t̄) = ∞
mte(P&PS, Net, t̄) = min(mte(P, Net, t̄),mte(PS, Net, t̄))
mte((ro, i, j, x, y, z) nilP , Net, t̄) = ∞
mte((ro, i, j, x, y, z) + (M@t) · P, Net, t̄) = 0
mte((ro, i, j, x, y, z) − (M@t) · P, Net, t̄) =

min

({
d((x, y, z), (x′, y′, z′)) | (M ′@(ro′, i′) : x′, y′, z′, t′ → AS) ∈ Net

∧∃σ : Mσ =B M ′

})

mte((ro, i, j, x, y, z) (if T then P else Q) · R, Net, t̄) = 0
mte((ro, i, j, x, y, z) P1?P2, Net, t̄) = 0

Note that the function mte evaluates to 0 if some instantaneous action by the
previous rules can be performed. Otherwise, mte computes the smallest non-
zero time increment required for some already sent message (existing in the
network) to be received by some process (by matching with such an existing
message in the network).

Further Time and Space Constraints. In [1], the timed process semantics
assumed only a metric space with a distance function d : ProcId × ProcId →
Real such that (i) d(A,A) = 0, (ii) d(A,B) = d(B,A), and (iii) d(A,B) ≤
d(A,C) + d(C,B). For every message M @ (A : t → (B1 : t1 · · · Bn : tn))
stored in the network Net, the semantics ensured that (iv) ti = t + d(A,Bi),
∀1 ≤ i ≤ n. Furthermore, according to our wireless communication model,
our semantics assumed (v) a time sequence monotonicity property, i.e., there
is no other process C such that d(A,C) ≤ d(A,Bi) for some i, 1 ≤ i ≤ n, and
C is not included in the set of recipients of the message M . Also, for each
class of attacks such as the Mafia fraud or the hijacking attack analyzed in
[1], (vi) some extra topology constraints were necessary (see Figs. 1 and 2).
In our time and space semantics, all those assumptions except (v) are unnec-
essary by considering actual coordinates. This simplifies the transformation
of time and space processes into untimed processes of Sect. 4 compared to the
transformation presented in [1].

– New processes can be added as follows.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ (ro) Pk ∈ PPA

{PS | {Net} | t̄}
−→(ro,i+1,1,New,0,t̄)

{(ro, i + 1, 1, x?σ, y?σ, z?σ) Pkσρro,i+1 & PS | {Net} | t̄}
where ρro,i+1 is a fresh substitution,

σ is a ground substitution binding x?, y?, z?,
and i = id(PS, ro)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(TPA&)

The auxiliary function id counts the instances of a role

id(∅, ro) = 0

id((ro′, i, j, x, y, z)P&PS, ro) =

{
max(id(PS, ro), i) if ro = ro′

id(PS, ro) if ro �= ro′

where PS denotes a process configuration, P a process, and ro, ro′ role names.

Protocol Analysis with Time and Space 37

Therefore, the behavior of a timed protocol in the process algebra is defined
by the set of transition rules RTPAP = {(TPA + +), (TPA+), (PhyTime),
(TPA−), (TPAif1), (TPAif2), (TPA?1), (TPA?2)} ∪ (TPA&).

Example 6. Continuing Example 3, it is possible to create a configuration of the
Brands and Chaum for the mafia attack (which are impossible due to unsatisfia-
bility of the timing and distance constraints) with a prover p, an intruder i, and
a verifier v. The neighborhood distance is set to d = 1.0, the verifier is at coor-
dinates (0, 0, 0), the prover is at (2, 0, 0), and the intruder is at (1, 0, 0). That is,
the distance between the prover and the verifier is d(p, v) = 2.0, but the distance
between the prover and the intruder as well as the distance between the verifier
and the intruder are d(v, i) = d(p, i) = 1.0, i.e., the honest prover p is outside v’s
neighborhood, d(v, p) > d, where d(v, p) = d(v, i) + d(p, i).

Example 7. Continuing Example 4, it is possible to create a configuration of the
beacons protocol where a malicious device is caught cheating. We consider four
beacons at the following positions in two-dimensional space (we omit z = 0):
Be1 : (0, 0), Be2 : (4, 0), Be3 : (0, 3), and Be4 : (4, 3). We assume a device at
position (4, 6). If the device is honest and sends the right timestamp, the distances
d1, d2, d3, d4 computed by each beacon are

d1 =
√

(4 − 0)2 + (6 − 0)2 =
√

16 + 36 =
√

52,

d2 =
√

(4 − 4)2 + (6 − 0)2 =
√

36 = 6,

d3 =
√

(4 − 0)2 + (6 − 3)2 =
√

16 + 9 =
√

25 = 5,

d4 =
√

(4 − 4)2 + (6 − 4)2 =
√

9 = 3

the base station receives the distances and the beacons positions and computes the
following set of equations

52 = (x − 0)2 + (y − 0)2

36 = (x − 4)2 + (y − 0)2

25 = (x − 0)2 + (y − 3)2

9 = (x − 3)2 + (y − 3)2

and it is not difficult to calculate x and y by Gaussian elimination:

x = ((36 + 16 − 36) + 16)/8 = (16 + 16)/8 = 4
y = ((52 − 25) + 9)/6 = (27 + 9)/6 = 36/6 = 6

If the device is malicious and sends the original timestamp plus 1 unit, the dis-
tances d1, d2, d3, d4 computed by each beacon are d1 =

√
52 − 1, d2 = 6 − 1 = 5,

d3 = 5 − 1 = 4, and d4 = 3 − 1 = 2. But when plugged in the previous equations,
it is easy to check that the device is lying.

38 D. Aparicio-Sánchez et al.

As it already happened in [1] with our timed protocol semantics, our new time
and space protocol semantics can be implemented straightforwardly as a simula-
tion tool. Note, however, that, since the number of different topologies is infinite,
model checking a protocol for a concrete configuration with a simulation tool is
very limited, since it cannot prove the absence of an attack for all topologies. For
this reason, we follow a symbolic approach that can explore all relevant configu-
rations.

In the following section we provide a sound and complete protocol transforma-
tion from our time and space process algebra to the untimed process algebra with
constraints of the Maude-NPA tool, in a similar manner to the protocol transfor-
mation provided in [1]. In order to do this, we represent time and location infor-
mation as well as those constraints checked by the participants as real arithmetic
constraints. As a path is built, an SMT solver can be used to check that the con-
straints are satisfiable as we did in [1] only for time.

4 Time and Space Process Algebra into Untimed Process
Algebra

In this section, we extend the general constraint satisfiability approach of [1] where
all possible (not only some) runs are symbolically analyzed. This time and space
semantics provides both a trace-based insecure statement, i.e., a run leading to an
insecure secrecy or authentication property where all constraints are satisfiable is
discovered given enough resources, and an unsatisfiability-based secure statement,
i.e., there is no run leading to an insecure secrecy or authentication property due
to time and space constraint unsatisfiability.

Example 8. Consider again the initial configuration for the Brands-Chaum proto-
col of Example 6. We can abstract away from the specific locations and just use
logical variables for the coordinates of the prover (px, py), the verifier (vx, vy), and
the intruder (ix, iy). Then, it is possible to obtain a symbolic trace using logical
variables t̄0, . . . , t̄6 where the following time constraints are accumulated:

t1 = t0 + d((px, py), (ix, iy))
t2 = t1 + d((vx, vy), (ix, iy))
t3 = t2 + d((vx, vy), (ix, iy))
t4 = t3 + d((px, py), (ix, iy))
t5 = t4 + d((px, py), (ix, iy))
t6 = t5 + d((vx, vy), (ix, iy))

Note that these constraints are unsatisfiable when combined with (i) the
assumption d > 0, (ii) the verifier check t̄6− t̄2 ≤ 2∗d, (iii) the assumption that the
honest prover is outside the verifier’s neighborhood, d((px, py), (vx, vy)) > d, (iv)
the triangular inequality d((px, py), (vx, vy)) ≤ d((px, py), (ix, iy)) + d((vx, vy),
(ix, iy)), and (v) the assumption that there is only one intruder.

Protocol Analysis with Time and Space 39

Example 9. Consider again the initial configuration for the beacons protocol of
Example 7. Again, we can abstract away from the specific locations and just put
logical variables for the coordinates of the four beacons x1, x2, x3, x4, y1, y2, y3, y4,
the base station (but they are irrelevant) and the malicious device dx, dy. Then, it
is possible to obtain a symbolic trace using logical variables t0, . . . , t4 and the sent
timestamp t where the following time and space constraints are accumulated:

t1 = t0 + d((dx, dy), (x1, y1))
t2 = t0 + d((dx, dy), (x2, y2))
t3 = t0 + d((dx, dy), (x3, y3))
t4 = t0 + d((dx, dy), (x4, y4))
(t − t1)2 = (dx − x1)2 + (dy − y1)2

(t − t2)2 = (dx − x2)2 + (dy − y2)2

(t − t3)2 = (dx − x3)2 + (dy − y3)2

(t − t4)2 = (dx − x4)2 + (dy − y4)2

It is easy to check that a malicious device will be caught if t �= t0.

As explained previously, there are some implicit conditions based on the mte
function to calculate the time increment to the closest destination of a message.
However, the mte function is unnecessary in the untimed process algebra, where
those implicit conditions are incorporated into the symbolic run. In the following,
we define a transformation of the time and space process algebra by (i) removing
the global clock; (ii) adding the time data into untimed messages of a process alge-
bra without time; (iii) adding the coordinates of each process to the untimed mes-
sages of a process algebra without space information; and (iv) adding real arith-
metic conditions over the reals for the time and location constraints (those gener-
ated by the time and space semantics and those checked by the processes).

Since all the relevant time information is actually stored in messages of the form
M @ (A : x, y, z, t → (B1 : t1 · · · Bn : tn)) and controlled by the transition rules
(TPA++), (TPA+), and (TPA-), the mapping phy2pa of Definition 1 below trans-
forms eachmessage M@t of a timed process into amessage M @(A : x?, y?, z?, t? →
AS?) of an untimed process. That is, we use a timed choice variable t? for the send-
ing time, choice variables x?, y?, z? for the coordinates and a variable AS? for the
reception information (B1 : t′1 · · · Bn : t′n) associated to the sent message. The
transformation below ensures that the choice variables for the coordinates are all
the same within the messages of the untimed process. Since choice variables are
replaced by specific values, t?,x?, y?, z? and AS? will be replaced by the appropri-
ate values that make the execution and all its time and space constraints possible.
Note that these choice variables will be replaced by logical variables during the
symbolic execution.

40 D. Aparicio-Sánchez et al.

Definition 1 (Adding Real Variables and Time and Space Constraints).
The mapping phy2pa from time and space processes into untimed processes and its
auxiliary mapping phy2pa* is defined as follows:

phy2pa(∅) = ∅
phy2pa((ro,i,j, x, y, z) P & PS) = (ro,i,j) phy2pa*(P ,ro,i, x, y, z) & phy2pa(PS)

phy2pa*(nilP , ro, i, x, y, z) = nilP

phy2pa*(+(M@t) . P, ro, i, x, y, z) =

+ (M@((ro, i) : x?, y?, z?, t? → AS?)) . phy2pa*(Pγ, ro, i, x, y, z)

where γ = {t �→ t?}
phy2pa*(−(M@t) . P, ro, i, x, y, z) =

− (M@((ro′, i′) : x′, y′, z′, t′ → ((ro, i) : t) AS)) .

if t = t′ + d((x?, y?, z?), (x
′, y′, z′)) then phy2pa*(P, ro, i) else nilP

phy2pa*((if C then P else Q) . R,ro,i,x,y, z)

= (if C then phy2pa*(P ,ro,i,x,y, z) else phy2pa*(Q,ro,i,x,y)) . phy2pa*(R,ro,i,x,y, z)

phy2pa*((P ? Q) . R,ro,i,x,y, z)

= (phy2pa*(P ,ro,i,x,y, z) ? phy2pa*(Q,ro,i,x,y, z)) . phy2pa*(R,ro,i,x,y, z)

where t? and AS? are choice variables different for each one of the sending
actions, x?, y?, z? are always the same variables for all sending or receiving actions,
ro′, i′, t′, d, x′, y′, z′, AS are pattern variables different for each one of the receiving
actions, P , Q, and R are processes, M is a message, and C is a constraint.

The soundness and completeness proof of this transformation is almost identi-
cal to the soundness and completeness proof of [1], available at https://arxiv.org/

abs/2010.13707, since it just replaces time constraints by the time and space con-
straints associated to the expression d((x, y, z), (x′, y′, z′)).

Example 10. The time and space processes of Example 3 are transformed into the
following untimed processes. We remove the “else nilP” branches for clarity.

(Verifier) : −(Commit @ A1 : x1, y1, z1, t
′
1 → V? : t1 AS1) ·

if t1 = t′
1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0 then

+(n(V?, f1) @ V? : x?, y?, z?, t2? → AS2?) ·
−((n(V?, f1) ⊕ NP) @ A3 : x3, y3, z3, t

′
3 → V? : t3 AS3) ·

if t3 = t′
3 + d((x3, y3, z3), (x?, y?, z?)) ∧ d((x3, y3, z3), (x?, y?, z?)) ≥ 0 then

if t3−̇t2? ≤ 2 ∗ d then

−(SP @ A4 : x4, y4, z4, t
′
4 → V? : t4 AS4) ·

if t4 = t′
4 + d((x4, y4, z4), (x?, y?, z?)) ∧ d((x4, y4, z4), (x?, y?, z?)) ≥ 0 then

if open(NP , SP ,Commit) then

−(sign(P, n(V?, f1); NP ⊕ n(V?, f1)) @ A5 : x5, y5, z5, t
′
5 → V? : t5 AS5) ·

if t5 = t′
5 + d((x5, y5, z5), (x?, y?, z?)) ∧ d((x5, y5, z5), (x?, y?, z?)) ≥ 0 then

nilP
(Prover) : +(commit(n(P?, f1), s(P?, f2))@P? : x?, y?, z?, t1? → AS1?) ·

−(V ; NV @ A2 : x2, y2, z2, t
′
2 → V? : t2 AS2) ·

if t2 = t′
2 + d((x2, y2, z2), (x?, y?, z?)) ∧ d((x2, y2, z2), (x?, y?, z?)) ≥ 0 then

+((NV ⊕ n(P?, f1))@P? : x?, y?, z?, t3? → AS3?) ·

https://arxiv.org/abs/2010.13707
https://arxiv.org/abs/2010.13707

Protocol Analysis with Time and Space 41

+(s(P?, f2)@P? : x?, y?, z?, t4? → AS4?) ·
+(sign(P?, NV ; n(P?, f1) ⊕ NV)@P? : x?, y?, z?, t5? → AS5?))

Example 11. The time and space processes of Example 5 for the intruder are trans-
formed into the following untimed processes. Note that we use the intruder iden-
tifier I associated to each role instead of a choice variable I?.

(I .Conc) :−(X@ A1 : x1, y1, z1, t1 → I : t′1 � AS1) ·
if t′1 = t1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0 then

−(Y@ A2 : x2, y2, z2, t2 → I : t′2 � AS2) ·
if t′2 = t2 + d((x2, y2, z2), (x?, y?, z?)) ∧ d((x2, y2, z2), (x?, y?, z?)) ≥ 0 then

+(X;Y@I : x?, y?, z?, t3? → AS?)

(I .DeconcLeft) :−(X;Y@ A1 : x1, y1, z1, t1 → I : t′1 � AS1) ·
if t′1 = t1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0 then

+(X@I : x?, y?, z?, t2? → AS?)

(I .Forward) :−(X@ A1 : x1, y1, z1, t1 → I : t′1 � AS1) ·
if t′1 = t1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0 then

+(X@I : x?, y?, z?, t2? → AS?)

Example 12. The time and space processes of Example 4 are transformed into the
following untimed processes. We remove the “else nilP” branches for clarity.

(Bei, x, y, z) : −(t@x1, y1, z1, t
′
1 → Be? : t1 AS1) ·

if t1 = t′
1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0 then

+(((t−̇t1) ; x? ; y?)@x?, y?, z?, t2 → AS2?) ·
−((ok@x3, y3, z3, t

′
3 → Be? : t3 AS3) ·

if t3 = t′
3 + d((x3, y3, z3), (x?, y?, z?)) ∧ d((x3, y3, z3), (x?, y?, z?)) ≥ 0 then

nilP

(Ba, x, y, z) : −((t′
1 ; x′

1 ; y′
1)@x1, y1, z1, t

′
1 → Ba? : t1 AS1) ·

if t1 = t′
1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0 then

−((t′
2 ; x′

2 ; y′
2)@x2, y2, z2, t

′
2 → Ba? : t2 AS2) ·

if t2 = t′
2 + d((x2, y2, z2), (x?, y?, z?)) ∧ d((x2, y2, z2), (x?, y?, z?)) ≥ 0 then

−((t′
3 ; x′

3 ; y′
3)@x3, y3, z3, t

′
3 → Ba? : t3 AS3) ·

if t3 = t′
3 + d((x3, y3, z3), (x?, y?, z?)) ∧ d((x3, y3, z3), (x?, y?, z?)) ≥ 0 then

−((t′
4 ; x′

4 ; y′
4)@x4, y4, z4, t

′
4 → Ba? : t4 AS4) ·

if t4 = t′
4 + d((x4, y4, z4), (x?, y?, z?)) ∧ d((x4, y4, z4), (x?, y?, z?)) ≥ 0 then

if ∃dx, dy : (t′
1)

2 = (dx − x′
1)

2 + (dy − y′
1)

2∧
(t′

2)
2 = (dx − x′

2)
2 + (dy − y′

2)
2∧

(t′
3)

2 = (dx − x′
3)

2 + (dy − y′
3)

2∧
(t′

4)
2 = (dx − x′

4)
2 + (dy − y′

4)
2

then +(ok@x?, y?, z?, t5 → AS5?)

Once a time and space process is transformed into an untimed process with
time and location variables and time and locations constraints using the notation
of Maude-NPA, we can easily adapt the soundness and completeness proof of [1],
which relies on both a soundness and completeness proof from the Maude-NPA
process notation into Maude-NPA forward rewriting semantics and on a sound-
ness and completeness proof from Maude-NPA forward rewriting semantics into

42 D. Aparicio-Sánchez et al.

Maude-NPA backwards symbolic semantics, see [22,23]. Since the Maude-NPA
backwards symbolic semantics already considers constraints in a very general set-
ting [11], we only need to perform the additional satisfiability check for real poly-
nomial arithmetic.

5 Timed Process Algebra into Strands inMaude-NPA

This section is provided to help in understanding the experimental work. Although
Maude-NPA accepts protocol specifications in either the process algebra notation
or the strand space notation, its output is given in the stand space notation. Thus,
in order to make our experiments easier to understand, we describe the translation
from untimed processes with time and space constraints into untimed strands with
time and location variables and time and space constraints. This translation is also
sound and complete, as it replicates the transformation of [22,23].

Strands [21] are used in Maude-NPA to represent both the actions of hon-
est principals (with a strand specified for each protocol role) and those of an
intruder (with a strand for each action an intruder is able to perform on mes-
sages). In Maude-NPA strands evolve over time. The symbol | is used to divide
past and future. That is, given a strand [msg±

1 , . . . , msg±
i | msg±

i+1, . . . , msg±
k],

messages msg±
1 , . . . ,msg±

i are the past messages, and messages msg±
i+1, . . . ,msg±

k

are the future messages (msg±
i+1 is the immediate future message). Constraints

can be also inserted into strands. A strand [msg±
1 , . . . ,msg±

k] is shorthand for
[nil | msg±

1 , . . . ,msg±
k , nil]. An initial state is a state where the bar is at the begin-

ning for all strands in the state, and the network has no possible intruder fact of
the form m ∈ I. A final state is a state where the bar is at the end for all strands
in the state and there is no negative intruder fact of the form m /∈ I.

In the following, we illustrate how the untimed process algebra can be trans-
formed into strands specifications of Maude-NPA for our two running examples.
We simply replaced · by comma, and each if-then-else by its boolean constraint.

Example 13. The untimed processes of Example 10 are transformed into the fol-
lowing strands.

(Verifier) : [−(Commit @ A1 : x1, y1, z1, t
′
1 → V? : t1 AS1),

(t1 = t′
1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0),

+(n(V?, f1) @ V? : x?, y?, z?, t2? → AS2?),

−((n(V?, f1) ⊕ NP) @ A3 : x3, y3, z3, t
′
3 → V? : t3 AS3),

(t3 = t′
3 + d((x3, y3, z3), (x?, y?, z?)) ∧ d((x3, y3, z3), (x?, y?, z?)) ≥ 0),

(t3−̇t2? ≤ 2 ∗ d),

−(SP @ A4 : x4, y4, z4, t
′
4 → V? : t4 AS4),

(t4 = t′
4 + d((x4, y4, z4), (x?, y?, z?)) ∧ d((x4, y4, z4), (x?, y?, z?)) ≥ 0),

open(NP , SP ,Commit),

−(sign(P, n(V?, f1); NP ⊕ n(V?, f1)) @ A5 : x5, y5, z5, t
′
5 → V? : t5 AS5),

(t5 = t′
5 + d((x5, y5, z5), (x?, y?, z?)) ∧ d((x5, y5, z5), (x?, y?, z?)) ≥ 0)]

(Prover) : [+(commit(n(P?, f1), s(P?, f2))@P? : x?, y?, z?, t1? → AS1?),

Protocol Analysis with Time and Space 43

−(V ; NV @ A2 : x2, y2, z2, t
′
2 → V? : t2 AS2),

(t2 = t′
2 + d((x2, y2, z2), (x?, y?, z?)) ∧ d((x2, y2, z2), (x?, y?, z?)) ≥ 0),

+((NV ⊕ n(P?, f1))@P? : x?, y?, z?, t3? → AS3?),

+(s(P?, f2)@P? : x?, y?, z?, t4? → AS4?),

+(sign(P?, NV ; n(P?, f1) ⊕ NV)@P? : x?, y?, z?, t5? → AS5?))]

Example 14. The untimed processes of Example 12 are transformed into the fol-
lowing strands.

(Bei, x, y, z) : [−(t@x1, y1, z1, t
′
1 → Be? : t1 AS1),

(t1 = t′
1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0),

+(((t−̇t1) ; x? ; y?)@x?, y?, z?, t2 → AS2?),

−((ok@x3, y3, z3, t
′
3 → Be? : t3 AS3),

(t3 = t′
3 + d((x3, y3, z3), (x?, y?, z?)) ∧ d((x3, y3, z3), (x?, y?, z?)) ≥ 0)]

(Ba, x, y, z) : [−((t′
1 ; x′

1 ; y′
1)@x1, y1, z1, t

′
1 → Ba? : t1 AS1),

(t1 = t′
1 + d((x1, y1, z1), (x?, y?, z?)) ∧ d((x1, y1, z1), (x?, y?, z?)) ≥ 0),

−((t′
2 ; x′

2 ; y′
2)@x2, y2, z2, t

′
2 → Ba? : t2 AS2),

(t2 = t′
2 + d((x2, y2, z2), (x?, y?, z?)) ∧ d((x2, y2, z2), (x?, y?, z?)) ≥ 0),

−((t′
3 ; x′

3 ; y′
3)@x3, y3, z3, t

′
3 → Ba? : t3 AS3),

(t3 = t′
3 + d((x3, y3, z3), (x?, y?, z?)) ∧ d((x3, y3, z3), (x?, y?, z?)) ≥ 0),

−((t′
4 ; x′

4 ; y′
4)@x4, y4, z4, t

′
4 → Ba? : t4 AS4),

(t4 = t′
4 + d((x4, y4, z4), (x?, y?, z?)) ∧ d((x4, y4, z4), (x?, y?, z?)) ≥ 0),⎛

⎜⎜⎝
(t′

1)
2 = (dx − x′

1)
2 + (dy − y′

1)
2∧

(t′
2)

2 = (dx − x′
2)

2 + (dy − y′
2)

2∧
(t′

3)
2 = (dx − x′

3)
2 + (dy − y′

3)
2∧

(t′
4)

2 = (dx − x′
4)

2 + (dy − y′
4)

2

⎞
⎟⎟⎠

+(ok@x?, y?, z?, t5 → AS5?)]

We specify the desired security properties in terms of attack patterns includ-
ing logical variables, which describe the insecure states that Maude-NPA is try-
ing to prove unreachable. The specifications, outputs, and a modified version
of Maude-NPA are available at http://personales.upv.es/sanesro/guttman2021.
Specifically, the tool attempts to find a backwards narrowing sequence path from
the attack pattern to an initial state until it can no longer form any backwards
narrowing steps, at which point it terminates. If it has not found an initial state,
the attack pattern is judged unreachable.

The following examples show how a classic mafia fraud attack for the Brands-
Chaum protocol can be specified in Maude-NPA’s strand notation. Note that
Maude-NPA uses symbol === for equality on the reals, +=+ for addition on the
reals, *=* formultiplication on the reals, and -=- for subtraction on the reals. Extra
time and space constraints are included in an smt section. In general, Maude-NPA
requires an SMT solver that supports checking quadratic constraints over the reals,
such as Yices [24], Z3 [25], or Mathematica [13].

http://personales.upv.es/sanesro/guttman2021

44 D. Aparicio-Sánchez et al.

Example 15. Following the strand specification of the Brands-Chaum protocol
given in Example 13, the mafia attack of Example 1 is given as the following
attack pattern. We consider one prover p, one verifier v, and one intruder i at fixed
locations (px, py, pz), (vx, vy, vz) and (ix, iy, iz), respectively. Brands-Chaum is
secure against the mafia fraud attack and no initial state is found in the backwards
search.

eq ATTACK-STATE(1) --- Mafia fraud
= :: r :: ---Alice --- Verifier
[nil,
-(commit(n(b,r1),s(b,r2)) @ i : ix,iy,iz,t1 -> a : t2),
((t2 === t1 +=+ dai) and (dai > 0/1) and
((dai *=* dai) === (((ix -=- ax) *=* (ix -=- ax)) +=+ ((iy -=- ay) *=* (iy -=- ay)))

+=+ ((iz -=- az) *=* (iz -=- az)))),
+(n(a,r) @ a : ax,ay,az,t2 -> i : t2’’’),
-(n(a,r) * n(b,r1) @ i : ix,iy,iz,t3 -> a : t4),
((t4 === (t3 +=+ dai)) and (dai > 0/1) and
(((t4 -=- t2) <= (2/1 *=* d)) and (d > 0/1)) | nil]
&
:: r1,r2 :: ---Bob --- Prover
[nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1’ -> i : t1’’),
-(n(a,r) @ i : ix,iy,iz,t2’’ -> b : t3’),
((t3’ === (t2’’ +=+ dbi)) and (dbi > 0/1) and
((dbi *=* dbi) === ((((ix -=- bx) *=* (ix -=- bx)) +=+ ((iy -=- by) *=* (iy -=- by)))

+=+ ((iz -=- bz) *=* (iz -=- bz))))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3’ -> i : t3’’) | nil]
|| smt(((dai +=+ dbi) > d) and (dbi > 0/1) and (dab > 0/1) and (dai > 0/1) and

((dab *=* dab) === ((((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))
+=+ ((az -=- bz) *=* (az -=- bz)))))

Example 16. Continuing Example 15, the hijacking attack of Example 1 is given
as the following attack pattern. And the backwards search of Maude-NPA from
this attack pattern does find an initial state.

eq ATTACK-STATE(2) --- Hijacking
= :: r :: --- Alice --- Verifier
[nil,
-(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
((t2 === t1 +=+ dab) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t2’’),
-(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4’’),
((t4 === t3 +=+ dab)),
((t4 -=- t2) <= (2/1 *=* d)),
-(s(b,r2) @ b : bx,by,bz,t5 -> a : t6),
((t6 === t5 +=+ dab)),
-(sign(i,(n(a,r) * n(b,r1)) ; n(a,r)) @ i : ix,iy,iz,t7 -> a : t8),
((t8 === (t7 +=+ dai)) and (dai > 0/1) and
((dai *=* dai) === (((ax -=- ix) *=* (ax -=- ix)) +=+ ((ay -=- iy) *=* (ay -=- iy)))

+=+ ((az -=- iz) *=* (az -=- iz)))) | nil]
&
:: r1,r2 :: ---Bob --- Prover
[nil,
+(commit(n(b,r1),s(b,r2)) @ b : bx,by,bz,t1 -> a : t2),
-(n(a,r) @ a : ax,ay,az,t2 -> b : t3 # i : t3’’),
((t3 === (t2 +=+ dab)) and (dab > 0/1) and
((dab *=* dab) === (((ax -=- bx) *=* (ax -=- bx)) +=+ ((ay -=- by) *=* (ay -=- by)))

+=+ ((az -=- bz) *=* (az -=- bz)))),
+(n(a,r) * n(b,r1) @ b : bx,by,bz,t3 -> a : t4 # i : t4’’),
+(s(b,r2) @ b : bx,by,bz,t5 -> a : t6) | nil]
|| smt((dai > d) and (dab <= d))

Protocol Analysis with Time and Space 45

Example 17. Following the strand specification of the beacons protocol given in
Example 14, we can give a very general attack pattern.
eq ATTACK-STATE(0) =
:: r :: --- Intruder
[nil, +(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4) | nil]
&
:: r1 :: --- Beacon 1
[nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t1 === t0 +=+ dbe1) and (dbe1 > 0/1) and
((dbe1 *=* dbe1) === (((be1x -=- x1) *=* (be1x -=- x1))

+=+ ((be1y -=- y1) *=* (be1y -=- y1))) +=+ ((be1z -=- z1) *=* (be1z -=- z1)))),
+((t1 -=- t) ; be1x ; be1y @ Be1 : be1x,be1y,be1z,t1 -> Ba : t1’),
-(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1’’ # Be2 : t2’’ # Be3 : t3’’ # Be4 : t4’’),
((t1’’ === t5 +=+ dbabe1) and (dbabe1 > 0/1) and
((dbabe1 *=* dbabe1) === (((be1x -=- bax) *=* (be1x -=- bax))

+=+ ((be1y -=- bay) *=* (be1y -=- bay))) +=+ ((be1z -=- baz) *=* (be1z -=- baz)))) | nil]
&

:: r2 :: --- Beacon 2
[nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t2 === t0 +=+ dbe2) and (dbe2 > 0/1) and
((dbe2 *=* dbe2) === (((be2x -=- x1) *=* (be2x -=- x1))

+=+ ((be2y -=- y1) *=* (be2y -=- y1))) +=+ ((be2z -=- z1) *=* (be2z -=- z1)))),
+((t2 -=- t) ; be2x ; be2y @ Be2 : be2x,be2y,be2z,t2 -> Ba : t2’),
-(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1’’ # Be2 : t2’’ # Be3 : t3’’ # Be4 : t4’’),
((t2’’ === t5 +=+ dbabe2) and (dbabe2 > 0/1) and
((dbabe2 *=* dbabe2) === (((be2x -=- bax) *=* (be2x -=- bax))

+=+ ((be2y -=- bay) *=* (be2y -=- bay))) +=+ ((be2z -=- baz) *=* (be2z -=- baz)))) | nil]
&
:: r3 :: --- Beacon 3
[nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t3 === t0 +=+ dbe3) and (dbe3 > 0/1) and
((dbe3 *=* dbe3) === (((be3x -=- x1) *=* (be3x -=- x1))

+=+ ((be3y -=- y1) *=* (be3y -=- y1))) +=+ ((be3z -=- z1) *=* (be3z -=- z1)))),
+((t3 -=- t) ; be3x ; be3y @ Be3 : be3x,be3y,be3z,t3 -> Ba : t3’),
-(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1’’ # Be2 : t2’’ # Be3 : t3’’ # Be4 : t4’’),
((t3’’ === t5 +=+ dbabe3) and (dbabe3 > 0/1) and
((dbabe3 *=* dbabe3) === (((be3x -=- bax) *=* (be3x -=- bax))
+=+ ((be3y -=- bay) *=* (be3y -=- bay))) +=+ ((be3z -=- baz) *=* (be3z -=- baz)))) | nil]

&
:: r4 :: --- Beacon 4
[nil ,
-(t @ i : x1,y1,z1,t0 -> Be1 : t1 # Be2 : t2 # Be3 : t3 # Be4 : t4),
((t4 === t0 +=+ dbe4) and (dbe4 > 0/1) and
((dbe4 *=* dbe4) === (((be4x -=- x1) *=* (be4x -=- x1))

+=+ ((be4y -=- y1) *=* (be4y -=- y1))) +=+ ((be4z -=- z1) *=* (be4z -=- z1)))),
+((t4 -=- t) ; be4x ; be4y @ Be4 : be4x,be4y,be4z,t4 -> Ba : t4’),
-(ok(r’) @ Ba : bax,bay,baz,t5 -> Be1 : t1’’ # Be2 : t2’’ # Be3 : t3’’ # Be4 : t4’’),
((t4’’ === t5 +=+ dbabe4) and (dbabe4 > 0/1) and
((dbabe4 *=* dbabe4) === (((be4x -=- bax) *=* (be4x -=- bax))

+=+ ((be4y -=- bay) *=* (be4y -=- bay))) +=+ ((be4z -=- baz) *=* (be4z -=- baz)))) | nil]
&
:: r’ :: --- Base Station
[nil ,
-((t1 -=- t) ; be1x ; be1y @ Be1 : be1x,be1y,be1z,t1 -> Ba : t1’),
((t1’ === t1 +=+ dbabe1) and (dbabe1 > 0/1) and
((dbabe1 *=* dbabe1) === (((be1x -=- bax) *=* (be1x -=- bax))

+=+ ((be1y -=- bay) *=* (be1y -=- bay))) +=+ ((be1z -=- baz) *=* (be1z -=- baz)))),
-((t2 -=- t) ; be2x ; be2y @ Be2 : be2x,be2y,be2z,t2 -> Ba : t2’),
((t2’ === t2 +=+ dbabe2) and (dbabe2 > 0/1) and
((dbabe2 *=* dbabe2) === (((be2x -=- bax) *=* (be2x -=- bax))

+=+ ((be2y -=- bay) *=* (be2y -=- bay))) +=+ ((be2z -=- baz) *=* (be2z -=- baz)))),
-((t3 -=- t) ; be3x ; be3y @ Be3 : be3x,be3y,be3z,t3 -> Ba : t3’),
((t3’ === t3 +=+ dbabe3) and (dbabe3 > 0/1) and
((dbabe3 *=* dbabe3) === (((be3x -=- bax) *=* (be3x -=- bax))

46 D. Aparicio-Sánchez et al.

+=+ ((be3y -=- bay) *=* (be3y -=- bay))) +=+ ((be3z -=- baz) *=* (be3z -=- baz)))),
-((t4 -=- t) ; be4x ; be4y @ Be4 : be4x,be4y,be4z,t4 -> Ba : t4’),
((t4’ === t4 +=+ dbabe4) and (dbabe4 > 0/1) and
((dbabe4 *=* dbabe4) === (((be4x -=- bax) *=* (be4x -=- bax))

+=+ ((be4y -=- bay) *=* (be4y -=- bay))) +=+ ((be4z -=- baz) *=* (be4z -=- baz)))),
(((t1 -=- t) *=* (t1 -=- t)) === (((dx -=- be1x) *=* (dx -=- be1x))

+=+ ((dy -=- be1y) *=* (dy -=- be1y))) and
((t2 -=- t) *=* (t2 -=- t)) === (((dx -=- be2x) *=* (dx -=- be2x))
+=+ ((dy -=- be2y) *=* (dy -=- be2y))) and

((t3 -=- t) *=* (t3 -=- t)) === (((dx -=- be3x) *=* (dx -=- be3x))
+=+ ((dy -=- be3y) *=* (dy -=- be3y))) and

((t4 -=- t) *=* (t4 -=- t)) === (((dx -=- be4x) *=* (dx -=- be4x))
+=+ ((dy -=- be4y) *=* (dy -=- be4y)))),

+(ok @ Ba : bax,bay,baz,t5 -> Be1 : t1’’ # Be2 : t2’’ # Be3 : t3’’ # Be4 : t4’’),
(t5 >= t1’ and t5 >= t2’ and t5 >= t3’ and t5 >= t4’) | nil]
|| smt((t =/== t0))

The insecure configuration of Fig. 4 is now obtained by just adding extra con-
straints to the attack pattern: (i) fixing concrete locations for the beacons in a
hyperbola, (ii) adding the distances from the malicious device to the beacons, (iii)
adding the distances inferred by the beacons from the malicious device, and (iv)
adjusting the sent timestamp to differ from the actual sending time in the appro-
priate amount to fake the base station. And the backwards search of Maude-NPA
from this attack pattern does find an initial state.

smt(--- hyperbola with a^2 = 4, b^2 = 5, c^2 = 9

(t > t0) and (t0 === 0/1) and (z1 === 0/1) and

(be1z === 0/1) and (be2z === 0/1) and (be3z === 0/1) and

(be4z === 0/1) and (baz === 0/1) and

((be1x === 3/1) and (be1y === 5/2)) and

((be2x === 3/1) and (be2y === -(5/2))) and

((be3x === 4/1) and ((be3y *=* be3y) === 60/4) and (be3y > 0/1)) and

((be4x === 4/1) and ((be4y *=* be4y) === 60/4) and (be4y < 0/1)) and

(x1 === -(3/1)) and (dx === 3/1) and (dy === y1) and (y1 === 0/1))

The secure configuration of Fig. 5 is now obtained by just adding extra con-
straints to the attack pattern: (i) fixing concrete locations for the beacons in a
rectangle for a parametric height and width, and (ii) asking whether the times-
tamp is different from the sending time.

smt((t =/== t0) and (t >= 0/1) and z1 === 0/1 and baz === 0/1 and

be1z === 0/1 and be2z === 0/1 and be3z === 0/1 and be4z === 0/1 and

(h > 0/1) and (v > 0/1) and (be1x === 0/1) and (be1y === 0/1) and

(be2x === be1x) and (be2y === be1y +=+ v) and

(be3x === be1x +=+ h) and (be3y === be1y) and

(be4x === be1x +=+ h) and (be4y === be1y +=+ v))

Our analysis of this protocol uncovered some interesting challenges that would
need to be addressed in future research. When we gave the constraints to the SMT
solvers, including Yices [24] and Z3 [25], which support non-linear real arithmetic,
none of them were able to prove that they were unsatisfiable. It was not until we
simplified them by hand by using Gaussian elimination on the matrix defined by
the coefficients of the constraints, producing the set of constraints given below, that

Protocol Analysis with Time and Space 47

we were able to get one solver, Mathematica [13], to prove unsatisfiability. This
suggest that more research is needed on heuristics for preprocessing the types of
constraints that arise from reasoning about time and space protocols so that they
can be handled by available SMT solvers.

6 Conclusions

We have extended our previous paper with a time model for protocols using time
constraints to a time and space model for protocol analysis based on timing and
space constraints. We have also extended our previous prototype of Maude-NPA
handling protocols with time to handle time and space by taking advantage of
Maude’s support of SMT solvers, and Maude-NPA’s support of constraint han-
dling. We have used the Brands and Chaum protocol to illustrate how this exten-
sion is natural and smoothly subsumes our previous time-only framework, and a
secure localization protocol with complex location and time constraints. This app-
roach should be applicable to other tools that support constraint handling. There
are several ways this work can be extended, as suggested within the paper. And
there are many interesting protocols that can be tested with this time and space
model, for example protocols using the Message Time Of Arrival Codes (MTACs)
of [12].

References

1. Aparicio-Sánchez, D., Escobar, S., Meadows, C., Meseguer, J., Sapiña, J.: Pro-
tocol analysis with time. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578, pp. 128–150. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65277-7 7

2. Basin, D.A., Capkun, S., Schaller, P., Schmidt, B.: Formal reasoning about physi-
cal properties of security protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16:1-16:28
(2011)

3. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Let’s get physical: models and meth-
ods for real-world security protocols. In: Berghofer, S., Nipkow, T., Urban, C., Wen-
zel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 1–22. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03359-9 1

4. Brands, S., Chaum, D.: Distance-bounding protocols (Extended abstracts). In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Hei-
delberg (1994). https://doi.org/10.1007/3-540-48285-7 30

5. Srdjan Capkun. Secure positioning and location-based security for IoT and beyond.
In: Chang, C.-H., Rührmair, U., Holcomb, D.E., Guajardo, J., (eds.) Proceedings of
the 2018 Workshop on Attacks and Solutions in Hardware Security, ASHES@CCS
2018, Toronto, ON, Canada, October 19, 2018, p. 81. ACM (2018)

https://doi.org/10.1007/978-3-030-65277-7_7
https://doi.org/10.1007/978-3-642-03359-9_1
https://doi.org/10.1007/3-540-48285-7_30

48 D. Aparicio-Sánchez et al.

6. Srdjan Capkun and Jean-Pierre Hubaux. Secure positioning of wireless devices with
application to sensor networks. In INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies, 13–17 March 2005, Miami,
FL, USA, pages 1917–1928. IEEE, 2005

7. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE J. Sel.
Areas Commun. 24(2), 221–232 (2006)

8. Debant, A., Delaune, S.: Symbolic verification of distance bounding protocols. In:
Nielson, F., Sands, D. (eds.) POST 2019. LNCS, vol. 11426, pp. 149–174. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17138-4 7

9. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theoret. Comput. Sci.
367(1), 162–202 (2006)

10. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: State space reduction in the
maude-NRL protocol analyzer. Inf. Comput. 238, 157–186 (2014)

11. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Symbolic protocol analysis
with disequality constraints modulo equational theories. In: Bodei, C., Ferrari, G.-L.,
Priami, C. (eds.) Programming Languages with Applications to Biology and Secu-
rity. LNCS, vol. 9465, pp. 238–261. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25527-9 16

12. Leu, P., Singh, M., Roeschlin, M., Paterson, K.G., Capkun, S.: Message time of
arrival codes: a fundamental primitive for secure distance measurement. In: 2020
IEEE Symposium on Security and Privacy (SP), pp. 500–516 (2020)

13. Mathematica (2021). https://www.wolfram.com/mathematica
14. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the

symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

15. Neumann, C., Yu, T., Hartman, S., Raeburn, K.: The kerberos network authentica-
tion service (V5). Request Comments 4120, 1–37 (2005)

16. Nigam, V., Talcott, C., Aires Urquiza, A.: Towards the automated verification
of cyber-physical security protocols: bounding the number of timed intruders. In:
Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 450–470. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-45741-3 23

17. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. Com-
put. Secur. 6(1–2), 85–128 (1998)

18. Perrig, A., Song, D., Canetti, R., Tygar, J.D., Briscoe, B.: Timed Efficient Stream
Loss-Tolerant Authentication (TESLA): multicast source authentication transform
introduction. Request Comments 4082, 1–22 (2005)

19. Schaller, P., Schmidt, B., Basin, D.A., Capkun, S.: Modeling and verifying physical
properties of security protocols for wireless networks. In: Proceedings of the 22nd
IEEE Computer Security Foundations Symposium, CSF 2009, New York, USA, 8–
10 July, pp. 109–123. IEEE Computer Society (2009)

20. Shmatikov, V., Wang, M.-H.: Secure verification of location claims with simultane-
ous distance modification. In: Cervesato, I. (ed.) ASIAN 2007. LNCS, vol. 4846, pp.
181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76929-
3 17

21. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security protocols
correct. J. Comput. Secur. 7(1), 191–230 (1999)

22. Yang, F., Escobar, S., Meadows, C., Meseguer, J.: Strand spaces with choice via a
process algebra semantics. Computing Research Repository (2019)

https://doi.org/10.1007/978-3-030-17138-4_7
https://doi.org/10.1007/978-3-319-25527-9_16
https://doi.org/10.1007/978-3-319-25527-9_16
https://www.wolfram.com/mathematica
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-319-45741-3_23
https://doi.org/10.1007/978-3-319-45741-3_23
https://doi.org/10.1007/978-3-540-76929-3_17
https://doi.org/10.1007/978-3-540-76929-3_17

Protocol Analysis with Time and Space 49

23. Yang, F., Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Strand spaces with
choice via a process algebra semantics. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming (PPDP 2016),
pp. 76–89. ACM Press (2016)

24. The Yices SMT Solver (2021). https://yices.csl.sri.com
25. The Z3 SMT Solver (2021). https://github.com/Z3Prover/z3

https://yices.csl.sri.com
https://github.com/Z3Prover/z3

Searching for Selfie in TLS 1.3 with the
Cryptographic Protocol Shapes Analyzer

Prajna Bhandary1, Edward Zieglar2(B), and Charles Nicholas1

1 University of Maryland, Baltimore County (UMBC), Baltimore, MD 21250, USA
{prajnab1,nicholas}@umbc.edu

2 National Security Agency, Fort George G. Meade, MD 20755, USA
evziegl@uwe.nsa.gov

Abstract. TLS 1.3 was developed in conjunction with several for-
mal analyses and proofs of its security properties. However, in 2019,
researchers Drucker and Gueron discovered a reflection attack, they
named Selfie, against the pre-shared key (PSK) mode of authentication
used by TLS 1.3 by identifying a gap in the proofs. They realized that
the proofs ignored the case of external PSKs. They demonstrated that if
the PSK was not associated with a particular client and server pairing,
such as a single PSK between a pair of hosts which could use the key as
either a client or server, implicit authentication implied by the use of the
PSK would fail in a reflection attack. The proofs and tools used did not
account for this, so we set out to determine if it was possible to identify
this attack with the Cryptographic Protocol Shapes Analyzer (CPSA).
Using CPSA, which attempts to enumerate all equivalence classes of a
protocol’s executions, we were able to uncover the attack and verify two
proposed mitigations. We were also able to identify a previously discov-
ered impersonation attack against the use of post handshake authenti-
cation in scenarios where a PSK is used as a network key.

Keywords: Cryptographic protocols · Cryptography · Cryptographic
Protocol Shapes Analyzer (CPSA) · Cybersecurity · Formal methods ·
Transport Layer Security · Selfie attack · Protocol analysis

1 Introduction

Version 1.3 of the Transport Layer Security (TLS 1.3) protocol is an important
protocol for the security of the Internet. The majority of the web based traffic
is now encrypted using some version of TLS. In January of 2021, Google, in
their Transparency Report, noted that 89% of pages loaded by Chrome were
served using HTTPS. Applications such as email, instant messaging, voice over
IP, VPN, and others also use TLS to provide authentication, confidentiality, and
integrity. As a significant amount of traffic on the Internet relies on TLS for its
security, it is important that TLS is vulnerable to few, if any forms of attack.

Earlier versions of TLS have had various security weaknesses, such as Logjam
[1], Triple Handshake [6], SMACK [4], Lucky13 [3] and others. Therefore, it was
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 50–76, 2021.
https://doi.org/10.1007/978-3-030-91631-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_3

Searching for Selfie in TLS 1.3 with the CPSA 51

important to the Internet Engineering Task Force (IETF) that TLS 1.3 not be
vulnerable to those and other attacks that may exploit the protocol to violate the
security goals. To achieve assurance that TLS 1.3 satisfied its security goals, the
IETF undertook an unprecedented effort to provide formal analysis and security
proofs of the design in studies such as [5,7,8,10,13,14,17,18,20]. In spite of
this effort, Drucker and Gueron [11] discovered a reflection attack, which they
named the Selfie attack, against TLS 1.3’s Pre Shared Key (PSK) based mutual
authentication.

The existence of the Selfie attack does not take anything away from the formal
analysis that was performed. The formal verification effort was successful in
demonstrating that many of the weaknesses required by the known attacks were
eliminated. As an example, the formal verification effort was able to demonstrate
that attacks such as Logjam and Triple Handshake were not possible, even if TLS
1.3 was run in parallel with TLS 1.2. The tools that were used in the analyses,
such as Tamarin, ProVerif and CryptoVerif, involve developing models of the
protocols and proving theorems within the model. The reason that the Selfie
attack was not discovered by the tools in the analysis was because the analyses
weren’t comprehensive enough to cover a case where the Client uses TLS 1.3 with
an external PSK and then proceeds to talk to itself. These tools assumed that a
PSK can be shared only between a Client and a Server. They also assumed that
if a mutual authentication could be established between a Client and a Server
or between a Client and a Client, then both are valid [5].

The Cryptographic Protocol Shapes Analyze (CPSA) [19] operates differently
than other protocol verification tools. Instead of specifying the properties that
one wishes to verify in the model, CPSA takes a protocol definition and a partial
description of an execution, built within a particular formal model, and attempts
to produce descriptions of all possible executions of the protocol that complete
the partial description in the presence of a powerful network adversary. From
the descriptions of the executions, referred to as shapes, it is possible to identify
the properties that the protocol satisfies.

We were interested in determining whether or not the approach taken by
CPSA would have identified the Selfie attack. Using CPSA, we modeled the
TLS 1.3 PSK authentication protocol and analyzed the shapes that CPSA pro-
duced and were able to identify the attack. We were also able to verify that
the proposed mitigations of a unique key between a client and server or the use
of identifiers would prevent the Selfie attack. We describe our approach in the
following sections.

2 Background

We briefly review CPSA, the TLS 1.3 Pre Shared Key authentication protocol,
and the Selfie attack discovered by Drucker and Gueron.

52 P. Bhandary et al.

2.1 Cryptographic Protocol Shapes Analyser

The Cryptographic Protocol Shapes Analyzer (CPSA) [15,19] is an open-source
tool for automated formal analysis of cryptographic protocols. CPSA takes as
input a model of a cryptographic protocol and a description of a partial exe-
cution with assumptions, and generates a set of minimal, essentially different
descriptions of executions of the protocol that complete the partial execution,
consistent with the assumptions. The descriptions of completed executions are
referred to as shapes. When some property holds in all shapes generated, it is a
property guaranteed by the protocol.

CPSA is based on strand space theory [9,12] in which events are organized
into partially-ordered graphs. In strand space theory, events are transmissions
or receptions of messages. Strands are sequences of events that capture a local
view of a participant in the network. CPSA also has state events that consist of
initializing, observing and transitioning between states. Protocols are defined as
a set of legitimate participant roles that serve as a template for strands consistent
with the protocol.

The underlying execution model of CPSA is the Bundle, where every recep-
tion is explained directly by a previous transmission of that exact message. A
bundle of a particular protocol is a set of strands where all the strands are
either (1) generic adversary behavior such as parsing or constructing complex
messages, or encrypting or decrypting with the proper keys, or (2) behavior of
participants in the protocol consistent with the protocol roles.

CPSA reasons about bundles indirectly by analyzing skeletons, i.e. partially-
ordered sets of strands that represent only regular behavior, along with origina-
tion assumptions about the secrecy and/or freshness of particular values, such as
keys unknown to the adversary or nonces, freshly chosen and therefore assumed
unique. Skeletons in which all messages can be explained by some combination
of legitimate or adversary behavior consistent with the secrecy and freshness
assumptions are referred to as realized. A shape is the most general form of a set
of realized skeletons. Non-realized skeletons may represent partial descriptions
of actual executions, or may represent a set of conditions inconsistent with any
actual execution [19].

The cpsagraph tool creates visualizations of skeletons as graphs in which
events are shown as circles, black for transmissions and blue for receptions,
in connected columns where each column represents a strand. Events within
a strand are ordered from top to bottom, with the earliest event at the top.
Arrows between strands indicate necessary orderings (other than orderings
within strands, or those that can be inferred transitively). An arrow from event
P to Q denotes that for Q to take place, it is necessary that event P take place
first. A solid black arrow indicates that the message that was transmitted was
exactly the same as the one received. Black dashed arrows indicate that the mes-
sage was altered by some form of adversary behavior. CPSA represents states
as gray circles. State is assumed to not be directly observable by the adversary.
Observation of state is indicated by a blue arrow originating from a state event,

Searching for Selfie in TLS 1.3 with the CPSA 53

represented as a gray circle. See Fig. 3 in Sect. 3.1 for an example of such a
visualization.

The cpsagraph tool also outputs the skeleton information associated with
the graph that has been drawn. This information is in the form of a defskele-
ton. A defskeleton contains all the information that is necessary to describe an
execution, whether it is partial, having unrealized message receptions, or real-
ized, a complete execution of the protocol. As such, it contains a complete list
of the variables used in the skeleton, the strands which identify the protocol
role, the number of messages sent and received as well as state interactions, and
the variable assignments for the strand in a defstrand, the assumptions made
on the variables, the action taken by CPSA to create the current skeleton, the
ordering of the nodes in the skeleton, and information concerning whether or
not the analysis is complete. For brevity, we have only shown the partial CPSA
output of a defskeleton that includes the strands in this paper. This allows one
to see whether or not the strands agree on values associated with the variables.
For example, in Fig. 3, both the client and the server agree on the values of the
variables, but in Fig. 8, the client and server disagree on variables a and b which
represent their views of the client and server.

2.2 TLS 1.3 Pre Shared Key Authentication

TLS 1.3 [21] offers a variety of options for establishing a secure connection. Sev-
eral of the options support authentication of one or more of the parties through
public key certificates. Another option uses a Pre Shared Key (PSK), estab-
lished externally or derived from the secret value from a previous connection.
Authentication when using a PSK is predicated on the assumption that the party
receiving a message authenticated with the PSK knows that the message was
sent by a party that also knows the PSK. TLS 1.3 allows this use of implicit
authentication to save bandwidth and latency over certificate verification and to
support 0-RTT mode.

As TLS 1.3 can be used to support networks of communicating peers, where
every node acts as both a client and a server, it is possible to use a single PSK
for authentication as both the client and the server. It is under this scenario that
Drucker and Gueron identified their attack.

2.3 Selfie Attack

The Selfie attack discovered by Drucker and Gueron [11] is a reflection attack
against the use of PSK authentication in TLS. The attack relies on the assump-
tion that if two parties share a symmetric key, the receiving party knows that the
message, if it passes verification with the key, was sent by a party that knows
that key. As TLS permits this implicit authentication to save bandwidth and

54 P. Bhandary et al.

latency in support of 0-RTT mode, it opens up the possibility of this reflection
attack against a party when parties within the network can act as both client
and server using the same key. In this case, the sender, when under attack, could
also be the receiver of the authentic message itself.

Figure 1 taken from [11] illustrates the attack. In this case Alice, acting as the
client, wishes to communicate with Bob, acting as the server. The adversary, Eve,
is able to intercept and reflect the messages back to Alice. The communication
takes place as follows:

– Alice sends the ClientHello message with a pre shared key extension intended
for Bob.

– Eve intercepts the message and reflects it back to Alice, pretending (implic-
itly) to be Bob.

– Alice receives the message containing the PSK extension she uses with Bob.
– Alice, acting as server, replies (presumably to Bob) with ServerHello and

ServerFinished messages which authenticate that Alice knows the PSK.
– Eve captures these messages and echoes them back to Alice.
– Alice, acting as client, authenticates the ServerHello and ServerFinish mes-

sages as being created with the PSK she shares with Bob, believing that she
has authenticated Bob when she has actually opened a Selfie session with
herself.

– Alice, as client, then completes the connection by authenticating herself
through the ClientFinished Message.

– Eve intercepts and reflects the ClientFinished message back to Alice to com-
plete Alice’s server run of the protocol.

At the end of the run, Alice has established two sessions with herself acting as
both client and server which she believes exist with Bob, in violation of the TLS
claimed property of [21] [Appendix E]: “Peer authentication: The client’s view of
the peer identity should reflect the server’s identity. If the client is authenticated,
the server’s view of the peer identity should match the client’s identity.”

Searching for Selfie in TLS 1.3 with the CPSA 55

Fig. 1. The Selfie Attack [11]. Eve tricks Alice into believing she is talking to Bob
while she is actually talking with herself.

3 Modeling TLS 1.3 PSK Authentication

Using CPSA, we analyze the TLS 1.3 PSK authentication when the pre-shared
keys are distributed out of band in the Dolev-Yao intruder model. We develop
several models of the PSK authentication and analyze them to explore the selfie
attack and to verify proposed fixes in [11].

3.1 Models of the TLS 1.3 PSK Authentication

We built two models of the TLS PSK authentication. In the first model, we
modeled the authentication directly as specified. In this initial model, there are
no indications of who is acting as client or server. The authentication is implicit.
In the second model, we made the direction of the key used explicit so that we
could identify which party was acting as client and which was acting as server.
We describe the models and results below.

Initial Model. The TLS 1.3 handshake, when using PSK authentication, con-
sists of only three messages, shown in Fig. 2 taken from Sect. 2.2 of [21].

The initial message from the client is sent unencrypted. Additionally, many
of the fields in the ClientHello are unlikely to change in subsequent handshakes,
with the exception of the random. Our model simplifies the ClientHello to the
random, n1 in our model, as that is the only component of the message that will
distinguish two ClientHello messages from the same client to the same server.

56 P. Bhandary et al.

Fig. 2. Message flow for PSK handshake

The pre shared key is an identifier of the PSK to use for the connection. We
model this simply as a unique index that is tied to the key through the use of
state, observable to both the client and the server. As the key share is an optional
set of parameters that are used as a fallback to the full handshake should the
PSK not be accepted, we chose not to include those additional messages.

We made similar choices for the ServerHello, pre shared key and key share
components of the server’s response. We made a simplifying assumption that
the Client did not send an extension request in the ClientHello, so we can safely
ignore the EncryptedExtensions as they should only be sent if the client made a
request. Finally, the Finished message is the first attempt at authenticating the
server to the client. It consists of a hash of all the previous message components
with the finished key. The finished key is created from a hash of “finished” and
the base key. For this modeling, we simplified the TLS keying scheme to a single
key that was produced as a hash of the PSK and the generated random nonces
from each party. The key generated will be unique as long as at least one party
generates a fresh nonce and the extra complication of generating additional keys
is unnecessary to model the authentication.

The final message is the client’s attempt to authenticate to the server by
creating a finished message of its own consisting of the all the messages that
it has received. The distinction between the client’s finished message and the
server’s is that the client’s message includes the server’s finished message in the
hash.

In addition to modeling the client and server roles in the protocol, we model
an additional role that acts to distribute the key to the parties. This role, key-
Placement, initializes a state with the index and the key that both the client
and server can observe, representing the pre-placement of keys at both the client
and the server. See Fig. 15 in the Appendix for the model.

Searching for Selfie in TLS 1.3 with the CPSA 57

Fig. 3. Shape showing an execution of the protocol from the client’s perspective. As
identification of the parties is implicit (neither strand indicates the parties, as can be
seen in the defstrand statements), the Selfie attack is included in this equivalence class
represented by the shape. (Color figure online)

The Selfie attack is described as a reflection against the client. For our anal-
ysis, we defined a partial execution of the protocol consisting of a single client
with the assumption that the PSK was known only to the client and server.
CPSA produced a single shape for the execution, shown in Fig. 3. The shape
indicates that all executions of the protocol involve only parties that share the
PSK. Both the client and the server observe the same PSK, indicated by the
solid blue lines. Additionally, we can see that the messages were received from
the expected parties in the correct order and unaltered, as indicated by the solid
black lines showing the ordering. If an adversary were able to alter the messages,
a dashed line would have indicated that the message had been altered from the
point of origination to the destination. As there are no indications of the parties
identities in the model, the Selfie attack is also present in the shape as a single
party could be acting as both client and server.

58 P. Bhandary et al.

Fig. 4. First shape produced by the initial model from the server’s perspective. Identi-
fication is implicit. The Selfie attack is represented in the equivalence class represented
by the shape.

For completeness, we also analyzed the model from the server’s perspective.
This analysis produced two shapes, Figs. 4 and 5, both indicating that it would
only complete with a client that shared the PSK. The second shape in Fig. 5
shows an additional start of the client with the same PSK, but a different choice
of nonce. It indicates that the adversary could mix messages initially from the
clients, but only one can complete. As with the view from the client, the server
only knows that the party acting as the client is in possession of the PSK and
may in fact be the same party acting as both client and server.

Model with Identities. To better visualize which identities are communicating
with each other, we modified the keyPlacement role to include the parties sharing
the key, as shown in Fig. 18. Instead of a single state being initialized with the
key and the index, we initialize two states, each with the same key and index, but
with the identities of the parties using the key listed in the order of the client and
the server. Two states were necessary, as a party could be acting as either the
client or the server with the same key. With this approach, shapes representing
exchanges that involve the Selfie attack would be visualized as accessing both

Searching for Selfie in TLS 1.3 with the CPSA 59

states from the keyPlacement role, with the client accessing one state and the
server accessing the other, yet communicating with each other. CPSA generated
four shapes, Figs. 6, 7, 8, and 9, from the perspective of the client.

Fig. 5. Second shape produced by the initial model from the server’s perspective. This
represents the possibility of additional clients that share the PSK initiating a run of
the protocol. The shape indicates that the client on the left may have initiated the
contact with the server before the client on the right, but the adversary changed the
message from the client on the left to replace the nonce with the nonce of the client
on the right. The server completes the run with the client on the right, as indicated in
the variable assignments in the defstrand statements. Again, the Selfie attack is also
represented in the possible executions.

60 P. Bhandary et al.

Fig. 6. Shape illustrating a correct authentication, no Selfie Attack, where the server
is assigned the name “a” and the client is assigned the name “b”.

Figures 6 and 7 represent the classes of executions that are free of the Selfie
attack. In each case, the client and the server accessed the same state, indicating
that they agree on the assignment of values to the client, represented as variable
a, and the server, represented as variable b. In Fig. 6, both parties agree that
the client is “b” and the server is “a”. This can be seen in the assignment of the
variables, “a” representing the client and “b” representing the server, in each of
the defstrand statements mapping variables of the displayed strands. Figure 7
shows the case where the key for the opposite direction is used and maps the
client to “a” and the server to “b” in both the client and server strands.

Searching for Selfie in TLS 1.3 with the CPSA 61

Fig. 7. Complement to the shape in Fig. 6 illustrating a correct authentication, no
Selfie Attack, where the server is assigned the name “b” and the client is assigned the
name “a”.

Fig. 8. Shape illustrating the Selfie attack where the client strand is “b” believing the
server it is communicating with is “a”, while the server strand it is actually communi-
cating with is itself, “b”, believing that it is communicating with client “a”.

62 P. Bhandary et al.

Fig. 9. Complement to the shape in Fig. 8 illustrating the Selfie attack where the
client strand is “a” believing the server it is communicating with is “b”, while the
server strand it is actually communicating with is itself, “a”, believing that it is com-
municating with client “b”.

Figures 8 and 9 represent the classes of executions where the Selfie attack
takes place. This is visible in the graph of the shape where the client observes one
state and the server observes another. As the only difference between the states
is the assignment of server and client, if two interacting strands are observing
different states, it indicates that the same party is acting as both the client and
the server in the communication. By making the direction a key is being used
explicit, we were able to split the set of equivalent executions represented in the
original model, shown in Fig. 3, into the various subsets of executions, those that
show expected behavior and those that show the Selfie attack.

The models from the server’s perspective also illustrate both expected exe-
cutions and executions including the Selfie attack. For brevity, those shapes are
not included here.

3.2 Modeling the Proposed Fixes to the Selfie Attack

The authors of [11] proposed two solutions to the Selfie attack. The first is the use
of server certificates, although the authors point out that the use of certificates
with the PSK defeats the purpose of using the PSK. The second approach is to
require the use of a unique key between the client and the server. We validate
each of the solutions in the following sections by modifying our model that
supports directional use of the keys with identities. This approach allows us to
visually inspect the graphs to determine if the Selfie attack has been eliminated
by noting whether or not the same state is observed by both client and server,
as was described in Sect. 3.

Searching for Selfie in TLS 1.3 with the CPSA 63

PSK with Server Identity. There are two approaches to verifying the iden-
tity of a party with a certificate. The first is to include the certificates in the
handshake. The second is to request the certificate after establishing a secure
connection with the PSK. To model this, we extended the protocol by adding a
request for the certificate and the response.

Although the use of a certificate was proposed, we instead chose to model the
addition of the server name encrypted extension in the handshake as proposed
in [16]. The analysis in the model is similar, but it has the added advantage of
not requiring the additional processing necessary with the use of a certificate
in an actual implementation. CPSA produced only shapes where the connected
client and server were using the same state as shown in Fig. 10 and Fig. 11. As
both shapes indicate, the client and server both agree on who is the client and
who is the server. The mitigation of including the server’s name in the response
does prevent the Selfie attack.

To model the authentication request after establishing a connection, we
included a certificate request message and a certificate verify message. We chose
to have the server authenticate the client to continue the flow of send and receive,
although we could have chosen to have the client authenticate the server. This
approach creates a number of shapes that could be problematic if there were
multiple parties sharing the same key. An example of one of the problematic
shapes is Fig. 12. In this case, the client on the left is accessing the state for the

Fig. 10. Shape produced when a modified handshake is used to convey the server’s
name to the client. Both sides are using the same state, indicating that they agree on
the values of the client and server. In this case, the client is “b” and the server is “a”.

64 P. Bhandary et al.

Fig. 11. The complement to the shape in Fig. 10. In this shape, both the client and
server are using the same state, therefore they agree on the values of the client and
server. In this case, the client is “a” and the server is “b”.

reverse key of the server, indicative of the Selfie attack. The client on the right
completes the authentication as expected, but all parties share the key. There is
nothing to prevent the client on the left from continuing after the authentication
completes. This is an example of the Selfie attack.

Authentication outside of the handshake does not preclude a Selfie attack,
but the results could be much worse. If the same keys were used for several
participants, then it would be possible for any participant to impersonate another
as outlined in [2]. We added an additional set of keys for a third participant to
see if CPSA would identify the attack. CPSA generated a considerable number
of shapes, many of which indicated that one party could impersonate another.
Figure 13 is an example. In this case, the server strand is “b” and it believes
that it is communicating with “b-0”. The client on the left is “a” and it is
communicating with the server “b” while the client on the right is “b-0” and is
communicating with “a”, the client on the left. The client “a” is impersonating
as “b-0” to the server “b”. Because all parties have access to the same key, it is
possible to impersonate any party to any other with this approach. If certificates
are to be used, they must be used in the handshake to prevent this attack.

Searching for Selfie in TLS 1.3 with the CPSA 65

Unique PSK per Client/Server Pair. The second solution proposed was
the use of a unique key for any client/server pair. We were able to model this
by simply creating a fresh key and index for each state initialization in the
keyPlacement role, representing a unique key for each direction between a pair
of parties. From the clients point of view, only one shape is possible. This is
shown in Fig. 14. Both the client and server agree on all variables. It is not
possible for the client to chose one key and the server to chose the other in this
situation, eliminating the Selfie attack.

4 Discussion

We set out to determine if the approach used by CPSA would be effective in
identifying the Selfie attack that was missed in the previous formal analysis
of TLS 1.3. As the previous analysis built models of the protocol and proved
theorems based upon those models, it was necessary to know what properties
one hoped existed in the protocol to develop the theorems that one wished to
prove. Unfortunately, there were gaps in the earlier analysis as the models either
failed to consider the case of external PSKs or left the analysis of the implicit
authentication properties of external PSKs for future work. The approach used
by CPSA doesn’t require knowledge of the properties one wishes to prove. Instead
of proving particular theorems about the protocol model, CPSA attempts to
enumerate all possible equivalence classes of executions of the protocol that
satisfy the assumptions. From the equivalence classes, referred to as shapes, it is
then possible to determine what properties hold across all executions. We were
looking to see if we could identify the Selfie attack with this approach.

The shapes that CPSA generated with the initial model, Figs. 3, 4 and 5,
demonstrated that only parties that share the key were able to interact. That
includes the case were a party is interacting with itself. With implicit authen-
tication, it is therefore impossible to know which parties are interacting. If a
party that can interact with itself is attempting to interact with another party,
then the Selfie attack is possible. The shapes produced by CPSA only show that
an adversary, that does not know the PSK, cannot generate or modify the mes-
sages. The adversary can reflect the messages back to a party that can act as
both client and server, confusing that party as to whom it is connecting. This is
the Selfie attack.

However, since one could identify the Selfie attack in the shapes produced by
CPSA in the initial model, we modified the model to include the direction a key
was being used by adding the client’s and the server’s identities to the state. We
used two states to represent a bidirectional key. The states had identical index
and key, but differed in which party was the client and which was the server, with
the roles swapped between the two states. This allowed CPSA to subdivide the
original equivalence class into four equivalence classes from the client’s perspec-
tive, shown in Figs. 6, 7, 8, and 9. By adding identities and associating direction
with the keys, we were able to make the Selfie attack visually evident, as there
were now shapes, Figs. 8 and 9, representing executions of the Selfie attack. This

66 P. Bhandary et al.

Fig. 12. Shape produced when post handshake authentication is used. In this case the
client on the left is “b” and believes that the server he has completed the handshake
with is “a”. The server is also “b” and believes that the handshake was completed
with “a”, despite completing the handshake with himself. The client on the right is
“a” and completes the authentication for the client on the left, completing the Selfie
attack with authentication.

also made verifying the fixes easier as it was now possible to determine if the
proposed fix would eliminate those shapes.

Using our model with identities, we were able to verify the proposed fixes,
and identify the attack against a post handshake authentication outlined in [2].
The introduction of the server’s identity into the handshake and the use of direc-
tional keys, created by using different keys and indexes with each state, resulted
in only shapes, Figs. 10 and 11 for the introduction of the server’s identity and
Fig. 14 for the directional keys, where both parties agreed on the identities of the
client and server. None of the shapes that represented the selfie attack existed
in either of those protocol modifications. The use of a post handshake authen-
tication resulted in numerous shapes, with many containing a selfie attack with

Searching for Selfie in TLS 1.3 with the CPSA 67

Fig. 13. Shape with three parties sharing a key and using post handshake authenti-
cation to illustrate that any party could authenticate as any other party. In this case,
the server is “b” and completes the handshake with the client on the left who is “a”,
but authenticates the client on the right who is “b-0”. The client on the right believes
they are authenticating to “a”, the client on the left. Client “a” can now impersonate
client “b-0” to the server.

authentication taking place with a different strand, as illustrated in Fig. 12. In
this case, it would be possible for the server to be communicating with itself
while authenticating a different client. Such a situation lends itself to anyone
being able to impersonate anyone else in network keyed environments as identi-

68 P. Bhandary et al.

Fig. 14. Shape produced when directional keys are used. Only one shape is produced,
as only one key can be used between any pair of parties, guaranteeing agreement by
the parties on who is the client and who is the server.

fied in [2]. We were able to illustrate this (see Fig. 13) by adding an additional
party that was using the same key.

We have validated one of the recommendations for external PSK usage out-
lined in [16], that keys be used only between client/server pairs. We did not
evaluate the other proposed solutions of using external PSK importers to pro-
tect against the attack, although the proposal is similar to the mitigations that
have been investigated.

5 Conclusions

Using CPSA, we were able to model TLS 1.3 PSK authentication and identify
the Selfie attack where other formal tools did not. We were also able to use CPSA
to subdivide the shape representing the equivalence class from our original model
into shapes representing classes of executions that included the Selfie attack and
those that did not. This allowed us to verify that the proposed mitigations were
effective. It also allowed us to demonstrate that a post handshake authentication
would not be effective at preventing impersonation attacks if multiple hosts
shared the PSK.

Although CPSA was able to identify an attack that was missed in the pre-
vious formal analysis, nothing is taken away from the formal analysis that was
performed before. That formal verification effort was successful in verifying the

Searching for Selfie in TLS 1.3 with the CPSA 69

elimination of a number of weaknesses that existed in previous versions of TLS.
Additionally, there are properties that can be proven in the other tools that can-
not be proven in CPSA. The various tools have their strengths and weaknesses,
with no tool offering to verify all properties that one may wish. This effort high-
lights the benefits of using a variety of tools to validate the security properties of
a protocol. The approach taken by CPSA may best be used when all properties
of a protocol may not be well understood. We would advocate for more formal
analysis using a variety of tools to provide greater coverage and assurance in the
security properties of cryptographic protocols.

A Appendix

Source code for the CPSA models used in the analysis (Figs. 16, 17, 19, 20, 21
and 22).

(defprotocol tls basic

(defrole keyPlacement

(vars (index text) (psk skey))

(trace

(init (cat index psk)))

(uniq-orig index)

(non-orig psk))

(defrole client

(vars (index n1 n2 text) (psk skey))

(trace

(obsv (cat index psk))

(send (cat n1 index))

(recv (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(send (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

)

)

(defrole server

(vars (index n1 n2 text) (psk skey))

(trace

(recv (cat n1 index))

(obsv (cat index psk))

(send (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

)

)

(comment "Protocol without identities. Shows Selfie attack.")

)

Fig. 15. CPSA model of TLS 1.3 PSK authentication

70 P. Bhandary et al.

(defskeleton tls

(vars (n1 index text) (psk skey))

(defstrand client 3 (n1 n1) (index index) (psk psk))

(uniq-orig n1)

)

Fig. 16. Skeleton indicating a partial run of the protocol by the client.

(defskeleton tls

(vars (a b name) (n2 index text) (psk skey))

(defstrand server 4 (n2 n2) (index index) (psk psk))

(uniq-orig n2)

)

Fig. 17. Skeleton indicating a partial run of the protocol by the server.

(defprotocol tls1 basic

(defrole keyPlacement

(vars (a b name) (index text) (psk skey))

(trace

(init (cat index a b psk)) ;; clientialization of key for parties a and b

(init (cat index b a psk))) ;; added so CPSA knows the key is bidirectional

(uniq-orig index)

(non-orig psk))

(defrole client

(vars (a b name) (index n1 n2 text) (psk skey))

(trace

(obsv (cat index a b psk))

(send (cat n1 index))

(recv (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(send (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

)

)

(defrole server

(vars (a b name) (index n1 n2 text) (psk skey))

(trace

(recv (cat n1 index))

(obsv (cat index a b psk))

(send (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

)

)

(comment "Protocol with identities added to state. Shows Selfie attack.")

)

Fig. 18. CPSA model of TLS 1.3 PSK authentication with identities associated with
the key to identify direction of use.

Searching for Selfie in TLS 1.3 with the CPSA 71

(defprotocol tls2 basic

(defrole keyPlacement

(vars (a b name) (index text) (psk skey))

(trace

(init (cat index a b psk))

(init (cat index b a psk)))

(uniq-orig index)

(non-orig psk)

(neq (a b)))

(defrole client

(vars (a b name) (index n1 n2 text) (psk skey))

(trace

(obsv (cat index a b psk))

(send (cat n1 index)) ;; client hello

(recv (cat n2 ;; server hello

(enc b (hash psk n1 n2)) ;;encrypted extension servername

(hash (hash psk n1 n2) n1 index n2 (enc b (hash psk n1 n2))))) ;; server finish

(send (hash (hash psk n1 n2) n1 index n2 (enc b (hash psk n1 n2))

(hash (hash psk n1 n2) n1 index n2 (enc b (hash psk n1 n2))))) ;; client finish

)

)

(defrole server

(vars (a b name) (index n1 n2 text) (psk skey))

(trace

(recv (cat n1 index)) ;; client hello

(obsv (cat index a b psk))

(send (cat n2 ;; server hello

(enc b (hash psk n1 n2)) ;; encrypted extension servername

(hash (hash psk n1 n2) n1 index n2 (enc b (hash psk n1 n2))))) ;; server finish

(recv (hash (hash psk n1 n2) n1 index n2 (enc b (hash psk n1 n2))

(hash (hash psk n1 n2) n1 index n2 (enc b (hash psk n1 n2))))) ;; client finish

)

)

(comment "Protocol with servername extension. No selfie attack.")

)

Fig. 19. CPSA model of PSK authentication with server name included in the hand-
shake.

72 P. Bhandary et al.

(defprotocol tls3 basic

(defrole keyPlacement

(vars (a b name) (index0 index1 text) (psk0 psk1 skey))

(trace

(init (cat index0 a b psk0))

(init (cat index1 b a psk1)) ;; clientialization of key for parties a and b

)

(uniq-orig index0 index1)

(non-orig psk0 psk1)

(neq (index0 index1) (psk0 psk1) (a b)))

(defrole client

(vars (a b name) (index n1 n2 text) (psk skey))

(trace

(obsv (cat index a b psk))

(send (cat n1 index))

(recv (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(send (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

)

)

(defrole server

(vars (a b name) (index n1 n2 text) (psk skey))

(trace

(recv (cat n1 index))

(obsv (cat index a b psk))

(send (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

)

)

(comment "Protocol with directional key, names added. Does not shows Selfie attack.")

)

Fig. 20. CPSA model of PSK authentication with directional keys.

Searching for Selfie in TLS 1.3 with the CPSA 73

(defprotocol tls4 basic

(defrole keyPlacement

(vars (a b c name) (index text) (psk skey))

(trace

(init (cat index a b psk))

(init (cat index b a psk)))

(uniq-orig index)

(neq (a b));; (a c) (b c))

(non-orig psk))

(defrole client

(vars (a b ca name) (index n1 n2 text) (psk skey))

(trace

(obsv (cat index a b psk))

(send (cat n1 index))

(recv (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(send (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (enc "CertificateRequest" (hash psk n1 n2)))

(send (enc (enc a (privk ca)) (enc (hash (hash psk n1 n2) n1 index n2

(hash (hash psk n1 n2) n1 index n2) "CertificateRequest") (privk a)) (hash psk n1 n2)))

)
(non-orig (privk ca))

)

(defrole server

(vars (a b ca name) (index n1 n2 text) (psk skey))

(trace

(recv (cat n1 index))

(obsv (cat index a b psk))

(send (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

(send (enc "CertificateRequest" (hash psk n1 n2)))

(recv (enc (enc a (privk ca)) (enc (hash (hash psk n1 n2) n1 index n2

(hash (hash psk n1 n2) n1 index n2) "CertificateRequest") (privk a)) (hash psk n1 n2)))
)

(non-orig (privk ca))

)

(comment "Protocol with post authentication assuming group key, shows impact of selfie attack")

)

Fig. 21. CPSA model of PSK use with post handshake authentication.

74 P. Bhandary et al.

(defprotocol tls5 basic

(defrole keyPlacement

(vars (a b c name) (index text) (psk skey))

(trace

(init (cat index a b psk))

(init (cat index b a psk))

(init (cat index c b psk))

(init (cat index b c psk))

(init (cat index a c psk))

(init (cat index c a psk)))

(uniq-orig index)

(neq (a b) (a c) (b c))

(non-orig psk))

(defrole client

(vars (a b ca name) (index n1 n2 text) (psk skey))

(trace

(obsv (cat index a b psk))

(send (cat n1 index))

(recv (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(send (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (enc "CertificateRequest" (hash psk n1 n2)))

(send (enc (enc a (privk ca)) (enc (hash (hash psk n1 n2) n1 index n2

(hash (hash psk n1 n2) n1 index n2) "CertificateRequest") (privk a)) (hash psk n1 n2)))

)

(non-orig (privk ca))

)

(defrole server

(vars (a b ca name) (index n1 n2 text) (psk skey))

(trace

(recv (cat n1 index))

(obsv (cat index a b psk))

(send (cat n2 (hash (hash psk n1 n2) n1 index n2)))

(recv (hash (hash psk n1 n2) n1 index n2 (hash (hash psk n1 n2) n1 index n2)))

(send (enc "CertificateRequest" (hash psk n1 n2)))

(recv (enc (enc a (privk ca)) (enc (hash (hash psk n1 n2) n1 index n2

(hash (hash psk n1 n2) n1 index n2) "CertificateRequest") (privk a)) (hash psk n1 n2)))
)

(non-orig (privk ca))

)

(comment "Protocol with post authentication assuming group key, shows impact of selfie attack")

)

Fig. 22. CPSA model of PSK use with post handshake authentication and group key-
ing.

References

1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice.
In: 22nd ACM Conference on Computer and Communications Security (Oct 2015)

2. Akhmetzyanova, L., Alekseev, E., Smyshlyaeva, E., Sokolov, A.: On post-
handshake authentication and external psks in tls 1.3. J. Comput. Virology Hacking
Tech. 16(4), 269–274 (2020)

3. Al Fardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: 2013 IEEE Symposium on Security and Privacy, pp. 526–540
(2013). https://doi.org/10.1109/SP.2013.42

https://doi.org/10.1109/SP.2013.42

Searching for Selfie in TLS 1.3 with the CPSA 75

4. Beurdouche, B., et al.: A messy state of the union: taming the composite state
machines of TLS. In: 2015 IEEE Symposium on Security and Privacy, pp. 535–552
(2015). https://doi.org/10.1109/SP.2015.39

5. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified Models and Reference Imple-
mentations for the TLS 1.3 Standard Candidate. Research Report RR-9040, Inria
Paris, May 2017. https://hal.inria.fr/hal-01528752

6. Bhargavan, K., Lavaud, A.D., Fournet, C., Pironti, A., Strub, P.Y.: Triple hand-
shakes and cookie cutters: breaking and fixing authentication over TLS. In: 2014
IEEE Symposium on Security and Privacy, pp. 98–113 (2014). https://doi.org/10.
1109/SP.2014.14

7. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A compre-
hensive symbolic analysis of TLS 1.3. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, pp. 1773–1788.
Association for Computing Machinery, New York (2017). https://doi.org/10.1145/
3133956.3134063, https://doi.org/10.1145/3133956.3134063

8. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and
verification of TLS 1.3: 0-rtt, resumption and delayed authentication. In: 2016
IEEE Symposium on Security and Privacy (SP), pp. 470–485 (2016). https://doi.
org/10.1109/SP.2016.35

9. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 41

10. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016). https://eprint.iacr.org/2016/081

11. Drucker, N., Gueron, S.: Selfie: reflections on TLS 1.3 with PSK. Cryptology ePrint
Archive, Report 2019/347 (2019). https://eprint.iacr.org/2019/347

12. Fabrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security
protocol correct? In: Proceedings of the 1998 IEEE Symposium on Security and
Privacy (Cat. No.98CB36186), pp. 160–171, May 1998. https://doi.org/10.1109/
SECPRI.1998.674832

13. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of
the TLS 1.3 handshake candidates. Cryptology ePrint Archive, Report 2017/082
(2017). https://eprint.iacr.org/2017/082

14. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key
exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Sympo-
sium on Security and Privacy (SP), pp. 452–469 (2016). https://doi.org/10.1109/
SP.2016.34

15. Guttman, J.D., Liskov, M.D., Ramsdell, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyzer (CPSA). https://github.com/mitre/cpsa

16. Housley, R., Hoyland, J., Sethi, M., Wood, C.: Guidance for External PSK Usage
in TLS, draft-ietf-tls-external-psk-guidance-02, August 2021

17. Krawczyk, H., Wee, H.: The optls protocol and TLS 1.3. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS P), pp. 81–96 (2016). https://doi.org/
10.1109/EuroSP.2016.18

18. Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple handshakes security of TLS 1.3
candidates. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 486–505
(2016). https://doi.org/10.1109/SP.2016.36

https://doi.org/10.1109/SP.2015.39
https://hal.inria.fr/hal-01528752
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-540-71209-1_41
https://eprint.iacr.org/2016/081
https://eprint.iacr.org/2019/347
https://doi.org/10.1109/SECPRI.1998.674832
https://doi.org/10.1109/SECPRI.1998.674832
https://eprint.iacr.org/2017/082
https://doi.org/10.1109/SP.2016.34
https://doi.org/10.1109/SP.2016.34
https://github.com/mitre/cpsa
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/SP.2016.36

76 P. Bhandary et al.

19. Liskov, M.D., Ramsdell, J.D., Guttman, J.D., Rowe, P.D.: The Cryptographic
Protocol Shapes Analyser: A Manual. Manual, The MITRE Corporation, May
2020. https://github.com/mitre/cpsa

20. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS.
In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp.
160–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4 7

21. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446,
August 2018

https://github.com/mitre/cpsa
https://doi.org/10.1007/978-3-319-49100-4_7

A Tutorial-Style Introduction to DY�

Karthikeyan Bhargavan1, Abhishek Bichhawat2 , Quoc Huy Do3,4,
Pedram Hosseyni3(B), Ralf Küsters3 , Guido Schmitz3,5 , and

Tim Würtele3

1 INRIA, Paris, France
karthikeyan.bhargavan@inria.fr

2 IIT Gandhinagar, Gandhinagar, Gujarat, India
abhishek.b@iitgn.ac.in

3 University of Stuttgart, Stuttgart, Germany
{quoc-huy.do,pedram.hosseyni,ralf.kuesters,guido.schmitz,

tim.wuertele}@sec.uni-stuttgart.de
4 GLIWA GmbH, Weilheim i.OB., Germany

5 Royal Holloway University of London, Egham, Surrey, UK

Abstract. DY� is a recently proposed formal verification framework for
the symbolic security analysis of cryptographic protocol code written in
the F� programming language. Unlike automated symbolic provers, DY�

accounts for advanced protocol features like unbounded loops and muta-
ble recursive data structures as well as low-level implementation details
like protocol state machines and message formats, which are often at the
root of real-world attacks. Protocols modeled in DY� can be executed,
and hence, tested, and they can even interoperate with real-world coun-
terparts. DY� extends a long line of research on using dependent type
systems but takes a fundamentally new approach by explicitly modeling
the global trace-based semantics within the framework, hence bridging
the gap between trace-based and type-based protocol analyses. With this,
one can uniformly, precisely, and soundly model, for the first time using
dependent types, long-lived mutable protocol state, equational theories,
fine-grained dynamic corruption, and trace-based security properties like
forward secrecy and post-compromise security.

In this paper, we provide a tutorial-style introduction to DY�: We
illustrate how to model and prove the security of the ISO-DH protocol,
a simple key exchange protocol based on Diffie-Hellman.

Keywords: Cryptographic protocols · Protocol analysis · Mechanized
proofs · Formal methods · F�

1 Introduction

Since the proposal of the authentication protocol by Needham and
Schroeder [26], the security of such cryptographic protocols has become a con-
tinuous field of study for the research community. The first formalization for
symbolic protocol analysis has been proposed by Dolev and Yao in [13]. Still, a
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 77–97, 2021.
https://doi.org/10.1007/978-3-030-91631-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_4&domain=pdf
http://orcid.org/0000-0002-3075-2743
http://orcid.org/0000-0002-9071-9312
http://orcid.org/0000-0002-3776-5475
http://orcid.org/0000-0002-4729-0629
https://doi.org/10.1007/978-3-030-91631-2_4

78 K. Bhargavan et al.

severe protocol flaw in the public-key authentication protocol (NS-PK) proposed
by Needham and Schroeder remained undiscovered for 17 years: In [23], Lowe
presented an attack that breaks the security of the NS-PK protocol by mixing
two concurrent protocol sessions. Lowe also proposed a fix and showed that this
fix is indeed sufficient using the symbolic tool FDR [24].

Since then, the research community has developed several formal analy-
sis techniques and (semi-)automated tools to verify cryptographic protocols
(see [2,9] for detailed surveys). The approaches can be divided into two cat-
egories: i) computational approaches, where proofs are built on precise prob-
abilistic assumptions of the underlying cryptographic primitives, and ii) sym-
bolic approaches which build upon a simpler, abstract notion of these primi-
tives. While computational analyses are more precise, they require significantly
more effort, and even with the aid of mechanized verification tools, it becomes
infeasible to cover all protocol features and attack vectors for large protocols. In
contrast, symbolic analyses scale much better, but with less precision regarding
cryptographic details.

The symbolic approach has also been in the research focus of Joshua Guttman
for a long time: For example, in [31], Thayer, Herzog, and Guttman have pro-
posed a framework that formalizes possible executions of a protocol together with
possible actions of an adversary into so-called strand spaces and enables precise
proofs w.r.t. different kinds of attackers. This approach is extended, exercised,
and refined in several papers by Guttman (and others), e.g., (1) to prove inde-
pendence of sub-protocols’ security goals when combining protocols with shared
cryptographic material [18]; (2) by introducing authentication tests [19] to prove
certain authentication properties more easily and using those to not only ana-
lyze, but also to design security protocols [17]. Other contributions include work
on an algebra for symbolic Diffie-Hellman protocol analysis [14] and reasoning
on participant’s state [27].

By now, the field has matured a lot. Many real-world protocols have been ana-
lyzed using symbolic methods, which often are based on Joshua’s work. For exam-
ple, important protocols like TLS [7,12], Signal [11,21], IKEv2 [1], OAuth [15],
and OpenID Connect [16] have undergone symbolic analysis, often revealing
severe flaws. In many cases, such protocols have been analyzed using automated
provers for symbolic protocol analyses, such as AVISPA [1], ProVerif [10], and
Tamarin [25], with Tamarin being based on the concept of strand spaces. These
tools can quickly analyze all possible execution traces of protocols and find
attacks like Lowe’s and much more sophisticated ones in a matter of seconds.

Still, existing symbolic analysis tools, such as ProVerif and Tamarin, have
many limitations: (1) These tools do not scale well for complex protocols, as
they always perform whole protocol analysis and cannot break the analysis into
smaller (re-usable) modules. (2) Protocols with unbounded loops, for which a
proof typically needs inductive reasoning, as well as protocols that use recursive,
unbounded data structures are very challenging for these tools. (3) Models for
these tools are far from actual implementations that take low-level protocol
details into account.

A Tutorial-Style Introduction to DY� 79

Existing symbolic analysis frameworks based on dependent-type systems (see,
e.g., [3,8]) mitigate some of these limitations as they focus on implementations
and modular analysis. However, they come with other restrictions: For example,
these works do not model global trace-based runtime semantics and rely on
external security arguments (typically proven by hand); security goals such as
forward secrecy and post-compromise security are difficult to express and prove;
they do not model cryptographic primitives like Diffie-Hellman or XOR that
require equational theories and they only have limited support for stateful code
with mutable data structures.

A recent approach, the DY� framework [5], tries to combine the best of both
worlds. It allows for modeling protocols in detail, including implementation fea-
tures, such as state management, that are usually left out in other approaches.
Moreover, the models are executable, and hence, testable using (say) test vec-
tors from protocol specifications. Protocols can even be implemented in DY� to a
level of detail that yields implementations that interoperate with real-world coun-
terparts [6]. DY� is based on the full-fledged programming language F� [29,30],
which provides an advanced dependent type system and a powerful proof envi-
ronment. The F� type-checker can prove that programs meet their specifications
using a combination of SMT solving and interactive proofs. With F�’s type sys-
tem and proof environment, DY� is also able to build and verify protocols in a
modular way, use induction-based proofs and capture unbounded and recursive
protocols with complex data structures.

This new approach has already been used to analyze complex protocols: In [5],
we have analyzed the Signal protocol, which is used in many popular messaging
systems and makes heavy use of Diffie-Hellman exponentiation, signatures, key
derivation functions, symmetric encryption, and MACs. Signal employs multiple
layers of recursive sub-protocols, which we have modeled/implemented and ana-
lyzed in detail in DY�. Our work on Signal is the first type-based formulation
and proof of post-compromise security for any protocol. In [6], we analyzed the
ACME protocol, which is used by certification authorities, such as Let’s Encrypt,
to verify domain ownership and issue certificates. Our model of ACME enjoys
an unprecedented level of detail, sufficient to be interoperable with real-world
implementations; it, among others, can interact with the Let’s Encrypt server.
Our model and proof of ACME totals more than 16,000 lines of F� code and
is one of the largest and most in-depth analyses of a cryptographic protocol
standard in the literature. Again, in the analysis we precisely handle recursive
sub-protocols and implementation loops.

In this paper, we provide a tutorial-style introduction to DY� using the rel-
atively simple ISO-DH authentication and key establishment protocol [20] as a
running example. In Sect. 2, we first give an overview of DY� itself. The ISO-
DH protocol is briefly described in Sect. 3. We show how to model ISO-DH in
DY� in Sect. 4, with the analysis of this protocol in DY� presented in Sect. 5.
The code of our analysis is available in [4]. We conclude in Sect. 6. We refer the
reader to [5,6] for a detailed introduction of DY�, more complex case studies,

80 K. Bhargavan et al.

and a more comprehensive discussion of related work. More information on the
umbrella project REPROSEC can be found in [28].

2 The DY� Framework

The DY� framework has been proposed in [5]. In this section, we give a brief
overview of this framework following the descriptions of the original publication.
For full details, we refer the reader to [5].

The DY� framework is meant to model a distributed system that consists of
principals executing protocol code and exchanging messages over an untrusted
network which is under the control of a Dolev-Yao adversary.

A central component of our framework is the global (execution) trace. Among
others, it records the history of the states of all principals at any time throughout
the run of a system as well as all messages sent over the network by principals. A
principal’s state may contain arbitrary information. For example, it can contain
long-lived keys, such as the principal’s public and private keys. Also, principals
may be involved in an unbounded number of sessions at the same time. Hence,
a principal’s state also contains the current session state for all of its sessions.

In the simplest case, at each protocol step a principal first retrieves its current
state from the global trace, possibly reads a message from the network (and
hence, from the trace), performs its computation, sends messages back to the
network (and hence, to the trace), and at the end of the invocation saves its new
state in the global trace. Being based on a fully-fledged programming language,
DY�, of course, does not restrict protocol implementations to follow that pattern
and it allows for arbitrary computations, including, for example, loops within
protocol steps as well as iterations of subprotocols.

The trace also records the nonces generated by principals and documents
whether principals or their sessions (even versions of sessions, see below) are
corrupted by the adversary, who can corrupt principals dynamically in a fine-
grained way.

The trace determines the attacker’s knowledge at any point in a run: the
attacker knows all messages that have been sent on the network thus far as
well as the state of corrupted principals or corrupted sessions of principals. This
knowledge in turn determines which messages the attacker can send to (sessions
of) principals. An attacker can only construct and send messages it can derive
from its knowledge. In particular, it cannot simply guess secrets.

For principals to interact with the trace, we provide a set of modules (con-
taining APIs). These modules are layered : At the bottom is the symbolic runtime
layer, which allows principals to access and manipulate the trace in a straight-
forward way. On top of this layer, we construct the labeled layer, which factors
out generic security abstractions and invariants, all of which are mechanically
proven sound in F� w.r.t. to the lower-level trace-based runtime semantics of the
symbolic runtime layer.

We typically prove security properties in DY� with the help of the labeled
layer: At the heart of our methodology is a security-oriented coding discipline for

A Tutorial-Style Introduction to DY� 81

protocol code written in terms of secrecy labels and usage constraints. Labels
allow us to proactively track knowledge of secrets. Whenever some secret is
generated (e.g., a nonce), we annotate this secret with a label that states who is
allowed to know this secret.

Usage constraints complement labeling: We annotate key material with a
usage, for example: a key may only be used for signing but not for encryption
(which rules out decryption oracles). Moreover, the annotation can also express
that a key may only be used for cryptographic operations with certain pay-
loads, e.g., that some key is only ever used to sign specific messages. This allows
us to (by local type-checking) even reason about the behavior of other honest
principals.

The labeling layer contains a generic trace invariant that describes a valid
trace. For example, in a valid trace, messages sent to the network must always
be publishable (according to their labeling) and principals only store terms in
their states that they are allowed to know. This means that, e.g., code modeling
a protocol in which principals send secrets unprotected via the public network
will violate our valid trace invariant. DY� comes with generic security lemmas,
proven in F� in the framework itself, which show that the labeling of messages
is actually sound w.r.t. the symbolic runtime layer.

The global trace also allows us to naturally and explicitly express security
properties, such as secrecy properties and authentication/integrity properties,
involving features like (long-lived) mutable state, dynamic compromise, forward
secrecy, and post-compromise security that require reasoning about the adver-
sary’s knowledge and the precise order of events in the global trace. As mentioned
in Sect. 1, all this was lacking in previous dependent type based approaches. In
order to prove such properties, we typically formulate global invariants over the
global trace which the code of every principal has to preserve. The invariants
must be strong enough to then imply the security properties we care about.

States and Corruption. As mentioned above, principals’ states are recorded
in the global trace. Every time a principal stores its state, a new (immutable)
entry is appended to the trace that contains the principal’s identity and the whole
principal’s state. This state is grouped in so-called sessions, each annotated with
a version identifier. Sessions can store long-term keys, such as a principal’s public
and private keys, but also, as the name suggests, the principal’s states of arbi-
trary many ongoing protocol sessions. An adversary can at any time compromise
a specific version of a session of some principal. Such a compromise is recorded
in the trace and the adversary can use all information stored in that state ses-
sion. This particularly fine-grained notion of compromise allows an attacker to
dynamically compromise both long-term keys and ephemeral protocol states. By
this, we can model that only a subset of data stored in a principal’s state leaks
to the adversary, allowing us, for instance, to analyze forward secrecy and post-
compromise security. The attacker, however, is not restricted by this model as
it can corrupt as many versions and sessions as it likes.

82 K. Bhargavan et al.

Equational Theories. DY� builds upon an abstract type of byte strings called
bytes and defines a series of (abstract) conversion and cryptographic functions for
constructing and parsing byte strings. One can also define equational theories on
bytes to capture algebraic properties. For example, for Diffie-Hellman, we have
the functions dh_pk and dh, where dh_pk reflects the generation of the public key
(gy) from a private key (y), and dh reflects the computation of the shared secret
(gxy) from a private key (x) and public key (gy).

We technically represent equational rules as F� lemmas. For example, the
equational rule (gx)y = (gy)x is expressed as follows:1

val dh_shared_secret_lemma: x:bytes → y:bytes →
Lemma ((dh x (dh_pk y)) == (dh y (dh_pk x)))

DY� already provides a large set of typical equational rules, which —if
needed— can easily be extended (for DH, XOR, signatures, etc.). For example,
in [6] we add a property called non-destructive exclusive ownership for signa-
tures.

Modeling Adversarial Behavior. We model an active network attacker, in
the tradition of Dolev and Yao [13]. The attacker can intercept, modify, and
block all messages sent on the network. The attacker can compromise any ses-
sion state and can call any cryptographic function (using messages/principal’s
states it already knows), and can schedule any part of a protocol, i.e., functions
that model the behavior of honest parties (see below). By using these capabil-
ities, the attacker grows its knowledge as the global trace is extended and can
try to break the protocol’s security goals. Essential for an attacker’s behavior
is its knowledge. The attacker’s knowledge at each index i in the global trace is
logically characterized using a set of derivation rules. For example, the attacker
can immediately derive literals, read any message sent on the network, read
previously compromised states, and decrypt ciphertexts for which it knows the
corresponding keys. To verify the correctness and expressiveness of our attacker
model, we implement a (typed) API for the attacker with commonly expected
operations like sending and receiving messages or corrupting principals. By type-
checking this attacker API, we prove that our trace invariants do not restrict
the adversary in unexpected ways, a property called attacker typability.

Labeled Crypto API. The core of the labeled layer is a labeled crypto API
that provides labeled wrappers for all the crypto functions on the symbolic run-
time layer and internally enforces labeling and usage rules. Each byte in bytes
is assigned a unique label that indicates who may know it. For example, a label
CanRead [P p1; P p2] indicates a secret that only the principals p1 and p2 may
know, whereas the label public indicates that anyone may know it. Literals are
always labeled public, nonces are assigned a label when they are generated.
1 Note that we format all F� code in this paper using a pretty-printer, i.e., some syntac-

tic constructs are displayed using well-known mathematical symbols for readability,
such as →, ∀, ∃, and λ, instead of their textual representations.

A Tutorial-Style Introduction to DY� 83

Secrecy labels form a lattice, where can_flow i l1 l2 says that the label l1 is
equal or less strict than the label l2 at trace index i. In particular, public flows to
all other labels, and CanRead [P p] can flow to public at index i if Compromised p
sid v (for some session sid and some version v) occurs in the trace at or before i.

The labeled APIs enforce a labeling discipline that ensures that secret values
never flow to public channels. In particular, we require that the labels of all
network messages must flow to public. If a secret value has to be sent over the
network, it must first be encrypted with a key whose label is at least as strict as
the message’s label. We refer the reader to [4] for the full set of labeling rules.

In addition to secrecy labels, the labeled APIs also enforce usage pre-
conditions. Each key is assigned an intended usage. For example, a signature key
cannot be used as an encryption key. Furthermore, we define a global usage pred-
icate controlling what kinds of messages a given key can encrypt/sign. Of course,
these restrictions only apply to honest principals. For example, the labeled API
for the signature and verification functions is as follows:2

val vk: sk:bytes → pk:bytes{is_labeled_public pk}
val sign: #p:global_usage → #i:timestamp → #l:label → #l’:label →

k:bytes{∃ s. is_signing_key p i k l s} → nonce:bytes →
m:bytes{get_label m == l’ ∧ ∀s. is_signing_key p i k l s
=⇒ p.usage_preds.can_sign i s (vk k) m} →

tag:bytes{can_flow i (get_label tag) l’}
val verify: pk:{is_labeled_public pk} →m:bytes → tag:bytes → bool
val verify_lemma: #p:global_usage → #i:timestamp → #l1:label → #l2:label →

pk:bytes →m:msg p i l1 → tag:msg p i l2 →
Lemma (if verify pk m tag then (∀ l s. is_verification_key p i pk l s

=⇒ (can_flow i l public ∨ (∃ j . j ≤ i ∧ p.usage_preds.can_sign j s pk m)))
else (C.verify pk m s = false))

Signing keys are supposed to be secrets (typically labeled with CanRead [P
prin] to model that they should be known only to some principal prin) and marked
to be used as signing keys (along with some string s that we can use to tag such
keys in order to track them in our proofs). The corresponding verification keys
(generated with vk) are always labeled public. For each protocol, we define a
(global) predicate can_sign i s k m (part of the global usage data structure p)
that indicates if at some timestamp i the private key corresponding to the public
key k (tagged with the string s) may sign the message m. This predicate is then
used as a pre-condition for sign, ensuring that protocol code does not accidentally
call sign with a message that does not conform to can_sign. Conversely, if verify

2 Note that the code excerpts we show in this paper are a bit simplified for presentation
purposes (see [4] for the full code). Further note that we here use so-called refinement
types provided by F� to further restrict types. For example, the result pk of the
function vk is of type bytes, which is —by refinement— further required to satisfy
the predicate is_labeled_public, which states that the byte string pk must be labeled
as public. We also make use of so-called implicit arguments, which are marked by #.
In many cases, these parameters can be dropped when calling the function, as F�

can derive them from the context.

84 K. Bhargavan et al.

succeeds, then the API guarantees that the signature must be valid and the
signed message must satisfy can_sign, unless the signing key can be known by
the attacker (see verify_lemma above); in this lemma, l indicates the label of the
private key of pk.

For Diffie-Hellman, each DH private key has the type dh_private_key p i l s
indicating that it has a secrecy label l and that the shared secret generated
from this private key should have the usage defined by the function dh_usage
that takes as parameter the string s. The corresponding public keys have type
dh_public_key p i l s. The declarations in F� are as follows:

val dh_usage: string → usage
val dh_pk: #p:global_usage → #i:nat → #l:label → #s:string →

dh_private_key p i l s → dh_public_key p i l s
val dh: #p:global_usage → #i:nat → #l1:label → #l2:label → #s:string →

dh_private_key p i l1 s → dh_public_key p i l2 s →
b:bytes{has_label i b (join l1 l2) ∧ has_usage i b (dh_usage s)}

The function dh takes a private key with type dh_private_key p i l1 s and a
public key with type dh_public_key p i l2 s to compute a shared secret with label
join l1 l2 and usage defined by dh_usage given the string s. The label join l1 l2
means that the shared secret may be used in any session covered by l1 or l2. We
define several other variants of the dh function, including for cases where the
peer’s public key is untrusted.

The types for the rest of the cryptographic API are similar. In each con-
struction, the arguments must satisfy some protocol-specific usage predicate
(can_aead_encrypt, can_mac, ...), and in all encryption functions, we ask that mes-
sages must flow to the labels of the decryption keys.

Specifying Protocols. A protocol is written as a set of functions, each of
which defines one protocol step performed by a principal. These functions can
be called by the adversary in arbitrary order. The parameters of these functions
allow the adversary to specify which session of the protocol is to be invoked and
which message the principal is supposed to read from the network. In particular,
we have no restrictions on the number of principals or sessions in a protocol run.

When called, a function typically parses the principal’s state as well as the
network message to some semantically rich data type (we provide protocol-
dependent parsing and serializing functions). Next, it performs the computa-
tion of the respective protocol step, serializes its results (a new state for this
principal and possibly new network messages), and places these results on the
trace (by storing the new state and sending the network messages). Since with
F� we have a full-fledged functional programming language at our disposal, the
functions can perform arbitrary computation and, in combination with global
traces, easily deal with recursive, mutable, and long-lived state, unlike previous
approaches.

The protocol code for each principal cannot directly read or write to the
trace, but instead must use the labeled API that enforces an append-only disci-
pline on the global trace using a custom computational and stateful (monadic)

A Tutorial-Style Introduction to DY� 85

effect called LCrypto. Recall that effects (and so-called monads) are common in
functional programming languages, for example, to implement stateful functions.
LCrypto allows the function to use and modify the global trace, without providing
the global trace as a parameter to the function. The effect also captures trace
invariants (see below). Functions annotated with the LCrypto effect are total (i.e.,
they always terminate) but can return errors, which are automatically propa-
gated by LCrypto.

The labeled API provides functions to generate new nonces, send and receive
messages, store and retrieve states, and log security events. Using these functions,
and a library of functions for cryptography and bytes manipulations, we can build
stateful implementations of protocols.

The LCrypto effect enforces the global trace invariant valid_trace. Functions
in the trace API and with the LCrypto effect take valid_trace as both pre- and
post-condition. Hence, this generic trace invariant must hold in all global traces
generated by protocol code that follows the labeling rules. The invariant consists
of several components, some generic and some that have to be defined for each
protocol. The following F� code specifies the generic parts with the protocol-
specific invariants/predicates given in the argument pr:

1 let valid_trace (pr:preds) (tr:trace) =
2 (∀ (i:timestamp) (t:bytes) (s:principal) (r:principal). i < trace_len tr =⇒
3 (was_message_sent_at i s r t =⇒ (is_publishable pr.global_usage i t))) ∧
4 (∀ (i:timestamp) (p:principal) (v:version_vec) (s:state_vec). i < trace_len tr =⇒
5 (state_was_set_at i p v s =⇒ ((Seq.length v = Seq.length s) ∧
6 (∀ j. j < Seq.length v =⇒ pr.trace_preds.session_st_inv i p s[j] v[j])))) ∧
7 (∀ (i:timestamp) (p:principal) (e:event). i < trace_len tr =⇒
8 (did_event_occur_at i p e =⇒ (pr.trace_preds.can_trigger_event i s e)))

The invariant states that i) (Lines 2–3) any message t that is sent on the
network (at index i by the sender s to the intended receiver r) must have a label
that can flow to public; ii) (Lines 4–6) any state (with sessions s and correspond-
ing versions v)3 that is stored by an honest principal p at index i must satisfy
the protocol-specific state invariant session_st_inv i p s’ v’ contained in pr for each
session s’ (in s) and their corresponding version identifier v’ (in v); iii) (Lines 7–8)
any event e logged by principal p at index i must satisfy the protocol-specific
event predicate can_trigger_event i p e in pr. We also prove that all functions in
the attacker API preserve valid_trace (regardless of protocol-specific predicates),
i.e., the attacker is not restricted by this invariant.

For a protocol model, we define the above-mentioned protocol-specific invari-
ants pr and provide pr to the effect LCrypto as an argument. As valid_trace is
parameterized by pr, the effect can then instantiate this invariant for a concrete
protocol. Note that pr also contains usage predicates for cryptographic functions,
such as can_sign mentioned above. Hence, these predicates are propagated in the
same way as valid_trace.
3 Sessions and versions are stored in two separate sequences s and v (of the same

length). For each session s’ that is stored at index j in s, the corresponding version
identifier v’ is stored at the same index j in v.

86 K. Bhargavan et al.

Protocol-specific invariants can be parameterized as well. This way, we can
easily define re-usable modular layers, such as a generic PKI layer (which we
also provide). This PKI layer, for example, provides key material to each prin-
cipal stored in distinguished sessions. To enable layering, the protocol-specific
invariant of this layer takes another (higher-layer) protocol-specific invariant pr
as an argument and combines both to pki pr, where pki maps pr to the richer
invariant.

Specifying Security Goals. The labeled layer of the DY� framework allows us
to specify security goals in several ways: i) we can use labeling to specify “simple”
goals such as the secrecy of certain terms; ii) we can use the state invariant
and event predicate from valid_trace to specify conditions under which a certain
principal may reach a certain state/record an event; iii) we can specify more
complex properties independently and show that these are implied by valid_trace.
In the latter case, we have to define the state invariant and event predicate such
that they reflect sufficient properties of the protocol to prove the security goal.

Symbolic Execution. To enable debugging and testing protocol models, we
provide a symbolic implementation of all abstract parts of the symbolic runtime
layer. In particular, we provide an algebraic model for our basic data type bytes
and all conversion and cryptographic functions of this layer. We emphasize that
this model is mechanically proven to satisfy the equational theory, i.e., all lemmas
describing this theory must hold true for the implementation.

For each protocol that we model in DY�, we can write a scheduler function
which calls the protocol functions in the expected order. This scheduler essen-
tially describes a run of the protocol and can be seen as a test case. We can then
compile the scheduler along with the DY� framework and the protocol imple-
mentation to OCaml and execute this code to print out a symbolic trace of a
protocol run. This way, we can inspect symbolic runs and check our model for
errors, something not possible in tools like Tamarin and ProVerif. We can also
implement further test cases and also implement and check known attacks for
unfixed protocol code.

3 The ISO-DH Protocol

The ISO-DH protocol is a variant of the Diffie-Hellman protocol for authenti-
cated key exchanges. More precisely, it extends the Diffie-Hellman protocol by
adding an authentication mechanism as defined in [20]. The protocol is depicted
in Fig. 1 with an initiator I and receiver R. For computing and verifying sig-
natures, the protocol requires both parties to have a key pair and know the
corresponding public key of the other party. We denote the private signing key
of P by skP and the corresponding public key by pkP .

A Tutorial-Style Introduction to DY� 87

Security Goals. The primary goal of the protocol is to provide secrecy of the
generated shared key (gxy) if the protocol is run between an honest initiator
and an honest responder. More precisely, the protocol aims to achieve forward
secrecy in the presence of an active network attacker. That is, even if the attacker
corrupts the long-term secrets of the principals (the signature keys) after a shared
key has been established, the attacker is not able to obtain the shared key. The
protocol also aims to provide mutual authentication by means of the signatures
added to the Diffie-Hellman protocol.

4 Modeling ISO-DH in DY�

We now illustrate the overall modeling process in DY� using the ISO-DH protocol
as an example. This section presents the model of the first two steps of this
protocol in detail (up to the point where the responder processes the first message
and sends the second message) and gives a brief overview of the remaining steps.
The full DY� implementation of this protocol can be found in [4]. We note that
the analysis of ISO-DH has first been conducted as a case study in [5] but was
only briefly sketched there. Here, we go into much more detail regarding both
the formal model as well as the security analysis.

Fig. 1. Signed Diffie-Hellman Protocol (ISO-DH) [22]. We use message tags to
avoid reflection and type confusion attacks. This figure is taken from [5].

Initiator: Send First Message. To model the first step of the protocol, we
define a function initiator_send_msg_1 which chooses a fresh nonce x for a principal
a (the initiator), sends the first protocol message to a principal b (the responder),
and stores the relevant values in the principal state of a. The interface and
the implementation of this function are shown in Fig. 2. As specified by the
interface in Lines 2 to 6 of Fig. 2, the function has two principals a and b as
input parameters. The return values are idx_msg and idx_session, where idx_msg is

88 K. Bhargavan et al.

the trace index at which the global trace records the sent message and idx_session
is the index in the trace at which the new state of the initiator is recorded.
Furthermore, the function has the LCrypto effect, parametrized by pki isodh, with
isodh being the protocol-specific predicates (see also Sect. 2).

Before explaining the function in detail, we note that the LCrypto effect allows
us to specify pre- and post-conditions using the requires and ensures clauses. The
initiator_send_msg_1 has no additional pre-conditions except those required by
the effect, i.e., that the (implicit) input trace is valid (see Line 5). In Line 6,
the post-condition of the function specifies a condition on the input trace t0, the
return values (i, si), and the output trace t1. More precisely, the length of the
output trace must be larger than the length of the input trace, and the message
index i must point to the last trace entry of the output trace t1. Recall that the
LCrypto effect (implicitly) also stipulates the validity of the output trace. Users
do not have to state this.

Fig. 2. Interface and implementation of the first protocol step. See module
ISODH.Protocol in [4].

The implementation of initiator_send_msg_1 starts with choosing a new state
session index in Line 10, which is used to store information related to one protocol
session. The function new_session_number is provided by DY� and returns the next
available session index for the current principal state of a.

A Tutorial-Style Introduction to DY� 89

Next, the function generates a fresh nonce x using the DY� function rand_gen
in Line 11. The label of this nonce is (readers [V a si 0]), indicating that only
version 0 of the state session si of principal a may read the nonce. Furthermore,
the usage of the nonce is specified as (dh_usage"ISODH.dh_key"). By calling the
DY� function dh_pk, the DH public key gx is calculated.

In Lines 14 and 15, an application-specific event is created and added to the
trace, stating that a protocol flow is initiated with initiator a, responder b, and
initiator public value gx.

The relevant information about the protocol flow is saved in the principal
state of a in Lines 18 to 20. In particular, the intended responder b and the
nonce x are stored in an application-specific session type InitiatorSentMsg1 and
this state session is serialized (i.e., turned into a value of type bytes). In Line 20,
the serialized state session is appended to the current principal state of a and
the new principal state is then stored in the global trace. Recall that a principal
p may only store state labeled to be readable by p. This is a time-dependent
property, which is why the timestamp (Line 17) is needed.

In Lines 22 to 25, the function once more acquires a new timestamp (i.e., the
current length of the trace, which is not equal to t1, as the state of principal a was
updated in Line 20) and creates an application-specific message Msg1 containing
the identity of the initiator and the DH public key gx. This message is serialized
in Line 24 and sent in Line 25. The send function appends the message to the
global trace and returns the message’s trace index. (Note that the message has
to be publishable, a time-dependent property.)

The function returns two indices, as already mentioned above. With these
values, it is possible to write a scheduler for symbolic test cases as described in
Sect. 2.

Responder: Receive Message and Send Reply. The steps performed
by the receiver are shown in Fig. 3. As mentioned, DY� supports a high
degree of modularity. In particular, we can split up large functions into small
helper functions, as shown below: The main function modeling the second
step is responder_send_msg_2 (see module ISODH.Protocol in [4]), which we
split up into two helper functions, one for receiving the first protocol mes-
sage and one for sending the second protocol message (for brevity, we omit the
responder_send_msg_2 function, as this function simply uses the two helper func-
tions shown in Fig. 3). The security, i.e., non-violation of the trace invariant, is
proven for each (helper) function independently, modularizing proof obligations
on a fine-grained level.

The function that models receiving the first message, receive_msg_1_helper,
is shown in Lines 1 to 12 of Fig. 3. In Line 8, the helper function calls the
receive_i function of DY�, which is given the trace index at which the message
to be read is stored and the receiver’s name. However, the receive function does
not provide any guarantees on authenticity or confidentiality of the received
message and only guarantees that a message was sent at the given trace index.

90 K. Bhargavan et al.

(The operation might fail and the failure is propagated by the LCrypto effect.)
The received message is then parsed in Lines 9 to 12.

The second helper function send_msg_2_helper is similar to the initiator func-
tion shown above. The responder creates the values y and gy in Lines 23 and
24, stores all relevant values in a new session in its state in Lines 26, 27, and 31,
and generates an event in Line 30. The responder creates the second protocol
message in Line 38, serializes it in Line 39, and sends the message in Line 40.

For computing the signature contained in the second protocol message, the
responder first retrieves its private key in Line 21 using the get_private_key func-
tion. This function is provided by the PKI layer of DY� and returns the key of b
of the specified key type (here, the key type is SIG, hence the function returns a
signing key). The responder creates the signature in Lines 33 to 36. The function
sigval_msg2 (used in Line 34) is a helper function that creates the payload for
the signature, i.e., a concatenation of the identifier a, the values gx and gy, and
a string "msg2" (as a tag).

The assert clause in the code states a simple property that facilitates the F�

proofs (see also Sect. 5).

Remaining Protocol Steps. For details on the remaining protocol steps, we
refer to the reader to [4]. The model implements the remaining steps from Fig. 1
similarly to the functions presented in this section. Upon finishing the protocol
run, the initiator and responder each write events to the trace indicating that
they completed a protocol run, and in these events include their names, the
values gx, gy, and the shared key k. In the following, we briefly explain the
verification of the signature by the initiator, as this step is crucial for the proof
outlined in Sect. 5.

When the initiator receives the second message, it verifies the signature con-
tained in the message using the helper function shown in Fig. 4. The initiator
calls the function with the following arguments: the current trace length i, the
session and version indices si and vi at which the initiator manages the values
of the protocol flow, the principal names a and b, the public key pkb of b (for
verifying the signature), the values gx and gy of the current protocol flow, and
the signature sig contained in the second protocol message.

First, the initiator creates the message for which the signature should be valid
in Line 2 of Fig. 4. As described previously, the sigval_msg2 function essentially
concatenates the input arguments. Next, the helper function tries to verify the
signature in Line 3 . If the verification is successful, the initiator calculates and
returns the shared key k in Lines 5 and 7 . The remaining code is needed to
prove the security properties and will be described in Sect. 5.

5 Security Analysis

In this section, we describe in detail how security properties can be proven within
the DY� framework, illustrated by the ISO-DH protocol. In particular, we show
how security properties can be stated as F� lemmas, encoded in trace invariants,
and how these invariants are enforced on the application code layer.

A Tutorial-Style Introduction to DY� 91

5.1 Forward Secrecy

A central security property of the ISO-DH protocol is the secrecy of the resulting
shared key, even if long-term secrets used by the initiator and responder become
corrupted. We formalize this forward secrecy property, which was already out-
lined in Sect. 3, as an F� lemma as shown in Fig. 5.

Fig. 3. Interface and Implementation of the Second Protocol Step. See module
ISODH.Protocol in [4] for full details. Note that we marked proof-related code with a
gray background (see also Sect. 5).

92 K. Bhargavan et al.

Fig. 4. Helper function for verifying the signature of the second message and – if the
signature is valid – calculating the shared DH key. See module ISODH.Protocol in [4].

Fig. 5. Forward secrecy theorem. See module ISODH.SecurityLemmas in [4].

The lemma is formulated as a function of the LCrypto effect, but without a
return value (i.e., the type of the return value is unit). The pre-condition of the
lemma requires that the initiator a has finished the flow (modeled by a finishI
event) at a trace index i. If this is the case, then the lemma ensures that either
b has been corrupted at or before i, or the key has a join label (containing the
specific session and version identifiers at which a and b store the key) and cannot
be derived by the attacker unless it compromises one of these sessions (with the
respective version). In particular, as long as the specific sessions at which a
and b store their key is not corrupted, the key stays secret even if the attacker
corrupts the long-term signing keys of a or b after the initiator has finished the
protocol run. We formulate a similar lemma for an event type indicating that
the responder has finished the protocol flow.

As explained in Sect. 2, the security properties are proven by an appropriate
instantiation of the valid_trace invariant from which the security properties should
follow. We show how a suitable valid_trace can be specified and how to utilize the
signature and event predicates in DY� to prove that the protocol code preserves
valid_trace.

Specifying valid_trace. In brief, we encode in valid_trace that, whenever a (finishI
a b gx gy k) event occurs on the trace, then the key k must have the label (join
(readers [V a si vi]) (readers [V b sj vj])) (for some values si, vi, sj, vj) if b is
not corrupted at i. Using a generic security lemma for labels provided by DY�,
we can then prove the secrecy of the key (see below). As described in Sect. 2,

A Tutorial-Style Introduction to DY� 93

DY� provides a straightforward way to define predicates on events using the
parameter of the LCrypto effect. The effect parameter used in this analysis is
(pki isodh), i.e., event predicates on the finishI event can be defined in the isodh
invariants (at the application layer). For this purpose, we first define a predicate
is_dh_shared_key as follows (see module ISODH.Sessions):

1 let is_dh_shared_key (i:timestamp) (key:bytes) (a:principal) (b:principal) =
2 (∃ si sj vi vj. is_aead_key isodh_global_usage i key
3 (join (readers [V a si vi]) (readers [V b sj vj])) "ISODH.aead_key")

By using the is_aead_key predicate as shown, we require the key to be labeled
(join (readers [V a si vi]) (readers [V b sj vj])) (and to be used as an AEAD
encryption key); see module Labeled.CryptoAPI in [4].

For (finishI a b gx gy k) events, we now require (using the event predicate) that
(corrupt_id i (P b) ∨ is_dh_shared_key i k a b) must hold true. With such a predicate
on finishI events, we can easily infer that the label of a shared key is (join (readers
[V a si vi]) (readers [V b sj vj])) (for some values si, vi, sj, vj) as long as principal b
is not corrupted at or before trace index i. Next, we show how we ensure that the
protocol implementation fulfills this event predicate and why is_dh_shared_key is
true if b is not corrupted at or before i.

Implementation Fulfills valid_trace. Recall that by using the LCrypto effect
for protocol code, each function must ensure the validity of the resulting trace
after the function call, e.g., whenever an initiator creates a finishI event, it must
ensure that is_dh_shared_key is true if the responder is not corrupted.

Before the initiator of our model finishes the protocol run, it checks the
signature contained in the second message and computes the shared key (see
Fig. 4). The post-condition of the function in Fig. 4 looks as follows:

1 λ t0 k t1 → trace_len t0 == trace_len t1 ∧ k == CryptoLib.dh x gy ∧
2 is_msg isodh_global_usage i k (readers [V a si vi]) ∧ (
3 corrupt_id i (P b) ∨
4 (∃ y. k == CryptoLib.dh y gx ∧ is_dh_shared_key i k a b ∧
5 did_event_occur_before i b (respond a b gx gy y)))

Hence, when the initiator calls the helper function, it gets the shared
key k and the guarantees on k needed for the validity of the trace. (The
did_event_occur_before predicate is used only for authentication, see Sect. 5.2.)
In the following, we show why the helper function yields this post-condition.

As described in Sect. 4, the helper function tries to verify the signature in
Line 3 of Fig. 4 using a verification key belonging to b (required by the function
type, not shown here). As described in Sect. 2, a successful verification guarantees
that either the signature predicate can_sign holds true or the signing key is known
to the attacker (see verify_lemma in Sect. 2). In the latter case, b, the principal
owning the signing key, must be corrupted, which is deduced by the (generic)
lemma can_flow_to_public_implies_corruption called in Line 4 of Fig. 4.

To determine which guarantees the signature predicate can_sign needs to pro-
vide, we first notice that the shared key k is calculated in Line 5 of Fig. 4 using

94 K. Bhargavan et al.

the dh function. The label of k is the join of the label of the initiator’s secret
key x, i.e., (readers [V a si vi]), and the label of the responder’s secret key y. The
connection between gy and the label of the corresponding secret key y is estab-
lished using the lemma dh_key_label_lemma called in Line 6. Therefore, to show
that is_dh_shared_key i k a b holds true, the signature predicate needs to imply
that the label of the private key of gy is equal to (readers [V b sj vj]), for some
session sj and version vj.

The idea for connecting the successful signature verification to the label of
the private key y is as follows: We formulate the signature predicate such that
the successful signature verification of the second message implies that, at a
previous trace index, the responder created an event, and define a predicate on
this event enforcing the required label on y. Following this roadmap, we construct
the application-specific signature predicate as follows:

1 match parse_sigval m with // parse the signature payload
2 | Success (SigMsg2 a gx gy) →
3 (∃ y. gy == (dh_pk y) ∧ did_event_occur_before i p (respond a p gx gy y))
4 ...

That is, the initiator code, after successful verification of the signature,
can use the fact that a respond event was created for the private key y. For
(respond a b gx gy y) events, we require (within the event predicate) that
(∃si vi. is_eph_priv_key i y b si vi) must be true, where the is_eph_priv_key predicate
enforces, amongst others, that the label of y is (readers [V b si vi]).

Overall, when the signature verification is successful, the event predicate
implies that there is a private key y labeled with (readers [V b si vi]), and thus,
the key k returned by initiator_verify_signature has the label join (readers [V a si
vi]) (readers [V b sj vj])) (for some values si, vi, sj, vj) if b is not corrupted at i.

We highlight that every function that triggers a respond event, in particu-
lar, the responder function presented in Sect. 4, needs to ensure this property.
This can be automatically done by explicitly asserting is_eph_priv_key i y b si 0 in
Line 29, a statement then proven by F�.

Proving the Secrecy Lemma. The proof of the initiator_forward_secrecy_lemma
(Fig. 5) essentially follows from valid_trace, in particular, from the label of the
shared key shown above, i.e., whenever a finishI event occurs, the label of the
shared key is (join (readers [V a si vi]) (readers [V b sj vj])) (for some values si, vi, sj,
vj) unless b is corrupted. Given this label, we can use the generic security lemma
secrecy_join_label_lemma provided by DY�, which states that if both ids of the join
label of the key are uncorrupted, then the attacker cannot derive the key. The
F� proof of initiator_forward_secrecy_lemma is now performed automatically by F�.
It only needs to be hinted at secrecy_join_label_lemma:

1 let initiator_forward_secrecy_lemma i a b gx gy k =
2 secrecy_join_label_lemma k // generic lemma from DY�

A Tutorial-Style Introduction to DY� 95

5.2 Authentication Properties

Besides the key secrecy property, we formulate and prove authentication prop-
erties. Here, we give a brief overview of these properties and refer to the module
ISODH.SecurityLemmas in [4] for their formal statements and proofs.

The authentication properties state that, after finishing a protocol flow, both
the initiator and responder agree on all session parameters. Hence, we formulate
two properties, one from the initiator’s perspective and one from the responder’s
perspective. The property from the initiator’s perspective states that, whenever
the initiator a finishes the flow and creates an event indicating that it finished the
run with b using the session parameters gx, gy, and the shared key k, then either
the responder has previously created an event indicating that it sent the second
protocol message to a with the same values gx, gy, and the private key y such
that k = (dh y gx), or the responder is corrupted. The authentication property
from the responder’s point of view is analogous.

6 Conclusion

DY� is a recently proposed framework for formal protocol analysis and verifi-
cation, a field which was shaped significantly by Joshua’s work, e.g., in [14,17–
19,27,31].

In this paper, we have given a tutorial-style introduction to DY� to help
potential users of the framework to get started. DY� provides many more fea-
tures than what we have been able to show in this paper, such as reasoning on
unbounded loops, recursive data structures, low-level implementation aspects
like data encoding, and interoperability. As discussed in [5,6], we plan to enrich
DY� with even more features, including support for equivalence-based properties.

Acknowledgments. This work was partially supported by the Deutsche Forschungs-
gemeinschaft (DFG) through Grants KU 1434/10-2 and KU 1434/12-1, the European
Research Council (ERC) through Grant CIRCUS-683032, and the Office of Naval
Research (ONR) through Grant N000141812618.

References

1. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988_27

2. Barbosa, M., et al.: SoK: computer-aided cryptography. In: IEEE S&P, pp. 777–795
(2021)

3. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
types for secure implementations. ACM TOPLAS 33(2), 8:1-8:45 (2011)

4. Bhargavan, K., et al.: DY� Code Repository. https://github.com/REPROSEC/
dolev-yao-star/tree/festschrift-guttman

5. Bhargavan, K., et al.: DY�: a modular symbolic verification framework for exe-
cutable cryptographic protocol code. In: IEEE EuroS&P ’21, pp. 523–542 (2021)

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://github.com/REPROSEC/dolev-yao-star/tree/festschrift-guttman
https://github.com/REPROSEC/dolev-yao-star/tree/festschrift-guttman

96 K. Bhargavan et al.

6. Bhargavan, K., et al.: An in-depth symbolic security analysis of the ACME stan-
dard. In: ACM CCS ’21 (2021)

7. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implemen-
tations for the TLS 1.3 standard candidate. In: IEEE S&P, pp. 483–502 (2017)

8. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security protocol
code by typing. In: ACM POPL, pp. 445–456 (2010)

9. Blanchet, B.: Security protocol verification: symbolic and computational models.
In: POST, pp. 3–29 (2012)

10. Blanchet, B.: Modeling and verifying security protocols with the applied Pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

11. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: IEEE EuroS&P, pp. 451–466
(2017)

12. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of TLS 1.3. In: ACM CCS, pp. 1773–1788 (2017)

13. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–208 (1983)

14. Dougherty, D.J., Guttman, J.D.: An algebra for symbolic diffie-hellman protocol
analysis. In: Palamidessi, C., Ryan, M.D. (eds.) TGC 2012. LNCS, vol. 8191, pp.
164–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41157-
1_11

15. Fett, D., Küsters, R., Schmitz, G.: A comprehensive formal security analysis of
OAuth 2.0. In: ACM CCS, pp. 1204–1215 (2016)

16. Fett, D., Küsters, R., Schmitz, G.: The web SSO standard OpenID connect: in-
depth formal security analysis and security guidelines. In: IEEE CSF, pp. 189–202
(2017)

17. Guttman, J.: Security protocol design via authentication tests. In: IEEE CSFW,
pp. 92–103 (2002)

18. Guttman, J., Thayer, F.: Protocol independence through disjoint encryption. In:
IEEE CSFW, pp. 24–34 (2000)

19. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theor. Comput. Sci. 283(2), 333–380 (2002)

20. ISO/IEC 9798–3:2019(E): IT Security techniques - Entity authentication - Part 3:
Mechanisms using digital signature techniques. Technical report (2019)

21. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: a symbolic and computational app-
roach. In: IEEE EuroS&P, pp. 435–450 (2017)

22. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated diffie-
hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4_24

23. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

24. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. In: TACAS, pp. 147–166 (1996)

25. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8_48

26. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978)

https://doi.org/10.1007/978-3-642-41157-1_11
https://doi.org/10.1007/978-3-642-41157-1_11
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

A Tutorial-Style Introduction to DY� 97

27. Ramsdell, J.D., Dougherty, D.J., Guttman, J.D., Rowe, P.D.: A hybrid analysis
for security protocols with state. In: IFM, pp. 272–287 (2014)

28. REPROSEC: REPROSEC Project (2021). https://reprosec.org/
29. Swamy, N., Chen, J., Fournet, C., Strub, P., Bhargavan, K., Yang, J.: Secure

distributed programming with value-dependent types. J. Funct. Program. 23(4),
402–451 (2013)

30. Swamy, N., et al.: Dependent types and multi-monadic effects in F�. In: ACM
POPL, pp. 256–270 (2016)

31. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

https://reprosec.org/

Security Protocols as Choreographies

Alessandro Bruni1, Marco Carbone1(B), Rosario Giustolisi1,
Sebastian Mödersheim2, and Carsten Schürmann1

1 IT University of Copenhagen, 2300 Copenhagen S, Denmark
{brun,carbonem,rosg,carsten}@itu.dk
2 DTU Compute, 2800 Lyngby, Denmark

samo@dtu.dk

Abstract. A choreography gives a description of how endpoints in a
concurrent systems should exchange messages during its execution. In
this paper, we informally introduce a choreographic language for describ-
ing security protocols and a property language for expressing non-trivial
security properties of such protocols. We motivate this work using the
envelope protocol [2] as an example, which ensures auditable transfers
by means of a TPM, that guarantees that the issuer of a message always
learns whether such message has been opened or not. We then take an
implementation of the TPM formulated as an API and discuss how such
implementation and the usage of the TPM in the protocol can be related.
Finally, we illustrate how the protocol and property descriptions can be
translated into multiset rewrite rules and metric first order logic respec-
tively, in order to check if auditable transfer holds.

Keywords: Security protocols · Choreography · Verification

1 Introduction

Choreographic programming [13,14,34] is a programming paradigm for concur-
rent systems that focuses on the global flow of interactions that communicating
peers are supposed to follow during execution rather than their local sequence
of send and receive operations. Choreographies have been studied extensively in
the context of concurrency theory and programming languages, but they have
only been sporadically considered for modeling security protocols [6,11,12]. This
is quite surprising, because Alice-Bob notations, which are prevalently used in
security theory [3,10,27,30], are closely related to choreographies that describe
the communication structure of entire systems. In fact, extensions of the Alice-
Bob notation with more features such as long-term state or subprotocols [7] can
be found in the literature.

In this paper, we celebrate Joshua Guttmann by proposing a choreography
language extended with term algebras and equational theories for modelling var-
ious cryptographic primitives used in security protocols, for example, encryption
and decryption, signatures and verifications, etc. The main idea is that security

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 98–111, 2021.
https://doi.org/10.1007/978-3-030-91631-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_5

Security Protocols as Choreographies 99

protocols can be written in such language and then the minimum local behav-
ior of each participant can be automatically generated from the choreography
through an operation called endpoint projection. Note that a choreography only
provides the local behavior of honest participants (while the intruder may not
stick to the protocol and is rather defined, for instance, by a Dolev-Yao-style
model). Generating the endpoint projection requires an analysis of the honest
agents knowledge, and how they can compose and decompose the messages that
they send and receive [3,30]. Since this problem is well-understood, here we focus
on those aspects of choreographic languages that distinguish them from tradi-
tional Alice-and-Bob narrations. The (honest) local behaviour generated from
a choreography specifying a protocol can then be used for two purposes. First,
it can be used as a local specification for verifying that a given implementation
is compliant with a given API (similarly to what is done for multiparty session
types [23]), e.g., in the TPM envelope example reported in this article, where
we check that the usage of the TPM in the protocol description is compati-
ble with the TPM API. Second, it allows us to replace the local projection of
API-like participants with their API implementations, and use them along with
the local projections of the remaining honest agents as the input for a protocol
analyser, where we can verify some security properties. A key feature of our
approach is that such properties can be specified at the choreographic level and
then automatically translated, in a semantic preserving way, into the language
of the protocol analyser automatically, via the endpoint projection.

This paper is not a theory paper in that it does not provide a formal develop-
ment of the translation of choreographies. It should be read as a position paper
that elaborates the idea of choreographies applied to security protocols and their
endpoint projections by the means of an example, namely the envelope protocol,
first proposed by Ables and Ryan [2] and analyzed by Delaune et al. [17]. Joshua
Guttman and colleagues [22] proposed an extension to the CPSA tool [18] to
protocols with state, contributing to the first verification of the envelope pro-
tocol with unbounded reboots, while also introducing a modular approach that
faithfully represents the interface offered by the trusted third party used in the
protocol.

The envelope protocol uses the Trusted Platform Module (TPM) as a trusted
party to guarantee a security property that we have dubbed auditable transfer :
Alice wants to share a message with Bob such that Alice will be able to verify
if Bob has opened the message or not. The TPM is used to securely store the
state of this transfer.

In this paper, we give a formulation of the auditable transfer protocol as a
choreography in Sect. 2, describe the result of the endpoint projection including
the property in Sect. 3, and feed the result into Tarmarin to verify the auditable
transfer property in Sect. 4. Our main goal with this notation is to allow for a
simple, clear and yet very expressive specification language. We revisit related
work in Sect. 5 and assess results and outline future work in Sect. 6.

100 A. Bruni et al.

2 The Envelope Protocol and Its Choreographic
Description

The envelope protocol aims at being the digital version of a sealed physical
envelope. A sealed envelope allows to achieve auditable transfer: the recipient
can either obtain the content inside the envelope or prove that they have not
broken the seal and thus obtained the content, with no intervention required from
the sender. In this paper, we use the classic example of the envelope protocol:
Alice would like her parents to know where she is going out for the night only
in case of necessity, so she writes this information in a letter and puts it into a
sealed envelope. Alice does not necessarily trust her parents, who may behave
adversarially and hence may like to know where Alice is going out without her
noticing that they learned this information. The sealed envelope protects Alice
in this case, as learning the information requires breaking the seal, which Alice
would notice upon her comeback. Its digital counterpart cannot be implemented
with cryptography alone, as revealing the content of a message usually requires
obtaining the key or solving an interactive challenge.

The envelope protocol relies on a trusted third party, the TPM,
which provides an interface to create a key that is concealed inside the
trusted computing module, and offers functions for encryption and decryp-
tion which are bound to the internal state of the TPM. The internal
state of a TPM is made of 24 Platform Configuration Registers (PCRs),
which essentially implement a hash chain: the TPM allows to reset one
of these registers to an initial known value (with the Boot command) and
to extend the chain with a new value (with the Extend, n command).
For simplicity we assume only one register, which is also what the envelope
protocol requires, hence all the commands omit the first parameter. The three
other commands that the TPM implements that are used by the envelope proto-
col are the following: the Create, s command that creates a new public-private
key bundle and releases the public key (the corresponding private key is retained
by the TPM and can only be used through the TPM interface when the pcr is in
state s); the Quote, x command that binds the message x to the current value of
the pcr, and the Decrypt command that takes a ciphertext and a key bundle and
returns the decryption only if the state of the key bundle matches the current
value of the pcr. In Sect. 3.2, we formalise the TPM interface and show that the
envelope protocol respects this interface.

The envelope protocol uses the TPM as follows: Alice first resets the TPM
to its initial pcr state 1 and then issues the Extend command with a fresh secret
nonce n, so the TPM is now in state hash(n,1). Now Alice asks the TPM to
create a public key k for the state hash(obtain, hash(n, 1)), i.e., the TPM will
only decrypt messages using inv(k), when the TPM is in that state. The TPM
can be brought into that state by performing the Extend command with value
obtain, but afterwards it is impossible to bring it back to state hash(n,1) unless
one knows the nonce n. Alice now encrypts her message v with k and sends it to
her parent. The parent now has two options: they can either extend the PCR to
the state hash(refuse, hash(n, 1)) and obtain a proof that they refused to open

Security Protocols as Choreographies 101

1 Roles: Alice , TPM[Honest], Parent

2 Knowledge : tpmk

3

4 Protocol

5 Alice → TPM: Boot

6 TPM: pcr := ’1’

7 TPM → Alice: Booted

8 Alice: new n, new esk

9 Alice → TPM: Session , tpmk , aenc(esk , tpmk)

10 TPM: new sid

11 TPM → Alice: sid

12 Alice → TPM: senc ((Extend , n, sid), esk)

13 TPM: pcr := hash(n, pcr)

14 TPM → Alice: Extended

15 Alice → TPM: Create , hash(’obt ’, pcr)

16 TPM: new k

17 TPM → Alice: sign ((Created , k, hash(’obt ’, pcr)), inv(tpmk)

)

18 Alice: new v

19 Alice → Parent: Envelope , enc(v, k)

20 Parent: new esk

21 Parent → TPM: Session , aenc(esk , tpmk)

22 TPM: new sid

23 TPM → Parent: sid

24 Parent → TPM: {

25 senc ((Extend , ’ref ’, sid), esk):

26 TPM: pcr := hash(’ref ’, pcr)

27 TPM → Parent: Extended

28 Parent → TPM: Quote , enc(v, k)

29 TPM → Parent: sign ((Quoted , pcr , enc(v, k)), inv(tpmk))

30 event secret(v)

31 +

32 senc ((Extend , ’obt ’, sid), esk):

33 TPM: pcr := hash(’obt ’, pcr)

34 TPM → Parent: Extended

35 Parent → TPM: Decrypt , enc(v, k), sign ((Created , k, pcr),

inv(tpmk))

36 TPM → Parent: v

37 }

38

39 Objectives

40 Intruder learns v implies not secret(v)

Fig. 1. The envelope protocol as a chreography

the letter, or they can extend the PCR to the state hash(obtain, hash(n, 1))

and use the TPM to decrypt Alice’s message.
We now give a precise specification of the envelope protocol as a choreogra-

phy, which is depicted in Fig. 1. A choreography consist of four sections: Roles,
Knowledge, Protocol, and Objectives. The roles and initial knowledge declared

102 A. Bruni et al.

are standard. More interesting is the specification of the protocol. The TPM
offers different services, such as Boot, Extend, Create, Quote, Decrypt, or Envelope,
which are followed by their respective parameters. Upon completion, the TMP
signals the caller that a particular service has terminated, again using messages,
such as Booted, Extended, Created, Quoted, or Decrypted. We use M to denote
messages.

Choreographies also support state. In our example the state is denoted by pcr,
the internal state of the TPM. The expression algebra that we use, includes oper-
ations such as bit string concatenation, denoted by a comma, hashing, denoted
by hash, and encryption, denoted by enc. Dereferencing pcr is a silient operation.
Expressions are denoted by E.

The language supports two forms of command, generically denoted by C:
a command to create fresh nonces written as new, and another command for
assignment, denoted by :=. The scope of nonces extends to the end of the protocol
specification, but a priori, only the principal who creates the nonce knows it.
Let A and B be two different roles. Protocols P,Q are defined by a sequence of
operations, in Alice Bob notation, message transfer of message M as A → B : M ,
internal execution of command C as A : C, and choice A → B : {P + Q}.

As part of a formal semantics in the style of [3,11,30], we rule out as not
executable (or not well-formed) those specifications that require participants to
produce messages that they actually cannot produce (without breaking cryptog-
raphy). This, however, requires a considerable amount of formal machinery that
we do not want to introduce in this more conceptual paper.

3 Projection and Refinement

In the previous section, we have shown how to use a choreographic language
for specifying the envelope protocol. Besides proving the correctness of such a
protocol (which we will do in the next section), we show how we can use a type-
like approach for checking that an implementation of (some of) the participants
is compliant with the behavioural specification given by the protocol. In order
to do so, we proceed by two steps. First, we define the notion of projection, a
well-studied concept in the theory of choreographies.

3.1 Projection

The projection of a choreography with respect to a particular endpoint is a
specification of how such endpoint has to behave in the protocol. In a nutshell,
given the choreography A → B : M1;B → A : M2 for example, the projection
with respect to A is send M1 ; receive M2, while the projection with respect
to B is receive M1; send M2, were send and receive are standard endpoint
operations, i.e. commands. However, in general just literally taking the messages
from the choreography for the endpoint actions will not be correct, e.g., if M1

is an encrypted message that B cannot decrypt, then it must be replaced by a
variable as first observed by Lowe [27]. This question is in general also related

Security Protocols as Choreographies 103

to the algebraic properties of cryptographic operators that we consider, e.g., the
properties of exponentiation in Diffie-Hellman. In general such a formal seman-
tics can be given in the style of [3]. The endpoint specification is useful, because
we can use it for checking that, e.g., a given implementation of A follows the
specification given by the original choreography.

In the envelope protocol, the behaviour of Alice according to the choreo-
graphic specification of the envelope protocol consists of:

1 Role Alice

2 send Boot

3 new n

4 send Extend(n)

5 receive Extended

6 send Create(hash(’obt ’, pcr))

7 receive Created(k, hash(’obt ’, pcr))

8 new v

9 send Envelope(enc(v, k))

The projection of Alice corresponds to her behaviour in the choreography.
Above, new n creates a fresh nonce n and works as a binder in the subsequent
code. On the other hand, send Extend(n) sends a message which selects option
Extend and also communicates the value n, which in this case is bound by the
new n in the second line. When receiving a message, the language uses struc-
tured terms with constants and variables, implying standard pattern matching.
Similarly, we can project the behaviour of the TPM:

1 Role TPM

2 receive Boot

3 pcr := ’1’

4 receive Extend(n)

5 send Extended

6 receive Create(hash(’obt ’, pcr))

7 new k

8 send Created(k, hash(’obt ’, pcr))

9 receive {

10 Extend(’ref ’):

11 pcr := hash(’ref ’, pcr)

12 send Extended

13 receive Quote(enc(v, k))

14 send Quoted(pcr , enc(v, k))

15 +

16 Extend(’obt ’):

17 pcr := hash(’obt ’, pcr)

18 send Extended

19 receive Decrypt(enc(v, k)), Created(k, pcr)

20 send Decrypted(v)

21 }

104 A. Bruni et al.

In the case of TPM, we note that the receive operation can also handle choice.
Options in the choice are separated by the keyword + as in standard choreogra-
phies which corresponds to the standard external choice from the pi-calculus [29].
As mentioned in the previous sections, in order to ensure consistency of these
specifications, each branch must have a unique label. In order to achieve this,
while retain flexibility, we use pattern matching to distinguish branches with the
same label. E.g., above, although the label Extend is identical in both branches,
each branch can be identified by the constant that the branch is expecting to
receive. Finally, this is the projection of the parent’s expected behaviour:

1 Role Parent

2 receive Envelope(enc(v, k))

3 send {

4 Extend(’ref ’):

5 receive Extended

6 send Quote(enc(v, k))

7 receive Quoted(pcr , enc(v, k)) (1)

8 +

9 Extend(’obt ’):

10 receive Extended

11 send Decrypt(enc(v, k)), Created(k, pcr)

12 receive Decrypted(v)

13 }

Dually to the external choice provided by the TPM, the parent’s projection is
making an internal choice: it either sends the ref value or the obt value.

3.2 Refinement

In the theory of choreographies, choreographic specifications are projected into
endpoints behaviour. Such cut of the global behaviour can often be used by a
type system to do a local type checking of code. In here, our choreographies are
richer in the sense that contain information about values that the protocol being
described should handle. Hence, the specification and a possible implementation
are very close. In this subsection, we illustrate how a notion of refinement could
be used for verifying that an implementation is compliant to the protocol spec-
ification. In order to do so, we focus on the TPM behaviour. Obviously, the
projection from the choreography given above does not have to be the exact
way the TPM should be implemented. In general, a TPM is a piece of hardware
that can provide the TPM service to system components. Therefore, it is usually
implemented as a simple API. The one below is a possible API implementation:

1 TPM(pcr) = {

2 receive Boot: {

3 send Booted;

4 TPM(-1)

5 } +

Security Protocols as Choreographies 105

6 receive Create , s: {

7 new k

8 send sign((Created , k, s), inv(tpmk))

9 TPM(pcr)

10 } +

11 receive Quote , x: {

12 send sign((Quoted , pcr , x), inv(tpmk))

13 TPM(pcr)

14 } +

15 receive Session , tpmk , aenc(esk , tpmk): {

16 new sid;

17 send sid;

18 receive senc((Extend , x, sid), tpmk);

19 send Extended , hash(x,pcr);

20 TPM(hash(x, pcr))

21 } +

22 receive Decrypt , aenc(c, pk(k)), Created(k, pcr ’)): {

23 if (pcr = pcr ’) then

24 send dec(c, k)

25 TPM(pcr)

26 }

27 }

Unlike the projection from the choreography, the behaviour of the TPM API is
just a sum of all the possible methods that can be invoked. Note that we also
enhance the local behaviour specification with recursion. We conjecture that the
projection of the TPM from the choreography and the API above can be formally
related. Our idea is to look at the set of possible traces that the API can perform
and compare to the traces of the projection (up-to recursive behaviour). Clearly,
if a trace is in the projection of the choreography then it is for sure a trace of the
API. This shows that the API implementation is compliant with the envelope
protocol.

4 Verification in Tamarin

Our mechanised analysis is carried out in Tamarin [28], an interactive proto-
col verifier that can prove reachability and equivalence-based properties in the
symbolic model. It has an expressive language based on multiset rewriting rules.

In Tamarin, terms are variables and functions ranging over terms; facts are
predicates that store state information and are parameterized by terms; facts
may be linear (i.e. can be consumed only once) or persistent (i.e. can be con-
sumed arbitrarily often by rules); rules are essentially defined as transitions from
one multiset of facts to another. The Tamarin multiset rewriting rules define a
labeled transition system. The labels are used to reason about the behaviour of
a protocol. Thus, to analyse the envelope protocol in Tamarin, we need to anno-
tate our rules with appropriate labels that will serve to the specification of our

106 A. Bruni et al.

security properties. Tamarin encodes a Dolev-Yao [19] adversary that controls
the network.

Conventionally, cryptographic primitives can be modelled in Tamarin by
means of equational theories. An equational theory E describes the equations
that hold on terms built from the signature. Terms are related by an equiva-
lence relation = induced by E. For instance, the equation dec(enc(m, k), k) = m
models a symmetric encryption scheme. The term m is the message, the term k
is the secret key, the term enc models the encryption function, and the term dec
models the decryption function, namely a deconstructor for the function enc.

Trace properties can be modelled in Tamarin via metric first-order logic.
Predicates are labels and properties can be expressed using quantification over
time. For example, the following lemma models a non-injective agreeement on
the message x, meaning that for all got message x, there exists at least an event
in which the message x has been previously sent.

(Non-injective agreement) ∀x #i. Get(x)@i =⇒ ∃ #j. Sent(x)@j ∧ j < i

The endpoint projection of the API of the TPM have immediate specifica-
tions into Tamarin rules: labels in a choreography can be translated to Tamarin’s
facts; send and receive can be mapped into the Tamarin’s Out and In respec-
tively; conditionals in choreography can be captured using pattern matching in
Tamarin. For example, the rule below captures the Decrypt service.

1 rule Decrypt:

2 let c = enc(v,∼k) in

3 [In(c), In(Created(∼k, pcr)), TPM(pcr)]
4 −[Decrypt(v), TPM(pcr)]→
5 [Out(v), TPM(pcr)]

Here, the TPM outputs the value v, which is encrypted in c, if and only if the
value of pcr in the TPM is equal to the value of pcr in Created.

Similarly, we can model Alice behaviour with two rules, one to capture Alice
sending the commands Boot, Extend, and Create (Alice BEC) and one to cap-
ture Alice sending the envelope (Alice Env).

1 rule Alice_BEC:

2 [Fr(∼n)]
3 −[Alice_BEC(∼n)]→
4 [Out(Boot()), Out(Extend(∼n)), Out(Create(hash (’obt ’,

hash (∼n, ’nil ’)))),

5 Alice1(∼n)]
6

7 rule Alice_Env:

8 [Alice1(∼n), Fr(∼v), In(Created(∼k, hash (’obt ’, hash (∼n,
’nil ’))))]

9 −[Alice_Env(∼n, ∼v, ∼k)]→
10 [Out(enc(∼v, ∼k))]

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

Security Protocols as Choreographies 107

We do not need to model the role the parents since they act as an adversary,
thus the role is controlled by the Dolev-Yao attacker encoded in Tamarin.

The specification of auditable transfer can be modelled in Tamarin as

(Auditable transfer) ∀n v k #i #j. Alice BEC(n)@i ∧ Alice Env(n, v, k)@j
=⇒ ¬(∃ #l. !KU(v)@l) ∨ ¬(∃ #l.

!KU(Quoted(h(’ref ’, h(n, ’nil’)), enc(v, k)))@l)

The fact !KU represents the knowledge of the adversary, which in our case
is the parents. Thus, the property says that whenever Alice has initialised the
TPM and sent the envelope, the adversary cannot both open the envelope and
learn the content and obtain a proof of refusal of opening the envelope.

Tamarin cannot prove automatically auditable transfer. However, we resort
to the interactive proof theory feature of Tamarin to find the proof. The proof
and the full Tamarin code modelling the envelope protocol are available in [1].

5 Related Work

The idea of using choreographic languages for describing security protocol is not
new: in fact, Alice and Bob notations are the predominant informal notation
used by protocol designers.

The first work on a formal Alice and Bob notation with automated translation
to the process algebra CSP is the Casper compiler by Lowe [27]. Mödersheim [30]
later proposed an Alice and Bob-like language with a formal semantics and
support for algebraic properties a-la Diffie-Hellman, that is integrated into the
prover OFMC [5]. Several extension to this line of work have been made, for
example, to support arbitrary algebraic reasoning [3] and secure and pseudon-
imous channels [33] forwarding channels [10]. Alice and Bob-style languages have
a level of clarity and explainability that other models lack, however they only
support linear protocols, which makes it impossible to represent API-like proto-
cols such as the one analyzed in this paper, which typically contain branching
and state that persists across sessions.

Stateful protocol verification is another relevant line of work. The first tool
to support stateful verification was AIF [31], which abstracts values according to
their membership class. This abstraction techniques was also applied to process
algebras [9] and extended to countable families of sets [32] to support unbounded
principals. The TPM envelope protocol that we use here as an example motivated
the work on StatVerif [4], however the first analysis of the protocol was done with
a custom encoding in Horn clauses [17]. Joshua and his colleagues also took the
TPM envelope protocol as inspiration to extend the CPSA tool based on strand
spaces to handle stateful protocols [22]. Another tool that supports stateful
protocols is the Tamarin prover [28], which uses multiset rewrite rules to describe
security protocols and we employ here as our target language. Later, support to
stateful protocols was also added into the protocol verifier ProVerif [15].

Carbone and Guttmann [11] proposed a simple choreographic language with
boxes for writing web interactions. Their core idea is that boxes containing infor-
mation that must be exchanged in a network are annotated with the sender and

108 A. Bruni et al.

the receiver, respectively the creator of box and the one who can open it. Then,
an endpoint projection is provided which generates local behaviour expressed in
the Strand Spaces formalism. The translation introduces cryptographic enhance-
ments to the boxes in order to ensure authentication and secrecy. Similarly,
Bhargavan et al. [6] use a choreographic language inspired by multiparty session
types for specifying web services. Similarly to Carbone and Guttmann, their
tool adds some cryptographies to the messages specified in the choreography.
Both research contributions differ from our idea in the fact that, unlike us, they
abstract from the details that are necessary for achieving security properties. In
particular, they do not consider expressing security properties at choreographic
level.

The hallmark characteristic of auditable transfer is that it allows a party
to get evidence on whether another party has learnt a secret. This seems an
instantiation of the broader notion of auditability [21,24], which is defined as
the quality of a protocol, which stores a sufficient number of pieces of evidence,
to convince a third party that specific properties are satisfied. Similar proper-
ties are verifiability, which ensures that the failure of a protocol’s goal can be
detectable [16,25] and accountability [8,26], which additionally guarantees that
misbehaving parties can be blamed. An interesting line of work is to study chore-
ography for the modelling of such broader properties. For example, verifiability,
accountability, and dispute resolution properties can all be defined by identifying
the tests that decide whether a protocol’s goal fails, and then check that each
of the tests meets soundness, completeness, and sufficiency conditions [8,20,26].
Choreographies can be the language that enables the analyst to formulate tests
and conditions, which can be then checked by a model checker of choice.

6 Conclusion

In this work we have given a formulation of the auditable transfer protocol as
a choreography. We have shown how the role of the TPM can be defined with
a local choreography, and that the auditable transfer protocol is shown to be
a refinement of the TPM API. The choreographic constructs of branching and
recursion useful language constructions to express the core properties of stateful,
API-like protocols like the one we considered in this paper. It is then possible
to translate to other intermediate languages for verification, like we have shown
in our example for the multiset rewrite rules of Tamarin.

References

1. Tamarin code (2021). https://www.dropbox.com/sh/lonxu6vmj3iilmu/
AAAErB3ATSNg59MFGxBcp74Ha?dl=0

2. Ables, K., Ryan, M.D.: Escrowed data and the digital envelope. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 246–256.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13869-0 16

https://www.dropbox.com/sh/lonxu6vmj3iilmu/AAAErB3ATSNg59MFGxBcp74Ha?dl=0
https://www.dropbox.com/sh/lonxu6vmj3iilmu/AAAErB3ATSNg59MFGxBcp74Ha?dl=0
https://doi.org/10.1007/978-3-642-13869-0_16

Security Protocols as Choreographies 109

3. Almousa, O., Mödersheim, S., Viganò, L.: Alice and bob: reconciling formal models
and implementation. In: Bodei, C., Ferrari, G.-L., Priami, C. (eds.) Programming
Languages with Applications to Biology and Security. LNCS, vol. 9465, pp. 66–85.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25527-9 7

4. Arapinis, M., Phillips, J., Ritter, E., Ryan, M.D.: Statverif: verification of stateful
processes. J. Comput. Secur. 22(5), 743–821 (2014). https://doi.org/10.3233/JCS-
140501

5. Basin, D.A., Mödersheim, S., Viganò, L.: OFMC: a symbolic model checker for
security protocols. Int. J. Inf. Sec. 4(3), 181–208 (2005). https://doi.org/10.1007/
s10207-004-0055-7

6. Bhargavan, K., Corin, R., Deniélou, P., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: Proceedings of the
22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson,
New York, USA, 8–10 July 2009, pp. 124–140. IEEE Computer Society (2009).
https://doi.org/10.1109/CSF.2009.26

7. Brøndum, C.: Languages and Translators for Stateful Protocols. Tech. rep., DTU,
MSc. Thesis (2020). https://findit.dtu.dk/en/catalog/2525864377

8. Bruni, A., Giustolisi, R., Schuermann, C.: Automated analysis of accountability.
In: Nguyen, P., Zhou, J. (eds.) Information Security Conference, vol. 10599, pp.
417–434. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-69659-
1 23

9. Bruni, A., Mödersheim, S., Nielson, F., Nielson, H.R.: Set-pi: Set membership p-
calculus. In: Fournet, C., Hicks, M.W., Viganò, L. (eds.) IEEE 28th Computer
Security Foundations Symposium, CSF 2015, Verona, Italy, 13–17 July 2015, pp.
185–198. IEEE Computer Society (2015). https://doi.org/10.1109/CSF.2015.20

10. Bugliesi, M., Calzavara, S., Mödersheim, S., Modesti, P.: Security protocol speci-
fication and verification with anbx. J. Inf. Secur. Appl. 30, 46–63 (2016). https://
doi.org/10.1016/j.jisa.2016.05.004

11. Carbone, M., Guttman, J.D.: Choreographies with secure boxes and compromised
principals. In: Bonchi, F., Grohmann, D., Spoletini, P., Tuosto, E. (eds.) Proceed-
ings 2nd Interaction and Concurrency Experience: Structured Interactions, ICE
2009, Bologna, Italy, 31st August 2009. EPTCS, vol. 12, pp. 1–15 (2009). https://
doi.org/10.4204/EPTCS.12.1

12. Carbone, M., Guttman, J.D.: Execution models for choreographies and cryptopro-
tocols. In: Beresford, A.R., Gay, S.J. (eds.) Proceedings Second International Work-
shop on Programming Language Approaches to Concurrency and Communication-
cEntric Software, PLACES 2009, New York, UK, 22nd March 2009. EPTCS, vol.
17, pp. 31–41 (2009). https://doi.org/10.4204/EPTCS.17.3

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8:1–8:78
(2012). https://doi.org/10.1145/2220365.2220367

14. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy, 23–25 January 2013. pp. 263–274. ACM (2013). https://doi.org/
10.1145/2429069.2429101

15. Cheval, V., Cortier, V., Turuani, M.: A little more conversation, a little less action,
a lot more satisfaction: Global states in proverif. In: 31st IEEE Computer Security
Foundations Symposium, CSF 2018, Oxford, United Kingdom, 9–12 July 2018,
pp. 344–358. IEEE Computer Society (2018). https://doi.org/10.1109/CSF.2018.
00032

https://doi.org/10.1007/978-3-319-25527-9_7
https://doi.org/10.3233/JCS-140501
https://doi.org/10.3233/JCS-140501
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1109/CSF.2009.26
https://findit.dtu.dk/en/catalog/2525864377
https://doi.org/10.1007/978-3-319-69659-1_23
https://doi.org/10.1007/978-3-319-69659-1_23
https://doi.org/10.1109/CSF.2015.20
https://doi.org/10.1016/j.jisa.2016.05.004
https://doi.org/10.1016/j.jisa.2016.05.004
https://doi.org/10.4204/EPTCS.12.1
https://doi.org/10.4204/EPTCS.12.1
https://doi.org/10.4204/EPTCS.17.3
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1109/CSF.2018.00032
https://doi.org/10.1109/CSF.2018.00032

110 A. Bruni et al.

16. Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: SoK: verifiability
notions for e-voting protocols. In: IEEE Symposium on Security and Privacy, pp.
779–798 (2016)

17. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: Proceedings of the 24th IEEE Computer Security
Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27–29 June, 2011,
pp. 66–80. IEEE Computer Society (2011). https://doi.org/10.1109/CSF.2011.12

18. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 41

19. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

20. Giustolisi, R., Bruni, A., et al.: Privacy-preserving dispute resolution in the
improved bingo voting. In: Krimmer, R. (ed.) E-Vote-ID 2020. LNCS, vol. 12455,
pp. 67–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60347-2 5

21. Guts, N., Fournet, C., Zappa Nardelli, F.: Reliable evidence: auditability by typing.
In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 168–183.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 11

22. Guttman, J.D., Liskov, M.D., Ramsdell, J.D., Rowe, P.D.: Formal support for
standardizing protocols with state. In: Chen, L., Matsuo, S. (eds.) SSR 2015. LNCS,
vol. 9497, pp. 246–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
27152-1 13

23. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

24. Jagadeesan, R., Jeffrey, A., Pitcher, C., Riely, J.: Towards a theory of accountability
and audit. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp.
152–167. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-
1 10

25. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS,
vol. 6345, pp. 389–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15497-3 24

26. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: CCS, pp. 526–535. ACM (2010)

27. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Com-
put. Secur. 6(1–2), 53–84 (1998). http://content.iospress.com/articles/journal-of-
computer-security/jcs106

28. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I and II. Inf.
Comput. 100(1), 1–77 (1992)

30. Mödersheim, S.: Algebraic properties in alice and bob notation. In: Proceedings of
the The Forth International Conference on Availability, Reliability and Security,
ARES 2009, 16–19 March 2009, Fukuoka, Japan, pp. 433–440. IEEE Computer
Society (2009). https://doi.org/10.1109/ARES.2009.95

https://doi.org/10.1109/CSF.2011.12
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-030-60347-2_5
https://doi.org/10.1007/978-3-642-04444-1_11
https://doi.org/10.1007/978-3-319-27152-1_13
https://doi.org/10.1007/978-3-319-27152-1_13
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-642-04444-1_10
https://doi.org/10.1007/978-3-642-04444-1_10
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1007/978-3-642-15497-3_24
http://content.iospress.com/articles/journal-of-computer-security/jcs106
http://content.iospress.com/articles/journal-of-computer-security/jcs106
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/ARES.2009.95

Security Protocols as Choreographies 111

31. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V.
(eds.) Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010, pp. 351–360. ACM
(2010). https://doi.org/10.1145/1866307.1866348

32. Mödersheim, S., Bruni, A.: AIF-ω: set-based protocol abstraction with countable
families. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 233–
253. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 12

33. Mödersheim, S., Viganò, L.: Secure pseudonymous channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04444-1 21

34. W3C WS-CDL Working Group: Web services choreography description language
version 1.0 (2004). http://www.w3.org/TR/ws-cdl-10/

https://doi.org/10.1145/1866307.1866348
https://doi.org/10.1007/978-3-662-49635-0_12
https://doi.org/10.1007/978-3-642-04444-1_21
http://www.w3.org/TR/ws-cdl-10/

How to Explain Security Protocols
to Your Children

Véronique Cortier1 and Itsaka Rakotonirina2(B)

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
2 MPI-SP, 44799 Bochum, Germany
itsaka.rakotonirina@mpi-sp.org

Abstract. Security protocols combine two key components: a logical
structure (who answers what, under which conditions?) as well as cryp-
tography (encryption, signature, hash, . . .). It is not so easy to explain
their principles and weaknesses to a non expert audience. Why is some-
thing an attack or not? For which attacker? With what purpose?

In this paper, we propose an approach to introduce security protocols
to a general audience, including children or even scientists from differ-
ent fields. Its goal is to convey the implicit assumptions of our commu-
nity, such as threat models or the participants’ behaviour. This all-public
introduction can be thought of as a story but, interestingly, can also be
implemented physically with boxes and padlocks: manipulation helps to
understand how protocols operate, even permitting non-expert partici-
pants to design their own—and thus to size the challenges of this task.

1 Introduction

How do you explain security protocols to your children? You would typically start
with applications. “You see, security protocols are very useful. They are used
in payment, 5G, in your messaging applications, biometric passport, and even
voting.” Yes, but how does it work? And here starts the complex part. You would
need to explain a bit of cryptography, the expected behaviour of the participants,
and how attackers can deviate from them. When giving examples of attacks—
that is, the operating modes of malicious parties breaching the protection offered

This paper is dedicated to Joshua Guttman, on the occasion of his 66,66 birthday, with
many thanks for his inspiring conversations.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 112–123, 2021.
https://doi.org/10.1007/978-3-030-91631-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_6

How to Explain Security Protocols to Your Children 113

to other users—we get recurring questions: but Bob can clearly see that he has
been tricked into sending Alice’s key in clear! Why doesn’t he stop?

This paper describes a fictitious situation where Isabelle and Bob wish to
exchange a cake while preventing the deliveryman from eating it. To this end,
boxes and padlocks are used, acting as abstractions of various flavours of data
encryption. The deliveryman thus represents the standard threat model in secu-
rity protocols: an attacker who may see or block any package circulating on the
network, who may as well create and inject messages of her own, but who cannot
open encrypted messages without the corresponding keys. The objective of this
story is to offer a glimpse of the subtleties of security—and of the unexpected
turns of events that can arise when protecting deliveries with unbreakable pad-
locks. An early version has appeared on a popularisation website [19] (in French).
And, of course, we have used it already in many talks and activities.

Our story progressively builds a protocol, alternating between the (playful)
presentation of preliminary versions and attacks on them. It stops one step before
obtaining the full Needham-Schroeder protocol [17]. Interestingly, this story can
also be simulated physically, as an interactive puzzle using real boxes and pad-
locks. Manipulation helps understanding how protocols work, even permitting
to non-expert participants to design their own protocol—often to see, to their
surprise, that it can easily be breached. In our experience, this type of interac-
tion helped general audiences to understand the pitfalls and challenges of the
field, compared to a purely verbal presentation.

The images of this paper are under a creative commons licence (CC-BY-SA)
so that you can reuse them on your own material. But we do not ship our boxes
and padlocks.

2 Storyboard

Bob would like to buy a cake from
a famous bakery run by Isabelle. The
store being too far away to go in per-
son, he orders a home delivery. Unfor-
tunately, the deliveryman is known for having a sweet tooth: he tends to compul-
sively eat the cakes he is supposed to deliver. It is a complex situation: Isabelle
and Bob need the deliveryman, but they are also aware of the fact that he cannot
be trusted. After discussing the issue over the phone, they realise that they both
have padlocks at home: when using this unreliable postal service, they could put
Isabelle’s deliveries inside locked boxes to mitigate the risk of theft.

The issue is that Bob is not in pos-
session of Isabelle’s key, and thus can-
not open her padlock; simply sealing
the bakery’s orders with it is therefore
not a solution by itself. Maybe Isabelle

could send the key later? But then the delivery person could get both the locked
box and its key, rendering the protection ineffective.

114 V. Cortier and I. Rakotonirina

2.1 Our First Security Protocol

A first solution is to combine the two padlocks as follows. Isabelle first places
the cake in a box, locks it with her padlock, and sends the whole safe to Bob.

Of course, Bob is unable to open the box. Instead, he adds his own padlock
and sends the box back to Isabelle. The safe is now locked by both padlocks.

Upon reception of the package, Isabelle removes her padlock and sends the
box one final time to Bob.

Bob can finally remove his lock and get the cake. These three steps can be
followed in order to send a cake while providing protection against malicious
interferences; saying it differently, this is an example of a first security protocol!
Let us call it V1. No keys were sent during the process and there was always at
least one lock on each package given to the delivery person. Hence, he cannot
eat Isabelle’s cake... or can he? This statement is actually relying on implicit
assumptions:

1. the deliveryman cannot open a padlocked box, and
2. he is passive, that is, he follows the delivery instructions he receives.

When designing a security protocol, in particular its logical structure, we typi-
cally assume secure building blocks such as the soundness of cryptography. In the
case of encryption, it means assuming that the attacker cannot read an encrypted
message unless he has the decryption key; in our story, this is the analogue of
the deliveryman not being able to open locked boxes. However, what about the
second assumption?

2.2 How the Postman Steals Isabelle’s Cake

Actually, our first protocol is too weak against an active malicious deliveryman,
that is, one who may deviate from the instructions Isabelle and Bob give him.
Indeed, instead of delivering the box to Bob, he may add his own lock to the
package and return it to Isabelle.

How to Explain Security Protocols to Your Children 115

Isabelle does not know that the second padlock is not the one from Bob: the
deliveryman’s is just like any other. Therefore, Isabelle believes that everything
is running as expected and proceeds with the next step of the protocol—that is,
she removes her padlock.

The deliveryman may then unlock the box and eat the cake! This is a first
example of an attack, against protocol V1: despite the locks, the deliveryman
has a way to steal the cake. This did not require breaking any lock: it simply
exploits a hole in the protocol’s structure.

2.3 A Fix: Asymmetric Encryption

Without extra assumptions about the initial setting, it is actually impossible to
design a protocol secure against an active attacker. Hence, Isabelle and her clients
decide to subscribe to a large certification organisation with public padlocks:

– Each member of the organisation is given a personal, private key;
– Everyone can get from the organisation a padlock of a specific member.

Note that the deliveryman may also be part of the organisation like anyone: let
us not prevent him from buying cakes to Isabelle without stealing them! With
this organisation, there is now a simple protocol (V2): Isabelle places Bob’s cake
in a box and seals it with Bob’s padlock, that she received from the organisation.
Only Bob can open his padlock hence only Bob can get the cake.

In technical terms, this corresponds to asymmetric encryption and signature:
everyone can encrypt a message with Bob’s public key but only Bob can decrypt.
One important issue is to be certain to use Bob’s public key and not another one.
Imagine for example that the deliveryman was able to make Isabelle believe that
his own padlock is actually Bob’s: he would again gain access to Bob’s cake. This
explains why public keys are typically certified by certification bodies and why,
sometimes, your browser tells you that it cannot recognise a certificate—and
hence that you should not trust the corresponding website.

2.4 Denial of Service?

In addition of having a sweet tooth, the deliveryman is also a sore loser: frus-
trated by such a simple but secure solution, he takes the locked box containing
Bob’s cake and throws it away instead of delivering it. In the Internet, a drop

116 V. Cortier and I. Rakotonirina

of one packet is not a real issue: the packet will be sent again as it is easy to
keep a copy of it—at least it is much easier than re-baking a delicious cake. If
an attacker tries to systematically block any packet sent by Isabelle, this forms
what is called a denial of service attack. They are typically considered as out of
scope of security protocols since they should be prevented by other means, at
the network level; we therefore ignore them in our context.

3 When it Gets Really Dark

But this is not the end of the story. Bob has enemies as well as friends, and
someone sends him a package with a poisoned cake and a message claiming it is
a gift from Isabelle. Happy, Bob eats it, which reveals a critical weakness of the
protocol: we can never be sure that the sender of a delivery is who he claims to
be. When Bob returns from the hospital, he and Isabelle decide to update the
delivery protocol to ensure some form of authentication.

3.1 Challenge and Respond

We assume that Isabelle and her client (here Bob) have obtained padlocks from
the organisation. This time, the customer is the one initiating the protocol,
writing on a piece of paper a (long) password that will be used to identify his
order. He then sends it to Isabelle in a box sealed with her lock, and attaches a
note with his own name so that Isabelle knows who to return the delivery to.

Upon receiving the box, Isabelle reads the customer’s name on the note, opens
the box with her key, puts the cake inside next to the paper with the password,
and then seals it with the customer’s padlock. She then has the package delivered.

The client checks that the cake is accompanied by the same password that
he chose initially; if not, he can, say, destroys the cake. We call this new version
V3. It is designed so that someone attempting to make Bob eat a poisoned cake
would have to guess his password—which is considered to be impossible if it is
long and unpredictable enough. This is an example of a widely-used technique,
called challenge-response. Here, Bob challenges Isabelle to answer with his long,
temporary, password. Only Isabelle can open her box, hence only Isabelle can
respond with the correct password. Such a challenge-response technique is used
in many protocols, such as EMV [9] or biometric passports [13].

So what do you think? Is the V3 protocol secure?

How to Explain Security Protocols to Your Children 117

3.2 Man in the Middle Attack

Unfortunately there is yet another attack even on our reinforced version of the
protocol. This is also what makes security protocols so interesting: without for-
mal, rigorous security analyses, we often end up with such counter-intuitively
broken protocols. The actual attack unfolds as follows. First of all, the protocol
starts as usual: Bob places a password in a locked box and writes his name on
it. On his side, the deliveryman orders a cake, then transmits Bob’s order to
Isabelle but replaces Bob’s name by his own.

Isabelle follows the instructions of the protocol and places the cake in the
safe, thinking that the password inside is from the deliveryman. She then closes
the box with the deliveryman’s padlock : this permits him to open it, poison the
cake, and close it afterwards with Bob’s lock.

The deliveryman then returns to Bob and gives him the poisoned delivery,
pretending it is what Bob ordered from Isabelle. Bob believes it to be safe due
to the presence of his password and eats the poisoned cake.

3.3 A Countermeasure

A countermeasure is to ask the customer to put his name inside the box, next
to the password, to prevent the deliveryman from changing it. Actually, adding
more information about identities inside boxes (or, inside ciphertexts in real
protocols) is commonly considered as a good practice for similar reasons [1].
Calling this final version V4, it finally satisfies the expected property:

An active malicious delivery person can neither eat a cake sent to Bob,
nor poison Bob if the latter only eats cakes he thinks are from Isabelle.

Due to the attacks we exhibited on all successive versions of the protocol, you
might be wary of that statement—as of any security statements you hear from
today. The version V4 however deserves more trust than the previous ones, as
its analysis has been backed up by formal, automated tools [18], thus mitigating
the risk of unconsciously overlooking attack scenarios, or simply of inattention
mistakes. Formal methods allow to prove that there is no attack, even when
the deliveryman sends arbitrary packets, in any order. These techniques are
applied more generally to security protocols to detect flaws and obtain enhanced

118 V. Cortier and I. Rakotonirina

guarantees. Some of them are based on strand spaces [11,12,22], Horn clauses [2],
or constraint systems [20]; examples of such techniques can be found in the
following survey book [8].

It is also interesting to note that protocol V4 corresponds to the first part
of the Needham-Schroeder protocol [17], that has received in-depth academic
scrutiny, including analyses in popular automated tools such as ProVerif [3],
Tamarin [16], or Maude-NPA [10]. These tools continue to receive attention and
improvements from the community up to this day [5,14], in parallel to the emer-
gence of new techniques and analysers that with yet different approaches [4,6,7].
The attack on V3 is actually very similar to an attack found against the second
part of the Needham-Schroeder protocol [15], also due to missing indications
of Bob’s identity. The description of many other protocols and attacks can be
found in the reference book from Schneier [21].

4 A Practical Session

These stories can also be played “in real life”: under the form of an interac-
tive riddle, the protocols and their attacks are easier to understand. This also
gives the opportunity for participants to design their own protocols, and thus to
estimate the difficulty of the task. We explain here how we organise a practice
session; we experimented with it on audiences from diverse backgrounds, rang-
ing over children, teenagers, teachers, or adults of various ages and professional
activities—and it basically works with anyone curious enough. Sessions usually
last about 45 min, but can be adapted to 30 min or stretched to 1 h easily with
minor adjustments. A good size for the group is about 10–15 participants, as
they later need to be split into 2 or 3 smaller subgroups of 3–5 participants.

4.1 The Material

In short, a session requires the follow-
ing material, discussed below:

1. boxes and padlocks: ideally three
should be available per subgroup;

2. pens and post-its, for the passwords
of the challenge-response;

3. small toys to represent Isabelle,
Bob, the deliveryman, the public-
lock organisation, and the cakes.

Boxes can be crafted using cardboard paper; more advanced versions like the
ones on the picture can be built with reasonable effort, using paintable wood
chests (obtainable from hobby shops), where two metal rings are screwed (found
in hardware shops, and through which padlocks can be closed to lock the boxes).
It can also be fun to have various sizes of boxes to allow for “Russian dolls”, that
is, nested boxes that simulate several layers of encryption. As this is not necessary

How to Explain Security Protocols to Your Children 119

for solving the riddles presented here, this is simply a misleading pitfall. In our
experience, providing such spurious mechanisms improves the imaginativeness
of the participants, and is a good way of not guiding them too much towards the
solution—making them understand that stacking all available ingredients does
not necessary improve security as a result.

Regarding toys, you can just borrow them from your children or nephews.
We typically use characters from a world-known brand but we did not get the
permission to use them in official material or pictures. You may also use chess
pieces or any wood token if you do not like gendered figurines.

4.2 A Typical Session

Part 1: Context. In a typical session, after a short introduction about the history
of security and telecommunication, we follow the storyboard, using our boxes,
padlocks and figurines to play the scenarios. First of all, we thus explain V1; then,
before telling the attack, we ask two volunteers to come and play the protocol’s
roles themselves (one plays Isabelle, one Bob). This helps making sure everyone
got enough time to understand the setting. Of course, we play the delivery person
and attack the two volunteers as soon as we feel that the group is ready for it.

After explaining the notion of public locks and letting the audience find the
(easy) protocol V2, we explain the new scenario: the deliveryman now wishes to
poison Bob and we should find a protocol to protect him from such a disaster.

Part 2: Design. We then split the audience in 2 or 3 smaller groups and ask them
to invent their own protocol for the above purpose. Each group receives material
and has about 15 min for this activity. In the meantime, we regularly check on
them to re-explain the goals and assumptions, or to clear misunderstandings.
Recurring misconceptions are typically on the following aspects of the problem:

1. The protocol design is not secret : as a protocol is designed for everyone to use,
we assume that everyone knows how it works—including the deliveryman. We
thus deny assumptions such as “the deliveryman has no way to know Isabelle
and Bob plan to do this” as soon as we overhear them.

2. The attacker is unpredictable: assumptions such as “if I do this, the attacker
will think that, and he will therefore not do this action that would break my
protocol” should also be denied by the animators.

3. The attacker is ubiquitous: it is not possible to keep the attacker busy some-
where else to avoid his interferences—for example by sending dummy boxes
to another destination.

In our experience, younger children (10–12 years old) are more optimistic and
happier with their protocol. Older ones better anticipate attacks and, as a result,
may be more reluctant to propose their own design; it is usually helpful to
encourage them to try anything as a starting point, to be improved step by step.

120 V. Cortier and I. Rakotonirina

Part 3: Attacks. Then comes the time when each group explains its protocol to
the rest of the participants. This leads to a friendly competition where each group
tries to find attacks on the others. At this point, we consider that V3 is sufficient;
more generally, we do not mention attacks that require the deliveryman to have
accomplices among the clients. Interestingly, it is often the case that participants
easily find attacks on other groups’ protocols, while they struggle to find one
against their own—even when it is deeply flawed or close to identical to another
group’s. It is then easy to convince them that designing TLS was not so easy.

Naturally, in case nobody finds an attack on a broken proposal, this is our
task to find one (which requires to be comfortable with security analyses).

Part 4: Ending. The final part is up to you, the group, and the remaining time.
One possibility is to go further into the protocol design and explain the attack
on V3, present V4, and link them to real protocols that use challenge-response as
a buliding block. If you feel like it, you can then continue with fancier protocols
(voting, payment, passport, messaging...). Another direction is of course to talk
about formal methods. At this stage, the participants are quite aware of the fact
that it is difficult to design a protocol, and even more difficult to be convinced
that there is no attack. They will expectedly be receptive to the message that
we need rigorous techniques to prove that there is no flaw.

4.3 Long-Term Variants of the Design-Attack Parts (advanced)

Our experience is that even college students are receptive to this playful format.
We therefore also investigated longer-term, more technical variants of the practi-
cal session, serving as a student project for introduction courses to security. One
of the authors (Véronique Cortier), along with other teachers, has implemented
it several years in a French engineering school, for the equivalent of third-year
bachelor students. We outline in this section how this may be organised.

First of all, the Part 1 of the practical session (from the historical context to
presenting the poison scenario) can be used as is to tease the overall course to the
students. A couple of hours may then be spent in a more classical, academic man-
ner to connect this game to practice: more technical definition of symmetric and
asymmetric encryption, presentation of the Alice-Bob notation to specify proto-
cols, or essentially any basic knowledge on security that the course is expected
to convey. Once the students start having a minimal understanding of protocols
and of a syntax to specify them, the actual project can be presented: it replaces
the Parts 2 and 3 of the activity, and students will carry it out mostly out of
class, in parallel to the course, under the form of an online competition.

1. Just as in Part 2 of the practical session, students form small groups and
work on the design of protocol V4. A rudimentary online interface should
allow each team to put their proposals in full view of all other students.

2. All along the project, as in Part 3, the goal of each team is to attack other
team’s protocols, in addition of proposing its owns. A scoring system is then
designed to encourage playing the game; it should:

How to Explain Security Protocols to Your Children 121

(a) reward finding attacks, all the more for attacks found quickly;
(b) reward proposing (new) protocols lasting long before an attack is found;
(c) optional : in case the course teaches the use of automated tools such as

ProVerif or Tamarin, protocols coming with a formal analysis in one of
these tools may be rewarded, just as attacks found using them;

(d) advised : influence the solutions to stay away from the V3/V4 protocols,
which are usually found quickly, wasting the competition. We used a
cost function: each operation (encrypting, decrypting, pairing...) has a
determined cost, and the overall cost of a protocol induces a score penality,
thus encouraging to avoid costly operations. It then suffices to smartly
choose a cost function that spikes on V3/V4 and remains reasonably low
otherwise. Our choice was to attribute a very high cost to encrypting a
tuple of messages (which corresponds, in V3 for example, to putting two
objects—the password and the cake—inside the same locked chest).

Of course, the competition should remain beneficial to the students to foster
motivation and avoid despondency. We simply gave bonus points to the final
exam to students depending on their rank in the competition. Dedicated grades
could also be given, provided an honest investment secures a reasonable mark.

5 Conclusion: Have Fun!

We hope this paper and the associated activities can help explaining security
protocols to a general audience and will be pursued with other ideas. At least,
we had a lot of fun in all of our sessions!

Acknowledgments. We would like to thank Isabelle for her fantastic cakes at our
cafeteria. It certainly fostered our motivation to work on security protocols. (and also
to take a few naps.)

References

1. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

122 V. Cortier and I. Rakotonirina

2. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of the 14th Computer Security Foundations Workshop (CSFW’01).
IEEE Computer Society Press (2001)

3. Blanchet, B.: Automatic verification of security protocols in the symbolic model:
the verifier ProVerif. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 54–87. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10082-1 3

4. Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocols. ACM Trans. Comput. Logic (TOCL)
17(4), 1–32 (2016).https://github.com/akiss/akiss

5. Cheval, V., Cortier, V., Turuani, M.: A little more conversation, a little less action,
a lot more satisfaction: global states in proverif. In: 2018 IEEE 31st Computer
Security Foundations Symposium (CSF), pp. 344–358. IEEE (2018)

6. Cheval, V., Kremer, S., Rakotonirina, I.: The deepsec prover. In: International
Conference on Computer Aided Verification (CAV) (2018). https://deepsec-prover.
github.io/

7. Cortier, V., Dallon, A., Delaune, S.: Sat-equiv: an efficient tool for equivalence
properties. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF)
(2017). https://projects.lsv.ens-paris-saclay.fr/satequiv/index.html

8. Cortier, V., Kremer, S. (eds.): Formal Models and Techniques for Analyzing Secu-
rity Protocols, Cryptology and Information Security Series, vol. 5. IOS Press (2011)

9. EMVCo: Book1 - application independent ICC to terminal interface requirements.
Technical report, (2011)

10. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for
the NRL protocol analyzer and its meta-logical properties. Theor. Comput. Sci.
367(1–2), 162–202 (2006)

11. Guttman, J.D.: Cryptographic protocol composition via the authentication tests.
In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 303–317. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1 22

12. Guttman, J., Thayer, F.: Authentication tests and the structure of bundles. Theor.
Comput. Sci. 283, 333–380 (2001)

13. ICAO: Machine readable travel documents. Technical report, International Civil
Aviation Organization (2006). doc 9303. Part 1

14. Jackson, D., Cremers, C., Cohn-Gordon, K., Sasse, R.: Seems legit: automated
analysis of subtle attacks on protocols that use signatures. In: Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 2165–2180 (2019)

15. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 43

16. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

17. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Commun. ACM 21(12), 993–999 (1978)

18. Rakotonirina, I.: Efficient verification of observational equivalences of crypto-
graphic processes : theory and practice. Ph.D. thesis, Université de Lorraine (2021)

19. Rakotonirina, I.: Les livraisons dangereuses (2021). on Interstices (in French),
https://interstices.info/les-livraisons-dangereuses/

https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1007/978-3-319-10082-1_3
https://github.com/akiss/akiss
https://deepsec-prover.github.io/
https://deepsec-prover.github.io/
https://projects.lsv.ens-paris-saclay.fr/satequiv/index.html
https://doi.org/10.1007/978-3-642-00596-1_22
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://interstices.info/les-livraisons-dangereuses/

How to Explain Security Protocols to Your Children 123

20. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is
NP-complete. In: Proceedings of the 14th Computer Security Foundations Work-
shop (CSFW’01), pp. 174–190. IEEE Computer Society Press (2001)

21. Schneier, B.: Applied Cryptography Second Edition: Protocols, Algorithms, and
Source Code in C. J. Wiley & Sons, Inc., Hoboken (1996)

22. Thayer, J., Herzog, J., Guttman, J.: Strand spaces: why is a security protocol
correct? In: Proceedings of the IEEE Symposium on Security and Privacy. IEEE
Computer Society Press (1998)

Verifying a Blockchain-Based Remote
Debugging Protocol for Bug Bounty

Pierpaolo Degano1,2(B) , Letterio Galletta2 , and Selene Gerali1,2

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
pierpaolo.degano@unipi.it, s.gerali@studenti.unipi.it

2 IMT School for Advanced Studies, Lucca, Italy
letterio.galletta@imtlucca.it

Abstract. We address the problem of a mutual agreement between a
bug bounty issuer and a bounty hunter in blockchain smart contracts.
Our framework is VeriOSS, where a Proof of Knowledge protocol is used.
Through it, the hunter communicates in clear increasingly large portions
of the detected bug and gets back increasingly ample portions of the
reward, provided that the issuer considers the received information plau-
sible. The process is iterated until the entire bug is revealed and the entire
reward given. We formalize this protocol using the Applied Pi-calculus
and we apply ProVerif to it so as to verify its correctness, i.e., that only
the relevant information and the corresponding reward are exchanged
and that the integrity and the authenticity of the communications is
granted.

Keywords: Bug bounty · Protocol verification · Remote debugging

1 Introduction

Most of Joshua D. Guttman’s research contributions are on the field of security
in particular, on cryptographic protocol modeling and verification. His contribu-
tions deeply influenced us, among which the most inspiring has been his work on
Strand Spaces [15,16] supporting the verification tool CPSA [1]; on information
flow verification on SELinux policies [11]; on firewall configuration [3]; and the
column on security of the Bulletin of EATCS [10]. It has been a great pleasure
and a rare privilege meeting and working with Joshua and writing this little
essay in which we follow some of his scientific lines.

Recently, software developers resorted to the large community of the network
for help in spotting bugs in their products. To do that, developers and also
vendors offer public rewards to those who detect flaws and contribute to fix
them, so launching what are called bug bounty programs.

This work has been partially supported by IMT PAI Project VeriOSS, and by the
MIUR project PRIN 2017FTXR7S IT MATTERS (Methods and Tools for Trustworthy
Smart Systems).

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 124–138, 2021.
https://doi.org/10.1007/978-3-030-91631-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_7&domain=pdf
http://orcid.org/0000-0002-8070-4838
http://orcid.org/0000-0003-0351-9169
http://orcid.org/0000-0002-8584-5285
https://doi.org/10.1007/978-3-030-91631-2_7

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 125

In such a collective debugging, a bounty issuer offers a reward to any
bounty hunter who discovers a bug. The offered reward usually depends on
the type and criticality of the bug and it is paid in change of the information
for reproducing it.

Bug bounty programs are subject to numerous challenges. Current programs
hardly protect issuers and hunters from a dishonest party. On the one hand,
hunters have to prove that they actually discovered a bug, but a dishonest issuer
can take this information and yet she can deny or downgrade the reward. On
the other hand, a dishonest hunter may provide a false bug to an issuer and cash
the reward.

These challenges make the bounty market inefficient. Hunters are pushed
to look for other opportunities to sell bugs, such as gray and black markets.1

On their side, issuers are forced to carefully inspect the validity of the reported
bugs, since it is not infrequent that forged bugs are submitted, e.g., in 2016 the
majority of the security reports received by Google were considered invalid.2

Recently, a blockchain-based platform for bug bounties, called VeriOSS, has
been proposed as a tool to increase the fairness and the efficiency of the bounty
markets [6]. Reputation also plays a crucial role, and the integrity properties of
the blockchain ensure that any cheating attempt is recorded and made publicly
visible to all. One of the main components of the platform VeriOSS is a bug
disclosure protocol, arbitrated by a smart contract.

The protocol starts from a bounty issuer publishing a smart contract on the
blockchain. This contract contains a precise characterization of the eligible bugs
together with the offered reward. When a bounty hunter claims the reward,
she must call the smart contract and provide enough information to check the
eligibility of the bug without revealing all the details for reproducing it. The
blockchain arbitrates then a remote debugging protocol between the bounty
issuer and the bounty hunter that, if successful, leads her to fully disclose the
bug and the issuer to pay the reward. The protocol consists of a challenge-
response loop, where at each step, the issuer proposes a challenge to the hunter
that she can only solve if she actually knows the bug. To solve the challenge
the hunter has to disclose parts of the execution trace that reproduces the bug.
In exchange, the issuer pays a fraction of the total reward through the smart
contract.

Note that the issuer can decide not to start or to interrupt the challenge-
response loop, e.g., if the bug is already known or it is or seems of no interest.
Similarly, the hunter can leave protocol because she is cheating and does not
care about her reputation.

Since the security of VeriOSS strictly depends on the challenge-response pro-
tocol, it is crucial to study the behaviour of its key components for a correct
functioning of the bug bounty market. To achieve that, in this paper we for-

1 The activities occurring on gray and black markets are hard to document, however,
some leaked emails give a glimpse on these markets. See https://tsyrklevich.net/
2015/07/22/hacking-team-0day-market/.

2 https://sites.google.com/site/bughunteruniversity/behind-the-scenes/charts/2016.

https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://sites.google.com/site/bughunteruniversity/behind-the-scenes/charts/2016

126 P. Degano et al.

Fig. 1. The workflow of the VeriOSS protocol in the case success. The initiator is the
Bounty Issuer.

malize this protocol using the Applied Pi-Calculus [2] and we study its security
properties using the ProVerif analyzer [4]. More in detail, we focus here on mes-
sage integrity and on authenticity of communications. This is because the bounty
market as well as the execution of the protocol are to be publicly accountable
by any participant. Therefore, we make sure that the issuer and the hunter are
actually those who published the bounty and claimed the reward. We also verify
that when the execution of the protocol reaches some predefined checkpoints,
the participants have performed certain required actions in the correct order.

This paper is structured as follows. We first survey VeriOSS in Sect. 2, and
then we formalize it using the Applied-Pi Calculus in Sect. 3. The verification in
ProVerif is in Sect. 4. Section 5 discusses the relevant literature and draws some
conclusions.

2 Background: VeriOSS

In this section we briefly recall the main components of VeriOSS and how they
interact. We refer the reader to [6] for a full account of the design and description
of the protocol. Briefly, VeriOSS has two goals: (i) support an honest bounty
hunter BH in collecting a reward under the assumption of an untrusted bounty
issuer BI; and (ii) protect BI against untrusted BHs claiming an undeserved
reward. In particular, VeriOSS achieves these two goals by (i) requiring BI to
provide a precise description of the eligible bugs; and (ii) driving the BH in
disclosing the bug and claiming for the reward.

2.1 Workflow Overview

The general workflow of VeriOSS is in Fig. 1. Initially, the bounty issuer BI
publishes a bounty on the blockchain. The bounty contains information about

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 127

the type of bugs BI is interested in, and the reward offered. The bugs are classi-
fied according to some standards, e.g., the Common Vulnerability Scoring Sys-
tem3 and the Common Weaknesses Enumeration.4 When the bounty hunter BH
detects a bug that complies with the issued bounty, she can claim the reward.
To do so, BH carries out a commitment by sending to the smart contract some
initial debug information containing some meta-data about the bug and a (hash
of the) faulty execution trace. The information on the trace is obfuscated in such
a way that BI cannot find out where the bug is but only check the eligibility
of the bug. For instance, the bug description may consist of the kind of error
and of some high level information about the buggy state at the end of the exe-
cution trace, e.g., a partial documentation that the program crashes because of
segmentation faults. Before starting the actual protocol the issuer checks if the
bug committed by the hunter is not duplicated and decides if it is worth paying
for it. Note that the eligibility step is fundamental to prevent those situations
where a malicious hunter tries to deceive the issuer proposing already solved
bugs (replay attacks).

Once the issuer decided that the bug is eligible, an iterative challenge-
response protocol starts, whose goal is to protect both participants: it prevents
BI to pay for forged bugs, and at the same time ensures that BH is paid for
her work. At each iteration of the protocol loop, BI synthesizes a challenge for
BH to test her knowledge of the buggy trace at a specific step. If BH solves the
challenge, she receives a partial reward (expressed as a fraction of the total one)
and she provides information to continue the disclosure loop. Eventually, the
protocol terminates when either the bug is entirely disclosed, so completing the
proof, or one of the participants withdraws.

2.2 Challenge-Response Interaction

VeriOSS uses a sort of Proof of Knowledge (PoK) protocol, that is also called
Σ-protocol [12]. A standard PoK consists of a prover and a verifier interact-
ing through a challenge-response process, and the two parties play both roles.
Instead, our protocol is slightly asymmetric, because BH must prove she knows
the bug and BI must prove she is willing to pay the reward.

We call this protocol Pay-per-Knowledge (P2K) and it is an instance of a two-
party fair exchange protocol [13]. A peculiar feature of this kind of protocols is
that the two parties either achieve their individual goals together or they both
fail. Reaching the goals simultaneously is not mandatory because, e.g., a party
could receive the other’s knowledge while providing an effective commitment to
release her own knowledge within a certain time.

Typically, P2K relies on a trusted third party to mediate between the two par-
ticipants, and VeriOSS implements it through a smart contract on a blockchain.
The smart contract carries out a specific task when certain conditions are satis-
fied, in our case when a participant knows the answer to a challenge.

3 https://www.first.org/cvss/specification-document.
4 https://cwe.mitre.org/cwss/cwss v1.0.1.html.

https://www.first.org/cvss/specification-document
https://cwe.mitre.org/cwss/cwss_v1.0.1.html

128 P. Degano et al.

Fig. 2. The P2K protocol message sequence diagram.

The message flow in the P2K bounty claim protocol is shown in Fig. 2. The
bug disclosure is a sort of remote debugging process replicating the execution of
a buggy program trace. The protocol starts with BH claiming the bounty: she
describes the bug without fully disclosing it, and commits the obfuscated debug
trace, storing it in the blockchain BC. Actually, the commitment contains the
hash of the program states appearing in the trace. Note that this hash ensures
that a dishonest BH can neither craft a faked trace nor diverge from the protocol
execution.

The challenge-response loop is as follows. The issuer BI stores a challenge-
reward smart contract on the blockchain BC. The input of the smart contract
is the answer to the challenge submitted by BI. In particular, the solution of
the challenge is a program state from which the buggy state is reachable after
a certain number of steps. Then BH submits a program state to the smart
contract: if her answer correctly solves the challenge, and at the same time it is
consistent with the trace committed at the beginning, then BH can collect the
partial reward. Note that BI can access the submitted state since the blockchain
content is public. The loop is repeated by replacing the buggy state with the
state provided by BH. Eventually, the loop terminates when BH provides the
initial state of the trace or one of the parties withdraws from the protocol.

2.3 Remote Debugging, and Challenge Generation and Solution

The challenge-response protocol described above implements a sort of remote
debugging process, because the target program runs on a different location, e.g.,
a remote host. Under our assumptions, the hunter executes the target program
and the issuer debugs it. However, P2K differs from the (standard, forward)
remote debugging process because it proceeds backwards: the debugging starts
from a (buggy) final state and proceeds towards an initial state, in a reverse
debugging style.

In general, reverse debugging may disclose the whole buggy execution trace
in an early stage, so failing to protect the hunter: in other words, BI might infer
the initial state without interacting with BH. To address this issue, the hunter
only partially reveals the current debug state.

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 129

Roughly, the challenge consists in finding a boolean assignment to a formula
F representing the program state σ that precedes the current state σ′, in the
style of weakest precondition [8]. To solve the challenge, both σ and σ′ must
belong to the execution trace initially committed by the hunter BH.

It is well-known that finding the required boolean assignment to the formula
F is NP-complete [14]. Nevertheless, this is not a problem here: a honest hunter
already knows a solution to the challenge, that is the program state that she has
committed. Solving the challenge is indeed feasible, and consists in evaluating
F with the boolean assignment provided by the hunter.

Example 1. We clarify how VeriOSS works through a toy example, taken
from [6]. Consider a issuer that is interested in understanding if there is a bug
in the following C function:

float foo(unsigned char c) {

float z = 255/(c+1);

return 1.0/z;

}

The issuer publishes a bounty on the blockchain proposing a certain amount of
money as reward for any bug that makes the function returns an invalid value.

An hunter can find out that in the code above there is a division by zero
when c = 255. Indeed, in this case z gets assigned the result of the integer
division 255/256, which is 0. Thus, the execution of the return statement makes
the function to return an invalid value. More precisely, the final state reached
when c = 255 is σ = [z ←� 0, c ←� 255, foor ←� inf], where foor represents the
value returned by the function. Of course, if the hunter publishes an execution
trace ending in σ with no obfuscation, the input triggering the bug is trivially
exposed.

We now describe how the challenge response protocol can be used to reveal
the bug; two steps suffice. Since the state σ refers to the completion of the
execution of the function, the hunter sends a trace ending in the state σr =
[fooz ←� inf], i.e., σ projected on the returned value of the function. In this
way, the issuer sees that an invalid value is actually returned, but (in principle)
she does not know which input causes the mistake. However, the issuer can
realize that the computation failed because the value of z is incorrect, and that
this can only happen when its value is 0. Thus, she uses this information to
construct a challenge for the hunter. Since the predicate z = 0 holds after the
instruction float z = 255/(c+1), the precondition for this last statement is
a predicate P that implies z = 0 Also, since z = 255/(c + 1) we have that P
implies 255/(c + 1) = 0. Moreover, due to the semantics of the integer division
operator in C this condition is equivalent to P implies c ≥ 255. Thus, the issuer’s
challenge for the hunter is: Provide me with a partial trace ending in a state
which satisfies the predicate c ≥ 255.

The hunter can easily solve this challenge by supplying a trace made of a
single state where [c ←� 255]. At the end of the interaction, the issuer has the
value causing the bug and the hunter will receive her reward.

130 P. Degano et al.

3 Protocol Encoding

We assume the reader familiar with the Applied Pi-calculus [2] that we use
to formalize the P2K protocol. It consists of the parallel composition of six
processes, as displayed in Fig. 5. The first three specify the blockchain, the bounty
issuer and the bounty hunter, dubbed BC,BI and BH, respectively. The others
are dubbed BI ′ and BH ′ and roughly act as continuations of BI and BH; as we
will see in Fig. 5, they express the challenge-response loop and have a recursive
definition through the replication operator “!”. There is also a further auxiliary
process, BC ′, the continuation of BC.

We assume that the communications between BC and BI (BH, respectively)
take place on the channel cIC (cHC , respectively); the same channels are also
used by their three continuations. Also, we assume to have a digital signature
system that generates a pair of public and secret keys for a process X through
the functions pk(X) and sk(X), respectively. In our case, the issuer has the pair
KPI ,KSI of public and private keys, and so have the blockchain and the hunter,
referred to as KPC ,KSC and as KPH ,KSH , respectively.

In the Applied Pi-calculus specification we use the following notation, pred-
icates and two abbreviations, the first for non-deterministic choice, not present
in this calculus, and the second for the abridged conditional:

– the names E, T,C,N,Z, S,R,M are constants used as special messages: E for
when a process abandons the protocol; T for when the protocol terminates
successfully; C represents the initial contract; N signals the successful pub-
lication of a contract; Z is the notification of a claimed bug; S is a contract
representing an intermediate challenge; R is an answer to a challenge S; and
M is a partial reward;

– {msg}K indicates that the message msg has been signed by the owner of the
private the key K;

– [{C}K , x]K−1 besides checking if the cyphertext C equals {msg}K , this predi-
cate has the additional effect of substituting the plaintext msg for the variable
x occurring in the process P it prefixes; otherwise, the process attempting
decryption gets stuck. When the variable x is immaterial we feel free to use
“ ”.

– valid(x) is a predicate that holds if and only if (i) the issuer verifies that x
is a valid debug (sub-)trace or (ii) the blockchain verifies correct the answer
of the hunter to a given challenge; we omit here some technical details, e.g.,
that the debug sub-trace is obfuscated through a hash function and that the
verification step uses further data not mentioned here;

– exit(y) is a predicate that holds if and only if the participant y notifies that
he is going to abandon the protocol;

– terminated(P2K) is a predicate that holds if and only if the protocol is suc-
cessfully terminated, i.e., if the bounty issuer knows the initial state of the
bugged program, because the hunter correctly answered all the challenges;

– P + Q � (νa)
(
ā〈m〉 · 0 | a(x) · P | a(x) · Q

)
, where a and m are fresh names,

i.e., occurring free neither in P nor in Q, the first denoting a channel and the
second a dummy message.

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 131

Fig. 3. The specification of the bounty issuer BI, the blockchain BC, and the bounty
hunter BH.

Fig. 4. The continuations BI ′, BC′ and BH ′ of the bounty issuer, the blockchain, and
the bounty hunter.

– if guard then P � “if guard then P else 0”

The processes that define the initial behaviour of the participants are in
Fig. 3. Intuitively, through a send the issuer BI stores the smart contract C in
the blockchain BC that in turn notifies (via the message N) both the issuer
(the key used to sign is KSI) and the hunter BH that the contract has been
published. Note that the publication of C only succeeds if the sender is indeed
BI and has correctly signed C. Upon reception of N , the hunter BH sends
the piece of information about the claimed faulty trace to the issuer via the
blockchain. The issuer first verifies if the message has been signed by the hunter,
and then checks its validity. Then, the challenge-response loop starts by running
the continuations of the three processes above.

We now comment on Fig. 4 that displays the continuations BI ′, BC ′ and BH ′

of the bounty issuer, the blockchain, and the bounty hunter. The first process
stores in the blockchain a new challenge S, signed with his private key; it receives
a notice N from BC ′; it verifies the signature; later on it receives a partial trace
R of the program (from BH ′ via the contract in BC ′) and stores it in t after
checking its signature. The continuation BC ′ of the blockchain receives the new
challenge in s; it verifies that the challenge has been signed by the issuer; it sends
the signed acknowledge to both BI ′ and BH ′; it receives a candidate solution
to the challenge from BH ′ (stored in t), and it checks its signature; if t is a valid
solution, BC ′ sends a (partial) reward to the hunter and the solution to the
issuer. Finally, the hunter receives the notice from the blockchain and verifies
the signature; it signs the new response R, and waits for the (partial) reward.

The process formalizing the whole P2K protocol is in Fig. 5. It consists of
six components: the first three processes define the initial behaviour of the par-
ticipants, namely of BI,BC and BH. The other three processes perform some
non-deterministic choices, each including the continuations BI ′, BC ′ and BH ′.
They replicate their behaviour, so implementing the challenge-response loop
of the P2K protocol. More precisely, the fourth process behaves as BI ′ or it

132 P. Degano et al.

Fig. 5. The specification of the protocol P2K. It consists of three processes that ini-
tiate the protocol and of three processes that replicate themselves and implement the
challenge-response loop.

outputs either the constant E or T , signed with its secret key KSI ; through
these constants this process communicates the blockchain either its intention
to abandon the protocol or a successful termination. In the last alternative,
the fourth is receiving from the hunter a response for the current challenge, or
the signal of abandoning the protocol, both duly signed. The fifth process has
three alternatives, the first of which is the continuation BC ′. The second non-
deterministic choice receives from the issuer a signed message that is decrypted
and forwarded to the sixth process, provided that it is a notification of either
abandon or termination, namely E or T . The third alternative receives from the
hunter a message when it is about to abandon the protocol, and forwards the
constant E to the issuer. The sixth and last process either behaves as BH ′, or it
abandons the protocol by sending the blockchain the message E, or it receives
the reward for the portion of bug revealed.

4 Verification in ProVerif

Here, we describe the security analysis of the P2Kprotocol through the tool
ProVerif [4]. Since the ProVerif specification is obtained by a simple one-to-one
translation of the processes described in Sect. 3, we omit it here; the interested
reader can find it online.5

Where the Blockchain Helps. Before presenting the properties we study using
ProVerif, it is worth noticing that there are some assurances that our protocol
inherits from the blockchain and that we do not explicitly consider in our anal-
ysis. In particular, we can neglect some attacks that are already prevented by a
typical blockchain system. For example, we do not explicitly consider a hunter-
in-the-middle attack, where an attacker publishes on the blockchain a smart
contract pretending to be a certain issuer, because this is already prevented by
the integrity and authenticity properties of the blockchain. Since these proper-
ties rely on the fact that the private key of issuers remain secret, below we only
verify that the attacker never learns it. Also, one relies on the blockchain to

5 https://github.com/Selene15/P2K ProVerif.

https://github.com/Selene15/P2K_ProVerif

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 133

guarantee that messages are fresh. Finally, note that two different issuers may
publish bounties that may intersect, i.e., for the same bugs and in the same
software. This may happen, e.g., for an open source software that is used by dif-
ferent company but developed mainly by volunteers. We consider this situation
legit and falls within the market mechanisms: hunters will sell bugs to the best
bidder.

Expressing Corresponding Assertions. Since the execution of the protocol is
required to be publicly accountable by any node of the blockchain, we do not
ensure confidentiality of the communications between participants. Instead, we
check authentication properties that are fundamental for a correct functioning
of the bug bounty market. We need to make sure that the actual issuer is who
publishes a given bounty. The same identity assurance should also hold when a
hunter claims she found a bug and wants a reward. As usual, these authentication
properties are expressed by using correspondence assertions [17]. Corresponding
assertions are also used to verify that the participants have performed certain
required actions in the correct order, when the execution of the protocol reaches
some predefined checkpoints. Verifying that the execution of the protocol reaches
these checkpoints in the correct state is fundamental to be confident that no
misbehavior is overlooked and that the design of the protocol is correct.

To specify these properties in ProVerif we exploit the notion of event. Intu-
itively, events are emitted when the execution of the protocol reaches specific
checkpoints during the verification process. Below we list the events used in our
specification and their intuition:

– startChallenge signals the beginning of the challenge-response loop, it is
therefore emitted every time the process BI ′ starts;

– traceValid marks that the issuer BI has accepted the trace submitted by
BH as valid;

– sendRewardBH denotes that BC ′ paid the partial reward due for an intermedi-
ate challenge;

– challengeResolved occurs when BC ′ successfully checks the answer provided
by BH ′ to the current challenge;

– notifyChallengeBH shows that the blockchain BC ′ has notified the other par-
ticipants of the publication of a new challenge;

– publicChallengeReward records that the challenge and the associated reward
have been published on the blockchain;

– sendNewState signals that BH ′ submits a new program state as solution of
the challenge;

– notifyChallengeReceived indicates that BH ′ has been notified of a new chal-
lenge published on the blockchain;

– notifyStateBI occurs when BC ′ notifies BI ′ that the challenge has been
correctly solved;

– BIends denotes a clean termination of the protocol for the issuer;
– BIleaves (BHleaves, respectively) signals that the issuer (the hunter, respec-

tively) has abandoned the protocol;

134 P. Degano et al.

– BCinterruptedForBH (BCinterruptedForBI, respectively) denotes that BC ′

received the notification of clean or not clean termination of the hunter (the
issuer, respectively);

– BIterminated expresses that the issuer terminates the protocol;
– params_equal occurs when the number of the submitted solutions equals the

number of the proposed challenges.

Verification of Properties. The properties that we want to verify on our protocol
are expressed by using the query mechanism of ProVerif, which are of two kinds:
reachability and correspondence assertion queries.

The reachability queries mainly concern with the knowledge of the attacker
and have the following form

query attacker(t);

where t is a term. Intuitively the query verifies the secrecy of t, i.e., it holds
when the attacker cannot learn it. Since we want to ensure message integrity
and authenticity, we require that the messages exchanged by the participants
are all signed through their private keys and that the attacker does not know
them. To verify these properties, we submit to ProVerif the following queries
about the attacker knowledge:

query attacker(ksi); // ksi is issuer ’s private key

attacker(ksh); // ksh is hunter ’s private key

attacker(ksc). // ksc is blockchain ’s private key

All these queries get a positive answer, so proving that the messages exchanged
by the P2K protocol satify the integrity and authenticity requirements. The
bottom part of Fig. 7 shows the output of ProVerif.

The corresponding assertion queries verify that certain events have occurred
when the execution of the protocol reaches some predefined checkpoints. These
queries have the form

e1 && e2 && . . . && en ⇒ e

and intuitively they are satisfied when for each occurrence of the event e all
the events ei have previously occurred. ProVerif also supports injective events
(denoted by the keyword inj-event) that express a one-to-one relationship.
Below, we list the queries we have used, with an intuition about their mean-
ing:

– event(startChallenge)⇒event(traceValid) makes sure that the challenge-
response loop only starts after the reception of a valid trace;

– event(sendRewardBH)⇒event(challengeResolved) guarantees that the hunter
receives the partial reward only when her solution to the challenge has been
verified by the smart contract on the blockchain;

– event(notifyChallengeBH)⇒event(publicChallengeReward) requires that the
blokchain has notified the hunter every time the issuer has deposited the
reward on the smart contract;

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 135

Fig. 6. The counter process

– event(sendNewState)⇒event(notifyChallengeReceived) ensures that the
hunter sends her solution to the challenge only after the issuer has deposited
the reward on the smart contract;

– event(notifyStateBI)⇒event(sendRewardBH) guarantees that the issuer is
notified of the publication of the next trace state, only after the smart con-
tract has sent the reward to the hunter;

– inj-event(BIends) && event(BCinterruptedForBI)⇒inj-event(BHleaves)

makes sure that if the hunter leaves the protocol then she cannot receive the
reward any longer, and consequently the issuer ends the protocol;

– event(BCinterruptedBH)⇒event(BIleaves) checks that if the issuer leaves the
protocol then she cannot receive further states of the trace (note that the
hunter in turn ends the protocol);

– event(BIterminated)⇒event(params_equal) requires that the hunter has
solved all the challenges proposed by the issuer when the protocol terminates
correctly.

For technical reasons, in our specification we introduce an auxiliary process,
called processT, that models and expresses the properties of the last query above.
Intuitively, this additional process implements a counter that keeps the number
of published challenges, dubbed i, and the number of those that have been
correctly solved, dubbed j. Figure 6 shows the definition of processT that has
the private channel counter. Through this channel we keep track of the number
of challenges i and of the answers j, updated whenever new challenges or new
states are received from the blockchain; note that the process BC ′ is accordingly
modified to accomodate this little technical extension. When challenges and
correct solutions to them match in pair, the event params_equal is fired.

The upper part of Fig. 7 shows that ProVerif successfully proved all the cor-
responding assertion queries proving the authentication properties of the P2K
protocol.

136 P. Degano et al.

Fig. 7. Summary of the verification task performed by ProVerif on authentication and
integrity properties of P2K

5 Conclusion

We have considered the P2K protocol of VeriOSS, a recent proposal for establish-
ing a fair bug bounty market exploiting the blockchain [6]. We have formalized
the protocol using the Applied Pi-Calculus and we have verified its authenticity
and integrity using the ProVerif security analyzer. This have ensured us that the
issuer and the hunter are actually those who published the bounty and claimed
the reward. We also have verified that the participants have performed certain
required actions in the correct order.

We follow here the line of formal verification of cryptographic protocol in the
symbolic model. The literature on this topic is very large and we only refer the
interested reader to a couple of surveys [5,7]. The VeriOSS protocol addresses a
problem similar to the one addressed by the fair exchange protocols. These are
multi-parties protocol where participants want to exchange assets in a fair way,
i.e., no participant gives anything away unless she gets everything she wants.
There have been a great deal of work in the crytography community for defining
and studying the security of these protocols, and we refer the reader to the lit-
erature for an analysis [9,13]. The main difference our setting and the setting of
fair exchange is that in VeriOSS the information released by the hunter should
be carefully selected. More specifically, we need to prevent the issuer from repro-
ducing a bug before the hunter reveals the whole execution trace, so that she
can obtain the expected reward.

Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty 137

We plan to extend our work along different directions. A first refining of our
model will make it more adherent to implementations that delegate oracles to
perform parts of computations that are too expensive. For example, storing the
information about the obfuscated execution is quite demanding, and thus infea-
sible to be carried on by the blockchain. A further extension concerns studying
if concurrent executions of the VeriOSS protocol will preserve its correctness.
Besides ProVerif also CPSA can help in automatically verifying authentication
and integrity of parallel sessions.

References

1. Cpsa: Crptographic protocol shapes analyzer. https://github.com/mitre/cpsa,
Accessed May 2021

2. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1:1–1:41 (2018)

3. Adão, P., Focardi, R., Guttman, J.D., Luccio, F.L.: Localizing firewall security poli-
cies. In: IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lis-
bon, Portugal, 27 June–1 July 2016, pp. 194–209. IEEE Computer Society (2016).
https://doi.org/10.1109/CSF.2016.21

4. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), pp.
82–96. IEEE Computer Society (2001)

5. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and proverif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

6. Canidio, A., Costa, G., Galletta, L.: VeriOSS: using the blockchain to foster
bug bounty programs. In: Anceaume, E., Bisière, C., Bouvard, M., Bramas, Q.,
Casamatta, C. (eds.) 2nd International Conference on Blockchain Economics,
Security and Protocols, Tokenomics 2020. OASIcs, vol. 82, pp. 6:1–6:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

7. Cortier, V., Kremer, S.: Formal models and techniques for analyzing security pro-
tocols: a tutorial. Found. Trends Program. Lang. 1(3), 151–267 (2014)

8. Dijkstra, E.W.: A Discipline of Programming, vol. 613924118. Prentice-hall, Engle-
wood Cliffs (1976)

9. Franklin, M., Tsudik, G.: Secure group barter: multi-party fair exchange with semi-
trusted neutral parties. In: Hirchfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 90–
102. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055475

10. Guttman, J.D.: A new column: information security. Bull. EATCS 82, 242–252
(2004)

11. Guttman, J.D., Herzog, A.L., Ramsdell, J.D., Skorupka, C.W.: Verifying infor-
mation flow goals in security-enhanced linux. J. Comput. Secur. 13(1), 115–134
(2005). http://content.iospress.com/articles/journal-of-computer-security/jcs230

12. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Con-
structions, 1st edn. Springer-Verlag, Heidelberg (2010)

13. Mukhamedov, A., Kremer, S., Ritter, E.: Analysis of a multi-party fair exchange
protocol and formal proof of correctness in the strand space model. In: Patrick,
A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 255–269. Springer, Heidelberg
(2005). https://doi.org/10.1007/11507840 23

14. Papadimitriou, C.: Computational Complexity, 1st edn. Pearson, Boston (1993)

https://github.com/mitre/cpsa
https://doi.org/10.1109/CSF.2016.21
https://doi.org/10.1007/BFb0055475
http://content.iospress.com/articles/journal-of-computer-security/jcs230
https://doi.org/10.1007/11507840_23

138 P. Degano et al.

15. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security protocol
correct? In: Security and Privacy - 1998 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 3–6 May 1998, Proceedings, pp. 160–171. IEEE Computer
Society (1998). https://doi.org/10.1109/SECPRI.1998.674832

16. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999). http://content.iospress.com/
articles/journal-of-computer-security/jcs117

17. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: Pro-
ceedings 1993 IEEE Computer Society Symposium on Research in Security and
Privacy, pp. 178–194. IEEE (1993)

https://doi.org/10.1109/SECPRI.1998.674832
http://content.iospress.com/articles/journal-of-computer-security/jcs117
http://content.iospress.com/articles/journal-of-computer-security/jcs117

Quantum Machine Learning and Fraud
Detection

Alessandra Di Pierro(B) and Massimiliano Incudini

Dipartimento di Informatica, Università di Verona,
Strada le Grazie 15, 34137 Verona, Italy

{alessandra.dipierro,massimiliano.incudini}@univr.it

Abstract. One of the most common problems in cybersecurity is related
to the fraudulent activities that are performed in various settings and
predominantly through the Internet. Securing online card transactions is
a tough nut to crack for the banking sector, for which fraud detection is
an essential measure. Fraud detection problems involve huge datasets and
require fast and efficient algorithms. In this paper, we report on the use
of a quantum machine learning algorithm for dealing with this problem
and present the results of experimenting on a case study. By enhancing
statistical models with the computational power of quantum computing,
quantum machine learning promises great advantages for cybersecurity.

Keywords: Quantum computing · Support vector machine ·
Cybersecurity and fraud

1 Introduction

As technology keeps advancing at a very rapid pace, we can rely on computa-
tional resources increasingly bigger beyond any prediction that could have been
made by Moore’s law (at least by the strictest definition of doubling chip densities
every two years). Importantly, the idea of using quantum physics for building
computers that are in principle exponentially more powerful than any classi-
cal super computer is now becoming a reality although in the form of limited
and error-prone computers, aka Noisy Intermediate-Scale Quantum computers
[21]. This is already having a significant impact on some areas of cybersecurity,
such as cryptography (where quantum devices generating truly random numbers
can be used), secure communication (cf. quantum key exchange protocols), and
machine learning algorithms for identifying and defeating cyberattack methods.

In this paper we will address some of the aspects related to the impacts of
this general trend and its consequences on the analysis of security, a theme dear
to Joshua.

When the first author first met Joshua, her main objective in research was
the analysis of security properties by means of a formal tool that we called
probabilistic abstract interpretation, where abstraction, probability and pro-
gram semantics play a crucial role. Contrary to the main trend in probabilistic
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 139–155, 2021.
https://doi.org/10.1007/978-3-030-91631-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_8&domain=pdf
http://orcid.org/0000-0003-4173-7941
https://doi.org/10.1007/978-3-030-91631-2_8

140 A. Di Pierro and M. Incudini

static analysis we realized that considering linear algebra and functional analy-
sis, instead of set-based structures of probability or measure functions, was an
‘easy’ way to achieve practically more useful approximations and analyses which
are closer in nature to average case rather than to the worst case analysis of com-
plexity theory. This translates in real applications to the possibility of reducing
the number of false positives at the expense of correctness, and vice versa, thus
leaving to the user the choice of the appropriate trade-offs.

Another aspect of probabilistic abstract interpretation that is somehow a
byproduct of its mathematical definition is closer to the current investigations
that we are carrying out and that we are going to discuss in this paper. This is
related to a dual nature of the probabilistic abstract interpretation framework,
namely as a tool for both probabilistic and statistic analysis. It is well known
that while probability deals with predicting the likelihood of future events by
deducing it from some known distribution, statistics involves the analysis of the
frequency of past events for inferring such likelihoods. We have shown the use of
probabilistic abstract interpretation in both its functionalities, namely for prob-
abilistic static analysis [11] and for regression analysis [14]. This also implies that
machine learning and static analysis should be used as complementary and not
alternative tools for the successful identification and prevention of cyberattacks.

In this paper we go a step further by showing the relation between probabilis-
tic abstract interpretation and a quantum machine learning method for classifi-
cation. Quantum machine learning is a relatively new research field, where inves-
tigations are made on the use of quantum computing for speeding up machine
learning algorithms and the analysis of big data. We will present a quantum
classifier defined in [22] in analogy with the support vector machine method of
classical machine learning, and demonstrate this method for a very topical prob-
lem in cybersecurity, namely fraud detection. The enormous amount of data
and their statistical nature make the problem a good example of the advantages
coming from the combined use of quantum computing and machine learning.

In the next section we will introduce the problem and a classical machine
learning approach to solve it, i.e. the Support Vector Machine. In Sect. 3 we will
briefly introduce quantum machine learning, and in Sect. 4 we will illustrate the
application of quantum support vector machine to fraud detection, showing its
analogy with probabilistic abstract interpretation.

2 Detecting Fraudulent Transactions

Today, fraudulent activities are predominantly performed through the Internet.
Malware and phishing methods are engineered for this purpose. Some of the most
common types of fraud are customer information altering, ATM fraud, credit
card application fraud, account theft, fake credit cards and card duplication
[5,7].

Due to today’s global superhighways of communication and the refinement
of technological tools, fraud is increasing dramatically causing major disruptions
especially in the financial sector and resulting in the loss of billions of dollars

Quantum Machine Learning and Fraud Detection 141

worldwide each year. In fact, the increase of online transactions is forcing banks
to deal with an unforeseen number of fraudulent activities. For obvious reasons,
the literature on fraud detection is very limited and mainly related to general
methodological approaches rather than specialized methods of fraud detection
on a specific dataset (companies are often loath to release fraud figures as this
could frighten customers but also because the figures change over time).

Since anomaly detection methods are very context dependent, much of the
published literature in the area concentrates on supervised classification meth-
ods.

Supervised methods, using samples from the fraudulent/non-fraudulent
classes as the basis to construct classification rules to detect future cases of
fraud, suffer from the problem of unbalanced class sizes, as the legitimate trans-
actions generally far outnumber the fraudulent ones. When the probability of
fraud is very low, as it is often the case, simple mis-classification rate such as
accuracy cannot be used as a performance measure. This is because the formula

accuracy =
true non fraud + true fraud

total examples

would assign a very high accuracy to a classifier answering ‘no’ all the times.
Other metrics could give a more meaningful evaluation of a classifier perfor-
mance, e.g. precision which answers the question: When the model predicts
fraud, how often is it correct? Or, how many predicted frauds are truly frauds?
In fact, by calculating the formula

precision =
true fraud

true fraud + false fraud
,

we can get an estimate of how many times we get wrong by using a given classifier
(the closer to 1 the precision, the less false positives). Note that precision is the
most commonly used metric of measuring the quality of static analyses; in the
case of the quantitative static analyses that are performed using probabilistic
abstract interpretation, this precision can also be numerically estimated, thus
providing a basis for possible trade-offs [12].

Many fraud detection problems involve huge datasets that are constantly
evolving. Processing these datasets in a search for fraudulent transactions needs
fast and efficient algorithms. Clearly this is one of those cases where the potential
of Quantum Computing [20] promises huge advantages. We will show this by
focusing on a specific machine learning algorithm that can be used for fraud
detection, i.e. support vector machine, which we will first introduce in its original
classical version in the next section.

2.1 Support Vector Machines

A natural way of classifying a given dataset in two classes (e.g. fraud and non-
fraud) is to draw a separating boundary between the two classes. The standard
Support Vector Machine (SVM) [8] is a method that tries to maximize the

142 A. Di Pierro and M. Incudini

margin, i.e. the distance of the decision hyperplane to the nearest data points;
this induces a labeling on the dataset assigning each object to a class depending
on which part of the hyperplane they are positioned.

SVM is the best known member of a class of algorithms for pattern analysis
called kernel methods [8]. Kernel methods employ a so-called kernel function in
order to map data points, living in a input space V, to a higher dimensional
feature space V ′, where separability between classes of data becomes easier due
to the reduction of a possibly non-linear separation boundary into a linear one.
Kernel methods allow us to avoid the explicit calculation of the embedding map
into the new space V ′ and yet exploit its structure by representing the inner
product function in this new feature space (see Fig. 1).

Fig. 1. Visual explanation of the kernel trick. After the application of the map φ, a
previously non linearly separable dataset becomes such in a higher feature space.

In fact, if φ is the embedding map, φ : V → V ′, the kernel K : V × V → R

is the function defined by

K(�xi, �xj) ≡ 〈φ(�xi), φ(�xj)〉 ,

(where 〈 , 〉 is the inner product in V ′), satisfying the Mercer condition of posi-
tive semi-definiteness, i.e. for all possible choices of n real numbers (c1, . . . , cn),
the following relation must hold

M∑

i=1

M∑

j=1

K(�xi, �xj)cicj ≥ 0.

Hence calculating the kernel K(�xi, �xj) is computationally cheaper than comput-
ing each new coordinate of φ(�x). On the other hand, a classifier defined via a
kernel never involves or requires the computation of φ(�xi); thus we only need
the guarantee provided by the Mercer theorem stating that a mapping φ does
exist whenever the kernel function K(�xi, �xj) gives rise to a kernel matrix obeying
the positive semi-definiteness condition, or positive semi-definite (PSD) matrix.
Common examples of kernels defined on a Euclidean space R

d include:

Quantum Machine Learning and Fraud Detection 143

– Linear kernel: K(x, y) = xT y, x, y ∈ R
d.

– Polynomial kernel: K(x, y) = (xT y + r)n, x, y ∈ R
d, r ≥ 0.

– Gaussian kernel (RBF Kernel): K(x, y) = e− ‖x−y‖2

2σ2 , x, y ∈ R
d, σ > 0

However, some kernel might be harder to compute than others like those that
are defined in terms of some distance which is inherently hard to compute. An
example could be the graph edit distance based kernels. The graph edit distance
(GED) is a measure of similarity (or dissimilarity) between two graphs whose
mathematical definition depends on the characteristics of the graphs under study,
i.e. whether they are labeled, directed, planar etc. In general, given a set of graph
edit operations {e1,en}, the GED between two graphs is defined as

GED(g1, g2) = min
(e1,...,ek)∈P(g1,g2)

k∑

i=1

c(ei),

where P(g1, g2) denotes the set of edit paths transforming g1 into (a graph
isomorphic to) g2 and c(e) ≥ 0 is the cost of an edit operation e. The problem
of computing GED is in general NP-hard, which means that also obtaining the
GED based kernel belongs at least to the same class.

As already mentioned, SVM is the best known example of kernel methods. It
is a supervised binary classifier that learns the optimal discriminative hyperplane
based on a set of M labeled vectors {(�x, y) | �x ∈ R

N , y ∈ {−1,+1}}. A SVM
maximizes the distance, i.e. the margin, between the decision hyperplane and
the closest points, called support vectors [8].

The SVM optimization problem with hard-margin is defined by the objective
function

arg min
(�w,b)

{
1
2
‖�w‖2

}

subject to the constraint
∀i yi(�w · �xi − b) ≥ 1,

where (�xi, yi), with i = 1 . . . M and yi ∈ {−1,+1} is the pair of training vector
and label, �w is the vector normal to the discriminative hyperplane, and b is the
offset of the hyperplane.

An important extension of SVM is the so called soft margin SVM, where
the best hyperplane is the one that reaches the optimal trade-off between two
factors: the minimization of the margin and the error introduced by points on
the ‘wrong’ side of the hyperplane, expressed using slack variables ξi tuned by
the hyper-parameter C. The soft margin SVM optimization problem is of the
form:

arg min
(�w,b)

{
1
2
‖�w‖2 + C

M∑

i=1

ξi

}

subject to the constraint

∀i yi(�w · �xi − b) ≥ 1 − ξi, ξi ≥ 0. (1)

144 A. Di Pierro and M. Incudini

Usually it is convenient to switch to the dual form where we introduce Lagrange
multipliers αi in order to include the constraint in the objective function:

arg max
(αi)

M∑

i=1

αi − 1
2

∑

i,j

αiαjyiyj(�xT
i �xj) (2)

subject to ∑

i

αiyi = 0 , ∀i αi ≥ 0

where the relation �w =
∑

i αiyi�xi has been used to obtain Eq. 2. Note that only
a sparse subset of the αis are non-zero and the corresponding �xi are the support
vectors which lie on the margin and determine the discriminant hyperplane.

In this context, a non-linear classification boundary for the SVM is obtained
by replacing the term (�xT

i �xj) in Eq. 2 with a kernel function K(�xi, �xj) ≡
φ(�xi)T (φ(�xj)) satisfying the Mercer condition of positive semi-definiteness. The
Lagrangian optimization problem for the soft margin SVM now becomes

arg max
(αi)

M∑

i=1

αi − 1
2

∑

i,j

αiαjyiyjK(�xi, �xj) (3)

subject to ∑

i

αiyi = 0 with ∀i αi ≥ 0.

The dual form of the SVM optimization problem is quadratic in the parameter
αi and can be efficiently solved with quadratic programming algorithms.

This is the principal (but by no means the only) use of kernel methods in
machine learning, one which vastly extends the utility of the SVM by enabling
the mapping of the input decision space into a large variety of alternative higher-
dimensional spaces (thus guaranteeing linear separability). The decision bound-
ary in the input space may thus undergo significant morphology variation while
crucially retaining the low parametric support vector characterization of the
decision boundary in the embedding space, i.e. the space defined by φ(�x), where
K(�xi, �xj) ≡ φ(�xi)T (φ(�xj)). Critically, at no stage are we required to compute
φ(�xi). The Mercer condition guarantees the existence of φ, but the kernel itself
may be calculated based on any similarity function that gives rise to a legitimate
(i.e. PSD) kernel matrix.

An alternative version of SVM that has a central role in the quantum setting
is the least squares support vector machine of [28], and will be discussed in
Sect. 3.1.

2.2 Quantum Matrix Inversion and Probabilistic Abstract
Interpretation

The least squares version of SVM’s for classification problems with two classes as
formulated in [28] represents the classical counterpart of the Quantum Support

Quantum Machine Learning and Fraud Detection 145

Vector Machine (QSVM) that we will introduce in Sect. 3.1. This is based on a
matrix inversion subroutine that shares strong similarities with the key notions
of probabilistic abstract interpretation (PAI).

One basic common aspect is the reference to a system of linear equations
and their least solution. Linear equations play an important role in virtually all
fields of science and engineering. Where their use in PAI is to guarantee a form
of correctness of the analysis, in quantum machine learning they are essential in
dealing with the rapidly growing size of the datasets that is easily reaching the
order of terabytes and even petabytes in most ML applications. Like in the PAI
setting the general idea is to find a best approximation rather than trying to find
the full solution of N linear equations (which would scale at least as N). The
QSVM defined in [22] and described in Sect. 3.1 shows how to use a quantum
computer for finding such an approximation in time which scales logarithmically
in N and polynomially in the desired precision. We now briefly introduce the
basic notions of PAI and describe the quantum matrix inversion algorithms in
order to highlight their relation.

Probabilistic Abstract Interpretation [12,14] is based on a correspondence
between Hilbert spaces, which is defined by a bounded linear operator1 (repre-
senting an abstraction or property) and its Moore-Penrose pseudo-inverse (rep-
resenting a concretization operator). If C and D are two Hilbert spaces, and
A : C → D and G : D → C are bounded linear operators between (the concrete
domain) C and (the abstract domain) D, such that G is the Moore-Penrose
pseudo-inverse of A, then we say that (C,A,D,G) forms a probabilistic abstract
interpretation.

Definition 1. Let H1 and H2 be two Hilbert spaces and A : H1
→ H2 a bounded
linear map between them. A bounded linear map A† = G : H2
→ H1 is the
Moore-Penrose pseudo-inverse of A iff

A ◦ G = PA and G ◦ A = PG,

where PA and PG are orthogonal projections onto the ranges of A and G,
respectively.

The operation ‘◦’ indicates function composition and corresponds to matrix mul-
tiplication in reverse order, so that A ◦ G = GA and G ◦ A = AG.

The properties of the Moore-Penrose pseudo-inverse [4,6,10] guarantee a form
of optimality of the abstractions (abstract semantics) that we can construct via
PAI: they are the closest to the concrete semantics one can construct, where
closeness is defined via the distance induced by the norm on the Hilbert space
(thus often referred to as least squares approximation). This follows from the
following theorem [4].

1 For the purposes of this paper, it is sufficient to restrict ourselves to the finite-
dimensional case where bounded linear operators can always be represented as matri-
ces.

146 A. Di Pierro and M. Incudini

Definition 2. A least squares solution to a system of linear equations A�x = �b
is a vector �x0 such that

‖A �x0 −�b‖ ≤ ‖A�x −�b‖.

Theorem 1. If A† is the Moore-Penrose pseudo-inverse of A, then �x0 = A†�b is
the best approximate solution of A�x = �b, and is unique.

We can restrict w.l.o.g. to abstraction operators that are surjective, i.e.
A(C) = D. In fact, given a PAI (C,A,D,G), we can always partition the abstract
domain D by identifying those elements with the same concrete meaning. In this
way we can ensure that any abstract object in D is the image of a concrete
object in C , i.e. we reduce the abstract domain to one which does not contain
redundant objects, or equivalently, we turn the abstraction operator A into a
surjective one. In this case the closed subspace of C corresponding to the projec-
tion G ◦ A = PG is isomorphic to A(C). This allows us to identify orthogonal
projections on a Hilbert space H (or equivalently its closed subspaces) with all
probabilistic abstract interpretations for the given concrete domain H [13]. In
particular, we can show that the quantum matrix inversion performed by the
HHL algorithm (that will describe below) on a kernel matrix corresponds to one
such projection and therefore to a PAI.

The HHL Algorithm [17] was introduced by Aram Harrow, Avinatan Hassidim,
and Seth Lloyd (thus its name) in 2009. This is a ‘big data’ quantum algorithm
that outclasses any classical algorithm for inverting huge matrices, achieving an
exponential speed-up in the size of the system. The problem is still (as previ-
ously) to find a solution to A�x = �b, but this time the matrix A must be a square
matrix, A ∈ C

N×N , and Hermitian. The exponential advantage is achieved by
reformulating the problem in a quantum setting and essentially reducing it to a
Quantum Phase Estimation (QPE) problem, for which a solution can be found
very efficiently on a quantum computer [20].

There are two important aspects of this algorithm that must be taken into
consideration. One is that, contrary to the classical algorithm, HHL does not
return the full solution, but only approximate functions of the solution vector.
The other point is that it makes the assumption that the encoding of the classical
data into a quantum state can be performed efficiently [1]. This is a strong
assumption as the data loading phase in a quantum ML circuit often jeopardizes
the overall efficiency. One way around would be the use of a Quantum Random
Access Memory (QRAM) [16], which is however very hard to realize with the
currently available technologies.

The quantum matrix inversion performed by the HHL algorithm plays an
essential role in the quantum support vector machine method that we are going
to describe in Sect. 3.1. It is also strongly related to PAI as we will show in
Sect. 3.2.

Quantum Machine Learning and Fraud Detection 147

3 Quantum Machine Learning

The recent developments in the study of the application of quantum computing
to machine learning tasks have shown that the synergy of the two fields, known
as Quantum Machine Learning (QML) [26,31], can be leveraged to improve
existing cybersecurity strategies.

The potential risks that quantum computing implies for existing widespread
cryptographic and key exchange protocols for secure communication2, is bal-
anced by the benefits that a quantum computer can provide in the improvement
of all those security tasks where ML is already used, such as behavior anomaly
detection, classification of data, users, threat actors or malware, and prevention.

A unifying framework for various quantum ML approaches that have been
introduced in the literature up to now is based on the notion of quantum model
[24]. A quantum model is a quantum algorithm replacing a classical ML model,
such as a classifier or a generator, and consisting of a data encoding phase
followed by a measurement. The data encoding effectively corresponds to the
embedding of the input data into the Hilbert space of quantum states, while the
measurement corresponds to the output of the model.

3.1 Quantum Support Vector Machines

A classification via kernel methods has been defined within the context of quan-
tum computing by Rebentrost, Mohseni and Lloyd [23].

The quantum SVM they propose uses the least squares re-implementation of
the classic kernelized SVM [29] so as to implicate the efficient quantum matrix
inversion of Harrow, Hassidim & Lloyd [17].

In this reformulation, the constraint defined in Eq. (1) is replaced with the
equality constraint

∀i yi(�w · φ(�xi) − b) = 1 − ei, (4)

where ei are error terms. In this way, optimal parameters �α and b that identify
the decision hyperplane are found by solving a set of linear equations, instead of
using quadratic programming. Thus the problem can be formulated as follows:

F

(
b
�α

)
=

(
0 �1T

�1 K + γ−1I

) (
b
�α

)
=

(
0
�y

)
(5)

where F is a (M +1)×(M +1) matrix, �1T ≡ (1, 1, 1 . . .)T , K is the kernel matrix
and γ−1 is the trade-off parameter that plays a similar role as C in soft margin
SVM. Training object classifications are denoted by the vector �y ∈ ([−1, 1]M)T ,
for the M training objects order-correlated with the kernel matrix K (training
object vectors �xk are represented in their own basis). Finally, �α and b (the object
of the optimization) are respectively the weight and bias offset parameters of the

2 The security of RSA and Diffie-Hellman cannot be demonstrated anymore with the
prospective use of a quantum computer, since efficient quantum algorithms exist for
factorization and for computing the discrete logarithm.

148 A. Di Pierro and M. Incudini

decision hyperplane within the Mercer embedding space induced by the kernel.
These SVM parameters are determined schematically by

(
b
�α

)
= F−1

(
0
�y

)
.

For the quantum support vector machine (QSVM) the task is to generate a
quantum state | �α, b〉 describing the hyperplane with quantum matrix inversion
of F . This produces the solution state:

| �α, b〉 =
1

b2 +
∑M

k=1 α2
k

(
b | 0〉 +

M∑

k=1

αk | k〉
)

(6)

Note that the alpha are non-sparse and represent distances from the margin; we
do not thus obtain support vectors as in the dual Lagrangian formulation.

Utilization of these parameters for classification of novel data requires the
implementation of a query oracle implicating all of the labeled data:

| ũ〉 =
1

(
b2 +

∑M
k=1 α2

k| �xk|2
) 1

2

(
b | 0〉 | 0〉 +

M∑

k=1

| �xk| αk | k〉 | �xk〉
)

(7)

and also the query state:

| x̃〉 =
1

M |�x|2 + 1

(
| 0〉 | 0〉 +

M∑

k=1

| �xk| | k〉 | �xk〉
)

(8)

(| k〉 is thus an index state over training vectors).
The classification is then carried out as the inner product of the two states,

i.e. by performing a swap test [30] and allocating class labels on the basis of the
inner product probability being greater or less than 1

2 . Note that the swap test is
performed via the use of an ancilla to construct the state 1√

2
(| 0〉 | ũ〉 + | 1〉 | x̃〉)

which is then measured in the basis 1√
2
(| 0〉 − | 1〉).

Quantum kernelization can be achieved by directly acting on the training vec-
tor basis, an approach that lends itself most readily to polynomial kernels (radial
basis functions are possible, but less straightforward within this approach).

Thus, it is possible to construct in quantum terms the kernel:

K(�xj , �xk) = (�xj · �xk)D ≡ φ(�xj) · φ(�xk) (9)

where φ is a non-linear feature map into the linear Hilbert embedding space
(that is not explicitly calculated in the SVM calculation). (The D parameter
can be used to control the relative likelihood of over-fitting/under-fitting the
training data by varying the polynomial degree).

The QVM methods we have just described is illustrative of the raison d’être
of QML, namely the ability of performing computations that are hard to per-
form classically. However, we can achieve computational advantages in classical

Quantum Machine Learning and Fraud Detection 149

ML too, e.g. via the kernel trick (cf. Sect. 2.1). Recently it has been advocated
that a more systematic approach than merely replacing quantum for classical
procedures is needed to understand when we can expect speed-ups, which may
assume a general-purpose quantum computer rather than the currently available
NISQ devices [18].

3.2 Quantum Support Vector Machines as PAI

The quantum matrix inversion performs an approximation of the kernel matrix
F that essentially corresponds to a PAI. This can be realized by observing that
the application of the HHL algorithm to the M × M kernel matrix K forces
a filtering of the eigenvalues by discarding all those eigenvalues whose value is
below a certain threshold in order to keep the efficiency of the procedure [22].
More precisely, given a N × M data matrix X = (�x1, . . . , �xM), we can construct
the kernel matrix as K = X†X, which in terms of probabilistic abstraction
corresponds to the projection onto the abstract domain of the training dataset
{ �x1, . . . , �xM}. As projections are not invertible (the identity apart), the quantum
matrix inversion necessarily produces an approximation of K−1 consisting in the
filtering mentioned above. This approximation is effectively the PAI generated
by the N ×N covariance matrix Σ = XX† =

∑M
m=1 �xm �xm

T , which can be seen
as determining an orthogonal projection on (or a closed subspace of) the original
dataset, as explained in Sect. 2.2. As the matrices X†X and XX† have the same
non-zero eigenvalues, keeping the largest eigenvalues and corresponding eigen-
vectors of the kernel matrix retains the principal components of the covariance
matrix, i.e. the most important features of the data.

4 Implementation of Quantum Fraud Detection

From a computational viewpoint, solving the quadratic programming problem
or the least-squares SVM has complexity O(M3) in the number M of the train-
ing data. A bottleneck to the speed of computation is determined by the kernel:
computing a polynomial kernel K(�xi, �xj) = (�xi

T �xj + c)d takes O(M2d), but in
other cases the complexity could be much higher, e.g. for those kernels depend-
ing on a distance whose calculation is itself a NP problem. An important part
of the research in QML is devoted to the study of methods and techniques using
quantum computation for the evaluation of kernel functions as part of a hybrid
classification model. In this model, the classical data are embedded in a Hilbert
space via a quantum circuit translating them into quantum states. This trans-
formation essentially corresponds to a feature map that is computed explicitly
in order to produce a kernel matrix as the matrix of the inner products of all
pairs of states in the new higher dimensional space. We refer to [19] for a survey
of various quantum approaches to kernel-based machine learning.

In order to investigate possible advantages in terms of efficiency that could
be obtained by using a quantum computer, we have analyzed the performance
of the QSVM classification method for the fraud detection problem. We have

150 A. Di Pierro and M. Incudini

used the implementation described in [9] (see also the IBM documentation page
https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.QSVM.html).

Instead of running our quantum circuits on the IBM real quantum computer,3

we have used the IBM simulator, which is available on the Qiskit platform [2].
Clearly, simulation relies on classical resources, which means that we have to
deal with the exponential growth of the quantum spaces to be simulated. More
precisely, by encoding each feature in one qubit, we are easily confronted with
matrices of one terabyte and more (20 features lead to 220 × 220 matrices). This
forces us to ‘simplify’ the dataset of the case study presented in Sect. 4.1 in order
to reduce the number of the original features.

4.1 Experiments on the IBM Quantum Platform

We report here on the results obtained by running the QSVM on the IBM
quantum platform. We have also run some experiments by using other methods
such as the quantum variational circuit or QNN [25], which we did not address
in this paper.

The payment fraud dataset we considered for our experiments has more than
150000 payments, most of which are non-fraud. We extracted some features
corresponding to the most important fields of the payment:

– id operation;
– amount;
– country;
– merchant category (which type of product was buyed);
– channel (ATM, Internet, ...);
– card type;
– circuit (none, Visa, Mastercard, ...);
– target (fraud or legit).

We considered two different subsets of this dataset:

– FRAUD SHORT: the training set has 1092 legit payments and 212 fraud pay-
ments; the testing set has 70 payments per class. All the payments has
country set to Italy, category set to Business Services, channel set to Inter-
net ;

– FRAUD MEDIUM: the training set has 2056 legit payments and 327 fraud pay-
ments; the testing set has 109 payments per class. All the payments has
country set to Italy and category set to Business Services.

Because the testing set is balanced (same number of items for both fraud and
non-fraud) we can choose the accuracy metric to evaluate the classifier. As
already mentioned in Sect. 2, in the case of a non-balanced dataset (with much
more non-frauds than frauds), the classifier would learn that most payments are
3 The quantum computer currently available to the public is a very limited 16-qubit

device, which is much too primitive (in terms of both stability and error tolerance)
for practical problems.

https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.QSVM.html

Quantum Machine Learning and Fraud Detection 151

non-fraud and led to classify everything as non-fraud, and yet get a high accu-
racy. Alternatively, we could have chosen a more sophisticated metric such as
precision, which would be a more reasonable choice in the unbalanced case.

Then we pre-processed some fields. As an example, amount is log scaled and
then normalized (log scaling is applied when some payments are very high and
the normalization technique sets most of the other small payments to values
close to zero). The continuous variables are always encoded in a real number
between zero and one. The categorical variables can be encoded as either a real
value between zero and one, as a binary integer or as one-hot encoding binary
string.

The quantum circuit acts itself as the kernel function K(�xj , �xk) ≡ φ(�xj) ·
φ(�xk). The part of the circuit implementing φ is called feature map and, although
the size of φ(�x) is exponential in the number of qubits of the circuit, the dot
product φ(�xj) · φ(�xk) can be performed efficiently on a quantum computer.

The way we encode the input data affects the number of qubits that we need
to use for the circuit. The continuous variables and the categorical ones encoded
with real values only use a single qubit, and the encoding is performed by a
single rotation gate. The categorical variable having m possible values can be
encoded as one-hot binary string and needs m qubits; each bit corresponds to
a qubit and exactly one X gate is needed to flip the only bit set to one. In this
case, it might be useful to introduce the QRAC encoding [3] of binary variables
that can slightly reduce the number of qubits needed to encode a binary string.

Table 1 schematizes the results of our experiments in terms of the accuracy
of the quantum classifier. Quantum circuits implementing some of the feature
maps considered in our experiments are shown in Fig. 2. These results promise
some benefits from the use of a quantum computer for detecting fraudulent
transactions, although the limited computing resources available still do not
allow us to elaborate massive data.

Table 1. Accuracy of the many configurations tested.

Configuration SVM QSVM

% R Z ZZ Z+ZZ P1 P2 P3 QR

% % % % % % % %

Dataset FRAUD SHORT

Continuous encoding (CE) 55.3 54.6 57.4 66.6 55.3 64.5 58.8 60.2

Discrete encoding (DE) 56.0 57.4 60.9 58.1 64.6 63.8 56.7 60.2 58.9

Dataset FRAUD MEDIUM

Continuous encoding (CE) 57.3 57.3 56.4 56.8 59.2 58.2 58.2 52.7

Legend: CE: all the fields are encoded with real numbers; DE: continuous fields are encoded

with real numbers while categorical ones are encoded with one-hot bit strings; R: the feature

map is Qiskit’s RawFeatureVector; Z: the feature map is Qiskit’s ZFeatureMap repeated once;

ZZ: the feature map is Qiskit’s ZZFeatureMap repeated once with full entanglement; P1: the

feature map is Qiskit’s PauliFeatureMap using gates Z and ZZ; P2: the feature map is Qiskit’s

PauliFeatureMap using only gates ZZ; P3: the feature map is Qiskit’s PauliFeatureMap using

gates Z and XX; P4: the feature map is Qiskit’s PauliFeatureMap using only gates ZY; P5: the

feature map is Qiskit’s PauliFeatureMap using gates Z, YY and ZXZ; QR: the feature map is

Qiskit’s ZZFeatureMap with categorical data encoded with QRAC.

152 A. Di Pierro and M. Incudini

RawFeatureVector

|0...0〉logm init |x〉

PauliFeatureMap with Z (repeated once)

|0〉 H Rz(2 · x[0])

|0〉 H Rz(2 · x[1])

PauliFeatureMap with ZZ (repeated once)

|0〉 H

|0〉 H X Rz(2(π − x[0])(π − x[1])) X

PauliFeatureMap with Z, ZZ (repeated once)

|0〉 H Rz(2 · x[0])

|0〉 H Rz(2 · x[1]) X Rz(2(π − x[0])(π − x[1])) X

PauliFeatureMap using gates Z, XX

|0〉 H Rz(2 · x[0]) H H

|0〉 H Rz(2 · x[1]) H X Rz(2(π − x[0])(π − x[1])) X H

PauliFeatureMap using gates ZY

|0〉 H Rx(π/2) Rx(−π/2)

|0〉 H X Rz(2(π − x[0])(π − x[1])) X

Fig. 2. Circuits corresponding to some of the feature maps listed in Table 1. |0〉 denotes
the initial state ‘ket-zero’ corresponding to the column vector (1

0); |0...0〉k is the tensor
product of k ket-zeros; |x〉 is the normalized vector x. Each single qubit gate corre-
sponds to a 2 × 2 unitary matrix, each two-qubits gate corresponds to a 4 × 4 unitary
matrix. A n-qubits circuit corresponds to a 2n × 2n unitary matrix obtained by apply-
ing tensor product and matrix multiplication to the unitary matrices associated with
each gate. The RawFeatureVector implements Shende’s algorithm ([27]) which encodes
2n features with O(n) qubits and O(2n) gates. The other feature maps all creates a
complex state which depends from the input data by means of circuits whose length is
proportional to the number of features.

Quantum Machine Learning and Fraud Detection 153

An important question that we are currently investigating is the effect that
the choice of a particular feature map can make on the resulting classification.
The different feature maps are related to different boundaries in the Hilbert
feature space, but identifying them is not immediate not least because we do
not have any analytical expression as often is the case in the classical setting.
Investigations on this question may nevertheless also affect classical ML, where
heuristics are also used to define the implicit feature mapping in the context of
kernel methods, thus giving no guarantee that the pre-defined kernel can lead to
a more favorable feature space where data has better distribution towards the
application.

5 Conclusion

Static analysis and machine learning are two methods that can be used for
the identification and the prevention of cyberattacks: they are both necessary
in constructing an integrated layered platform of defense. We have shown an
analogy between probabilistic static analysis as formulated in [14,15] and the
quantum machine learning technique for classification introduced in [22]. We
have applied this technique to the problem of fraud detection and shown the
results of some experiments that we have performed on a small dataset by using
the IBM quantum platform Qiskit.

These results are promising for a future more extensive use of quantum com-
puting in cybersecurity, but there are still substantial challenges to address.

The most immediate challenge is to achieve sufficient numbers of fault-
tolerant qubits to allow the use of the full power of quantum computing.

Recently there has been a substantial investment in solving the core problems
hindering the scaling of qubit count and designing error correction codes and new
algorithms. From a cybersecurity perspective, while quantum computing may
render some existing encryption protocols obsolete, it has the promise to enable
a substantially enhanced level of communication security and privacy, and (as
we have partially shown in this paper) facilitate the analysis and detection of
cyberattacks.

References

1. Aaronson, S.: Read the fine print. Nat. Phys. 11(4), 291–293 (2015). https://doi.
org/10.1038/nphys3272

2. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum comput-
ing (2019). https://doi.org/10.5281/zenodo.2562110

3. Ambainis, A., Leung, D., Mancinska, L., Ozols, M.: Quantum random access codes
with shared randomness (2008). arXiv preprint arXiv:0810.2937

4. Ben-Israel, A., Greville, T.N.E.: Gereralized Inverses - Theory and Applications.
CMS Books in Mathematics, 2nd edn. Springer, Heidelberg (2003). https://doi.
org/10.1007/b97366

5. Bolton, R.J., Hand, D.J.: Statistical fraud detection: a review. Stat. Sci. 17(3),
235–255 (2002)

https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/nphys3272
https://doi.org/10.5281/zenodo.2562110
http://arxiv.org/abs/0810.2937
https://doi.org/10.1007/b97366
https://doi.org/10.1007/b97366

154 A. Di Pierro and M. Incudini

6. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations.
Dover, Pitman, London (1979)

7. Can, B., Yavuz, A.G., Karsligil, E.M., Guvensan, M.A.: A closer look into the char-
acteristics of fraudulent card transactions. IEEE Access 8, 166095–166109 (2020).
https://doi.org/10.1109/ACCESS.2020.3022315

8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

9. Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta,
J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567,
209–212 (2019)

10. Deutsch, F.: Best Approximation in Inner-Product Spaces. Springer, Heidelberg
(2001). https://doi.org/10.1007/978-1-4684-9298-9

11. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate non-interference. J. Comput.
Secur. 12(1), 37–81 (2004)

12. Di Pierro, A., Wiklicky, H.: Measuring the precision of abstract interpretations.
In: LOPSTR 2000. LNCS, vol. 2042, pp. 147–164. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45142-0 9

13. Di Pierro, A., Wiklicky, H.: Semantic abstraction and quantum computation.
In: 4th International Workshop on Quantum Programming Languages. Electronic
Notes in Computer Science, vol. 210, pp. 49–63. Elsevier (2008)

14. Di Pierro, A., Wiklicky, H.: Probabilistic abstract interpretation: from trace seman-
tics to DTMC’s and linear regression. In: Probst, C.W., Hankin, C., Hansen, R.R.
(eds.) Semantics, Logics, and Calculi. LNCS, vol. 9560, pp. 111–139. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-27810-0 6

15. Di Pierro, A., Wiklicky, H.: Probabilistic analysis of programs: a weak limit app-
roach. In: Dal Lago, U., Peña, R. (eds.) FOPARA 2013. LNCS, vol. 8552, pp.
58–76. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12466-7 4

16. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100, 160501 (2008)

17. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15) (2009). https://doi.org/10.1103/physrevlett.
103.150502

18. Kübler, J.M., Buchholz, S., Schölkopf, B.: The inductive bias of quantum kernels
(2021). arXiv preprint arXiv:2106.03747

19. Mengoni, R., Di Pierro, A.: Kernel methods in quantum machine learning. Quant.
Mach. Intell 1(3), 65–71 (2019)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, New York (2011)

21. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018).
https://doi.org/10.22331/q-2018-08-06-79

22. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big
data classification. Phys. Rev. Lett. 113, 130503 (2014)

23. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big
data classification. Phys. Rev. Lett. 113, 130501 (2014)

24. Schuld, M.: Quantum machine learning models are kernels methods (2021). arXiv
preprint arXiv:2101.11020v1

25. Schuld, M., Bocharov, A., Svore, K.M., Wiebe, N.: Circuit-centric quantum clas-
sifiers. Phys. Rev. A 101, 032308 (2020)

26. Schuld, M., Petruccione, F.: Prospects for near-term quantum machine learning.
In: Supervised Learning with Quantum Computers. QST, pp. 273–279. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96424-9 9

https://doi.org/10.1109/ACCESS.2020.3022315
https://doi.org/10.1007/978-1-4684-9298-9
https://doi.org/10.1007/3-540-45142-0_9
https://doi.org/10.1007/978-3-319-27810-0_6
https://doi.org/10.1007/978-3-319-12466-7_4
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1103/physrevlett.103.150502
http://arxiv.org/abs/2106.03747
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/2101.11020v1
https://doi.org/10.1007/978-3-319-96424-9_9

Quantum Machine Learning and Fraud Detection 155

27. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits.
IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst 25(6), 1000–1010 (2006).
https://doi.org/10.1109/TCAD.2005.855930

28. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neu-
ral Process. Lett. 9(3), 293–300 (1999)

29. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neu-
ral Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

30. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev.
Lett. 109(5), 050505 (2012)

31. Wittek, P. (ed.): Quantum Machine Learning. Academic Press, Boston (2014).
https://doi.org/10.1016/B978-0-12-800953-6.00015-3, http://www.sciencedirect.
com/science/article/pii/B9780128009536000153

https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1016/B978-0-12-800953-6.00015-3
http://www.sciencedirect.com/science/article/pii/B9780128009536000153
http://www.sciencedirect.com/science/article/pii/B9780128009536000153

Model Finding for Exploration

Daniel J. Dougherty(B)

Worcester Polytechnic Institute, Worcester, USA
dd@wpi.edu

Abstract. We survey recent results in model finding, focusing on the notion of
a model finding assistant to help users, even users not trained in logic, under-
stand their software artifacts. The technical results discussed have all been previ-
ously published; the presentation here highlights two themes: (i) geometric logic
and homomorphism orders as natural foundations for model finding, and (ii) an
implemetation dichotomy between direct model finding and model finding with
the aid of SAT- and SMT-solvers. We give generic high-level algorithms for the
central problems of programming against such solvers; lower-level details are
determined based on the category of homomorphisms being used.

1 Introduction

We are interested in the following situation. A user (a software developer, a protocol
designer, a system administrator . . .) would like to gain confidence in a certain artifact
(a data structure or algorithm design, a protocol, a data center configuration . . .). Our
user has at hand a specification of their artifact in a logical language, but is not a trained
logician. Nor do they have formal assertions to be verified. Our user may even have
to work with a specification they didn’t compose: many applications compile artifacts
such as security policies or UML class diagrams into logic [47,48,55].

What kind of tool might help them?
One possibility is to treat their specification as a logical theory T and usemodel find-

ing (we sometimes use the phrase scenario finding) to explore the possibilities inherent
in their specification.

Model finding—the process of constructing finite models for first-order theories—
is already a well-studied problem. Often model finding is a secondary component of
another primary activity; it plays a role in saturation-based theorem proving [8–10,33,
42,60], SMT solving [60], and property-based testing, [6,11,12,14,26,40,49,52,56,
66], to name a few areas.

But the game is subtler when we want our tool to help our user understand
their theory T . The model-finding approach we have in mind consists in generating
and displaying concrete examples of the abstract specification at hand with an eye
towards either reassuring the user when the scenarios match what is expected, or—
more interestingly—uncovering surprising scenarios that elicit reactions of the form
“whoops, I didn’t mean to allow that!”

This work was partially supported by the U.S. National Science Foundation
Dedicated to Joshua Guttman, with appreciation for his insights and with gratitude for his friend-
ship.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 156–174, 2021.
https://doi.org/10.1007/978-3-030-91631-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_9

Model Finding for Exploration 157

Indeed, we have in mind an interaction between the tool and the human, in the spirit
of proof assistants, but for the purpose of building models rather than proofs. Thus the
phrase, implicitly representing a slogan: model finding assistant.

The notions above of “reassuring” or “surprising” the user are, as stated, a bit
squishy1. Can we find principled approaches to answering questions like the follow-
ing?

1. How do we choose a collection of models to show to give a good picture of the space
of all models?

2. Given the fact that our theory, if consistent, probably has lots of models, what counts
as “reassurance” to our user?

3. If we do have a surprise to show the user, what models do the best job of showing
them what went wrong?

4. If we decide to present a certain model, can we provide some tools to understand
how it works: which parts of the model are necessary for it to satisfy the theory,
which parts conspire to satisfy or fail to satisfy certain queries?

After the introductory material of Sects. 2 and 3, Sect. 4 offers some principles to
guide our answers. The rest of the paper reports some technical progress on realiz-
ing these answers, along two conceptually different lines. The first is to build models
“directly:” this is mathematically satisfying but—in the current state of the art—can
have performance problems in some domains. The other broad approach is to leverage
the amazing recent advances of SAT-solvers and SMT-solvers: here we typically face
a tradeoff of expresssive power for efficiency. We shed light on some existing tools in
this category by showing that they can be seen as instantiations of some simple abstract
building blocks.

Proofs Have Been Omitted Here. Our goal is to create a sense of how the results fit
together, and proofs are all available in the originally published papers.

This is a good place to point out that Joshua Guttman has embraced a spirit of
“scenarios over deductions” throughout his career. The CPSA project, which he helped
found and has guided for years, is an exemplar of domain-specific model-finding, and
indeed one that already does quite a good job of addressing our motivating questions
(especially the 1st and 3rd questions). This will become clearer as we detail more about
CPSA below.

The Human Factor. An important dimension for any user-facing tool for formal meth-
ods is the human factor. Tools should provide mathematically sound help, but they are
valuable only to the extent that people will use and understand them. Every one of our
motivating questions above has a psychological component as well as a logical one.

Formal methods tools must therefore thread a needle between mathematical rigor
and accessibility. So the truly “principled” approaches to our informal questions should
reflect both mathematical and psychological considerations. Much more user-focused

1 A technical philosophical term Joshua has been known to employ

158 D. J. Dougherty

formal methods research is called for. User studies [17] are one aspect; for a wider
discussion see the abstract of Krishnamurthi and Nelson’s recent invited talk [43] and
the references therein.

In this paper we focus on the mathematical aspects of model finding, while trying
to keep in mind the users who are actually using the tools.

2 Foundations

We work in a first-order signature Σ with relations and functions, and we take for
granted the standard notions of model for Σ, satisfaction of a formula in a model, and
model of a theory. We mostly focus on finite models.

If α is a formula and a1, . . . ,an are elements of a model A we will sometimes write
A |= α[a1, . . . ,an] as shorthand to mean that A |= α(x1, . . . ,xn) under the environment
sending each xi to ai.

Definition 1 (Homomorphism). Let A and B be Σ-models. A function h : |A| → |B| is
a homomorphism if, for functions f and relations R from Σ,

– A |= f [a1, . . . ,an] = a implies B |= f [h(a1), . . . ,h(an)] = h(a) and
– A |= R[a1, . . . ,an] implies B |= R[h(a1), . . . ,h(an)]

Model A is a submodel of B if |A| ⊆ |B| and the inclusion function is a homomor-
phism.

Categories of Models. We will consider various categories of models: a family of
structures with a certain class of homomorphisms between them. For a theory T , the
models of T form the objects of a category T whose arrows are the homomorphisms.
We identify three subcategories of interest:

– the subcategory of T with injective homomorphisms;
– the full subcategory of T with finite models;
– the subcategory of T with finite models and injective homomorphisms.

2.1 Homomorphism Orderings

– Fix a category C.
• write A � B if there is a C map h : A → B.
• write A ≈ B if A � B and B � A.
• write A � B if A � B and not B � A.

– A model A is a-minimal for T if it is a minimal element in the homomorphism
preorder on models of T .
A model A is i-minimal for T if it is a minimal element in the injective-
homomorphism preorder on models of T .

Model Finding for Exploration 159

Well-Foundedness of Homomorphism Orderings. In a category of finite models,
the ordering determined by injective homomorphisms is well-founded, by cardinality
considerations. But the ordering determined by homomorphisms is not well-founded
in general. For example, in the signature with one unary function symbol, define the
model Cn consisting of a chain of n elements a, f (a), . . . f (n)(a) with f mapping f (n)(a)
to itself. Then each Ci+1 � Ci.

But if there happen to be only finitely many Mi for a theory T (as for example when
we uniformly bound the size of models of T), it is easy to see that we cannot have an
infinite strictly descending chain of homomorphisms.

Lemma 2. For any theory T , the injective-homomorphism preorder on models of T is
well-founded.

If T has only finitely many models up to isomorphism, the � order on models of T
is well-founded.

We will often add axioms to a theory to ensure that there is an upper bound on the size
of its models. In such a case Lemma 2 will apply, even in the arbitrary-homomorphism
situation.

Set of Support The following notion will be crucial for us, as it will supply our primary
notion of completeness for model finders.

Definition 3 (Set of Support). If C is a category of models and M is a collection of
models in C we say that M0 is a set of support for M if for all M ∈ M, there exists
M0 ∈ M0 with M0 �C M.

3 Approaches to Model Finding

In its simplest form, model finding is the following problem. Given a theory T pre-
sented as input, either determine that T is unsatisfiable or construct one or more models
satisfying T . Typically T is a first-order theory, and typically we ask for finite models;
indeed sometimes the input includes a bound on the size of models searched for.

There are many tools that might be termed “standalone” model finders. It is tra-
ditional to see them as falling into two categories: MACE style and SEM style, after
McCune’s tool MACE [51] and the SEM tool of Zhang and Zhang [73]. These designa-
tions correspond to differences in the underlying techniques used to construct models,
reduction to propositional logic (MACE-style) vs. more-or-less direct searching for a
model (SEM-style). There are too many tools to catalog here, but the introductions to
either of Claessen et al. [13] or Baumgartner et al. [4] will provide a good list of
examples of each kind of tool and a good entry point into the literature.

We should make special mention of Kodkod [69], though. Kodkod is the backend
for Alloy [41], is available as a stand-alone Java library and is used in many projects,
including several of the tools discussed below: Margrave [55], Aluminum [54], Amal-
gam [53], and CompSAT [58].

Many model finders resist a simple MACE-vs-SEM taxonomy, especially if we
recognize that SMT solving is a blend of propositional and first-order reasoning. For

160 D. J. Dougherty

example Fortress [70] is a tool that reduces problems to the theory EUF of equality
with uninterpreted functions, and uses an SMT solver. The method of Reynolds et al.
[60] might best be described as SEM-style over SMT. By contrast, Elghazi and Taghdiri
[27] translate Alloy theories to (non-propositional) SMT-LIB in order to do search with
unbounded scopes.

For our purposes here, surveying model-finding assistants it is more useful to distin-
guish tools based on whether they work directly with first-order theories or incorporate
the use of SAT- or SMT-solving: this will guide our organization in the rest of the paper.

4 Three Principles for Model Finding Assistants

The case for building a model finder that can be viewed as a model finding assistant
was made implicitly in [54] and explicitly in [63]. We offer the following pre-theoretic
intuitions about such a tool.

1. It should specify and respect a notion of “fitness” for the models it returns
2. It should provide for exploration of individual models
3. Most important: it should satisfy reasonable soundness and completeness properties

4.1 Fitness

“Fitness” is intentionally less-than-specific. One would like to see a commitment to
fitness for a given purpose. In this general discussion we don’t want to argue for a
notion of fitness applying to all model-finding activities.

If one wants to check a safety property of a specification, one may hope that no
counterexample models will be found, and if such models exist it is probably best to
show the user models that have no extraneous information: minimal models. This prin-
ciple is manifest in the universal injunction to “provide a minimal bug report.”

On the other hand if our user is truly exploring a system in the early stages of a
design, they may be interested in a robust selection of consistent phenomena: lots of
things that could happen, even if they don’t always happen. If a model finder only
produces minimal models it will not be of any help in detecting underconstraint in a
specification.

The main force of this principle is simply that the output of a model finder should
not be determined by accidents of the underlying SAT- or SMT-technology.

By the way, as we will see, there are purely technical benefits of having a tool pro-
duce minimal models automatically, see the discussions of provenance, augmentation,
and set of support below, each of which is easier to implement when we start with
minimal models.

We have elsewhere [21] discussed the relative pros and cons of minimality in the
respective categories of arbitrary and injective homomorphisms.

4.2 Exploration of Individual Models

Provenance. Suppose A is a model of a theory T (think of T as comprising a back-
ground theory perhaps together with some conjecture). If a certain fact F holds in A the

Model Finding for Exploration 161

user might very well wonder, “does that F have to be there in order that A satisfies T?
Or is it an accident?” If F is not an accident, the user will be interested to know why
F is there: what is it in T that makes F hold? The analogous questions can be asked
about a given element a of the model: is a present in order to satisfy some existence
requirement imposed by T , or is a superfluous?.

We call these questions of provenance. Several recent tools ([53,58,63,64]) afford
the user the capability of asking provenance questions.

Augmentation. Amodel finder with augmentation will allow the user to (attempt to) add
a fact F to a given scenario. If the model finder reports that F is inconsistent with the
model under consideration, this may call attention to an overconstraint in the specifica-
tion. More subtly, it might happen that a commitment to adding F means that another,
surprising, ancillary fact F ′ must necessarily hold. Augmentation is typically a straight-
forward functionality to add to a model finder ([54,63,64].)

4.3 Completeness

We propose the following (ambitious) criterion for completeness: for each input theory
T , every finite model of T should be reachable in principle.

A natural strategy to achieve this in a category C of models is the following:

1. ensure that the tool automatically produces a stream of models (perhaps on-demand
by the user) comprising a set of support (Definition 3).

2. ensure that whenever A � B then user-directed augmentation of A can reach B.

As will be explained below, this strategy relies on a commitment to having the tool
produce minimal models by default.

5 Geometric Logic

Geometric logic is a variant of first-order logic that makes a rich specification language
and supports a view of model finding that is congenial to the analysis goals introduced
earlier. In this section we describe the sense in which model finding for a geometric
theory is in a sense “syntax directed,”

Positive-Existential Formulas. A formula is positive-existential if it is built from atomic
formulas (including � and ⊥) using finitary ∧, infinitary ∨ and ∃; with the requirement
that each subformula has only finitely many free variables. (Positive existential formulas
are referred to in the database community as unions of conjunctive queries.)

Suppose α is a positive-existential formula. Let M be a model and η an environ-
ment such that M |=η α. Then there is a finite submodel M0 of M such that M0 |=η α
(in particular M0 encompasses the range of η). For this reason, properties defined by
positive-existential formulas are sometimes called observable properties [1]. It is impor-
tant to note that infinite disjunctions—but not conjunctions—are accommodated easily
here.

162 D. J. Dougherty

It is also worth noting that if we come to learn (or come to ensure) that a positive-
existential fact α[�a] is true in a model A, perhaps based on the fact that A has not been
fully constructed, then further information added to A cannot make α[�a] false. So we
might also call positive-existential formulas “imperturbable”.

It is a classical result that positive-existential formulas are precisely those preserved
under homomorphisms; Rossman [61] has shown that this holds even if we restrict
attention to finite models only.

Theorem 4. The following are equivalent, for a formula α(�x):
1. α is preserved by homomorphism: if h :A → B is a homomorphism, and�a is a vector

of elements from A such that A |= α[�a], then B |= α[�ha].
2. α is logically equivalent to a positive-existential formula.
3. α is equivalent to a positive-existential formula in the category of finite models.

Thus the homomorphism preorder captures the observable properties of models: this is
the sense in which we view this preorder as an “information-preserving” one.

Geometric Theories. A theory T is a geometric theory if has an axiomatization by
sentences of the form

∀�x. α(�x) → β(�x) (1)

where α and β are positive-existential. 2 A geometric formula is coherent if all of its
disjunctions are finite.

To gain intuition for why geometric logic is well-adapted to model finding, consider
that a geometric formula α(�x) → β(�x) is true of a tuple �a in a model A whenever A

passes the test: “whenever α[�a] is observed, β[�a] must also be observed.”
The case for geometric logic as a logic of observable properties was made clearly by

Abramsky [1]. Geometric logic plays a role in categorical logic [46] and topos theory
[44]; and geometric logic is a natural formalism for specification [22,65,71,72]. Inde-
pendently, Guttman observed [36,38] that a robust class of security goals for protocols
are naturally expressed in the form (1).

There have been several investigations into deductive calculi for coherent logic
[5,15,16,18,31,68]. Geometric sentences make a Glivenko class. That is to say, if a
geometric formula is classically derivable from a geometric theory then it is in fact
derivable intuitionistically.

Expressivity of Geometric Logic. Many theories are naturally geometric: any algebraic
theory, any Horn theory, the theories that arise in disjunctive logic programming, etc.
The fact that infinite disjunctions are permitted means that common inductive notions
are geometric: transitive closure, an abelian group having torsion, the notion of a model
of successor being standard, etc.

More interestingly, any first-order theory has a conservative geometric extension.
There are a variety of approaches to this result; Dyckhoff and Negri [25] have given a
particularly illuminating treatment of the issues.

2 Confusingly, some authors use “geometric” to refer to what is more broadly called “positive
existential”. For them a “geometric theory” is a collection of quantified implications between
“geometric formulas” (thus the axioms themselves are not “geometric formulas”).

Model Finding for Exploration 163

Set of Support and Completeness. A set of support for a class of models provides a
complete “testbed” for entailment of geometric sentences.

Theorem 5. Suppose T is a geometric theory and ∀�x . α(�x)→ β(�x) is a geometric sen-
tence. Let�a be a sequence of fresh constants appropriate for�x and suppose {A1,A2 . . .}
is an arbitrary-homomorphisms set of support for T ∪{α[�a]}. Then

T |= ∀�x . α(�x) → β(�x)

if and only if, each Ai |= β[�a].

Notice that when we can compute a finite set of support of finite models
{A1,A2 . . .Ak} for T ∪{α[�a]}, Theorem 5 yields a decision procedure. Indeed it suf-
fices that the {A1,A2 . . .Ak} be, even if infinite, presented in such a way that T ∪{α[�a]}
is decidable. This is the key to the decidability result in [23].

6 Direct Model Finding Methods

6.1 Chase-Based Approaches

The Chase is a method for building a model of a geometric theory T , or detecting that
T is unsatisfiable. In fact the Chase as we present it here is a natural adaptation of the
well-studied [19,29,30,34,34,45] Chase algorithm in the database community, used for
checking implications between constraints and computing solutions to data exchange
problems.

So let T be a geometric theory. We need to assume that T is written without func-
tion symbols other than constants. This is no real constraint, though, since the axioms
required when replacing function symbols by relation symbols are themselves geomet-
ric.

By standard manipulations we can bring any geometric formula into the form

∀�x . P(�x) →
∨

{∃�y j . Qj(�x,�y j) | j ∈ J} (2)

where P and each Qj are conjunctions of atomic formulas. As usual, we view an
empty disjunction as representing Falsehood, so that a formula as above with J = /0
encodes ∀�x . ¬P(�x).

Assume now that each axiom of T is in this standard form.
LetC be an infinite set of fresh constants, to be used to name elements of the model

we construct. Say that a fact over C is a closed atomic sentence over C. We build our
model by starting with the empty set of facts, and gradually adding to it until it repre-
sents a model of T . Our set of facts is enlarged by doing Chase steps in a fair manner.

A Chase Step. Suppose F is a set of facts over C. Let σ be a formula in the form (2).
Suppose θ ≡ {x1 �→ c1, . . . ,xk �→ ck} is a substitution making P false in F , i.e., P(θ�x)

holds in F yet for no j do we have Qj(θ�x) true in F . A Chase-step on F , σ, and θ is the
result of

1. choosing some disjunct Ej ≡ ∃y j1 . . .y jk . Qj(�x,y j1 . . .y jk)

164 D. J. Dougherty

2. adding new elements d1, . . . ,dk to C ;
3. adding each of the facts in θ′Qj to F , where θ′ is the substitution obtained by adding

to θ each of the bindings y ji �→ di .

The Chase consists of starting with the empty set of facts and iterating the above
process.

We halt with success if we reach a finite set F of facts where we cannot apply a step,
i.e., when F is a model of T . We halt with failure if we reach a set F of facts where a
formula with empty right-hand-side fails in F (which is to say, its left-hand-side is true):
we cannot “repair” F to make such a formula true. It is posible that the Chase may not
halt: conditions under which termination is guaranteed are an active area of study.

When the Chase is done in a “fair” manner and does not terminate, the resulting
infinite set of facts will be a model of T : this is the essential content of the claim that
The Chase is a complete deduction method for geometric logic.

Theorem 6 (Deductive Completeness). Let T be geometric. Then T is satisfiable if
and only if there is a fair run of the Chase which does not fail.

A crucial thing about Chase calculations is that they make no commitments to facts
that are not required by the theory. This leads to the following key theorem for model
finding.

Theorem 7 (Set of Support). Let T be geometric. For any model M of T there is an
Mi obtained by some execution of the Chase and a homomorphism from Mi to M.

Provenance in Chase Models. Another aspect of the fact noted above that models
built by the Chase are built “by need” is that provenance is easy to compute.

Referring to the general form of axioms (2) above, the only elements in a Chase
model are those added to instantiate existential quantifiers ∃�y, and the only atomic facts
in the model are those added to make the Qj(�x,�y) true. It is easy enough to keep track
of these justifications by introducing Skolem functions in the implementation to name
elements, so that any fact in the model (Skolemized under the hood) can be traced
back through the line of Chase steps that led to its addition. In this way we can answer
provenance queries from the user.

The Chase in Practice. The Chase algorithm is described above as a nondeterministic
procedure. The choice of rule to fire is one source of nondeterminism, but the important
source is the disjunctions on the right-hand sides. Different choices of disjuncts to sat-
isfy will (usually) lead to different output models. An implementation must negotiate
this tree of models-in-progress. The original version of Razor managed this structure
directly, but this was seen to be too slow for general use. (Specifically, performance on
the TPTP suite of problems [67] was unacceptable).

Subsequent versions of Razor [63] take a hybrid approach. Roughly speaking, an
SMT solver is used to manage the disjunctions, while Chase steps are used to construct
elements and facts.

The Chase is used by Rowe, Ramsdell, and Kretz [62] to discover adversary behav-
iors that thwart layered attestation specifications. This implementation has good perfor-
mance [59] in its domain without resorting to mechanisms external to the Chase.

Model Finding for Exploration 165

6.2 CPSA

The CPSA protocol analyzer [20] is an example of a direct model finder. Actually CPSA

is—superficially—of a different character from the other model finders discussed in
this paper, since it is does not explicitly take a first-order theory as input. But the theory
of strand spaces can be axiomatized, as a geometric theory [22] and the skeletons it
returns are readily seen as first-order structures. And CPSA has always been founded on
a notion of homomorphism as organizing principle [36]. The theory of strand spaces is
not first-order, since a well-foundedness assumption about causality is imposed. But this
well-foundedness can be enforced using the infinite disjunctions available in geometric
logic.

The CPSA algorithm is not Chase-based, rather it relies instead on the Authenti-
cation Test mechanism [39]. (There is however, at least one project, an undergraduate
thesis, implementing the strand space approach using the Chase [57].)

CPSA satisfies [37] the set of support criterion expressed by Theorem 5. As such
it represents a sound and complete method for establishing security goals (for an
unbounded number of sessions) that are represented as geometric sentences. As a tech-
nical remark, the category of models that CPSA works with has homomorphisms that
are injective on nodes representing message events and arbitrary otherwise.

7 Programming Against a Solver: Theory

We present generic algorithms for model finding that rely on the primitive operation of
asking a SAT or SMT solver, or an algorithm like the Chase, for a single finite model
of a given theory.

To see that there is some work to do beyond simply invoking a solver, note the
following.

1. Once the solver has determined that a theory T is satisfiable, and computed—
internally—a model for T , the application must extract the model from the solver.
But the API for doing this—in the solvers we are familiar with—is quite restricted.
In any event, SMT-Lib compliant solvers are not required to make this process par-
ticularly convenient. Quoting from the SMT-Lib Standard (v.2.6) [2]:

The internal representation of the model A is not exposed by the solver.
Similarly to an abstract data type, the model can be inspected only through
. . . [certain commands] . . . As a consequence, it can even be partial inter-
nally and extended as needed in response to successive invocations of some
of these commands.

2. A typical solver makes no promises about the models it returns other that they satisfy
the input theory. So fitness requires some attention.

3. Repeated requests to a solver for the same theory will often return the same model.
So completeness must be explicitly managed. (The Alloy tool does priority of
excluding—in a best-effort way—models isomorphic to those previously seen.)

The generic algorithms in this section assume that they are working in categories of
finite models that have a well-founded homomorphism ordering. In practice for us this

166 D. J. Dougherty

means that our categories have finite models as objects and either (i) there is a uniform
bound on the domain size of models, or (ii) homomorphisms are injective or inclusions.

Space doesn’t permit a review of solver-based augmentation or provenance here,
even though tools such as Aluminum, Amalgam, and CompoSAT pursue ambitious
goals and solve interesting problems along the way.

7.1 Building Blocks

There are two key sentences we can construct about a model that serve as the essential
API with the solver. We’ll show how to construct our models using these two building
blocks, then make some remarks about how to compose these sentences. In each case
there is no mystery about writing some sentence that works—the interesting task is to
write sentences that behave well in practice.

Fix a theory T and a category of models of T .

1. homToA: a sentence defining the models P |= T such that there is a homomorphism
h : P → A.

2. homFromA: a sentence defining the models P |= T such that there is a homomor-
phism h : A → P.

So
¬homFromA

defines the models P |= T that are not in the homomorphism cone of A. Thus

belowA := (homToA ∧¬homFromA)

defines the models P |= T strictly below A in the homomorphism order.
Note that the above notions make sense whether we consider arbitrary homomor-

phisms or restrict to injective homomorphisms.

7.2 Minimization

If we bound the size of the domain(s) of our models then a-minimal models exist for
any satisfiable theory: the � preorder is well-founded, so the set of minimal elements
with respect to this order is non-empty. The question is, how do we compute a-minimal
models?

The idea is that, given a model A, we can use the sentences homToA and homFromA

to iterate the process of constructing a model that is strictly below A in the � ordering.

Algorithm 8 (Minimize)

// A relevant category C of models of T is part of the context
input: theory T and model A |= T
output: model M |= T such that M is minimal for C and M � A

initialize: set M to be A

while T ′ def= T ∪{belowM} is satisfiable, set M to be a model of T ′
return M

Lemma 9. Algorithm 8 is correct: if the category C has a well-founded homomorphism
ordering and A is a finite model of T then Algorithm 8 terminates on A, and the output
M is an a-minimal model of T with M � A

Model Finding for Exploration 167

7.3 Set of Support

We take the ability to generate a set-of-support for the class of all models of a theory T
to be a natural notion of “completeness” in model-finding. Theorem 5 makes a precise
claim of completness with respect to reasoning about geometric consequences of T .

Computing sets-of-support is another application of homFromA, or more to the
point, ¬homFromA. Given theory T and model A, if we construct the theory T ′ def=
T ∪{¬homFromA} then calls to the SMT solver on theory T ′ are guaranteed to return
models of T outside the hom-cone of A if any exist. So a set-of-support for T can be
generated by iterating this process.

Recall that we can instrument any theory with a set of extra sentences uniformly
bounding the size of the models of the enriched theory.

Algorithm 10 (SetOfSupport)

// A relevant category C of models of T is part of the context
input: theory T with a uniformly bounded model size.
output: a stream M1,M2, . . . of minimal models of T such that for any P |= T , there
is some i such that Mi � P.
initialize: set theory T ∗ to be T
while T ∗ is satisfiable

let M be a (minimal)3 model of T ∗
output M

set T ∗ to be T ∗ ∪{¬homFromM}
If desired, of course, we can generate a potentially infinite set of support for a the-

ory with unbounded domain sizes by “iterative deepening,” letting the bounds increase
indefinitely.

8 Programming Against a Solver: Practice

The generic model-finding algorithms above rely on two crucial building blocks: the
sentences homFromA and homToA, characterizing {P | A � P} and {P | P � A} respec-
tively. It turns out that writing versions of these sentences to behave efficiently depends
on the category of models we work in.

8.1 Constructing HomTo and HomFrom for Arbitrary Homomorphisms

The “Homomorphism Problem,” deciding whether M � N for arbitrary homomor-
phisms, is NP-complete [32]. The more general problems of characterizing, for fixed
A, the sets {P | A � P} and {P | P � A} are deep and well-studied [3,7,35,50]. Here
we focus, not on the computational complexity of the problem but the practical problem
of asking SAT- and SMT-solvers to produce appropriate models, using homFrom and
homTo sentences.

3 Completeness of this algorithm does not require that the models M we work with are minimal.
But if we do work with minimal models there will be fewer iterations.

168 D. J. Dougherty

homTo. Constructing a homToA sentence is straightforward ([21]) and even a naive
such sentence seems to not cause our tools any trouble. We simply add a function sym-
bol to the signature and write axioms saying that it is a homomorphism.

Algorithm 11 (Constructing homTo)

input: model A over signature Σ.
output: sentence homToA in an expanded signature Σ+, such that for any model
P |= Σ, P � A iff there is an expansion P

+ of P to Σ+ with P
+ |= homToA.

define Σ+ to be the extension of Σ obtained by
- adding a set of fresh constants naming elements of the domain of A

- adding a function symbol hS : S → S at each sort S
return homToA as the conjunction of the following sentences, one for each function
symbol f and predicate R in Σ. Here�e and e′ range over the names for elements of
A.

∀�x,y . f�x= y →
∨

{(�hx=�e∧ y= e′) | A |= f�e= e′}
∀�x . R�x= true →

∨
{(�hx=�e) | A |= R�e= true}

If we are working in a category of injective maps, simply add a sentence to say that h is
injective.

Lemma 12. There is a homomorphism from B to A iff there is a model B
+ |= homToA

such that B is the reduction to Σ of B
+.

Constructing HomFrom. LetA be a finite model over signature Σ. Define an expanded
signature Σ+ by adding, for each element e of the domain of A, a constant ce, and let
A
+ be the corresponding expansion of A. The diagram ΔA of A is the set of atomic

sentences and negations of atomic sentences true in A
+. If we take only the atomic

sentences, the result is the positive diagram Δ+
A
of A.

The sentence—in the original signature Σ—obtained by converting the new con-
stants in the positive diagram to variables and existentially quantifying them is called
the characteristic sentence chA of A.

It is easy to see that the models of chA are precisely those models B with A � B.
But observe that for our purposes we are interested in characterizing (by a first-order

sentence) the complement of the set of B such that A � B. Certainly the negation ¬chA
suffices. But simply negating chA leads to computationally unwieldy formulas, since
universal quantifiers are bottlenecks for SMT-solvers.

The ideal outcome would be to construct an existential sentence capturing the com-
plement of the hom cone of A. Equivalently we might look for a structure D such that
for any X, X � D iff A �� X. This is called “homomorphism duality” in the literature.
Such a structure doesn’t always exist, and even if it does, it can be exponentially large
in the size of A [28]. So we must turn to heuristic methods.

The model finders Razor and LPA work with arbitrary homomorphisms. The former
tool uses, essentially, homToA as defined in Algorithm 11, and uses the straightfor-
ward chA in building homFromA. LPA inherits this approach from Razor. Elsewhere
we have written [21,24] about some best-effort techniques for constructing homFromA

sentences.

Model Finding for Exploration 169

8.2 Constructing HomTo and HomFrom for Submodel Morphisms

“Bounded model finding” as represented by (for example) Alloy imposes a uniform
bound on the sizes of models for the duration of each analysis session. Indeed it intro-
duces a set of names for model elements3. Let us choose to respect distinctness of names
in our homomorphisms. We arrive at the notion of a “submodel” category B of models,
with the following properties.

– There is a fixed finite setC of constants, and every element of a model inB is named
by a constant in C (we do not assume unique names per element).

– The ordering A � B on models is the submodel ordering

It is not obvious that ordering by submodel, which requires that relationships between
models respect names, is the best choice for model exploration. The next section takes
up this question.

In these submodel categories it turns out that homToA and homFromA can be
expressed compactly, with propositional formulas.

Constructing homTo. Given modelAwe take homToA to be the propositional sentence
∧

{¬α | α is atomic, A |= ¬α}

Note in particular that if c and c′ are constants naming distinct elements of A, then
c �= c′ is one of the conjuncts of homToA. This sentence works: if B satisfies this then
the identity map on names is a homomorphism, since there are no facts of B that make
an obstacle.

Constructing homFrom. Given model A we take homFromA to be the propositional
sentence ∧

{β | β is atomic, A |= β}
so that ¬homFromA, used to avoid the homomorphism-cone of A, is

∨
{¬β | β is atomic, A |= β}

This sentence works: it is just a version of the naive chA but we do not have to introduce
existential quantifiers since our homomorphisms are so constrained.

Minimization and Set of Support are now easily computed. One might wonder
whether the SAT-solving iteration required, in Algorithm 8, to reduce a model to a
minimal one might be expensive. But experimental evaluation [54] has shown that in
fact minimal models are returned quite quickly.

Examples. The model finders Aluminum, and Amalgam work with the inclusion order-
ing on models. (They inherit this aspect from Kodkod, their core model-finding engine.)
They use the versions of homToA and homFromA developed in this section.

3 somewhat confusingly, names are called “bounds” in the Alloy community.

170 D. J. Dougherty

8.3 Constructing homTo and homFrom for Injective Morphisms

As a final note, we observe the somewhat surprising fact that if we relax the notion of
homomorphism in bounded categories to require only injectivity, as opposed to preser-
vation of names, then analysis is almost as easy as working with submodels.

For minimization: to say that there is an injective homomorphism from A to B is to
say that A is isomorphic to a submodel of B. Since we only care about models up to
isomorphism, the problem of minimization with respect to injective maps is the same
problem as minimization with respect to the submodel ordering.

For set of support: this is not quite “the same problem” in the two orderings. We
require one more idea. The key fact is this: if B is a minimal model of a theory and
there is an injective homomorphism from A to B then in fact A and B are isomorphic.
Since: our assumption implies that A is isomorphic to a submodel of B. If this submodel
is not B itself, it would provide a counterexample to the minimality of B.

The upshot of this is that the only obstacle to the correctness of the Set of Support
algorithm for injective homomorphism when we use the submodel-based homTo and
homFrom constructions is that we might construct isomorphic copies of previously-
derived models. So all we have to do is add an isomorphism check at the end of the
next-model algorithm. Such a check is not known to be asymptotically efficient, but is
a standard operation and behaves well in practice.

9 Conclusion

Motivated by the idea of using model finding to explore theories as opposed to simply
checking satisfiability, we have argued for development of model-finding assistants to
aid users in understanding software artifacts. We have (i) suggested some core design
principles for a model finding tool, (ii) argued for geometric logic as a convenient for-
malism for a specifications supporting a computational interpretation, and (iii) outlined
some fundamental building blocks that supply core functionality in generating a set of
support for the finite models of a theory.

Note and Acknowledgements. This paper surveys some recent work—foundational and
applied—by a variety of authors in model finding. All of it has been previously published. My
purpose in gathering this material into one place is to point out the shared foundations for a num-
ber of different model finders and to identify some differences in their aspirations and in their
functionalities.

As the technical content of this paper draws so heavily on previous work with coauthors, my
feeling of gratitude to my colleagues is stronger than usual. I want to particularly thank Natasha
Danas, Joshua Guttman, Kathi Fisler, Shriram Krishnamurthi, Timothy Nelson, John Ramsdell,
and Salman Saghafi for their insights and contributions.

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51(1–2), 1–77 (1991)
2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB)

(2016). www.SMT-LIB.org

www.SMT-LIB.org

Model Finding for Exploration 171

3. Barto, L., DeMeo, W.J., Mottet, A.: The complexity of the homomorphism problem for
boolean structures (2020). CoRR abs/2010.04958, https://arxiv.org/abs/2010.04958

4. Baumgartner, P., Fuchs, A., Nivelle, H.D., Tinelli, C.: Computing finite models by reduction
to function-free clause logic. J. Appl. Logic 7(1), 58–74 (2009)

5. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.)
LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005). https://
doi.org/10.1007/11591191 18

6. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic
based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14052-5 11

7. Bodirsky, M., Feller, T., Knäuer, S., Rudolph, S.: On logics and homomorphism closure
(2021). CoRR abs/2104.11955, https://arxiv.org/abs/2104.11955

8. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In: Clarke, E.M.,
Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0023733

9. Bry, F., Yahya, A.: Minimal model generation with positive unit hyper-resolution tableaux.
In: Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS,
vol. 1071, pp. 143–159. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61208-
4 10

10. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to minimal
model generation. J. Autom. Reas 25, 35–82 (2000)

11. Bulwahn, L.: The new quickcheck for isabelle. In: Hawblitzel, C., Miller, D. (eds.) CPP
2012. LNCS, vol. 7679, pp. 92–108. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35308-6 10

12. Chamarthi, H.R., Dillinger, P.C., Kaufmann, M., Manolios, P.: Integrating testing and inter-
active theorem proving. In: Hardin, D., Schmaltz, J. (eds.) Proceedings 10th International
Workshop on the ACL2 Theorem Prover and its Applications, ACL2 2011, Austin, Texas,
USA, 3–4 November 2011. EPTCS, vol. 70, pp. 4–19 (2011)

13. Claessen, K., Sorensson, N.: New techniques that improve MACE-style finite model finding.
In: Proceedings of the CADE-19 Workshop: Model Computation-Principles, Algorithms,
Applications. Citeseer (2003)

14. Claessen, K., Hughes, J.: QuickCheck. In: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming - ICFP ’00. ACM Press (2000)

15. Coquand, T.: A completeness proof for geometric logic. In: Logic, Methodology and Philos-
ophy of Science. Proceedings of the Twelfth International Congress, pp. 79–90 (2010)

16. Coste, M., Lombardi, H., Roy, M.F.: Dynamical method in algebra: effective nullstellensätze.
Ann. Pure Appl. Logic 111(3), 203–256 (2001)

17. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User studies of prin-
cipled model finder output. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol. 10469,
pp. 168–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66197-1 11

18. de Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite model
search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–
317. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 28

19. Deutsch, A., Nash, A., Remmel, J.: The chase revisited. In: ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 149–158 (2008)

20. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic protocols.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 523–537. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 41

21. Dougherty, D.J., Guttman, J.D., Ramsdell, J.D.: Homomorphisms and Minimality for
Enrich-by-Need Security Analysis. ArXiv e-prints (2018)

https://arxiv.org/abs/2010.04958
https://doi.org/10.1007/11591191_18
https://doi.org/10.1007/11591191_18
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://arxiv.org/abs/2104.11955
https://doi.org/10.1007/BFb0023733
https://doi.org/10.1007/3-540-61208-4_10
https://doi.org/10.1007/3-540-61208-4_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-642-35308-6_10
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/11814771_28
https://doi.org/10.1007/978-3-540-71209-1_41

172 D. J. Dougherty

22. Dougherty, D.J., Guttman, J.: Geometric logic and strand spaces. In: 5th International Work-
shop on Security and Rewriting Techniques (2010)

23. Dougherty, D.J., Guttman, J.D.: Decidability for lightweight Diffie-Hellman protocols. In:
IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19–22
July 2014, pp. 217–231 (2014)

24. Dougherty, D.J., Guttman, J.D., Ramsdell, J.D.: Security protocol analysis in context: com-
puting minimal executions using SMT and CPSA. In: Furia, C.A., Winter, K. (eds.) IFM
2018. LNCS, vol. 11023, pp. 130–150. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-98938-9 8

25. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symb. Logic 21, 123–163
(2015)

26. Eastlund, C.: Doublecheck your theorems. In: Proceedings of the Eighth International Work-
shop on the ACL2 Theorem Prover and its Applications, pp. 42–46 (2009)

27. El Ghazi, A.A., Taghdiri, M.: Analyzing alloy constraints using an SMT solver: a case study.
In: 5th International Workshop on Automated Formal Methods (AFM) (2010)

28. Erdős, P.L., Pálvölgyi, D., Tardif, C., Tardos, G.: Regular families of forests, antichains and
duality pairs of relational structures. Combinatorica 37(4), 651–672 (2017). https://doi.org/
10.1007/s00493-015-3003-4

29. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans. Database
Syst. (TODS) 30(1), 174–210 (2005)

30. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-
ing. Theor. Comput. Sci. 336(1), 89–124 (2005)

31. Fisher, J., Bezem, M.: Skolem machines. Fundamenta Informaticae 91(1), 79–103 (2009)
32. Garey, M.R., Johnson, D.S.: Computers and intractability. w. h (1979)
33. Geisler, T., Panne, S., Schütz, H.: Satchmo - the compiling and functional variants. J. Autom.

Reas. 18(2), 227–236 (1997)
34. Gottlob, G.: Computing cores for data exchange: new algorithms and practical solutions.

In: ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.
148–159 (2005)

35. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM (JACM) 54(1), 1–24 (2007)

36. Guttman, J.D.: Security theorems via model theory. EXPRESS Express. Conc. (EPTCS) 8,
51 (2009). https://doi.org/10.4204/EPTCS.8.5

37. Guttman, J.D.: Shapes: surveying crypto protocol runs. In: Cortier, V., Kremer, S. (eds.)
Formal Models and Techniques for Analyzing Security Protocols. IOS Press, Cryptology
and Information Security Series (2011)

38. Guttman, J.D.: Establishing and preserving protocol security goals. J. Comput. Secur. 22(2),
203–267 (2014)

39. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles. Theor. Comput.
Sci. 283(2), 333–380 (2002)

40. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007. LNCS,
vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-69611-
7 1

41. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun. ACM
62(9), 66–76 (2019)

42. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model generation with
respect to an atom set. In: International Workshop on First-Order Theorem Proving (2009)

43. Krishnamurthi, S., Nelson, T.: The human in formal methods. In: ter Beek, M.H., McIver, A.,
Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 3–10. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 1

https://doi.org/10.1007/978-3-319-98938-9_8
https://doi.org/10.1007/978-3-319-98938-9_8
https://doi.org/10.1007/s00493-015-3003-4
https://doi.org/10.1007/s00493-015-3003-4
https://doi.org/10.4204/EPTCS.8.5
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-030-30942-8_1
https://doi.org/10.1007/978-3-030-30942-8_1

Model Finding for Exploration 173

44. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to
Topos Theory. Universitext, Springer, New York (1992). https://doi.org/10.1007/978-1-
4612-0927-0

45. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM
Trans. Database Syst. (TODS) 4(4), 455–469 (1979)

46. Makkai, M., Reyes, G.E.: First Order Categorical Logic. LNM, vol. 611. Springer, Heidel-
berg (1977). https://doi.org/10.1007/BFb0066201

47. Maldonado-Lopez, F.A., Chavarriaga, J., Donoso, Y.: Detecting network policy conflicts
using Alloy. In: Ameur, Y.A., Schewe, K. (eds.) Abstract State Machines, Alloy, B, TLA,
VDM, and Z - 4th International Conference, ABZ 2014, Toulouse, France, 2–6 June 2014.
Proceedings. Lecture Notes in Computer Science, vol. 8477, pp. 314–317. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43652-3 31

48. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using alloy revisited.
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 592–607.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 44

49. Marinov, D., Khurshid, S.: Testera: a novel framework for automated testing of java pro-
grams. In: Proceedings 16th Annual International Conference on Automated Software Engi-
neering (ASE 2001), pp. 22–31. IEEE (2001)

50. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries.
J. ACM (JACM) 60(6), 1–51 (2013)

51. McCune, W.: Mace4 reference manual and guide (2003). arXiv preprint cs/0310055
52. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: a tool for generating struc-

turally complex test inputs. In: 29th International Conference on Software Engineering
(ICSE’07), pp. 771–774. IEEE (2007)

53. Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of Why and Why
Not: enriching scenario exploration with provenance. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
4–8 September 2017, pp. 106–116 (2017)

54. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum: Princi-
pled scenario exploration through minimality. In: 35th International Conference on Software
Engineering (ICSE), pp. 232–241 (2013)

55. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Margrave tool for
firewall analysis. In: Proceedings of the 24th USENIX Large Installation System Adminis-
tration Conference (LISA 2010) (2010)

56. Paraskevopoulou, Z., Hriţcu, C., Dénès, M., Lampropoulos, L., Pierce, B.C.: Foundational
property-based testing. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 325–
343. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1 22

57. Pombrio, J.L.: Protocol analysis via the chase. Technical report, Worcester Polytechnic Insti-
tute (2011)

58. Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: specification-guided cov-
erage for model finding. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM
2018. LNCS, vol. 10951, pp. 568–587. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-95582-7 34

59. Ramsdell, J.: Personal communication (2021)
60. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina,

N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 42

61. Rossman, B.: Homomorphism preservation theorems. J. ACM (JACM) 55(3), 15 (2008)
62. Rowe, P.D., Ramsdell, J.D., Kretz, I.D.: Automated trust analysis for layered attestations.

Submitted for publication (2021)

https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/BFb0066201
https://doi.org/10.1007/978-3-662-43652-3_31
https://doi.org/10.1007/978-3-642-24485-8_44
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-95582-7_34
https://doi.org/10.1007/978-3-319-95582-7_34
https://doi.org/10.1007/978-3-642-39799-8_42

174 D. J. Dougherty

63. Saghafi, S., Danas, R., Dougherty, D.J.: Exploring theories with a model-finding assistant.
In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 434–449.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6 30

64. Saghafi, S., Dougherty, D.J.: Razor: provenance and exploration in model-finding. In: 4th
Workshop on Practical Aspects of Automated Reasoning (PAAR) (2014)

65. Saghafi, S., Nelson, T., Dougherty, D.J.: Geometric logic for policy analysis. In: International
Workshop on Automated Reasoning in Security and Software Verification (ARSEC 2013),
pp. 12–20 (2013)

66. Shao, D., Khurshid, S., Perry, D.E.: Whispec: white-box testing of libraries using declarative
specifications. In: Proceedings of the 2007 Symposium on Library-Centric Software Design,
pp. 11–20 (2007)

67. Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0,
TPTP v6.4.0. J. Autom. Reas. 59(4), 483–502 (2017)

68. Thorstensen, E.: Instance-Based Hyper-Tableaux for Coherent Logic. Master’s thesis, Uni-
versity of Oslo (2009)

69. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Conference on Tools and
Algorithms for the Construction and Analysis of Systems (2007)

70. Vakili, A., Day, N.A.: Finite model finding using the logic of equality with uninterpreted
functions. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS,
vol. 9995, pp. 677–693. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-
6 41

71. Vickers, S.: Geometric logic in computer science. In: Burn, G.L., Gay, S.J., Ryan, M. (eds.)
Theory and Formal Methods 1993, Proceedings of the First Imperial College Department
of Computing Workshop on Theory and Formal Methods, Isle of Thorns Conference Cen-
tre, Chelwood Gate, Sussex, UK, 29–31 March 1993, pp. 37–54. Workshops in Computing,
Springer, Heideleberg (1993). https://doi.org/10.1007/978-1-4471-3503-6 4

72. Vickers, S.: Geometric logic as a specification language. In: Hankin, C., Mackie, I., Hankin,
R.N., Mackie, I., Nagarajan, R. (eds.) Proceedings for the Second Imperial College Depart-
ment of Computing Workshop on Theory and Formal Methods, pp. 321–340 (1995)

73. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: IJCAI, vol. 95, pp. 298–
303 (1995)

https://doi.org/10.1007/978-3-319-21401-6_30
https://doi.org/10.1007/978-3-319-48989-6_41
https://doi.org/10.1007/978-3-319-48989-6_41
https://doi.org/10.1007/978-1-4471-3503-6_4

Secure Key Management Policies
in Strand Spaces

Riccardo Focardi(B) and Flaminia L. Luccio

DAIS, Ca’ Foscari University, Venice, Italy
{focardi,luccio}@unive.it

Abstract. Key management is the Achilles heel of cryptography. In
recent years, several attacks have been identified due to poor key man-
agement or too liberal APIs, which do not provide a policy that pre-
cisely determines the intended use of cryptographic keys. In this paper,
we have taken advantage of the expressiveness and simplicity of strand
spaces, first introduced in 1998 by Joshua Guttman et al., to specify
a significant subset of key management APIs. We used the automatic
CPSA tool to rediscover, in an extremely clear and effective way, some
known attacks. We have therefore defined a generic key management pol-
icy model and proved a key secrecy theorem for a typed version of the
API. The proof highlighted the necessary requirements of the policy that
we formalized through a closure property that, in fact, computes which
types a key can take at runtime.

Keywords: Crypto API · Key management · Strand spaces ·
Automated verification

1 Introduction

This paper is dedicated to Joshua Guttman, on the occasion of his 66th and 2/3
birthday. Joshua’s work has been a source of inspiration for ours. His work is
always foundational and insightful. He always explores different perspectives and
finds elegant and meaningful solutions to challenging problems. Strand spaces
are a great example of Joshua’s contribution. They allow us to prove properties
of security protocols and, at the same time, deeply understand the actual require-
ments for security. In this work we celebrate Joshua’s research work by applying
the strand space formalism to the simple but delicate problem of key manage-
ment in security devices. The proof of security was challenging and insightful,
even more than expected! So thanks Joshua . . . and happy birthday!

Cryptography is becoming more and more pervasive. The expansion of IoT,
home automation and industry 4.0 has dramatically increased the attack surface,
making it necessary to use cryptographic protocols to protect communications
and data. However, encryption is complex as not all cryptographic mechanisms
offer the same level of protection. Protocols and implementations, may present

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 175–197, 2021.
https://doi.org/10.1007/978-3-030-91631-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_10

176 R. Focardi and F. L. Luccio

bugs that weaken or, in some cases, cancel the security guarantees offered by the
adopted mechanisms.

Key management is often the Achilles heel of cryptographic systems. Cryp-
tographic keys must be stored securely, using tamper-resistant hardware, such
as Hardware Security Modules (HSMs), or through appropriate keystores pro-
tected by passwords or other cryptographic keys. Keys, to be useful, must be
shared using secure channels. A typical example is the export of cryptographic
keys from an HSM using the so-called wrap operation, in which a sensitive key
is encrypted with another key before being exported, so that its value is never
exposed in the clear. This simple operation has caused several problems and
attacks on real devices. In some cases they were simply due to erroneous key
management, in other cases to overly liberal APIs, which do not allow to pro-
vide a policy that precisely determines the intended use of a certain class of keys.
See, for example, the numerous papers on PKCS#11 standard API vulnerabilities
[4,7,9,11,23,31].

Joshua Guttman is very well known for the introduction of the notion of
strand spaces, in a joint work with F. Fabrega and J. Herzog [15]. In this paper
we have exploited the expressiveness and simplicity of strand spaces to study the
security of the key management APIs. We have specified a significant subset of
key management APIs that include symmetric key encryption, decryption, wrap,
and unwrap operations. To demonstrate that the specified set is already expres-
sive enough to exhibit interesting attacks, we have used the automatic CPSA
tool, proposed by Joshua Guttman et al. [1,25] to rediscover, in an extremely
clear and effective way, some known attacks. We have therefore defined a generic
key management policy model based on dynamic types for keys. When a key is
created, it is assigned to a particular type, then, the policy determines which
cryptographic operations can be performed by a certain type, towards other
types of keys and data.

The operations modeled are simply encryption and decryption, as key wraps
and unwraps are in fact nothing more than encryption and decryption performed
between cryptographic keys. We then used strand spaces to prove a key secrecy
theorem for a typed version of the API. The proof highlighted the necessary
requirements of the key management policy and some assumptions that, induc-
tively, allow us to first demonstrate the secrecy of keys starting from those that
do not depend on others (intuitively the master keys). In some cases, the policy
is too permissive and it is not possible to apply the theorem. In the examples, we
illustrate that these cases usually correspond to attacks that allow to discover
the value of a cryptographic key in the clear. In order to analyze the policies,
we have formalized a closure operation which over-approximates which types a
key can take at runtime. By inspecting this closure it is possible to immediately
see the critical cases that correspond to attacks.

Paper Structure. In Sect. 2 we give some technical background and discuss
related work; in Sect. 3 we define a generic model for key management poli-
cies, giving some examples; in Sect. 4 we formalize a key management API in

Secure Key Management Policies in Strand Spaces 177

strand spaces showing that an untyped version is subject to known attacks (using
CPSA), and then proving a security theorem for a typed version.

2 Background and Related Work

In this section we first introduce the strand space model (Sect. 2.1), and the
CPSA tool (Sect. 2.2). We then present the PKCS#11 standard (Sect. 2.3), illus-
trating some known attacks. We finally discuss the related work (Sect. 2.4).

2.1 The Strand Space Model

The strand space formalism was introduced in [15] to analyze protocol exe-
cutions. Events are defined using a partially-ordered graph, and this graph is
generated by causal interaction. The model analyzes the interaction among the
participants in the network from a viewpoint of a single participant. The events
consist of a message M being transmitted (+M) or received (−M). The set of
all possible events is denoted (±M), and a finite sequence of such events is called
a strand, denoted s, and is an element of (±M)∗. Also the attacker, called a pen-
etrator, can be viewed as a strand, and his strands are sequences of sending and
receiving of messages. Activities the penetrator may perform are, e.g., sending
concatenated messages, sending out guessable data, etc. A collection of strands
is called a strand space and it includes strands of the legitimate participants and
strands of the penetrator.

Bundles define the underlying execution model. In a bundle, every reception
is related to a previous transmission of that message. More precisely, the relation
a → b on the nodes specifies that a and b respectively send and receive a message.
A bundle is always acyclic and represents the causal dependencies of the nodes
in terms of both communication and natural ordering of events in the strands.
A bundle of a correct protocol is a bundle in which there is one strand for each
party, and each of them agree on different issues such are participants, keys,
nonces, etc. In the bundle there are also penetrator strands that however, do
not prevent the legitimate participant operations. Moreover, the adversary is
able to guess only those values that could have been received. Finally, protocol
correctness depends on the freshness of nonces and session keys.

We recall the definition of terms and subterm relation from [15] [Sect. 2.3].
We assume a set T of atomic messages (texts) and a set K of cryptographic keys,
disjoint from T. We then write{g}k to denote term g encrypted under symmetric
key k and g h to denote the concatenation of terms g and h. The concatenation
of z terms will be noted as g1 g2 . . . gn. We let A denote the set of all terms
constructed by applying encryption and concatenation starting from T and K.

Definition 1 (Subterm relation). The subterm relation � is defined induc-
tively, so that:

– a � t for t ∈ T iff a = t;
– a � k for k ∈ K iff a = k;

178 R. Focardi and F. L. Luccio

– a � {g}k iff a � g or a = {g}k;
– a � g h iff a � g or a � h or a = g h;

Notice that the subterm relation does not inspect cryptographic keys as their
are never deducible from a ciphertext.

We recall the definition of penetrator traces from [15] [Definition 3.1] that we
will need next, and provide a very intuitive example of how strands are defined:

Definition 2 (Penetrator). Let T be a set of atomic messages (texts) and
let KP ⊆ K be a set of keys initially known by the attacker. A penetrator trace
s ∈ P is one of the following:

M. Text message: 〈+t〉 with t ∈ T
F. Flushing: 〈−g〉
T. Tee: 〈−g, + g, + g〉
C. Concatenation: 〈−g, −h, +g h〉
S. Separation: 〈−g h, +g, +h〉
K. Key: 〈+k〉 with k ∈ KP
E. Encryption: 〈−k, −m, +{m}k〉
D. Decryption: 〈−k, −{m}k, +m〉
Notice that, since we will only consider symmetric key cryptography we do not
consider inverse keys in the definition above.

2.2 The CPSA Tool

The Cryptographic Protocol Shapes Analyzer (CPSA) is a tool developed at
The MITRE Corporation. Several people work on the tool Joshua D. Guttman,
John D. Ramsdell, Jon C. Herzog, Shaddin F. Doghmi, F. Javier Thayer, Paul
D. Rowe, and Moses D. Liskov on the theory and John D. Ramsdell and Moses
D. Liskov on the implementation [1,25].

CPSA can be used to design and analyze security protocols and is grounded
on the strand space theory. The output of the analysis can be visualized using a
standard browser (Chrome, Firefox, Safari, etc.). It is one of the many tools that
are available to formally analyze secure protocol executions (see, e.g., Maude-
NPA [14], Tamarin, [26], and ProVerif [3]).

In CPSA cryptographic protocols are defined as patterns of interaction
between parties. CSPA is able to give a complete characterization of possible
protocol executions, that are called shapes, starting from an initial behavior of
one participant and analyzing, from his point of view, the behavior of the other
participants, and what shapes are compatible with the description (typically few
of them). This can be done even in the presence of a penetrator that can execute
different operations as, e.g., manipulate, alter, drop messages, even breaking
secrecy or authentication of the protocol (cf. Sect. 2.1).

The search of the shapes is done with a high-level algorithm that enumerates
all the shapes, and that can be considered complete relative to natural role
semantics, [1,2]. The analysis is done within a pure Dolev-Yao model [13].

Secure Key Management Policies in Strand Spaces 179

Wrap(h1,h2) → c
Decrypt(c,h2) → k1

Fig. 1. wrap-then-decrypt attack.

2.3 Attacks on the PKCS#11 API

The Public Key Cryptography Standard #11 (PKCS#11), was first proposed by
RSA in 1995, its latest version is 3.0 and belongs to OASIS [27]. It contains
an API called ‘Cryptoki’ that can be used by HSMs, cryptographic tokens and
smart cards for cryptographic and key management functions. All operations are
performed inside the device, thus cryptographic keys are protected and never
exposed in the clear to external applications.

Once a session has been established, the application may access objects using
some handles. Objects are keys or certificates, and have attributes that are used
to specify properties or roles. Attributes can be boolean values and can be set
and unset. Handles are only pointers to the objects, and do not disclose any
information about them. As all the cryptographic functions use key handles to
refer to keys their value is never exposed outside the device. New objects may
be created either using a key generation command or by specific operations that
will be later defined, i.e., unwrapping an encrypted blob. A fresh handle will
then point at them.

As an example, to encrypt and decrypt data we should use keys respectively
with the attributes encrypt and decrypt set. To export and import keys in
the device under so called wrapping keys, we have to use the wrap and unwrap
attributes. The wrap attribute is used to encrypt and then to export as a cipher-
text a key. To import keys we use the unwrap attribute that takes an encrypted
key, decrypts it, imports it in the device as a new object, and returns a fresh
handle.

Sequences of different operations may occur in API level attacks. The first
attack dates back to 2003 and was presented in [10] by Clulow. The idea of the
attack is to execute two operations on a sensitive key, first a wrap, and then a
decrypt. For this reason it is called the wrap-then-decrypt attack. More precisely,
the attacker has two keys, a target sensitive key k1 and a key k2 with attributes
wrap and decrypt set. It also has two handles: handle h1 associated to key k1,
and handle h2 associated to a key k2.

The attacker executes two operations: First wraps key k1 under key k2 obtain-
ing ciphertext c (using the two handles), then decrypts the ciphertext c using
key k2 (through its handle h2), thus leaking the sensitive key k1 in the clear (cf.
Fig. 1). The attack is possible since the device is not able to distinguish between
keys and plaintexts, and given that the operations wrap and decrypt are allowed
by the wrapand decrypt attributes set on h2.

There are similar versions of the attack, an example is the encrypt-then-
unwrap attack in which the attacker encrypts a known key k under h2 and then
unwraps it, since h2 has attributes unwrap and encrypt set. Then, it imports it

180 R. Focardi and F. L. Luccio

in the device with a fresh handle h3 and attribute wrap set, and this is possible
since once a key is unwrapped, attributes might be changed. Then h1 (that refers
to the sensitive key k1) can be wrapped using the fresh handle h3 obtaining the
encryption of k1 under the known key k, thus allowing the attacker to perform
decryption.

These attacks could be in principle prevented by forbidding the use of con-
flicting roles, e.g., wrap, decrypt or unwrap, encrypt. However, in practice this
solution does not work as attributes can be set and unset liberally. An extended
analysis of different attacks can be found in [12,17]. The only mechanism that
was added to prevent API-level attacks is the wrap with trusted attribute.
This was introduced only in Version 2.20 of the standard and allows keys to be
wrapped only under keys with attribute trusted set. While this is suggested,
it is however not imposed by the standard. Note that, this wrap with trusted
attribute cannot be unset anymore. The only user that can set a key as trusted
is the Security Officer. While this mechanism could, in theory, prevent some
attacks, it does not offer any flexibility and does not scale to more sophisticated
key hierarchies.

2.4 Related Work

The strand space model has been widely used in different contexts. Some exam-
ples are the following. In [22] the authors use the strand spaces formalism to
model and analyze layered security protocols, in a setting where there is an
application layer protocol on top of a secure transport protocol. In [33] the
authors extend the standard strand space model by proposing a way of repre-
senting choices in cryptographic protocols in order to compose strand spaces. To
achieve this, they use a process algebra for cryptographic protocols that supports
choice primitives. Another line of research is towards connecting strand spaces
to other formal models. E.g., in [21] the authors study the relationship between
strand spaces and multi-agent systems, and they prove that the main differ-
ence between the two models is how agents are handled. They are unspecified in
strand spaces and explicit in multi-agent systems. They show there is some lack
of expressiveness in strand spaces as some multi agent systems cannot be directly
mapped into them and they also propose extensions to the strand model. In [5]
the authors study the relationship between strand spaces and distributed tem-
poral logic. It turns out that they are compatible, but provide different views of
protocol executions. Finally, [8] compares strand spaces with multiset rewriting
with existential quantification. In order to prove the relation, the authors extend
strand spaces to incrementally construct bundles so to emulate an execution with
parametric strands.

CPSA has been used widely used to perform the analysis of cryptographic
protocols. Examples are, e.g., the proof of the CAVES Attestation protocol by
describing the protocol using logical formulas and the rely-guarantee method,
and proving the protocol correctness using CPSA [28]. Some other works con-
centrate on state changes. Joshua Guttman in [20] proposes a model to connect
protocol execution with state and” state change, and uses this model to provide

Secure Key Management Policies in Strand Spaces 181

a proof of a known fair exchange protocol. Some of the proofs are done using
CPSA. In [29] the authors present a way of modeling stateful protocols. They
achieve this by extending CPSA to systems with a state component, and by using
Prototype Verification System to reason about computations over state. In [24]
the authors analyze the forced-latency defense against the chess grandmaster
attack using CPSA, validate the security properties of the protocol and first
find, and then fix, a small message-space attack. Recently, in [30] the authors
have analyzed the Secure Remote Password (SRP) protocol, used, e.g., by iCloud
Keychain and iPassword, with CPSA, and proved a new attack based on the fact
that a malicious server can fake an authentication session with a client that does
not participate.

Regarding PKCS#11 we want to focus on possible API level attacks and on
different analysis of Security APIs (see, e.g., [4,6,10–12,16–18]). As we have
mentioned in Sect. 2.3 there are different known attacks based specific opera-
tions over keys with contrasting attributes. Example are the wrap-then-decrypt
attack [10] and its extensions. Starting from these attacks, different analysis of
Security APIs have been proposed. In [12] the authors propose the first auto-
mated analysis of PKCS#11. The model either finds attacks or derives security
properties on the device. In [4] the authors propose an extension and refine-
ment of the model based on a reverse-engineering tool. This tool was able to
find attacks based on the leaking of sensitive keys on real devices. A mechanism
to prevent some attacks was proposed in [11] but was never included in the
standard, even when formally proposed to Oasis [32]. The idea is to run authen-
ticated wrapping, i.e., attributes should be wrapped together with the key thus
remaining unchanged once imported and exported. Different works focused on
the proof of correctness of some specific key configurations, e.g., one based on the
use of the wrap with trusted attribute in a controlled way (see [18]), or other
configurations proposed in [6,23] and [4]. A limit of all the mentioned works is
that they assume that the attributes of keys are immutable, which is not true
in practice. A configuration for cloud HSMs that does require any change in the
API has been proposed in a recent work by the present authors [16]. There are
few works that propose an analysis of PKCS#11 and are closer to the present one.
In [19] the authors propose an analysis of the PKCS#11 in Maude-NPA and con-
sider the attacks indicated by Delaune et al. in [12]. Another work that analyses
PKCS#11 in the Tamarin tool is [23].

3 Key Management Policies

We define a very general model for key management policies that regulates
what can be encrypted/decrypted by a given key. We consider N key types
K1,K2, . . . ,KN , and a separate type D, representing data. Input to crypto-
graphic functions will always be associated to at least one of these types.

Definition 3 (Key management policy). A key management policy is a
relation P ⊆ K × L × KD where :

182 R. Focardi and F. L. Luccio

K1 K2
. . . KN D

enc/dec enc/dec enc/dec enc/dec

Fig. 2. Plain hierarchical policy.

K1 K2 D

enc/dec

enc/dec enc/dec

Fig. 3. An insecure self-wrapping policy.

– K = {K1,K2, . . . ,KN};
– L = {enc, dec};
– KD = {K1,K2, . . . ,KN ,D}.

When (K, l, J) ∈ P we equivalently write K
l−→P J . We will also write

K
enc/dec−−−−−→P J if we have both K

enc−−→P J and K
dec−−→P J . When there is

no ambiguity about what policy P we are referring to (which will be the usual
situation), we will simply write K

l−→ J .

Intuitively, we write K
l−→ J when K can perform operation l over J . Possible

operations are encryption and decryption, respectively denoted by enc and dec.
For example K1

enc−−→ K2 means that keys of type K1 can encrypt (i.e., wrap)
keys of type K2, while K3

dec−−→ D means that keys of type K3 can decrypt data.
Notice that, D

l−→ J is not a valid policy entry, as D �∈ K. In fact, data should
not be used as cryptographic keys.

A policy should be interpreted as a specification of the intended usage of
keys. The way a policy is enforced depends on the actual API implementation
as we will discuss in Sect. 4.

Example 1 (Simple hierarchy). A simple way to organize key types is through
a total strict ordering K1 < K2 < . . . < KN < D, depicted in Fig. 2. Intuitively,
any key type can encrypt/decrypt the next type in the ordering, while KN can
only encrypt/decrypt data. This appears to be a rather safe approach as there
is no confusion or non-determinism about key roles: any time a decryption/un-
wrapping happens there is a unique possible type for the obtained plaintext.

Example 2 (Self wrapping keys). Consider now the example of Fig. 3. We have
two key types: K2 that only encrypts and decrypts data, and K1 that can
wrap/unwrap keys of types K1 and K2. This policy is non-deterministic: when
we perform an unwrap operation with keys of type K1 we might import the
decrypt key either as K1 or as K2. This non-deterministic behavior is tricky
and allows for changing the type of a key through a wrap-then-unwrap pattern.
For example, a key k1 of type K1 could wrap itself and then unwrap with type

Secure Key Management Policies in Strand Spaces 183

K1

K2 K3

K4

D

enc/dec

enc/dec

enc/dec enc/dec

enc/dec

Fig. 4. Flawed tree-like hierarchical policy.

K2, producing a copy of itself in a different type. This pattern is allowed by the
policy but it clearly enables a wrap-then-decrypt attack: once k1 is unwrapped
with type K2 it can be used to decrypt itself as data, leaking the value in the
clear. More precisely, the problematic sequence of API calls would be:

API call Output Types
wrap(k1, k1) {k1}k1 k1 : K1

unwrap({k1}k1 , k1,K2) k1 : K1,K2

decrypt({k1}k1 , k1) k1 k1 : K1,K2

Example 3 (Tree hierarchy). One might expect that the plain hierarchical policy
of Example 1 can be generalized to a tree-like hierarchy. Surprisingly, this is not
the case in general. Consider the example of Fig. 4. It might happen that a key
k2 of type K2 is wrapped by a key k1 of type K1 and then unwrapped as a key
of type K4. Then, k2 can be used to carry out a wrap-then-decrypt attack over
keys of type K3 since it has both type K2 and type K4.

More precisely the problematic sequence of API calls would be:

API call Output Types
wrap(k2, k1) {k2}k1 k1 : K1, k2 : K2, k3 : K3

unwrap({k2}k1 , k1,K4) k1 : K1, k2 : K2,K4, k3 : K3

wrap(k3, k2) {k3}k2 k1 : K1, k2 : K2,K4, k3 : K3

decrypt({k3}k2 , k2) k3 k1 : K1, k2 : K2,K4, k3 : K3

Example 4 (Secure templates). In [4], a secure policy is proposed, named secure
templates, that have a unique type for unwrapped keys that prevent conflicting
roles. Keys can be generated either as wrap/unwrap keys or as encrypt/decrypt
keys. When unwrap happens, the imported key is only allowed to unwrap and
encrypt. The rationale is that unwrap and encrypt operations do not conflict
with the initial key roles. There are two cases: (i) if a wrap/unwrap key is
unwrapped, it acquires an encryption capability (unwrap is already possible)
that might enable an encrypt-then-unwrap attack which imports a known key
in the device. However, since unwrapping a key never enables a wrap operation

184 R. Focardi and F. L. Luccio

K1

K2

K3

D

enc

enc/dec

enc/dec

enc

enc
dec

Fig. 5. Secure templates of [4].

the imported key would never be allowed to wrap and leak other keys; (ii) if an
encrypt/decrypt key is unwrapped, it acquires an unwrap capability (encrypt is
already possible) which, again, could be used in a encrypt-then-unwrap attack
with no success.

The secure templates policy can be easily encoded in our formalism using
three key types, as illustrated in Fig. 5. K1 keys can encrypt (wrap) any other
keys K3 keys can encrypt/decrypt data. When a key is unwrapped by K1 the
only possible type is K2 that can encrypt data or unwrap other keys, as required
by the policy. The fact that this policy is correct cannot be trivially deduced by
the specification but we will prove its correctness in Sect. 4.3.

4 Key Management APIs

We now define a core model of a key management API in the strand space
formalism [15]. The model supports key creation, wrap, unwrap, encrypt and
decrypt functionalities for symmetric key cryptography.

We start with an untyped model, where any key can be used to perform any
of the above functionalities. As we discussed in Sect. 2.3, this excessive flexibility
allows for a number of critical attacks that extract cryptographic keys in the
clear. Interestingly, we leverage the CPSA tool [1,25] to automatically search for
these attacks (cf. Sect. 4.1).

Then, we enrich the model with key types that are assigned when a key is
created. Since keys are stored in a device, assigning a type is plausible and useful.
We modify the API so to make all the functionalities consistent with the assigned
types and a key management policy defined along Definition 3. However, notice
that, when a key is wrapped and exported the typing information is lost and an
unwrap operation will allow any of the types consistent with the given policy. As
we will see, this approach requires a minimal modification to the API and does
not require any modification of the actual cryptographic operations. As a matter

Secure Key Management Policies in Strand Spaces 185

of fact, we will not include any typing information about the wrapped key in
the ciphertext, differently, e.g., from the wrapped attribute approach proposed
for PKCS#11 (e.g., [11,32]).

Our proof of the security of the typed API is carried out in the strand space
formalism and is parametric with respect to a given key management policy.
A very interesting feature of strand spaces is that they allow one to distill the
minimal requirements for security. In our case, this will translate into the minimal
requirements for a secure key management policy. Thus, we will define a static
check to determine when a key management policy is secure, while types will be
used at execution time to guarantee that the API treat keys consistently with
the given policy (cf. Sect. 4.2).

As a side note, despite the apparent simplicity of the core model that we will
treat, we could not perform any automated proof using CPSA, even for fixed
simple policies such as the one of Example 1 with N = 2. When generating all the
possible executions compatible with a given strand, the tool was looping around
inverse functionalities, such as wrap and unwrap. We had similar experiences
with other state-of-the-art automated tools. We leave as a future work the study
of possible automation of the analysis presented in this paper.

4.1 An Untyped, Vulnerable API

We model a key k stored in a device as if it were wrapped under a device’s
master key mk , i.e., {k}mk . We will assume many such keys corresponding to
an unbounded set of devices, moreover master keys could be pre-shared among
devices allowing key sharing of freshly generated keys. In fact, the presence of
one of more devices is immaterial for the analysis.

Notice that, this model is realistic, as it is often the case that devices store
keys outside their memory in an encrypted form. This modeling strategy makes
it possible to model key management APIs purely as a stateless protocol, since
stored keys will be just sent as output and retrieved when necessary. This seems
to contradict the usual approach in the literature for, e.g., PKCS#11 models,
where a mutable state is considered (e.g., [4,12,23]). However, in these works
the state is necessary in order to model the key attributes that we do not consider
here.

Definition 4 (Untyped key management API). An infiltrated strand space
Σ, P is a Untyped Key Management (UKM) space if Σ is the union of the
following kinds of strands:

186 R. Focardi and F. L. Luccio

1 (herald "APIs"

2 (comment "Untyped API: finds all attacks "

3 "Note : it diverges , so we stop it and check the attacks")

)

4

5 (defprotocol api basic

6 (defrole create

7 (vars (k text) (mk skey))

8 (trace

9 (send (enc k mk))

10)

11 (uniq-orig k) ; k is fresh
12 (non-orig mk) ; mk is uncompromised
13)

14 (defrole encrypt

15 (vars (m k text) (mk skey))

16 (trace

17 (recv (cat m (enc k mk)))

18 (send (enc m k)))

19 (non-orig mk) ; mk is uncompromised
20)

21 (defrole decrypt

22 (vars (m k text) (mk skey))

23 (trace

24 (recv (cat (enc m k) (enc k mk)))

25 (send m))

26 (non-orig mk) ; mk is uncompromised
27)

28 (defrole wrap

29 (vars (k1 k2 text) (mk skey))

30 (trace

31 (recv (cat (enc k1 mk) (enc k2 mk)))

32 (send (enc k1 k2)))

33 (non-orig mk) ; mk is uncompromised
34)

35 (defrole unwrap

36 (vars (k1 k2 text) (mk skey))

37 (trace

38 (recv (cat (enc k1 k2) (enc k2 mk)))

39 (send (enc k1 mk)))

40 (non-orig mk) ; mk is uncompromised
41)

42

43 (defskeleton api

44 (vars (k text) (mk skey))

45 (defstrand create 1 (k k) (mk mk))

46 (deflistener k) ; check secrecy of created keys!
47 (comment "Analyze from the create ’s perspective "))

Fig. 6. Flawed APIs in CPSA.

Secure Key Management Policies in Strand Spaces 187

create wrap decrypt

• {k}mk {k}mk •

• {k}k {k}mk •

• •k

•

Fig. 7. Wrap-then-decrypt with a single key k.

create wrap create decrypt

• {k}mk • •{k2}mk

• {k}k2 {k2}mk •

• •k

•

Fig. 8. Wrap-then-decrypt with two keys: k and k2.

1. Penetrator strands: s ∈ P (cf. Definition 2)
2. Create: 〈+{k}mk 〉
3. Encrypt: 〈−m {k}mk , +{m}k〉
4. Decrypt: 〈−{m}k {k}mk , +m〉
5. Wrap: 〈−{k1}mk {k2}mk , +{k1}k2〉
6. Unwrap: 〈−{k1}k2 {k2}mk , +{k1}mk 〉

We know that this liberal API is subject to all the known attacks in the
literature. Interestingly, we have modeled it in the CPSA tool so to re-discover
all the attacks, very efficiently. The CPSA specification is reported in Fig. 6.
Intuitively, defrole specifications correspond to the five API functionalities that
we model: create, encrypt, decrypt, wrap and unwrap. We declare the master
key mk of sort skey, for symmetric keys, and any other variable as text. We will
also assume that mk is never exposed to the attacker. This reflects our interest in

188 R. Focardi and F. L. Luccio

create wrap unwrap encrypt

• k2 {k}mk •

• •{k2}k {k}mk

• •{k}mk {k2}mk

• •k

•

Fig. 9. Encrypt-then-unwrap with a single key k and an attacker key k2.

analyzing key management under the assumption that keys are stored securely
in the device, so we will not model any attack over the master key(s) mk .

Strands are specified using the trace keyword and are just a syntactic renam-
ing of the honest strands of Definition 4. For example, {k1}k2 is written as (enc
k1 k2) while the concatenation of terms m and {k}mk is written as (cat m
(enc k mk)). Strand symbols − and + for input and output are translated into
recv and send. The skeleton at the end of the specification specifies an instance
of a create strand adding a listener for k. This will force the tool to look for
executions where k is learned by the attacker. If no such execution exists, the
secrecy of generated keys is guaranteed, which is not the case for this API.

The tool does not converge on this analysis, but if we stop it after just 1 s
we find 6 traces corresponding to known attacks. Conveniently, CPSA has an
option to produce output directly in LATEX. For more readability, we have only
added on the arcs the terms that the strand gets as input. Notice that, dashed
arrows represent interactions where the attacker, in the middle, performs some
operation. In Fig. 7 we have the simplest attack found: a self wrap-then-decrypt
sequence, where a single key k is used to wrap and then decrypt itself. Notice
that, the create strand produces term {k}mk , but the attacker can duplicate
it as {k}mk {k}mk to provide a correct input to the wrap strand (we decorate
arrows with input terms). Wrap produces a self wrapping {k}k and the attacker
adds again {k}mk to provide input for the decrypt strand. These two arrows are
dashed to represent some attacker’s activity in between: in fact the output of
the originating strand does not match the input of the receiving one. Finally,
decrypt produces k that is sent to the implicit listener strand that has the only
purpose of pointing out a successful leak.

Secure Key Management Policies in Strand Spaces 189

create wrap unwrap create encrypt

•

{k}mk

• k2 {k3}mk •

• •{k2}k3 {k3}mk

• •{k2}mk

• •k

•

Fig. 10. Encrypt-then-unwrap with two keys k, k3 and an attacker key k2.

Figure 8 reports the second attack found by CPSA, which is the same as Fig. 7
based on two keys k and k2. In Fig. 9 we found another classic attack: encrypt-
then-unwrap. Here, the attacker provides her own key k2 and asks to encrypt and
unwrap it under k, in order to import it in the device as {k2}mk . At this point,
it is enough to wrap k under k2 to obtain k in the clear. In fact, notice that,
the attacker can decrypt the ciphertext {k}k2 generated by the wrap operation
(this Dolev-Yao decryption is hidden in the final dashed arrow). Figure 10 is
the same attack carried out with two keys k and k3 and an attacker key k2.
Even if we cannot be guaranteed that there are no more interesting attacks, by
inspecting subsequent attacks found by CPSA we noticed that they seem to add
only useless steps, such as importing an attacker key to unwrap another attacker
key that is finally used to wrap k, or attacking a key k3 and then wrapping the
target key k under k3.

As we mentioned, the tool loops over these attack variants and never termi-
nates. However, since this untyped API is insecure, we still find the tool very
insightful as it automatically and very efficiently spots attacks. We focus on
proving security of a fixed API in the next section.

4.2 A Secure, Typed API

Our typed API is based on the following idea: when a key is created a type is
assigned and is encrypted together with the key in order to enforce the policy at
execution time. For example, key k1 of type K1 is modeled as {k1,K1}mk . When
a key is unwrapped any type admitted by the policy is assigned to the unwrapped
key, making it possible to have multiple types for the same key. This is modeled
by creating another ciphertext with the new assigned type, e.g., {k1,K2}mk .

190 R. Focardi and F. L. Luccio

Definition 5 (Typed key management API). Let P be a key management
policy and let K,K1,K2 range over K. Let Kd,Km ⊆ K, such that Kd∩Km = ∅,
respectively be a set of fresh device keys and of master keys which we assume
to be unknown to the penetrator, i.e., (Kd ∪ Km) ∩ KP = ∅ (cf. Defintion 2).
We let mk range over Km. An infiltrated strand space Σ, P is a P -Typed Key
Management (TKMP) space if Σ is the union of the following kinds of strands:

1. Penetrator strands: s ∈ P;
2. Create: 〈+{k,K}mk 〉 with k ∈ Kd uniquely originating
3. Encrypt: 〈−m, −{k,K}mk , +{m}k〉 if K

enc−−→ D

4. Decrypt: 〈−{m}k, −{k,K}mk , +m〉 if K
dec−−→ D

5. Wrap: 〈−{k1,K1}mk , −{k2,K2}mk , +{k1}k2〉 if K2
enc−−→ K1

6. Unwrap: 〈−{k1}k2 , −{k2,K2}mk , +{k1,K1}mk 〉 if K2
dec−−→ K1

The security of this API depends on the security of the policy P . We have noticed
how keys of certain types can acquire new types when they are wrapped and
then unwrapped under certain keys (cf. Examples 2 and 3). In order to capture
this runtime behavior, we define a new relation P̂ , starting from a policy P , that
represents all the cryptographic capabilities that can be acquired, at runtime,
by a key of initial type K. We also compute the set of types that are reachable
from an initial type K, noted RK .

Definition 6 (Closure P̂ ,R of P). Given a key management policy, P ⊆
K×L×KD, noted K

l−→ J , we define its closure P̂ ,R, where P̂ ⊆ KD×L×KD
and R = {RK1 , . . . , RKN

, RD} with Ri ⊆ 2KD, noted K
l=⇒ J , as the smallest

sets/relation such that:

1. K
l−→ J implies K

l=⇒ J ;
2. K ∈ RK ;
3. D

l=⇒ D;
4. K

enc==⇒ J and K
dec==⇒ Z implies Z ∈ RJ ;

5. K
dec−−→ J and K ∈ RZ implies Z

dec==⇒ J
6. K

enc==⇒ J and (K ∈ RZ or Z ∈ RK) implies Z
enc==⇒ J

7. J
enc==⇒ K and (K ∈ RZ or Z ∈ RK) implies J

enc==⇒ Z

The first four items are quite intuitive: whatever is allowed by P is also allowed
by P̂ (item 1); a type K is always reachable by itself (item 2); D can perform
any operation over D, in order to account for penetrator’s behaviour (item 3);
if a type K can acquire the capability of wrapping J and then decrypt it as Z,
then Z should belong to the types RJ that are reachable from J (item 4).

The next four items are necessary to prove the subsequent lemmas and the-
orem on the security of the typed API. Item 5 backward propagates decryption
capability over a given type J , i.e., if K can decrypt J and K is reachable from
Z then also Z can decrypt J . Notice that, 5 uses P in the hypothesis. Finally,
items 6 and 7 propagate encryption capabilities bidirectionally: if K can encrypt

Secure Key Management Policies in Strand Spaces 191

J and K can reach/can be reached by Z then Z can also encrypt J (item 6); if
J can encrypt K and K can reach/can be reached by Z then J can also encrypt
Z (item 7).

Notice that, keys k ∈ Kd uniquely originate in the Create strand (cf. Defini-
tion 4). In the following we let Kk denote the initial (unique) type of key k in a
bundle, i.e., the type assigned when the key was originated. For terms m �∈ Kd,
including the penetrator keys KP , we let Km = D. We also let �Km

be a variant
of � (cf. Definition 1) which does enter ciphtertext encrypted under master keys
Km. It is enough to split the a � {g}k case as follows:

– a � {g}k with k �∈ Km iff a � g or a = {g}k;
– a � {g}mk with mk ∈ Km iff a = {g}k.
The next theorem proves that the closure P̂ ,R over-approximates the set of
types that are assigned at run-time. Intuitively, for each node n, if {k,K}mk

occurs in n then K is reachable from the initial type Kk of k, written K ∈ RKk
;

if {k}k′ occurs in n then there exit two types K,K ′ that are reachable from the
initial types of k and k′ and such that K ′ can encrypt K, written K ′ enc==⇒ K;
finally, if tuple m1 . . . mz occurs in n then D is reachable from all initial types of
m1 . . . mz, written D ∈ RKmi

for i ∈ 1, . . . , z. In fact, tuples are only generated
by the penetrator, except for the terms encrypted under master keys that are
excluded by �Km

. For this reason, tuple members are all required to reach D,
the type that represents public data which is under the control of the penetrator.

Theorem 1 (Type soundness). Let Σ be a TKMP space, and C be a bundle.
Then ∀k, k′ ∈ A \ Km, n ∈ C:

1. {k,K}mk � n implies K ∈ RKk
;

2. {k}k′ � n implies ∃K,K ′ ∈ KD, n′ ∈ C such that K ′ enc==⇒ K,K ∈ RKk
,

K ′ ∈ RKk′ ;
3. m1 . . . mz �Km

term(n) implies D ∈ RKmi
for i ∈ 1, . . . , z.

Proof. Let S be the set of nodes that violate the theorem thesis:

S = { n ∈ C : ∃k ∈ A \ Km . {k,K}mk = term(n) ∧ K �∈ RKk
}

∪
{ n ∈ C : ∃k, k′ ∈ A \ Km . {k}k′ = term(n) ∧

∀K,K ′ ∈ KD, n′ ∈ C with K ′ enc==⇒ K we have K �∈ RKk
∨ K ′ �∈ RKk′ }

∪
{ n ∈ C : m1 . . . mz �Km

term(n) ∧ ∃i ∈ 1 . . . z such that D �∈ RKmi
}

We prove that S is empty by proving that it does not have a minimal element
(cf [15] [Lemma 2.6]).

We first prove that no minimal element of S is a regular node. Suppose, by
contradiction, that n ∈ S is minimal and it is a regular node. The sign must be
positive by [15] [Lemma 2.7]. We consider all the possibilities:

192 R. Focardi and F. L. Luccio

Create: The trace has the form 〈+{k,K}mk 〉 with mk ∈ Km with k ∈ Kd

uniquely originating in Σ with type K = Kk. For n to belong to S we must
have K �∈ RKk

which is false as K = Kk ∈ RKk
(cf. Definition 6, item 2),

leading to a contradiction.
Encrypt : the trace has the form 〈−m, −{k′,K ′}mk ′ , +{m}k′〉 with K ′ enc−−→ D,

which implies K ′ enc==⇒ D (cf. Definition 6, item 1). Minimal node n must be
positive so the third node is the only candidate. Notice that, if +{m}k′ is in S
because of a subterm of m then −m would also be in S, giving a contradiction.
Thus, we have the following cases:

– {m}k′ = {k,K ′′}mk ′′ which implies k′ = mk ′′ but mk ′′ never originates in Σ
so it cannot be that term {mk ′′,K ′}mk ′ in the second node occurs in C.

– {m}k′ = {k}k′ . Since first and second nodes cannot be in S, and m = k, we
respectively have that D ∈ RKk

and K ′ ∈ RKk′ . Moreover, Kterm(n) = D
for all compound terms and D ∈ RKD

by (cf. Definition 6, item 2) which
implies D ∈ RKterm(n) . In summary, we have K = D ∈ RKk′ , K ′ ∈ RKk′ ,
K ′ enc==⇒ D, {k′,K ′}mk ′ and D ∈ RKterm(n) , which prove that node +{m}k′

does not belong to S, leading to a contradiction.
– D �∈ RKterm(n) . This case does not apply, as we discussed in the previous item.

Decrypt : the trace has the form 〈−{m}k′ , −{k′,K ′}mk ′ , +m〉 with K ′ dec−−→ D,
which implies K ′ dec==⇒ D (cf. Definition 6, item 1). n must be the last node.
Notice that, if +m is in S because of a subterm of m then −{m}k′ would also
be in S, giving a contradiction. Thus, we have the following cases:

– {m}k′ = {k,K ′′}mk ′′ which implies k′ = mk ′′ but mk ′′ never originates in Σ
so it cannot be that term {mk ′′,K ′}mk ′ in the second node occurs in C;

– {m}k′ = {k}k′ . Since the first node cannot be in S we have that ∃K,K ′′ ∈
KD,K ′′ enc==⇒ K such that K ∈ RKk

, K ′′ ∈ RKk′ . Moreover, since the second
node cannot be in S we additionally have that K ′ ∈ RKk′ . By Definition 6,
item 6 we have that K ′′ enc==⇒ K implies Kk′

enc==⇒ K and then K ′ enc==⇒ K. By
Definition 6, item 7 we also have that K ′ enc==⇒ Kk Thus, by Definition 6, item
4 we have that D ∈ RKk

and so n belongs to S, giving a contradiction.
– D �∈ RKterm(n) . The only interesting case in when Kterm(n) �= D which only

happens when m = k ∈ Kd and we already covered in the previous item,
getting a contradiction.

Wrap: the trace has the form 〈−{k1,K1}mk ′ , − {k2,K2}mk ′ , + {k1}k2〉 with
K2

enc−−→ K1, which implies K2
enc==⇒ K1 (cf. Definition 6, item 1). n can only

be the third node. Notice that, if +{k1}k2 is in S because of a subterm of k1
then −{k1,K1}mk ′ would also be in S, giving a contradiction. Thus, we have
the following cases:

– k1, k2 ∈ A\Km. Since the first and second nodes cannot be in S we have that
K1 ∈ RKk1

and K2 ∈ RKk2
. Moreover, Kterm(n) = D for all compound terms

and D ∈ RKD
by (cf. Definition 6, item 2) which implies D ∈ RKterm(n) . So

node +{k1}k2 is in S, giving a contradiction.

Secure Key Management Policies in Strand Spaces 193

– {k1}k2 = {k,K ′′}mk ′′ which implies k2 = mk ′′ but mk ′′ never originates in Σ
so it cannot be that term {mk ′′,K2}mk ′ in the second node occurs in C.

– D �∈ RKterm(n) . This case does not apply, as we discussed in the first item.

Unwrap: the trace has the form 〈−{k1}k2 , −{k2,K2}mk ′ , +{k1,K1}mk ′〉 with
K2

dec−−→ K1, which implies K2
dec==⇒ K1 (cf. Definition 6, item 1). n can only be

the third node. Notice that, if +{k1,K1}mk ′ is in S because of a subterm of
k1 then −{k1}k2 would also be in S, giving a contradiction. Notice also that,
Kterm(n) = D for all compound terms and D ∈ RKD

by (cf. Definition 6, item
2) which implies D ∈ RKterm(n) . Since the first node cannot be in S we have
that ∃K,K ′ ∈ KD,K ′ enc==⇒ K such that K ∈ RKk1

, K ′ ∈ RKk2
. Moreover,

since the second node cannot be in S we additionally have that K2 ∈ RKk2
.

By Definition 6, item 6 we have that K
enc==⇒ K implies Kk2

enc==⇒ K and then
K2

enc==⇒ K. By Definition 6, item 7 we also have that K2
enc==⇒ Kk1 Thus, by

Definition 6, item 4 we have that K1 ∈ RKk1
and so n belongs to S, giving a

contradiction.

We now prove that no minimal element of S is a penetrator node. Suppose,
by contradiction, that n ∈ S is minimal and it is a penetrator node. As for the
previous case, the sign must be positive by [15] [Lemma 2.7]. We consider all the
possibilities:

F. Flushing: 〈−g〉. There is no positive node so this case does not apply.
T. Tee: 〈−g, +g, +g〉. If +g ∈ S also −g ∈ S so positive nodes cannot be

minimal in S, giving a contradiction.
C. Concatenation: 〈−g, −h, +g h〉. If n is in S because of a subterm of g or h

then, of course, −g h ∈ S. Thus, the only interesting case is D �∈ RKgi
, with

g = g1 . . . gz or D �∈ RKhj
, with h = h1 . . . hw, but this would also imply that

−g h ∈ S since gi or hj clearly appear in −g h, giving a contradiction.
S. Separation: 〈−g h, +g, +h〉. W.l.o.g., assume that n = +g. If n is in S

because of a subterm then, of course, −g h ∈ S. Thus, the only interesting
case is D �∈ RKgi

, with g = g1 . . . gz, but this would also imply that −g h ∈ S
since gi clearly appears in −g h, giving a contradiction.

K. Key: 〈+k′〉 with k′ ∈ KP . The only interesting case is D �∈ RKk
but this is

not possible since Kk′ = D for k′ ∈ KP .
E. Encryption: 〈−k′, −m, +{m}k′〉. Minimal node n must be positive so the

third node is the only candidate. Notice that, if +{m}k′ is in S because of a
subterm of m then −m would also be in S, giving a contradiction. Thus, we
have the following cases:

– {m}k′ = {k,K ′′}mk ′′ which implies k′ = mk ′′ but mk ′′ never originates in Σ
so it cannot be that term mk ′ in the first node occurs in C.

– {m}k′ = {k}k′ . Since first and second nodes cannot be in S, and m = k, we
respectively have that D ∈ RKk

and D ∈ RKk′ . Moreover, Kterm(n) = D
for all compound terms and D ∈ RKD

by (cf. Definition 6, item 2) which

194 R. Focardi and F. L. Luccio

implies D ∈ RKterm(n) . In summary, we have K = D ∈ RKk′ , D ∈ RKk′ ,
D

enc==⇒ D, {k′,K ′}mk ′ and D ∈ RKterm(n) , which prove that node +{m}k′

does not belong to S, leading to a contradiction.
– D �∈ RKterm(n) . This case does not apply, as we discussed in the previous item.

D. Decryption: 〈−k′, −{m}k′ , +m〉. n must be the last node. Notice that, if
+m is in S because of a subterm of m then −{m}k′ would also be in S, giving
a contradiction. Thus, we have the following cases:

– {m}k′ = {k,K ′′}mk ′′ which implies k′ = mk ′′ but mk ′′ never originates in Σ
so it cannot be that term {mk ′′,K ′}mk ′ in the second node occurs in C;

– {m}k′ = {k}k′ . Since the first node cannot be in S we have that D ∈ RKk′
Since the second node cannot be in S we additionally have that ∃K,K ′′ ∈
KD,K ′′ enc==⇒ K such that K ∈ RKk

, K ′′ ∈ RKk′ . By Definition 6, item 6 we
have that K ′′ enc==⇒ K implies Kk′

enc==⇒ K and then D
enc==⇒ K. By Definition

6, item 7 we also have that D
enc==⇒ Kk. Since D

dec==⇒ D, by Definition 6, item
4 we have that D ∈ RKk

and so n belongs to S, giving a contradiction.
– D �∈ RKterm(n) . The only interesting case in when Kterm(n) �= D which only

happens when m = k ∈ Kd and we already covered in the previous item,
getting a contradiction.

We can now state our security theorem: any key such that D is not reachable
from its initial type is never leaked in the clear.

Theorem 2 (Security). Let Σ be a TKMP space, C be a bundle and k ∈ Kd

be (uniquely originating) key such that D �∈ RKk
. Then, for all nodes n ∈ C we

have k �= term(n).

Proof. By Theorem 1 we have that k = term(n) implies D ∈ RKk
, from which

the thesis.

4.3 Examples

We reconsider the examples of policies of Sect. 3 and we apply Theorem 2 to
analyze their security.

In Example 1 the closure P̂ is identical to the initial policy P . In fact, keys
can only be unwrapped to their initial type (cf. Fig. 2). Sets in R only contain
the singleton initial type, i.e., RKi

= {Ki}, for i = 1, . . . , N , and RD = {D}. By
Theorem 2 we obtain that all keys are secure as D �∈ RKi

, for i = 1, . . . , N .
In Example 2 we have an insecure policy (cf. Fig. 3). In fact, when we compute

its closure we obtain that any key can encrypt/decrypt any other key and data.
In particular, we obtain that RK1 = RK2 = RD = {K1,K2,D} and Theorem 2
cannot be applied as D belongs to all the sets.

Interestingly, in Example 3 we obtain the following reachable types: RK1 =
{K1}, RK2 = RK4 = {K2,K4}, RK3 = RD = {K3,D}. We can apply Theorem
2 to prove the secrecy of K1,K2,K4. In fact, keys of type K3 can be leaked

Secure Key Management Policies in Strand Spaces 195

through the previously described wrap-then-decrypt attack using a key which
assumes both type K2 and type K4.

Finally, Example 4 shows that types over-approximate the behavior as we
obtain the following reachable types: RK1 = {K1,K2,D}, RK2 = RD = {K2,D}
and RK3 = {K3,K2,D}. Unfortunately, we cannot apply the theorem even if
the policy is intuitively secure. The bidirectional propagation of the encryption
capabilities along the reachable types, in this case, approximates too much the
analysis. We leave as a future work the investigation of improvements that might
prove also this example secure.

5 Conclusion

In this paper we have used strand spaces to analyze key management APIs. We
have shown how to rediscover known attacks using the CPSA tool and have
defined a typed version of the API that is based on a key management policy
expressed in a generic model. A theorem allows one to prove the correctness of
the security policy by computing a closure and inspecting a few simple critical
cases. The use of strand spaces has proved very useful for extracting the minimum
requirements that a key management policy must meet. As a future work we
intend to analyze other key management policies proposed in the literature and
compare them using our generic model. We will also investigate techniques to
improve the precision of the analysis.

Acknowledgments. We would like to thank the anonymous reviewers for their very
interesting and insightful comments. This work has been partially supported by the
European Regional Development Fund project SAFE PLACE: Sistemi IoT per ambi-
enti di vita salubri e sicuri (POR FESR 2014–2020 AZIONE 1.1.4 DGR 822/2020—ID
10288513).

References

1. CPSA: A cryptographicprotocol shapes analyzer. In: Hackage. The MITRE Cor-
poration (2009). http://hackage.haskell.org/package/cpsa

2. Completeness of CPSA: The MITRE Corporation (2011). https://www.mitre.org/
sites/default/files/pdf/12 0038.pdf

3. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.02pl1: Auto-
matic Cryptographic Protocol Verifier, User Manual and Tutorial (2020). https://
prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS 2010), pp. 260–269. ACM Press, Octo-
ber 2010. https://doi.org/10.1145/1866307.1866337

5. Caleiro, C., Viganó, L., Basin, D.: Relating strand spaces and distributed temporal
logic for security protocol analysis. Logic J. IGPL 13, 637–663 (2005)

6. Centenaro, M., Focardi, R., Luccio, F.: Type-based analysis of key management in
PKCS#11 cryptographic devices. J. Comput. Secur. 21(6), 971–1007 (2013)

http://hackage.haskell.org/package/cpsa
https://www.mitre.org/sites/default/files/pdf/12_0038.pdf
https://www.mitre.org/sites/default/files/pdf/12_0038.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://doi.org/10.1145/1866307.1866337

196 R. Focardi and F. L. Luccio

7. Centenaro, M., Focardi, R., Luccio, F., Steel, G.: Type-based analysis of PIN pro-
cessing APIs. In: Springer (ed.) Proceedings of the 14th European Symposium
on Research in Computer Security (ESORICS 09), vol. 5789, pp. 53–68 (2009).
https://doi.org/10.1007/978-3-642-04444-1 4

8. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A comparison
between strand spaces and multiset rewriting for security protocol analysis. In:
Okada, M., Pierce, B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002.
LNCS, vol. 2609, pp. 356–383. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36532-X 22

9. Clulow, J.: The Design and Analysis of Cryptographic APIs for Security Devices.
Master’s thesis, University of Natal, Durban (2003)

10. Clulow, J.: On the security of PKCS#11. In: Proceedings of the 5th Int. Workshop
on Cryptographic Hardware and Embedded Systems (CHES 2003). LNCS, vol.
2779, pp. 411–425. Springer (2003). https://doi.org/10.1007/978-3-540-45238-6 32

11. Dax, A., Künnemann, R., Tangermann, S., Backes, M.: How to wrap it up - a
formally verified proposal for the use of authenticated wrapping in PKCS#11.
In: 2019 IEEE 32nd Computer Security Foundations Symposium (CSF 2019), pp.
62–6215 (2019). https://doi.org/10.1109/CSF.2019.00012

12. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11 and proprietary
extensions. J. Comput. Secur. 18(6), 1211–1245 (2010). https://doi.org/10.3233/
JCS-2009-0394

13. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Trans. Inf. Theory
29, 198–208 (1983)

14. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties, pp. 1–50. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03829-7 1

15. Fabrega, F., Herzog, J., Guttman, J.: Strand spaces: why is a security protocol
correct? In: Proceedings. 1998 IEEE Symposium on Security and Privacy, pp.
160–171 (1998). https://doi.org/10.1109/SECPRI.1998.674832

16. Focardi, R., Luccio, F.L.: A formally verified configuration for hardware security
modules in the cloud. In: Vigna, G., Shi, E. (eds.) The ACM Conference on Com-
puter and Communications Security (CCS), 2021. ACM (2021). (to appear)

17. Focardi, R., Luccio, F.L., Steel, G.: An introduction to security API analysis. In:
Foundations of Security Analysis and Design VI - FOSAD Tutorial Lectures, pp.
35–65 (2011)

18. Fröschle, S., Sommer, N.: Concepts and proofs for configuring PKCS#11. In: For-
mal Aspects of Security and Trust - 8th International Workshop, (FAST 2011),
Revised Selected Papers. LNCS, vol. 7140, pp. 131–147. Springer (2011). https://
doi.org/10.1007/978-3-642-29420-4 9

19. González-Burgueño, A., Santiago, S., Escobar, S., Meadows, C., Meseguer, J.:
Analysis of the PKCS#11 API using the Maude-NPA tool. In: Chen, L., Mat-
suo, S. (eds.) SSR 2015. LNCS, vol. 9497, pp. 86–106. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-27152-1 5

20. Guttman, J.: State and progress in strand spaces: proving fair exchange. J. Autom.
Reasoning 48, 159–195 (2012)

21. Halpern, Y., Pucella, J.R.: On the relationship between strand spaces and multi-
agent systems. ACM Trans. Inf. Syst. Secur. 61, 43–70 (2003)

https://doi.org/10.1007/978-3-642-04444-1_4
https://doi.org/10.1007/3-540-36532-X_22
https://doi.org/10.1007/3-540-36532-X_22
https://doi.org/10.1007/978-3-540-45238-6_32
https://doi.org/10.1109/CSF.2019.00012
https://doi.org/10.3233/JCS-2009-0394
https://doi.org/10.3233/JCS-2009-0394
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1109/SECPRI.1998.674832
https://doi.org/10.1007/978-3-642-29420-4_9
https://doi.org/10.1007/978-3-642-29420-4_9
https://doi.org/10.1007/978-3-319-27152-1_5

Secure Key Management Policies in Strand Spaces 197

22. Kamil, A., Lowe, G.: Understanding abstractions of secure channels. In: Degano,
P., Etalle, S., Guttman, J.D. (eds.) Formal Aspects of Security and Trust - 7th
International Workshop, FAST 2010. Revised Selected Papers. Lecture Notes in
Computer Science, vol. 6561, pp. 50–64. Springer (2010). https://doi.org/10.1007/
978-3-642-19751-2 4

23. Künnemann, R.: Automated backward analysis of PKCS#11 v2.20. In: Principles
of Security and Trust - 4th International Conference (POST 2015). LNCS, vol.
9036, pp. 219–238. Springer (2015). https://doi.org/10.1007/978-3-662-46666-7 12

24. Lanus, E., Zieglar, E.: Analysis of a forced-latency defense against man-in-the-
middle attacks. J. Inf. Warfare 16(2), 66–78 (2017)

25. Liskov, M., Ramsdell, J., Guttman, J., Rowe, P.: The Cryptographic Proto-
col Shapes Analyzer: A Manual. The MITRE Corporation. CPSA Version 3.
Available at https://hackage.haskell.org/package/cpsa-3.3.2/src/doc/cpsamanual.
pdf (2016)

26. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

27. OASIS: PKCS #11 Cryptographic Token Interface Base Specification Version 3.0,
June 2020. Accessed May 2021. https://docs.oasis-open.org/pkcs11/pkcs11-base/
v3.0/pkcs11-base-v3.0.html

28. Ramsdell, J., Guttman, J.D., Millen, J.K., O’Hanlon, B.: An Analysis of the
CAVES Attestation Protocol using CPSA. eprint arXiv:1207.0418 (2012). https://
arxiv.org/abs/1207.0418

29. Ramsdell, J.D., Dougherty, D.J., Guttman, J.D., Rowe, P.D.: A hybrid analysis
for security protocols with state. In: Albert, E., Sekerinski, E. (eds.) IFM 2014.
LNCS, vol. 8739, pp. 272–287. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10181-1 17

30. Sherman, A., et al.: Formal methods analysis of the secure remote password pro-
tocol. In: Logic, Language, and Security, vol. 12300. Springer (2020). https://doi.
org/10.1007/978-3-030-62077-6 9

31. Stanley-Oakes, R.: A provably secure PKCS#11 configuration without authen-
ticated attributes. In: Financial Cryptography and Data Security, pp. 145–
162. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-
70972-7 8

32. Steel, G.: Proposal: Authenticated Attributes for Key Wrap in PKCS#11
(2014). https://lists.oasis-open.org/archives/pkcs11/201408/msg00006/pkcs11-
authenticated-encryption-key-transport.pdf

33. Yang, F., Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: Strand spaces with
choice via a process algebra semantics. In: Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming, PPDP 2016,
pp. 76–89. ACM (2016). https://doi.org/10.1145/2967973.2968609

https://doi.org/10.1007/978-3-642-19751-2_4
https://doi.org/10.1007/978-3-642-19751-2_4
https://doi.org/10.1007/978-3-662-46666-7_12
https://hackage.haskell.org/package/cpsa-3.3.2/src/doc/cpsamanual.pdf
https://hackage.haskell.org/package/cpsa-3.3.2/src/doc/cpsamanual.pdf
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
https://docs.oasis-open.org/pkcs11/pkcs11-base/v3.0/pkcs11-base-v3.0.html
http://arxiv.org/abs/1207.0418
https://arxiv.org/abs/1207.0418
https://arxiv.org/abs/1207.0418
https://doi.org/10.1007/978-3-319-10181-1_17
https://doi.org/10.1007/978-3-319-10181-1_17
https://doi.org/10.1007/978-3-030-62077-6_9
https://doi.org/10.1007/978-3-030-62077-6_9
https://doi.org/10.1007/978-3-319-70972-7_8
https://doi.org/10.1007/978-3-319-70972-7_8
https://lists.oasis-open.org/archives/pkcs11/201408/msg00006/pkcs11-authenticated-encryption-key-transport.pdf
https://lists.oasis-open.org/archives/pkcs11/201408/msg00006/pkcs11-authenticated-encryption-key-transport.pdf
https://doi.org/10.1145/2967973.2968609

A Declaration of Software Independence

Wojciech Jamroga1, Peter Y. A. Ryan1(B), Steve Schneider2,
Carsten Schürmann3, and Philip B. Stark4

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
peter.ryan@uni.lu

2 University of Surrey, Guildford, England
3 IT University of Copenhagen, Copenhagen, Denmark

4 University of California, Berkeley, USA

Abstract. A voting system should not merely report the outcome: it
should also provide sufficient evidence to convince reasonable observers
that the reported outcome is correct. Many deployed systems, notably
paperless DRE machines still in use in US elections, fail certainly the
second, and quite possibly the first of these requirements. Rivest and
Wack proposed the principle of software independence (SI) as a guiding
principle and requirement for voting systems. In essence, a voting system
is SI if its reliance on software is “tamper-evident”, that is, if there
is a way to detect that material changes were made to the software
without inspecting that software. This important notion has so far been
formulated only informally.

Here, we provide more formal mathematical definitions of SI. This
exposes some subtleties and gaps in the original definition, among them:
what elements of a system must be trusted for an election or system to
be SI, how to formalize “detection” of a change to an election outcome,
the fact that SI is with respect to a set of detection mechanisms (which
must be legal and practical), the need to limit false alarms, and how SI
applies when the social choice function is not deterministic.

1 Introduction

Using digital technologies in elections opens up possibilities of enriching demo-
cratic processes, but it also brings a raft of new and often poorly understood
threats to election accuracy, security, integrity, and trust. This is particularly
clear with the so-called DRE, Direct-Recording Electronic voting machines,
deployed widely in the U.S. after the Help America Vote Act (HAVA) of 2002,
which passed in the aftermath of the controversial 2000 presidential election.
The original DREs recorded, reported, and tallied cast votes using just software,
with no paper record. Thus, an error in or change to that software could alter
the outcome without leaving a trace.

It might be argued that the software could be analysed and proven to always
deliver a correct result given the input votes. In practice, such analysis and
testing is immensely difficult and prohibitively expensive. Moreover, access to

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 198–217, 2021.
https://doi.org/10.1007/978-3-030-91631-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_11

A Declaration of Software Independence 199

the code is often restricted due to commercial or legal constraints. And even if
the software could be analysed completely and proven correct, there is still the
challenge of guaranteeing that the software actually running on all the machines
throughout the voting period is the “correct”, verified version.

Consequently, for paperless DRE machines, BMDs, and existing Internet
voting systems, voters, election officials et al. are required to place total blind
confidence in the correctness of the code running on the devices.

Such concerns prompted calls to add a Voter-Verifiable Paper Audit Trial
(VVPAT) to DREs, essentially a printer attached to the DRE that prints the
voter’s choice, in sight of the voter. In principle, each voter can check whether
the paper accurately recorded her preferences, and correct the record if not.1

An alternative response—piloted but not yet widely adopted for political
elections—is cryptographic end-to-end verifiable voting (E2E-V), which provides
voters a means to verify that their vote reaches the tally unaltered and is cor-
rectly included in the tally. An accessible introduction to such systems can be
found at [4], and a more extensive description at [9].

To capture the essential goal of being able to detect whether faulty software
altered the outcome while remaining agnostic with respect to the technology
employed to achieve that goal (e.g., a paper record or cryptographic methods),
[12,13] proposed the principle of software independence, which seeks to exclude
systems for which the trust in the correctness of the outcome requires trusting
the software. The original definition is given as follows:

A voting system is software-independent if an (undetected) change or error
in its software cannot cause an undetectable change or error in an election
outcome.

[12,13] also define a stronger requirement, a system that does not require
trusting software, and that is resilient to software-caused errors:

A voting system is strongly software-independent if it is software indepen-
dent and moreover, a detected change or error in an election outcome (due
to change or error in the software) can be corrected without re-running the
election.

Version 2.0 of the U.S. Voluntary Voting System Guidelines [7], adopted
10 February 2021, incorporates the principle of Software Independence:

9.1 - An error or fault in the voting system software or hardware cannot
cause an undetectable change in election results.

The principle seems very natural and compelling. It clearly rules out paperless
DRE machines and—subject to certain assumptions about voter eligibility and
the curation of paper ballots—it clearly admits systems based on hand-marked
paper ballots supporting manual recounts, risk-limiting audits [14], and other

1 There is considerable evidence that voters rarely check machine-generated printout
and are unlikely to notice that votes were altered. See, e.g., [5,6,8,10].

200 W. Jamroga et al.

forms of audits. However, as soon as we start to consider applying it to other
systems, such as end-to-end cryptographically verifiable systems, things are less
clear. In particular, many of the terms used in the definition require careful
interpretation:

– What exactly do we mean by the system? Does it include pollworkers? Audi-
tors? Where do we draw the boundaries?

– What exactly is the software? Does it include software involved in determining
voter eligibility? Auditing software?

– What exactly does it mean to detect an error? Is it enough simply to flag a
problem, or must evidence be provided that there really is a problem? What
kind of evidence? To whom is the evidence available [1]? What rules out
systems that always cry “foul”, even when the election outcome is correct?

– What do we mean by outcome, in particular, where the social choice function
is non-deterministic?

All of this motivates a more formal statement of the principle, which is the
aim of this paper. This reveals a number of subtleties, notably that the original
definition, read literally, does not exclude systems that reject every declared
outcome: there is no penalty for false alarms. We argue that while software
independence is a necessary property for a system to be able to deliver a verifiable
outcome, it is not sufficient. We also stress the distinction between a system being
verifiable and an election being verified.

We do not here address vote anonymity, receipt-freeness, coercion resistance,
and related concerns. We focus just on the issues of detecting and correcting
wrong outcomes while controlling false alarms. In practice, of course, great care
needs to be taken in designing a system to provide sufficient transparency and
generate sufficient evidence without violating privacy requirements.

We should also remark that, while software independence means that we
should not have to place blind faith in the correct behaviour of the code, this
does not imply that we should do away with all verification and testing of code.
The latter is still important to help ensure the smooth running of any election
run using the system, but the assurance of the outcome should not depend on
the rigor etc. of such measures.

SI is a desirable property, but the use of an SI system does not by itself
give the public adequate reason to trust election outcomes. The fact that it is
possible to detect malfunctions of the software does not mean that checks will
be performed nor that appropriate action will be taken if problems are detected.
And errors or corruption may occur outside the software, e.g. breaches of chain
of custody, faulty procedures, incorrect electoral roles, etc.

The notion of software independence is related to notions of end-to-end ver-
ifiability (E2E-V); we discuss the relationship in Sect. 3.2.

2 Formalizing Software Independence

In this section we set the ground for a definition that seeks to capture more
formally the spirit of the original natural-language definition. We believe it is

A Declaration of Software Independence 201

faithful to the spirit of the original, but as we shall see, the definition reveals
some subtleties, and motivates the game-theoretic definition of the notion of
evidence-based elections [2,15], presented below.2

2.1 Software Independence... of What?

To merit public confidence, a voting system should generate evidence that can
be used to check whether it behaved correctly; typically, that involves a tamper-
evident record of voters’ expressed preferences, to which the social choice func-
tion can be applied to check the reported result. That record might be in the form
of a well curated paper audit trail, or, as in many E2E-V systems, data (some of
which is encrypted) posted to a public bulletin board (ledger). Furthermore, the
system should provide for various checks to be performed on this evidence by the
stakeholders: voters, observers, candidates etc. Such checks might be performed
before the election starts (e.g. verifying that a transparent ballot box is initially
empty), during (e.g. Benaloh challenges), or after (e.g. risk limiting-audits, risk-
limiting tallies, verification of zero-knowledge proofs, digital signatures etc.). We
refer to such checks generically as “audits”.

We consider software independence as a property of a voting system P with
respect to a set of audits A. The voting system P represents all the compo-
nents and aspects relevant for how the election is run, starting with the voting
protocol, including its implementation (software) and deployment (hardware,
physical infrastructure), specification of the environment, assumptions about
human users, threat models, etc. The set of audits A captures the notion of
“detectability” by providing an abstract representation of the methods available
for detecting something is amiss.

We emphasize that it only makes sense to talk about software independence
with a particular view of detection methods. For example, a voting system might
be SI if a very powerful (and expensive) kind of instrument or audit can be used,
but not if the requisite tools and methods are unaffordable, too time-consuming,
or not mandated in law or regulation. On the other hand, another voting system
might not be SI with respect to any known audit method, yet may become SI
if a new forensic method is invented.3 We elaborate on both aspects of this
characterisation below.

2.2 Voting System and Its Software

Let P be a specification of how the voting protocol should work. This refers to
the overall election system, including hardware, software, procedural, and human
components. More precisely, P denotes the system running “correct” software,
i.e., software that correctly computes the chosen social choice function over the

2 The idea of evidence-based elections is that election officials should not only find
the correct winner(s), but should also produce convincing public evidence that they
found the correct winner(s)—or else admit that they cannot.

3 E.g., think of what happened to criminal forensics when DNA tests were introduced.

202 W. Jamroga et al.

voted preferences of eligible voters. The software, denoted S, is considered a part
of the system. However, in an actual execution of the system, S may be under
the control of the adversary. Thus, S denotes a part of the system on whose
correct behaviour we do not want to rely for evidence that the result is correct.
In practise, that might comprise more than software. The spirit of the original
definition corresponds to taking S to be the software that records and interprets
votes, applies the social choice function to them, and reports an outcome. It
does not include software that may form part of the surrounding system, such
as software involved in giving each voter the correct ballot, software used to
verify voter eligibility (e.g. voter registration systems and electronic pollbooks),
or software involved in auditing the results. Nor does it include the behavior of
voters, pollworkers, or election officials.

When we want to make the software S explicit in the voting system P, then
we write P[S]. Note that it is straightforward to generalise our approach to
quantify over other parts of the system, e.g., hardware, people, procedures, etc.

The relevant aspects of system P[S] are characterized, on an abstract level,
by the following sets and functions:

– m(P): a function that returns all the relevant mutations P[S ′] of the voting
system P. We consider P[S ′] as a relevant mutation of P[S] if P[S ′] can
be obtained from P[S] through changing only the software of P[S], i.e., S.
Hardware and processes and protocols must be the same for P[S] and P[S ′].
The software that can be changed is restricted to the software involved in
collecting voter selections (votes), applying the social choice function to the
votes, and reporting the results.

– In: the set of possible input sequences. Typically, an input sequence will
comprise all the votes expressed4 by the voters. Depending on the level of
granularity in our modelling, it may also include other election-related activ-
ity, such as voter registration steps, eligibility verification, coercion attempts,
generation of cryptographic keys, where and how each vote was cast, etc. It
may also include the full expressed preferences of all the voters. In general,
v ∈ In contains much more information than is needed to determine who
won.

– Ω: the set of possible election outcomes. Typically, an outcome is either the
tally, or the winner(s) of the election. Depending on the level of granularity,
it may also include any other publicly available output of the voting system,
such as the content of the web bulletin board. We assume that Ω is finite.
For example, in a plurality contest with two contestants, A and B, the possible
outcomes in Ω might be “A wins,” “B wins,” and “A and B are tied.” If
the social choice function breaks ties, then there would be only two possible
outcomes: “A wins” and “B wins.”

4 By expressed, we mean what the voter did: the marks the voters make on the paper
or the cell they press on a touchscreen. Of course, a confusing user interface—
including poor ballot layout—can cause voters’ expressed preferences to differ from
their intended preferences. See, e.g. [1].

A Declaration of Software Independence 203

– exec(P[S], v): a function that returns the set of all the possible executions
(runs) of system P[S] on the sequence of inputs v ∈ In. Any particular
election system with a particular input sequence might have a number of
possible executions arising from the different choices that can be made at
various points of the voting protocol. For example if a voter is required to
provide inputs other than just selections (e.g., to decide whether to challenge
an encryption, as allowed in some E2E-V protocols), then different possible
executions can arise. In practice, there will usually be just one possible execu-
tion given (P[S], v), but there may be boundary conditions (e.g. tie-breaking,
or randomness in transferring votes) where more than one result is possible.
Naturally, exec(P[S ′], v) is the set of all possible executions of the mutated
system P[S ′] on the input sequence v.

– result(E): the outcome of the election for execution E. We lift the func-
tion to sets of executions X by fixing result(X) = {result(E) | E ∈ X}.
In the case of the correct system P[S], we would expect any outcome in
result(exec(P[S], v)) to be a valid result of the election.

Note that the composition result(exec(P[S], v)) can be seen as a generalisa-
tion of a social choice function.

2.3 Available Audits

In the process of running the election, including recording, tallying, and broad-
casting the election results, the overall voting system P[S] generates evidence
that can be used to audit the election. The auditing of an election may over-
lap with, or be completely separate from the voting procedure. The evidence
is provided as input to a decision-making process, represented by a function a,
which then provides a judgement. The software in a is assumed to be trust-
worthy. Such an assumption of trustworthiness needs of course to be justified,
and this will usually be by arguing that, if its inputs and intended function are
public, anyone who wishes to check the correctness of its outputs could write
it again from scratch, or a reputable authority such as the Electronic Frontier
Foundation (EFF) could provide a reference implementation.

Evidence produced in the election might include voter registration databases,
poll books, physical ballots, encrypted choices, cryptographic receipts, public
bulletin boards, zero-knowledge proofs (ZKPs), security videos, the condition of
physical seals on ballot boxes, chain-of-custody logs, logs from telephone com-
plaint lines or websites that record “anomalies” voters witnessed during the
election, etc. The evidence might not include the “plaintext” voter preferences
and generally will not include a voter’s actual interaction with a DRE or BMD.

Some evidence generated during the election will be unreliable or unavailable.
For instance, paper ballots do not provide reliable evidence of the outcome if
they might have been tampered with, replaced, augmented, or lost; or if voter
eligibility checks were not sufficiently accurate. In some E2E-V systems, plaintext
votes are not available to check the correctness of the outcome; a system designed
to allow voters to check that their intent was recorded correctly (e.g., using

204 W. Jamroga et al.

a VVPAT or through a Benaloh challenge) does not provide public evidence
that voter intent was correctly recorded unless there is both evidence about the
number of voters who checked, how effectively they checked, and a mechanism
by which it would become known that they found errors, if they find errors. It
must be also noted that, by the time a preliminary outcome is available, evidence
could be lost, altered, or counterfeited; the election officials might have reacted
to some detected problems during the election; and that in turn might generate
new possibilities for things to go wrong.

Formally, the capability of the voting authorities (possibly together with
independent auditors, public observers, or with voters, e.g., in case of mecha-
nisms for voter verification) to detect malfunctioning of the voting system is
characterised by the set A = {a1, a2, . . . } of available audit procedures. Let T
and F denote the truth values of true and false, respectively. Each element ai of
A is a function that takes an execution E of the voting system, and returns an
audit judgement ai(E) ∈ {T, F} such that ai(E) = F only if there is a change or
error in the election outcome. (Below we also consider audits that have a random
component, and thus have some probability of returning T or F for any given
the voting system execution E.) It is required that ai must be compatible with
the voting system, in the sense that the judgment ai(E) is based entirely on the
evidence available in the execution E of the voting system.

For instance, A might include verifying poll book signatures, comparing the
number of pollbook signatures to the number of votes cast in each precinct, a
manual audit of results against a paper trail, checking ZKPs, checking whether
digital signatures on cryptographic receipts are authentic, reviewing chain-of-
custody records, inspecting equipment log files and security videos, etc.

An exemplar ai might specify, among its branches, “before opening each box
of ballots for central counting, check the seal on the box against a photograph
of the seal taken in the polling place. If the seal has been disturbed, interview
everyone who has had custody of the box since it was sealed, examine every
ballot by hand for signs of tampering or forgery, and compare the number of
ballots in the box with the number of pollbook signatures.”

3 Possibilistic Formulation of Software Independence

The original definition of SI talks about whether a change to the result is always
detectable. This is expressed in terms of possibilities rather than probabilities.
Here we see how far we can get with expressing SI possibilistically without involv-
ing probabilities. We will also show that it is natural to introduce probabilities
into the audit process.

3.1 Basic Formulation

Using the notation introduced in Sect. 2, the property of Software Independence
with respect to a particular election input v and audit method a can be expressed
as follows:

A Declaration of Software Independence 205

SI1(P[S], v, a) ⇐⇒ (1)
∀P[S ′] ∈ m(P[S]) .
(∀E′ ∈ exec(P[S ′], v) . ∃E ∈ exec(P[S], v) . (result(E) = result(E′))

)

∨ (∃E′ ∈ exec(P[S ′], v) . a(E′) = F
)
.

The formula states that every execution of any mutation of P[S] gives a correct
result, or else the malfunction is detectable. More precisely, either every execu-
tion of a mutation of P[S] gives a result that could have been produced by the
correct software, or there is some execution that will fail the audit.

Then, Software Independence holds with respect to a set of possible election
inputs v ∈ In and allowable audit procedures A if there is some audit procedure
a ∈ A such that SI holds for all possible inputs:

SI1(P[S],A) ⇐⇒ ∃a ∈ A . ∀v ∈ In . SI1(P[S], v, a). (2)

Arguably, Formula (1) captures software independence of particular election,
given the set of votes and actual audit strategy used in the election. In contrast,
Formula (2) expresses software independence of the voting system defined by the
voting infrastructure and the available audit strategies.

Remark. Formulas (1)–(2) capture a rather weak notion of Software Indepen-
dence. First, they only say that P[S ′] cannot undetectably add incorrect out-
comes to the set of possible results of the election. However, a software mutation
removing some of the correct results may as well satisfy the conditions. We
address this issue in Sect. 3.5.

Secondly, the formalisation is based on a weak notion of detectability. The
conditions require that significant software mutations might be detected (i.e.,
they are detected on some possible executions), but there is no guarantee that
they can be detected for every execution that produces incorrect outcomes.

A stronger definition of SI is obtained by replacing the right hand side of the
disjunction (1) as follows:

∀E′ ∈ exec(P[S′], v) .
(
(∃E ∈ exec(P[S], v) . result(E) = result(E′)) ∨ (a(E′) = F)

)
.

This removes the existential quantification over executions and brings E′

under the universal quantification. The first formalisation allows for some exe-
cutions of a mutation not to be caught by an audit even if they give the wrong
result. This stronger formalisation states that any execution of a mutation that
does not give the correct result should be caught by an audit.

Note also that our formalisation is focused on the potential irregularities due
to software mutations. Thus, disturbances of the election outcome due to failures
of hardware, dishonest voter behaviour, etc., must only be handled in P[S ′] if
they would be caught and dealt with in the ideal system P[S].

Audit Strategies. We recall that the characterisation of A encapsulates the
audit methods that are allowable. Considerations as to what should be allow-
able can include what is possible, affordable (in terms of cost or time), legal

206 W. Jamroga et al.

(to fit with local election law, preserve the anonymity of votes, etc.), and other
considerations as appropriate to the situation. Identifying the limits of what is
allowable is itself part of the consideration as to whether a system is software
independent. From a technical point of view, the definition of A will also need
to depend on the evidence provided explicitly by the voting system. Thus the
formalisation of possible executions E also constrains the audits that are pos-
sible, because a is a function on executions: two runs giving rise to the same
execution record E must give the same result on audit. For example, if the only
evidence collected for audit is the set of paper ballots, then forensic analysis of
the hard disks of the voting machines is outside the scope of audit. Conversely
if the audit includes the possibility of such analysis, then the evidence provided
by an election run should include the relevant state of the hard disks to enable
the audit function to be defined.

The sanity condition (or soundness) on an auditing mechanism a for system
P[S] is that any correct execution of the ideal system will verify positively:

sound(a,P[S]) ⇐⇒ ∀v ∈ In . ∀E ∈ exec(P[S], v) . a(E) = T.

Although this is not stated explicitly within the original definition of Software
Independence, correct election outcomes should not be flagged by the audit as
incorrect, so we will require that every a function in A be sound.

3.2 Relationship to End-to-End Verifiability

The definitions above enable us to highlight an important distinction between
Software Independence and End-to-end Verifiability (E2E-V), cf. [3] for an intro-
duction and [11] for a well-known formalisation. In particular, in a description
of a system P[S] the component S explicitly represents only the software, and
the context P remains unchanged. This amounts to requiring that the context
P is trusted in the characterisation of SI. However, when we consider whether
the system P[S] is end-to-end verifiable, we consider this question with respect
to the entire system.

We should note that not all formulations of E2E-V in the literature actually
imply correctness of the outcome. Early formulations focused on the ability to
detect the corruption of any vote between casting and input to the tally function.
To achieve guarantees of correctness we also need measures to prevent ballot
stuffing and ballot collisions. Taken together, these imply a bijection between
the set of cast votes and the set of votes input to the tally. Here we assume
a definition that does encompass these requirements, as does [11]. Here they
refer to such a strengthened notion, that does imply correctness if all verification
steps give true, as global verifiability.

To illustrate the difference, consider the following toy example, which shows
that SI does not imply E2E-V: A voting system consists of a ballot box for
paper ballots, a scanner, and a software component S that controls the scanner,
interprets the scans, applies the social choice function to the votes, and reports
the result. There is a trusted individual I (appointed by the Election Authority,

A Declaration of Software Independence 207

say) who will also play a key part. A description of the system formulated as
P[S] would include I within the definition of P.

Voting: To vote, voters fill out their ballot form, run it through the scanner,
then drop it in the ballot box.

Tallying: At the end of the election, I privately counts the votes from the ballot
box and calculates the result r1. The electronic component S computes the result
r2 from the scans, and provides this result to I, who privately checks whether
r1 = r2. If so, then I reports the result. Otherwise an alarm is raised and an
audit occurs, consisting of comparing r1 and r2. if they are distinct then the
audit returns the value F .

The system P[S] is SI, because an undetected change in S cannot unde-
tectably change the result, and the system meets the definition in Line 1. Given
a change to the software, either the resulting software still gives the same result,
or the audit will return the value F . Note that this relies on the honesty and
correct behaviour of I; this is assumed for the characterisation of SI.

The system P[S] is not E2E-V. Voters are not able to check that their vote
is included in the tally, and there is no check for independent observers that the
tally is computed correctly. In particular, I can simply report a different result
and not raise the alarm.

One key difference is that for SI, any part of the system that is not the
software is presumed to be acting as it should. Hence, the question is whether a
change to S can change the result when P behaves correctly.

On the other hand for E2E-V we also consider that P can behave dishonestly.
So P[S] is not E2E-V: it is possible for the wrong result to be reported without
any verification checks showing incorrect behaviour.

A further distinction is that SI makes no mention of who does the “detecting,”
whereas E2E-V is quite explicit: each voter can perform the individual check and
anyone can perform the universal check. The example above illustrates this point,
too.

E2E-V ⇒ SI: Conversely, we can reason informally that E2E-V implies SI, via
a contrapositive argument as follows. If a system with verification mechanisms
is not SI, then by Definition 2 for some input v there is a change to the software
S ′ that can result in an execution E′ with an incorrect result result(E′) that
passes every audit audit ∈ A, i.e. it produces an undetectable change to the
result. But if the incorrectness of the result is undetectable, then the verification
mechanisms cannot detect this, and hence will verify an incorrect result. But
this means the system is not E2E-V, since E2E-V requires that if all potential
verification steps pass5 then the result is correct. Note that here we are assuming
a strong notion of verifiability, such as global verifiability.

Observe that both audits and verifications can raise an alarm even when the
result is correct. We are not concerned with this case in this section, but rather

5 I.e., every voter checks what individual voters can check (individual verifiability),
someone checks the aggregation of votes (universal verifiability), and someone checks
that every vote has come from a different eligible voter (eligibility verifiability).

208 W. Jamroga et al.

the converse case where the audits and verifications do not raise the alarm even
though the result is incorrect.

3.3 SI with Adaptive Audits

The formalization of SI by Formulas (1)–(2) assumes that there exists a single
audit strategy in A that can detect malfunction and/or tampering with the
voting software. Another option is to swap the quantifiers, and assume that
different audit procedures may be applicable on different runs of the voting
system (e.g., against different kinds of threats). Now, SI with respect to a set of
available audits becomes:

SI2(P[S],A) ⇐⇒ ∀v ∈ In . SI2(P[S], v,A);
SI2(P[S], v,A) ⇐⇒ (3)
∀P[S ′] ∈ m(P[S]) .
(∀E′ ∈ exec(P[S ′], v) . ∃E ∈ exec(P[S], v) . (result(E) = result(E′))

)

∨ (∃E′ ∈ exec(P[S ′], v) . ∃a ∈ A . a(E′) = F
)
.

That is, either every execution of any mutation of P[S] gives a result that could
have been produced by the correct software, or there is some execution that will
fail at least one audit procedure in the available audit set. Again, Formula (3)
captures software independence of an election, and (2) expresses SI of the voting
system. Note that these notions of detection are still somewhat weak in that
they do not ensure that anyone can tell which a ∈ A suffices for any particular
execution E.

3.4 A Refinement

Audit procedures are often nondeterministic by design (e.g., audits that inspect
a random sample of ballots, including risk-limiting audits). In our definition of
SI, it can be beneficial to separate the randomness of the audit from randomness
in the rest of the system. This view can be incorporated by treating audit proce-
dures as functions on system executions E that return a probability distribution
on {T, F}.

For example, for statistical audit of the paper trail, different audit runs result
from inspecting different random samples of ballots, each of which has some
probability; for some runs, the audit might return T and for others F .

The soundness sanity condition on the auditing mechanism a stays as before.
Having separated the audit non-determinism from the system non-

determinism, we can now redefine “undetectable change” to apply to those sys-
tem runs for which the probability that the audit returns F is zero. Let Pr
denote probability computed with respect to the audit, treating. Now, software
independence of system P[S] with respect to the audit set A becomes:

A Declaration of Software Independence 209

SI3(P[S],A) ⇐⇒ ∃a ∈ A . ∀v ∈ In . SI3(P[S], v, a); (4)
SI3(P[S], v, a) ⇐⇒ (5)
∀P[S ′] ∈ m(P[S]) . ∀E′ ∈ exec(P[S ′], v) .

(∃E ∈ exec(P[S], v) . result(E) = result(E′)) ∨
Pr(a(E′) = F) > 0.

The definition can be equivalently phrased as follows. Let

AccResults(P[S ′], a, v) = {ω | ∃E′ ∈ exec(P[S ′], v) .

(ω = result(E′) ∧ Pr(a(E′) = T) = 1)}
be the set of surely accepted results for P[S ′] on v. That is, these are the possible
outcomes of running P[S ′] on input v for which the audit has zero probability
of reporting that the outcome is wrong. Note that, for the ideal system P[S], if
the audit meets the soundness condition this is just the set of possible (correct)
outcomes, i.e., AccResults(P[S], a, v) = {result(E) | E ∈ exec(P[S], v)}. Since
in that case the set does not depend on the audit strategy, we will often write
AccResults(P[S], v) instead of AccResults(P[S], a, v). Then, Formula (5) can be
rephrased as:

SI3(P[S], v, a) ⇐⇒
∀P[S ′] ∈ m(P[S]) . AccResults(P[S ′], a, v) ⊆ AccResults(P[S], v).

3.5 Software Resilience

The above definition says that every execution of P[S ′] either simulates a legit-
imate execution of P[S] or has a strictly positive chance of being “detected”
by the audit. This kind of property is arguably closest to the spirit of the pro-
posal by Rivest and Wack. Also, it corresponds to the intuition that, usually,
the only evidence that one has to determine a property of an election system
comes from the actual run of the system during the actual election. However,
as a system property, it is rather weak. Ideally, one would also like to guarantee
the “vice versa” condition, saying that every outcome of the ideal software can
be produced by the mutation P[S ′]. That is, P[S ′] not only does not introduce
any illegal winners, but also does not remove any legally possible ones. Then,
every mutation P[S ′] must produce exactly the same set of acceptable election
outcomes as the ideal system P[S]. We call the new property software resilience
(SR), and define it formally as follows:

SR(P[S],A) ⇐⇒ ∃a ∈ A . ∀v ∈ In . SR(P[S], v, a);
SR(P[S], v, a) ⇐⇒
∀P[S ′] ∈ m(P[S]) . AccResults(P[S ′], a, v) = AccResults(P[S], v).

In other words, SR(P[S], v, a) requires that every mutation P[S ′] is trace-
equivalent to P[S] with respect to the surely accepted election outcomes that
they can produce.

210 W. Jamroga et al.

In practice of course, what the electorate needs is a way to determine, as
the end of a given election, whether the reported outcome was not only one of
the possible correct outcomes, but also fair in some sense. Where the outcome
is uniquely defined this is fine: it is enough that we can determine that it was
correct. Where the outcome is not uniquely defined, for example in the event of
a tie in a simple plurality vote resolved by the system’s software (rather than,
for instance, by a public coin toss), this is more delicate: we would like to be able
to establish that no possible outcomes were excluded by that particular software
running at the time. If the tie is resolved by the software, there is no way to
establish one the basis of observation of a single run.

In order to resolve such situations it seems necessary to externalise the mech-
anism that makes the choice amongst possible outcomes, for example based on
a publicly observable coin toss or equivalent. How to provide a truly random
source that cannot be predicted or influenced by any way is a topic in its own
right, outside the scope of this paper.

Another approach is to regard the outcome as the raw tally, and the resolution
of any ties etc. to be outside the scope of the definition. However, the outcome
can be correct even when the tally is not—indeed, this is why risk-limiting audits
can be efficient. Machine tallies of hand-marked paper ballots are rarely if ever
perfectly accurate.

Moreover, non-determinism may be buried in the tabulation algorithm itself,
and so not neatly separable. This is for instance the case in the STV variant used
in New South Wales, Australia , as well as the D’Hondt method of allocating
seats in the parliament in many European countries.

3.6 Thought Experiment

A simple voting system with rather a weak audit highlights some aspects of the
definitions.

Consider a voting system Pweak defined as follows:

Voting

1. Votes are cast on paper (filling in a bubble by hand), scanned, and then
deposited into a ballot box. The scans are linked to the corresponding paper
ballots in a way that allows the scan corresponding to a particular ballot to
be retrieved, and vice versa.

2. All of the scans are then published, and the result declared.

Here the software S controls the scanning, tabulation, and reporting. We assume
that there is good physical security of the ballots, and that the total number of
ballots is known.

Audit

1. Auditors check whether the number of scans matches the number of ballots.
If not, the audit returns F .

A Declaration of Software Independence 211

2. Auditors inspect every scan and tabulate the resulting interpretation of the
votes to obtain an electoral outcome. If that outcome differs from the reported
outcome, the audit returns F .

3. A paper ballot is selected at random. Its corresponding scan is retrieved and
checked to see whether the human interpretation of that scan matches the
human interpretation of the ballot. If not, the audit returns F .

According to the Rivest/Wack definition of SI this system is SI, because any
change in the result (caused by a change in the software) can be in principle
detected. Thus, it meets the formal characterisation in Line 1. However, this
audit may have a low probability of detecting an attack that alters or substitutes
scans. If the fraction of the altered scans is δ, then δ is also the chance of detecting
the attack. (Moreover, this audit may produce false alarms: the reported outcome
could be correct even if some scans were altered.)

3.7 Software Independence for Probabilistic Audits

The thought experiment illustrates that audits can be (and usually are) prob-
abilistic. Although the Rivest/Wack definition of software independence is
expressed in possibilistic terms, a comment (almost in passing) in [12] indi-
cates that in practice there should be a high probability of detecting software
misbehaviour:

The detection of any software misbehavior does not need to be perfect;
it only needs to happen with sufficiently high probability, in an assumed
ideal environment with alert voters, pollworkers, etc.

This is a rather stronger requirement, and introduces probability into the char-
acterisation. Where should this probability be introduced?

The idea should be that whatever mutation of P is considered, and for any
execution of that mutation, if the result has been changed then this should be
detectable with high probability. The ‘detectable’ element of this definition is
the responsibility of the audit function.

Then we can adjust the definition of Software Independence of Sect. 3.4 to
incorporate the additional requirement that when the result has been changed,
the audit has a probability p0 > 0 to notice that:

SI4(P[S],A, p0) ⇐⇒ ∃a ∈ A . ∀v ∈ In . SI4(P[S], v, a, p0);
SI4(P[S], v, a, p0) ⇐⇒
∀P[S ′] ∈ m(P[S]) . ∀E′ ∈ exec(P[S ′], v) .

(∃E ∈ exec(P[S], v) . result(E) = result(E′))
∨ Pr(a(E′) = F) ≥ p0.

This is clearly stronger than the previous definition in Eqs. (4)–(5).

212 W. Jamroga et al.

4 Probabilistic/Game-Theoretic Definition

In the previous section, we proposed a possibilistic definition of software inde-
pendence. It was based on the assumption that we can quantify over possibilities
(possible mutations of the software, executions of the system, etc.) but cannot
formulate constraints with respect to quantitative measures over the possibili-
ties (e.g., probability of executions or computational complexity of a mutation
strategy). The first step towards a more quantitative approach was discussed in
Sect. 3.7 where we considered audits with a random component. Here, we present
a full-blown quantitative definition of SI. We assume the following:

1. The execution of P[S] on an input v defines a probability distribution over
all the possible runs in exec(P[S], v);

2. The execution of audit method a given a system execution E defines a prob-
ability distribution on {T, F};

3. The choice of a software mutation belongs to a potentially malicious
“attacker,” whereas the auditing method is selected by the “defender.” The
input sequence v ∈ In is chosen by Nature;

4. The defender must select the audit without knowing the mutation the attacker
selected. (However, the audit procedure can be adaptive.) The attacker knows
the defender’s audit strategy in advance, but not any random elements
involved in that strategy. E.g., the attacker might know that the auditor
will examine a random sample of ballots, but does not know which particular
ballots will be examined.

4.1 Terminology and Notation

As before, Pr denotes probability. Moreover, we will use Exec(P[S], v), Res(E),
and Aud(E) for the random variables ranging over possible runs E ∈
exec(P[S], v), possible election outcomes ω ∈ result(E), and audit judgments
in {T, F}, respectively.

Election Environment. Given the input v ∈ In (in particular, the voters’
expressed preferences), the voting system P[S] defines a probability distribution
Pr(Exec(P[S], v) = E) over the possible runs E ∈ exec(P[S], v). Similarly, given
a run E of the voting system, Pr(Res(E) = ω) denotes the probability that the
election outcome is ω ∈ Ω. Note that the social choice function can be now
represented by the probability distribution

Pr(Res(P[S], v) = ω) =
∑

E∈exec(P[S],v)

Pr(Exec(P[S], v) = E) · Pr(Res(E) = ω).

Deterministic social choice functions amount to randomized functions that put
all their mass on a single ω ∈ Ω.

For instance, in a two-candidate plurality contest with ties broken at random,
the set of outcomes can be defined as Ω = {a, b} with a standing for “Alice wins”
and b for “Bob wins.” If the election input v ∈ In contains more votes for Alice

A Declaration of Software Independence 213

than for Bob, then Pr(Res(P[S], v) = a) = 1 and Pr(Res(P[S], v) = b) = 0. If v
contains more votes for Bob than for Alice, then Pr(Res(P[S], v) = a) = 0 and
Pr(Res(P[S], v) = b) = 1. If v has the same number of votes for Alice and Bob,
then Pr(Res(P[S], v) = a) = Pr(Res(P[S], v) = b) = 1

2 .
If an election produces outcome ω that has probability zero, that is, if

Pr(Res(P[S], v) = ω) = 0, then the outcome is presumptively incorrect.6 For a
single election, if Pr(Res(P[S], v) = ω) > 0, we cannot tell whether P[S] assigns
the correct probability to ω: that would require replicating the execution. Hence,
we consider an outcome ω to be admissible for P[S] and v if the probability of
that outcome is strictly positive, that is, if Pr(Res(P[S], v) = ω) > 0 (the out-
come is expected to occur sometimes for that vote profile and that social choice
function). We denote the set of such outcomes by WP[S],v.

Attack and Defense Strategies. We model the interplay between threats
(regardless of their cause) and mitigations as the election unfolds by means of
two strategies that play against each other: an attack strategy and a defense
strategy.

An attack strategy f interferes with the ideal operation of the election by
changing the “software” of the election system. (Recall that we use the term
“software” abstractly, to denote those things under consideration that might
behave incorrectly, which might include more than computer code, depending
on context.) Each f amounts to a (possibly randomized) plan that specifies the
action that the attacker will take if a given circumstance occurs. It involves
the vulnerabilities and failure modes of the overall election, and represents how
outcomes and evidence might be altered by failures or adversarial attacks. The
involved software mutations are drawn from m(P[S]). The input v is the set of
“true” votes of the eligible voters.

We denote the set of feasible attack strategies by Fm(P[S]). Note that such
strategies may have to satisfy some constraints. For instance, it might not be
computationally feasible to fake a ZKP. Or it might not be possible to alter marks
on paper ballots undetectably, to steal a ballot box and its contents undetectably,
or to corrupt a multipartisan group of auditors into faking audit results.

A defense strategy g conducts tests and countermeasures to judge whether
the announced outcome of the election is correct. Each g amounts to a (possibly
randomized) conditional plan that specifies the actions the defender will take
in a given set of circumstances. Defense strategies consist of actions that the
“checkers” (elections officials, auditors, public, etc.) can take before, during, and
after the election to try to ensure that the outcome is correct, and to assess
whether the outcome is correct, despite the fact that things might have gone
wrong—that is, despite f . Clearly, they can have random elements, such as
statistical audits. Given an election run E, Pr(Aud(g,E) = AJ) is the probability
that the defense strategy g returns audit judgment AJ ∈ {T, F} on E. The set of
possible defense strategies based on audit methods A is denoted by GA The set
GA is fixed after Fm(P[S]) is known, but before the apparent outcome ω is known,
and without knowledge of f . That is, methods for assessing the outcome may
6 Recall that the set of outcomes is assumed to be finite.

214 W. Jamroga et al.

depend on the kind of evidence the system generates, the ways the ideal evidence
might be corrupted, and the execution trace E, including reported tallies and
outcomes. The strategies in GA must satisfy legal and practical constraints, as
discussed above.

Both f and g are “interactive,” in the sense that the actions taken under a
particular g can depend on circumstances generated by the actions under f , and
vice versa, as well as on random elements. The defense strategy is restricted to
the “audits”; the attacker has no influence on audits other than through S.

Execution Semantics for Strategies. The choice of attack (f) and defense
(g) strategies determine how probable different election runs are, which in turn
affects the chance that the audit identifies incorrect outcomes. We model this
through the probability distribution Pr(Exec(P[S, f], v) = E) on the set of sys-
tem executions, for system software S, attack strategy f , and input votes v.
For any given g, this induces a probability distribution on the audit decisions
Aud(g,E). Now,

Pr(Aud(f, g, v) = AJ | W) =
∑

ω∈W

∑

E∈exec(P[S,f],v)

Pr(Exec(P[S, f], v) = E) · Pr(Res(E) = ω) · Pr(Aud(g,E) = AJ)

denotes the probability that the announced outcome will be accepted (for AJ =
T) or rejected (for AJ = F), given that the announced outcome is in W.

As in Sect. 3, we take v to be fixed when defining software independence
of a particular election. Moreover, we are interested in W = {ω}, where ω is
the outcome that has been announced. In defining software independence of an
election system, we quantify over the possible election inputs v ∈ In, and do not
condition on W = {ω}.

4.2 Game-Theoretic Definition of SI

We will cast software independence in terms of a game, in a manner analogous
to how semantic security of cryptographic algorithms is captured, or to how
estimation problems are formalized in statistical decision theory. An election is
seen as a strictly competitive game between the adversary choosing an attack
strategy f ∈ Fm(P[S]) and the checker choosing a defense strategy g ∈ GA. The
payoffs of the checker are multicriterial (and thus only partially ordered), and
given by the respective probabilities of false positive and false negative output of
the audit procedure. The solution concept is based on minimax, i.e., the checker
minimizes the loss assuming the worst case (most damaging) of the adversary.
(Since the payoff is multicriterial, there is no minimax strategy sensu stricto,
but the analysis is worst-case.) Moreover, the adversary is assumed to adapt the
attack strategy f to the defense strategy g selected by the checker. On the other
hand, the checker must choose the defense strategy without knowing the attack
strategy.

Formally, given a defense strategy g ∈ GA, an election input v ∈ In, and a
set of admissible election outcomes WP[S],v, we define two kinds of costs that

A Declaration of Software Independence 215

the checker wants to minimize:

ε(g, v) = sup
f∈Fm(P[S])

Pr(Aud(f, g, v) = F | WP[S],v),

δ(g, v) = sup
f∈Fm(P[S])

Pr(Aud(f, g, v) = T | WP[S],v)

= 1 − inf
f∈Fm(P[S])

Pr(Aud(f, g, v) = F | WP[S],v).

That is, ε is the largest chance that the checker rejects an admissible outcome
(false negative), and δ is the largest chance that he fails to reject an inadmissible
outcome (false positive).

Definition 1 ((ε, δ)-SI). Consider an election where v was the actual input
and g the used defense strategy. The election is (ε0, δ0)-software independent if
ε(g, v) ≤ ε0 and δ(g, v) ≤ δ0, i.e., the probability of false negative is bounded by
ε0, and the probability of false positive is bounded by δ0.

Moreover, the voting system is (ε0, δ0)-software independent if there exists
g ∈ GA such that for all v ∈ In, the resulting election is (ε0, δ0)-SI.

Ideally, elections should be fully reliable. This motivates the following defi-
nition.

Definition 2 (Strict SI). An election (respectively, voting system) is strictly
software independent if it is (0, 0)-software independent.

Unfortunately, strict SI might be hard to achieve in realistic scenarios. In that
case, we should at least require that the defense strategy is more effective than
random guessing. Suppose that the checker tosses a biased coin (independently
of all other election processes) that has probability p of landing heads, and then
rejects the announced outcome if the coin lands heads and accepts the outcome
if the coin lands tails. That rule gp attains ε(gp, v) = p and δ(g, v) = 1 − p, so
ε(gp, v) + δ(gp, v) = 1. By using the available evidence one should be able to do
better. This leads to the following definition:

Definition 3 (loose SI). An election (respectively, voting system) is loosely
software independent if it is (ε, δ)-software independent with ε + δ < 1.

For example, consider a voting system based on hand-marked paper ballots
kept secure and trustworthy, with trustworthy eligibility determinations, subject
to a risk-limiting audit with risk limit α < 1. Such a voting system is (0, α)-SI
and loosely SI. If there were an automatic recount instead of a risk-limiting
audit, the system would be strictly SI.

5 Conclusions

We have presented several formalisations of the notion of software independence.
In doing so we have shown that, like many security properties, this seemingly

216 W. Jamroga et al.

simple and intuitive notion actually harbours many subtleties. For example we
observe that it is important to exclude trivial systems that simply reject all runs
of an election. The original definition clearly intended this but did not explicitly
require it. Many of the terms used in the definition require precise definition. For
example, “detection” should not just mean claiming to have observed a departure
from correct behaviour but also to be able to provide evidence that such a
departure did indeed occur. This is related the notion of dispute resolution: the
ability of a third party to be able to determine whether alarm is genuine or false.

We have enriched our definitions to allow for non-determinism or randomi-
sation in the execution of the protocols, and in particular in the social choice
function. Further, we have argued that purely possibilistic definition is not nec-
essarily that useful, rather one should extend that definition to account for the
probabilities of detecting erroneous behaviour.

Another insight from our formalisation is the need to precisely define when is
meant by the “system” and the “software”. By the latter we mean those parts of
the system on whose behaviour we do not want the correctness of the outcome
to depend. However, for many systems this will not include all the software of
the system, for example, the auditing components and procedures may require
software and we typically assume that such software is correct with respect to
its specification. Such assumptions can typically be justified by arguing that
auditing algorithms can typically be rerun on independent implementations, so
corruption of an instance of this software is itself detectable.

In future work we plan to apply our definitions to a representative sample
of verifiable voting systems. We also plan to generalise the notion of software
independence to include other components of the system: hardware, people, pro-
cedures etc. This brings us back to the question of defining the boundaries of the
sub-system that we require the correctness of the outcome to be independent.

Acknowledgements. Peter Y.A. Ryan would like to thank the FNR (Fond Nationale
de Research Luxembourg) and the Velux Foundation for support during his sabbatical
and to ITU Copenhagen for hosting him when this work was initiated. Steve Schneider
is grateful to EPSRC for funding through the VOLT project EP/P031811/1. Wojciech
Jamroga acknowledges the support of the National Centre for Research and Devel-
opment, Poland (NCBR), and the FNR Luxembourg under the PolLux/FNR-CORE
projects VoteVerif (POLLUX-IV/1/2016) and STV (POLLUX-VII/1/2019).

References

1. Appel, A., DeMillo, R., Stark, P.: Ballot-marking devices cannot assure the will of
the voters. Election Law J. Rules Polit. Policy 19(3) (2020). https://doi.org/10.
1089/elj.2019.0619

2. Appel, A., Stark, P.: Evidence-based elections: create a meaningful paper trail,
then audit. Georgetown Law Technol. Rev. 4(2), 523–541 (2020). https://
georgetownlawtechreview.org/wp-content/uploads/2020/07/4.2-p523-541-Appel-
Stark.pdf

3. Benaloh, J., Rivest, R., Ryan, P.Y., Stark, P., Teague, V., Vora, P.: End-to-end
verifiability (2015). arXiv:1504.03778

https://doi.org/10.1089/elj.2019.0619
https://doi.org/10.1089/elj.2019.0619
https://georgetownlawtechreview.org/wp-content/uploads/2020/07/4.2-p523-541-Appel-Stark.pdf
https://georgetownlawtechreview.org/wp-content/uploads/2020/07/4.2-p523-541-Appel-Stark.pdf
https://georgetownlawtechreview.org/wp-content/uploads/2020/07/4.2-p523-541-Appel-Stark.pdf
http://arxiv.org/abs/1504.03778

A Declaration of Software Independence 217

4. Bernhard, M., et al.: Public evidence from secret ballots. In: Krimmer, R., Volka-
mer, M., Braun Binder, N., Kersting, N., Pereira, O., Schürmann, C. (eds.) E-
Vote-ID 2017. LNCS, vol. 10615, pp. 84–109. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68687-5 6

5. Bernhard, M., et al.: Can voters detect malicious manipulation of ballot marking
devices? In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 679–694
(2020). https://doi.org/10.1109/SP40000.2020.00118

6. DeMillo, R., Kadel, R., Marks, M.: What voters are asked to verify affects ballot
verification: a quantitative analysis of voters’ memories of their ballots. Technical
report (2018)

7. Election Assistance Commission: Voluntary voting system guidelines VVSG 2.0
(2021). https://www.eac.gov/sites/default/files/TestingCertification/Voluntary
Voting System Guidelines Version 2 0.pdf

8. Everett, S.: The Usability of Electronic Voting Machines and How Votes Can Be
Changed Without Detection. Ph.D. thesis, Rice University (2007)

9. Hao, F., Ryan, P.Y.A.: Real-World Electronic Voting: Design, 1st edn. Analysis
and Deployment. Auerbach Publications, USA (2016)

10. Haynes, A., III, M.H.: Georgia voter verification study. Technical report (2021)
11. Küsters, R., Truderung, T., Vogt, A.: Verifiability, privacy, and coercion-resistance:

new insights from a case study. In: 32nd IEEE Symposium on Security and Privacy,
pp. 538–553 (2011)

12. Rivest, R.: On the notion of “software independence” in voting systems. Philos.
Trans. Royal Soc. A: Math. Phys. Eng. Sci. 366(1881), 3759–3767 (2008)

13. Rivest, R., Wack, J.: On the notion of “software independence” in voting systems
(draft version of July 28, 2006). Technical report, Information Technology Labo-
ratory, National Institute of Standards and Technology (2006)

14. Stark, P.: Conservative statistical post-election audits. Ann. Appl. Stat. 2, 550–581
(2008)

15. Stark, P., Wagner, D.: Evidence-based elections. IEEE Secur. Priv. 10, 33–41
(2012)

https://doi.org/10.1007/978-3-319-68687-5_6
https://doi.org/10.1007/978-3-319-68687-5_6
https://doi.org/10.1109/SP40000.2020.00118
https://www.eac.gov/sites/default/files/TestingCertification/Voluntary_Voting_System_Guidelines_Version_2_0.pdf
https://www.eac.gov/sites/default/files/TestingCertification/Voluntary_Voting_System_Guidelines_Version_2_0.pdf

Formal Methods and Mathematical
Intuition

Dale M. Johnson(B)

The MITRE Corporation, McLean, VA 22102, USA
dalejohnson3@verizon.net

Dedicated to Joshua Guttman, Colleague
and Friend.

Abstract. The paper offers a retrospective on earlier developments and
work in formal methods at The MITRE Corporation, emphasizing the
leading work of Joshua Guttman and some of his colleagues. It then
provides a short introduction to dimension theory and its history as
a methodologically contrasting development in mathematics in which
counterintuitive examples and counterexamples play a role in motivating
mathematical growth by means of conjectures and refutations or proofs
and refutations. The paper ends with a broad methodological comparison
between developments in formal methods and developments in domains
of mathematics like dimension theory in which mathematical intuition
and proofs and refutations play a significant role.

Keywords: Conjectures and refutations · Counterexamples ·
Cybersecurity · Dimension theory · Formal methods · Heuristics ·
Invariance · Macetes · Mathematical intuition · Proofs and refutations

1 Introduction

Upon joining The MITRE Corporation in 1985 I became associated with a small
group of logicians, mathematicians, and computer scientists at the organization
actively engaged in research into formal methods and formal verification tech-
niques, primarily directed at framing and solving problems in computer security,
or as it is now called cybersecurity. Joshua Guttman was a prominent member
of the group. His ideas became and still are highly influential at MITRE and in
the larger formal methods research community. Joshua became a close colleague
and good friend. Others were also involved in the research—to mention a few,

Approved for Public Release; Distribution Unlimited. Public Release Case Number
21–2577. The author’s affiliation with The MITRE Corporation is provided for identi-
fication purposes only, and is not intended to convey or imply MITRE’s concurrence
with, or support for, the positions, opinions, or viewpoints expressed by the author.
c©2021 The MITRE Corporation. ALL RIGHTS RESERVED.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 218–231, 2021.
https://doi.org/10.1007/978-3-030-91631-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_12

Formal Methods and Mathematical Intuition 219

Leonard Monk, Jonathan Millen, Javier Thayer Fábrega, William (Bill) Farmer,
John Ramsdell, Ron Watro, and Vipin Swarup.

The work at MITRE was exciting, especially with the press of the rapidly
developing field of security for computers and computer networks. Joshua offered
many ideas and insights for us to consider on the formal side, drawing on his
background in mathematical logic aa well as computer science. In the broader
research community those taking a formal approach to cybersecurity adopted
and adapted formal methods, mathematical logical techniques, formal specifica-
tion and verification, formal protocol descriptions and modeling, as well as more
formalized procedural methods for securing computing and network systems in
efforts to defend against potential attackers and make these systems safe and
secure to use. Somewhat later the tremendous growth of the Internet and World
Wide Web spurred even more development in cybersecurity, including further
work in formal methods.

The aim of this paper is to provide a brief retrospective on some of the
earlier work in formal methods at MITRE. Then I want to make some com-
parisons with certain other kinds of mathematical thinking and ‘mathematical
intuition’ in an area in which I have a strong background: dimension theory
and its history. Formal methods as an approach to cybersecurity seeks to model
and specify formally selected computing systems, security protocols, hardware,
and software as completely as possible and state their intended functional and
security properties, and then demonstrate assertions stating that the specified
entities satisfy these properties by using mathematical logic and related meth-
ods. In other areas of mathematics like dimension theory the aim is to model
broader mathematical objects and situations and develop corresponding geomet-
rical and topological intuitions, heuristics, and conjectures, with a view to laying
out carefully defined theories and articulating theorems to be proved. Examples
and counterexamples, and conjectures and refutations are often a part of this
development, especially in the unusual situations found in the geometry and
topology. Mathematical intuition is sharpened in the process. Overall, there are
reasonable comparisons to be made between formal methods for cybersecurity
and dimension theory, both positive and negative, as we shall see.

The retrospective on formal methods at MITRE is not intended to be com-
plete. This paper is dedicated to my colleague and friend Joshua.

2 Formal Methods and Research at MITRE

Given the nature of computers and associated communications networks, their
detailed computations and processes, their underlying hardware, firmware, and
software, their hierarchical nature, and their need to run by using formal com-
puter languages with well-defined syntax and semantics, the necessity of having
formal definitions of computer languages and formal theoretical explorations
of their processes becomes clear. To examine cybersecurity issues using formal
methods then becomes quite natural.

Formalizing mathematical and logical theories forms a large part of later
nineteenth century and twentieth century developments in mathematical logic.

220 D. M. Johnson

One can point back to Gottlob Frege (1848–1925), who studied the strict logical
basis of arithmetic [14,15], and Bertrand Russell (1872–1970) and Alfred North
Whitehead (1861–1947), who formalized large chunks of mathematics in the
massive three-volume Principia Mathematica, in an effort to demonstrate the
logicist thesis that mathematics is reducible to logic [33,34]. Note, though, that in
the history of modern mathematical logic, efforts have not been directed merely
toward formalization of mathematical theories per se, but mainly toward the
demonstration of metalogical or metamathematical results. Some of the most
celebrated results in this domain are Kurt Gödel’s (1906–1978) completeness
theorem for first-order predicate calculus and his limitative incompleteness and
consistency theorems for formal theories containing arithmetic and also Alfred
Tarski’s (1901–1983) results on truth in formalized languages.

One of the first tasks I was assigned at MITRE was to join with Javier
Thayer Fábrega and Bill Farmer in an analysis of the formal design verification
of a special device called the Restricted Access Processor (RAP) [32]. Offered
by another organization, the formal verification aimed to show that RAP func-
tionally satisfied its formal security specification, or to use other terms, that
RAP’s top-level specification as a system satisfied it formal security model. It
used an early verification language and tool, which yielded a rather messy and
hard-to-understand verification of RAP. The verification details seemed to us as
readers to overwhelm the main thrust of the argument. Admittedly, the early
verification language and tool used may not have been fully up to the job. More-
over, the verification lacked the clarity one would expect from a good exposition
of a mathematical theory.

Our assessment of the verification motivated the three of us to write a paper
[13] proposing that the formal verification of a computer system be regarded as
an endeavor in applied mathematics. As applied mathematics it should involve
three separate processes, a modeling process, a theorem proving process, and
a review and acceptance process. This meant establishing formal mathematical
models of the system being analyzed and the directly related natural-language
requirements and specifications. Then on the basis of the modeling, it should
be possible to use mathematical techniques to reason about the formal models
obtained, essentially building a formal theory of the system and its requirements
to derive the formal verification result. Finally, it is important that the formal
theory be understandable by a larger group to help determine its validity as a
verification. Thus, there should be a reviewing and acceptance process available
for a larger interested community. Just as in mathematics and its research com-
munity, there should be a social acceptance process validating the argument of
the verification.

The critique of the RAP design verification was the first time I became
involved with formal verification. Efforts in formal specification and formal veri-
fication, the building of tools related to support such efforts became a significant
part of the work at MITRE, with interactions with many other organizations.
The need for highly secure computing and networked systems led to work with
so-called ‘A1’ systems according to the Trusted Computer Security Evaluation
Criteria (The Orange Book) [6]. Many of us at MITRE became involved with a
number of those applied efforts.

Formal Methods and Mathematical Intuition 221

In the nineties Bill Farmer, Joshua Guttman, and Javier Thayer Fábrega set
out to build an Interactive Mathematical Proof System offering computational
support for traditional techniques of mathematics [9,10,12] (full IMPS bibli-
ography, https://imps.mcmaster.ca/doc/imps-bibliography.html). The resulting
IMPS is based on simple type theory and uses the axiomatic method to build
interconnected ‘little theories’ of coherent pieces of mathematics [11]. I want to
point to a particular facet of the IMPS work that will be related to the theme
of this paper. As an efficient device to apply theorems or collections of theorems
directly in deductive proof sequences IMPS includes ‘macetes’ [12, pp. 227, 234–
235]. Somewhat formally, a macete is used to apply a theorem or a collection of
theorems to a deductive sequent in a formal deduction graph, thereby simplify-
ing the graph. In colloquial Brazilian Portuguese, a ‘macete’ is a clever trick, a
term Javier Thayer Fábrega introduced into IMPS. These tricks are analogous
to a mathematician simplifying a chain of reasoning in the argumentation by
applying previously proven theorems. They are a kind of heuristic to abbreviate
some of the excessive details in the elaborated formal mathematical deductions.
In informal mathematics mathematicians do this all the time. This technique
appears as a formalization of heuristics used in informal mathematics with the
advantage that the formal mechanism can check the mathematics to avoid errors.

In a short paper published in 1994, Joshua Guttman and I summarized three
applications of formal methods, which formed part of our work at MITRE [18].
These applications were: an effort devoted to specifying TCP using Communica-
tion Sequential Processes (CSP) and state machine methods, with partial proofs
that it would meet its reliable delivery requirement; a formalization of a simple
virtual memory scheme, carried out using IMPS; and a verified implementation
of the programming language Scheme, which was named VLISP. I was doing
some of the protocol work with colleagues, and through it I became acquainted
with larger international efforts using formal methods and specialized formal
languages and tools to understand protocol behaviors formally.

About this time Joshua Guttman together with colleagues, Javier Thayer
Fáabre-ga and Jonathan Herzog, began studying security protocols, such as
authentication protocols or cryptographic protocols, using a modeling approach
called ‘strand spaces’ [7,8,16,17]. Informally, a security protocol is a sequence
of messages among two or more communicating parties in which encryption is
used to provide authentication or to distribute cryptographic keys for new con-
versations. Determining that such protocols are secure and resistant to attacks
can be tricky. Strand spaces provide a way to capture these kinds of protocol
conversations as interwoven strands of the conversations. The security is rigor-
ously analyzed by examining possible attackers trying to defeat the security by
joining in the conversations. The strand space approach has been very success-
ful. Unfortunately, I do not have the space in this paper to go further into the
approach and the results.

Formal methods applied to solving problems of cybersecurity has come a long
way in the last few decades. While by no means the only approach, the appli-
cation of formal methods to problems of cybersecurity has yielded very valuable

https://imps.mcmaster.ca/doc/imps-bibliography.html

222 D. M. Johnson

results and real successes. A strong indication of progress is the report of the
National Science Foundation-sponsored Workshop on Formal Methods for Secu-
rity [5]. The workshop was held in November 2015. The workshop highlighted
four main areas: (i) hardware architecture, (ii) operating systems, (iii) dis-
tributed systems, and (iv) privacy. Each of these ares requires careful scrutiny of
their underlying foundations, their elaborated details, and their explicit require-
ments for proofs of correctness and security. Progress has been made on a variety
of fronts with the aid of special formal languages and tools, yielding results of
significant value. Moreover, challenge problems have been identified that can
drive further progress.

MITRE has added much to developments in formal methods for cybersecu-
rity. I have mentioned just a few contributions in my summary. Joshua Guttman
has played leading roles in a majority of these. His list of publications, many with
other MITRE authors, is extensive—well over a hundred—with numerous cita-
tions.

3 Mathematical Intuition and Heuristics

I shall now turn to considering a different style of mathematics in which mathe-
matical ‘intuition’ and heuristics play a greater role in the solution of mathemati-
cal problems. Problems have always been crucial to developing new mathematics
over its long history. Formal details of exposition and proof do matter, but key
insights to solving significant or long-standing problems often have enormous
value. These insights are the ‘ah-ha!’ experiences so gratifying to mathemati-
cians. They touch on the realm of heuristics in mathematics, highlighted through
many examples by George Polya [28–30], and the area of conjectures and refuta-
tions or proofs and refutations, characterized philosophically by my teachers Sir
Karl Popper [31] and Imre Lakatos [23]. In the course of solving problems cre-
ative mathematicians often move from a problem to a conjectured solution to a
correction to the tentative solution to an enhanced problem and better solution.

I shall take examples from the history of dimension theories1 to illustrate
points about mathematical intuition and heuristics. Of course, many other areas
of mathematics would offer examples equally well.

4 Example: Development of Dimension Concepts and
Dimension Theories

Problems concerning dimension go back to the ancients, particularly the ancient
Greeks. Two fundamental problems motivated the ancients to consider notions
of dimension. First, they asked the question: What is the nature of dimension?
Attempts to solve this problem resulted in definitions and simple descriptive
theories of dimension. Second, they posed the question: Why does our space
1 See my papers [19–21]. I am writing a book on dimension theories and their history

deriving from these papers and including much new material.

Formal Methods and Mathematical Intuition 223

have three dimensions? Trying to solve this problem resulted in explanations
of the observed fact about our space. Evidence of theories of dimension can be
found in writings of the Pythagoreans, Aristotle (384–322 BCE), and Euclid (fl.
300 BCE). The mathematician and astronomer Claudius Ptolemy (c. 100–170
CE) wrote an entire book On Dimension, in which he put forward an argument
for the 3-dimensionality of physical bodies and the universe. Unfortunately, the
book is not extant.

Moving to the modern era of mathematics a new problem of dimension arose
from ground-breaking developments of set theory and point-set topology that
Georg Cantor (1845–1918) and Richard Dedekind (1831–1916) initiated toward
the end of the nineteenth century. Cantor arrived at early important results in
set theory, showing that while the set of all real algebraic numbers is countable,
the set of all real numbers (the linear continuum) is not countable. This led him
to pose the following research problem, which he stated in a letter of 5 January
1874 to his mathematical colleague, Dedekind [4, page 20]:

Can a surface (perhaps a square including its boundary) be put into one-
one correspondence with a line (perhaps a straight line segment including
its endpoints), so that to each point of the surface there corresponds a
point of the line and inversely to each point of the line there corresponds
a point of the surface?2

There is no record of Dedekind’s initial response to Cantor’s question. Others
with whom Cantor discussed the question at meetings and conferences around
the time thought it was obvious that the answer would be negative. However,
Cantor persisted in seeking an answer to the research question. Even by posing
his research question he introduced something quite new and important into
thinking about dimension. He related mappings and correspondences to consid-
ering the dimensions of figures and spaces. For Cantor this new way of thinking
was natural, because he was already interested in the cardinality of infinite sets.
Cantor effectively moved the notion of dimension to a different mathematical
problem situation.

Cantor continued his quest, but he switched his line of attack. In a letter to
Dedekind of 20 June 1877 he asserts a positive generalization [4, page 25]:

... that surfaces, solids, even continuous figures of ρ dimensions can be
put into one-one correspondence with continuous lines, thus figures of only
one dimension; therefore, that surfaces, solids, even figures of ρ dimensions
have the same power as curves3

2 In German: Lässt sich eine Fläche (etwa ein Quadrat mit Einschluss der Begrenzung)
eindeutig auf eine Linie (etwa eine gerade Strecke mit Einschluss der Endpunkte)
eindeutig beziehen, so dass zu jedem Puncte der Fläche ein Punct der Linie und
umgekehrt zu jedem Puncte der Linie ein Punct der Fläche gehört?

3 In German: ... dass Flächen, Körper, ja selbst stetige Gebilde von ρ Dimensionen sich
eindeutig zuordnen lassen stetigen Linien, also Gebilden von nur einer Dimension,
dass also Flächen, Körper, ja sogar Gebilde von ρ Dimensionen, dieselbe Mächtigkeit
haben, wie Curven

224 D. M. Johnson

and offers an initial proof that the points of a unit ρ-dimensional cube, denoted
as a system of real values (x1, x2, ..., xp), where 0 ≤ xi ≤ 1, can be put in one-
one correspondence with the points of the unit line segment, denoted as values
of a variable y, 0 ≤ y ≤ 1. The proof uses infinite decimal expansions of the
coordinates of the points. Essentially the digits of the array of ρ numbers,

x1 = 0.α11α12 . . . α1ν . . . ,

x2 = 0.α21α22 . . . α2ν . . . ,

. .

xρ = 0.αρ1αρ2 . . . αρν . . . ,

can be counted off in order, ρ of them at a time (first place digits, then second
place digits, and so forth) as the successive digits of a single decimal number for
each value of y:

y = 0.β1β2βν . . . ,

such that
β1 = α11, β2 = α21, . . . βρ = αρ1, βρ+1 = α12

Inversely, from each value of y one can count off successive sets of ρ digits to
yield the digits for each ρ-tuple, (x1, x2, . . . , xp).

Dedekind almost immediately pointed out an error in Cantor’s proof. The
correspondence between Cantor and Dedekind is fascinating in showing the back
and forth of attempted proof and critical counterexample [4]. I shall not go into
the details. Cantor did come up with a correct proof that satisfied Dedekind,
which he then published. It used continued fractions rather than decimal expan-
sions. Even Cantor was surprised by his paradoxical discovery. In a letter to
Dedekind of 29 June 1877 he exclaimed [4, page 34]:

. . . I see it, but I don’t believe it.4

Cantor and Dedekind in the course of their exchange realized that Cantor’s
one-one correspondence between line segment and either the square or the ρ-
dimensional cube is very discontinuous. That observation might be a way to
save the dimension concept, but a theorem needed to be formulated and proved.

Soon, another surprising and ‘complementary’ discovery was made. The Ital-
ian mathematician Giuseppe Peano (1858–1932) in 1890 defined a continuous
mapping from a line segment to a square—a space-filling curve—whereby the
entire square was covered as the range of the mapping (and so the mapping is
surjective). This time the mapping was not one-one (injective). Many points of
the square were covered multiple times.

In his short paper, ‘Sur une courbe, qui remplit toute une aire plane’ (‘Con-
cerning a curve that covers an entire plane area’), Peano defines the continuous
mapping of the unit line segment to the unit square analytically with no geo-
metrical explanations or diagrams [25] (English translation with commentary
[22, pp. 143–149]). Other mathematicians, such as David Hilbert (1862–1943),
4 In French: . . . je le vois, mais je ne le crois pas.

Formal Methods and Mathematical Intuition 225

soon provided these. Much later Peano gave a geometrical explanation of the
construction of his curve [27, pp. 239–240]. One way to picture the successive
steps of construction of the mapping geometrically is through the diagrams
in Fig. 1. Consider the left diagram as the first step of an iterative construc-
tion, dividing the square into 9 subsquares and drawing a continuous line from
the bottom left to the top right as given. Then consider the right diagram in
Fig. 1 as the second step, dividing each subsquare into 9 subsubsquares and draw-
ing a continuous line through the newly divided square in similar ways through
each of the 81 subsquares, moving from bottom left to top right. Continue the
construction by dividing squares in steps ad infinitum, and the result is Peano’s
curve at the limit covering all the points of the original square. Peano’s curve is
continuous, though certainly not one-one (injective), with many points covered
multiple times. It should be said that Peano was quite proud of his counterintu-
itive curve.5

Fig. 1. Digrams for initial two steps in construction of Peano curve

As a mathematician Peano had a longstanding passionate interest in advanc-
ing formal methods, in presenting mathematics in a symbolic logical way, and
in furthering the use of the axiomatic method. He is well known for his axiom-
atization of the theory of the natural numbers, the so-called Peano postulates,
and its rigorous logical development, presented in his Arithmetices principia,
Nova methodo exposita (Principles of Arithmetic, Presented by a New Method)
[24]. (Dedekind independently developed a very similar axiomatization of the
theory.) In an effort covering many years of his mathematical career, he set out
to present large chunks of mathematics in symbolic logical form. His work went
through five editions: Formulaire de mathématiques (Formulation of mathemat-
ics) [26] to Formulario mathematico (Mathematical Formulation) [27]. Though
Peano’s mathematical logic does not fully conform to modern standards, his
work is impressive, and his chosen symbolic form is largely still readable today.

5 See Kennedy’s statement [22, page 7]: ‘Peano was so proud of this discovery that he
had one of the curves in the sequence put on the terrace of his home, in black tiles
on white.’.

226 D. M. Johnson

An assessment of Peano’s mathematical corpus suggests that his work with for-
mal methods is only loosely related to his discovery of a space-filling curve and
his important contributions to analysis. His work in formal methods and the
formalization of mathematical results seems to constitute a precise, systematic
way to capture them.6

By the end of the nineteenth century, given Cantor’s highly discontinuous
mapping of the line segment to the ρ-cube and Peano’s surjective but certainly
not injective mapping from the line segment to the square, the space-filling
curve, the need to save the dimension concept emerged as the need to prove a
dimensional-invariance theorem. Several mathematicians proved partial results,
but none in full generality.

5 L. E. J. Brouwer’s Breakthrough to Invariance of
Dimension

At this point we consider L.E.J. Brouwer (1881–1966) and his breakthrough to
showing dimensional invariance. Among philosophers of mathematics and logi-
cians Brouwer is known for his philosophy of intuitionism and his intuitionist
logic and mathematics. Among topologists he is known for his fixed-point theo-
rem, his characterization and elaboration of the concept of mapping degree, his
theory of dimension, and his invariance theorems. We are concerned with his key
topological result demonstrating invariance of dimension, presented in a paper
of a mere five pages, which Brouwer submitted in June 1910 and which was
published in 1911 [3]. This paper effectively swept away all previous attempts to
prove the invariance of dimension.

Brouwer’s approach to the problem of demonstrating that an m-dimensional
manifold (or Euclidean space) and an (m + h)-dimensional manifold (h > 0)
cannot be put into one-one continuous correspondence, i.e., that the manifolds
are not homeomorphic, is through the proof of an important lemma [3, page
164]:

In a q-dimensional manifold if for a single-valued continuous mapping of
a q-dimensional cube the maximum of the displacements [of the points] is
less than half the side length, then there exists a concentric and homothetic
cube which is contained entirely in the image set.7

The intuitive appeal of the lemma is immediate. It is a weak form of domain
invariance: the mapping satisfying the given conditions on displacements yields
an image set that must contain a (smaller) q-dimensional cube. In their classic

6 Compare [22] for English translations of some of Peano’s works and notes on and
appraisals of his mathematics.

7 In German: Wenn in einer q-dimensionalen Mannigfaltigkeit bei einer eindeuti-
gen und stetigen Abbildung eines q-dimensionalen Kubus das Maximum der
Verriückungen kleiner ist als die halbe Kantenlänge, so existiert ein konzentrischer
und homothetischer Kubus, der ganz in der Bildmenge enthalten ist.

Formal Methods and Mathematical Intuition 227

book on topology, Alexandroff and Hopf call it Brouwer’s invariance principle
[1, pp. 364–365]. It is a key to dimensional invariance.

In the Brouwer Nachlass there is an interesting manuscript in Brouwer’s
hand that is clearly related to the published proof of dimensional invariance, a
manuscript entitled ‘De invariantie van het aantal dimensies eener ruimte’ (‘The
invariance of the number of dimensions of a space’). It is almost certainly a
draft of a lecture that he gave to the Wiskundig Genootschap, the Dutch Math-
ematical Society, in October 1910. The five-page draft of the lecture contains
essentially the same proof as the published paper, but, as the lecture was deliv-
ered four months after the paper was submitted, it includes improvements and is
more informal. For example, it contains diagrams that nicely capture Brouwer’s
geometrical thoughts in two dimensions. Figure 2 is a copy of a diagram from the
notebook with the draft lecture, illustrating the situation with the concentric,
homothetic squares K and K ′ in two dimensions. Square K has side length 2a
and the mapping displaces points in it by at most b < a, whereby the larger
square is potentially squeezed by the mapping down to an image set that must
still contain the smaller square K ′ with side length 2(a − b). The condition
< 2(a − b) at the top of the smaller square.refers to all the points inside the
smaller square, which must satisfy that condition.

Fig. 2. Digram from Brouwer’s Notebook

It is not possible to analyze the proof in the short space of this paper, but I
think the diagram provides a good illustration of Brouwer’s mathematical intu-
ition in a broad sense of the term. The proof is broadly ‘constructive,’ providing
the reader a way to work through the mental construction of the geometrical
situation. It relies on simplicial mappings, simplicial approximations, and the
concept of mapping degree. The proof proceeds by contradiction; it is not intu-
itionistically acceptable.

There is much more to dimension theory. However, I must stop now to con-
sider my theme of formal methods and mathematical intuition and make some
comparisons.

228 D. M. Johnson

6 Conclusion: Formal Methods, Mathematical Intuition,
and Rigorous Mathematical Exposition

Recent experiences have shown the value of applying formal methods to cyberse-
curity in several domains. The NSF Report provides a good indicator of impor-
tant successes [5]. Modeling and specifying formally computing systems, pro-
tocols, or other situations involving security and then rigorously proving that
they satisfy their intended functional and/or security properties have provided
insightful results. Other, longer experiences with the development of fields of
mathematics have yielded differing kinds of successes. Topology is a field in
which increasingly well-honed mathematical intuitions, heuristics, and conjec-
tural thinking have guided developments that have been successful, but often
hard won. Conjectures and refutations or proofs and refutations have led to
refined definitions and fundamental theorems with rigorous proofs. Topology is
a field in which very careful distinctions are required. A small change in the
basis can be the difference between a theorem and a refuting counterexample.
Hence, a point of striking similarity between the development of formal methods
for cybersecurity and that of topology and dimension theory is the need to pay
extremely close attention to the details of rigorous specification/definition and
proof.

There is a key ontological difference between the objects to which formal
methods have been applied and the mathematical objects of dimension theory
and domains of pure mathematics. Formal methods are applied to real-world
artifacts, computers, hardware, firmware, and software, and also related net-
works. It should be possible ideally to check the specific modeling derived using
formal methods with the corresponding artifacts to determine if the modeling is
correct. In the case of dimension theory and more generally pure mathematics
the objects of study are abstract entities. Such entities do gain a kind of ‘quasi-
real’ existence known at least to those developing the mathematics for them,
no matter whether the practicing mathematician believes in a Platonic universe
of mathematical objects or in some lesser form of abstract existence. In dealing
with models for either domain, one can apply logical reasoning to develop useful
results and also check the models against the underlying ‘reality,’ whether an
abstract reality or a computing artifact. The geometrical objects or point sets of
dimension theory or topology have an abstract existence beheld by the practic-
ing mathematician similar to the concrete existence of computers and computer
programs beheld by the practitioners of formal methods.

In the domain of formal methods for cybersecurity, developing accurate
applied models, laying out precise formal specifications, and carefully crafting
assertions to be proven are crucial to success. Part of this development rests on
having expressive formal languages and versatile tools. The end result depends
on the art of the modeler to capture the essence of the situation to derive a
result useful to developing the implementation. One critical issue, which others
have raised before, is the inevitable gap between a formal model and the related,
eventual implementation. The formal elaboration should yield sufficiently use-
ful results to make a difference in the practical development. In the end, there

Formal Methods and Mathematical Intuition 229

is still likely to be a need for thorough practical testing of the implementation
beyond the formal methods, using systematic functional and security testing
methods, including red-team testing, This last point suggests an area of compari-
son between the broader functional correctness and cybersecurity of a computing
system and the kind of mathematics represented by topological dimension the-
ory. The back and forth between a developing or even delivered implementation
and the potentially destructive attacks against the implementation, whether by
a red team working on the implementation in development or by real attack-
ers going after the delivered implementation, is analogous to conjectures and
refutations in certain domains of mathematics. However, for the mathematical
domain there is no exact equivalent to the attacker against the implementation.
In mathematics correctness depends on mathematicians exercising their critical
powers through exacting criticism and counterexample.

In the short space of this paper I have only provided a few highlights of the
different kind of development of dimension theory; the full story is much richer
and more intricate. My hope is that the reader may get the idea that exam-
ples, many counterintuitive, and counterexamples have been important drivers
in building theories of dimension. The development of several theories of dimen-
sion over a longer period of time has been less formal than with formal theory
construction à la formal methods. Nonetheless, the critical social process occur-
ring over time among mathematicians and others has led to exacting, rigorous
results. There have also been shifts to new methods and foundations, for exam-
ple, by applying results in point set and/or algebraic topology. Careful distinc-
tions concerning dimension as a concept, including 0-dimensionality, as well as
connectedness, disconnectedness, and compactness have helped build rigorous
theories of dimension.8

Reasonably exacting formalization and semi-formal methods have been crit-
ical at certain junctures in the growth of topology and dimension theory. The
layout of formal definitions of dimension, including comparisons among those def-
initions for a variety of spaces, and the accompanying axiomatization of point
set topology and related mathematical theories have had their place in mod-
ern developments. Simplifying computational shortcuts in set theory, algebraic
topology, and homological algebra have had their place too. These are analogous
to the ‘tricks’ or ‘macetes’ of IMPS.9

Both formal methods for cybersecurity and dimension theory falling under
topology drive for greater precision and rigor. Ultimately, their results must be
judged by the critical social process of comment, critique, and revision.

8 For an additional case of the drive for improved results through counterexamples, one
may look to the celebrated case of Brouwer’s work of his 1910 paper, ‘Zur Analysis
Situs’ (‘On Analysis Situs’) [2], in which, through a set of counterintuitive examples,
he demolished the previous topological work of Arthur Schoenflies (1853–1928).

9 However, it must be pointed out that to build full mathematical theories of topology
and dimension at the level of IMPS formalization would take considerable effort in
formal theory construction. Algebraic simplification rules could be a part of that
construction.

230 D. M. Johnson

References

1. Alexandroff, P., Hopf, H.: Topologie I: Erster Band. Grundbegriffe der Mengen-
theoretischen Topologie Topologie der Komplexe Topologische Invarianzsatze und
Anschliessende Begriffsbildungen Verschlingungen im n-Dimensionalen Euklidis-
chen Raum Stetige Abbildungen von Polyedern. Julius Springer-Verlag (1935).
https://doi.org/10.1007/978-3-662-02021-0

2. Brouwer, L.E.J.: Zur Analysis Situs. Mathematische Annalen 68(3), 422–434
(1910)

3. Brouwer, L.E.J.: Beweis der Invarianz der Dimensionenzahl. Mathematische
Annalen 70(2), 161–165 (1911)

4. Cantor, G., Dedekind, R.: Briefwechsel Cantor-Dedekind. Hermann (1937)
5. Chong, S., et al.: Report on the NSF workshop on formal methods for security.

arXiv preprint arXiv:1608.00678 (2016)
6. Department of Defense: Department of Defense Trusted Computer System Evalu-

ation Criteria. Department of Defense (1985), doD 5200.28-STD
7. Fábrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: Why is a security

protocol correct? In: Proceedings. 1998 IEEE Symposium on Security and Privacy
(Cat. No. 98CB36186), pp. 160–171. IEEE (1998)

8. Fábrega, F.J.T., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security
protocols correct. J. Comput. Secur. 7(2/3), 191–230 (1999)

9. Farmer, W.M., Guttman, J.D., Fábrega, F.J.T.: IMPS: an updated system descrip-
tion. In: International Conference on Automated Deduction, pp. 298–302. Springer
(1996)

10. Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: System description. In: Inter-
national Conference on Automated Deduction, pp. 701–705. Springer (1992).
https://doi.org/10.1007/3-540-55602-8 207

11. Farmer, W.M., Guttman, J.D., Thayer, F.J.: Little theories. In: International Con-
ference on Automated Deduction. pp. 567–581. Springer (1992). https://doi.org/
10.1007/3-540-55602-8 192

12. Farmer, W.M., Guttman, J.D., Thayer, F.J.: IMPS: an interactive mathematical
proof system. J. Autom. Reason. 11(2), 213–248 (1993)

13. Farmer, W.M., Johnson, D.M., Thayer, F.J.: Towards a discipline for developing
verified software. In: 9th National Computer Security Conference, pp. 91–98. Cite-
seer (1986)

14. Frege, G.: Begriffsschrift. Eine der arithmetischen nachgebildete Formalsprache der
reinen Denkens, Louis Nebert (1879)

15. Frege, G.: Die Grundlagen der Arithmetik: Eine logisch mathematische Unter-
suchung über den Begriff der Zahl. W. Koebner (1884)

16. Guttman, J.D.: Security goals: Packet trajectories and strand spaces. In: Inter-
national School on Foundations of Security Analysis and Design. pp. 197–261.
Springer (2000). https://doi.org/10.1007/3-540-45608-2 4

17. Guttman, J.D.: State and progress in strand spaces: proving fair exchange. J.
Autom. Reason. 48(2), 159–195 (2012)

18. Guttman, J.D., Johnson, D.M.: Three applications of formal methods at MITRE.
In: International Symposium of Formal Methods Europe. pp. 55–65. Springer
(1994). https://doi.org/10.1007/3-540-58555-9 87

19. Johnson, D.M.: Prelude to dimension theory: the geometrical investigations of
Bernard Bolzano. Archive History Exact Sci. 17(3), 261–295 (1977)

https://doi.org/10.1007/978-3-662-02021-0
http://arxiv.org/abs/1608.00678
https://doi.org/10.1007/3-540-55602-8_207
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/3-540-55602-8_192
https://doi.org/10.1007/3-540-45608-2_4
https://doi.org/10.1007/3-540-58555-9_87

Formal Methods and Mathematical Intuition 231

20. Johnson, D.M.: The Problem of the Invariance of Dimension in the Growth of
Modern Topology, part I. Archive History Exact Sci. 20(2), 97–188 (1979)

21. Johnson, D.M.: The problem of the invariance of dimension in the growth of modern
topology, part II. Arch. History Exact Sci. 25(2–3), 85–266 (1981)

22. Kennedy, H.: Selected Works of Giuseppe Peano. University of Toronto Press,
Toronto (1973)

23. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cam-
bridge University Press, Cambridge (2015)

24. Peano, G.: Arithmetices principia: Nova methodo exposita. Fratres Bocca (1889)
25. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Mathematische

Annalen 36(1), 157–160 (1890)
26. Peano, G.: Formulaire de mathématiques. Bocca frères, Ch. Clausen, 1 edn. (1895)
27. Peano, G.: Formulario Mathematico. Fratres Bocca, Ch. Clausen, 5 edn. (1908)
28. Pólya, G.: Mathematics and Plausible Reasoning: Induction and Analogy in Math-

ematics, vol. 1. Princeton University Press, Princeton (1954)
29. Pólya, G.: Mathematics and Plausible Reasoning: Patterns of Plausible Inference,

vol. 2. Princeton University Press, Princeton (1968)
30. Pólya, G.: How to Solve It: A New Aspect of Mathematical Method. Princeton

University Press, Princeton (2004)
31. Popper, K.: Conjectures and Refutations: The Growth of Scientific Knowledge.

Routledge, Milton Park (2002)
32. Proctor, N.: The restricted access processor: an example of formal verification.

ACM SIGSOFT Softw. Eng. Notes 10(4), 116–118 (1985)
33. Whitehead, A.N., Russell, B.: Principia Mathematica. Cambridge University Press,

Cambridge (1910–1913)
34. Whitehead, A.N., Russell, B.: Principia Mathematica. Cambridge University Press,

Cambridge. Second edn. (1925–1927)

Establishing the Price of Privacy
in Federated Data Trading

Kangsoo Jung(B), Sayan Biswas(B), and Catuscia Palamidessi(B)

Inria and Ecole Polytechnique, Palaiseau, France
{gangsoo.zeong,sayan.biswas}@inria.fr, catuscia@lix.polytechnique.fr

Abstract. Personal data is becoming one of the most essential resources
in today’s information-based society. Accordingly, there is a growing
interest in data markets, which operate data trading services between
data providers and data consumers. One issue the data markets have to
address is that of the potential threats to privacy. Usually some kind
of protection must be provided, which generally comes to the detriment
of utility. A correct pricing mechanism for private data should therefore
depend on the level of privacy. In this paper, we propose a model of data
federation in which data providers, who are, generally, less influential on
the market than data consumers, form a coalition for trading their data,
simultaneously shielding against privacy threats by means of differen-
tial privacy. Additionally, we propose a technique to price private data,
and an revenue-distribution mechanism to distribute the revenue fairly
in such federation data trading environments. Our model also motivates
the data providers to cooperate with their respective federations, facil-
itating a fair and swift private data trading process. We validate our
result through various experiments, showing that the proposed methods
provide benefits to both data providers and consumers.

Keywords: Data trading · Federated data market · Differential
privacy · Revenue splitting mechanism · Game theory

1 Introduction

The use of data analytics is growing, as it plays a crucial role in making deci-
sions and identifying social and economical strategies. Not all data, however,
are equally useful, and the availability of accurate data is crucial for obtaining
high-quality analytics. In line with this trend, data are considered an asset and
commercialized, and data markets, such as Datacoup [1] and Liveen [15], are on
the rise.

Unlike traditional data brokers, data markets provide a direct data trading
service between data providers and data consumers. Through data markets, data
providers can be informed of the value of their private data, and data consumers
can collect and process personal data directly at reduced costs, as intermediate
entities are not needed in this model.
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 232–250, 2021.
https://doi.org/10.1007/978-3-030-91631-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_13

Establishing the Price of Privacy in Federated Data Trading 233

Two important issues that need to be addressed for the success of such data
markets are (a) the prevention of privacy violation, and (b) an appropriate pric-
ing mechanism for personal data. Data owners are increasingly aware of the pri-
vacy risks, and are less and less inclined to expose their sensitive data without
proper guarantees. If the data market cannot be trusted concerning the protec-
tion of the sensitive information, the data providers will not be willing to trade
their data. For example, Cambridge Analytica collected millions of Facebook
users’ profiles under the pretext of using them for academic purposes, while in
reality they used this information to influence the 2016 US presidential election
[8]. When media outlets broke news of Cambridge Analytica’s business practices,
many Facebook users felt upset about the misuse of their data and left Facebook.

Differential privacy [3] can prevent exposure of personal information while
preserving statistical utility, hence it is a good candidate to protect privacy in
the data market. Another benefit of differential privacy is that it provides a
metric, i.e., the parameter ε, which represents the amount of obfuscation, and
therefore the level of privacy and utility of the sanitized data. Hence ε can be
used directly to establish the price of personal data as a function of the level of
privacy protection desired by an individual.

We envision a data trading framework in which groups of data providers ally
to form federations in order to increase their bargaining power, following the
traditional model of trade unions. At the same time, federations guarantee that
the members respect their engagement concerning the trade. Another important
aspect of the federation is that the value of the collection of all data is usually
different from the sum of the values of all members’ data. It could be larger,
for instance because the accuracy of the statistical analyses increases with the
size of the dataset, or could be smaller, for instance because of some discount
offered by the federation. Data consumers are supposed to make a collective deal
with a federation rather than with the individual data providers, and, from their
perspective, this approach can be more reliable and efficient than dealing with
individuals. Thus, data trading through federations can benefit both parties.

Given such a scenario, two questions are in order:

1. How is the price of data determined in a federation environment?
2. How does the federation fairly distribute the earnings to its members?

In this paper, we consider these issues, and we provide the following contri-
butions:

1. We propose a method to determine the price of collective data based on the
differential privacy metric.

2. We propose a distribution model based on game theory. More precisely, we
borrow the notion of Shapley value [18,20] from the theory of cooperative
games. This is a method to determine the contribution of each participant to
the payoff, and we will use it to ensure that each member of the federation
receives a compensation according to his contribution.

The paper is organized as follows: Sects. 2 recalls some basic notions about
differential privacy and Shapley values. Section 3 summarizes related works.

234 K. Jung et al.

Section 4 describes the federation-based data trading and our proposal for the
distribution of the earnings. Section 5 validates the proposed technique through
experiments. Section 6 concludes and discusses potential directions for future
work.

2 Preliminaries

In this section, we recall the basics about differential privacy and Shapley values.

2.1 Differential Privacy

Differential privacy (DP) is a method to ensure privacy on datasets based on
obfuscating the answers to queries. It is parametrized by ε ∈ R

+, that represents
the level of privacy. We recall that two datasets D1 and D2 are neighboring if
they differ by only one record.

Definition 1 (Differential privacy [3]). A randomized function R provides
ε-differential privacy if for all neighboring datasets D1 and D2 and all S ⊆
Range(R), we have

P[R(D1) ∈ S] ≤ eε × P[R(D2) ∈ S]

For example, if we have D as the space of all datasets, and some m ∈ N, then
the randomized function R : D �→ R

m could be such that R(D) = Q(D) + X,
where Q is a statistical query function executed on D, such as the counting or
histogram query, and X is some added noise to the true query response. For
ΔQ = max

D,D′∈D

|Q(D) − Q(D′)|, if X ∼ Lap(0, ΔQ
ε), R will guarantee ε-DP.

DP is typically implemented by adding controlled random noise to the true
answer to the query before reporting the result. ε is a positive real number
parameter, and the value of ε affects the amount of privacy, which decreases as ε
increases. For simplicity of discussion, we focus on the non-interactive and pure
ε-differential privacy.

Recently, a local variant of differential privacy (LDP), in which the data
owner directly obfuscate their data, has been proposed [5]. This variant consid-
ers the individual data points (or records), rather than queries on datasets. Its
definition is as follows:

Definition 2 (Local differential privacy [5]). A randomized function R sat-
isfies ε-local differential privacy if, for all pairs of individual data x and x′, and
for any subset S ⊆ Range(R), we have

P[R(x) ∈ S] ≤ eε · P[R(x′)] ∈ S,

When the domain of data points is finite, one of the simplest and most used
mechanisms for LDP is kRR [12]. In this paper, we assume that all data providers
use this mechanism to obfuscate their data.

Establishing the Price of Privacy in Federated Data Trading 235

Definition 3 (kRR Mechanism [12]). Let X be an alphabet of size k < ∞.
For a given privacy parameter ε, and given an input x ∈ X , the kRR mechanism
returns y ∈ X with probability:

P(y|x) =
1

k − 1 + eε

{
eε, if y = x

1, if y 	= x

2.2 Shapley Value

When participating in data trading through a federation, Pareto efficiency and
symmetry are the important properties for the intra-federation earning distri-
bution. Pareto efficiency means that at the end of the distribution process, no
change can be made without making participants worse off. Symmetry means
that all players who make the same contribution must receive the same share.
Obviously, the share should vary according to the member’s contribution to the
collective data.

The Shapley value [18,20] is a concept from game theory named in honor
of Lloyd Shapley, who introduced it. Thanks to this achievement, Shapley won
the Nobel Prize in Economics in 2012. The Shapley value applies to coopera-
tive games, and it is a method to distribute the total gain that satisfy Pareto
efficiency, symmetry, and differential distribution according to a player’s contri-
bution. Thus, all participants have the advantage of being fairly incentivized.
The solution based on the Shapley value is unique. Due to these properties,
the Shapley value is regarded as an excellent approach to design a distribution
method.

Let N = {1, . . . , n} be a set of players involved in a cooperative game and
M ∈ R

+ be a financial revenue from the data consumer. Let v : 2N �→ R
+ be

the characteristic function, mapping each subset S ⊆ N to the total expected
sum of payoffs the members of S can obtain by cooperation. (i.e., v(S) is the
total collective payoff of the players in S). According to the Shapley value, the
benefit received by player i in the cooperative game is given follows:

ψi(v,M) =
∑

S⊆N\{i}

|S|! × (n − |S| − 1)!
n!

(v(S ∪ {i}) − v(S))

We observe that v(A) > v(B) for any subsets B ⊂ A ⊆ N , and hence,
v(S ∪ {i}) − v(S) is positive. We call this quantity the marginal contribution
of player i in a given subset S. Note that ψi(v,M) is the expected marginal
contribution of player i over all subsets S ⊆ N .

In this paper, we use the Shapley value to distribute the earnings according
to the contributions of the data providers in the federations.

3 Related Works

Data markets, such as Datacoup [1] and Liveen [15], need to provide privacy
protection in order to encourage the data owners to participate. One of the key

236 K. Jung et al.

questions is how to appropriately price data obfuscated by a privacy-protection
mechanism. When we use differential privacy, the accuracy of data depends on
the value of the noise parameter ε, which determines the privacy-utility trade-
off. Thus, this question is linked to the problem of how to establish the value
of ε. Researchers have debated how to choose this value since the introduction
of differential privacy, and there have been several proposals [2,9,13,19]. In par-
ticular, [13] showed that the privacy protection level by an arbitrary ε can be
infringed by inference attacks, and it proposed a method for setting ε based on
the posterior belief. [2] considered the relation between differential privacy and
t-closeness, a notion of group privacy which prescribes that the earth movers dis-
tance between the distribution in any group E and the distribution in the whole
dataset does not exceed the threshold t, and showed that both ε-differential
privacy and t-closeness are satisfied when the t = maxE

|E|
N

(
1 + N−|E|−1

|E|)eε
)

where N is the number of records of the database.
Several other works have studied how to price the data according to the

value of ε [6,7,10,11,14,16,17,21]. The purpose of these studies is to determine
the price and value of the ε according to the data consumer’s budget, accuracy
requirement of information, the privacy preference of the data provider, and the
relevance of the data. In particular, the study in [21] assumed a dynamic data
market and proposed an incentive mechanism for data owners to truthfully report
their privacy preferences. In [16], the authors proposed a framework to find the
balance between financial incentive and privacy in personal data markets where
data owners sell their own data, and suggested the main principles to achieve
reasonable data trading. Ghosh and Roth [7] proposed a pricing mechanism
based on auctions that maximizes the data accuracy under the budget constraint
or minimizes the budget for the fixed data accuracy requirement, where data is
privatized with differential privacy.

Our study differs from previous work in that, unlike the existing approaches
assuming a one-to-one data trading between data consumers and providers, we
consider trades between a data consumer and a federation of data providers. In
such a federated environment, the questions are (a) how to determine the price
of the collective data according to the privacy preferences of each member, and
(b) how to determine the individuals’ contribution to the overall data value, in
order to receive a share of the earnings accordingly.

In this paper, we estimate the value of ε for the kRR mechanism [12], and
we fairly distribute the earnings to the members of the federations using the
Shapley value. We propose a valuation function that fits the characteristics of
differential privacy. For example, increasing value of ε does not infinitely increase
the price (we will elaborate on this in Sect. 4). Furthermore, we characterize the
conditions required for setting up the earning distribution schemes.

Establishing the Price of Privacy in Federated Data Trading 237

4 Differentially Private Data Trading Mechanism

4.1 Mechanism Outline

Overview: We focus on an environment with multiple federations of data
providers and one data consumer who interacts with the federations in order
to obtain information (data obfuscated using kRR mechanism with varying val-
ues of ε) in exchange of financial revenues. We assume that federations and
consumer are aware that the data providers use kRR mechanism, independently
and with their desired privacy level (which can differ from provider to provider).
Our method provides a sensible way of splitting the earnings using the Shapley
value. In addition, it also motivates an individual to cooperate with the federa-
tion she is a part of, and penalises intentional and recurring non-cooperation.

Notations and Set-up: Let F = {F1, . . . , Fk} be a set of k federations of data
providers, where each federation Fi has nFi

members for each i ∈ {1, . . . , k}.
For a federation F ∈ F , let its members be denoted by F = {pF

1 , . . . , pF
nF

}.
And finally, for every federation F , let pF

∗ ∈ F be an elected representative of F
interacting with the data consumer. This approach to communication benefits
both the data consumer and the data providers because (a) the data consumer
minimizes her communication cost by interacting with just one representative of
the federation, and (b) the reduced communication induces an additional layer
of privacy.

We assume that each member p of a federation F has a maximum privacy
threshold εT

p with which she, independently, obfuscates her data using the kRR
mechanism. We also assume that p has dp data points to potentially report.

We know from [4] that if there are m data providers reporting d1, . . . , dm

data points, independently privatizing them using the kRR mechanism with the
privacy parameters ε1, . . . , εm, the federated data of all the m providers also
follow a kRR mechanism with the privacy parameter defined as:

eε =
1∑m

i=1 di

m∑
i=1

di
eε
i

k − 1 + eε
i

.

We call the quantity dpε
T
p the information limit of data provider p ∈ F , and

ηT
F =

∑
p∈F

dp
eεT

p

k − 1 + eεT
p

the maximum information threshold of the federation F .
We now introduce the concept of valuation function f(.), that maps financial

revenues to information, representing the amount of information to be obtained
for a given price. It is reasonable to require that f(.) is strictly monotonically
increasing and continuous. In this work we focus on the effect on the privacy
parameter, hence we regard the collection of data points as a constant, and
assume that only ε can vary. We will call f(.) the privacy valuation function.

238 K. Jung et al.

Definition 4 (Privacy valuation function). A function f : R+ �→ R
+ is a

privacy valuation function if f(.) is strictly monotonically increasing and con-
tinuous.

As f(.) is strictly monotonically increasing and continuous, it is also invert-
ible. We denote the inverse of f(.) as f−1(.), where f−1 : R+ �→ R

+, maps a
certain privacy parameter ε to the financial revenue evaluated with selling data
privatized using kRR mechanism with ε as the privacy parameter.

As f(.) is essentially determining the privacy parameter of a differentially
private mechanism (kRR, in this case), it is reasonable to assume that f(.) should
be not only increasing, but also increasing exponentially for a linear increase of
money. In fact, when ε is high, it hardly makes any difference to further increase
its value. For example, when ε increases from 200 to 250, it practically makes no
difference to the data as they were already practically no private. On the other
hand, if we increase ε from 0 to 50, it creates a huge difference, conveying much
more information. Therefore, it makes sense to set f(.) to increase exponentially
with a linear increase of the financial revenue.

An example of a privacy valuation function that we consider in this paper
is f(M) = K1(eK2M − 1), taking the financial revenue M ∈ R

+ as its argu-
ment, satisfying the reasonable assumptions of evaluating the differential privacy
parameter that should be used to privatize the data in exchange of the financial
revenue of M . Here the parameters K1 ∈ R

+ and K2 ∈ R
+ are decided by the

data consumer according to her requirements (Fig. 1).

Fig. 1. Some examples of the privacy valuation function f(.) illustrated with different
values of K1 and K2. The data consumer decides the values of the parameters K1

and K2 according to her requirement, and broadcasts the determined function to the
federations.

Finalizing and Achieving the Deal: Before the private-data trading commences,
the data consumer, D, truthfully broadcasts her financial budget, $B, and a
privacy-valuation function, f(.), chosen by her to all the federations. At this
stage, each federation computes their maximum privacy threshold. In particular,
for a federation F with members F = {p1, . . . , pn}, and a representative p∗, pi

Establishing the Price of Privacy in Federated Data Trading 239

reports dpi
and εT

pi
to p∗ for all i ∈ {1, . . . , n}. p∗ computes the maximum

information threshold,

ηT
F =

n∑
i=1

dpi

eεT
pi

k − 1 + eεT
pi

,

of federation F .
At this point, p∗ places a bid to D to obtain $M , which maximises the

earning for F under the constraint of their maximum privacy threshold and the
maximum budget available from D, i.e., p∗ wishes to maximize M within the
limits M ≤ B and f(M) ≤ εT

F . Thus, p∗ bids for sending data privatized using
the kRR mechanism with εT

F in exchange of f−1(εT
F).

At the end of this bidding process by all the federations, D ends up with
ε = {εT

F1
, . . . , εT

Fk
}, the maximum privacy thresholds of all the federations. At

this stage D must ensure that
∑k

i=1 f−1(εT
Fi

) ≤ B, adhering to her financial
budget. In all probability,

∑k
i=1 f−1(εT

Fi
) is likely to exceed B in a realistic setup.

Here, D needs a way to “seal the deal” with the federations staying within her
financial budget, maximizing her information gain, i.e., maximizing

∑k
i=1 dFi

εFi
,

where dFi
is the total number of data points obtained from the ith federation

Fi, and εFi
is the overall privacy parameter of the kRR differential privacy with

the combined data of all the members of Fi.
A way D could finalize the deal with the federations is by proposing to receive

information obfuscated with w∗εT
Fi

using kRR mechanism to Fi ∀i ∈ {1, . . . , k},
where

w∗ = max

⎧⎨
⎩w :

∑
i∈{1,...,k}

f−1(wεT
Fi

) ≤ B,w ∈ [0, 1]

⎫⎬
⎭ ,

i.e., proportional to every federation’s maximum privacy threshold ensuring that
the price to be paid to the federations is within D’s budget. Note that w ∈
[0, 1] guarantees that wεT

F ≤ εT
F for every federation F , making the proposed

privacy parameter possible to achieve by every federation, as it’s within their
respective maximum privacy thresholds. Let the combined privacy parameter for
federation Fi, proposed by D to successfully complete the deal, be εP

Fi
= w∗εT

Fi

∀i ∈ {1, . . . , k}.
The above method to scale down the maximum privacy parameters to

propose a deal, maximizing D’s information gain, is just one of the possible
approaches. In theory, any method that ensures the total price to be paid to all
the federations, in exchange of their data, is within D’s budget, and the privacy
parameters proposed are within the corresponding privacy budgets of the fed-
erations, could be implemented to propose a revised set of privacy parameters
and, in turn, the price associated with them.

Definition 5 (Seal the deal). When all the federations are informed about
the revised privacy parameters desired of them, and they agree to proceed with
the private-data trading with the data consumer by achieving the revised privacy

240 K. Jung et al.

parameter by combining the data of their members, we say the deal has been
sealed between the federations and the data consumer.

Once the deal is sealed between the federations and the data consumer, Fi is
expected to provide data gathered from its members with an overall obfuscation
with the privacy parameter εP

Fi
using the kRR mechanism, in exchange of a

price M i = f−1(εP
Fi

) for every i ∈ {1, . . . , k}. Failing to achieve this parameter
of privacy for any federation results in a failure to uphold the conditions of the
“deal” and makes the deal void for that federation, with no price received.

A rational assumption made here is that if a certain federation F fails to
gather data from its members such that the overall kRR privacy parameter
of F is less than εP

F , then F doesn’t receive any partial compensation for its
contribution, as it would incur an increase in communication cost and time for
the data consumer in proceeding to this stage and “seal a new deal” with F ,
instead of investing the revenue to a more responsible federation.

The rest of the process consists in collecting the data and it takes place within
every federation F which has sealed the deal. At the tth round, for t ∈ {1, 2, . . .},
any member p of F has the freedom of contributing dt

p ≤ dp−
∑t−1

i=1 di
p data points

privatized using kRR mechanism with any parameter εt
p. The process continues

until the overall information collected until then achieves an information of at
least ηT

F . Let T denote the number of rounds needed by F to achieve the required
privacy level. As per the deal sealed between F and D, F needs to submit
DF =

∑
p∈F

∑T
i=1 di

p data points to D such that the overall kRR privacy level
of the collated data,

ηF =
∑
p∈F

T∑
t=1

dt
p

eεt
p

k − 1 + eεt
p

is at least ηT
F , and in return F receives a financial revenue of $M from D.

4.2 Earning Splitting

We use the Shapley value to estimate the contribution of each data provider
of the federation, in order to split the whole earning M , which F would receive
from D at the end of the trade. Let ψ : R+×R

+ �→ R
+ be the valuation function

used for evaluating the Shapley values of the members after each contribution.
If a certain member, p, of F reports d differentially private data points with
privacy parameter ε, ψi(v) should give the share of “contribution” made by p
over the total budget, M , of F , to be split across all its members. It is assumed
that each member, p, of F computes her Shapley value, knows what share of
revenue she would receive by contributing her data privatized with a chosen
privacy parameter, and uses this knowledge to decide on εt

p at every round t,
depending on her financial desire. In our model, characteristic function v(S) is
as follows:

v(S) =

{
M, if εF ≥ εP

F

0, if εF < εP
F

where n is the number of data provider in subset S .

Establishing the Price of Privacy in Federated Data Trading 241

Example 1. As an example, let us assume that there are p1, p2, p3, and each

provider’s contribution
∑T

t=1 dt
p

e
εt
p

k−1+e
εt
p

are 1.0, 0.5 and 0.3. And we assume

that εP
F is 1.4 and financial revenue of M is 60. In this case, the calculation of

each provider’s revenue using Shapley value is as follows:

Case 1) Only one data provider participates:

p1 : v(p1) = 0
p2 : v(p2) = 0
p3 : v(p3) = 0

Case 2) Two providers participate: v(p1+) = 0,v(p2) = 0,

p1 : v(p1 + p2) − v(p2) = M,v(p1 + p3) − v(p3) = M

p2 : v(p1 + p2) − v(p1) = M,v(p2 + p3) − v(p3) = 0
p3 : v(p1 + p3) − v(p1) = 0, v(p2 + p3) − v(p2) = 0

Case 3) All providers participate:

p1 : v(p1 + p2 + p3) − v(p2 + p3) = M

p2 : v(p1 + p2 + p3) − v(p1 + p3) = M

p3 : v(p1 + p2 + p3) − v(p1 + p2) = 0

According to the above results, the share of each user, according to their Shapley
values, is as follows:

ψ1(v) =
0!2!
3!

0 +
1!1!
3!

M +
1!1!
3!

M +
2!0!
3!

M =
4M

6
= 40

ψ2(v) =
0!2!
3!

0 +
1!1!
3!

M +
1!1!
3!

0 +
2!0!
3!

M =
2M

6
= 20

ψ3(v) =
0!2!
3!

0 +
1!1!
3!

0 +
1!1!
3!

0 +
2!0!
3!

0 =
0M

6
= 0

In this example, p3 has no effect on achieving the ηT
F . Thus, p3 is excluded

from the revenue distribution. If the revenue were distributed proportionally,
without considering the Shapley values, the revenue of p1 would be 33, p2 is
17, and p3 is 10. It would mean p1 and p2 would receive lower revenues even
though their contribution are sufficient to achieve the ηT

F , irrespective of the
participation of p3. The Shapley value enables the distribution of revenues only
for those who have contributed to achieving the goal.

One of the problems of computing the Shapley values is the high computa-
tional complexity involved. If there is a large number of players, i.e., the size
of a federation is large, the total number of subsets to be considered becomes
considerably large, engendering a limitation to real-world applications. To over-
come this, we use a pruning technique to reduce the computational complexity

242 K. Jung et al.

of the mechanism. A given federation F receives revenue M only when ηF ≥ ηT
F ,

as per the deal sealed with the data consumer. Therefore, it is not necessary to
calculate for Shapley values for the cases where ηF < ηP

F , since such cases do not
contribute towards the overall Shapley value evaluated for the members of F .

It is reasonable to assume this differentially private data trading between
the data consumer and the federations would continue periodically for a length
of time. For example, Acxiom, a data broker company, periodically collects and
manages personal data related to daily life, such as consumption patterns and
occupations. Periodic data collection has higher value than one-time data col-
lection because it can track temporal trends. For simplicity of explanation, let’s
assume that the trading occurs ever year. Hence, we consider a yearly period to
illustrate the final two steps of our proposed mechanism - “swift data collection”
and the “penalty scheme”. This would ensure that the data collection process is
as quick as possible for every federation in every year. Additionally, this would
motivate the members to cooperate and act in the best interests of their respec-
tive federations by not, unnecessarily, withholding their privacy contributions
to hinder achieving the privacy goals of their group, as per the deal finalized
with D.

Let R ∈ N be the “tolerance period”. For a member p ∈ F , we denote
d(m)i

p to be the number of data points reported by p in the ith round of data
collection of year m and we denote ε(m)i

p to be the privacy parameter used by p

to obfuscate the data points in the ith round of data collection of year m. Let Tm

be the number of rounds of data collection needed in year m by federation F to
achieve their privacy goal. We denote the total number of data points reported
by p in the year m by d(m)p, and observe that d(m)p =

∑Tm

i=1 d(m)i
p. Let ε(m)P

denote the value of the privacy parameter of the combined kRR mechanism of
the collated data that F needs, in order to successfully uphold the condition of
the deal sealed with D.

Definition 6 (Contributed privacy level). For a given member p ∈ F , we
define the contributed privacy level of p in year m as

ε(m)p =
∑

ε(m)i
p

.

Definition 7 (Privacy saving). For a given member p ∈ F , we define the
privacy saving of p over a tolerance period R (given by a set of some previous
years), decided by the federation F , as

Δp =
∑
m∈R

(
d(m)pε

T
p − d(m)pε(m)p

)

Swift Data Collection: It is in the best interest of F , and all its members, to
reduce the communication cost, time, and resources over the data collection
rounds, and achieve the goal of εP as soon as possible, to catalyze the trade
with D, and receive the financial revenue. We aim to capture this through our

Establishing the Price of Privacy in Federated Data Trading 243

mechanism, and enable the members not to “hold back” their data well below
their capacity.

To do this, in our model we design the Shapley valuation function, ψ(.),
such that for p ∈ F , in year m, ψ(Npε(m)t+1

p , d(m)p,M) = ψ(ε(m)t
p, d(m)p,M),

where Np ∈ Z
+ is the catalyzing parameter of the data collection, decided by the

federation, directly proportional to Δp. In particular, for p ∈ F , and a tolerance
period R decided, in prior, by F , it is a reasonable approach to make Np ∝ Δp,
as this would mean that any member p ∈ F , reporting d(m)p data points, would
need to use Np times higher value of ε in the (t+1)st round of data collection in
the year m, as compared to that in the tth round for the same number of data
points reported to get the same share of the benefit of the federation’s overall
revenue, where Np is decided by how much privacy savings p has had over a
fixed period of R.

This is made to ensure that if a member of a federation has been holding
back her information by using high values of privacy parameters over a period of
time, she should need to compensate in the following year by helping to quicken
up the process of data collection of her federation. This should motivate the
members of F to report their data with a high value of the privacy parameter
in earlier rounds than later, staying within their privacy budgets, so that the
number of rounds needed to achieve ε(m)P is reduced.

Penalty Scheme: It is also desirable to have every member of any given federation
to cooperate with the other members of the same federation, and facilitate the
trading process in the best interest of the federation, to the best of their ability.
That is why, in our mechanism, we incorporate an idea of a “penalty scheme”
for the members of a federation who are being selfish by keeping a substantial
gap between their maximum privacy threshold and their contributed privacy
level, wishing to enjoy benefits of the revenue at an unfair cost of other members
providing information privatized with almost their maximum privacy threshold.
To prevent such non-cooperation and attempted “free ride”, we design a “penalty
scheme” in the mechanism.

Definition 8 (Free rider). We call a certain member p ∈ F to be a free rider
if Δp ≥ δF , for some δF ∈ R

+. Here, δF is a threshold decided by the federation
F beforehand and informed to all the members of F .

Thus, in the ideal case, every member of F would have their privacy sav-
ings to be 0 if everyone contributed information to the best of their abilities,
i.e., provided data obfuscated with their maximum privacy parameter. But as
a federation, a threshold amount of privacy savings is tolerated for every mem-
ber. Under the “penalty scheme”, if a certain member p ∈ F qualifies as a
free rider, she is excluded from the federation, and is given a demerit point
by the federation, that can be recorded by a central system keeping a track of
every member of every federation, preventing p from getting admission to any
other federation for her tendency to free ride. This would mean p and has the
responsibility of trading with the data consumer by herself. We could define the

244 K. Jung et al.

Shapley valuation function used to determine the share of p’s contribution such
that f−1(εT

p) < ψ(v,M), implying that the revenue to be received by p dealing
directly with D, providing one data point obfuscated with her maximum privacy
threshold with respect to the privacy valuation function f(.), would be giving
a much lower revenue than what p would receive being a member of federation
F .1

Theorem 1. If the privacy valuation function used by the data consumer, D,
is f(m) = K1(eK2m − 1), in order to impose the penalty scheme to any member
p ∈ F of a federation F , the Shapley valuation function, ψ(.), chosen by F , must

satisfy
ln(

εT
p

K1
+1)

K2
< ψ

(
εT
p ,

ln(
w∗εT

p
K1

+K)

K2

)
, where K =

∑
p′ �=p∈F dp′ εT

p′
K1

+ 1, dπ is the

number of data points reported by any π ∈ F , and w∗ is the suggested scaling
parameter computed by D to propose a realistic deal, as described in Sect. 4.1.

Proof. See Appendix A �

Imposing the “penalty scheme” is expected to drive every member of a given
federation to be cooperating with the interests of the federation and all the other
fellow members to the best of their abilities, preventing potential free riders.

We show the pseudocode for the entire process in Algorithm 1 and describe
the swift data collection and penalty scheme in Algorithm 2 and 3.

Algorithm 1: Federation based data trading algorithm
Input: Federation F , Data consumer D;

Output: εPF and M ;
D broadcasts total budget B and f(.);

Federation F computes the εTF =
∑n

i=1 dpiε
T
pi

;
p∗ places a bid to D to obtain revenue M ;

F and D “seal the deal” to determine the εPF and M ;

while εF ≤ εPF and t ≤ T do
SwiftDataCollection(F , εPF);
p∗ computes the overall privacy εF

if εF ≥ εPFi
then

F receives the revenue M ;
p∗ computes the Shapley value ψi(v, M);
pi get their share of the revenue M

else
deal fails

1 Here, v(.) is the characteristic function of ψ(.), depending on εTp .

Establishing the Price of Privacy in Federated Data Trading 245

Algorithm 2: Swift data collection algorithm
Input: F = {p1, . . . , pnF },εPF ;
Output: ε(m)tp;

Function SwiftDataCollection(F ,εPF):
while i ≤ nF do

Compute Δpi ;
Compute the catalyzing parameter Npi ;
Determine the ε(m)tpi

= Npiε(m)t−1
pi

Algorithm 3: Penalty scheme
Input: F = {p1, . . . , pnF },ΔF = {Δp1 , . . . , ΔpnF

}, δF ;

Output: Updated F ;
while i ≤ nF do

if Δpi ≥ δF then
F \ {i}

5 Experimental Results

5.1 Experimental Environments

In this section, we show some experiments that support the claim that proposed
method succeeds to obtain the promised ε and reduce the computation time for
Shapley value evaluation. The number of data providers constituting the fed-
eration is set to 25, 50, 75, and 100, respectively. The value of εT

p is selected
from the normal distribution between 1 and 10 with mean 5 and standard devi-
ation 1 independently for all participants p in the federation. The experimental
environment is a Intel(R) i5-9400H CPU and 16 GB of memory.

5.2 Number of Rounds Needed for Data Collection

Achieving the ηT
F is the key for the participation of F in the data trading. If ηT

F

is not achieved as the collated information level for the federation, there is no
revenue from the data consumer. Thus, it is important to encourage the data
providers to report sufficient data in order to reach the goal of the deal sealed
with the data consumer. The swift data collection is a way to catalyze the
process of obtaining data from the members of every federation F , minimising
the number of rounds of data-collection, to achieve ηT

F . Furthermore, we set
Np = Δp

d(m)pεT
p

for a certain member p in federation F , to motivate the data
providers who have larger privacy savings to provide more information per round.

In the experiment, ηT
F is set to be 125, 250, 375 and 500, respectively. Data

provider p determines ε(m)t
p randomly in first round, and then computes ε(m)t

p

according to Np, for every p in the federation. We compare two cases, the cat-
alyzing method and the non-catalyzing method.

246 K. Jung et al.

Fig. 2. Experimental results for combined ε. Combined ε refers to the amount of infor-
mation provided by the data providers.

As illustrated in Fig. 2, the experimental results show that both catalyzing
data collection and its non-catalyzing counterpart achieve the promised epsilon
values within 5 rounds, but it can be seen that the catalyzing method achieves
εP
F in an earlier round because data providers decide the privacy level used to

obfuscate their data with, considering their privacy savings, resulting in a swift
data collection.

5.3 Number of Free Riders by Penalty Scheme

Fig. 3. Experimental results for number of free riders. We compared the number of
free riders incurred by the penalty scheme in catalyzing and non-catalyzing methods
for cases where the number of data providers is 50 and 100.

The penalty scheme that prevents free riders is based on the premise that
trading data by participating in a federation is more beneficial than trading data

Establishing the Price of Privacy in Federated Data Trading 247

directly with data consumers (Theorem 1). We evaluated the number of free
riders in the catalyzing and non-catalyzing methods according to the increase of
the threshold δF in the experiment.

As shown in the Fig. 3, we can see that the number of free riders increases
in both techniques as the threshold value δF is increased to 1,2,3. However, the
non-catalyzing method makes more free riders than the catalyzing method that
changes the amount of provided information according to privacy saving ΔP . In
other words, the catalyzing method and penalty scheme help to keep members
in the federation by inducing them to reach the target epsilon in an earlier time.

5.4 Reduced Shapley Value Computation Time

As mentioned in Sect. 4.2, one of the limitations of Shapley value evaluation is to
compute it for all combinations of subsets. Through this experiment, we demon-
strate that the proposed pruning technique reduces the computation time for
calculating the Shapley values. We compared the computation times of the pro-
posed method with brute force method that calculates all the cases by increasing
the number of data providers in the federation, by 3, from 15 to 27 (Table 1).

Table 1. Computation time of brute force and proposed pruning method

of data providers Brute force (Sec) Pruning method (Sec)

15 0.003 0.0007

18 0.02 0.001

21 0.257 0.0049

24 2.313 0.009

27 19.706 0.019

As shown in the table, the computation time of Shapley value evaluation
increases exponentially because the total number of subsets to be considered
does the same. The proposed method can calculate the Shapley values in less
time by removing unnecessary computations.

6 Conclusion

With the spreading of data-driven decision making practices, the interest in
personal data is increasing. The data market gives a new opportunity to trade
personal data, but a lot of research is still needed to solve privacy and pricing
issues. In this paper, we have considered a data market environment in which
data providers form federations and protect their data with the locally differ-
entially private kRR mechanism, and we have proposed a pricing and earnings-
distribution method. Our method integrates different data providers’ values of

248 K. Jung et al.

the privacy parameter ε and combines them to obtain the privacy parameter of
the federation. The received earning is distributed using the Shapley values of
the members, which guarantees the Pareto efficiency and symmetry. In addi-
tion, we have proposed a swift data collection mechanism and a penalty scheme
to catalyze the process of achieving the target amount of information quickly,
by penalizing the free riders who do not cooperate with their federation’s best
interest.

Our study has also disclosed new problems that need further investigation.
Firstly, we are assuming that the data providers keep the promise for the “seal
the deal”, but, in reality, the data providers can always add more noise than what
they promised. We plan to study how to ensure that data providers uphold their
data trading contracts. Another direction for future work is considering more
differential privacy mechanisms, other than kRR.

Appendix A Proofs

Theorem 1. If the privacy valuation function used by the data consumer, D,
is f(m) = K1(eK2m − 1), in order to impose the penalty scheme to any member
p ∈ F of a federation F , the Shapley valuation function, ψ(.), chosen by F , must

satisfy
ln(

εT
p

K1
+1)

K2
< ψ

(
εT
p ,

ln(
w∗εT

p
K1

+K)

K2

)
, where K =

∑
p′ �=p∈F dp′ εT

p′
K1

+ 1, dπ is the

number of data points reported by any π ∈ F , and w∗ is the suggested scaling
parameter computed by D to propose a realistic deal, as described in Sect. 4.1.

Proof. Using the privacy valuation function f(m) = K1(eK2m − 1), we have

f−1(ε) =
ln(ε

K1
+1)

K2
. Let p be an arbitrary member of F with a maximum privacy

threshold εT
p . Therefore, in order to impose a penalty scheme on p, it needs to

be ensured that

ln(εT
p

K1
+ 1)

K2
< ψ(v,M)

=⇒
ln(εT

p

K1
+ 1)

K2
< ψ(v, f−1(εP

F))

[w∗ ∈ [0, 1] is the scaling parameter chosen by D and εP
F = w∗εT

F]

=⇒
ln(εT

p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(εP
F

K1
+ 1)

K2

⎞
⎠

Establishing the Price of Privacy in Federated Data Trading 249

=⇒
ln(εT

p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(C0+w∗εT
p

K1
+ 1)

K2

⎞
⎠

[where C0 =
∑

p′ �=p∈F

d′
pε

T
p′ is a constant]

=⇒
ln(εT

p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(C0+w∗εT
p

K1
+ 1)

K2

⎞
⎠

ln(εT
p

K1
+ 1)

K2
< ψ

⎛
⎝v,

ln(w∗εT
p

K1
+ K)

K2

⎞
⎠

(1)

[for the constant K =
C0

K1
+ 1.]

�

References

1. Datacoup - reclaim your personal data. https://datacoup.com/, Accessed 26 May
2021

2. Domingo-Ferrer, J., Soria-Comas, J.: From t-closeness to differential privacy and
vice versa in data anonymization. Knowl.-Based Syst. 74, 151–158 (2015)

3. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

4. Elsalamouny, E., Palamidessi, C.: resconstruction of sensitive distributions under
free-will privacy, draft paper

5. Erlingsson, Ú., Pihur, V., Korolova, A.: Rappor: randomized aggregatable privacy-
preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1054–1067 (2014)

6. Fleischer, L.K., Lyu, Y.H.: Approximately optimal auctions for selling privacy
when costs are correlated with data. In: Proceedings of the 13th ACM Conference
on Electronic Commerce, pp. 568–585 (2012)

7. Ghosh, A., Roth, A.: Selling privacy at auction. In: Proceedings of the 12th ACM
Conference on Electronic Commerce, pp. 199–208 (2011)

8. Hinds, J., Williams, E.J., Joinson, A.N.: “it wouldn’t happen to me”: privacy
concerns and perspectives following the Cambridge analytica scandal. Int. J. Hum.-
Comput. Stud. 143, 102498 (2020)

9. Holohan, N., Antonatos, S., Braghin, S., Mac Aonghusa, P.: (k, ε)-anonymity: k
-anonymity with ε-differential privacy (2017). arXiv preprint arXiv:1710.01615

10. Hsu, J., et al.: Differential privacy: an economic method for choosing epsilon. In:
2014 IEEE 27th Computer Security Foundations Symposium, pp. 398–410. IEEE
(2014)

https://datacoup.com/
http://arxiv.org/abs/1710.01615

250 K. Jung et al.

11. Jung, K., Park, S.: Privacy bargaining with fairness: privacy-price negotiation sys-
tem for applying differential privacy in data market environments. In: 2019 IEEE
International Conference on Big Data (Big Data), pp. 1389–1394. IEEE (2019)

12. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under
local privacy. In: International Conference on Machine Learning, pp. 2436–2444.
PMLR (2016)

13. Lee, J., Clifton, C.: How much is enough? choosing ε for differential privacy. In:
Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 22

14. Li, C., Li, D.Y., Miklau, G., Suciu, D.: A theory of pricing private data. ACM
Trans. Database Syst. (TODS) 39(4), 1–28 (2014)

15. Liveen - blockchain-based social network platform that provides fair rewards for
the users’ contents. https://www.liveen.com/, Accessed 26 May 2021

16. Nget, R., Cao, Y., Yoshikawa, M.: How to balance privacy and money through pric-
ing mechanism in personal data market (2017). arXiv preprint arXiv:1705.02982

17. Roth, A.: Buying private data at auction: the sensitive surveyor’s problem. ACM
SIGecom Exchang. 11(1), 1–8 (2012)

18. Roth, A.E.: The Shapley Value: Essays in Honor of Lloyd S. Cambridge University
Press, Shapley (1988)

19. Tang, J., Korolova, A., Bai, X., Wang, X., Wang, X.: Privacy loss in Apple’s
implementation of differential privacy on MacOS 10.12 (2017). arXiv preprint
arXiv:1709.02753

20. Winter, E.: The shapley value. Handb. Game Theory Econ. Appl 3, 2025–2054
(2002)

21. Zhang, T., Zhu, Q.: On the differential private data market: endogenous evo-
lution, dynamic pricing, and incentive compatibility (2021). arXiv preprint
arXiv:2101.04357

https://doi.org/10.1007/978-3-642-24861-0_22
https://www.liveen.com/
http://arxiv.org/abs/1705.02982
http://arxiv.org/abs/1709.02753
http://arxiv.org/abs/2101.04357

On the Complexity of Verification
of Time-Sensitive Distributed Systems

Max Kanovich1,6, Tajana Ban Kirigin2(B), Vivek Nigam3,4, Andre Scedrov5,
and Carolyn Talcott7

1 University College, London, UK
m.kanovich@ucl.ac.uk

2 Department of Mathematics, University of Rijeka, Rijeka, Croatia
bank@uniri.hr

3 Federal University of Paráıba, João Pessoa, Brazil
vivek@ci.ufpb.br

4 Munich Research Center, Huawei, Munich, Germany
5 University of Pennsylvania, Philadelphia, USA

scedrov@math.upenn.edu
6 Computer Science Department, HSE University, Moscow, Russia

7 SRI International, Menlo Park, USA
clt@csl.sri.com

Abstract. This paper develops a Multiset Rewriting language with
explicit time for the specification and analysis of Time-Sensitive Dis-
tributed Systems (TSDS). Goals are often specified using explicit time
constraints. A good trace is an infinite trace in which the goals are sat-
isfied perpetually despite possible interference from the environment. In
our previous work [14], we discussed two desirable properties of TSDSes,
realizability (there exists a good trace) and survivability (where, in addi-
tion, all admissible traces are good). Here we consider two additional
properties, recoverability (all compliant traces do not reach points-of-no-
return) and reliability (the system can always continue functioning using
a good trace). Following [14], we focus on a class of systems called Pro-
gressing Timed Systems (PTS), where intuitively only a finite number
of actions can be carried out in a bounded time period. We prove that
for this class of systems the properties of recoverability and reliability
coincide and are PSPACE-complete. Moreover, if we impose a bound on
time (as in bounded model-checking), we show that for PTS the reliabil-
ity property is in the Πp

2 class of the polynomial hierarchy, a subclass of
PSPACE. We also show that the bounded survivability is both NP-hard
and coNP-hard.

Keywords: Multiset rewriting · Time-sensitive distributed systems ·
Complexity

Dedicated to Joshua Guttman with gratitude for his inspiration and friendly and
insightful discussions.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 251–275, 2021.
https://doi.org/10.1007/978-3-030-91631-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_14

252 M. Kanovich et al.

1 Introduction

In our previous work [14], we considered the verification of Time-Sensitive Dis-
tributed Systems (TSDS) motivated by applications with autonomous drones
performing surveillance of an area. The drones must always collectively have
recent pictures, i.e., at most M time units old, of certain strategic locations. In
attempting to achieve this goal, the drones consume energy and must return to
the base station to recharge their batteries. In addition, the environment may
interfere as there may be winds that move the drone in a certain direction, or
other flying objects may block a drone’s path.

In [14] we considered two verification properties, realizability and survivabil-
ity. Here we introduce two more properties, reliability and recoverability. Let us
explain all four properties in a little more detail. The realizability problem con-
sists of checking, whether under the given time constraints, the specified system
can achieve the assigned goal, e.g., always collect recent pictures of the sensi-
tive locations. In many settings, the drones themselves or the environment may
behave non-deterministically. For example, if a drone wants to reach a point
in the northeast, it may initially move either north or east, both being equally
likely. Similarly, there could be wind at a particular location, causing any drone
under the influence of the wind to move in the direction of the wind. A stronger
property, survivability, accounts for such nondeterminism and tests whether the
specified system can achieve the assigned goal for all possible outcomes (of drone
actions and environmental influences). The properties of realizability and sur-
vivability represent the two extremes w.r.t. requirements placed on a system. A
system that is realizable can achieve the designed goal in some way. A system
that satisfies survivability will always achieve the goal, under all circumstances.
In some cases, realizability may not be satisfactory, while in others, survivability
may be too costly or unattainable. For such systems, intermediate solutions are
of interest.

To model such intermediate requirements in system design, in this paper we
introduce additional properties, namely reliability and recoverability. In order
to ensure system goals, drones should always be able to function. In particular,
drones should always be able to come back to recharge, both in terms of distance
and energy. In other words, drones should never go too far and reach so-called
points-of-no-return where it may no longer be possible to safely return to home
base. Engineers should strive to program drones to avoid reaching points-of-no-
return. This property is referred to as recoverability. A system satisfies reliability
if the system is always able to successfully continue its expected performance,
i.e., the system never gets stuck. For example, drones should always be able to
ensure the system goals, regardless of the disturbances they have experienced
in the environment. At any point in time, after the drones have successfully
monitored sensitive locations for a certain period of time, they should be able to
find a way to continue with their good performance. For example, considering
possible technical failures and maintenance of the drones, it may be necessary for
engineers to call in additional drones to collectively provide up-to-date images
of the entire area of interest.

On the Complexity of Verification of Time-Sensitive Distributed Systems 253

Following [14], we focus on a class of systems called Progressing Timed
Systems (PTS), which are specified as timed multiset rewriting theories. In
a PTS, only a finite number of actions can be carried out in a bounded time
interval. In addition to formalizing the properties, we show that the following
relations hold for PTS:

Survivability =⇒ Reliability ⇐⇒ Recoverability =⇒ Realizability .

In their spirit, these properties seem similar to safety and liveness proper-
ties [1] or a combination of these properties. However, it is not straightforward
to classify them in these terms. Namely, the properties we consider, formally
defined in Sect. 3.3, contain an alternation of quantifiers, which makes it more
challenging to formally represent them as a combination of safety and liveness
properties [1].

In our previous work [13,17–19], we proposed a timed Multiset Rewriting
(MSR) framework for specifying compliance properties similar to quantitative
safety properties [1,6] and investigated the complexity of a number of decision
problems. These properties were defined over sets of finite traces, i.e., execu-
tions of a finite number of actions. The above properties, on the other hand,
are defined over infinite traces. The transition to properties over infinite traces
leads to many challenges, as one can easily fall into undecidable fragments of
verification problems. The main challenge is to identify the syntactic conditions
on specifications so that the verification problems fall into a decidable fragment
and, at the same time, that interesting examples can be specified.

The remainder of the paper is organized as follows:

– Following [14], in Sect. 2 we discuss Progressing Timed Systems.
– In Sect. 3 we define concepts for specifying the relevant quantitative tempo-

ral properties of timed systems used to define the properties of realizability,
reliability, recoverability and survivability.

– In Sect. 4 we then formally compare the expressiveness of these properties.
– Sect. 5 investigates the complexity of verification problems that involve the

above properties. While these problems are undecidable in general [19], we
show that they are PSPACE-complete for PTSes. We also show that, when
we bound time (as in bounded-model checking), realizability of PTSes is NP-
complete, survivability is in the Δp

2 class of the polynomial hierarchy [27] and
the reliability is in the Πp

2 class of the polynomial hierarchy. We also obtain
the NP and co-NP lower bound for the n-time bounded survivability problem.

– Sect. 6 provides a discussion on related and future work.

Relation to Our Previous Work. This paper considerably extends the conference
paper [14]. All the material involving properties of reliability and recoverability is
new, including the investigation of the relations among all four properties from
Sect. 4, the complexity results relating to reliability from Sect. 5, and the lower
bound complexity results for n-time bounded survivability are new. Due to space
constraints, many proofs and detailed considerations are placed in the technical
report [16].

254 M. Kanovich et al.

2 Multiset Rewriting Systems

We briefly review timed multiset rewriting with discrete time of [19].
Assume a finite first-order typed alphabet, Σ, with variables, constants,

function and predicate symbols. Terms and formulas are constructed as usual
(see [10]) by applying symbols of correct type (or sort). We assume that
the alphabet contains the constant z : Nat denoting zero and the function
s : Nat → Nat denoting the successor function. Whenever it is clear from the
context, we write n for sn(z) and (n + m) for sn(sm(z)). In addition, we allow
an unbounded number of fresh values [5,9] to be involved.

If P is a predicate of type τ1 × τ2 × · · · × τn → o, where o is the type
for propositions, and u1, . . . , un are terms of types τ1, . . . , τn, respectively, then
P (u1, . . . , un) is a fact. A fact is ground if it contains no variables.

In order to specify timed systems, we attach a timestamp to each fact. Times-
tamped facts are of the form F@t, where F is a fact and t ∈ N is a natural number
called timestamp. For simplicity, we often just say facts instead of timestamped
facts. Also, when we want to emphasize the difference between a fact F and a
timestamped fact F@t, we say that F is an untimed fact.

Note that timestamps are not constructed using the successor function.
Rather, timestamps can take any natural number value. To obtain the complex-
ity results, we use a symbolic representation of the problems and abstractions
that can handle unbounded time values. For more insight see discussion after
Definition 2.

There is a special predicate symbol Time with arity zero that is used to
represent global time. A configuration is a finite multiset of ground timestamped
facts, S = { Time@t, F1@t1, . . . , Fn@tn } with a single occurrence of a Time
fact.

Given a configuration S containing Time@t, a fact F@tF in S is a future
fact if its timestamp is greater than the global time t, i.e., if tF > t. Similarly,
a fact F@tF in S is a past fact if tF < t, and a fact F@tF in S is a present fact
if tF = t.

Configurations are to be interpreted as states of the system, e.g., configura-
tion

S1 = {Time@4, Dr(d1, 1, 2, 10)@4, Dr(d2, 5, 5, 8)@4, P (p1, 1, 1)@3, P (p2, 4, 6)@1}

denotes a scenario with two drones located at positions (1, 2) and (5, 5), with 10
and 8 energy units, and with two points to be monitored at positions (1, 1) and
(4, 6). The former was last photographed at time 3 and the latter at time 1. The
global time is 4.

Using variables, including time variables, we are able to represent configura-
tions of particular form. For example, configuration

Time@(T + D), Dr(X, 5, 6, Y)@(T + D), P (p2, 4, 6)@T
specifies that some drone X with Y energy units is currently at the position
(5, 6) and that the point of interest at position (4, 6) was last photographed D

On the Complexity of Verification of Time-Sensitive Distributed Systems 255

time units ago. This holds for any configuration containing the above facts for
some instantiation of the variables T,D,X and Y .

Configurations are modified by rewrite rules which can be interpreted as
actions of the system. There is only one rule, Tick, which represents how global
time advances:

Time@T −→ Time@(T + 1), (1)

where T is a time variable denoting the global time. With an application of
a Tick rule, a configuration, { Time@t, F1@t1, . . . , Fn@tn }, representing the
state of a system at time t, is replaced with the configuration { Time@(t +
1), F1@t1, . . . , Fn@tn } representing the system at time t + 1.

The remaining rules are instantaneous, since they do not modify global
time, but may modify the remaining facts of configurations (those different from
Time). Instantaneous rules have the form:

Time@T, W1@T1, . . . , Wp@Tp, F1@T ′
1, . . . , Fn@T ′

n | C −→
∃ �X. [Time@T, W1@T1, . . . , Wp@Tp, Q1@(T + d1), . . . , Qm@(T + dm)]

(2)

where d1, . . . , dm are natural numbers, W1@T1, . . . , Wp@Tp, F1@T ′
1, . . . , Fn@T ′

n

are timestamped facts, possibly containing variables, and C is the guard of
the rule which is a set of constraints involving the time variables that appear
as timestamps of facts in the pre-condition of the rule, i.e., the variables
T, T1, . . . , Tp, T

′
1, . . . , T

′
n. The facts Wi, Fj and Qk are all different from the fact

Time and �X are variables that do not appear in W1, . . . , Wp, F1, . . . , Fn.
Constraints may be of the form T > T ′ ± d or T = T ′ ± d, where T and

T ′ are time variables, and d ∈ N is a natural number. Here and throughout the
rest of the paper, the symbol ± stands for either + or −, i.e., constraints may
involve addition or subtraction. We use T ′ ≥ T ′ ± d to denote the disjunction of
T > T ′ ± d and T = T ′ ± d. All variables in the guard of a rule are assumed to
appear in the rule’s pre-condition.

Finally, the variables �X that are existentially quantified in a rule (Eq. 2)
are to be replaced by fresh values, also called nonces in the protocol security
literature [5,9]. As in our previous work [12], we use nonces whenever unique
identification is required, for example for drone identification.

A rule W | C −→ ∃ �X.W ′ can be applied to a configuration S if there is a
ground substitution σ such that Wσ ⊆ S and that Cσ is true. The resulting
configuration is

(
(S \ W) ∪ W ′)σ, where variables �X are fresh. More precisely,

given a rule r, an instance of a rule is obtained by substituting constants for all
variables appearing in the pre- and post-condition of the rule. This substitution
applies to variables appearing in terms inside facts, to variables representing fresh
values, and to time variables used to specify timestamps of facts. An instance of
an instantaneous rule can only be applied if all the constraints in its guard are
satisfied.

Following [9] we say that a timestamped fact F@T is consumed by a rule r if
this fact occurs more times on the left side than on the right side of the rule r . A
timestamped fact F@T is created by some rule r if that fact occurs more times on

256 M. Kanovich et al.

the right side than on the left side of the rule r. Hence, facts F1@T ′
1, . . . , Fn@T ′

n

are consumed by rule (Eq. 2) while facts Q1@(T + d1), . . . , Qm@(T + dm) are
created by this rule. Note that a fact F can appear in a rule with different
timestamps, but for the above notions we count instances of the same times-
tamped fact F@T . In a rule, we usually color red the consumed facts and blue
the created facts.

Remark 1. Using constraints we are able to formalize time-sensitive properties
and problems that involve explicit time requirements. The set of constraints may,
however, be empty, i.e., rules may have no constraints attached.

We write S −→r S ′ for the one-step relation where the configuration S is
rewritten into S ′ using an instance of rule r. For a set of rules R, we define
S −→∗

R S ′ to be the transitive reflexive closure of the one-step relation on all
rules in R. We omit the subscript R, when it is clear from the context, and
simply write S −→∗ S ′.

Note that due to the nature of multiset rewriting, there are various aspects of
non-determinism in the model. For example, different actions and even different
instantiations of the same rule may apply to the same configuration S, leading
to different resulting configurations S ′.

Definition 1 (Timed MSR System). A timed MSR system T is a set of
rules containing only instantaneous rules (Eq. 2) and the Tick rule (Eq. 1).

A trace of a timed MSR system is constructed by a sequence of its rules. In
this paper, we consider both finite and infinite traces. A finite trace of a timed
MSR system T starting from an initial configuration S0 is a sequence

S0 −→ S1 −→ S2 −→ · · · −→ Sn

and an infinite trace of T starting from an initial configuration S0 is a sequence
S0 −→ S1 −→ S2 −→ · · · −→ Sn −→ Sn+1 −→ · · ·

where for all i ≥ 0, Si −→ri
Si+1 for some ri ∈ T . When a configuration S

apperas in a trace P we write S ∈ P .
We will pay particular attention to periods of time represented by traces.

Since time advances by one unit of time per Tick rule, a finite (infinite) number
of Tick rules in a trace represents a finite (infinite) time period. One can easily
imagine traces containing a finite number of Tick rules and an infinite number
of instantaneous rules. Such traces would represent an infinite number of actions
performed in a finite time interval. In this paper we are not interested in such
traces and focus on so called infinite time traces.

Definition 2 (Infinite Time Trace). A trace P of a timed MSR T is an
infinite time trace if the time tends to infinity in P , i.e., (∀n ∈ N) (∃ S ∈ P)
such that Time@T ∈ S and T > n.

Since in any trace, the global time ticks in single time units, any infinite time
trace is an infinite trace, and it contains an infinite number of Tick rules.

We have shown in our previous work [12,13,17,19,20] that reachability prob-
lems for MSR are undecidable if no further restrictions are imposed, already

On the Complexity of Verification of Time-Sensitive Distributed Systems 257

when considering only finite traces. In order to obtain decidability, among other
restrictions, we assume a bound on the size of facts. The size of a timestamped
fact P@T , written |P@T |, is the total number of symbols appearing in P , not
considering the timestamp. For instance, |P (s(z), f(a,X), a)@12| = 7. Without
this bound, interesting decision problems can be shown undecidable by encod-
ing the Post correspondence problem [9]. For our complexity results, it is also
important to assume that the system is balanced [19,20]. A timed MSR system
T is balanced if for all instantaneous rules r ∈ T , r creates the same number of
facts as it consumes, i.e., the instantaneous rules are of the form:

Time@T, W, F1@T ′
1, . . . , Fn@T ′

n | C −→
∃ �X. [Time@T, W, Q1@(T + d1), . . . , Qn@(T + dn)] .

By consuming and creating facts, rewrite rules can increase and decrease the
number of facts in configurations throughout a trace. However, in balanced MSR
systems, the number of facts in configurations is constant throughout a trace.

2.1 Progressing Timed Systems

Following [14], we discuss a particular class of timed MSR systems, called pro-
gressing timed MSR systems (PTSes), in which only a finite number of actions
can be carried out in a bounded time interval. This is a natural condition for
many systems, similar to the finite-variability assumption used in the temporal
logic and timed automata literature.

Definition 3 (Progressing Timed System). A timed MSR system T is a
progressing timed MSR system (PTS) if T is balanced and for all instantaneous
rules r ∈ T :

i) Rule r creates at least one fact with timestamp greater than the global time,
i.e., in (Eq. 2), di ≥ 1 for at least one i ∈ {1, . . . , n};

ii) Rule r consumes only facts with timestamps in the past or at the current
time, i.e., in (Eq. 2), the set of constraints C contains the set
Cr = { T ≥ T ′

i | Fi@T ′
i , 1 ≤ i ≤ n } .

For the sake of readability, from this point on we assume that for all rules r the
set of their constraints implicitly contains the set Cr, as shown in Definition 3,
and do not always write Cr explicitly in our specifications.

The following rule, which denotes the action of a drone taking a photo of a
point of interest, is an example of a rule in a PTS:

Time@T, P (I,X, Y)@T ′, Dr(Id,X, Y,E + 1)@T | { T ′ < T } −→
Time@T, P (I,X, Y)@T , Dr(Id,X, Y,E)@(T + 1)

The constraint T ′ < T is used to prevent drones from repeatedly photographing
the same point of interest at the same time to save energy.

258 M. Kanovich et al.

The following result [14] establishes a bound on the number of instances of
instantaneous rules appearing between two consecutive instances of Tick rules
in a trace of a PTS. This bound is then used to formalize the intuition that
PTSes always move things forward.

Proposition 1. Let T be a PTS, S0 an initial configuration and m the number
of facts in S0. For all traces P of T starting from S0, let

Si −→Tick Si+1 −→ · · · −→ Sj −→Tick Sj+1

be any subtrace of P with exactly two instances of the Tick rule, one at the
beginning and the other at the end. Then j − i < m. [14]

Proof. Let P be an arbitrary trace in T and
Si −→Tick Si+1 −→ · · · −→ Sj −→Tick Sj+1

an arbitrary subtrace of P with exactly two instances of the Tick rule. All the
rules between Tick rules in the above subtrace are instantaneous.

Since T is a PTS, the application of any instantaneous rule creates at least
one future fact and consumes at least one present or past fact. In other words,
an application of an instantaneous rule reduces the total number of past and
present facts in the configuration.

Since the system T is balanced, all the above configurations Si, . . . ,Sj have
the same number of facts, m. Recall also that the fact Time does not change
when the instantaneous rules are applied. Thus, since there are at most m − 1
present or past facts different from Time in any Sk, i < k ≤ j, a series of at
most m − 1 instantaneous rules can be applied between two Tick rules. �

As per the above statement, in a PTS an unbounded number of instantaneous
rules cannot be applied in a bounded interval of time. Hence, infinite traces
in PTSes represent infinite time periods. In particular, there are no Zeno-type
phenomena in traces of PTSes.

Proposition 2. Let T be a PTS. All infinite traces of T are infinite time traces,
i.e., traces where time tends to infinity. [14]

Proof. Assume that in some infinite trace P of a PTS T the current time does
not exceed some value M . Then, as time advances by a single time unit, there
are at most M time ticks in P. According to Proposition 1, there are at most
m − 1 instantaneous rules between any Tick rule and the next Tick rule in P.
Consequently, in total, there are at most (M +1) · (m−1)+M rules in P, i.e., P
is a finite trace. Contradiction. �

Finally, notice that the PTS model has many carefully developed syntactic
conditions, e.g., balanced condition, the form of time constraints, the form of
instantaneous rules (Eq. 2). As we have previously shown [19], relaxing any of
these conditions leads to undecidability of important verification problems over
finite traces. Clearly, these conditions are also needed for infinite traces. The
additional challenge in allowing infinite traces is to represent arbitrarily large
time periods. Our definition of PTS is a simple and elegant way to enforce this.

On the Complexity of Verification of Time-Sensitive Distributed Systems 259

Moreover, as we show in [14] and the technical report [15], it is still possible
to specify many interesting examples with our PTS model and still prove the
decidability of our verification problems involving infinite traces.

3 Quantitative Temporal Properties

Following [14], we begin the Sect. 3.1 by discussing critical configurations, a
language used to define desirable properties of systems. This is a key concept
in our framework, used to describe explicit timing constraints that a system
should satisfy. In Sect. 3.2 we discuss lazy time sampling, which is a condition
on traces that intuitively enforces that systems react at the expected time. Then
in Sect. 3.3, we discuss a number of verification problems.

3.1 Critical Configurations and Compliant Traces

Critical configurations represent bad configurations that should be avoided by
a system. Critical configuration specification is a set of pairs CS = {〈S1, C1〉,
. . . , 〈Sn, Cn〉}. Each pair 〈Sj , Cj〉 in CS is of the form 〈{F1@T1, . . . , Fpj

@Tpj
},

Cj〉, where T1, . . . , Tpj
are time variables, F1, . . . , Fpj

are facts (possibly contain-
ing variables) and Cj is a set of time constraints involving only the variables
T1, . . . , Tpj

.
Given a critical configuration specification CS, we classify a configuration S

as critical w.r.t. CS if for some 1 ≤ i ≤ n, there is a grounding substitution
σ, such that Siσ ⊆ S and all constraints in Ciσ are satisfied. The substitution
application (Sσ) is defined as usual [10], i.e., by mapping time variables in S
to natural numbers, nonce names to nonce names (renaming of nonces), and
non-time variables to terms. Notice that nonce renaming is assumed, since the
particular nonce name should not matter for classifying a configuration as criti-
cal. Nonce names cannot be specified in advance, since they are freshly generated
in a trace, i.e., during the execution of the process being modelled. Several exam-
ples illustrating these concepts are discussed in [14] and [15], along with proofs
showing how the explicit time conditions are handled symbolically.

Definition 4 (Compliant Trace). A trace P of a timed MSR system is com-
pliant w.r.t. a given critical configuration specification CS if P does not contain
any configuration that is critical w.r.t. CS.

Note that if the critical configuration specification is empty, no configuration
is critical, i.e., all traces are compliant.

3.2 Time Sampling

To define sensible quantitative verification properties, we need to assume some
conditions on when the Tick rule is applicable. Otherwise, any MSR system
allows traces containing only instances of Tick rules:

260 M. Kanovich et al.

S1 −→Tick S2 −→Tick S3 −→Tick S4 −→Tick · · ·
In such a trace, the system never acts to avoid critical configurations and would
easily contain a critical configuration Sj , related to some constraint T > T ′ + d,
involving global time T and sufficiently large j.

Imposing a time sampling is one way to avoid such traces. Time sampling
is used, for example, in the semantics of verification tools such as Real-Time
Maude [25]. In particular, time sampling dictates when the Tick rule must be
applied and when it cannot be applied. Such a treatment of time is used for both
dense and discrete times in searching and model checking timed systems.

Definition 5 (Lazy Time Sampling (l.t.s.)). A (possibly infinite) trace P
of a timed MSR system T uses lazy time sampling if for any occurrence of the
Tick rule Si −→Tick Si+1 in P, no instance of any instantaneous rule in T can
be applied to the configuration Si.

In the lazy time sampling instantaneous rules are given a higher priority than
the Tick rule. In the remainder of this paper, we focus on the lazy time sampling.
We leave it to future work to investigate whether similar results hold for other
time sampling schemes.

3.3 Verification Problems

Four properties are discussed in this section: realizability and survivability from
[14] and the new properties of reliability and recoverability. Figure 1 illustrates
these properties, which we define below. Since the names of the properties sound
similar in English, we also introduce one-letter names for the properties for better
readability and differentiation.

The first property we discuss is realizability. It guarantees that the given
system can achieve the assigned goal under the given time constraints and design
specifications, e.g., that drones can repeatedly collect up-to-date images of the
sensitive locations.

Realizability is useful for increasing confidence in a specified system, since a
system that is not realizable cannot accomplish the given tasks (specified by a
critical specification) and the designer would therefore have to reformulate it.

However, if a system is shown to be realizable, the trace, P, that proves
realizability could also provide insights into the sequence of actions that lead to
accomplishment of the specified tasks. This can be used to refine the specification
and reduce possible non-determinism.

Open distributed systems are inherently non-deterministic due to, e.g., the
influence of the environment. Therefore, it is important to know whether the
system can avoid critical configurations despite non-determinism. We call this
property survivability.

Definition 6 (Realizability/Z property). A timed MSR system T sat-
isfies realizability w.r.t. an initial configuration S0, a critical configuration

On the Complexity of Verification of Time-Sensitive Distributed Systems 261

specification CS and the l.t.s. if there exists a compliant infinite time trace from
S0 that uses the l.t.s.1 [14]

The Z property of a timed MSR T w.r.t. S0, CS and l.t.s. can be expressed
using the formula:

FZ (T ,S0) := ∃ t ∈ TT ,S0 .[t ∈ TT
time ∩ TT

lts ∩ TT
c],

where TT ,S0 is the set of all traces of T starting from S0, TT
time is the set of all

infinite time traces of T , TT
lts is the set of all traces of T that use the l.t.s. and

TT
c is the set of all traces of T compliant w.r.t. CS.

Definition 7 (Survivability/S property). A timed MSR T satisfies surviv-
ability w.r.t. an initial configuration S0, a critical configuration specification CS
and the l.t.s. if it satisfies realizability with respect to S0, CS, and the l.t.s. and
if all infinite time traces from S0 that use the l.t.s. are compliant. [14]

Using the above notation, the S property of a timed MSR T can be expressed
with:

FS (T ,S0) := FZ (T ,S0) ∧ ∀ t ∈ TT ,S0 .[t ∈ TT
time ∩ TT

lts ⇒ t ∈ TT
c].

Although survivability is a desirable property, much more so than realiz-
ability, it can sometimes be a rather severe requirement for a system, or even
unachievable. Hence, when designing a system, one may want to compromise
and consider less demanding properties. For example, one may want to avoid
configurations that appear as “dead-ends”, i.e., configurations that necessarily
lead to critical configurations. We call such configurations points-of-no-return.
For example, drones should not fly so far that it is no longer possible to reach a
recharging station due to energy consumption.

Definition 8 (Point-of-No-Return) Given a timed MSR system T , a con-
figuration S is called a point-of-no-return with respect to a critical configuration
specification CS, and the l.t.s. if S is not critical w.r.t. CS, and if all infinite
traces of T starting with S and using the l.t.s. are not compliant w.r.t. CS.

The set of all configurations that are points-of-no-return of a timed MSR T ,
CT

pon, can be described as CT
pon := {S | S /∈ CT

cr ∧ ∀ t.[t ∈ TT ,S ∩ TT
∞ ∩ TT

lts ⇒
t /∈ TT

c]}, where CT
cr is the set of all critical configurations of T and TT

∞ is the
set of all infinite traces of T .

1 For simplicity, in the rest of the paper, for properties of systems and configurations,
we will not always explicitly state the critical configuration specification, initial con-
figuration, and/or time samplingwith respect to which the property is considered.
For example, when it is clear from the context, we simply say that a system satisfies
Z property or that it is realizable.
Also, when for a property of an MSR T we only consider traces that use the l.t.s.,
we also say that T uses the lazy time sampling.

262 M. Kanovich et al.

There exists no compliant infinite trace from a point-of-no-return that uses
the l.t.s. A point-of-no-return itself is not critical, but must eventually lead
to a critical configuration on every infinite trace that uses the l.t.s. Therefore,
points-of-no-return should be avoided when searching for (infinite) compliant
traces.

(a) Z property (b) S property (c) point-of-no-return (d) V property (e) L property

Fig. 1. Illustration of properties of (a) realizability, (b) survivability, (d) recoverabil-
ity, and (e) reliability, as well as configurations that are a point-of-no-return (c). Green
lines represent compliant traces that use the l.t.s., while red lines represent traces that
use the l.t.s. but are not compliant. Red circles represent critical configurations, while
green circles are not critical. Quantification marked with t → ∞ denotes quantification
over infinite time traces. (Color figure online)

Remark 2. A point-of-no-return represents the system that still satisfies the
required conditions, but it will inevitably fall into a bad state where this is no
longer the case. Therefore, to better distinguish between points-of-no-return and
critical configurations, the condition that a point-of-no-return is not critical is
included in the definition.

We use the notion of points-of-no-return, to introduce new properties of
our systems. Configurations that are points-of-no-return should be avoided. For
example, a drone may enter an area where it may end up with empty batteries
due to frequent high winds. Such points should be avoided.

Definition 9 (Recoverability/V property). A timed MSR system T satis-
fies recoverability with respect to an initial configuration S0, a critical config-
uration specification CS, and the l.t.s. if it satisfies realizability with respect to
S0, CS, and the l.t.s. and if no point-of-no-return is reachable from S0 on a
compliant trace that uses the l.t.s. That is, if a configuration S is reachable from
S0 on a compliant trace that uses the l.t.s., then S is not a point-of-no-return.

The V property of a timed MSR T can be expressed with the following
formula:

FV (T ,S0) := FZ (T ,S0) ∧ [∀ t ∈ TT ,S0 ∩ TT
c ∩ TT

lts.∀S ∈ t.S /∈ CT
pon].

In fact, with the V property we want to ensure that all finite compliant
traces from the initial configuration that use the l.t.s. can be extended to infinite
compliant traces that use the l.t.s.

On the Complexity of Verification of Time-Sensitive Distributed Systems 263

Next, with the reliability property we want to ensure that as long as one
follows a compliant trace, there is a way to extend the trace to a compliant
infinite time trace. In our drone scenario, a reliable system should be designed
so that as long as the drones follow instructions, including rules for flying in high
winds, there is always a way for the drones to avoid critical configurations.

Definition 10 (Reliability/L property). A timed MSR system T satisfies
reliability w.r.t. an initial configuration S0, a critical configuration specification
CS and the l.t.s. if it satisfies realizability with respect to S0, CS, and the l.t.s. and
if for any configuration S reachable from S0 on a compliant trace that uses the
l.t.s., there exists a compliant infinite time trace from S that uses the l.t.s.

The L property of a timed MSR T can be expressed with the following
formula:

FL (T ,S0) := FZ (T ,S0) ∧
[∀t ∈ TT ,S0 ∩ TT

c ∩ TT
lts.∀S ∈ t.∃ t′ ∈ TT ,S . t′ ∈ TT

c ∩ TT
lts ∪ TT

time].

A timed MSR system that satisfies the L property represents a system that is
always able to avoid points-of-no-return. Such a system satisfies the Z property,
but it may not satisfy the S property. Indeed, the class of systems satisfying the
Z property is a proper superclass of the class of systems satisfying the L property.
Systems satisfying the L property also satisfy the V property, while the class of
systems satisfying the V property is a proper superclass of the class of systems
satisfying the S property. We present these results in Sect. 4, for general MSR
systems and PTSes.

Some of these relations clearly follow since the Z property is included in the
definitions of the other properties. Although this is an intuitive approach where
for the more demanding properties we only consider systems that can accomplish
their tasks, i.e., satisfy the Z property, given a non-critical initial configuration,
the Z property would follow from the V property and from the L property
anyway. Similarly, by including the Z property, we avoid the vacuously survivable
systems with no infinite time traces that use the l.t.s. For details see [15, Remark
3].

Time-Bounded Versions of Verification Problems
Motivated by bounded model checking, we also investigate the time-bounded ver-
sions of the above problems. Instead of infinite traces, in time-bounded versions
of verification problems we consider traces with a fixed number of occurrences
of Tick rules.

Definition 11 (n-Time Realizability/n-Z property). A timed MSR sys-
tem T satisfies n-time realizability w.r.t. the l.t.s., a critical configuration spec-
ification CS, and an initial configuration S0 if there exists a compliant trace, P,
from S0 that uses the l.t.s. such that global time advances by exactly n time units
in P. [14]

264 M. Kanovich et al.

Definition 12 (n-Time Survivability/n-S property). A timed MSR sys-
tem T satisfies n-time survivability property w.r.t. the l.t.s., a critical configu-
ration specification CS and an initial configuration S0 if it satisfies n-Z property
and if all traces with exactly n instances of the Tick rule starting with S0 and
using the l.t.s. are compliant. [14]

Analogously, we define the n-time bounded version of the reliability problem.
We consider all compliant traces covering at most n time units, and extend them
to compliant traces over exactly n time units.

Definition 13 (n-Time Reliability/n-L property). A timed MSR system T
satisfies n-time reliability w.r.t. an initial configuration S0, a critical configura-
tion specification CS, and the l.t.s. if it satisfies n-time realizability with respect
to S0, CS, and the l.t.s. and if for any configuration S, reachable from S0 on a
compliant trace P that uses the l.t.s. and has at most n instances of the Tick
rule, there exists a trace P ′ that uses the l.t.s. such that P ′ extends P, P ′ is
compliant, and P ′ has exactly n instances of the Tick rule.

Since the notion of a point-of-no-return is defined to be inseparable from
infinite traces, the time-bounded version of the recoverability system problem
makes little sense. Hence, we do not consider this problem separately.

4 Relations Among Properties of Timed MSR

In this section we formally relate all the different properties discussed in Sect. 3.3.
To compare these properties, we review in the accompanying technical report [15]
the machinery introduced in our previous work [19] called δ-representations. This
machinery is also used in Sect. 5 to obtain complexity results for the verification
problems.

In the accompanying technical report [15] we show that the Z property
implies the n-Z property, as expected, but also that for a sufficiently large n,
the converse implication also holds. Namely, in a trace with a sufficiently large
number of Tick rules, the same δ-representation is repeated, forming a loop that
can be repeated to obtain an infinite time trace showing the Z property. The
same implications hold for the other properties.

4.1 Relations Among Different Properties of Timed MSR and PTS

We now relate different properties defined over infinite traces. We can distinguish
all these properties for general timed MSR, but only some for PTSes, as stated
below.

Proposition 3. Let T be a timed MSR system that uses the l.t.s., S0 an initial
configuration and CS a critical configuration specification.

If T satisfies the L property, then T satisfies the V property.
If T satisfies the V property, then T does not necessarily satisfy the L prop-

erty.

On the Complexity of Verification of Time-Sensitive Distributed Systems 265

Proof. Let T be a timed MSR system that satisfies the L property.
Assume T does not satisfy the V property. Then, since T satisfies the Z property,
there is a compliant trace from S0 to some point-of-no-return SP that uses the
l.t.s. Since T satisfies the L property, there is a compliant infinite time trace
from SP that uses the l.t.s. As SP is a point-of-no-return, this contradicts the
notion of point-of-no-return.
We give an example of a timed MSR system, T , that satisfies the V property,
but does not that satisfy the L property.
Let S ′

0 = {Time@0, C@1}, CS ′ = ∅, and let T ′ contain only the following
instantaneous rules:

Time@T, C@T ′ | T ′ ≤ T −→ Time@T, D@T (3a)
Time@T, C@T ′ | T ′ ≤ T −→ Time@T, A@T (3b)

Time@T, A@T ′ −→ Time@T, B@T (3c)
Time@T, B@T ′ −→ Time@T, A@T (3d)

The system T ′ satisfies the Z property since there is a compliant infinite
time trace from S ′

0 that uses l.t.s.:

Time@0, C@1 −→Tick Time@1, C@1 −→(3a) Time@1, D@1 −→Tick

Time@2, D@1 −→Tick Time@3, D@1 −→Tick Time@4, D@2 −→Tick . . .

(4)
There is only one other infinite trace form S0 that uses the l.t.s.:

Time@0, C@1 −→Tick Time@1, C@1 −→(3b) Time@1, A@1 −→(3c)

Time@1, B@1 −→(3d) Time@1, A@1 −→(3c) Time@1, B@2 −→(3d) . . .
(5)

Its subtrace obtained from S0 by applying the Tick rule followed by the rule
(3b) reaches the configuration Time@1, A@1. This subtrace is compliant but it
cannot be extended to a compliant infinite time trace that uses the l.t.s. Hence,
T ′ does not satisfy the L property.

However, T ′ trivially satisfies the V property since there are no critical
configurations and, hence, no points-of-no-return. �

The properties of timed MSR defined in Sect. 3.3 involve infinite time traces
that use the l.t.s. Recall that for any given PTS T and any configuration S,
there exists an infinite time trace of T that starts with S and uses the l.t.s.

Although V and L are different properties of timed MSR systems in general,
it turns out that for the class of PTSes these properties coincide.

Proposition 4. Let T be a PTS that uses the l.t.s., S0 an initial configuration,
and CS a critical configuration specification.

System T satisfies the L property iff T satisfies the V property.

Proof. Since a PTS is a timed MSR system, it follows from Proposition 3 that
a PTS, which satisfies the L property, also satisfies the V property.

266 M. Kanovich et al.

Assume that a PTS T does not satisfy the L property. If S0 is critical, then T
does not satisfy the Z property and consequently, does not satisfy the V property.
If S0 is not critical, there is a compliant trace from S0 to some configuration S1

that uses the l.t.s. which cannot be extended to a compliant infinite time trace
that uses the l.t.s.

Then, S1 is a point-of-no-return. Namely, if P is an infinite trace from S1

that uses the l.t.s., by Proposition 2, P is an infinite time trace that uses the
l.t.s. Then, P is not compliant. Since the point-of-no-return S1 is reachable from
S0 on a compliant trace using the l.t.s., T does not satisfy the V property. �

We show that the remaining properties are different even for PTSes. Further-
more, we provide the relations among the properties for PTSes and for timed
MSR systems in general. We first show that L and S are different properties of
PTSes, and, consequently, different properties of timed MSR systems.

Proposition 5. Let T be a PTS that uses the l.t.s., S0 an initial configuration
and CS a critical configuration specification.

If T satisfies the S property, then T satisfies the L property.
If T satisfies the L property, it may not satisfy the S property.

Proof. Assume that T satisfies the S property, but does not satisfy the L prop-
erty. Then, since T satisfies the Z property, there exists a compliant trace, P,
from S0 to some configuration S1 that cannot be extended to a compliant infi-
nite time trace that uses the l.t.s. Let P ′ be an infinite time trace which is an
extension of P that uses the l.t.s. Such a trace P ′ exists due to Proposition 2,
but it is not compliant.

Since T satisfies the S property, all infinite time traces from S0 that use the
l.t.s. are compliant, including P ′. Contradiction.

The following example of a PTS satisfies the L property, but does not satisfy
the S property.
Let S0 = {Time@0, A@0, B@0}, CS = { 〈 {B@T,D@T ′}, ∅ 〉} and let PTS T
contain only the following instantaneous rules:

Time@T, A@T ′, B@T ′′ | {T ′ ≤ T, T ′′ ≤ T} −→ Time@T, B@T ′′, C@(T + 1) (6a)
Time@T, A@T ′, B@T ′′ | {T ′ ≤ T} −→ Time@T, B@T ′′, D@(T + 1) (6b)

Time@T, B@T ′, C@T ′′ | {T ′ ≤ T, T ′′ ≤ T} −→ Time@T, A@T , B@(T + 1) (6c)

The following trace from S0 uses the l.t.s. and is not compliant:
Time@0, A@0, B@0 −→(6b) Time@0, B@0,D@1 .

Hence, T does not satisfy the S property.
To show that T satisfies the L property, we first show that T satisfies the

Z property. The following trace from S0 is a compliant infinite time trace that
uses the l.t.s.:

Time@0, A@0, B@0 −→(6a) Time@0, B@0, C@1 −→Tick

−→Tick Time@1, B@0, C@1 −→(6c) Time@1, A@1, B@2 −→Tick

−→Tick Time@2, A@1, B@2 −→(6a) Time@2, B@2, C@3 −→Tick . . .

On the Complexity of Verification of Time-Sensitive Distributed Systems 267

Next, assume P is a compliant trace from S0 to some S1 that uses the l.t.s. Then
P does not contain rule (6b), which always results in a critical configura-
tion. Hence, only rules (6a), (6c) and Tick are used in P, so S1 is either
{Time@t, A@t′, B@t′′ } or {Time@t, B@t′, C@t′′ }. Using only the rules
(6a), (6c) and Tick, the trace P can be extended to a compliant infinite time
trace that uses the l.t.s. Hence, T satisfies the L property. �

However, the above does not hold for general MSR systems, i.e., MSR systems
that satisfy the S property do not necessarily satisfy the L property.

Proposition 6. Let T be a timed MSR that uses the l.t.s., S0 an initial config-
uration and CS a critical configuration specification.

If T satisfies the S property, it may not satisfy the L property.
If T satisfies the L property, it may not satisfy the S property.

Proof. Let T ′, S ′
0 and CS ′ be as specified in the proof of Proposition 3. Recall

that T ′ does not satisfy the L property.
The system T ′ satisfies the S property. Namely, there are only two infinite

traces from S ′
0 that use the l.t.s., traces (4) and (5) specified in the proof of

Proposition 3. However, trace (5) is not an infinite time trace, so there is only
one infinite time trace from S ′

0 that uses the l.t.s., trace (4). Therefore, since
trace (4) is compliant, T ′ satisfies the S property.

By Proposition 5 there is a PTS, and therefore an MSR, that satisfies the
L property but does not satisfy the S property. �

Next, we show how the V property relates to the Z property.

Proposition 7. Let T be a timed MSR that uses the l.t.s., S0 an initial config-
uration, and CS a critical configuration specification.

If T satisfies the V property, then T satisfies the Z property.
A system T that satisfies the Z property may not satisfy the V property.

Proof. Assume T satisfies the V property. Then, T satisfies the Z property by
definition.

We prove the other statement by providing an example of a PTS that satisfies
the Z property, but does not satisfy the V property. Let S ′′

0 = {Time@0, A@0},
CS ′′ = { 〈{D@T}, ∅ 〉} and let PTS T ′′ contain only the following instantaneous
rules:

Time@T, A@T ′ | {T ′ ≤ T} −→ Time@T, B@(T + 1) (7a)
Time@T, A@T ′ | {T ′ ≤ T} −→ Time@T, C@(T + 1) (7b)
Time@T, B@T ′ | {T ′ ≤ T} −→ Time@T, A@(T + 1) (7c)
Time@T, C@T ′ | {T ′ ≤ T} −→ Time@T, D@(T + 1) (7d)

The following trace, which uses the l.t.s., shows the Z property of T ′′:

Time@0, A@0 −→(7a) Time@0, B@1 −→Tick Time@1, B@1 −→(7c)

Time@1, A@2 −→Tick Time@2, A@2 −→(7a) Time@2, B@3 −→Tick . . .

268 M. Kanovich et al.

The configuration S̃ = {Time@0, C@1} is reachable from S ′′
0 by a compliant

trace that uses the l.t.s.: Time@0, A@0 −→
(7b) Time@0, C@1. S̃ is a point-

of-no-return as rule (7d) is the only instantaneous rule that can be applied
after a Tick, so all infinite traces from S̃ that use the l.t.s. contain the critical
configuration {Time@1,D@2}.

Since S̃ is a point-of-no-return, T ′′ does not satisfy the V property. �

Using transitivity of the subset relation, we can infer relations among all our
properties for both PTSes and timed MSR systems in general. We summarize
our results in the following corollaries.

Corollary 1. Let realiZ
MSR

ability , reL
MSR

iability , recoV
MSR

erability and S MSR
urvivability be

the classes of timed MSR systems satisfying the Z , L , V and S properties,
respectively, w.r.t. the l.t.s. Then, the following relations hold:

S MSR
urvivability �=reL

MSR
iability ⊂ recoV

MSR
erability ⊂ realiZ

MSR
ability

Proof. The statement follows directly from the Propositions 6, 3, and 7. �

Corollary 2. Let realiZ
PTS

ability , reL
PTS

iability , recoV
PTS

erability and S PTS
urvivability be

the classes of PTSes satisfying the Z , L , V and S properties, respectively, w.r.t.
the l.t.s. Then the following proper subset relations hold:

S PTS
urvivability ⊂ reL

PTS
iability = recoV

PTS
erability ⊂ realiZ

PTS
ability

Proof. The statement follows directly from the Propositions 5 and 4, and the
proof of proposition 7. �

Corollary 3. Let realinZ PTS
ability , renL PTS

iability and nS PTS
urvivability be the classes

of PTSes satisfying the n-Z , n-L and n-S properties, respectively, w.r.t. the
l.t.s. Then, the following proper subset relations hold:

nS PTS
urvivability ⊂ renL PTS

iability ⊂ realinZ PTS
ability .

Proof. Let a PTS T satisfy the n-S property. We check that T satisfies the n-
L property. Let S be a configuration that is reachable from S0 on a compliant
trace P that uses the l.t.s. and has at most n instances of the Tick rule. Since T
is a PTS, only a bounded number of instantaneous rules can be applied before a
Tick rule appears in a trace that uses the l.t.s. (Proposition 1). Hence, the trace
P can be extended to a compliant trace P ′ that contains exactly n instances
of the Tick rule and uses the l.t.s. Since T satisfies the n-S property, P ′ is
compliant. Consequently, T satisfies the n-L property.

Now, let T satisfy the n-L property. Then, the trivial trace of length 1 from
S0 (containing only S0) can be extended to a compliant trace P ′ that contains
exactly n instances of the Tick rule and uses the l.t.s. Hence, T satisfies the
n-Z property.

To show that the inclusions are proper, we give examples of PTSes that
satisfy one, but not the other property. The PTS given in the proof of Proposi-
tion 7 is an example of a system that satisfies the n-Z property, ∀n > 0, which

On the Complexity of Verification of Time-Sensitive Distributed Systems 269

does not satisfy even the 1-S property. Similarly, the PTS given in the proof of
Proposition 5 satisfies the n-L property, ∀n > 0, but it does not even satisfy the
1-S property. �

5 Complexity Results for PTSes

In this section we investigate the complexity of the verification problems defined
in Sect. 3.3 for PTSes. Recall that the L and V properties for PTSes coincide.

5.1 PSPACE-Completeness of Verification Problems for PTSes

For the Z problem and the S problem, PSPACE-completeness for PTSes was
proved in [14,16]. Here we show PSPACE-completeness of the L problem for
PTSes, that is for the problem of deciding whether a given PTS satisfies the
L property.

Let Σ be a finite alphabet, T a PTS, S0 an initial configuration, m the
number of facts in S0, CS a critical configuration specification, k an upper-bound
on the size of the facts, and Dmax an upper-bound on the numerical values in
S0, T , and CS. Let the functions N ,X , and L run in Turing space bounded by
a polynomial in m, k, log2(Dmax) and return 1, respectively, when a rule in T is
applicable to a given δ-representation, when a δ-representation is critical w.r.t.
CS, and when a Tick rule should be applied to the given δ-representation using
the l.t.s.

Proposition 8 (L problem for PTSes is PSPACE hard).
The L problem for PTSes that use the l.t.s. is PSPACE-hard.

Proof. The Z problem is an instance of the problem of checking whether a config-
uration is not a point-of-no-return. Recall that a system satisfies the Z property
if there exists a compliant infinite time trace P from the initial configuration in
which global time tends to infinity. Since T is progressing, we obtain the condi-
tion on time (time tends to infinity) from Proposition 2. Indeed, a system satisfies
the Z property if and only if the initial configuration is not a point-of-no-return.
Since PSPACE and co-PSPACE are the same complexity class and the Z prop-
erty is PSPACE-hard, the problem of determining whether a configuration is a
point-of-no-return is PSPACE-hard.

Since the L property problem comprises checking whether a configuration is
a point-of-no-return, it is PSPACE-hard. �

Proposition 9 (L problem for PTSes is in PSPACE).
For a PTS T assume Σ,S0,m, CS, k,Dmax, N ,X , and L as described above.

There is an algorithm that, given an initial configuration S0, decides whether
T satisfies the L property with respect to the l.t.s., CS, and S0 and the algorithm
runs in a space bounded by a polynomial in m, k and log2(Dmax).

270 M. Kanovich et al.

Proof. We first propose an algorithm that, for a fixed system T and a fixed crit-
ical configuration specification CS, checks whether some δ-representation corre-
sponds to a configuration that is a point-of-no-return w.r.t. T and CS.

Let REAL denote the Z problem PSPACE algorithm over δ-representations
(see proof of [16, Theorem 1] for details). When given δ-representation W, as
input, the algorithm REAL(W) returns ACCEPT if and only if there is an
infinite time trace of T that starts with W, uses the l.t.s., and is compli-
ant w.r.t. CS, and it runs in polynomial space w.r.t. the given parameters,
m, k and log2(Dmax). Since PSPACE and co-PSPACE are the same complex-
ity class, we switch the ACCEPT and FAIL and obtain a deterministic algo-
rithm NOTREAL that runs in polynomial space w.r.t. m, k and log2(Dmax).
NOTREAL(W) accepts if and only if there is no compliant infinite time trace
from W that uses the l.t.s. Then, using NOTREAL we construct the algo-
rithm PON that checks whether the given δ-representation W corresponds to
a point-of-no-return. Let PON be the following algorithm, which takes a δ-
representation W as input:

1. If X (W) = 1, i.e., if W represents a critical configuration, then return
FAIL, otherwise continue;

2. If NOTREAL(W) = 1, i.e., if W represents a point-of-no-return,
then return ACCEPT, otherwise return FAIL.

When given δ-representation W, as input, the algorithm PON(W) accepts if and
only if W is a δ-representation of a point-of-no-return w.r.t. T and CS. Since X ,
and NOTREAL run in the polynomial space w.r.t. m, k and log2(Dmax), PON
is a deterministic algorithm that also runs in such a polynomial space.

Next, we check that for any configuration S reachable from S0 using the l.t.s.,
there is a compliant infinite time trace from S, i.e., that S is not a point-of-no-
return. The following algorithm accepts when no point-of-no-return is reachable
from S0 in T on a compliant trace that uses the l.t.s., and fails otherwise. It
begins with i = 0 and W0 set to be the δ-representation of S0, and iterates the
following sequence of operations:

1. If Wi represents a critical configuration, i.e., if X (Wi) = 1, then return
FAIL, otherwise continue;

2. If Wi represents a point-of-no-return, i.e., if PON(Wi) = 1, then
return FAIL, otherwise continue;

3. If i > LΣ(m, k,Dmax), then ACCEPT; else continue;
4. If L(Wi) = 1, then replace Wi by Wi+1 obtained from Wi by applying

the Tick rule; Otherwise non-deterministically guess an instantaneous
rule, r, from T applicable to Wi, i.e., such a rule r that N (r,Wi) = 1. If
so, replace Wi with the δ-representation Wi+1 resulting from applying
the rule r to the δ-representation Wi. Otherwise, continue;

5. Set i = i + 1.

Since PON , N ,X , and L run in Turing space bounded by a polynomial
in m, k and log2(Dmax), the above algorithm runs in deterministic polynomial
space. �

On the Complexity of Verification of Time-Sensitive Distributed Systems 271

The following result follows directly from Propositions 8 and 9.

Theorem 1. For a PTS T assume Σ,S0,m, CS, k,Dmax, N ,X , and L as
described at the beginning of Sect. 5.1. The L problem for PTSes that use the
l.t.s. is PSPACE-complete.

Remark 3. When considering the time bounded versions of the Z , L and S prob-
lems we use auxiliary functions with configurations as their arguments. For sim-
plicity, we still use the same notation, N ,X , and L , as types of arguments are
clear from the context. We will assume that N , X , and L run in time bounded
by a polynomial in m and k, and return 1, respectively, when a rule in T is appli-
cable to a given configuration, when a configuration is critical with respect to
CS, and when a Tick rule should be applied to the given configuration using the
l.t.s. Note that for the examples we considered, one can construct such functions.

Complexity results for the time bounded versions of the Z and S problems
were also obtained in [14]. It was shown that the n-Z problem is NP-complete
and that the n-S problem is in the Δp

2 class of the polynomial hierarchy, a
subclass of PSPACE. The technical report accompanying this paper [15] also
discusses the complexity result for the time bounded version of the L problem.

Theorem 2. For a PTS T assume Σ,S0,m, CS, k,Dmax, N ,X , and L as
described at the beginning of Sect. 5.1.

The n-Z problem for T w.r.t. the l.t.s., CS, and S0 is NP-complete with input
S0. [14]

The n-S problem for T w.r.t. the l.t.s., CS, and S0 is both NP-hard and
coNP-hard with input S0. Furthermore, the n-S problem for T w.r.t. the l.t.s.,
CS, and S0 is in the class Δp

2 of the polynomial hierarchy (PNP) with input
S0. [14]

The n-L problem for T w.r.t. the l.t.s., CS and S0 is in the class Πp
2 of the

polynomial hierarchy with input the S0.

The proof of Theorem 2 can be found in [15]. The upper bound results rely
on Proposition 1, which provides bounds on the length of traces with a bounded
number of instances of Tick rules for PTSes. The complexity lower bounds are
obtained by encoding the 3-SAT problem. For details see [15, Section 6.2].

6 Related and Future Work

In this paper, we study a subclass of timed MSR systems called progressing timed
systems introduced in [14], which is defined by imposing syntactic restrictions
on MSR rules.

We discuss two verification problems, namely realizability and survivability,
introduced in [14], and also consider two new properties, reliability and recover-
ability, defined over infinite traces. We show that these problems are PSPACE-
complete for progressing timed systems, and when we additionally impose a
bound on time, the realizability becomes NP-complete, the survivability is in

272 M. Kanovich et al.

the class Δp
2 of the polynomial hierarchy, the reliability is in the class Πp

2 of
the polynomial hierarchy, and the survivability is both NP-hard and coNP-hard.
The lower bound for the n-time reliability is left for future work.

These problems involve quantitative temporal properties of timed systems
and explicit time constraints, and to the best of our knowledge have not been
studied in the rewriting literature. We review some of the formalisms for specify-
ing quantitative temporal properties of timed systems such as timed automata,
temporal logic, and rewriting.

Our progressing condition is related to the finite-variability assumption used
in the temporal logic and timed automata literature [2,3,11,22,23], requiring
that in any bounded interval of time, there can be only finitely many observ-
able events or state changes. Similarly, progressing systems have the property
that only a finite number of instantaneous rules can be applied in any bounded
interval of time (Proposition 1). Such a property seems to be necessary for the
decidability of many temporal verification problems.

The work [1,6] classifies (sets of) traces as safety, liveness, or properties that
can be reduced to subproblems of safety and liveness. Following this terminology,
properties that relate to our verification problems over infinite traces contain
alternation of quantifiers, i.e., involve both elements of safety and elements of
liveness. We do not see how this can be expressed precisely in terms of [1,6]. We
leave this investigation to future work.

As discussed in detail in the Related Work section of our previous work [19],
there are some important differences between our timed MSR model and timed
automata [2,3], both in terms of expressive power and decidability proofs. For
example, a description of a timed MSR system uses first order formulas with
variables, whereas timed automata can only refer to transitions on ground states.
That is, timed MSR is essentially a first-order language, while timed automata
are propositional. Replacing a first order description of timed MSR by all its
instantiations, would lead to an exponential explosion. Furthermore, in contrast
with the timed automata paradigm, in timed MSR we can naturally manipulate
facts both in the past, in the future, as well as in the present.

The temporal logic literature has proposed many languages for the specifi-
cation and verification of timed systems. Many temporal logics contain quan-
titative temporal operators, e.g., [22,23], including time-constrained temporal
operators. Metric Temporal Logic (MTL) [21] involves (bounded or unbounded)
timing constraints on temporal operators similar to our time constraints. The
growing literature on MTL explores the expressivity and decidability of frag-
ments of such temporal logics [26]. However, the temporal logic literature does
not discuss notions similar to e.g., realizability or survivability. In addition to
that, an important feature of our model is that the specifications are executable.
As we have shown through experiments in [14], it is feasible to analyze fairly
large progressing systems using the rewriting logic tool Maude [7].

Real-Time Maude [25] is a tool for simulation and analysis of real-time
systems. Rewrite rules are partitioned into instantaneous rules and rules that
advance time, with instantaneous rules taking priority. Our the lazy time sam-
pling is inspired by such management of time in traces. Time advance rules in

On the Complexity of Verification of Time-Sensitive Distributed Systems 273

Real-Time Maude may place a bound on the amount of time to advance, but
do not determine a specific amount, thus, allowing the system to be contin-
uously observed. Time sampling strategies are used to implement search and
model-checking analysis. Ölveczky and Messeguer [24] investigate conditions
under which the maximal time sampling strategy used in Real-Time Maude
is complete. One of the required conditions is tick-stabilizing, which is similar
to progressing and finite variability assumption in that one assumes a bound on
the number of actions that can be applied in a finite time.

Cardenas et al. [4] discuss possible verification problems of cyber-physical
systems in the presence of malicious intruders. They discuss surviving attacks,
such as denial of service attacks on control mechanisms of devices. We believe
that our progressing timed systems can be used to define meaningful intruder
models and formalize the corresponding survivability notions. This may lead to
automated analysis of such systems similar to the successful use of the Dolev-
Yao intruder model [8] for protocol security verification. Given the results of
this paper, the decidability of any security problem would most likely involve a
progressing timed intruder model. We intend to investigate the security aspects
of this work in the future. For example, the introduction of timed intruder mod-
els [12], and resource-bounded intruder models [28] may enable verification of
whether intruders can cause PTSes to reach hazardous situations, e.g., harm to
people or crashes.

We believe that some of our properties, in particular survivability, can be
interpreted using game theory. We find that our model has some features that
are better suited for applications relating to TSDSes, in particular explicit time,
quantitative time conditions and nonces. It would be interesting to investigate
connections and differences between our rewriting approach to these problems
and the game theory approach.

Finally, we have already done some preliminary research into ways to extend
this work to dense time domains. We expect our results to hold for dense time
domains as well, given our previous work [17,28,29]. There, instead of the Tick
rule (Eq. 1), we assume a Tick rule of the form Time@T −→ Time@(T + ε),
where ε can be instantiated by any positive real number. The assumption of
dense time is a challenge that considerably increases the machinery needed to
prove our results, but we are confident of finding ways to combine the results
of [17] with those presented in this paper. Similarly, for our future work, we
intend to investigate extensions of our models with probabilities.

Acknowledgments. We thank the anonymous reviewers for their valuable com-
ments and careful remarks, which have significantly improved the presentation of the
paper. Ban Kirigin is supported in part by the Croatian Science Foundation under
the project UIP-05-2017-9219. The work of Max Kanovich was partially supported
by EPSRC Programme Grant EP/R006865/1: “Interface Reasoning for Interacting
Systems (IRIS).” Nigam is partially supported by NRL grant N0017317-1-G002, and
CNPq grant 303909/2018-8. Scedrov was partially supported by the U. S. Office of
Naval Research under award numbers N00014-20-1-2635 and N00014-18-1-2618. Tal-
cott was partially supported by the U. S. Office of Naval Research under award numbers
N00014-15-1-2202 and N00014-20-1-2644, and NRL grant N0017317-1-G002.

274 M. Kanovich et al.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

2. Alur, R., Henzinger, T.A.: Logics and models of real time: a survey. In: Real-Time:
Theory in Practice, REX Workshop, pp. 74–106 (1991)

3. Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In:
SFM, pp. 1–24 (2004)

4. Cárdenas, A.A., Amin, S., Sastry, S.: Secure control: Towards survivable cyber-
physical systems. In: ICDCS, pp. 495–500 (2008)

5. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-
notation for protocol analysis. In: CSFW, pp. 55–69 (1999)

6. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010)

7. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

8. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983)

9. Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: Multiset rewriting and the
complexity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004)

10. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cam-
bridge (1972)

11. Faella, M., Legay, A., Stoelinga, M.: Model checking quantitative linear time logic.
Electr. Notes Theor. Comput. Sci. 220(3), 61–77 (2008)

12. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A.: Bounded memory Dolev-
Yao adversaries in collaborative systems. Inf. Comput. 238, 233–261 (2014)

13. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: Discrete vs.
dense times in the analysis of cyber-physical security protocols. In: Principles of
Security and Trust - 4th International Conference, POST, pp. 259–279 (2015)

14. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: Timed multiset
rewriting and the verification of time-sensitive distributed systems. In: 14th Inter-
national Conference on Formal Modeling and Analysis of Timed Systems (FOR-
MATS) (2016)

15. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: On the com-
plexity of verification of time-sensitive distributed systems: Technical report (2021).
http://arxiv.org/abs/2105.03531

16. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.: Timed mul-
tiset rewriting and the verification of time-sensitive distributed systems: Technical
report (2016). http://arxiv.org/abs/1606.07886

17. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.L.: Time, compu-
tational complexity, and probability in the analysis of distance-bounding protocols.
J. Comput. Secur. 25(6), 585–630 (2017)

18. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C., Perovic, R.:
A rewriting framework for activities subject to regulations. In: RTA, pp. 305–322
(2012)

19. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C., Perovic, R.: A
rewriting framework and logic for activities subject to regulations. Math. Struct.
Comput. Sci. 27(3), 332–375 (2017)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://arxiv.org/abs/2105.03531
http://arxiv.org/abs/1606.07886

On the Complexity of Verification of Time-Sensitive Distributed Systems 275

20. Kanovich, M., Rowe, P., Scedrov, A.: Collaborative planning with confidentiality.
J. Autom. Reasoning 46(3–4), 389–421 (2011)

21. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
Syst. 2(4), 255–299 (1990)

22. Laroussinie, F., Schnoebelen, P., Turuani, M.: On the expressivity and complexity
of quantitative branching-time temporal logics. Theor. Comput. Sci. 297(1–3),
297–315 (2003)

23. Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics: PSPACE and
below. In: TIME, pp. 138–146 (2005)

24. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for real-time maude.
Electr. Notes Theor. Comput. Sci. 176(4), 5–27 (2007)

25. Ölveczky, P.C., Meseguer, J.: The real-time maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 23

26. Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425.
Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 27

27. Papadimitriou, C.H.: Computational Complexity. Academic Internet Publishers,
Cambridge (2007)

28. Urquiza, A., et al.: Resource and timing aspects of security protocols. J. Comput.
Secur. 29(3), 299–340 (2021)

29. Urquiza, A., et al.: Resource-bounded intruders in denial of service attacks. In:
2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pp. 382–396.
IEEE (2019)

https://doi.org/10.1007/978-3-540-78800-3_23
https://doi.org/10.1007/11691372_27

Adapting Constraint Solving to
Automatically Analyze UPI Protocols

Sreekanth Malladi1 and Jonathan Millen2(B)

1 CMR Institute of Technology, Bengaluru, India
sreekanth.m@cmrit.ac.in
2 Newburyport, MA, USA
j.millen@computer.org

Abstract. UPI (Unified Payment Interface) is a system in India for elec-
tronic payment using mobile phones. Here, a group of UPI servers act
as intermediaries between customers, merchants and banks. Customers
can register themselves to UPI servers using registration protocols and
send the details of payments using payment protocols. Recently, these
registration protocols were shown to have exploitable flaws using man-
ual analysis [24]. However, automatic analysis is very much desirable,
since manual inspection may not reveal all flaws in protocols, as often
observed. With this motivation, we have developed and implemented a
technique using the Constraint Solver tool for cryptographic protocol
analysis [22] (which is based on Guttman-Thayer-Herzog’s strand space
framework [29]) to automatically analyze UPI protocols. In this paper,
we explain the technique and illustrate our implementation.

Keywords: Cryptographic protocols · Formal methods · Constraint
solving · Mobile computing · UPI · Financial security

1 Introduction

Electronic transactions in India between customers having bank accounts started
with direct communication with their banks. The payer would send the details
of the payee’s bank account along with the payment amount to the payer’s bank,
which in turn communicates with the payee’s bank using protocols such as RTFS,
IMPS and NEFT to send the payment to be made into the payee’s bank account.
This is illustrated in Fig. 1.

However, in 2015, the National Payments Consortium of India (NPCI), with
support from the government of India, has developed the Unified Payments Inter-
face (UPI), which is an approach that optimizes the process of transactions by
employing intermediaries between banks, customers and merchants [11,23]. Typ-
ically, both customers and merchants register themselves with UPI servers that
are placed all over the country. When a customer wishes to pay a merchant,
the customer sends the payment information to the nearby UPI server, which in
turn forwards it to the recipient’s bank. This is illustrated in Fig. 2.
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 276–292, 2021.
https://doi.org/10.1007/978-3-030-91631-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_15&domain=pdf
http://orcid.org/0000-0003-1896-5225
https://doi.org/10.1007/978-3-030-91631-2_15

Constraint Solving To Analyze UPI Protocols 277

Fig. 1. Electronic transactions before UPI

Fig. 2. Electronic transactions with UPI

This process obviates the need for the customer to enter all the details of
the bank account corresponding to the merchant each time a fresh transaction
is initiated. Instead, it is only necessary to include a unique UPI ID of the mer-
chant or the recipient. Customers use a UPI-compliant app that implements
the registration and payment protocols. NPCI provides a reference implementa-
tion called BHIM, but third-party implementations are also available, including
Google Pay.

UPI has released two versions so far. The first version had three registration
protocols. The first protocol is used under normal circumstances when the user’s
phone is able to send SMS (Short Message Service, text) to the server, so that
the server may retrieve the user’s phone number from it. The second one is used
when the first protocol doesn’t work because the SMS either fails to reach the
server or could not be decoded properly. In that case, the user enters the phone
number manually and sends it to the server. The third protocol is used when the
user wishes to change the mobile device but retaining the phone number with
which the UPI account has already been registered.

With the proliferation of mobile devices, such protocols are being developed
ubiquitously with features that include messages sent on mobile networks via
SMS and that use OTPs (One-Time Passwords). There are certain assumptions
about these messages and authentication inferences that are drawn about them
that weren’t present in older, conventional cryptographic protocols. These have
to be accounted for, in order to perform accurate analyses of modern-day proto-
cols. The threat model also has to be modified, since the attacker now has new
capabilities in these environments, such as installing malware on devices to read
secrets, something not assumed in previous protocol analysis approaches over
the last few decades.

We started our research with the above issues in mind and focused on for-
mal analysis of UPI protocols. We found only one significant work reported by

278 S. Malladi and J. Millen

Kumar et al. who analyzed UPI protocols and found an attack in the second
protocol [24]. However, their analysis was informal and manual which does not
give a guarantee of security even in finite models such as a limited number of
simultaneously executing principals.

We could not find any published papers that discussed the application of
formal and automated approaches to analyze protocols like UPI. The closest in
spirit we found is by Cortier et al. in [7] who designed and formally verified a
mobile payment protocol. Their protocol differs from UPI in many ways includ-
ing the operational model, devices used, network assumptions etc. But most
importantly, it does not involve the use of two separate channels of communica-
tion like UPI does (the cellular and data channels).

To address these issues, we have extended the constraint solving procedure
for cryptographic protocol analysis by Millen and Shmatikov [22] to formally and
automatically analyze UPI protocols, augmenting an approach that was previ-
ously outlined by one of us in [19]. Millen-Shmatikov’s procedure uses Guttman-
Thayer-Herzog’s strand spaces [29] as the underlying framework to model pro-
tocols. Constraint solving can be used to analyze protocols in bounded-process
scenarios, where the number of instances of each role in the protocol is specified.
The Csolver tool, which implements the constraint-solving procedure, was used
to test UPI protocols in several scenarios. We describe our approach, implemen-
tation and testing in this paper.

Our efforts are not only useful toward the security of UPI protocols, but also
as a set of general guidelines to apply constraint solving to analyze any protocols
used anywhere in the world on mobile networks and a general approach in which
the technique may be extended for the myriad protocol variations that may be
designed for secure communication in an ever-changing computing landscape.

Organization. In Sect. 2, we explain UPI protocols in detail. In Sect. 3, we
describe the technique of constraint solving for cryptographic protocol analysis.
In Sect. 5 we explain our modeling of UPI registration protocols with Csolver.
In Sect. 6, we describe the handling of SMS messages in Csolver. In Sect. 7, we
illustrate our implementation and testing of the protocols in various scenarios.
We conclude with a discussion of future work.

2 Background

UPI 1.0 works by placing servers all over the country that act as intermediaries
between customers, merchants and banks. Customers and merchants can register
themselves with UPI using the following protocols.

The first is the default protocol, given informally in Fig. 3. A is the user, or,
more accurately, the user’s smartphone with a payment app installed, and B is
the UPI server.

In this protocol, the customer sends her device details in the first message
such as make, model etc. of the phone or device that she would be using to make
transactions. She receives a registration token (a hash of the device details and

Constraint Solving To Analyze UPI Protocols 279

1. A → B : Device Details

2. B → A : Registration Token (RA)
3. A → B : RA as SMS
4. B → A : Confirmation Msg 3 Received
5. A → B : Is my device registered?, RA

6. B → A : Yes your device verified
7. A → B : sha(passcode,PhoneNumber)
8. B → A : Login Token (confirms profile is set up)
9. A → B : Selected Bank ID
10. B → A : Bank account details

Fig. 3. UPI default protocol

a nonce) in the second message from the server, which she sends back in the
third message as an SMS. The server tries to extract the phone number from the
SMS and sends a confirmation in the fourth message if it was successful. In the
fifth message the customer checks with the server if the device was successfully
verified, to which the server responds in the sixth message. The customer then
selects a passcode and sends a hash of it along with the phone number in the
seventh message, which the server stores, and it responds in the eighth message
with a login token to confirm that the profile has been set up in the server. The
final steps 9 and 10 are where the customer selects a bank to make payments
from, chosen from a list of bank accounts held by the customer in various banks
(found using her phone number) and the server sends back partially masked
account details of the chosen bank account. Those details are obtained from an
interaction between UPI and the bank that is not explicit in the protocol.

If message 3 in the default protocol does not reach the server properly or
is corrupted, then the alternate protocol I is executed, in Fig. 4, wherein a user
may manually key-in the phone number.

As can be seen from the figure, the alternate protocol is similar to the default
protocol until message 3. But if message 3 was not received properly, the server
sends message 4 to indicate that message 3 could not be decoded. Then the
user manually enters the phone number which is sent in message 5 along with
the device hard binding request and the registration token. This phone number
is verified by the server to be associated to the device by sending a one-time
passcode OTP in message 6, which is to be returned in message 7 by the user. A
careful examination of the protocol should expose the weakness in the protocol—
the OTP used in message 6 is the only piece of authentication from the user to
the server. If that is somehow managed to be obtained and sent back in message 7
by the attacker, the protocol’s security is violated.

If a user wants to transfer to a new device, having the same phone number,
then the alternate protocol II in Fig. 5 is executed.

280 S. Malladi and J. Millen

1. A → B : Device Details

2. B → A : Registration Token, RA

3. A → B : RA as SMS(failed)
4. B → A : SendTokenandPhoneNumber
5. A → B : Device hard binding request,PhNo, RA

6. B → A : Verification Status,OTP,CustID, RA

7. A → B : OTP, sha(passcode,PhNo)
8. B → A : LoginToken
9. A → B : Selected BankID
10. B → A : Bank account details

Fig. 4. UPI alternate protocol I

1. A → B : Device Details

2. B → A : Registration Token, RA

3. A → B : RA as SMS
4. B → A : Conf Msg 3 Recd
5. A → B : Device hard binding request, RA

6. B → A : Account already exists
7. A → B : sha(passcode,PhNo)
8. B → A : Existing Bank acct details

Fig. 5. UPI alternate protocol II

This protocol is the same as the default protocol until step 6, wherein the
server sends a message that the account already exists if it is registered in the
server. The server sends back the user’s bank account information to restore the
app.

There are certain features in these protocols that are unconventional. In par-
ticular, protocol messages are sent both on the Internet (using mobile data) and
as SMS messages. Further, the phone number is not sent as plaintext, but is sup-
posed to be derived from the SMS sent by the phone. A DolevYao (DY) attacker
is not powerful enough to capture all the possible actions by an attacker in this
environment. For instance, an OTP sent as an SMS cannot be sniffed from the
data connection. These features make it hard to apply existing protocol analysis
techniques directly on these protocols. In the next section, we will examine the
way that we have modeled the protocols in order to analyze them with Csolver.

3 Constraint Solving

Thayer, Herzog, and Guttman pioneered the strand spaces framework [29,30].
Their formulation was the wellspring for a wealth of subsequent work on protocol

Constraint Solving To Analyze UPI Protocols 281

security analysis. It gave rise to theoretical results [3,12–15,28] and it has also
been applied and elaborated to support automated tools [9,20,22,26,27].

Constraint solving, as introduced by Millen and Shmatikov in [22], applies the
strand space model to specify protocols. It is a technique for analyzing protocols
in scenarios where there is a bound to the number of sessions interacting in the
protocol runs. With this limitation, constraint solving was shown to be sound,
complete, and terminating.

The original strand spaces framework had penetrator strands to model
attacker actions on messages obtained by sniffing the network. The main inno-
vation of the constraint solving approach was to separate the analysis into two
phases: first, an enumeration of message sequences consistent with the proto-
col specification of legitimate parties, and the generation of a set of algebraic
constraints per sequence that are solved by term reduction rules to test their
realizability. The constraint solver also improved on prior approaches by allow-
ing symmetric keys to be modeled with expressions rather just constants.

Several improvements or extensions of constraint solving have been published
for use in a variety of contexts and for a variety of applications. For example:

– a more efficient solver by Corin & Etalle [5];
– to find guessing attacks on password protocols by Corin & Malladi et al. [4];
– an improved variation called “constraint differentiation” by Basin et al. [1];

and
– to analyze distance-bounding protocols in wireless networks by Malladi

et al. [20].

In constraint solving, a protocol is specified as a set of roles, each of which is
a parametric strand listing the sequence of message transmissions and receptions
performed by a principal in the protocol1. A parametric strand can also be
called a “strand schema” or a “strand template”, that is, an expression which is
instantiated to a strand once the variables representing the principal and other
message data fields have been substituted.

A protocol run is a sequence of messages that can be viewed as an interleav-
ing of protocol role instances. In particular, each message received in one role
instance must have been sent in accordance with some other role instance, or by
an attacker subject to general realizability constraints. The strand space model
characterizes the attacker behavior with additional penetrator strands. The con-
straint solving model, on the other hand, characterizes attacker behavior as term
replacement actions that construct new messages from previously sent messages.
The rules for attacker behavior are specified as a set of reduction rules.

In a realizable protocol run, each role may be instantiated multiple times or
not at all, and by the same or different principals. Boundedness means that the
total number of role instances is fixed for a given realizability analysis.

1 A former MITRE employee, James Williams, once commented that a protocol is like
the script of a play in which the lines have been sorted by character.

282 S. Malladi and J. Millen

4 CSolver

Csolver is a Prolog program that implements constraint solving for protocol secu-
rity analysis. Its principles of operation are covered by the published constraint
solving paper [22], but the details of encoding protocols, setting up scenarios,
and understanding the program’s output are documented only on the author’s
website, namely http://jonmillen.com/csolver/csolve.html. We will not attempt
to explain the program usage in full here, but rather just highlight a few details
to help the reader follow the modeling and testing discussion in the subsequent
sections.

A protocol is a sequence of roles; a role is an expression of the form
strand(rolename,A1,A2,...,[send(M1),recv(M2),...]).
The Ai are variables that appear in the event list at the end. The identifiers

send and recv correspond to + and − in strand space notation. A message Mi

has the format [S,R,C] where S and R are variables or constants representing
the sender and receiver, and C is a term representing the content of the message.
This format is not required by the strand space model or constraint solving
generally, but it is needed by Csolver to generate protocol run diagrams after
the analysis.

Testing the protocol requires a scenario specification indicating how many
instances of each role are to be included in a protocol run. This is necessary
because of the boundedness limitation of constraint solving. A test specification
has the form testname([S1,S2,...]) :- role1 , role2, etc. The roles on the
right are specified as above, except for three differences: first, the event list is
shown only as one of the variables Si; second, roles may be partially instantiated;
and third, the same role may appear more than once, with different partial
instantiations and variable names. In strand space terms, a scenario specification
might be described as a partial bundle schema.

A test is invoked through the Prolog command line. After the protocol and
some scenario specifications are loaded, a scenario and the search function are
invoked. The goal of the search is expressed by choosing symbolic parameter
values in the scenario that exhibit a security violation. The search function enu-
merates possible strand interleavings to find a realizable protocol run satisfying
the goal scenario. As explained in [22], there is a partial order search optimiza-
tion that reduces the number of interleavings to be enumerated, and realizability
is tested by the term reduction procedure applied to the constraint set generated
from each interleaving.

Csolver output for a successful search shows the sequence of events in the
protocol run, both as a simple list and also as a diagram. The appearance and
interpretation of the diagram will be discussed below for the UPI test output.

5 Modeling in the Constraint Solver

In order to use the constraint solver to analyze UPI protocols, we have to abstract
the protocols so that they fit the solver’s vocabulary and support the expected

http://jonmillen.com/csolver/csolve.html

Constraint Solving To Analyze UPI Protocols 283

threat environment. The effort illuminated the way existing Csolver features
could be brought into play, and suggested a minor syntactic extension as well.

Two immediate problems for the encoding of UPI protocols were (1) how
to abstract the benefits of the HTTPS envelope and (2) how to model SMS.
In addition, in order to reproduce one of the attacks in Kumar et al. [24], the
operation of a partially privileged Trojan horse, hypothesized in that paper, had
to be modeled.

HTTPS commonly provides certificate-based authentication of a server and
end-to-end symmetric encryption of a session. For our analysis, secure session
key distribution is simply assumed, since that is handled outside of the UPI reg-
istration protocol. Authentication of a UPI server is abstracted away by treating
the UPI address and phone number as well-known constants. A counterfeit UPI
server might very well fool a client payment app, but it is much less likely to fool
a UPI-approved bank, so it was not taken as an urgent threat to be modeled. So
the HTTPS effect is modeled as a session key chosen by the client that initiates
the session.

Although Malladi [19] suggested using a signature to handle the security
properties of SMS, the present encoding goes further. A more complex model
seemed necessary to encode the effect of the Trojan horse “Mally” in Kumar
et al. [24]. Our SMS encoding is discussed in the next section.

It seems worth mentioning, in passing, that while we were considering ways
in which the signature operator could be used, it was observed that it is some-
times inconvenient because it only represents an encrypted checksum, represented
in Csolver by a term of the form M/pk(A). Given this checksum, the public key of
A can be applied to obtain the unencrypted checksum, which should match the
checksum of the original message. However, an attacker cannot analyze a check-
sum to recover the message M . It is useful to a legitimate receiver only if a claimed
value for M is already known or received separately. The full message might be
written [M,M/pk(A)], but the duplication of a long expression for M is wordy. So
there is now a new concise operator // such that M//A is invertible; the attacker,
as well as a legitimate user, can read M from it, but only principal A can create
this type of signature. For the UPI example, we did not need the new feature.

Finally, in order to focus on the most serious attacks, we condensed the
protocols by eliminating inessential details in some of the messages and left out
other messages entirely. We had informal arguments that nothing important was
left out, but it is quite possible that some interesting attacks might rest on those
details.

6 Representation of SMS

The security-relevant properties of SMS are these:

– Messages are addressed by phone number;
– The correct source phone number of a message is available to the receiver;
– Messages cannot be read or modified in transit;
– Message and service access privileges for apps at endpoints are user options.

284 S. Malladi and J. Millen

The SMS service is modeled as a single principal sms in the network that
forwards messages. The message-forwarding protocol role looks like this:

1. A → sms : |A,B-phone,M |
2. sms → B : |A-phone, B,M |

The vertical bars around the message contents are intended to indicate that
the SMS message content is protected from external access, while the actual
source and destination of the messages are not. That is, the attacker can intercept
SMS messages and replay them through SMS from a different phone number.
However, the SMS service modifies the message content to ensure that the source
phone number and the intended destination principal are included in the content
of the delivered message. The actual SMS encoding includes the principal-to-
phone-number pairing.

In the Csolver encoding, it was not necessary to add new syntax for message
protection. Instead, we just took advantage of the fact that new function symbols
can be used to construct messages within protocols. So the content of the first
message above will be written as sp(A,Bphone,M). Because the constraint solver
has no reduction rules for new function symbols like sp, the attacker will be
unable to analyze or construct terms with that function symbol; that is exactly
the kind of protection we want.

The constraint solver allows messages to and from SMS to be redirected. Such
actions correspond to interference by Trojan horse apps that have excessive SMS
access privileges. Kumar et al. [24] have determined that this is possible.

The full SMS encoding is included in Appendix 8.

7 Implementation and Testing

The default registration protocol and the Alternate I version were encoded as
shown in the Appendices. We did not find any new attacks, but we confirmed
that the SMS model and the attack hypothesized in Kumar et al. could be
exercised as expected.

The protocol defines the roles of a user A, a UPI server, and the SMS ser-
vice using a variation of the strand space model originated by Thayer-Herzog-
Guttman [30]. As usual for Prolog programs, identifiers beginning with capital
letters are variables. A role strand is a sequence of send and receive actions, as
seen by each type of principal. A test bundle is a set of role instances. Csolver,
invoked by the search predicate, is supposed to merge the roles and instantiate
the remaining variables into a trace that respects causality constraints. Csolver
also allows an attacker to intercept messages and modify them with data avail-
able to the attacker, to implement man-in-the-middle attacks.

The default protocol in Appendix 8 has constants that abbreviate standard
messages used in the UPI protocols. For example, drr is the device registra-
tion request, and rc is the registration confirmation. Messages have the form

Constraint Solving To Analyze UPI Protocols 285

[sender, receiver, content]. As remarked earlier, some messages were not repre-
sented because they were not relevant to the class of attacks we were studying.
The last message in the UPI role is an artificial test message reporting the final
values of each variable of interest. The test was instantiated with no trouble and
showed the expected registration sequence.

Symmetric encryption of a message M with the session key K is represented
as M +K. Explicit encryption acts as a modeling abstraction here, because the
applications that send and receive messages are not aware of the session key.
In reality, unencrypted messages are passed to-and-from an internal API that
takes care of TLS or SSL encryption. Because the legitimate protocol principals
“know” K, the message content M is available to them, and the encryption
serves indirectly to preserve its secrecy and session association.

The Alternate I Protocol in Appendix 8 uses the same SMS role and adds
a “Mally” role to reproduce the Kumar et al. Attack 1, in which the attacker,
Eve, registers herself with the legal protocol, but gives UPI the phone number of
the victim, Alice. The security problem is that bank accounts are identified by
the associated phone number, giving Eve access to Alice’s accounts. The SMS
message confirming the phone number is compromised using a Trojan horse
Mally on Alice’s phone. Subsequent payment activities are conducted over the
Internet.

Using potentially available SMS privileges, Mally can intercept communica-
tion between Alice’s payment app and the SMS service on Alice’s phone. In this
way Mally intercepts the SMS confirmation to Alice and sends it to Eve. The
two Mally actions are these, when the OTP is sent:

recv([sms,A,sp(upiPh,A,OTP)]),
send([A,sms,sp(A,eph,OTP)])

Mally cannot prevent the SMS service from including Alice’s actual source phone
in the SMS message arriving at Eve’s payment app. That app should expect the
OTP message to come from the UPI phone, so an additional intervention is
required to cause Eve’s otherwise normal payment app to ignore the incorrect
source phone. Kumar et al. describe how an app might claim RECEIVE SMS and
other permissions to achieve this. In our encoding of the Alternate I protocol,
the action that receives the OTP has a blank in the place of the source phone
to indicate the missing source phone check.

Test runs are set up by defining a Prolog predicate that accepts a bundle
schema as a list of role strands. Nonces and other originated data must be
symbolically instantiated for the strands that introduce them. The bounded-
process restriction for Csolver means that all and only the strands listed will be
realized. However, multiple strands may be included for any role. In the future,
Csolver might automatically discard strands that are not needed, but presently,
each listed strand must be instantiated completely in a given test.

286 S. Malladi and J. Millen

The test run for the attack includes a user role, roleA, instantiated with e,
the Eve principal. It also includes a UPI role, two SMS strands, and a Mally role.
Several variables are left for Csolver to discover. The resulting trace output by
Csolver is below, arranged with some comments added to clarify what happened:

send/recv([e,upi,dd+ke])
send([upi,e,[e,ra]+ke])
send([upi,e,rr+ke]) % registration rejected
recv([upi,e,[e,ra]+ke])
recv([upi,e,rr+ke])
send/recv([e,upi,[ra,aph]+ke]) % e sends A’s phone no.
send/recv([upi,sms,sp(upi,aph,otp)])
send/recv([sms,a,sp(upiPh,a,otp)])
send/recv([a,sms,sp(a,eph,otp)]) % Mally intercepted OTP SMS
send/recv([sms,e,sp(aph,e,otp)]) % and sent it to e’s app,
send/recv([e,upi,otp+ke]) % which accepted it
send([upi,e,roleUPI(e,upi,dd,ra,aph,otp,ke)]) % report

Csolver allowed the registration rejection notice to be sent early as part of
a search optimization that determined that it made no difference, given the
Alternate I protocol.

The final test message from upi shows that the UPI server thinks that Alice’s
phone number aph belongs to Eve. Other test runs that omitted the Mally role, or
that did not ignore the OTP source, did not yield a realizable trace, as expected.

We tried other tests on the registration protocols, including some on the
Alternate II protocol, with no interesting results. The Alternate II encoding is
not included here because no new techniques were needed and no attacks were
found.

The Csolver diagram output for the trace is shown in Fig. 6. The arrows and
vertical spacing have been edited to make the diagram fit better on the page.
The central vertical line separates sent messages from received messages. Since
we do not have “penetrator strands”, it is necessary to show that some sent
messages might not be received, and some received messages might appear out
of order or might be modified or constructed by an attacker. Alterations of this
kind happened not to be needed for this attack.

Csolver output diagrams always have three columns. The two outside columns
indicate which legitimate principal sent or received a message. Thus, principals
do not get their own exclusive columns, so labels are needed to tell which princi-
pal is using a column for a series of messages. The advantages of this are that no
horizontal message line ever has to cross over a column, and the diagram never
gets too wide to fit on an ordinary printed page.

Constraint Solving To Analyze UPI Protocols 287

ipu|e

||ek+dd|

|-------------------->| dd+ke |

|>--------------------||

|ek+]ar,e[|e

|--------------------<||

|ek+rr||

| [e,ra]+ke |<--------------------|

||--------------------<|

||ek+rr|

||--------------------<|

||ek+]hpa,ar[|

|-------------------->| [ra,aph]+ke |

|>--------------------||

|)pto,hpa,ipu(ps|sms

| sp(upi,aph,otp) |<--------------------|

||--------------------<|

a|)pto,a,hPipu(ps|

|-------------------->| sp(upiPh,a,otp) |

|>--------------------||

|)pto,hpe,a(ps||

| sp(a,eph,otp) |<--------------------|

||--------------------<|

e|)pto,e,hpa(ps|

|-------------------->| sp(aph,e,otp) |

|>--------------------||

|ek+pto|ipu

| otp+ke |<--------------------|

||--------------------<|

| roleUPI(e,upi,dd,ra,aph,otp,ke) |

||>--------------------|

Fig. 6. Csolver diagram for alternate I attack

8 Conclusion

In this paper, we have implemented a method with which we may automatically
analyze UPI registration protocols in the protocol analysis tool, the Constraint
Solver (Csolver). We have analyzed the protocols in several scenarios wherein
multiple participants run the protocols simultaneously (as many as four per role)
and found only one known attack on the alternate protocol I of UPI 1.0. The
other protocols are also vulnerable to similar attacks if SMS messages can be
forged and if passcodes are learnt by attacker. We can easily demonstrate this by
simply removing the sp(. . .) encapsulation which turns off SMS protection and
adding passcode to the initial attacker knowledge. However, though passcodes
can be learnt by attackers through overlays or malware [24], SMS messages are
unforgeable using current technologies to the best of our knowledge.

288 S. Malladi and J. Millen

As future work, our implementation could be used to analyze other similar
protocols used world-wide such as UPI 2.0 protocols. Note that UPI 2.0 protocols
do not actually differ much from UPI 1.0 except that the alternate protocol I of
UPI 1.0 was removed from UPI 2.0 and the device details in the first message of
the protocols now includes the unique IMEI number of the mobile device as well,
so that at the time of the payment, the server accepts payments only received
from a device that was configured with that IMEI number. Hence, future analyses
should include the payment protocol steps as well, in addition to the registration
protocols.

Another direction for future work is to analyze or verify the protocols
amidst an unbounded number of participants playing roles of the protocol.
While unbounded analysis can be performed using tools such as CPSA [8] and
MaudeNPA [10], unbounded verification can be performed using tools such as
ProVerif [2] and Tamarin [21]. Another approach for verification is to use com-
pleteness or decidability results such as [6,18,25], possibly modifying the proto-
cols slightly to suit the assumptions in those results and conclude the security
of the protocols. Yet another approach is to use techniques such as rank func-
tions [16,17] which (to our knowledge) have not been provided with an auto-
mated search tool. All these approaches most likely require changes to their
frameworks, techniques and implementations (if any).

Appendix 1

UPI Default Protocol for Csolver

% UPI Default Protocol

strand(roleA,A,UPI,DD,Ra,K,
[

send([A,UPI,DD+K]),
recv([UPI,A,[A,Ra]+K]),
send([A,sms,sp(A,upiPh,Ra)]),
recv([UPI,A,recd+K]),
send([A,UPI,[drr,Ra]+K]),
recv([UPI,A,[rc,Ra]+K])
% further messages omitted

]).

strand(roleUPI,A,UPI,DD,Ra,Aph,K,
[

recv([A,UPI,DD+K]),
send([UPI,A,[A,Ra]+K]),
recv([sms,UPI,sp(Aph,UPI,Ra)]),
send([UPI,A,recd+K]),
recv([A,UPI,[drr,Ra]+K]),

Constraint Solving To Analyze UPI Protocols 289

send([UPI,A,[rc,Ra]+K]),
send([UPI,UPI,roleUPI(A,DD,Aph)]) % report

]).

% SMS role as central service

strand(roleSMS,A,B,M,
[

recv([A,sms,sp(A,Bph,M)]), % sp for SMS encapsulation
send([sms,B,sp(Aph,B,M)]) % SMS ensures phone number

]) :- phone(A,Aph),phone(B,Bph).

% correct phone numbers known to SMS locally
phone(a,aph).
phone(upi,upiPh).
phone(e,eph).

% To test this bundle use upi0(B),search(B).

upi0([Sa,Sm,Sb]) :-
strand(roleA,a,upi,dd,Ra,k,Sa),
strand(roleSMS,A,B,M,Sm),
strand(roleUPI,A,UPI,DD,ra,Aph,K,Sb).

Appendix 2

Alternate I Protocol Attack

% Eve’s repackaged BHIM role

strand(roleA,A,UPI,DD,Ra,Aph,OTP,K,
[

send([A,UPI,DD+K]),
recv([UPI,A,[A,Ra]+K]),

% send([A,sms,sp(A,upiPh,Ra)]), % Ra SMS not sent
recv([UPI,A,rr+K]), % registration rejection
send([A,UPI,[Ra,Aph]+K]),
recv([sms,A,sp(_,A,OTP)]), % ignore source phone
send([A,UPI,OTP+K])
% further messages omitted

]).

% UPI role for Alternate I Protocol

strand(roleUPI,A,UPI,DD,Ra,Aph,OTP,K,

290 S. Malladi and J. Millen

[
recv([A,UPI,DD+K]),
send([UPI,A,[A,Ra]+K]),

% recv([A,UPI,sp(Aph,upi,junk)]), % bad Ra not received
send([UPI,A,rr+K]),
recv([A,UPI,[Ra,Aph]+K]),
send([UPI,sms,sp(UPI,Aph,OTP)]), % SMS
recv([A,UPI,OTP+K]),
send([UPI,A,roleUPI(A,UPI,DD,Ra,Aph,OTP,K)]) % report

% further messages omitted
]).

% SMS role as central service
% Same as in default protocol

% Mally can redirect SMS messages from UPI at A

strand(roleMal,A,M,
[

recv([sms,A,sp(upiPh,A,M)]),
send([A,sms,sp(A,eph,M)]) % (can’t fake source phone)

]).

% normal Alt 1 bundle instance

upialt10([Sa,Sm2,Sb]) :-
strand(roleA,a,upi,dd,ra,aph,otp,ka,Sa),
strand(roleSMS,upi,a,otp,Sm2),
strand(roleUPI,a,upi,dd,ra,aph,otp,ka,Sb).

% Kumar et al attack test bundle

upialtK([Sa,Sm2,Sb,Sx,Sm3]) :-
strand(roleA,e,upi,dd,Ra,Aph,OTP,ke,Sa),

% (unreceived SMS strand not included)
strand(roleSMS,U,B,M1,Sm2), member(B,[a,e]),
strand(roleMal,a,M,Sx),
strand(roleSMS,a,e,M2,Sm3),
strand(roleUPI,A,UPI,DD,ra,Aph,otp,K,Sb).

References

1. Basin, D., Mödersheim, S., Viganò, L.: Constraint differentiation: a new reduction
technique for constraint-based analysis of security protocols. In: CCS 2003, pp.
335–344. ACM Press, New York (2003)

Constraint Solving To Analyze UPI Protocols 291

2. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and proverif. In: Foundations and Trends in Privacy and Security, pp. 1 (1–2):1–135
(October 2016)

3. Cervesato, I., Durgin, N.A., Mitchell, J.C., Lincoln, P., Scedrov, A.: Relating
strands and multiset rewriting for security protocol analysis. In: Proceedings of the
13th IEEE Computer Security Foundations Workshop, CSFW 2000, Cambridge,
England, UK, July 3–5, 2000. pp. 35–51. IEEE Computer Society (2000). https://
doi.org/10.1109/CSFW.2000.856924

4. Corin, R., Malladi, S., Alves-Foss, J., Etalle, S.: Guess what? Here is a new tool
that finds some new guessing attacks. In: Workshop in the Issues of Theory of
Security (WITS03), Poland, Warsaw (April 2003)

5. Corin, R., Etalle, S.: An improved constraint-based system for the verification of
security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS,
vol. 2477, pp. 326–341. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45789-5 24

6. Cortier, V., Delaune, S., Sundararajan, V.: A decidable class of security protocols
for both reachability and equivalence properties. J. Autom. Reasoning 65, 479–520
(2021)

7. Cortier, V., Filipiak, A., Florent, J., Gharout, S., Traoré, J.: Designing and proving
an emv-compliant payment protocol for mobile devices. In: 2nd IEEE European
Symposium on Security and Privacy (EuroSP 2017), pp. 467–480 (2017)

8. Doghmi, S., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: TACAS, pp. 523–537 (2007)

9. Doghmi, S., Guttman, J.D., Thayer, F.J.: Skeletons, homomorphisms, and shapes:
characterizing protocol executions. Electron. Notes Theor. Comput. Sci. 173, 85–
102 (2007)

10. Escobar, S., Meadows, C., Meseguer, J.: Equational cryptographic reasoning in the
Maude-NRL protocol analyzer. Electr. Notes Theor. Comput. Sci. 171(4), 23–36
(2007)

11. Gochhwal, R.: Unified payment interface—an advancement in payment systems.
Am. J. Ind. Bus. Manage. 7, 1174–1191 (2017). https://doi.org/10.4236/ajibm.
2017.710084

12. Guttman, J.D.: Cryptographic protocol composition via the authentication tests.
In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 303–317. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1 22

13. Guttman, J.D., Thayer, F.J.: Protocol Independence through Disjoint Encryption.
In: 13th IEEE Computer Security Foundations Workshop, pp. 24–34 (July 2000)

14. Heather, J.: Strand spaces and rank functions: More than distant cousins. In: Com-
puter Security Foundations Workshop (CSFW), p. 104. IEEE Computer Society
Press (2002)

15. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. J. Comput. Secur. 11(2), 217–244 (2003)

16. Heather, J., Schneider, S.: Towards automatic verification of security protocols on
an unbounded network. In: Proceedings of 13th Computer Security Foundations
Workshop, pp. 132–143. IEEE Computer Society Press (2000)

17. Heather, J., Schneider, S.: A decision procedure for the existence of a rank function.
J. Comput. Secur. 13(2), 317–344 (2005)

18. Lowe, G.: Towards a completeness result for model checking of security protocols.
J. Comput. Secur. 7(2–3), 89–146 (1999)

https://doi.org/10.1109/CSFW.2000.856924
https://doi.org/10.1109/CSFW.2000.856924
https://doi.org/10.1007/3-540-45789-5_24
https://doi.org/10.1007/3-540-45789-5_24
https://doi.org/10.4236/ajibm.2017.710084
https://doi.org/10.4236/ajibm.2017.710084
https://doi.org/10.1007/978-3-642-00596-1_22

292 S. Malladi and J. Millen

19. Malladi, S.: Towards automatic analysis of UPI protocols. In: (To Appear) Proceed-
ings of the 3rd International Conference on Intelligent Communication Technolo-
gies and Virtual Mobile Networks (ICICV 2021), IEEE Computer Society (2021)

20. Malladi, S., Bruhadeshwar, B., Kothapalli, K.: Automatic analysis of distance
bounding protocols. In: Proceedings of Workshop on Foundations of Computer
Security. Affiliated to LICS Symposium (2009)

21. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

22. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of ACM Conference on Computer and Commu-
nication Security, pp. 166–175. ACM press (2001), Prolog implementation available
online at http://jonmillen.com/csolver/csolve.html

23. NPCI: Unified Payment Interface API and Technology Specifications Version 1.0
(DRAFT). Technical Report, National Payment Corporation of India (2015).
http://www.mygov.in/digidhan/pages/pdf/sbi/NPCIUnifiedPaymentInterface.
pdf

24. R. Kumar, S. Kishore, H.L., Prakash, A.: Security analysis of unified payments
interface and payment apps in India. In: USENIX Security Symposium (2020)

25. Ramanujam, R., Suresh, S.P.: A decidable subclass of unbounded security proto-
cols. In: Workshop in the Issues of Theory of Security (WITS03) (2003)

26. Rowe, P.D., Guttman, J.D., Ramsdell, J.D., et al.: Assumption-based analysis of
distance-bounding protocols with cpsa. In: Nigam, V. (ed.) Logic, Language, and
Security. LNCS, vol. 12300, pp. 146–166. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-62077-6 11

27. Song, D.X.: Athena: a new efficient automatic checker for security protocol analysis.
In: Proceedings of 12th IEEE Computer Security Foundations Workshop, pp. 192–
22. IEEE Computer Society Press (1999)

28. Stoller, S.D.: Brief announcement: Lower and upper bounds for attacks on authen-
tication protocols. In: Proceedings of Eighteenth ACM Symposium on Principles
of Distributed Computing (PODC) (May 1999)

29. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: why is a security protocol
correct? In: Proceedings of IEEE Symposium on Research in Security and Privacy,
pp. 160–171. IEEE Computer Society Press (1998)

30. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(2,3), 191–230 (1999)

https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
http://jonmillen.com/csolver/csolve.html
http://www.mygov.in/digidhan/pages/pdf/sbi/NPCIUnified PaymentInterface.pdf
http://www.mygov.in/digidhan/pages/pdf/sbi/NPCIUnified PaymentInterface.pdf
https://doi.org/10.1007/978-3-030-62077-6_11
https://doi.org/10.1007/978-3-030-62077-6_11

Three Branches of Accountability

Sebastian Mödersheim1(B) and Jorge Cuellar2

1 Technical University of Denmark, Lyngby, Denmark
samo@dtu.dk

2 University of Passau, Passau, Germany
jc@sec.uni-passau.de

Abstract. Security protocols usually describe how honest agents
behave, and one proves some security goals to hold even in the presence of
an intruder who just does whatever he is capable of where cryptography
alone does not provide sufficient protection, accountability can help as a
deterrent for the intruder, because his actions may be detected and he
could be punished. The novelty of this work is to model actually all three
branches of government that are relevant here. First, instead of proto-
cols we have a legal system that defines which actions are legal. Second,
we have the police that may detect some crimes and collect evidence.
Third, we have a justice system that evaluates evidence, can subpoena
participants, and finally may convict players. The broad definition of a
legal system allows us to avoid defining all protocols that honest partici-
pants may engage in. Rather we describe players (no matter if honest or
dishonest) who may do anything that is legal and who can do anything
except breaking the cryptography.

Keywords: Accountability · Formal methods · Security protocols

1 Introduction

The work of Joshua Guttman has deeply influenced the way we think about
security and protocols. It is a great pleasure and inspiration to meet, discuss
and work with Joshua, and we would like to thank him with this little article!

In security protocols, we often need to rely on trusted third parties, i.e., par-
ties that will behave exactly according to protocol. An example is a keyserver
who can issue public-key certificates: if this keyserver is dishonest and issues
certificates to hackers for a bribe, the entire security argument of a system can
break down. While for many applications we can ensure that operations are
performed correctly (e.g., by some zero-knowledge proofs), there is no general
cryptographic way to ensure honesty of a participant (even though one may see
distributed ledgers as a paradigm to replace trusted third parties). Accountabil-
ity we can regard as a measure to deter people from misbehaving, because this
may be detected and punished.

This is especially interesting in situations where participants collaborate
across organizations with a variety of protocols and distributed applications, and
who have different and conflicting interests and cannot fully trust each other.
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 293–311, 2021.
https://doi.org/10.1007/978-3-030-91631-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_16

294 S. Mödersheim and J. Cuellar

Accountability aims to ensure that, if a problem becomes apparent that was
caused by a policy violation, then one can identify at least one participant who
misbehaved and caused the given problem. Of course we must ensure fairness,
i.e., that no innocent participant is punished, and that problems cannot arise
when everybody behaves correctly.

Küsters, Truderung and Vogt [13] give a general framework for accountability
that was in fact our starting point. They define protocols for honest and dishonest
participants, i.e., one is dishonest when performing at least one of the dishonest
protocols. For the open scenario described above it however gives us a frame
problem: we do not want to have to describe all protocols that may occur in the
environment, i.e., that honest participants legally can participate in. Actually,
we often do not want to really describe a protocol in a classical sense at all, but
rather talk about certain messages (like credentials) that have a certain meaning
and can be used in various contexts.

This paper presents a novel model for formalizing and analyzing account-
ability with tree types of rules or processes, similar to the three branches of
government. We neither formalize protocols as a set of processes nor do we have
a notion of honest agents. Rather, agents are modeled basically as intruders:
they may do whatever they are capable of. We model a legal system that for-
malizes what is legal and what is not. This legal system is actually formalizing
something similar to a security protocol. For instance, the system may consider
some keys as legally bound to particular agents and the signatures they make
with them to have legal relevance. Thus a signed claim may be considered to
be a crime (an illegal action) if it violates certain legal requirements. In this
way, the legal system can indirectly define something like protocols, but without
preventing agents in engaging in other activities (e.g., with keys that have no
legal relevance) in their “private lives”.

While the legislative branch defines which actions are legal and which are not,
also the other two branches of government, executive and judicial, play a role in
our approach. We model that the “police” may detect some crimes (collecting
partial evidence) and hand it to a judge. We do not want to model here police
investigations, but this is a way to model all kinds of detections of illegal behavior
that is considered realistic in a given system. Note that all detections are just a
possibility, i.e., crimes may go unnoticed.

One of the key ideas in the judicial system is that the judge may employ a sub-
poena, i.e., require an agent to present details about an action they performed.
This can be for instance a server who issued a credential and who should reveal
on which basis this was, because the produced credential may hide the identity
of the legal owner. Both the subpoena and the conviction have to be based on
the legal system however, so that no innocent agent can ever be convicted or
forced to answer a subpoena that they cannot answer.

The keystone of our approach is the perfect crime assumption that we define
precisely after introducing the three branches of government. Roughly speaking,
the perfect crime assumption is the assumption that agents will engage in illegal
actions only if it is risk-free for them, i.e., if they are sure that they can never be
convicted for this action. Thus, we will try to design a system so that every crime

Three Branches of Accountability 295

bears at least a small risk of getting caught and convicted. If that is achieved,
then from the perfect crime assumption follows that no agent is going to commit
any crimes, and this fact we can use in security proofs of the system. We will
in fact show that we can further relax this: for the security goals of a protocol
some crimes may be irrelevant, and thus we do not need to ensure that there is
a risk of detection for those crimes. Instead, we let us guide by what we need for
the proof of the system’s security.

Of course we cannot model the complexity of real-world legal systems in
this article and thus restrict ourselves to the essential items that are needed
to complete formal proofs. Nonetheless we believe that the formal connection
between legal and technical systems that we sketch here can indeed be used in
national legislation or even international treaties, or within larger organizations
and consortia, where partners may not blindly trust each other, but where some
basic agreements about the legal meaning of signatures can be made.

2 The Agent Model

We start off with an important difference to many standard models of protocols
and accountability. It is standard to define by a protocol the behavior of honest
agents, and all other behavior is summarized under the concept of the intruder
who controls the network and represents all dishonest agents. In contrast, our
model does directly describe a protocol, but rather a legal system that tells us
what is allowed and what is not. This legal system indirectly also defines a few
protocols, namely by messages that have a formal meaning in the legal system,
and have to meet certain requirements, while it allows agents to engage in other
communication that is not governed by the legal system. Thus, it is perfectly
legal for agents to engage in all kinds of communications with each other that
are not regulated by the legal system.

As a consequence, we do not need the classical distinction between honest
and dishonest agents—and in fact we thus rather like to call them players in the
following. Our model does not need to talk about honesty, because the players are
simply formalized by the set of all behaviors they are cryptographically capable
of, e.g. in a Dolev-Yao style model they can encrypt and decrypt any messages
they know with any keys they know. Some of these behaviors may be perfectly
legal even though they do not correspond to any protocol formalized in the legal
system. Of course, we will later consider whether players have behaved in a legal
way or not, but in the definition of the players it does not matter—with the
exception of trusted third parties, i.e., where the security and accountability
relies on the legal behavior of a party like a judge.

In fact, our framework allows the modeler to freely chose a particular message
model (the operators, their properties, and the derivability) as well as the details
of the communication infrastructure. For instance one may want to simply model
a standard open network where all players can send messages and see all sent
messages, or instead particular communication channels with restricted access
like a channel monitored by a trusted third party or a special log-file channel
where one can only append.

296 S. Mödersheim and J. Cuellar

Definition 1. A three-branches system consists of the following items:

– A set of players Player,
• among them are two distinguished players p and j, representing the exec-

utive and judicial branches, respectively.
– A set S of states; the contents of such states may be freely chosen by the

modeler but states must include at least the following:
• For every P ∈ Player the current knowledge M(P) as a set of messages

(or as a frame); linked to this we also assume a (state-independent) notion
of derivability.

• A set of players who have been convicted (found guilty).
– An initial state containing the initial knowledge M0(P) of every player P and

where nobody is guilty.
– A set of transactions T that give rise to a transition relation on S; moreover,

each transition is associated with a player performing the transaction.
• The player j is the only one who can make a guilty verdict, i.e., no other

player can modify this field.
• There are several requirements on the transactions for p and j that we

will introduce later.
– There is a legal system characterizing what actions are illegal, which messages

have legal relevance in the system, and what obligations the players have; this
is discussed in the next section.

Example 1 (Running example heavy løg log (HLL)). As a running example
throughout the paper we consider a credential system called HLL (the name
will actually be explained in Sect. 7). It is a toy credential system with a feature
that could be called “poor man’s privacy”: to make the usage of credentials pri-
vacy friendly, especially to hide unnecessary information from the relying party
and to make several uses unlinkable, players can turn to so-called brokers who
can issue a new credential based on an existing one—under the condition that
the new one must only attest features that the old one does. Players may also use
several brokers sequentially in credential creation if they do not trust a particular
broker in terms of privacy.

We write in the following A,B, . . . for variables of type player, i.e., from set
Player. Every player A has a fixed property φ(A); this can contain attributes like
pre- and surname, date of birth, memberships in several groups or employment in
a company. This property φ(A) contains enough information to identify A, e.g.,
a unique CPR number as in Scandinavian countries. To keep the example simple,
A has a credential on this property signed by a universally trusted rootCA:

sign(inv(pk(rootCA)), f1(pk(A), φ(A), 0))

The message model used here is a standard Dolev-Yao style model. First, for
every player A, let pk(A) denote the fixed long-term key of A, and for a public key
PK (not necessarily a fixed long-term key), inv(PK) is the corresponding private
key of PK . Every player A initially knows its key-pair (pk(A), inv(pk(A))) and

Three Branches of Accountability 297

a number of public keys of servers such as pk(rootCA). As part of the derivation
relation, it is also possible for players to create a new key pair (PK , inv(PK)).

The functions sign and f1 (as well as the later introduced f2, f3 and h) are
public functions: every player can apply them to known messages. The function
sign represents digital signatures, and knowing sign(inv(PK),m) one also knows
m (i.e., signatures include the clear text of the signed message), and further
knowing PK one can verify the signature (i.e., that it was indeed signed by the
private key corresponding to PK). The function f1 is a format i.e., some way to
structure messages; here the f1-message consists of three components, a public
key, an attested property, and a hash value that is 0 for the initial credentials.
As it is standard, formats are transparent functions: knowing f1(x1, x2, x3) one
can obtain the components x1, x2, x3.

Let LRB be a subset of Player called the legally recognized brokers (who will
be allowed to issue f1-credentials, thus rootCA ∈ LRB).

The initial knowledge of every A ∈ Player is thus

M0(A) = {pk(X) | pk(X) ∈ LRB} ∪ {pk(A), inv(pk(A)), pk(rootCA),
sign(inv(pk(rootCA)), f1(pk(A), φ(A), 0))}

The states of HLL (the elements of S), we define as consisting of the following
components:

– for every player A a set M(A) of messages known by A, initially M0(A),
– for every player A and a set LBK(A) of public keys that are legally bound to

A (as explained in Sect. 3), initially containing only pk(A),
– and a set N of messages that have been sent on the open network and have

not yet been received.

For every player A except the trusted third parties rootCA, p and j we define
the following transaction: A can update N and M(A) to be any set of messages
N ′ and M ′(A) such that all messages in N ′ and M ′(A) can be derived from
knowing N and M(A). This allows players to receive or intercept messages,
store them in their own knowledge, compute new messages from them, send
messages out on the network, and actually, even “forget” messages (i.e., remove
them from their knowledge).

In the following, we say that a message m is accessible to player A, if A can
derive m from its knowledge M(A) and the messages N on the network. We say a
player A has produced a signature message m = sign(inv(k),m0), if k ∈ LBK(A)
and m is accessible to at least one other agent besides A. This complicated
formulation is necessary, since A is always able to derive all kinds of signatures,
but legally relevant is only which signatures A actually performs and makes
available to others. We define transactions for p and j when we continue this
example. ��

298 S. Mödersheim and J. Cuellar

3 The Legislative Branch

In contrast to many other models, we so far have a model where players are free
to do whatever they want, but the first important element is that we consider a
definition of legality : several actions are deemed to have a special legal status, and
depending on this status, some actions are deemed illegal and thus punishable.
Note that it is a completely different question whether an illegal action can
actually be discovered (and punished)—which is considered in the next sections.

This is different from the approach in [13] where everything that is not part
of the protocol rules of the honest agents is considered dishonest, but may be
tolerated. We in contrast say: everything that is not explicitly forbidden, is
considered legal (“nulla poena sine lege”). Thus we allow agents a broad range
of actions (e.g., using the credentials we define in HLL in all kinds of protocols)
without getting into a “gray area”—as long as they do not violate any laws.

Definition 2. The legal system is defined by a function crimes that maps from
states to sets of records, where a record is an attribute-value type that can store
all relevant information about a particular crime, especially who is the culprit
and which actions are relevant to the case. Let us say A is a culprit in S if
crimes(S) contains a record with A as the culprit.

Finally, we also require that the legal system must be reasonable in the sense
that a player can only become criminal through its own actions or by not answer-
ing a subpoena.

Note that some illegal actions may never be detected by anybody and the culprit
may never be convicted for them—the goal of this approach is not to prevent all
possible crimes. The legal system gives only a clear definition of what is allowed
and what is not, and the justice system will be ensuring that only guilty players
(who committed a crime) can be convicted.

One may wonder about the requirement of “reasonability”, as this seems
self-evident and maybe also irrelevant. To that end, observe that crimes(S)
is defined with respect to a state S and not to particular actions. A modeler
may by accident specify an unreasonable crimes function, where the action of a
player leads to a state S in which another player is the culprit. In fact we need
later in our argumentation that players cannot become a culprit without having
committed some illegal action themselves.

The legal system may specify other functions on states that define certain
legal terms, e.g., that certain keys are legally bound to a particular player; these
may have relevance in the definition of crimes. Also the definition of states may
be chosen by the modeler in such a way that these definitions are made explicit
for each given state: in the HHL example, we have already included in the state
the set LBK of legally bound keys for each player.

The legal system may also define that an agent who performs a particular
transaction is (a) forced to delete certain data after the transaction or (b) is
forced to retain certain data after a transaction. In the latter case, the agent
may later be subpoenaed by the judicial branch to reveal the data they were
obliged to store.

Three Branches of Accountability 299

Example 2 (HLL cont.). Let us actually formulate the legal system for HLL first
as a set of laws, and then turn them into the function crimes in a second step.
Our laws are:

§1 The key pair (pk(A), inv(A)) is legally bound to A.
§2 If a private key that is legally bound to A is known to another player B, then

A is punishable.
§3 The legally recognized brokers (LBR) are given explicitly by a list of players

fixed in the law.
§4 There are three legally recognized formats:

f1 for issuing certificates; this format has three fields, and in f1(PK , φ, n),
PK is a public key, φ is a property attested by the certificate, and n is a
hash-value.

f2 for certificate requests; this format has two fields, and in f2(PK , φ) again
PK is a public key and φ is a property.

f3 for signing any other matters. (This is to allow players to use their keys
for signing of messages that have nothing to do with the certificates here.
For instance, one can thus use one’s certificate for all kinds of private
business, and f3 distinguishes the purpose from f1 and f2.)

§5 If a private key is bound to player A and has been used for signing a message
that is not one of the formats in §4, then A is punishable.

§6 If a private key is bound to player B and has been used for signing a message
that is of format f1(PK , φ,m), then B is punishable if any of the following
conditions is violated:
1. B is a legally recognized broker according to §3
2. B has received and stored a certificate of the form

sign(inv(pk(C)), f1(PK ′, φ′, n))

where C is a legally recognized broker according to §3 and φ′ implies φ.1

3. B has received and stored a certificate request of the form

sign(inv(PK ′), f2(PK , φ))

4. m is the hash of the inputs, i.e.,

m = h(sign(inv(pk(C)), f1(PK ′, φ′, n)), sign(inv(PK ′), f2(PK , φ))) .

(The purpose of this hash value will be explained below.)
5. Whenever a judge issues a subpoena to B concerning such a certificate,

B supplies the received and stored signatures.

1 In fact, for properties φ one must choose a language with a formal semantics, in par-
ticular formalizing implication from φ′ to φ, and this implication must be efficiently
decidable. An simple example could be attribute value pairs with selective disclosure
and comparison of attributes, e.g. “at least 66.6 years of age”.

300 S. Mödersheim and J. Cuellar

§7 If PK is bound to player A and inv(PK) has been used for signing a message
f2(PK ′, φ′), then PK ′ becomes legally bound to A.2

A few comments on the law are in order. The distribution of private keys and
signatures is already a tricky notion. It is actually not forbidden that a player
backs up their data (including their private key) on a remote server—provided
that this data is encrypted in some way that prevents any other player from
accessing it. However, in this case it is illegal to distribute the corresponding
decryption key, because this enables others to obtain the private key. Our law
avoids here the complications of defining precisely how one has to handle private
keys and simply defines the effect as punishable that the private key ends up in
another agent’s knowledge.

This actually neglects the fact that honest players may in fact get hacked
and thereby lose their private key to a hacker without any intention, and the law
in this example does not require intent for the player to be guilty. Note however
that HLL has no “hacking transitions” where one player gets access to another
players knowledge. Our approach does not preclude a more complicated system
(with hacking transitions and users being able to revoke keys) but that requires
correspondingly a more complicated legal system in order to be reasonable.

As a third comment, the issuer of certificates is obliged to store the incoming
messages and reveal them upon request from the judicial branch as explained
below. Failure to produce the incoming messages will also be punishable.

We now define the function crimes based on these laws, but we have to make
one adaptation of the transition system first to reflect §7. In a transition where
player A produces an f2-signature (recall that this is the case as soon as the
signature is accessible), the corresponding public key in the f2-part is added to
the legally bound keys LBK(A).

Now crimes(S) returns all of the following records, where each record is just
an attribute value list containing the violated law, the culprit and any relevant
other information:

– (Law = §2, P erp = A,Key = PK ,Wit = B):
if PK ∈ LBK(A) and inv(PK) is accessible to player B �= A.

– (Law = §5, P erp = A,Key = PK ,Wit = B):
if PK ∈ LBK(A) and sign(inv(PK),m) is accessible to player B �= A where
m is not of the formats f1, f2, f3.

– (Law = §6, P erp = A,Sig = m0,Wit = B):
if PKA ∈ LBK(A), m0 = sign(inv(PKA), f1(PK , φ,m)) is accessible to player
B �= A and either

2 One could make additional clauses that define it to be illegal, if A does not know
inv(PK ′), but it would put a legal requirement on A never to lose old keys (and if A
is using here a key that is already legally bound to somebody else, then A is already
punishable according to §2). Further one could define it as illegal if A here asks for
a φ that is not implied by φ′. However, since every broker is obliged by §6 to check
that, this is not necessary. In fact, one may argue that it could be counter-productive
if it were illegal to ask for attestation of properties one does not have; a server could
rely on the fact they are “off the hook” once a user asks for a wrong property.

Three Branches of Accountability 301

• A /∈ LRB
• or A cannot derive (from M(A) and N) messages of the form mc =

sign(inv(pk(C)), f1(PK ′, φ′, n)) and mr = sign(inv(PK ′), f2(PK , φ)) such
that C ∈ LRB, φ′ implies φ, and m = h(mc,mr)

Note there is no violation for laws §1, §3, §4 and §7 as they are merely providing
legal definitions for other laws. Also note that these records are just part of our
model definition—what can actually be observed by any party is considered in
the next section.

Finally, we show that the legal system is reasonable. Observe that for A to
be guilty of a crime or be subpoenaed, another player B has to have obtained a
particular message, namely a private key of which the public key is legally bound
to A or a signature with such a private key. Let S be a state and A is not the
culprit of any crimes(S), then A cannot have leaked any of her legally bound
keys. Thus, all signatures with a key legally bound to A must have indeed been
produced by A. Therefore A cannot become culprit of any crime through the
actions of other players. If there is a subpoena for an f1 credential that A has
issued, then by the fact that A is currently not a culprit it follows that A knows
suitable input messages (see violation record for §6) and can thus answer the
subpoena. Besides subpoenas, A is not obliged to send any particular messages,
and can thus always send a message without any legal implications. ��

4 The Executive Branch

So far, we only have a definition of what is legal, i.e., what players may do, and
the definition of the transition system formalizes what they can do. They can
be discouraged from doing anything illegal, if there is a risk of being detected
and punished. If the punishment is of monetary nature, aspiring criminals may
compute the expected value from punishment and the risk of being caught,
and weigh it against the profit they can make from their illegal actions, and
thus commit only crimes that are profitable, i.e., where the expected value is
positive for them. In order to avoid here a quantitative model, we propose a
simple assumption: that the expected value is negative and thus crimes are not
profitable. This means that we assume that neither the risk to get caught nor
the punishment are insignificant.

To this end, the modeler shall specify one or more transactions that represent
the discovery (or detection, we use as a synonym) of particular criminal offenses.
This may model in an abstract way whatever can “go wrong” from the perspec-
tive of a criminal. For instance, after issuing an illegal credential in our running
example, the recipient of this credential may get caught using it. This may be
described rather abstractly, i.e., without modeling the details of police investi-
gations. Also note that this is just a possibility : there is no guarantee that every
crime is detected. However, as said before, the chance of getting caught must
be non-negligible as we would otherwise would have to make a more detailed
quantitative model.

302 S. Mödersheim and J. Cuellar

The modeler has ample liberty in the design of such discovery transactions,
in fact, one may even model that players can give false testimony to the police
to start an investigation, but in most cases it is recommendable to focus on
detecting messages that are suitable as evidence of a crime (e.g., signed messages
with legally binding keys), and also only when it is realistic that this may be
detected. This models that certain crimes may go undetected (even if they satisfy
the specified situation), but they come with the risk of being detected. Thus
being detected is simply a reachable state in our model.

Definition 3. A discovery transaction is a transaction whose player is the police
p, and that augments the knowledge of the judge j with a police report, i.e., a
record that specifies the observations of p.

We may also say that this triggers (enables) a judicial proceeding, because judge
j may now be able to perform transactions that further investigate the crime, as
explained in the next section. Note that one may model a dishonest police that
could lie about evidence, but this has then to be appropriately reflected in the
judicial process.

Example 3 (HLL cont.). Before we define the police for HLL, let us first define a
security goal that we strive to achieve. An attack state for HLL is a state where
a player A can derive both a credential sign(inv(pk(B)), f1(PK , φ, n)) and the
private key inv(PK) such that B ∈ LRB and φ(A) does not imply φ. This means
that A knows a credential for a property she does not have and she can use this
credential as she knows the private key of PK to which the credential is bound.
The goal of HLL is that such a state is not reachable, but actually so far it is,
because a dishonest B can just illegally issue such a credential.

However, to reach an attack state, at least one player must commit a crime:
this situation cannot happen if all players perform only legal actions. (The proof
of this statement will actually later follow from the final accountability proof of
HLL: if the situation arises, then necessarily somebody has committed a crime
they can be convicted for.)

Let us simply define the discovery transaction for this situation: it can fire
in an attack state, i.e., when a player A can derive both a private key inv(PK) a
credential sign(inv(pk(B)), f1(PK , φ, n)) with B ∈ LRB and φ(A) does not imply
φ. The transition simply adds the following record to j’s knowledge: (Evid =
{inv(PK), sign(inv(pk(B)), f1(PK , φ, n))}, Loc = A) . In fact, the police may not
even know the identity A and have Loc =? instead; this can model the situation
that an obviously fraudulent use of a credential is detected, but one could not
determine the identity of A.

One may wonder if this discover rule models that the police can “examine
the knowledge” of a participant, but rather it is a simple and abstract way to
model the following: if B illegally gives a credential to A, then B has the risk
that A might get caught using them (e.g., parents observe that their children
access an gambling site for adults using a credential they obtained illegally on
the Internet), or that A is a police informant. The discovery rule thus just models
the risk attached to handing a usable credential illegally to another party. ��

Three Branches of Accountability 303

We model here an executive branch that always produces just accurate evidence
of crimes. There may be situations where the evidence is potentially inaccurate
(e.g., false witness testimony), not conclusive (e.g., we cannot be sure it repre-
sents a crime), or manipulated (if the police is dishonest). For the first two, the
judicial process that follows must evaluate that the evidences are sufficient to
convict any suspect, but the latter in general cannot be solved unless we can
rely solely on unforgeable evidences.

5 The Judicial Branch

A key element of our approach is defining a process for the judicial branch,
namely for the case that they get invoked by the executive branch after detect-
ing illegal activity. This is a process that consists of various transactions that
may lead to discovering more evidence and finally comes to a decision such as
declaring one or more of the players guilty. It is necessary that this process obeys
in dubio pro reo or fairness, i.e., we need to ensure by design that the judicial
process cannot lead to the conviction of any innocent player.

Apropos dubio: one may wonder about the term reasonable doubt that we
have in traditional legal courts. For instance, we have already discussed that a
player may be victim of a hacker attack, so illegal signatures could exist that
the player is held responsible for, without actually having done anything wrong.
Vice-versa, a player who did perform illegal actions may try to avoid prosecu-
tion by claiming their private keys must have been stolen, or that somebody
could have broken the cryptographic primitives. Are these reasonable doubts
that should lead to acquittal of the suspect?

For this paper, the simple answer is: we define a transition system that
includes everything that we expect can reasonably happen. In the HLL example,
we do not have deduction rules for breaking cryptography or performing hacking
attacks on other players. However, one can of course model systems with special
transitions representing particular hacker attacks and the judicial branch must
take this properly into account. Thus, in general a reasonable doubt means that
the transition system can reach a state that is consistent with all the evidence
gathered in the trial and where the accused player did not perform any illegal
action.

The next key element of our approach is that the process of the judicial
branch can include subpoenas: we can specify that particular players have the
obligation to provide further evidence during an investigation, e.g., open log files
or decrypt messages they have the key to. Failure to answer the subpoena means
that the player in question is convicted as guilty. Thus fairness requires that we
ensure by design that all subpoena transactions can always be answered by
honest players. Said conversely, a subpoena must not require from a law-abiding
player to produce documents that they actually cannot produce.

Definition 4. The modeler can define two kinds of transactions for the judge
j. First, j can convict a player A, i.e., make a transition from a state S to S′

304 S. Mödersheim and J. Cuellar

where A is added to the set of convicted players in S′; this requires however that
there is a record R ∈ crimes(S) such that A is the culprit in R, i.e., the judge
never convicts an innocent player. This requirement is called fairness.

Second, the modeler can define special subpoena double-transitions for j and
a player A chosen by j. Formally, a subpoena is defined by a relation subp(M,m)
where the query M is a set of messages and a valid answer m is a message. The
subpoena transaction is a double-transition where

– the first part, performed by j, is that the judge sends M to a player A
– the second part, performed by A, is that A answers with an arbitrary message

m that can be derived from M(A) and the network N . This answer m is just
added to j’s knowledge and if it does not satisfy subp(M,m) then A is directly
added to the guilty set.

We require that any such subpoena double-transition must be specified in the
legal system, i.e., under which circumstances it can be raised by the judge j,
what the relation subp is, and that the player A is punishable for not answering
the subpoena according to subp. From the requirement that the legal system must
be reasonable follows that an agent who did not commit any crime can only be
subpoenaed for a message m that they indeed can produce. ��

Note that we allow A to choose any message from their knowledge, even if it
does not fulfill subp(M,m). This represents that A may not answer or answer
in a non-meaningful way, but this would lead to A’s immediate conviction. Note
also that in general A may be able to lie at this point, i.e., give an answer that
is not the truth but satisfies subp(M,m). By simply allowing all messages (not
specifying a strategy) we can leave this to a game-type definition below.

Example 4 (HLL Cont.). In the HLL example, the judicial process is started
when the police has provided a report of the form

(Evid = {inv(PK), sign(inv(pk(B)), f1(PK , φ, n))}, Loc = A)

where B ∈ LRB and the entity A on which the credential and private key was
found does not satisfy the property φ.

The case that B = rootCA is handled below. For the case
B �= rootCA, we define now a subpoena transaction: for the credential
sign(inv(pk(B)), f1(PK , φ, n)) the judge can ask the broker B to reveal the input
message for issuing this credential according to §6.5. This subpoena satisfies
fairness since nobody but B could have produced the credential (unless B has
illegally leaked inv(pk(B))) and §6 obliges B to store the input credentials; thus
if B has followed the law, it can produce these inputs now.

If B does not comply with the subpoena, B is considered guilty and the
judicial process stops. This might be the case when B originally did not issue
the credential lawfully (maybe for its own use or for selling to somebody else),
or when B did so far nothing wrong, but now protects another player by not
answering the subpoena. In that case, we cannot find out who that other player
is, but in B we have a culprit who provably violated the law.

Three Branches of Accountability 305

If B however complies with the subpoena then the investigation obtains the
corresponding input credentials, i.e., a credential sign(inv(pk(C)), f1(PK ′, φ′, n))
and a certificate request sign(inv(PK ′), f2(PK , φ)) where C is a legally recog-
nized broker, φ′ implies φ, and the hash m in the credential issued by B must
be the hash of these two messages.

We can then just “climb up the ladder” by continuing with the subpoena of
C in the same way until we either reach a broker who does not comply with the
subpoena and is thus convicted, or we reach a credential from the rootCA. This
regression with subpoenas cannot run into an infinite loop (i.e., never reaching
the rootCA or a non-compliant broker). This is because every credential, except
the base credentials from the rootCA, must include a hash of a previous credential
that acted as input; this gives a well-ordering on the credentials.

It is thus a necessity that this process of subpoenas in HLL will eventually
terminate at an f1 credential signed by rootCA, and containing the real name
A0 of its rightful owner. We then have a chain of credentials from the original
credential to the one discovered by the police. From that follows that all public
keys in that chain are legally bound to A0 (§1 and §7) in particular the key
PK in the discovered credential. Moreover, the property φ in the discovered
credential is implied by φ(A0) due to the requirement along the chain. However
φ(A) does not imply φ (this actually triggered the investigation). Thus A �= A0

and therefore A0 has violated §2. Thus j now convicts A0.

Example 5. Let us consider a variant of our setup where we replace the hash-
value in the f1 format with just 0 (like in the base credentials from rootCA).
Suppose a criminal broker B ∈ LRB generates fresh key pairs (PK , inv(PK))
and (PK ′, inv(PK ′)) and the following signatures for some arbitrary property φ:

1. sign(inv(pk(B)), f1(PK , φ, 0))
2. sign(inv(PK), f2(PK ′, φ))
3. sign(inv(PK ′), f2(PK , φ))

and sends the first two of them to an honest broker C who issues

sign(inv(pk(C)), f1(PK ′, φ, 0))

At this point, B can without danger use the “illegal” credentials or sell them:
if it gets ever detected, B can point to C’s credential in a subpoena. It is then
clear that either B or C must have broken the law, but neither can be proved
guilty due to the symmetry of the situation.

But is this truly a perfect crime? B can possibly make money with illegal
credentials without a risk of getting caught—with one exception. At the moment
when B sends the two signatures to C, a crime has happened for which the
discovery transaction can fire, because B has a credential and the corresponding
private key, attesting a property B actually does not have. At this moment, B
has no way to answer the subpoenas and is convicted, so apparently, this crime
is actually not perfect.

However, suppose φ is a property that B actually has. Then it is still illegal
for B to issue the said credential, however our detection rule does not trigger

306 S. Mödersheim and J. Cuellar

(since B is in possession of only a credential certifying a property that B indeed
has). Then, if C issues the corresponding other credential, it is risk free for B to
sell the credentials and private keys on the black market to somebody who does
not have property φ.

This attack is the reason for including the hashes in the f1-credentials. ��

6 Security Based on Perfect Crimes

The keystone in our construction is now that we perform verification of the goals
of a system under the assumption that no player performs an action that bears
the risk of being punished. To define this precisely, we need to see this as a game:
focusing on a particular player A we distinguish transitions that the player is
performing and that others are performing.3 Recall that in a subpoena double-
transaction, the first part consists of a request from j followed by an answer
from the challenged player A.

Definition 5. For every player A we perform the following least fixedpoint com-
putation on the state space. We label every state S red where at least one of the
following holds:

– A is convicted in S,
– from S exists a non-A transition to a red state, or
– in a subpoena double-transition on A all answers from A in the second part

lead to red states.

We say that an A-transition that involves illegal behavior is a perfect crime
for A, if the resulting state is not labeled red. Said another way: a player A can
get away with an illegal action if there is no path to a conviction given that A
“plays perfectly” in subpoenas. We define the perfect crime assumption as the
assumption that a player performs an illegal action only if it is a perfect crime.

The important consequence of the perfect crime assumption is that no player
will ever be convicted, provided that the legal system is reasonable (Definition 2)
and the justice is fair (Definition 4). In an unreasonable legal system or in an
unfair justice system, this does not hold in general, because a player may become
a culprit (and get convicted) without having done anything, or get convicted
without even being a culprit.

Example 6 (HLL example (Cont.)). As said before, the security goal of HLL is
that we cannot reach an attack state which was defined as a player A knowing
a credential and corresponding private key for a property they do not have, i.e.,
a player A knows sign(inv(pk(B)), f1(PK , φ,m)) and inv(PK) while φ(A) �|= φ
and B is an LRB.

3 In general, one could model transactions that represent the behavior of more than
one player performed collaboratively. This then needs to be decoupled according to
the choices each player makes.

Three Branches of Accountability 307

It is now easy to see that no attack state is reachable under the perfect crime
assumption. Suppose an attack state S were reachable. Then from S also a dis-
covery transition of the police is possible, triggering a judicial investigation. We
have already seen that this investigation will necessarily lead to the conviction
of some player A. The state S must be labeled red for A because there is a path
from S to the conviction of A, and on this path A has not made A-transitions
except possibly answering subpoenas. The perfect crime assumption dictates
that A will answer these subpoenas to the best of her abilities: if A can answer a
subpoena, she will, because everything else would be an imperfect crime. Thus
the state S itself is the result of an imperfect crime of A, contradicting the
perfect crime assumption.

7 Løglog

Recall that the HLL uses in all f1-credentials the third field as a hash of the
inputs to achieve well-foundedness. Actually, a slight modification can allow for
a substantial improvement: we can avoid the brokers obligation to remember
the input to all credentials they have issued by a self-encryption scheme as
follows. Let us replace the value h(m1,m2) (where m1 and m2 are the two input
messages) by crypt(pk(B), f4(m1,m2)) for a distinguished new format f4 and
where B is the broker issuing and crypt denotes asymmetric encryption. The full
credentials would thus take the form

sign(inv(pk(B)), f1(PK , φ, crypt(pk(B), f4(m1,m2))))

This means that now every credential contains a field that represents the inputs
upon which B has issued the credentials. Only B can read them (unless B has
illegally given out its public key). After this modification, B does not have to
remember the input messages m1 and m2 anymore: if B gets subpoenaed for this
credential, B can simply decrypt this field and reveal m1 and m2 (unless B is
dishonest and did not follow the encryption requirements, but that is equivalent
to B simply refusing to follow the subpoena).

Since credentials now essentially ship with a small encrypted log-file that
contains the parent credential, the entire ancestry of credential is present in an
onion shaped log. Since the Danish word for onion is “løg” (pronounced like
“loy”), we call the system Løglog.

This comes at the cost that the credentials get longer as compared to HLL,
i.e., outsourcing the storage problem to the owner of the credentials. However
note that this in practice reduces the risk and thus possibly the price of offering a
broker service: it is costly to keep data not only secret but available for indefinite
times; we reduce the amount of data from all credentials ever issued by a given
server to just one private key, which is not only a much lower volume but also
something static (i.e., no live connection from the data processing to the backup
facility). For the user, in contrast, there is no risk attached to it: in the worst
case they cannot use their credentials anymore if they lose them, but they cannot
become liable. Also the size should not be excessive unless one builds long chains

308 S. Mödersheim and J. Cuellar

of credentials. The proof of security can be slightly adapted: an honest server
can just decrypt its logs to reveal the input, thus preserving fairness.

Finally, we could now even require that brokers must not store input and
output messages of credential actions: we can define it as a crime if any creden-
tials or credential requests are derivable from the knowledge of a broker, and
define an additional discovery transaction to that effect. However, this is tricky
to do without making the legal system unreasonable. For instance, a broker may
receive and store a message from another player that contains a certificate that
the broker is not allowed to store without the broker being aware of that. One
can however define brokers to be dedicated entirely to the credential issuing;
such a broker can then, in an atomic transaction, fetch the input credentials
from the network, perform all necessary checks and send the reply back to the
network without ever storing any of these messages in its knowledge.

8 Related Work and Conclusion

The term accountability is used in a variety of fields, ranging from protocol-
based approaches, over works in the field of trust and access control policies, to
rather abstract and high-level concepts in usage control. Obviously, our approach
belongs to the protocol area, but borrowing many ideas from the other areas.

Protocol-Based. The starting point of our work was a paper by Küsters,
Truderung and Vogt [13]. It defines explicitly protocols for a given number of
participants, and a subset of these protocols are for honest participants. Thus,
the behavior of the dishonest participants must also be specified by sufficiently
broad protocols, and an agent is called honest when they only execute an honest
protocol. In contrast, our notion of legality follows a different design philosophy:
players can arbitrarily interact with each other and the legal system gives only
some legal boundaries. This indirectly specifies something like a protocol, but
allows that players engage also in other protocols. In the running example, for
instance, the players may use the credentials for instance for privacy-friendly
authentication in other web service protocols (they have to just use the f3 for-
mat when signing messages that are meant for purposes other than legal issue
or request of credentials, or use keys that are not legally bound).4 This allows
us to verify security goals using accountability arguments in a very general way,
i.e., independent of a fixed environment of protocols.

Further, the approaches have in common that not all illegal activities are
necessarily detectable. [13] requires that illegal activities that lead to violations
of the security goals must be detectable and allow for a judge to identify either
one or all culprits. In contrast, our executive branch is a decoupling of that
from security goals, modeling that “by chance” some crimes may be detected no
matter if this is relevant for security goals or not. We also have no requirement
4 Note that our legal system does not even regulate how the exchange between a player

and a broker to obtain a credential is organized: this may be transmitted over a TLS
channel or even clear text, either way can be done in a legal way.

Three Branches of Accountability 309

that this must necessarily lead to a conviction. This is side-stepping the question
whether we really need to get all criminals, because we use the possibility of
detection as a deterrent: if the criminals are deterred enough so that violations
of our security goals cannot occur, then this is sufficient.

In the judicial system we have the common similarity that systems must
be fair, i.e., must not convict the innocent. The most significant differences
however may be in the concept of subpoenas and the perfect crime assumption,
because here we get aspects of games into the picture, namely that agents will
not engage in actions that could lead to their conviction. For this reason we have
also required the (to our knowledge) novel property of the legal system being
reasonable, i.e., that players can only become guilty by their own actions, not by
of actions of others or through a discriminatory legal system. This is necessary
because our broad definition would otherwise allow for legal systems in which
agents cannot by rational behavior avoid punishment and thus the perfect crime
assumption no longer helps in security proofs.

Automation. Another interesting question is the automation of a verification
procedure for accountability, such as in [4]. In fact, here a major difference
is that for us accountability is not a goal in itself, but a means to achieve the
actual security goals, namely by deterring illegal behavior. The main verification
task is thus in showing that any violation of the security goals that can occur
would lead to a conviction of a suspect, and perfect crime assumption, fairness
and reasonability then imply that that cannot happen. The classical protocol
verification tasks of analyzing a state-space are thus less prominent in our work
and at the center is thus more an inductive argument like the process of obtaining
a culprit. Note for instance the main difficulty in the proof here was the well-
foundedness (cf. examples 4 and 5) which may not be a suitable question for
automation.

Another related research area is Runtime Verification; see for instance [8] for
a taxonomy of tools. The purpose is to model and specify policies that describe
what actions are allowed and to use a log of actions to check whether a given
run of a system satisfies the specification, see e.g., [2,16]. Sometimes the actors
want to reach a common goal and the question is to automatically construct a
plan (in the sense of Operations Research and AI) to implement a compliant
solution, compare [11].

Other approaches in the protocol realm are as follows: Bella and Paulson [3]
take an approach in which parties obtain lasting evidence, typically digitally
signed, about actions performed by their peers. Künnemann and Backes [12] take
a causality point of view: a party misbehaves if the fact that it deviates causes
a violation of some given security property. Formalizing causality is challenging,
and in fact, legality should be evaluated independently of the question whether
it causes a problem or not. Thus, in our work the perfect crime assumption does
not prevent agents from causing damage, but from getting caught.

Beyond Protocols. Also in other fields, accountability as a security goal has
been studied at least since the work of [14]. Recently, the concept and methods

310 S. Mödersheim and J. Cuellar

have obtained wide recognition as a practical, real-life set of security mecha-
nisms for ensuring compliance to policies based on deterrence, rather than on
the more traditional approaches of cryptography-based or policy-based access
control. Central to this deterrence idea is the creation of a system that detects
and punishes participants that behave dishonestly. For instance [9] defines that
a participant is accountable if there is a non-zero probability for being punished
whenever the they violate the policy. They use traces of events with a utility
function on maximal traces. The idea is that agents will obtain lower utility
from traces that include their own security-policy violations than they do from
those in which all of their actions are policy-compliant. Our notion of detection
is similar, though we do not include any quantitative aspects, and use in the
perfect crime assumption that the deterrence works, allowing to directly use it
in security proofs.

In fact, accountability can also be regarded as particular incarnations of Trust
Management, including policy-based and reputation-based systems. In [17], [6,7],
and others the different parties in a decentralized system have the responsibility
of recording information events that will be used as “proof obligations” before
executing a sensitive action. Those proofs will be relevant to future assessment
of accountability to some set of policies. Those works also discuss further aspects
like regret or dynamic (time-dependent) trust. In our approach this is similar
to the notion of subpoenas, although it has in the protocol-area a new flavor
since when looking at concrete messages exchanged, this includes the question
whether players may be able to forge evidence and thus lie in a subpoena without
that maybe being provable.

In the domain of Data Protection accountability is gaining importance. In
this context the term accountability is used in a very broad sense that is difficult
to formalize, namely as an obligation of “an organization to be answerable for
its actions” [5]. See [1] for the history of the term in a legal-technical context.

We believe accountability is an exciting field that will see further devel-
opments. One of the questions is for instance accountability in distributed
ledgers [10]. We are currently investigating to practical use of accountability ideas
in workflow processes where players may at each point have snippets (signed
pieces of a workflow) and where investigation of detected misbehavior can lead
to a chain of discoveries as in our running example [15].

Acknowledgements. This paperwas inspired by discussionswithOmar Almousa, Bud
Brügger, and Max Tuengerthal. This work has been supported by the EU H2020-SU-ICT-
03-2018 Project No. 830929 CyberSec4Europe (https://www.cybersec4europe.eu).

References

1. Alhadeff, J., Van Alsenoy, B., Dumortier, J.: The accountability principle in data
protection regulation: origin, development and future directions. In: Guagnin, D.,
Hempel, L., Ilten, C., Kroener, I., Neyland, D., Postigo, H. (eds.) Managing Pri-
vacy through Accountability, pp. 49–82. Palgrave Macmillan UK, London (2012).
https://doi.org/10.1057/9781137032225 4

https://www.cybersec4europe.eu
https://doi.org/10.1057/9781137032225_4

Three Branches of Accountability 311

2. Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable
offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 31–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 4

3. Bella, G., Paulson, L.C.: Accountability protocols: formalized and verified. ACM
Trans. Inf. Syst. Secur. (TISSEC) 9(2), 138–161 (2006)

4. Bruni, A., Giustolisi, R., Schürmann, C.: Automated analysis of accountability. In:
Nguyen, P.Q., Zhou, J. (eds.) ISC 2017. vol. 10599, pp. 417–434. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69659-1 23

5. Cavoukian, A., Taylor, S., Abrams, M.E.: Privacy by design: essential for organiza-
tional accountability and strong business practices. Identity Inf. Soc. 3(2), 405–413
(2010)

6. Cederquist, J., Conn, R., Dekker, M., Etalle, S., Den Hartog, J.: An audit logic for
accountability. In: Sixth IEEE International Workshop on Policies for Distributed
Systems and Networks (POLICY 2005), pp. 34–43. IEEE (2005)

7. Corin, R., Etalle, S., den Hartog, J., Lenzini, G., Staicu, I.: A logic for auditing
accountability in decentralized systems. In: Dimitrakos, T., Martinelli, F. (eds.)
Formal Aspects in Security and Trust. IIFIP, vol. 173, pp. 187–201. Springer,
Boston (2005). https://doi.org/10.1007/0-387-24098-5 14

8. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

9. Feigenbaum, J., Jaggard, A.D., Wright, R.N.: Towards a formal model of account-
ability. In: Proceedings of the 2011 New security paradigms workshop, pp. 45–56
(2011)

10. Graf, M., Küsters, R., Rausch, D.: Accountability in a permissioned blockchain:
Formal analysis of hyperledger fabric. In: EuroS&P, IEEE (2020)

11. Kanovich, M., Kirigin, T.B., Nigam, V., Scedrov, A., Talcott, C., Perovic, R.: A
rewriting framework and logic for activities subject to regulations. Math. Struct.
Comput. Sci. 27(3), 332–375 (2017)

12. Künnemann, R., Garg, D., Backes, M.: Accountability in the decentralised-
adversary setting. In: 2021 IEEE 34th Computer Security Foundations Symposium
(CSF), pp. 95–110. IEEE Computer Society (2021)

13. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: Proceedings of the 17th ACM conference on Computer and
Communications Security, pp. 526–535 (2010)

14. Lampson, B.: Privacy and security usable security: how to get it. Commun. ACM
52(11), 25–27 (2009)

15. Popp, W.: Workflow-aware access control and accountability in IoT workflows,
master Thesis, Uni Passau (2020)

16. Schneider, J., Basin, D., Brix, F., Krstić, S., Traytel, D.: Scalable online first-order
monitoring. Int. J. Softw. Tools Technol. Transfer 23(2), 185–208 (2021). https://
doi.org/10.1007/s10009-021-00607-1

17. Weitzner, D.J., Abelson, H., Berners-Lee, T., Feigenbaum, J., Hendler, J., Suss-
man, G.J.: Information accountability. Commun. ACM 51(6), 82–87 (2008)

https://doi.org/10.1007/978-3-319-11164-3_4
https://doi.org/10.1007/978-3-319-11164-3_4
https://doi.org/10.1007/978-3-319-69659-1_23
https://doi.org/10.1007/0-387-24098-5_14
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00607-1
https://doi.org/10.1007/s10009-021-00607-1

Benign Interaction of Security Domains

Flemming Nielson1(B), René Rydhof Hansen2, and Hanne Riis Nielson1,2

1 Department of Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark

fnie@dtu.dk
2 Department of Computer Science, Aalborg University, Aalborg, Denmark

rrh@cs.aau.dk

Abstract. Whenever data is communicated outside a security domain
there is the risk that it may influence data coming back in a way that
is not permitted by the security domain. This may arise when differ-
ent security domains relate to different parallel processes that exchange
information through communication. We provide general definitions of
the demands on the communication and sanitisation primitives so as to
mitigate the risk. For interesting instantiations of these definitions we
provide algorithms for checking that the demands have been met. The
development is illustrated by a worked example dealing with the out-
sourcing of data management to the cloud.

1 Introduction

In an ideal world one might be able to devise a security policy (perhaps expressed
in XACML [16]) and impose it upon all participants, but in real life there is likely
to be cooperation between groups of entities that already have their security
policies in place and are reluctant to make major changes in order to merely
cooperate a little bit.

This paper builds on [5] and [13] in exploring ways that such preexisting
security policies may interact in a benign manner when the various groups of
entities are equipped with the possibility of communicating with one another.
This development is supplemented by a worked example suggesting ways that
medical organisations may exchange information between them while keeping to
their own security policies.

A key consideration is to determine the security implications of admitting
communication between groups of entities that already have their security poli-
cies in place. Motivated by considerations of non-interference we take the view
that this should be acceptable as long as groups of entities are unable to observe
that information flows throughout the system in a manner that violates their
own security policies. While this might be less than what could ideally be hoped
for, we believe that it reflects the established rules of society in that no individ-
ual is likely to succeed in making complaints about the information gathering
activities of intelligence agencies or service providers (like Google or Facebook)
unless the individual can demonstrate that a violoation has taken place.
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 312–331, 2021.
https://doi.org/10.1007/978-3-030-91631-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_17

Benign Interaction of Security Domains 313

This paper develops the syntax (Sect. 2) and semantics (Appendix A) for
a programming language supporting this development. Based on local security
considerations (Sect. 3) it then studies the implications of global communication
(Sect. 4). It then goes deeper into studying what extra information flow might
be permitted due to communication (Sect. 5) before concluding (Sect. 6),

2 Syntax

In this section we extend Dijkstra’s Guarded Commands language [6] with paral-
lelism, communication and security domains. The development is an adaptation
of the one in [15] by removing the considerations of symmetric cryptography
and instead using explicit security domains. Unlike the development in [13] we
do not add constructs for relocation of processes as this is not essential for our
worked example.

The main syntactic category of Secure Guarded Commands with Security
Domains (GCwSD) is that of programs (denoted P). A program

E par L1 S1 D1 C1 [] · · · []Ln Sn Dn Cn rap

consists of an environment (E) defining the communication channels used in
the program and a number of parallel processes, each having a local list of
sanitisation constructs (Si), a local declaration (Di) of variables, and a command
(Ci). We shall assume that each command has its own security lattice Li and that
data changes security domain when communicated between them. The syntax is
summarised in Fig. 1 and explained below.

The commands include those of Dijkstra’s Guarded Commands so we have
the basic command of assignment (x := e) in addition to sequencing (C1 ; C2)
and constructs for conditionals (if e1 → C1 [] ... [] en → Cn fi) and iteration
(do e1 → C1 [] ... [] en → Cn od). On top of this we introduce basic commands
for output (c ! e) and input (c ? x) over a channel (c) and a command performing
an ‘external’ non-deterministic choice among commands (sum C1 [] ... []Cn mus);
it will typically be the case that each Ci in sum C1 [] ... []Cn mus takes the form
c ! e ; C or c ? x ; C but we do not need to impose this.

We shall not fully specify the expressions but surely they must include num-
bers (n), strings (s), variables (x), arithmetic operations (e.g. e1 + e2), truth
values (e.g. true), relational operations (e.g. e1 = e2), and logical operations
(e.g. e1 ∧ e2). An expression may also be a sanitisation construct (d ↓ e1) for
bypassing the security policy expressed by the security domain; assuming that
the security modifier of d is �′ �→φ �′′ the intention is that the security label of e1
is changed from �′ to �′′ because of the intended security violations given by φ.

We shall not fully specify the data types and merely use a generic type data
encompassings integers (int), booleans (bool), and strings (string). We shall
leave the syntax of channels (c), sanitisers (d) (used for declassification and
endorsement), and security violations (φ) to the concrete examples; when the
security violations are of no interest they may be omitted (as we shall do in the
worked example below).

314 F. Nielson et al.

Fig. 1. Syntax of secure guarded commands with security domains.

Security labels (�) range over L1 ∪ · · · ∪ Ln and we shall leave their syntax
to the concrete example; we shall assume that the sets Li are pairwise disjoint.
The fundamental idea is that the partial order � indicates the direction in which
the security classification of data may freely change; in approaches based on the
Decentralised Label Model [12] this is called ‘restriction’.

National Health Service: A Worked Example
Imagine the British National Health Service (NHS) having data involving both
medical and financial aspects of the care and treatment of their patients. In
order to ensure the confidentiality of this data, the NHS classifies data using a
simple security lattice allowing financial data to be managed mostly seperately
from medical data:

{medical, financial}

{medical} {financial}

{}
Because of pressure from the US in getting a trade agreement between the US

and the UK, the NHS is forced to open up to outside data management. With
respect to the medical data it engages with a New York based company (NY)
that offers two security levels LoNY and HiNY, ordered as you would imagine:

Benign Interaction of Security Domains 315

HiNY

LoNY

Interaction between NHS and NY is restricted to channels with security
modifiers {medical} �→ LoNY, LoNY �→ {medical}, {medical, financial} �→ HiNY,
HiNY �→ {medical, financial}. In particular, financial data can only be communi-
cated at the highest security levels:

{medical, financial} HiNY

{medical} {financial} LoNY

{}

The above channels can be declared in GCwSD as follows:

1 chan [#putLoNY : data {medical} �→ LoNY,

2 #getLoNY : data LoNY �→ {medical},
3 #putHiNY : data {medical, financial} �→ HiNY,

4 #getHiNY : data HiNY �→ {medical, financial}]

Conversely, to handle the financial data the NHS engages with a New Hampshire
based company (NH) that also classifies data into two security levels: LoNH and
HiNH also ordered as one would imagine. Interaction between NHS and NH takes
place through channels having security modifiers {financial} �→ LoNH, LoNH �→
{financial}, {medical, financial} �→ HiNH, and HiNH �→ {medical, financial}:

{medical, financial} HiNH

{medical} {financial} LoNH

{}

Again it is straightforward to declare the corresponding channels directly in
GCwSD:

1 chan [#putLoNH : data {financial} �→ LoNH,

2 #getLoNH : data LoNH �→ {financial},
3 #putHiNH : data {financial} �→ HiNH,

4 #getHiNH : data HiNH �→ {medical, financial}]

316 F. Nielson et al.

The following GCwSD snippet illustrates some of the above communication pat-
terns, where the NHS forwards medical data to the NY data manager and finan-
cial data to the NH data manager:

1 nhs = // The NHS

2 var [financial : data {financial}, medical : data {medical}]

3 // ...

4 #putLoNY ! medical;

5 // ...

6 #putLoNH ! financial;

7

8 ny = // NY (handler of medical data)

9 var [nhsdata : data LoNY, result : data LoNY]

10 // ...

11 #putLoNY ? nhsdata;

12 // ...

13 #getLoNY ! result;

14

15 nh = // NH (handler of financial data)

16 var [nhsdata : data LoNH, result : data LoNH]

17 // ...

18 #putLoNH ? nhsdata;

19 // ...

20 #getLoNH ! result;

The problem tackled next is to ensure that this program adheres to the intended
security policies.

3 Local Security: Information Flow Type System

In this section we develop an information flow type system for ensuring that each
of the parallel processes adheres to the declarations and the overall information
flow policy that we impose.gene

The information flow type system presented here is responsible for ensur-
ing that data types match, that security levels match subject to the free use
of ‘restriction’ (i.e. �), and that we deal correctly with the security modifiers
associated with channels and sanitisers.

Within a parallel command we may bypass the security policy by means
of sanitisation [7]; in approaches based on the Decentralised Label Model [12]
this is called ‘declassification’ in case of confidentiality and ‘endorsement’ in
case of integrity. In GCwSD it is the d ↓ e1 construct that is responsible for this.
As already stated, the assumption here is that for d to have security modifier
�′ �→φ �′′ such that �′ and �′′ belong to the same security domain, and it is
natural to assume that �′ �� �′′.

Between two parallel commands we need to change the security label of the
data communicated. We have decided to integrate that with the actual commu-
nication and to this effect also channels have security modifiers that indicate the
change of security level: �′ �→φ �′′. The assumption here is that �′ and �′′ belong

Benign Interaction of Security Domains 317

ρ n : data⊥ ρ s : data⊥ ρ true : data⊥

ρ x : t
if ρ(x) = ()

ρ e1 : data 1 ρ e2 : data 2

ρ e1 + e2 : data (1 2)

ρ e1 : 1 ρ e2 : 2

ρ e1 = e2 : data (1 2)

ρ e1 : data 1 ρ e2 : data 2

ρ e1 ∧ e2 : data (1 2)

ρ e1 :

ρ d ↓ e1 : t
if ρ(d) = (φ)

Fig. 2. Types and security levels for expressions.

to different security domains and this is the novel construct of GCwSD. The
formal development borrows from that of [15] in the way it deals with communi-
cation and parallelism but handles security domains in a different manner due to
the security modifiers given to channels and sanitisers. It will make use of well-
typing judgements for expressions, commands and processes. They are inspired
by traditional approaches such as those of [17,18] but need to be extended to
deal with parallelism and non-determinism. In doing so, we are exploiting that
the semantics prescribes a lack of shared variables.

General Assumptions. Syntactic well-formedness of a program P as above also
needs to impose the following conditions:

– Each channel used for output in any Ci is declared in E and its security
modifier �′ �→φ �′′ satisfies �′ ∈ Li.

– Each channel used for input in any Ci is declared in E and its security modifier
�′ �→φ �′′ satisfies �′′ ∈ Li.

– Each sanitiser used in any Ci is declared in Si and its security modifier �′ �→φ

�′′ satisfies �′, �′′ ∈ Li.
– Each variable used in any Ci is declared in Di, hence no global variables.

This ensures that each command Ci only needs to be aware of the security
labels relating to its own security lattice Li. For the sake of readability of the
type system developed below we shall not incorporate the above demands into
the type system but shall feel free to rely on them when needed.

Well-typed Expressions. For expressions the judgement takes the form

ρ
 e : t �

It is defined by the axiom schemes and rules of Fig. 2 and will be explained
below. The judgement makes use of a type environment ρ that assigns types and
security levels to all variables, and types and security modifiers to all channels

318 F. Nielson et al.

Fig. 3. Types and pairs of security levels for commands.

and sanitisers. For simplicity of presentation we have amalgameted all occur-
rences of types for integers (int), booleans (bool), and strings (string) into a
generic type (data).

The overall idea is that ρ
 e : t � should ensure that the type of the expression
e is t and that the security level is � =

⊔
i ρ(xi)2 where xi ranges over all free

variables of e and ρ(x)2 = � whenever ρ(x) = (t, �). This is in line with the
development in [17,18] and takes care of explaining the axiom schemes and rules
of Fig. 2 except for sanitisation. For sanitisation d ↓ e1 we merely change the type
as indicated by the security modifier associated to d.

Well-typed Commands. For commands the typing judgement takes the form

ρ
 C : L

It is defined by the axiom schemes and rules of Fig. 3 and further explained
below. The judgement makes use of a security label L being a pair of security
levels, written as [�1, �2] with �1 � �2. We shall allow to write � � [�1, �2] for
� � �1 and define

[�1, �2] � [�′
1, �

′
2] = [�1 � �′

1, �2 � �′
2]

(which is the greatest lower bound operation with respect to a partial order �′

defined by [�1, �2] �′ [�′
1, �

′
2] whenever �1 � �′

1 and �2 �′
2). We shall write

uniq([�1, �2]) for the condition that �1 = �2.
The overall idea is that ρ
 C : [�1, �2] should ensure that �1 =

�
i ρ(xi)2

where xi ranges over all modified variables of C, and this is in line with the
development in [17,18]. However, we shall see that we need a bit more to deal

Benign Interaction of Security Domains 319

Fig. 4. Types for processes.

with non-determinism and so we will additionally ensure that �2 =
⊔

i ρ(xi)2 so
as to record the variety of variables modified in the command.

The rule for assignment records the security level of the variable modified and
checks that the explicit information flow is admissible. The rule for sequencing
is straightforward given our explanation of ρ
 C : L and the operation L1 � L2.

The rule for ‘external’ non-deterministic choice takes care of correlation flows
[14,15]. It makes use of uniq(Li), i.e. Li = [�′, �′] for some �′, to ensure that all
modified variables have the same security level.

The rules for conditional and iteration are essentially identical and make use
of guards of the form e1 → C1 [] · · · [] en → Cn. They take care of implicit flows
by checking that �i � Li whenever

∧
i ρ
 ei : data �i and

∧
i ρ
 Ci : Li. They

take care of bypassing flows [14,15] whenever some ei ∧ ej is satisfiable for i �= j.
This is expressed using the set cosat that contains those distinct pairs (i, j) of
indices such that ei ∧ ej is satisfiable; it may be computed using a Satisfaction
Modulo Theories (SMT) solver such as Z3 [10] or it may be approximated using
the DAG-based heuristics described in [14]. Whenever this is the case, the con-
dition �j � Li checks that the bypassing flows are admissible, and the condition
uniq(Li) checks the correlation flows are admissible.

The rule for output and the axiom scheme for input are somewhat similar to
the one for assignment, essentially treating output c ! e as an assignment c := e,
and input c ? x as an assignment x := c. However, we are careful about which
security level to use from the security modifier.

Well-typed Processes. For processes the typing judgement takes the form
 P :�. It is defined by the rule in Fig. 4 and makes use of env(· · ·) to construct the
appropriate environments for the commands. For env(chan[· · ·]) it is given by

env(chan[c1 : t1 �′
1 �→φ1 �′′

1 ; · · · ; cn : tn �′
n �→φn �′′

n]) =

⎡

⎣
c1 �→ (t1, �′

1 �→ϕ1 �′′
1)

· · ·
cn �→ (tn, �′

n �→ϕn �′′
n)

⎤

⎦

and similarly for env(san[· · ·]) and env(var[· · ·]). We shall only allow to use
the semantics on well-typed programs P (i.e. satisfying
 P : �).

National Health Service: A Worked Example
We have admittedly been very sketchy in providing the actual code for the NHS,
NY and NH processes and so it should come as no surprise that the GCwSD
snippets do adhere to the type system as formulated above. In particular, the
code snippet

320 F. Nielson et al.

1 var [nhsdata : data LoNH, result : data LoNH]

2 // ...

3 #putLoNH ? nhsdata;

4 // ...

5 #getLoNH ! result;

passes the type system whereas an erroneous code snippet

1 var [nhsdata : data LoNH, result : data HiNH]

2 // ...

3 #putLoNH ? nhsdata;

4 // ...

5 #getLoNH ! result;

would be captured by the type system. The challenge however is to ensure the
benign interaction between the three different security domains and this will be
addressed next.

So imagine that after a while NY and NH are acquired by Amazon that
over time use them simply as frontends to their own systems offering security
levels Low and High ordered straightforwardly. Interaction between NY and AMZ
takes place through channels having security modifiers, LoNY �→ Low, Low �→
LoNY, HiNY �→ High, High �→ HiNY. Similarly, interaction between NH and AMZ
are through channels having security modifiers LoNH �→ Low, Low �→ LoNH,
HiNH �→ High, High �→ HiNH:

HiNY High HiNH

LoNY Low LoNH

Declaring these channels is straightforward in GCwSD:

1 chan [#takeLoNY : data LoNY �→ Low,

2 #takeHiNY : data HiNY �→ High,
3 #giveLoNY : data Low �→ LoNY,

4 #giveHiNY : data High �→ HiNY,

5 #takeLoNH : data LoNH �→ Low,

6 #takeHiNH : data HiNH �→ High,
7 #giveLoNH : data Low �→ LoNH,

8 #giveHiNH : data High �→ HiNH]

Redefining the NY process to a simple forwarding agent is also straightforward:

1 ny = // NY (handler of medical data)

2 var [lony : data LoNY, hiny : data HiNY]

3 do true →
4 sum

5 #putLoNY ? lony; #takeLoNY ! lony

6 []

7 #giveLoNY ? lony; #getLoNY ! lony

8 []

9 #putHiNY ? hiny; #takeHiNY ! hiny

10 []

Benign Interaction of Security Domains 321

Fig. 5. Local paths.

11 #giveHiNY ? hiny; #getHiNY ! hiny

12 mus

13 od

And similarly for the NH process.
However, inspection of the channels now suggests a potential problem. Not

knowing the code running on AMZ there is no way we can be ensured that it
does not (by mistake or as a result of being hacked) contain a piece of code like

1 var [low : data Low, high : data High]

2 // ...

3 #takeLoNY ? low ;

4 // ...

5 #giveLoNH ! low ;

6 // ...

which might give rise to data of security label {medical} ending up as data of
security label {financial}. This is not captured by the type system presented in
this section.

4 Global Security: Change of Security Domain

Our current setup creates the risk that the communications between a process
and its environment (i.e. the other processes) gives rise to information flow that
would not be admitted within the process itself unless it resorts to additional
sanitisations. (So far our working example has been conceived without the need
to use any sanitisation.) Hence there is the risk that communication leads to
local information flow not captured by the type system of the previous section.
To guard against this we need to establish a bit of terminology for the i’th
component of the program P of interest.

We shall be interested in recording when the declarations Li Si Di might give
rise to an information flow from some �′ ∈ Li to some �′′ ∈ Li and we shall write
this as

P
i �′ �→π �′′

where π explains the way the information flow takes place. We say that there is
an i-local path labelled π from �′ ∈ Li to �′′ ∈ Li. This relation is defined by a
number of cases summarised in Fig. 5 and explained below. There is an i-local
path labelled ε from �′ ∈ Li to �′′ ∈ Li whenever �′ � �′′ Furthermore, there is
an i-local path labelled φ from �′ ∈ Li to �′′ ∈ Li whenever Si declares some
sanitiser with security modifier �′ �→φ �′′ and �′, �′′ ∈ Li. Paths can be combined
by concatenation where πε = επ = π.

322 F. Nielson et al.

Fig. 6. Remote paths.

We shall also be interested in recording when communication with the other
components might give rise to an information flow from some �′ ∈ ⋃

i Li to some
�′′ ∈ ⋃

i Li without exploiting the internals of the i’th component. We shall write
this as

P
[i] �′ �→π �′′

and the definition is summarised in Fig. 6. It differs from that of Fig. 5 in record-
ing a flow from �′ ∈ Lj to �′′ ∈ Lk whenever the environment E for the entire
program P declares a channel c of security modifier �′ �→φ �′′ and in restricting
the other flows to happen outside of the i’th component. (This includes not con-
catenating paths that connect via the i’th component.) The definition specialises
to the case where �′ ∈ Li and �′′ ∈ Li and motivates defining

P
i �′ �→π �′′ iff P
[i] �′ �→π �′′ ∧ �′ ∈ Li ∧ �′′ ∈ Li

and we say that there is an i-remote path labelled π from �′ ∈ Li to �′′ ∈ Li. We
are now ready to define our first notion of when a program P is secure.

Definition 1. A program P is naively i-secure whenever for every i-remote path
(with some label) from some �′ ∈ Li to some �′′ ∈ Li there also is an i-local path
(with some possibly different label) from �′ ∈ Li to �′′ ∈ Li:

∀�′, �′′ ∈ Li : ∀πr : P
i �′ �→πr �′′ ⇒ ∃πl : P
i �′ �→πl �′′

A program P is naively secure whenever it is naively i-secure for all values of
i ∈ {1, · · · , n}.

It is possible to check for naive security in cubic time with respect to the
size of the program P . To see this, first note that the number of security labels,
security violations and security modifiers considered is linear in the size of the
program P . Next note that using Figs. 5 and 6 to compute ∃π : P
i �′ �→π �′′

and ∃π : P
i �′ �→π �′′ amounts to computing the transitive closure of binary
relations and that this can be done in cubic time. (To avoid confusion, note that
{π | P
i �′ �→π �′′} and {π | P
i �′ �→π �′′} may be infinite and hence cannot
necessarily be computed.)

National Health Service: A Worked Example
Let us now consider the two variations of our worked example as presented in
Sects. 2 and 3. In each variation we shall focus our attention on the NHS.

Benign Interaction of Security Domains 323

The Original System. The system as presented in Sect. 2 admits only the NHS-
local paths directly given by the security lattice for the NHS as there are no
sanitisers declared for NHS:

P
NHS {} �→ε {}
P
NHS {} �→ε {medical}
P
NHS {} �→ε {financial}
P
NHS {} �→ε {medical, financial}
P
NHS {medical} �→ε {medical}
P
NHS {medical} �→ε {medical, financial}
P
NHS {financial} �→ε {financial}
P
NHS {financial} �→ε {medical, financial}
P
NHS {medical, financial} �→ε {medical, financial}

Turning to the NHS-remote paths there are no sanitisers outside of NHS either,
and the channels between NHS and NY and between NHS and NH give rise to
the following:

P
NHS {medical} �→ε {medical}
P
NHS {medical} �→ε {medical, financial}
P
NHS {financial} �→ε {financial}
P
NHS {financial} �→ε {medical, financial}
P
NHS {medical, financial} �→ε {medical, financial}

The second and fourth contributions arise because of the security lattices in NY
and NH.

It is now immediate to check that the worked example of Sect. 2 is naively
NHS-secure and by extending the reasoning one can show that the entire system
is naively secure.

The System Involving Amazon. Turning to the system as presented Sect. 3 there
is no change to the NHS-local paths but we get additional NHS-remote paths
due to the channels between NY and Amazon and between NH and Amazon. In
particular we get the following NHS-remote paths in addition to those displayed
above:

P
NHS {medical} �→ε {financial}
P
NHS {financial} �→ε {medical}

as was already hinted at in Sect. 3.
Since there are no NHS-local paths corresponding to these NHS-remote paths

it follows that the modified system is not naively secure. In other words, our
notion of naive security would seem to be able to ensure that the interaction
between security domains is benign.

5 Taking Security Violations into Account

So far we ignored the labels of paths indicating the security violations being
performed along the way. To rectify this we shall imagine a partially ordered

324 F. Nielson et al.

structure over which paths can be interpreted. We denote it by (C,�) and let
β(π) denote the interpretation of π in C; we shall provide examples shortly.

Definition 2. A program P is i-secure wrt. β whenever for every i-remote path
(with label πr) from some �′ ∈ Li to some �′′ ∈ Li there also is an i-local path
(with some potentially different label πl) from �′ ∈ Li to �′′ ∈ Li such that
β(πl) � β(πr):

∀�′, �′′ ∈ Li : ∀πr : P
i �′ �→πr �′′ ⇒ ∃πl : P
i �′ �→πl �′′ ∧ β(πl) � β(πr)

A program P is secure wrt. β whenever it is i-secure wrt. β for all values of
i ∈ {1, · · · , n}.

The notion of naively secure is the same as that of secure with respect to a
constant function (e.g. β(π) = ∗, C = {∗} and � being equality) and we already
indicated that this would be checkable in cubic time.

A very demanding notion of secure with respect to the identify function may
be obtained by setting C to be all strings over the security violations, setting the
partial order � to be equality, and setting β(π) = π. This merely states that
every i-remote path must also be a i-local path. To effectively check this condition
we might construct regular expressions for {π | P
i �′ �→π �′′} and {π | P
i

�′ �→π �′′} for all pairs (�′, �′′) and subsequently to use appropriate algorithms
from automata theory to check {π | P
i �′ �→π �′′} ⊆ {π | P
i �′ �→π �′′} for
all pairs (�′, �′′). This can be done in at most exponential time (involving the
conversion from regular expressions to deterministic finite automata).

It will useful to rephrase the security condition of Definition 2 using the
Smyth-ordering �S defined by

X �S Y if and only if ∀y ∈ Y : ∃x ∈ X : x � y

Then ∀�′, �′′ ∈ Li : ∀πr : P
i �′ �→πr �′′ ⇒ ∃πl : P
i �′ �→πl �′′ ∧ β(πl) � β(πr)
is equivalent to

∀�′, �′′ ∈ Li : {β(π) | P
i �′ �→π �′′} �S {β(π) | P
i �′ �→π �′′}

It will usually not be the case that {β(π) | P
i �′ �→π �′′} contains a least
element. Also, even if (C,�) is a complete lattice, it will not usually be the case
that ∀�′, �′′ ∈ Li : ∃π : P
i �′ �→π �′′ ∧ β(π) �

�{β(π) | P
i �′ �→π �′′} is
equivalent to the above condition. This means that checking information flow in
a global setting will be somewhat different from checking information flow in a
local setting (as was done in Sect. 3).

Given a subset C ⊆ C we shall say that C ′ is a frontier of C whenever
C ′ ⊆ C ∧ C ′ �S C. Furthermore, a minimal frontier of C is a frontier C ′ such
that no proper subset of C ′ is also a frontier. The minimal frontier of the empty
set is the empty set, and the minimal frontier of a singleton set is the singleton
set.

Benign Interaction of Security Domains 325

Proposition 1. Minimal frontiers are unique if they exist, in the sense that if
C ′ and C ′′ are both minimal frontiers of C we have C ′ = C ′′.

If (C,�) is well-founded, a subset C ⊆ C always has a minimal frontier given
by C∗ = {c ∈ C | ¬∃c′ ∈ C : c′ ≺ c} where ≺ is the irreflexive part of �.

Proof. For the first claim we first show that C ′ ⊆ C ′′. So let c1 ∈ C ′, so that
there exists c2 ∈ C ′′ with c2 � c1, and then there exists c3 ∈ C ′ with c3 � c2.
We must be able to take c3 = c1 as otherwise C ′ would not be minimal. Since �
is a partial order this shows c1 = c2 and hence C ′ ⊆ C ′′. That C ′′ ⊆ C ′ is shown
similarly.

For the second claim suppose that (C,�) is well-founded; i.e. there is no
infinite sequence · · · cn ≺ cn−1 ≺ · · · ≺ c0. Clearly C∗ ⊆ C and we show C∗ �S C
by contradiction. So suppose there is some c0 ∈ C such that ¬∃c′ ∈ C∗ : c′ � c0.
Then c0 �∈ C∗ and there must be some c1 ∈ C with c1 ≺ c0 for which ¬∃c′ ∈ C∗ :
c′ � c1. Continuing like this we construct the sequence · · · cn ≺ cn−1 ≺ · · · ≺ c0
assumed not to exist.

This allows us in many cases to restate Definition 2 in the following way that
may make it easier to test the condition.

Proposition 2. If (C,�) is well-founded then a program P is i-secure wrt. β
whenever

∀�′, �′′ ∈ Li : {β(π) | P
i �′ �→π �′′}∗ �S {β(π) | P
i �′ �→π �′′}∗

A program P is secure wrt. β whenever it is i-secure wrt. β for all values of
i ∈ {1, · · · , n}.
Proof. Under the assumptions stated we have X �S Y if and only if X∗ �S Y ∗.

In the context of Proposition 2 the minimal frontiers {β(π) | P
i �′ �→π �′′}∗

and {β(π) | P
i �′ �→π �′′}∗ can be seen as the Pareto-optimal [4] ways of
creating a local or remote information flow from �′ ∈ Li to �′′ ∈ Li.

National Health Service: A Worked Example
We now reconsider our worked example as presented in Sects. 2, 3 and 4.

The idea is that a security violation is a set of regulations/laws used to
legitimise bypassing the normal security considerations after a certain duration:

φ:: = ({r1, · · · , rn},m) (1)

where φ is the security violation that allows access after the period of m years
using (some of) the regulations or laws ri for i ∈ {1, · · · , n}.

As an example, some data may be released under a Freedom of Informa-
tion Act (FOIA) request after at least 30 years. This could be represented as
({FOIA}, 30) while simlar legislation in other jurisdictions may require a mora-
torium of at least 60 years: ({FOIA}, 60).

326 F. Nielson et al.

Similarly some countries/jurisdictions have legislation in place that allows
researchers access to highly private data (in the interest of public health) with
almost no delay, represented as ({RES}, 0). This suggests imposing a partial
order on regulations because clearly if information becomes generally available
under a FOIA request it is automatically available also to researchers. So we
impose a partial ordering � on regulations such that FOIA � RES .

We now introduce a cost structure to summarise the effect of a sequence of
security violations:

C = DownClosure(Reg) × N0 (2)
Here Reg is a finite set of regulations containing the ri mentioned above. Fur-
thermore, DownClosure(Reg) restricts PowerSet(Reg) to contain only those sets of
regulations that are downwards closed under the partial ordering on regulations;
let us write

close(r1, · · · , rn) = {r ∈ Reg | ∃i ∈ {1, · · · , n} : r � ri} (3)

and note that this ensures that

{r1, · · · , rn} ⊆ close({r1, · · · , rn}) = close(close({r1, · · · , rn}))

We have close({FOIA}) = {FOIA} and close({RES}) = {RES,FOIA}.
The definition of the partial order on the cost structure is straightforward

(where we use R to range over sets of regulations, including those that are
downward closed):

(R1,m1) � (R2,m2) iff close(R1) ⊆ close(R2) ∧ m1 ≤ m2 (4)

We can now define the cost function:

β(π) =
{

({ }, 0) if π = ε
(R′ ∪ close(R),max(m,m′)) if π = π′(R,m) and β(π′) = (R′,m′)

(5)
This ensures that the cost function constructs the downwards closure of the
union of all sets of regulations used together with the maximum delay imposed.

We introduce two sanitisers modelling FOIA requests with two different time
limits (30 and 60 years respectively): one for the NY and one for LHS:

foia30 : LoNY �→(FOIA,30) PubNY
foia60 : {medical} �→(FOIA,60) {} (6)

By using the sanitisers we can introduce additional local NHS paths, repre-
senting that medical data can be released to the public after 60 years:

P
NHS {medical} �→foia60 {} (7)

Similarly, the data handled by NY can be released to the public, but already
after 30 years:

P
NY LoNY �→foia30 PubNY (8)
The gives rise, among others, to the following remote NHS path

P
NHS {medical} �→foia30 {} (9)

which does not have a correponding local path and hence is insecure.

Benign Interaction of Security Domains 327

Algorithmic Considerations of Worked Example

The cost structure (DownClosure(Reg)×N0,�) satisfies the conditions of Propo-
sition 2 (because Reg is finite) so that we should aim at computing the minimal
frontiers {β(π) | P
i �′ �→π �′′}∗ and {β(π) | P
i �′ �→π �′′}∗ for all choices of
�′, �′′ ∈ Li.

Minimal Frontiers for Local Paths. To develop an efficient approach for com-
puting {β(π) | P
i �′ �→π �′′}∗ we need a bit of notation. For C1, C2 ⊆ C
write

C1 ⊗ C2 = {(R1 ∪ R2,max(m1,m2)) | (R1,m1) ∈ C1, (R2,m2) ∈ C2}∗

and note that {β(π1π2)} = {β(π1)} ⊗ {β(π2)}. Similarly write

C1 ⊕ C2 = (C1 ∪ C2)∗

and in case C1 and C2 are already minimal frontiers (i.e. C1 = C∗
1 and C2 = C∗

2)
we have

C1 ⊕ C2 = {(R,m) ∈ C1 | R �∈ dom(C2)} ∪
{(R,m) ∈ C2 | R �∈ dom(C1)} ∪
{(R,min(m1,m2) | (R,m1) ∈ C1, (R,m2) ∈ C2}

where dom(C) = {R | ∃m : (R,m) ∈ C}.
We next aim at constructing {β(π) | P
i �′ �→π �′′}∗ using dynamic pro-

gramming. For �′, �′′ ∈ Li define

Pi[0](�′ � �′′) =
({(∅, 0) | �′ � �′′} ∪ {(R,m) | Si contains �′ �→(R,m) �′′})∗

Pi[n + 1](�′ � �′′) = Pi[n](�′ � �′′) ⊕ ⊕
�∈Li

(Pi[n](�′ � �) ⊗ Pi[n](� � �′′))

where the idea is that Pi[n](�′ � �′′) summarises the costs over “paths” of length
at most 2n.

Proposition 3. {β(π) | P
i �′ �→π �′′}∗ = Pi[�log2(size(Li))�](�′ � �′′)

Proof. The key observation is that β(π1π3) � β(π1π2π2) whenever π2 arises
from a “loop” P
i � �→π2 � so that in the construction of the minimal frontier
for {β(π) | P
i �′ �→π �′′} it suffices to consider “paths” that do not involve any
repeated occurrences of any security levels in Li.

Minimal Frontiers for Remote Paths. To develop an efficient approach for
computing {β(π) | P
i �′ �→π �′′}∗ we adapt the above development. For
�′, �′′ ∈ ⋃

i Li define

P [i][0](�′ � �′′) =

⎛
⎝

{(∅, 0) | �′ � �′′ in some Lj for i �= j} ∪
{(R, m) | Sj contains �′ �→(R,m) �′′ for i �= j} ∪
{(R, m) | E contains �′ �→(R,m) �′′}

⎞
⎠

∗

P [i][n + 1](�′ � �′′) = P [i][n](�′ � �′′) ⊕ ⊕
��∈Li

(P [i][n](�′ � �) ⊗ P [i][n](� � �′′))

where as before the idea is that P [i][n](�′ � �′′) summarises the costs over
“paths” of length at most 2n.

328 F. Nielson et al.

Proposition 4. For �′, �′′ ∈ Li we have

{β(π) | P
i �′ �→π �′′}∗ = P [i][�log2(size(L1 ∪ · · · ∪ Ln))�](�′ � �′′)

A better bound could be obtained by omitting Li in the above set union.

6 Conclusion

We have illustrated a way in which it may be ensured that local security policies
are not violated when communication between lecal systems are admitted. One
might see this as a light-weight attempt at adapting notions of non-interference
to distributed systems in a way that is compatiable with how our society oper-
ates, in particular what is required in order to document a security violation.

Existing work on enforcing security in a distributed system with data sharing
includes the myKlaim calculus [8] that proposes as a way to model and reason
about open systems in which external, third-party code may be allowed inside
a system to then be executed in a ‘sandbox’ environment to maintain security.
The Fabric framework [1,9] aims at developing a programming language and
underlying system for designing and implementing distributed systems in a safe
and secure manner. The security policies are based on an extended version of the
decentralised label model [11,12]. This allows principals, essentially programs, to
specify degrees of trust in other (remote) programs and thereby bound the poten-
tial security impact if that node should be compromised. The main problems,
insights, and solutions concerning the relationship between secure information
flow and trust are distilled and further explored in the Flow-Limited Authoriza-
tion Model [2] and the Flow-Limited Authorization Calculus [3] for reasoning
about dynamic authorisation decisions.

Our approach was motivated by the development of [5] that studies the notion
of Lagois connection (a modification of Galois connections) to avoid information
flow breaches when connnecting security domains. As argued in [13] (that deals
with mobility of agents) we find our graph based approach to be more flexible
and this is the basis for our ability to develop the concept of secure wrt. β.

Acknowledgement. The first author was supported in part by the EU H2020-SU-
ICT-03-2018 Project No. 830929 CyberSec4Europe (cybersec4europe.eu). The first
and second authors were supported in part by the Danish project Security by Design
granted by The Danish Industry Foundation. The third author is retired from the
Department of Mathematics and Computer Science, Technical University of Denmark,
Kgs. Lyngby, Denmark.

A Semantics

As in [15] and [13] we use operational semantics to define the semantics of Secure
Guarded Commands with Security Domains.

Expressions are evaluated with respect to a memory σ that assigns values to
all variables of interest and the semantic judgement defined in Fig. 7 takes the

Benign Interaction of Security Domains 329

Fig. 7. Semantics of expressions.

Fig. 8. Semantics of commands.

form σ
 e � v. Evaluation is undefined if the expression accesses a variable for
which the memory does not assign a value. Note that the value of d ↓ e1 is the
same as the value of e1.

Commands are executed with respect to a memory and produce a new mem-
ory. The semantic judgement defined in Fig. 8 takes the form (C, σ) →ϕ (C ′, σ′).
the superscript ϕ indicates whether the action is silent (τ), an input (c ? v) or an
output (c ! v). We allow C and C ′ to range both over commands and the special
symbol

√
indicating a terminated configuration.

Processes have disjoint memories so they can only exchange values by com-
municating over the channels. More precisely this means that for each process
we will have a local memory assigning values to the variables of interest and
we shall be based on synchronous communication. For processes the semantic
judgement defined in Fig. 9 takes the form

(E par L1 S1 D1 C1 · · ·Ln Sn Dn Cn rap, σ1 · · · σn)
→ (E par L1 S1 D1 C ′

1 · · ·Ln Sn Dn C ′
n rap, σ′

1 · · · σ′
n)

where once more we allow C and C ′ to range both over commands and the
special symbol

√
indicating a terminated configuration. The first rule says that

we can let one of the constituent processes perform a silent step adn the second

330 F. Nielson et al.

Fig. 9. Semantics of systems.

rule says (omitting the details needed to deal with input and output being placed
in another order) that we can let two constituent processes produce matching
input and output actions. The side conditions of the rules insist that the domain
of local memories (written dom(σi)) includes the local variables declared in the
program (written dom(env(Di))) and that the channel used for communication is
indeed declared in the program (written dom(env(E))) where the environments
and declarations are constructed using env(· · ·) as defined previously. Note that
if one of the processes terminates then the corresponding component in the
configuration will contain

√
and it will not be able to evolve further.

References

1. Arden, O., George, M.D., Liu, J., Vikram, K., Askarov, A., Myers, A.C.: Sharing
mobile code securely with information flow control. In: Proceedings of the Sympo-
sium on Security and Privacy (SP 2012), pp. 191–205 (2012). https://doi.org/10.
1109/SP.2012.22

2. Arden, O., Liu, J., Myers, A.C.: Flow-limited authorization. In: Proceedings of the
28th Computer Security Foundations Symposium (CSF 2015), pp. 569–583 (2015).
https://doi.org/10.1109/CSF.2015.42

3. Arden, O., Myers, A.C.: A calculus for flow-limited authorization. In: Proceedings
of the 29th Computer Security Foundations Symposium (CSF 2016), pp. 135–149
(2016). https://doi.org/10.1109/CSF.2016.17

4. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46666-7 6

5. Bhardwaj, C., Prasad, S.: Only connect, securely. In: Pérez, J.A., Yoshida, N. (eds.)
FORTE 2019. LNCS, vol. 11535, pp. 75–92. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-21759-4 5

6. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

7. Gollmann, D.: Computer Security, 3rd edn. Wiley, Hoboken (2011)
8. Hansen, R.R., Probst, C.W., Nielson, F.: Sandboxing in myKlaim. In: Proceedings

of the International Conference on Availability, Reliability and Security (ARES
2006), pp. 174–181 (2006). https://doi.org/10.1109/ARES.2006.115

https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.1109/CSF.2016.17
https://doi.org/10.1007/978-3-662-46666-7_6
https://doi.org/10.1007/978-3-030-21759-4_5
https://doi.org/10.1007/978-3-030-21759-4_5
https://doi.org/10.1109/ARES.2006.115

Benign Interaction of Security Domains 331

9. Liu, J., Arden, O., George, M.D., Myers, A.C.: Fabric: building open distributed
systems securely by construction. J. Comput. Secur. 25(4–5), 367–426 (2017).
https://doi.org/10.3233/JCS-15805

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

11. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proceedings of the 16th ACM Symposium on Operating Systems Principles (SOSP
1997) (1997)

12. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Trans. Softw. Eng. Methodol. 9(4), 410–442 (2000)

13. Nielson, F., Hansen, R.R., Nielson, H.R.: Adaptive security policies. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 280–294. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-61470-6 17

14. Nielson, F., Nielson, H.R.: Lightweight information flow. In: Boreale, M., Corradini,
F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent
and Distributed Programming. LNCS, vol. 11665, pp. 455–470. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21485-2 25

15. Nielson, F., Nielson, H.R.: Secure guarded commands. In: Di Pierro, A., Malacaria,
P., Nagarajan, R. (eds.) From Lambda Calculus to Cybersecurity Through Pro-
gram Analysis. LNCS, vol. 12065, pp. 201–215. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-41103-9 7

16. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: The logic of XACML. Sci. Comput.
Program. 83, 80–105 (2014)

17. Volpano, D.M., Irvine, C.E.: Secure flow typing. Comput. Secur. 16(2), 137–144
(1997)

18. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

https://doi.org/10.3233/JCS-15805
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-61470-6_17
https://doi.org/10.1007/978-3-030-21485-2_25
https://doi.org/10.1007/978-3-030-41103-9_7
https://doi.org/10.1007/978-3-030-41103-9_7

Probabilistic Annotations
for Protocol Models

Dedicated to Joshua Guttman

Dusko Pavlovic(B)

University of Hawaii, Honolulu, HI, USA
dusko@hawaii.edu

Abstract. We describe how a probabilistic Hoare logic with localities
can be used for reasoning about security. As a proof-of-concept, we ana-
lyze Vernam and El-Gamal cryptosystems, prove the security properties
that they do satisfy, and disprove those that they do not. We also con-
sider a version of the Muddy Children puzzle, where children’s trust and
noise are taken into account.

1 Introduction

When it was first suggested that I should study security protocols, it was with a
remark that the problem was largely solved and that I should simply look for a
way to apply the solution to a particular protocol of interest, which happened to
be one of the proposals for the IPSec suite. I found a paper that was circulating
under the title ‘How to solve any protocol problem’ [8], and spent some time
studying the methods of multi-party computation described in it. When I real-
ized that I was not making any progress towards analyzing the IPSec protocol
at hand, I went back and found out that the suggested solution of all protocol
problems was not the multi-party computation, but strand spaces [10,11,15–17].
I drew the strand space bundles corresponding to the IPSec proposal the same
afternoon.

Trying to save the science of security protocol design and analysis from its
foretold demise, I spent a good part of the next 10 years looking for problems that
could not be solved using the strand space model. Each time, I would then meet
Joshua Guttman over dinner, usually at one of the Protocol eXchange meetings,
and told him that there was this conceptual mismatch between his model and the
reality, and he would then suggest how the problem of reality could be adjusted
to match the strand spaces, and transformed towards a solution. On one or two
occasions when I was too far down the road towards different solutions, I avoided
asking about the details.

D. Pavlovic—Partially supported by NSF and AFOSR.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 332–347, 2021.
https://doi.org/10.1007/978-3-030-91631-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_18&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_18

Probabilistic Annotations for Protocol Models 333

But here is a record of something that definitely cannot be done by strand
spaces. It has been clear from the outset that the strand space bundles can be
annotated by Floyd-Hoare-style logical annotations [4,6,7], and that the various
forms of dynamic and epistemic logics, worked out for reasoning about the pre-
conditions, postconditions, and invariants of computations, can be elevated and
generalized for reasoning about protocol security [2,12] and about the higher-
order properties of distributed systems and network interactions [13]. But what
if we need to reason about the guessing chances, and have to go beyond the
Dolev-Yao type of models [5]1?

2 Crypto-Logical Systems

Towards a definition of a crypto-logical system, we begin from two basic data
types: states S and predicates P. It is assumed that they are generated by a
stratified set of algebraic operations, which allow us to write programs that lead
to the states in S, and to specify the resulting properties in P. In particular,
both S and P are built over the same algebra T of terms, usually multisorted,
assumed to contain enough variables, constants, and function symbols to specify
keys, nonces, encryptions, decryptions, hashes, etc. These terms are computed,
sent, and received by some actions that may be recorded in q, s . . . ∈ S, while
they may be compared, tested, and reasoned about in ϕ,ψ . . . ∈ P.

2.1 Crude and Overly General Definition

Given a state space S, an algebra of predicates P, a set of agents A, and a lattice
of observations O, a crypto-logical system is defined by the following data:

– a family of semantic maps

P × S × P −{−}A−−−−−−−→ O

indexed over the agents A ∈ A,
– a measure

S μ−→ R+

given with a decomposition of S into a disjoint union S =
∐

i∈I Si of unit
sets Si, i.e. such that Pr(Si) = 1 holds for each i ∈ I. (Each restriction Pri

of Pr to Si is thus a probability measure.)

1 There are, of course, many ways to go beyond the Dolev-Yao models and formalize
probabilistic and computational reasoning in cryptography. One of the reviewers
suggests that Easycrypt [1] should be mentioned. The point here is, however, to try
to extend by probabilities the usual Floyd-Hoare annotations, which naturally fit
with strand spaces.

334 D. Pavlovic

Remarks. The above definition is more general than will be needed in this
paper. But it conveys the big picture and the general path.

First of all, we do not need an abstract lattice of observations O, but will
always take O = {0, 1}, and work with the usual Hoare triples ϕ{q}Aψ, which
are simply the elements of a ternary relation over P ×S ×P. The reason for the
above formulation is that the probabilistic analysis below will suggest that the
probabilistic Hoare triples, evaluated in O = [0, 1], are also of interest, and in
fact simplify some aspects of the reasoning. This option should be kept in mind
for future work.

The decomposition of the state space S =
∐

i∈I Si allowing the decompo-
sition of the measure μ into the probability measures μi will also not play a
significant role. It is in principle needed in the examples in Sects. 3 and 4, where
the state spaces will be certain powers of the monoid Σ = {0, 1}∗ of bitstrings,
decomposed into Σ =

∐∞
n=0{0, 1}n, with the uniform probability distribution

over each finite component {0, 1}n. But this is spelled out in many textbooks,
and the decomposition would flood the notations by information that is inessen-
tial for this paper, and hide the aspects that are essential. So we reduce the
measure μ : S −→ R+ to the component probabilities Pr : S −→ [0, 1], omitting
the indices as they are easily reconstructed in all cases.

Furthermore, a state q in the space S may or may not contain a record of a
particular computation, run, or process that led to it. Short of a better word, we
stretch the word “state” to mean “a result of a computation”—whatever part
of it we may choose to record. Sometimes it may be the whole history, even
including the intermediary results; sometimes just the outcome. A consequence
is that S may be closed under the usual programming and process operations,
or it may be structured by the recorded data alone. In the former case, the
usual rules of the Hoare logic will apply. In the latter case, when the concrete
computations are not reflected by modal operators in S, the Hoare notation boils
down to

q |=
A

ψ ⇐⇒ � {q}A ψ

On the other hand, when the preconditions do play an essential role, relying
upon the Hoare logic tradition and intuition seems appropriate, and useful.

In any case, we always require that the semantic maps P × S × P −→ O
preserve the lattice structure of P, contravariantly in the first, precondition
argument, and covariantly in the postcondition.

2.2 Information Sets and Preorders of States

We say that, for an agent A, a process q′ refines a process q, or that it contains
more information than q, and we write q �

A
q′, whenever q′ satisfies, as far as A

can tell, all the requirements that q satisfies:

q �
A

q′ ⇐⇒ ∀ϕψ. ϕ{q}Aψ ≤ ϕ{q′}Aψ

Probabilistic Annotations for Protocol Models 335

Two processes are indistinguishable for the agent A if they satisfy the same
requirements

q ∼
A

q′ ⇐⇒ q �
A

q′ ∧ q �
A

q′

⇐⇒ ∀ϕψ. ϕ{q}Aψ = ϕ{q′}Aψ

The ∼
A

-equivalence classes are A’s information sets. The quotient SA = S/ ∼
A

is

A’s information view. A’s information set at q is written qA ∈ SA.

2.3 Refining the Definition of Crypto-Logical Systems

The data type P of predicates is assumed to support the usual logical connec-
tives, which make it into a lattice. Moreover, it is also closed under a family of
modalities Wι, indexed over some subjective evaluations ι ∈ J [0, 1], which will
be just numbers between 0 and 1 in the simple examples below, but need to be
generalized for some more involved cryptographic constructions. Semantics of
these logical operations is defined by the following conditions

(ϕ1 ∨ ϕ2) {q}A ψ ⇐⇒ (ϕ1{q}Aψ) ∧ (ϕ2{q}Aψ) (1)
ϕ {q}A (ψ1 ∧ ψ2) ⇐⇒ (ϕ{q}Aψ1) ∧ (ϕ{q}Aψ2) (2)

ϕ {q}A (Wιψ) ⇐⇒ Pr
(
ϕ {s}A ψ

∣
∣
∣ s ∼

A
q
)

∈ ι (3)

The Hoare triples here are the standard ones, evaluated in O = {0, 1}, as
explained in Sect. 2.1. Clause (3) extends the standard Hoare logic for prob-
abilistic reasoning. The idea is that

– A’s subjective probability that ψ holds after ϕ at q is equal to
– the objective probability that ψ holds after ϕ at a randomly chosen state

s ∼
A

q.

By definition, the conditional probability in the last clause unfolds to

Pr
(
ϕ {s}A ψ

∣
∣
∣ s ∼

A
q
)

=
Pr

{
s ∈ S | s ∼

A
q ∧ ϕ {s}A ψ

}

Pr
{

s ∈ S | s ∼
A

q
}

The subjective vs objective probability conundrum goes back to the
earliest days of probability theory [3] and persists as a useful distinction even
in cryptographic reasoning. The objective probability is a number, which can
be obtained, e.g., by counting frequencies. An observer of a random process,
however, may only be able to estimate that a probability falls within a certain
interval, or just in a set, measurable modulo computational indistinguishability.
There are thus various generality levels at which the family J [0, 1] of subjective
evaluations may need to be modeled. To capture the standard cryptographic
definitions in Sect. 3, the subjective evaluations from J [0, 1] will need to be
feasibly computable subintervals of [0, 1]. For the simple examples presented in
Sect. 4, on the other hand, rational numbers will suffice.

336 D. Pavlovic

2.4 Probability vs. Knowledge

Note that the statement W1ψ, saying that ψ is satisfied with probability 1,

ϕ {q}A (W1ψ) ⇐⇒ Pr
(
ϕ {s}A ψ

∣
∣
∣ s ∼

A
q
)

= 1

can be viewed as a generalization of the knowledge modality Kψ for A defined
by

ϕ {q}A(Kψ) ⇐⇒ ∀s ∈ S. s ∼
A

q ⇒ ϕ{s}ψ

where the logical implication s ∼
A

q ⇒ ϕ{s}ψ is replaced by the stochastic

implication

[
s ∼

A
q ⇒ ϕ{s}ψ

]
⇐⇒ Pr

(
ϕ {s}A ψ

∣
∣
∣ s ∼

A
q
)

= 1

Intuitively, this stochastic implication says that the implication is valid almost
everywhere, i.e. everywhere except at a set of measure 0. While the usual seman-
tics of knowledge tells that Kψ is satisfied for A after ϕ at q if ψ is satisfied after
ϕ at every s ∼

A
q, the probabilistic knowledge W1ψ is satisfied after ϕ for almost

all s ∼
A

q, i.e. with a possible exception of a set of measure 0. For each A, the

statements Kψ and W1ψ are almost everywhere equivalent, i.e. they only differ
at a set of states of measure 0. Since cryptographic proofs are not just up to
sets of measure 0, but usually identify even the ensembles that are computa-
tionally indistinguishable2 the knowledge modality should, for all cryptographic
purposes, be identified with W1.

2.5 Global Semantics

We say that a requirement is satisfied globally if some agent observes that it is
satisfied

ϕ {q} ψ ⇐⇒ ∃X. ϕ {q}X ψ (4)

In practice, crypto-logical systems are often given by

– a global semantics

P × S × P −{−}−−−−−−→ O

2 Two ensembles are computationally indistinguishable when their differences cannot
be detected by polynomially bounded computations, e.g. because they occur only
superpolynomially far down the strings of digits of their probabilities.

Probabilistic Annotations for Protocol Models 337

– a family of views

S (−)A−−−→ S

indexed by A ∈ A such that

(∀X. qX = q′
X) ⇐⇒ q = q′ and (5)

ϕ {q} ψ ⇐⇒ ∃X. ϕ {qX} ψ (6)

Local semantics can then be defined by

ϕ {q}A ψ ⇐⇒ ϕ {qA} ψ

Condition (6) implies that (4) recovers the global semantics. Condition (5)
implies that q ∼A q′ ⇐⇒ qA = q′

A. In other words, since all q′ ∼A q sat-
isfy the same requirements ϕ{q′}Aψ if and only if qA satisfies them, then qA can
be taken as the canonical representative of the information set [q]A ∈ SA.

2.6 Knowledge of Probability vs Probability of Knowledge

The logical interpretation of the probabilistic modality Wι, proposed in (3),
was stated over the observations in O = {0, 1}. Allowing the observations to
be evaluated in O = [0, 1], and replacing the logical equivalence in (1) and (2)
by the equality or indistinguishability of probabilities, leads to the probabilistic
interpretation of the knowledge modality

ϕ {q}A(Kψ) = Pr
(
ϕ {s} ψ

∣
∣
∣ s ∼

A
q
)

and promotes Wι into a confidence modality

ϕ {q}A(Wιψ) = Pr
(

Pr
(
ϕ {s} ψ

∣
∣
∣ s ∼

A
q
)

∈ ι

)

But this refined view has to be left for future work, as it requires first spelling
out the standard view of familiar concepts, which barely fit in the rest of this
paper.

3 Cryptographic Definitions in Crypto-Logic

A cryptosystem consists of three agents, each executing a single probabilistic
algorithm:

– key generation Gen : R −→ K × K,
– encryption Enc : K × R × M −→ C, and
– decryption Dec : K × C −→ M,

338 D. Pavlovic

such that

Dec(k,Enc(k, x,m)) = m

where 〈k, k〉 = Gen(y) for some y ∈ R. Here R represents the data type of random
seeds, K is the datatype of keys, M the datatype of plaintext messages, and C the
ciphertexts. All datatypes are assumed to be finite, although unfeasibly large, so
that it is sometimes convenient to assume that they are countably infinite. Each
of them is given with a frequency measure

Pr : X −→ [0, 1]

When no confusion seems likely, we shall denote a random variable sampling
from X also by X , and write Pr(x ∈ X) where most probability theory textbooks
would write Pr(X = x).

Besides the principals of the cryptosystem, a definition of a security property
that it may satisfy involves an attacker Att, which may operate any number of
algorithms.

Remark. The notion of an algorithm is used here in the broadest sense, acco-
modating the various notions of computation. While the computational notions
of security are defined assuming Probabilistic Polynomial-time Turing (PPT)
machine as the standard model of computation, the information-theoretic secu-
rity is defined over a notion of computation which boils down to mere guessing
(of a message, a key, etc.), according to given frequency distributions. We begin
with an information-theoretic definition.

Definition 1. A cryptosystem is perfectly secure if Attacker’s chance to guess
a message m at a state C, when he is given a ciphertext c = E(k, x,m) is the
same as his chance to guess that message at a state O, where he is not given
any data, and can just randomly sample the space M of messages:

C |= Wι(m ∈ M) ⇐⇒ O |= Wι(m ∈ M) (IT-SEC)

Definition 2. Semantic (or chosen plaintext) security of a cryptosystem is
tested by the following protocol:

– the Attacker computes (or randomly selects) two messages, m0 and m1, and
sends them to the Encryption oracle;

– the Encryption oracle tosses a coin, i.e. randomly selects a bit b, and a seed
x ∈ R, computes the ciphertext c = E(k, x,mb), and sends it to the Attacker.

The cryptosystem is semantically secure if Attacker’s chance to compute (or to
guess) the bit b at the final state C, when c is known to him, is not greater than
his chance to guess b at the initial state O, without any data, i.e.

C |= Wι (b = 1) ⇐⇒ O |= Wι (b = 1) (IND-CPA)

Probabilistic Annotations for Protocol Models 339

Definition 3. Adaptive (or chosen ciphertext) security of a cryptosystem is
tested by the following protocol:

– the Attacker computes (or randomly selects) two messages, m0 and m1, and
sends them to the Encryption oracle;

– the Encryption oracle tosses a coin, i.e. randomly selects a bit b, and a seed
x ∈ R, computes the ciphertext c = E(k, x,mb), and sends it to the Attacker,

– the Attacker is then allowed to consult the Decryption oracle, to obtain the
decryption d = D(k, c′), of a chosen piece if ciphertext c′ is feasibly con-
structed from m0,m1 and c, but differs from c, i.e. c′ �= c.

The cryptosystem is adaptive secure if Attacker’s chance to compute (or to guess)
the bit b at the final state C, when the ciphertext c and the decryption d are known
to him, is not greater than his chance to guess b at the initial state O, without
any data, i.e.

C |= Wι (b = 1) ⇐⇒ O |= Wι (b = 1) (IND-CCA)

Remark. Varying the notion of computation in the above definition results in
different notions of security. If the notion of computation is reduced to guessing,
i.e. if the Attacker can only randomly choose m0 and m1, and only randomly
guess b, but possibly following a probability distribution skewed by the knowl-
edge of c, then we get a weaker notion of security than the one where the Attacker
can perform more structured computation, e.g. of a Probabilistic Polynomial-
Time Turing Machine (PPT).

4 Examples of Reasoning in Crypto-Logic

4.1 Security of the Vernam Cryptosystem

In the Vernam cryptosystem, we take

K = {0, 1}�

M = Kj

C = M
R = 1

and then define

E(k,m) = D(k,m) = kj ⊕ m

where ⊕ is the exclusive or operation, and kj is the j-tuple concatenation of a
key k. We assume that the messages have a fixed number of blocks j just to avoid
inessential notational details. The probability distributions over K and over M
are given, and they determine

Pr(c ∈ C) =
∑

kj⊕m=c

Pr(m ∈ M) · Pr(k ∈ K)

340 D. Pavlovic

The Vernam cryptosystem is called one-time pad when j = 1, i.e. when a
key is used to encrypt just one block.

Proposition 1. One-time pad is perfectly secure. The Vernam cryptosystem is
not perfectly secure for j ≥ 2.

Proof. To model the (IT-SEC) testing of the Vernam cryptosystem, we use as
the states in S the substrings of the triples 〈k,m, c〉 ∈ K × M × C, subject to
the constraint that c = kj ⊕ m. Each state can be construed as the record of an
encryption session, where the key k is first generated and sent from Gen to Enc,
then the message m is chosen and encrypted by Enc into c = k ⊕ m, and finally,
the ciphertext c is sent to Dec and Att.

For each agent X ∈ {Gen,Enc,Dec,Att} we define the view function S (−)X−−−→
S to be

〈k,m, c〉Gen = 〈k〉
〈k,m, c〉Enc = 〈k,m, c〉
〈k,m, c〉Dec = 〈k, c〉
〈k,m, c〉Att = 〈c〉

The data type P of predicates is generated from the formulas of binary arith-
metic, extended with the probabilistic modalities Wι.

We define semantics by stipulating that ϕ {q}X ψ is satisfied whenever the
implication ϕ(qX) ⇒ ψ(qX) is provable in binary arithmetic and elementary
probability theory, starting from the given distributions PrM, and PrK.

Towards a proof of (IT-SEC) property for j = 1, first note that

〈〉 |= Wa(m ∈ M) ⇐⇒ Pr(m ∈ M) = a

〈c〉 |= Wb(m ∈ M) ⇐⇒ Pr(m ∈ M | c ∈ C) = b

On the other hand,

Pr(m ∈ M | c ∈ C) =
Pr(c ∈ C | m ∈ M) · Pr(m ∈ M)

Pr(c ∈ C)
= Pr(m ∈ M)

holds because

Pr(c ∈ C | m ∈ M) = Pr(c = k ⊕ m ∈ C | m ∈ M)
= Pr(k = c ⊕ m ∈ K | m ∈ M)
= Pr(k ∈ K)

and

Pr(c ∈ C) =
∑

m∈M
Pr(c ∈ C | m ∈ M) · Pr(m ∈ M)

= Pr(k ∈ K)
∑

m∈M
Pr(m ∈ M)

= Pr(k ∈ K)

Probabilistic Annotations for Protocol Models 341

It follows that 〈〉 |= Wa(m ∈ M) and 〈c〉 |= Wb(m ∈ M) are satisfied if and only
if a = b.

For the Vernam cipher with j ≥ 2, the probability Pr(c ∈ C | m ∈ M) does
not boil down to Pr(k ∈ K). Given m = m1 ::m2 :: · mj , then c must be in the
form c = c1 :: c2 :: · cj where c1 ⊕ m1 = c2 ⊕ m2 = · · · = cj ⊕ mj equals the key
k. For c ∈ C which are not in that form, Pr(c ∈ C | m ∈ M) = 0. For those that
are, Pr(c ∈ C | m ∈ M) = Pr(k ∈ K) remains valid. By a similar reasoning,

Pr(m ∈ M | c ∈ C) =

{
Pr(k ∈ K) for m1 ⊕ c1 = · · · = mj ⊕ cj

0 otherwise

This shows that the Vernam cryptosystem does not satisfy (IT-SEC) for
j ≥ 2. ��

Proposition 2. If a Vernam cryptosystem is used to encrypt even one bit more
than one block, then it is not semantically (IND-CPA) secure, i.e. it can be
broken by a chosen-plaintext attack.

Remark. Note that Attacker’s capability to choose a plaintext is computational,
and not just stochastic: they can determine the structure of the messages m0

and m1 in the CPA-test, and not just rather than just randomly sample from
some source.

Proof of Proposition 2. To model the Vernam cryptosystem where one bit more
than one block is encrypted, we take

M = C = K × {0, 1}

To model the (IND-CPA) testing of this cryptosystem, we use as the states in S
the substrings of the triples 〈k,m0,m1, b, c〉 ∈ K × M2 × {0, 1} × C, subject to
the constraint that c = k′ ⊕ m, where k′ = k :: k0 is the key k with the first bit
repeated at the end. Each state can be construed as the record of an encryption
session, where the key k is first generated by Gen, and securely conveyed to Enc
and Dec, while on the other side the messages m0,m1 are generated by Att and
sent to Enc, who then chooses the bit b, computes the ciphertext c = kj ⊕ mb

and sends it c to Dec and Att.
For each agent X ∈ {Gen,Enc,Dec,Att} we define the view function S (−)X−−−→

S to be

〈k,m0,m1, b, c〉Gen = 〈k〉
〈k,m0,m1, b, c〉Enc = 〈k,m0,m1, b, c〉
〈k,m0,m1, b, c〉Dec = 〈k, c〉
〈k,m0,m1, b, c〉Att = 〈m0,m1, c〉

The data type of predicates P and the semantics of ϕ {q}X ψ are just like in
the proof of the preceding proposition.

342 D. Pavlovic

Towards a proof that (IND-CPA) not satisfied, we note that 〈〉 |= W 1
2

(b = 1)
holds, because3 Pr(b = 1) = 1

2 .
On the other hand, we show that the attacker can construct the messages

m0 and m1 in such a way that 〈c〉 |= W1(b = 1) holds if and only if c = k′ ⊕ m1,
and otherwise 〈c〉 |= W0(b = 1) holds. Either way, 〈c〉 |= W 1

2
(b = 1) does not

hold, which implies that
(
〈c〉 |= W 1

2
(b = 1)

)
�⇐⇒

(
〈〉 |= W 1

2
(b = 1)

)

Towards the counterexample for (IND-CPA), let

m0 = 0� :: 0
m1 = 0� :: 1

which gives

c0 = k0 :: k1 :: · · · :: k0
c1 = k0 :: k1 :: · · · :: ¬k0

and

〈c0〉 |= W0(b = 1)
〈c1〉 |= W1(b = 1)

��

4.2 El-Gamal

Let G be a cyclic group4 of order n with a generator g. In other words, the
elements of G can be listed in the form g, g2, g3, . . . , gn−1, 1. The types of the
El-Gamal cryptosystem are taken to be

K = G × Zn

R = Zn

M = G

C = G × G

The keys 〈k, k〉 = Gen(a) are set to be

k = ga

k = a
3 We assume that the coin is fair. If it is biased, the argument goes through for any

probability p instead of 1
2
, provided that p �= 0 and p �= 1.

4 Here we hide away some details. G is usually taken to be a cyclic subgroup of the
multiplicative group of a field Zp. But while the reader familiar with the system, or
a student of any cryptography textbook, will have no trouble recovering the details
swept under the carpet, carrying them around here would distract from the main
idea.

Probabilistic Annotations for Protocol Models 343

and the encryption and decryption functions are

E(k, r,m) = 〈gr, kr · m〉
D(k, c) =

c2

ck
1

where c = 〈c1, c2〉. This defines a cryptosystem because

D
(
k,E(k, r,m)

)
=

kr · m

(gr)k
=

ga·r · m

gr·a = m

Definition 4. The Diffie-Hellman decision is the predicate DHd : G3 −→ {0, 1}
defined by

DHd(x, y, z) ⇐⇒ ∃a, b ∈ Zn. x = ga ∧ y = gb ∧ z = gab

where we abbreviate DHd(x, y, z) = 1 to DHd(x, y, z), and write ¬DHd(x, y, z)
when DHd(x, y, z) = 0. The Decision Diffie-Hellman problem concerns the guess-
ing algorithms for the Diffie-Hellman decision, i.e. the feasible algorithms with
random seeds. The problem is that an algorithm should do better than a coin
flip, and output more than half true decisions for a given length of the seeds.
Formally, this means that for all a, b ∈ Zn a DHd algorithm should satisfy5

Pr
(
DHd

(
ga, gb, gab

))
>

1
2

The Decision Diffie-Hellman (DDH) assumption is that the Diffie-Hellman prob-
lem has no solution, i.e. that no feasible algorithm for guessing the Diffie-
Hellman decision can do better than the coin flip.

Proposition 3. The El-Gamal cryptosystem is semantically secure if and only
if the Decision Diffie-Hellman assumption is true.

Proof. To model the (IND-CPA)-testing of the El-Gamal cryptosystem, i.e.
choosing the plaintexts that will yield distinguishable ciphertexts, we use as the
states in S the substrings of the tuples

〈〈k, k〉, r,m0,m1, b, c〉 ∈ K × R × M2 × {0, 1} × C

where k = gk and c = 〈gr, kr · mb〉. Each state can be construed as the record
of a testing session, where the keys k and k are generated, the first one is sent
from Gen to Enc, the second one is announced publicly; the messages m0,m1 are
chosen and sent from Att to Enc, the bit b and the ciphertext c are generated
and sent from Enc to Att and Dec.

5 It is required that the chance of DHd
(
ga, gb, gab

)
= 1 is feasibly distinguishable from

1
2
, i.e. greater by a feasible function. It follows that the chance of DHd

(
ga, gb, gd

)
= 1

for d �= ab is also significantly smaller than 1
2

by a feasible function.

344 D. Pavlovic

For each agent X ∈ {Gen,Enc,Dec,Att} we define the view function S (−)X−−−→
S to be

〈k, k, r,m0,m1, b, c〉Gen = 〈k, k〉
〈k, k, r,m0,m1, b, c〉Enc = 〈k, r,mb, c〉
〈k, k, r,m0,m1, b, c〉Dec = 〈k,mb, c〉
〈k, k, r,m0,m1, b, c〉Att = 〈k,m0,m1, c〉

Suppose that for the El-Gamal El-Gamal cryptosystem holds

C |= Wι (b = 1) �⇐⇒ O |= Wι (b = 1) (¬ IND-CPA)

Since for a fair coin (i.e. uniformly distributed) b ∈ {0, 1} it is certainly true
that O |= W 1

2
(b = 1). The assumption (¬ IND-CPA) thus means that there is

an attack that makes C |= W 1
2

(b = 1) false. There are thus algorithms

Att0 : M2 and Att1 : G × M2 × C −→ {0, 1}

such that for Att0 = 〈m0,m1〉 and any b ∈ {0, 1} holds

Pr
(
Att1 (k,m0,m1, 〈gr, kr · mb〉) = b

)
>

1
2

The Diffie-Hellman decision DHd(x, y, z) can now be computed for any given x, y
and z from G as follows:

– Set and announce the public key to be k = x.
– Let Att0 generate and send the messages m0, and m1.
– Pick any b ∈ {0, 1} and announce c = 〈y, z · mb〉.
– Set DHd(x, y, z) = 1 if and only if Att1 correctly guesses b.

In summary,

DHd(x, y, z) =

⎧
⎪⎨

⎪⎩

1 if Att1 (k,m0,m1, 〈y, z · m0〉) = 0
and Att1 (k,m0,m1, 〈y, z · m1〉) = 1

0 otherwise
(¬ DDH)

The other way around, assuming (¬ DDH) with a Diffie-Hellman decision algo-
rithm DHd significantly better than a coin flip, the attacker Att0 may generate
m0 and m1 randomly, since Att1 can always use DHd to decide which of the
messages has been encrypted

Att1 (k,m0,m1, 〈c0, c1〉) =

{
b if DHd

(
k, c0,

c1
mb

)

⊥ otherwise

Checking that this yields (¬ IND-CPA) is straightforward. ��

Probabilistic Annotations for Protocol Models 345

Proposition 4. The El-Gamal cryptosystem is not adaptively secure, i.e. it can
be broken by a chosen ciphertext attack.

Proof. To model the (IND-CCA) (chosen ciphertext) testing of the El-Gamal
cryptosystem, we use as the states in S the substrings of the tuples

〈〈k, k〉, r,m0,m1, b, q, c, c
′, d〉 ∈ K × R × M2 × {0, 1} × R × C2 × M

where k = gk and c = 〈gr, kr · mb〉, c′ �= c, and d = D(k, c′). The projections
can be

〈k, k, r,m0,m1, b, q, c, c
′, d〉Gen = 〈k, k〉

〈k, k, r,m0,m1, b, q, c, c
′, d〉Enc = 〈k, r,mb, c〉

〈k, k, r,m0,m1, b, q, c, c
′, d〉Dec = 〈k, c′, d〉

〈k, k, r,m0,m1, b, q, c, c
′, d〉Att = 〈k,m0,m1, q, c, c

′, d〉

In order to gain advantage in determining b, the Attacker just needs to generate
q �= 1, and for c = 〈c1, c2〉 set c′ = 〈c1, q · c2〉 . Then d = q · mb, and b can be
determined with certainty, by comparing mb = d

q with m0 and m1. ��

4.3 Towards Protocols for Noisy Muddy Mistrustful Children

In some cryptanalytic attacks, the Attacker is a distributed system, consisting of
several processes which locally make different observations, and send messages
to each other. The Muddy Children Puzzle can be viewed as a rudimentary
example of such a situation. An unknown bitstring m ∈ M = {0, 1}� can be
thought of as denoting which members of a group of � children have a muddy
forehead. The fact that each child only sees other children’s foreheads, but not
its own, corresponds to the fact that an Attacker may consist of � observers Atti,
i = 1, . . . , �, and each Atti sees the bits mk for k �= i but does not see mi.

In the usual version of the puzzle, the father tells the children that at least
one of them has a muddy forehead, and asks each child whether it knows if its
forehead is dirty. He asks them in rounds: after they all say “No”, he asks them
all again, and so on. Using their view of other childrens’ foreheads, and hearing
their answers, each child can at some point tell whether its forehead is dirty. It
is assumed that each child is a perfect reasoner: it will prove everything that can
be proved at that point in time. At each point in time, each child either knows
with certainty whether his forehead is muddy or does not know it at all.

In the probabilistic version, each child is trying to estimate the probabil-
ity that his forehead is muddy. Initially, having finished playing together, the
children have an estimate of the distribution p : n −→ [0, 1], where pk is the
probability that exactly k of them have a dirty forehead. If a child sees k dirty
foreheads, then it knows for sure that there are either k or k + 1 dirty foreheads
altogether. So the initial probability that its own forehead is dirty is pk+1

pk+pk+1
.

Like in the usual version, each child then proceeds to announce, in rounds,
whether it knows the state of its forehead. Knowing each other, they all also have

346 D. Pavlovic

an estimate of the probability that the statement that each of them is making
is false (for one reason or another).

In other words, the Attackers initially know the probability pk that there are
exactly k 1s in m. Then each Atti is allowed to broadcast to all Atts a message,
telling whether he knows mi or not. These broadcasts continue in rounds. After
a finite number of such broadcasts, all Atts can compute all of the bitstring m.

The reasoning that allows this is one of the motivating examples behind
knowledge logic. Generalizing the knowledge modality into the probability
modality allows refined reasoning, where unreliability of the Attacker’s com-
munications can be taken into account: their broadcast bits can be flipped, with
a given probability. This probability can be thought of as a measure of noise, or
of mistrust among the children.

To Be Continued
While gathering the references, in particular those that I missed during the
years of missed Protocol eXchanges, I encountered reports about the extensions
of strand spaces, bundles, and shapes that support quantitative and hybrid forms
or reasoning about security [9,14,18]. The tradition of Joshua explaining to me
how what I presented could be done using the strand space model is hoped to
be continued in the future.

References

1. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

2. Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for
reasoning about key distribution protocols. In: Guttman, J. (ed.) Proceedings of
CSFW 2005, pp. 48–61. IEEE (2005)

3. Daston, L.: How probabilities came to be objective and subjective. Hist. Math.
21(3), 330–344 (1994)

4. Datta, A., Derek, A., Mitchell, J., Pavlovic, D.: A derivation system and composi-
tional logic for security protocols. J. Comput. Secur. 13, 423–482 (2005)

5. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983)

6. Durgin, N., Mitchell, J., Pavlovic, D.: A compositional logic for proving security
properties of protocols. J. Comput. Secur. 11(4), 677–721 (2004)

7. Durgin, N., Mitchell, J.C., Pavlovic, D.: A compositional logic for protocol cor-
rectness. In: Schneider, S. (ed.) Proceedings of CSFW 2001, pp. 241–255. IEEE
(2001)

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or: a
completeness theorem for protocols with honest majority. In: Proceedings of STOC,
New York, NY, USA. Association for Computing Machinery (1987)

9. Guttman, J.D.: Shapes: surveying crypto protocol runs. In: Cortier, V., Kremer,
S. (eds.) Formal Models and Techniques for Analyzing Security Protocols, Volume
5 of Cryptology and Information Security Series, pp. 222–257. IOS Press (2011)

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6

Probabilistic Annotations for Protocol Models 347

10. Guttman, J.D.: State and progress in strand spaces: proving fair exchange. J.
Autom. Reason. 48(2), 159–195 (2012)

11. Guttman, J.D.: Establishing and preserving protocol security goals. J. Comput.
Secur. 22(2), 203–267 (2014)

12. Meadows, C., Pavlovic, D.: Deriving, attacking and defending the GDOI protocol.
In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 53–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30108-0 4

13. Pavlovic, D., Meadows, C.: Actor-network procedures. In: Ramanujam, R.,
Ramaswamy, S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 7–26. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-28073-3 2 arxiv.org:1106.0706

14. Ramsdell, J.D., Dougherty, D.J., Guttman, J.D., Rowe, P.D.: A hybrid analysis
for security protocols with state. In: Albert, E., Sekerinski, E. (eds.) IFM 2014.
LNCS, vol. 8739, pp. 272–287. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10181-1 17

15. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Honest ideals on strand spaces. In:
Proceedings of the 11th CSFW, pp. 66–77. IEEE Computer Society (1998)

16. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Mixed strand spaces. In: Proceedings
of the 12th CSFW, pp. 72–82. IEEE Computer Society (1999)

17. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

18. Thayer, F.J., Swarup, V., Guttman, J.D.: Metric strand spaces for locale authen-
tication protocols. In: Nishigaki, M., Jøsang, A., Murayama, Y., Marsh, S. (eds.)
IFIPTM 2010. IAICT, vol. 321, pp. 79–94. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13446-3 6

https://doi.org/10.1007/978-3-540-30108-0_4
https://doi.org/10.1007/978-3-540-30108-0_4
https://doi.org/10.1007/978-3-642-28073-3_2
http://arxiv.org/abs/org:1106.0706
https://doi.org/10.1007/978-3-319-10181-1_17
https://doi.org/10.1007/978-3-319-10181-1_17
https://doi.org/10.1007/978-3-642-13446-3_6
https://doi.org/10.1007/978-3-642-13446-3_6

Joshua Guttman: Pioneering
Strand Spaces

Sylvan Pinsky(B)

SRI International, Menlo Park, CA 94025, USA
sylpinsky@aol.com

Abstract. Joshua Guttman has made numerous contributions to for-
mal methods and has played a leadership role in the formal analysis of
cryptographic protocols. He is predominantly known for his pioneering
work in developing the strand space approach to protocol analysis and his
efforts to bring researchers together to form a unified, cohesive, and effec-
tive community to design and evaluate cryptographic protocols. Another
of Joshua’s contributions is the Interactive Mathematical Proof System
(IMPS), developed jointly with colleagues at the MITRE Corporation,
to provide computational support for mathematical reasoning.

1 Introduction

A cryptographic protocol represents an exchange of messages between two or
more parties where a security property is provided by encryption. Authenti-
cation using encryption goes back to 1978 with the Needham and Schroeder
paper [1]. Three years later, Dolev and Yao [2] published their intruder model,
which quickly became the standard for analyzing the capabilities of the intruder
and played a significant role in the early automated tools for protocol analysis;
specifically Jonathan Millen’s Interrogator [3] and Cathy Meadow’s NRL Pro-
tocol Analyzer [15,17]. Dick Kemmerer [5] introduced the application of formal
methods to protocol analysis in 1989.

Protocol analysis established itself, in the ensuing decade, as a vibrant
research area of formal methods both in the United States and Europe. Panel
discussions and conference sessions on this topic became standard at the Sym-
posium on Security and Privacy and at the Computer Security Foundations
Workshop. In 1992, Cathy Meadows wrote a paper on protocol analysis for the
initial volume of the Journal of Computer Security [15]. Dick Kemmerer sub-
sequently co-authored a paper with Jonathan Millen and Cathy Meadows [16],
comparing their tools to Inatest, the verification system tool that Dick used. A
logic for authentication was developed by Michael Burrows, Mart́ın Abadi, and
Roger Needham [6] and a semantics for this logic was provided by Mart́ın Abadi
and Mark Tutle [8]. Additional research on logics and reasoning about beliefs
in cryptographic protocols were provided by (a) Paul Syverson and Paul van
Oorschot [13,14], (b) Li Gong, Roger Needham, and Raphael Yahalom [7], and

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 348–354, 2021.
https://doi.org/10.1007/978-3-030-91631-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_19

Joshua Guttman: Pioneering Strand Spaces 349

(c) Illiano Cervesato, Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre
Scedrov [37].

In 1995, Gavin Lowe discovered a flaw in the Needham-Schroeder proto-
col [19] and fixed it using the Failures Divergent Refinement (FDR) verifica-
tion tool for the process algebra CSP [20] (Communicating Sequential Processes
introduced by Tony Hoare [4]). Gavin used Casper (Compiler for Analysis of
Security Protocols) [22] to automatically produce the CSP description of the
protocol. The modeling checking approach was carried forward by Ed Clarke,
Somesha Jha, Will Marrero [26], Mart́ın Abadi and Andrew Gordon [10], Ric-
cardo Focardi and Roberto Gorrieri [25], Dawn Song [36], and John Mitchell,
Mark Mitchell, and Ulrich Stern [27]. Verification techniques for authentication
protocols using CSP were developed by Steve Schneider [31] and Lawrence Paul-
son introduced induction principles [28,30] and their use in mechanized proofs
[29]. Steve Brackin [23] used HOL (the higher order logic theorem proving envi-
ronment developed by Michael Gordon [11]) to analyze cryptographic protocols.
Grit Denker, José Meseguer, Peter Ölvezky, Carolyn Talcott, and their colleagues
specified and analyzed protocols [32,33] using the Maude environment developed
by José Meseguer [43].

2 Strand Spaces

Strand spaces were developed by Joshua Guttman and his colleagues Javier
Thayer Fábrega and Jonathan Herzog at the MITRE Corporation. A strand is
a sequence of events that a participant may engage in. It represents the actions
of that party only. A strand space is a collection of strands with a graph struc-
ture generated by the exchanged messages. A bundle consists of a number of
strands (legitimate or penetrator) hooked together where one strand sends a
message and another strand receives the same message. A bundle is viewed as a
finite subgraph with the edges expressing the causal dependencies of the nodes.
Correctness in this framework is expressed in terms of the connections between
strands of different kinds. The strand space model is used to state and prove
both secrecy and authentication properties. For example, one of Gavin Lowe’s
agreement properties [21] expressed in strand space terminology states that a
protocol guarantees a participant B (as a responder) agreement for certain data
items −→x if:

– each time a principal B completes a run of the protocol as a responder using−→x , apparently with A, then there is a unique run of the protocol with the
principal A as initiator using −→x , apparently with B.

Strand spaces view protocol executions as bundles and security goals as the
properties: (a) authentication: some regular strand exists, (b) secrecy: no node
discloses a secret, and (c) recency: non-repudiation, fairness, etc.

Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill
Roscoe authored a book on security protocols, how they work, and how to design

350 S. Pinsky

and analyze them [40]. It has an excellent chapter on strand spaces that is well
worth reading.

Ed Zieglar and I were the leaders of the Advanced Protocol Analysis Group
at NSA where we sponsored the MITRE research effort in strand spaces. We
invited Cathy and her NRL colleagues to join us when Joshua and his team
visited us to discuss protocol analysis. These meetings were so productive that
we scheduled future gatherings when other researchers, such as Carolyn Talcott
and George Dinolt, were in the area. Ed arranged to have the University of
Maryland Baltimore County (UMBC) host our meetings. In 2003, the meetings
were held quarterly and the group expanded to include Mark-Oliver Stehr, José
Meseguer, Santiago Escobar, Grit Denker, Andre Scedrov, John Mitchell, Dusko
Pavlovic, and other researchers active in protocol analysis. That year we hosted
meetings at UMBC and Illiano Cervesato initiated the first Protocol eXchange
website which is now hosted by George Dinolt at the Naval Postgraduate School
(NPS).

The maturing of strand space theory and multiset rewriting for protocol
analysis [38] and the introduction of the Protocol Derivation Assistant (PDA)
by Dusko Pavlovic [49] prompted a unified approach to protocol analysis. The
Protocol eXchange Seminars provided an excellent forum to get a common frame-
work and methodology for developing and enhancing automated tools. Cathy
Meadows, Carolyn Talcott [52,53], and José Meseguer played key roles in defin-
ing how to use the best features of PVS [50] and Maude [43] as an underlying
framework for the MITRE Cryptographic Protocol Shape Analyzer (CPSA), the
Kestrel Protocol Derivation Assistant (PDA), and the NRL Protocol Analyzer
written in Maude (Maude-NPA). Sam Owre [51] and Carolyn Talcott [55,56]
further explored the PVS-Maude connection and the semantics and algebra for
the interoperation of protocol analysis tools and the simulation and analysis of
protocol specifications.

3 Concluding Remarks

Joshua Guttman has played a leading role in protocol analysis through his con-
tinuing research contributions and leadership in maturing and nurturing a suc-
cessful research community. His pioneering work in strand spaces has been at
the center of the effort to formulate a unified approach to protocol analysis. The
impact of strand spaces is shown in the following figures presented at the Pro-
tocol eXchange meetings from September 2004 to June 2005. Figure 1a depicts
the connection between strand spaces and the unified framework [52]. A further
connection between strand spaces, the CPSA and PDA tools, and the Maude
and PVS environments is shown in Fig. 1b [53]. This research was presented by
Carolyn Talcott and Sam Owre with help from Shaddin Dughmi (MITRE) and
Dusko Pavlovic and Matthias Anlauff (Kestrel).

Joshua has been a mentor to many young researchers and inspired my col-
league Al Maneki to investigate strand space concepts [44] resulting in Al’s pre-
sentation of honest functions [35] at the 12th Computer Security Foundations
Workshop.

Joshua Guttman: Pioneering Strand Spaces 351

Fig. 1. Protocol eXchange meetings 2004–2005

352 S. Pinsky

Joshua has made many contributions to formal methods and computer sci-
ence in the areas of security, programming languages, and formal reasoning. I
will only highlight the Interactive Mathematical Proof System (IMPS), devel-
oped jointly with Bill Farmer and Javier Thayer Fábrega at the MITRE Corpo-
ration. IMPS is an interactive mathematical proof system based on simple type
theory with partial functions and subtypes [12]. It has an initial theory library
containing over a thousand proofs for logic, algebra, and analysis. Bill Farmer
maintains the IMPS home page at McMaster University, Canada.

It has been a pleasure, honor, and privilege to know and work with Joshua.
This symposium is a well deserved tribute to his many significant contributions
to protocol analysis, formal methods, and computer science.

References

1. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. Commun. ACM 21, 993–999 (1978)

2. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols, STAN-CS-81-854
(1981)

3. Millen, J.: The interrogator: a tool for cryptographic protocol security. In: Proceed-
ings 1984 Symposium on Security and Privacy. IEEE Computer Security Society
(1984)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs (1985)

5. Kemmerer, R.: Analyzing encryption protocols using formal verification techniques.
IEEE J. Sel. Areas Commun. 7(4), 448–457 (1989)

6. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

7. Gong, L., Needham, R., Yahalom, R.: Reasoning about belief in cryptographic
protocols. In: Proceedings 1990 Symposium on Security and Privacy, pp. 234–248.
IEEE Computer Security Society (1990)

8. Abadi, M., Tuttle, M.: A semantics for a logic of authentication. In: Proceedings of
the 10th ACM Symposium on Principles of Distributed Computing, pp. 201–216
(1991)

9. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996)

10. Abadi, M., Gordon, A.D.: Reasoning about cryptographic protocols in the spi cal-
culus. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,
pp. 59–73. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63141-0 5

11. Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, Cambridge (1993)

12. Farmer, W., Guttman, J., Fábrega, J.T.: IMPS: an interactive mathematical proof
system. J. Autom. Reason. 11, 213–248 (1993)

13. Syverson, P.: The use of logic in the analysis of cryptographic protocols. In: Pro-
ceedings 1991 Symposium on Security and Privacy, pp. 156–170 (1991)

14. Syverson, P., van Oorschot, P.: On unifying some cryptographic protocol logics.
In: Proceedings 1994 Symposium on Security and Privacy, pp. 14–28 (1994)

15. Meadows, C.: Applying formal methods to the analysis of a key management pro-
tocol. J. Comput. Secur. 1(1), 5–35 (1992)

https://doi.org/10.1007/3-540-63141-0_5

Joshua Guttman: Pioneering Strand Spaces 353

16. Kemmerer, R., Meadows, C., Millen, J.: Three systems for cryptographic protocol
analysis. J. Cryptol. 7(2), 79–130 (1994). https://doi.org/10.1007/BF00197942

17. Meadows, C.: The NRL protocol analyzer: an overview. J. Logic Program. 26,
113–131 (1996)

18. Carlsen, U.: Cryptographic protocol flaws. In: Proceedings 7th IEEE Computer
Security Foundations Workshop, pp. 192–200 (1994)

19. Lowe, G.: An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–136 (1995)

20. Lowe, G.: Breaking and fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 43

21. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th IEEE
Computer Security Foundations Workshop, pp. 31–43 (1997)

22. Lowe, G.: Casper: a compiler for the analysis of security protocols. In: 10th Com-
puter Security Foundations Workshop, pp. 18–30. IEEE Computer Security Press
(1997)

23. Brackin, S.: A HOL extension of GNY for automatically analyzing cryptographic
protocols. In: 9th Computer Security Foundations Workshop. IEEE Computer
Security Press (1996)

24. Roscoe, A.W.: Intensional specifications of security protocols. In: Proceedings of
the 9th Computer Security Foundations Workshop, pp. 28–38 (1996)

25. Focardi, R., Gorrieri, R.: The compositional security checker: a tool for the ver-
ification of information flow security properties. IEEE Trans. Softw. Eng. 23(9),
58–72 (1997)

26. Marrero, W., Clarke, E., Jha, S.: A Model checker for authentication protocols. In:
Meadows, C., Orman, H. (eds.) Proceedings of the DIMACS Workshop on Design
and Verification of Security Protocols, DIMACS, Rutgers University (1997)

27. Mitchell, J., Mitchell, M., Stern, U.: Automated analysis of cryptographic protocols
using murφ. In: Proceedings 1997 Symposium on Security and Privacy, pp. 141–153
(1997)

28. Paulson, L.: Proving properties of security protocols by induction. In: Proceedings
of the 10th Computer Security Foundations Workshop, pp. 70–83 (1997)

29. Paulson, L.: Mechanized proofs of a recursive authentication protocol. In: Proceed-
ings of the 10th Computer Security Foundations Workshop, pp. 84–94 (1997)

30. Paulson, L.: The inductive approach to verifying cryptographic protocols. J. Com-
put. Secur. 6, 85–128 (1998)

31. Schneider, S.: Verifying authentication protocols with CSP. In: Proceedings of the
10th Computer Security Foundations Workshop, pp. 3–17 (1997)

32. Denker, G., Meseguer, J., Talcott, C.: Protocol specification and analysis in Maude.
In: Workshop on Formal Methods and Security Protocols (1998)

33. Denker, G., et al.: Specifying a reliable broadcasting protocol in Maude. In: Work-
shop on Formal Methods and Security Protocols (1998)

34. Denker, G., Meseguer, J., Talcott, C.: Formal specification and analysis of active
networks and communication protocols: the Maude experience. In: DARPA Infor-
mation Survivability Conference and Exposition (2000)

35. Maneki, A.: Honest functions and their application to the analysis of cryptographic
protocols. In: Proceedings of the 12th Computer Security Foundations Workshop
(1999)

36. Song, D.: Athena: a new efficient automatic checker for security protocol analysis.
In: Proceedings of the 12th Computer Security Foundations Workshop (1999)

https://doi.org/10.1007/BF00197942
https://doi.org/10.1007/3-540-61042-1_43

354 S. Pinsky

37. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A meta-notation
for protocol analysis. In: Proceedings of the 12th Computer Security Foundations
Workshop (1999)

38. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Relating strands
and multiset rewriting for security protocol analysis. In: Proceedings of the 13th
Computer Security Foundations Workshop (2000)

39. Cervesato, I., Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: A comparison
between strand spaces and multiset rewriting for security protocol analysis. In:
Software Security - Theories and Systems - ISSS (2002)

40. Ryan, P., Schneider, S., Goldsmith, M., Lowe, G., Roscoe, B.: Modelling and Anal-
ysis of Security Protocols. Addison-Wesley, Boston (2001)

41. Mason, I., Talcott, C.: Simple network protocol simulation within Maude. Electron.
Notes Theor. Comput. Sci. 36, 274–291 (2000). Third International Workshop in
Rewriting Logic and Its Applications

42. Ölvezky, P., Meseguer, J., Talcott, C.: Specification and analysis of the AER/NCA
active network protocol suite in Real-Time Maude. Formal Methods Syst. Des. 29,
253–293 (2006). https://doi.org/10.1007/s10703-006-0015-0

43. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

44. Fábrega, J.T., Herzog, J., Guttman, J.: Honest ideals on strand spaces. In: Pro-
ceedings of the 11th Computer Security Foundations Workshop (1998)

45. Fábrega, J.T., Herzog, J., Guttman, J.: Strand spaces: proving security protocols
correct. J. Comput. Secur. 7, 191–230 (1999)

46. Guttman, J., Fábrega, J.T.: Authentication tests and the structure of bundles.
Theor. Comput. Sci. 283, 333–380 (2001)

47. Guttman, J., Fábrega, J.T.: The sizes of skeletons: security goals are decidable.
MITRE Technical Report 05B09 (2005)

48. Rushby, J.: The Needham-Schroeder Protocol in SAL. Computer Science Labora-
tory, SRI International (2005)

49. Anlauff, M., Pavlovic, D., Waldinger, R., Westfold, S.: Proving Authentication
Properties in the Protocol Derivation Assistant, Kestrel Institute (2006)

50. Owre, S., Shankar, N., Rushby, J.: PVS: A Prototype Verification System, CADE
11 (1992)

51. Owre, S.: Maude2PVS, Protocol eXchange (2007)
52. Talcott, C.: A Maude-PVS tool for Strand Spaces, Protocol eXchange (2004)
53. Talcott, C., Owre, S.: CPSA + Maude + PDA + PVS, Protocol eXchange (2005)
54. Talcott, C.: S-expressions & Maude + PVS, Protocol eXchange (2006)
55. Talcott, C.: TOOLIP Semantics & TOOLIP - Maude NPA, Protocol eXchange

(2007)
56. Talcott, C.: TOOLIP Semantics & Interoperation, Protocol eXchange (2008)

https://doi.org/10.1007/s10703-006-0015-0
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1

Cryptographic Protocol Analysis and
Compilation Using CPSA and Roletran

John D. Ramsdell(B)

The MITRE Corporation, Bedford, MA 01730, USA
ramsdell@mitre.org

Abstract. The Cryptographic Protocol Shapes Analyzer cpsa deter-
mines if a cryptographic protocol achieves authentication and secrecy
goals. It can be difficult to ensure that an implementation of a protocol
matches up with what cpsa analyzed, and therefore be sure the imple-
mentation achieves the security goals determined by cpsa.

Roletran is a program distributed with cpsa that translates a role in
a protocol into a language independent description of a procedure that is
easily translated into an existing computer language. This paper shows
how we ensure the procedure produced by Roletran is faithful to strand
space semantics and therefore achieves the security goals determined by
cpsa.

Real implementations of cryptographic functions make use of proba-
bilistic encryption, but cpsa will conclude that two encryptions are the
same if they are constructed with the same plaintext and key. The paper
concludes by showing how we ensure that executions of generated code
that make use of probabilistic encryption achieve the goals determined
by cpsa.

1 Introduction

The Cryptographic Protocol Shapes Analyzer (cpsa) [8] attempts to enumerate
all essentially different executions possible for a cryptographic protocol. We call
them the shapes of the protocol. Naturally occurring protocols have only finitely
many, indeed very few shapes. Authentication and secrecy properties are easy
to determine from them, as are attacks and anomalies.

For each input problem, the cpsa program is given some initial behavior,
and it discovers what shapes are compatible with it. Normally, the initial behav-
ior is from the point of view of one participant. The analysis reveals what the
other participants must have done, given the participant’s view. The search is
complete, i.e. we proved every shape can in fact be found in a finite number of
steps, relative to a procedural semantics of protocol roles [7].

This paper is dedicated to Joshua Guttman in gratitude for all the wonderful collabora-
tions we shared throughout our careers. From the first rigorous verification of the imple-
mentation of a programming language in actual use (Scheme via the vlisp project [6]),
to cryptographic protocol analysis (cpsa), it has been a joy to work with you.

c© The Author(s) 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 355–369, 2021.
https://doi.org/10.1007/978-3-030-91631-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_20&domain=pdf
http://orcid.org/0000-0002-5547-0427
https://doi.org/10.1007/978-3-030-91631-2_20

356 J. D. Ramsdell

When we say a role has procedural semantics, we mean that there exists a
program that implements the intent of the specified role. Until now, establish-
ing the correspondence between a cpsa role and its implementation has been
informal. It requires a programmer that is well versed in the semantics of cpsa.
As the messages used in roles become more complex, the likelihood of errors in
the correspondence increases, even when employing the best programmer/cpsa
expert. The Roletran compiler automates the translation of a cpsa role into a
procedure that is easily translated into the source for an existing programming
language, in our case, Rust. It uses the same algorithms implemented in cpsa to
ensure a faithful translation. But how do we know its translations are correct?

Section 4 presents the abstract semantics of procedures used to guide our
implementation of a runtime system for Roletran generated programs. It includes
a definition of correctness, Definition 8, that precisely defines whether the output
of Roletran correctly implements the role it is given.

The semantics presented in Sect. 4 has been specified in Coq [1]. An attempt
was made to specify the Roletran compiler as a function in Coq and prove that
every output of Roletran correctly implements the role it is given. However,
the proofs turned out to be too complex and challenging, and the attempt was
abandoned.

As a fallback, one can present Coq with the runtime semantics, a role, and
procedure, and when the procedure is the output of Roletran, Coq will automat-
ically prove it correctly implements the role. The Coq automation succeeds on
protocols of substantial size. Thus for high-assurance applications, we provide a
means to validate compiler input/output pairs in lieu of verifying the compiler
algorithm.

There is one loose end in what might seem to be a tidy story at this
point. Real implementations of cryptographic functions make use of probabilistic
encryption. This means that there may be several bit patterns that correspond
to one encryption term in cpsa. If the compiler generates code that asserts that
two encryptions are equal, the assertion might fail at runtime if the two encryp-
tions differ only because of the randomness used to generate them. To explore
these issues, a more concrete semantics has been defined that models randomness
in encryptions. The paper concludes by showing that

1. the concrete semantics is faithful to the abstract semantics, in that for every
run of the concrete semantics, there is a corresponding run of the abstract
semantics, and

2. the concrete semantics is adequate with respect to the abstract semantics,
in that for every run of the abstract semantics and choice of random values,
there is a corresponding run of the concrete semantics.

Therefore, probabilistic encryption is handled correctly.

∗ ∗ ∗

The Roletran compiler and supporting Coq proofs were written by the author
and the sources are available on GitHub [8]. The sources contain about 5800 lines
of Coq scripts and the Intro module presents an overview of the work.

Cryptographic Protocol Analysis and Compilation 357

There have been a variety of systems that compile high-level descriptions of
protocols into executable code [2,5]. To our knowledge, this is the first example
of a compiler that uses the input of a cryptographic protocol analyzer as its sole
input and honors its semantics.

Notation. A finite sequence f is a function from an initial segment of the natural
numbers. The length of f is |f |, and f = 〈f(0), . . . , f(n − 1)〉 for n = |f |. The
sequence x::f is 〈x, f(0), . . . , f(n−1)〉. The concatenation of sequences f1 and f2
is f1

� f2.
If S is a set, then S∗ is the set of finite sequences over S, and S+ is the

non-empty finite sequences over S. If S is a finite set, then
−→
S is some injective

sequence that is onto S. That is, it is a sequence that contains every element in
S without duplicates.

Suppose g : X ⇀ Y is a finite partial function.

g[x �→ y](z) =
{

y if z = x,
g(z) otherwise.

We use ∅ to denote the finite partial function that has an empty domain.

2 Message Algebras

This section describes the formalism on which cpsa message algebras are based.
The parameters to an algebra are:

1. a set of messages Alg. The set of messages Alg is the carrier set (or domain)
of a term algebra.

2. a set of basic values BV ⊂ Alg. Keys and nonces are examples of basic values.
3. a carried by relation 	 ⊆ Alg × Alg. Intuitively, a message t0 is carried by t1

if it is possible to extract t0 from t1 by someone who knows the relevant
decryption keys.

Example Message Algebra. The signature of one possible order-sorted [4] message
algebra is in Fig. 1. The algebra is the simplification of the cpsa message algebra
used by the examples in this paper.

In an order-sorted algebra, each variable x has a unique sort S. The declara-
tion of x is x : S.

The algebra of interest is the order-sorted quotient term algebra generated by
a set of declarations X. The message algebra AlgX is the carrier set for sort M.
The set of basic values BVX is the union of the carrier sets for sorts A, S, and D.
The carrier set for sort A contains the algebra’s asymmetric key pairs. We write
t : S to say that term t is in the carrier set of sort S.

A variable has no intrinsic sort associated with it. The declarations that
generate an algebra determine the sort of variables that occur within terms of
the algebra. A variable declared to be of sort M is called a message variable.

358 J. D. Ramsdell

Sorts: M, A, S, D
Subsorts: A < M, S < M, D < M
Operations: (·, ·) : M × M → M Pairing

{| · |}(·) : M × M → M Encryption
: M → M Hash
(·)−1 : M → M Key inverse
τ0, τ1, . . . : M Tag constants

Equations: (x−1)−1 = x for x : A; x−1 = x otherwise

Fig. 1. Simple crypto algebra signature

The Simple Crypto Algebra is interesting because like cpsa’s message alge-
bra, any message can be used as a key when constructing an encryption, with
the exception of a message variable. The reason for the exception is that message
variable x could be unified with any basic value, and so what equation applies
to x−1?

Each element of the message algebra is a set of terms. The canonical represen-
tative of each element is the term with the fewest number of occurrences of the
inverse operation (·)−1. Thus when x is a variable, the canonical representative
of the algebra element that contains

((x−1)
−1

)
−1

is x−1 if x : A, and x otherwise. Message t0 occurs in t1 iff the canonical repre-
sentative of t0 is a subterm of the canonical representative of t1. In what follows,
we conflate each algebra element with its canonical representative.

Definition 1 (Encryption free terms). Term t is encryption free, written
enc free t, iff no encryption term occurs in t.

A message t0 is carried by t1, written t0 	 t1, if t0 can be derived from t1
given the right set of keys. That is: 	 is the smallest reflexive, transitive relation
such that

t0 	 (t0, t1), t1 	 (t0, t1), and t0 	 {|t0|}t1 .

3 Strand Spaces with Channels

The foundation of this work is a version of strand spaces in which messages are
transmitted over channels. This change facilitates the translation of a role into
code by adding a natural handle for performing input and output in generated
code.

Recall that a strand space [9] is a finite map from a local session of a protocol,
called a strand, to its behavior, called a trace. The addition of channels changes
the standard definition of a trace, but otherwise leaves the basic definitions of
strand space theory unchanged.

Cryptographic Protocol Analysis and Compilation 359

A channel is a variable of sort C. For h :C and t :M, [h, t] associates message
t with channel h, and is called a channeled message. The additions to a message
signature required to support channels follow.

Extra Sorts: C,CM
Operation: [·, ·] : C × M → CM Channeled messages

The sort associated with a channeled message is CM. The carrier set for that
sort is AlgX . Variables of sort CM are not allowed in X. The carrier set for sort
C is ChnX . Let ̂AlgX = AlgX ∪ ChnX .

Traces and Roles. The behavior of a strand, its trace, is a finite non-empty
sequence of events. An event is either a channeled message transmission or a
channeled message reception. An event transmitting m ∈ AlgX is written as +m;
and an event receiving channeled message m is written as −m. If e = ±[h, t] is
an event, then msg(e) = t. The set of traces over AlgX is (±AlgX)

+
.

A message t originates in trace c at index i iff c(i) = +[h, t1], t 	 t1, and for
all j < i, t 	 msg(c(j)). A message t uniquely originates in strand space Θ iff
it originates in exactly one trace in Θ. A message t is non-originating in strand
space Θ iff it originates in no trace in Θ.

Structure rX(c, i, o, u) is a role when

1. c is a trace in (±AlgX)
+

,
2. each variable declared in X occurs in c,
3. i ∈ (BVX ∪ ChnX)∗ is a sequence of basic values and channels that specify

the inputs to the role,
4. o ∈ Alg∗

X is a sequence of terms that specify the outputs of the role, and
5. u ⊆ BVX is a set of basic values that originate in c.

The elements of i and o are a sequence because the order matters when generating
a procedure from the role. Elements of u are freshly generated when the compiled
role executes.

Executions. An execution eY (c, i, o, u) is similar to a role except that its uniquely
originating values are a sequence, not a set. The semantics of an execution
requires that the fresh values be presented in the order in which they are con-
sumed. Otherwise, the components of an execution must satisfy the same con-
straints. Let φ : ̂AlgX → ̂AlgY be a homomorphism, and φ̄ be the extension of φ
to traces and sequences of terms in the obvious way.

Definition 2 (Run of a role). Execution eY (c′, i′, o′, u′) is a run of role
rX(c, i, o, u) iff there exists a homomorphism φ such that φ̄(c) = c′, φ̄(i) = i′,
φ̄(o) = o′, φ̄(u) = u′, and u is some sequence that contains the elements in u.

The strand spaces model of a protocol execution is a bundle. A bundle adds
a communication relation to a strand space, and constraints that ensure that
causality is respected in that every received message is transmitted previously

360 J. D. Ramsdell

in the bundle. In strand spaces, a Dolev-Yao adversary [3] is modeled by strands
in a bundle along with the strands derived from the protocol being analyzed.

cpsa does not represent executions using bundles or adversarial behavior
using strands. Instead, it uses a skeleton to represent a collection of bundles. A
skeleton has a strand space, an ordering relation between events, and some orig-
ination assumptions that must be satisfied by the strand space of the skeleton.
A bundle is modeled by a skeleton if it contains all of the structure specified by
the skeleton, in other words, there is a homomorphism from the skeleton into
the bundle.

For each input problem, cpsa is given some initial behavior, and it discovers
what shapes are compatible with it. A shape is a special kind of skeleton in that
it contains enough protocol behavior to explain all message receptions in the
presence of adversarial behavior, and it is minimal in that if there is a homo-
morphism from another skeleton to the shape, then there is a homomorphism
from the shape to the other skeleton.

To describe the executions of a protocol, each strand in a skeleton must be
an instance of some role in the protocol, which is defined to mean there is a
homomorphism from the role to the strand. The definition of a run of a role
codifies that link for procedure execution semantics.

3.1 Unilateral Protocol Example

The Unilateral Protocol is a very simple authentication protocol. It consists of
two roles, an initiator and a responder. The initiator encrypts a freshly chosen
nonce using the public key of the responder and sends it. The responder decrypts
the encryption it receives using its private key, and transmits the plaintext. If the
initiator receives the nonce it sent unencrypted, it concludes it is communicating
with a responder that possesses the corresponding private key, assuming the
private key has not been compromised. In the notation presented above, the
protocol is specified as follows.

Example 3 (Unilateral Protocol)

init = rh:C,n:D,k:A(〈+[h, {|n|}k],−[h, n]〉, 〈h, k〉, 〈n〉, {n})
resp = rh:C,n:D,k:A(〈−[h, {|n|}k],+[h, n]〉, 〈h, k−1〉, 〈n〉, {})

Both the initiator and the responder use a message algebra generated by
a channel h, a datum n, and an asymmetric key k. The trace of the initiator
contains two events, a channeled message transmission followed by a channeled
message reception. The inputs to the initiator are a channel and the public part
of a key pair. The inputs to the responder are a channel and the private part
of a key pair. The outputs produced by both roles is the single nonce n. The
initiator freshly generates nonce n, and the responder freshly generates nothing.

cpsa determines that if an instance of an initiator role runs to completion,
and the private part of the key pair is not compromised, i.e. is non-originating,
then there must have been a corresponding run of the responder role that agrees
with the initiator on the values of the nonce and the public key.

Cryptographic Protocol Analysis and Compilation 361

3.2 Channel Assumptions

With the addition of channels to cpsa, skeletons now include additional kinds of
assumptions besides origination assumptions. A channel can be assumed to be
authenticated and/or confidential. In a bundle, when a channel is authenticated,
the adversary is not allowed to transmit a message on the channel, and when
it is confidential, the adversary is not allowed to received a message on the
channel. The addition of channel assumptions allows interesting new analyses of
protocols, but does not impact Roletran, so it will not be further discussed.

4 Abstract Execution Semantics

Roletran generates a procedure for each role in a protocol. To build an executable
program, the procedure is trivially translated into source code for an existing
programming language, in our case Rust. The code is compiled and linked with
a runtime system. The implementer of the program provides a main routine that
invokes the procedure with inputs that must be compatible with inputs of the
translated role. We trust the implementor to do so.

When the program executes, it goes through state changes associated with
each statement generated by Roletran. The abstract execution semantics speci-
fies an abstract view of properties of the states that must be preserved in order
to be in compliance with the execution semantics stated in the previous section.

When the compiled translation of a role is executing, the runtime system
for the source language maintains a binding between program variables and
binary objects that represent message fragments. The abstract execution seman-
tics models these bindings with a map from program variables to terms in the
message algebra. This map is called an environment. The implementor of the
runtime library must ensure that each binary object naturally abstracts into the
corresponding term in the message algebra as specified by the current environ-
ment.

A runtime system for a program provides two more capabilities, support for
sending and receiving messages on channels, and freshly generating random val-
ues. To model freshly generating random values, the abstract execution semantics
maintains a sequence of basic values that is the source of randomness. Initially
it is the sequence of uniquely originating values in an execution. The implemen-
tor of the runtime library must ensure each binary object it creates naturally
abstracts into the corresponding term in the message algebra as specified by the
abstract execution semantics.

To model messaging on channels, the abstract execution semantics maintains
a trace that initially is the trace in the execution. The implementor of the run-
time library must ensure each binary object transmitted or received naturally
abstracts into the corresponding event over the message algebra as specified by
the abstract execution semantics.

362 J. D. Ramsdell

ae : AlgY environment
× (±AlgY)

∗
input trace

× Alg∗
Y input fresh values

× E expression
× AlgY value
× (±AlgY)

∗
output trace

× Alg∗
Y output fresh values

ae(E, c, u, quot(τ) , τ, c, u)1()

E(v1) = t1 E(v2) = t2
ae(E, c, u, pair(v1, v2) , (t1, t2), c, u)

(2)

E(v1) = t1 E(v2) = t2
ae(E, c, u, encr(v1, v2) , {|t1|}t2 , c, u)

(3)

E(v1) = t1
ae(E, c, u, hash(v1) , #t1, c, u)

(4)

E(v1) = (t1, t2)
ae(E, c, u, frst(v1) , t1, c, u)

(5)

E(v1) = (t1, t2)
ae(E, c, u, scnd(v1) , t2, c, u)

(6)

E(v1) = {|t1|}t2 E(v2) = t2
−1 enc free t2

−1

ae(E, c, u, decr(v1, v2) , t1, c, u)
(7)

E(v1) = h

ae(E, −[h, t] :: c, u, recv(v1) , t, c, u)
(8)

ae(E, c, t :: u, frsh , t, c, u)9()

Fig. 2. Abstract execution expression semantics

The output of the compiler is an executable procedure x(p, s), where p is
a sequence of parameters and s is a sequence of statements. Each parameter
is a program variable and its type, and is associated with an input when the
procedure is invoked. A type is one of M, A, I, S, D, and C.

The code generated by the compiler is a sequence of statements. Let V be
the syntactic category for program variables. The syntax of a statement is

S :: = V : T ← E | V ≈ V | invp(V,V) | send(V,V) | return(V∗)
T :: = M | A | I | S | D | C

E :: = quot(τ) | pair(V,V) | encr(V,V) | hash(V)
| frst(V) | scnd(V) | decr(V,V) | recv(V) | frsh

Cryptographic Protocol Analysis and Compilation 363

as : AlgY input environment
× (±AlgY)

∗
input trace

× Alg∗
Y input fresh values

× S statement
× AlgY output environment
× (±AlgY)

∗
output trace

× Alg∗
Y output fresh values

ae(E, c1, u1, x, t, c2, u2) chk(t, k)
as(E, c1, u1, v : k ← x , E[v t], c2, u2)

(10)

chk(t,M) always true
chk(t,A) iff t is a variable of sort A
chk(t, I) iff t−1 is a variable of sort A
chk(t, S) iff t is a variable of sort S
chk(t,D) iff t is a variable of sort D
chk(t,C) iff t is a variable of sort C

(11)

E(v1) = E(v2) enc free E(v1)
as(E, c, u, v1 ≈ v2 , E, c, u)

(12)

E(v1) = E(v2)−1 enc free E(v1)
as(E, c, u, invp(v1, v2) , E, c, u)

(13)

E(v1) = h E(v2) = t

as(E, +[h, t] :: c, u, send(v1, v2) , E, c, u)
(14)

as∗(E, , , ,E)51()

as(E1, c1, u1, x,E2, c2, u2) as∗(E2, c2, u2, s, E3)
as∗(E1, c1, u1, x :: s, E3)

(16)

Fig. 3. Abstract execution statement semantics

At runtime, a program variable is associated with an element of a message
algebra. This association is represented by an environment E :V ⇀ ̂AlgY , a finite
partial function. The semantics of a sequence of statements is specified using the
relation asret(E, c, u, s, o), where E is an environment, c is a trace in (±AlgY)

∗
,

u is a sequence of fresh terms in Alg∗
Y , s is a sequence of statements, and o is a

sequence of outputs in Alg∗
Y .

as∗(E, c, u, s, E′) E′ ◦ 〈v0, v1, . . .〉 = 〈t0, t1, . . .〉
asret(E, c, u, s � 〈�return(v0, v1, . . .)�〉, 〈t0, t1, . . .〉)

(17)

The semantics of the remaining statements are given in Fig. 3. The semantics of
expressions are given in Fig. 2. Note that Eq. 7, 12, and 13 make assertions that
some terms must be free of encryptions. The purpose of these restrictions has to

364 J. D. Ramsdell

Fig. 4. Initiator procedure execution

do with the correct handling of probabilistic encryption and will be explained in
Sect. 7.

The intuition behind the semantics can be gleaned from the statement seman-
tics as in Fig. 3. Think of an environment, trace, fresh values triple (E, c, u) as
a state, and a statement as a label. Figure 3 specifies a labeled transition sys-
tem. It defines how the states evolve during the course of an execution. For a
sameness test �v1 ≈ v2� (Eq. 12), the state does not change. Execution halts
if the test fails. For a send statement �send(v1, v2)� (Eq. 14), only the trace is
updated. For a bind statement �v : k ← x� (Eq. 10), all three components of the
state are updated as determined by the expression semantics ae. The trace is
changed only in response to a �recv(v1)� expression (Eq. 8), and a fresh value
is consumed only in response to a �frsh� expression (Eq. 9). Sequences of state
transitions are tied together in the natural way by as∗ (Eqs. 15 and 16). The
asret predicate (Eq. 17) ensures that the final statement in a procedure is a
return statement, and that the outputs of the procedure are correctly retrieved
from the final environment.

Definition 4 (Procedure execution). Let p = 〈(v0, k0), . . . , (vn−1, kn−1)〉
and i = 〈i0, . . . , in−1〉. Execution e = eY (c, i, o, u) is an execution of procedure
x = x(p, s), written exec(x, e), iff

1. for all j < n, chk(ij , kj), and
2. asret(E, c, u, s, o), where E = ∅[v0 �→ i0] · · · [vn−1 �→ in−1].

See Eq. 11 for the definition of chk.

Roletran generates the following procedures for the Unilateral Protocol.

Example 5 (Unilateral Protocol Procedures)

initp = x(〈(v0, C), (v1, A)〉,
v2 : D ← frsh
v3 : M ← encr(v2, v1)
send(v0, v3)
v4 : D ← recv(v0)
v2 ≈ v4
return(v2))

respp = x(〈(v0, C), (v1, I)〉,
v2 : M ← recv(v0)
v3 : D ← decr(v2, v1)
send(v0, v3)
return(v3))

Cryptographic Protocol Analysis and Compilation 365

The execution inite = eh:C,n:D,k:A(〈+[h, {|n|}k],−[h, n]〉, 〈h, k〉, 〈n〉, 〈n〉) is an
execution of procedure initp. The state transitions caused by this execution of
procedure initp are shown in Fig. 4.

4.1 Correctness

Definition 6 (Liveness). Procedure x is live for role r, iff there exists an exe-
cution e such that

1. e is a run of r, and
2. e is an execution of x.

Definition 7 (Safety). Procedure x is safe for role r, iff when

1. e is an execution of x, then
2. e is a run of r.

Definition 8 (Correctness). Procedure x correctly implements role r, iff x is
live and safe for r.

The Coq scripts that come with Roletran automatically prove that the Uni-
lateral Protocol procedures it generates correctly implement their respective
roles.

Consider the case in which Roletran mistakenly omitted the sameness test
(v2 ≈ v4) in the initiator procedure. The Coq scripts would determine that
ec:C,n,n′:D,k:A(〈+[h, {|n|}k],−[h, n′]〉, 〈h, k〉, 〈n〉, 〈n〉) is an execution of procedure
initp′, but note that this execution violates the safety condition. The safety
condition ensures that runs of a collection of procedures that correctly implement
the roles of a protocol achieve the security goals of the protocol.

5 A Runtime with Probabilistic Encryption

This section presents message algebras, called concrete message algebras, that
are very similar to the ones used by the abstract execution semantics. The only
difference is the way in which they model encryption. The signature used by the
previous algebras has one operation for encryption, {|(·)|}(·) (See Fig. 1), which
suggests that two encryptions are the same if the plaintext and the key used to
construct them are the same. This is not true for implementations of encryption
in actual use. Instead, some randomness is added to an encryption during its
construction in such a way that knowledge of the randomness is not needed to
recover the plaintext by someone in possession of the decryption key.

366 J. D. Ramsdell

Fig. 5. Concrete crypto algebra signature

Figure 5 shows the signature used for concrete algebras that model proba-
bilistic encryption. This signature features a family of encryption operations,
{‖(·)‖}i

(·), one for each natural number i. The natural number is meant to rep-
resent the randomness used while creating the encryption. In concrete algebras,
two encryptions created with the same plaintext and key are equal only if they
were created using the same random value.

The algebra of interest is the order-sorted quotient term algebra generated by
a set of declarations Y . The message algebra CAlgY is the carrier set for sort M.
The definitions of traces, roles, and executions, extend to concrete algebras in
the obvious ways.

Definition 9 (Forgetful function). Let F : CAlgY → AlgY be the obvious
function that forgets the randomness used to create encryptions.

Lemma 10. For x ∈ AlgY , if x is encryption free (enc free x), then there
exists a unique y ∈ AlgY such that F(y) = x.

Proof. By induction on the structure of y.

The lemma used in proofs follows.

Lemma 11. For x, y ∈ CAlgY , if enc free(F(x)) and F(x) = F(y), then x = y.

6 Concrete Execution Semantics

The concrete execution semantics is analogous to the abstract execution seman-
tics except that references to message algebras are replaced with references to
concrete message algebras. There is one big exception. When executing an encr
expression, there must be a source of randomness for use in creating an encryp-
tion. To provide a source of fresh basic values, the abstract execution seman-
tics threads a sequence of values through state changes. In the concrete execu-
tion semantics, a sequence of natural numbers γ is also threaded through state
changes and used to create encryptions.

E(v1) = t1 E(v2) = t2
ce(E, c, u, ι :: γ, �encr(v1, v2)�, {‖t1‖}ι

t2 , c, u, γ)
(18)

Cryptographic Protocol Analysis and Compilation 367

E(v1) = t1 E(v2) = t2
ce(E, c, u, 〈〉, �encr(v1, v2)�, {‖t1‖}0t2 , c, u, 〈〉) (19)

Equation 19 handles the case in which the source of randomness has been
exhausted.

Other than the case for the encr expression, the definition of the concrete exe-
cution semantics follows that of the abstract execution semantics in the obvious
ways.

Definition 12 (Concrete procedure execution)
Assume p = 〈(v0, k0), . . . , (vn−1, kn−1)〉 and i = 〈i0, . . . , in−1〉. Execution e =
eY (c′, i′, o′, u′) is a concrete execution of procedure x = x(p, s) with random-
ness γ, written cexec(x, e, γ), iff

1. for all j < n, chk(F(ij), kj);
2. csret(E, c, u, γ, s, o), where E = ∅[v0 �→ i0] · · · [vn−1 �→ in−1];
3. c′ is the result of mapping c using F ;
4. i′ = F ◦ i;
5. o′ = F ◦ o; and
6. u′ = F ◦ u.

7 Relating Execution Semantics

The proofs of the theorems stated in this section were performed using Coq and
the proof scripts are available in the distribution of cpsa [8].

Theorem 13 (Faithfulness). cexec(x, e, γ) implies exec(x, e).

The proof of faithfulness is tedious but straightforward. The forgetful func-
tion in Definition 9 is used to map items in the concrete semantics to items in
the abstract semantics, and then the proofs go through as expected.

Theorem 14 (Adequacy). exec(x, e) implies cexec(x, e, γ).

The proof of adequacy is tricky. Where there is a sequence of state transitions
in the abstract execution semantics, one must find a corresponding sequence
in the concrete execution semantics. During both sequences, an event in the
trace is consumed when a send statement or a receive expression is encountered.
The case of a receive expression is the easy situation. The received term in the
complex algebra can be any term as long as applying the forgetful function
to it produces the received term in the abstract algebra. However, the case
of a send statement is quite different. The transmitted term in the complex
algebra must agree with what is in the environment associated with the send
statement’s message variable. And the term in the environment depends on the
particular sequence of random values consumed up to this point in the execution.
Engineering a proof that maintains this property is what makes the proof tricky.

The proof of adequacy makes demands on both the abstract and concrete
execution semantics. The proof depends on the fact that the following terms
must not contain an encryption,

368 J. D. Ramsdell

– the key used during a decryption (see Eq. 7),
– the terms compared with a sameness test (see Eq. 12), and
– the terms compared with an inverse key predicate test (see Eq. 13).

The lack of encryptions allow the use of Lemma 11.
With these checks in place, the means we use to validate compiler

input/output pairs correctly handles probabilistic encryption.

8 Epilogue

The development of the Roletran compiler is part of a project aimed at address-
ing the fact that there are systems built on aging software components with
questionable security. An approach to protecting such systems is to isolate each
component, and mediate communication between the components using trusted
software that achieves desired security goals. Verified implementations of proto-
cols is a key component to our approach. Members of this project include Ian
D. Kretz and Dan J. Dougherty. The project is led by Joshua D. Guttman.

The project has developed a runtime system in Rust for code generated by
Roletran, and several test protocols have been analyzed and then translated
into running code, the simplest of which is the Unilateral Protocol. The project
has another compiler that compiles protocols that make use of state. Future
work might include the construction of a verified runtime system for Roletran
generated code.

The addition of channels to cpsa was due to yet another successful collabo-
ration between Joshua and the author.

Acknowledgement. Paul D. Rowe provided valuable comments that improved this
paper.

References

1. The Coq proof assistant reference manual (2021). http://coq.inria.fr
2. Bhargavan, K., Corin, R., Deniélou, P., Fournet, C., Leifer, J.J.: Cryptographic

protocol synthesis and verification for multiparty sessions. In: Proceedings of the
22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port Jefferson,
New York, USA, 8–10 July 2009, pp. 124–140. IEEE Computer Society (2009).
https://doi.org/10.1109/CSF.2009.26

3. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

4. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theor. Comput.
Sci. 105(2), 217–273 (1992). https://citeseer.ist.psu.edu/goguen92ordersorted.html

5. Guttman, J.D., Herzog, J.C., Ramsdell, J.D., Sniffen, B.T.: Programming crypto-
graphic protocols. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705,
pp. 116–145. Springer, Heidelberg (2005). https://doi.org/10.1007/11580850 8

6. Guttman, J.D., Wand, M.: VLISP: a verified implementation of scheme. Lisp Sym-
bolic Comput. 8, 5–32 (1995). https://doi.org/10.1007/BF01128406

http://coq.inria.fr
https://doi.org/10.1109/CSF.2009.26
https://doi.org/10.1109/TIT.1983.1056650
https://citeseer.ist.psu.edu/goguen92ordersorted.html
https://doi.org/10.1007/11580850_8
https://doi.org/10.1007/BF01128406

Cryptographic Protocol Analysis and Compilation 369

7. Liskov, M.D., Rowe, P.D., Thayer, F.J.: Completeness of CPSA. Technical
report, MTR110479, The MITRE Corporation (2011). https://www.mitre.org/
publications/technical-papers/completeness-of-cpsa

8. Ramsdell, J.D., Guttman, J.D.: CPSA4: A cryptographic protocol shapes analyzer.
The MITRE Corporation (2018). https://github.com/mitre/cpsaexp

9. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999). http://content.iospress.com/
articles/journal-of-computer-security/jcs117

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.mitre.org/publications/technical-papers/completeness-of-cpsa
https://www.mitre.org/publications/technical-papers/completeness-of-cpsa
https://github.com/mitre/cpsaexp
http://content.iospress.com/articles/journal-of-computer-security/jcs117
http://content.iospress.com/articles/journal-of-computer-security/jcs117
http://creativecommons.org/licenses/by/4.0/

On Orderings in Security Models

Paul D. Rowe(B)

The MITRE Corporation, Bedford, MA, USA
prowe@mitre.org

Abstract. Security decisions are often made on the basis of a compari-
son of two or more alternatives. Is it better go with design A or design B?
Which security policy is best for my needs? What combination of defen-
sive mitigations provide the best protection from attack? Implicit in such
comparisons are ordering relations ĺ among the alternatives. Such order-
ing relations crop up in numerous security formalisms. This paper stud-
ies preorders that arise in three formalisms for very different domains of
security: attack trees, Copland specifications of layered attestations, and
cryptographic protocols. While these three areas of study appear to be
very different in subject matter and form, we identify a common con-
struction for defining preorders that arise in them. This new perspective
unlocks novel connections that should allow insights in one domain to
bear fruit in the others as well.

Keywords: Attack trees · Layered attestation · Cryptographic
protocols · Security orderings

1 Introduction

When applying formal methods to the security of systems, we often want to
know if one solution is “better” than another along some dimension of interest.
For example, when designing a cryptographic protocol, we may wonder whether
design D1 is better than D2 in the sense that any security goals achieved by D2

can also be achieved by D1 [13]. Similarly, we might want to compare strategies
for distributing firewall policies to various network routers and endpoints against
their ability to enforce certain prohibitions on patterns of network traffic [1]. In
such cases, what we seek is an ordering relation ĺ that captures some aspect of
the security characterisitics of the objects it orders.

It is too much to expect to find a total order. The multidimensional nature of
security means that tradeoffs exist between alternatives that generally prevent
two arbitrary objects from necessarily being ordered. We thus often content
ourselves with preorders, or sometimes partial orders, along various dimensions

This paper is dedicated to Joshua Guttman in gratitude for what he has taught me. He
has helped me to become a better researcher and to search out the essence of an idea.
He has also taught me the importance of non-total orderings! This paper is presented
in that spirit.

c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 370–393, 2021.
https://doi.org/10.1007/978-3-030-91631-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_21

On Orderings in Security Models 371

of security. Recall that a preorder is a relation ď that is reflexive and transitive,
while a partial order is also anti-symmetric (a ď b and b ď a implies a “ b).

In this work we explore preorders that have been defined for numerous secu-
rity formalisms and begin to develop a unifying lens through which to view
them. This line of investigation began when we identified some surprising par-
allels between the syntax and semantics of two formalisms. Sequential attack
trees [6,7] allow researchers to formally express ways in which an adversary
might attack a system, accounting for disjunction, conjunction, and sequencing
of atomic actions. Copland [11] is a specification language for layered attesta-
tion defining how to orchestrate integrity measurements of a target system. In
developing Copland, we were faced with the following research question: How
can we devise an order on Copland expressions that reflects their strength or
trustworthiness in the presence of an active attacker? The similarity between
attack trees and Copland suggested that we might be able to directly translate
prior work on ordering attack trees [6] to the domain of Copland. As we will
see below, such a direct translation, while possible, does not produce an order
that reflects the trustworthiness of Copland expressions. It does, however, define
orders that capture potentially useful performance characteristics of executing
Copland expressions.

Since the direct translation does not shed light on trust properties of Copland
expressions, we ultimately took a different approach for Copland trust analy-
sis [14]. We eventually understood this approach to defining a preorder to be
an instance of a general construction. The original preorder on attack [6] and
its direct translation to Copland expressions are also instances of this general
construction. In working through the details of these connections, we realized
that yet another security-related preorder—one in the domain of cryptographic
protocols, and developed by the author with Guttman and Liskov [13]—might
also be viewed as an instance of this general construction.

Summary and Contributions. The fundamental observation of this paper
is that preorders arise naturally out of considering homomorphisms between
semantic sets. While this observation is not new in itself, it provides a common
vocabulary with which to describe preorders in three domains with drastically
different semantics. When the semantics of some formal object (e.g. attack tree,
Copland phrase, cryptographic protocol) is given as a set of structures that
come equipped with a notion of a homomorphism, we can define preorders on
the objects without reference to the details of the semantics. That is, we can
treat a semantic operator rr · ss as a black box that produces sets of structures.
We can then define preorders on objects according to what homomorphisms exist
between their semantic sets.

In defining a preorder for sequential attack trees, Horne et al. [6] give a
“white-box” treatment of their semantics, and intersperse upward and down-
ward closures under homomorphisms to build preorders. Our first contribution
is to reformulate their ideas so we can treat the semantics as a black box that
produces sets of graphs. We can then take downward and upward closures of

372 P. D. Rowe

the results without worrying about how the sets of graphs are generated (The-
orems 1 and 2). We then show how to reinterpret the relationships that emerge
after taking downward and upward closures in terms of the homomorphisms that
exist between the sets produced by the semantics (Theorem 3). This is an alter-
nate way of deriving the attack tree semantics of [6] (Corollary 1) that gives us
a general construction for defining preorders from a black-box, base semantics.

Copland phrases bear striking syntactic similarities with attack trees that
manifest as structural similarities in their semantics. The general construction
suggested by Corollary 1 leads to a direct translation of the preorder on attack
trees to a preorder on Copland expressions. The structural similarities in their
semantics allows us to translate results from the analysis of attack trees to the
analysis of Copland expressions (Theorem 4, Corollary 2) telling us what kind of
properties are reflected by the translated preorder. Unfortunately, this translated
preorder doesn’t capture trust properties of Copland expressions. However, by
modifying the Copland base semantics to account for possible adversary actions,
our general preorder construction yields an order that does capture important
aspects of trustworthiness (Theorem 5).

Finally, we demonstrate the generality of our construction of preorders by
shifting our focus to the domain of cryptographic protocols. We summarize the
strength order of cryptographic protocols that the author defined with Guttman
and Liskov [13] and argue that it coincides with our general construction for pre-
orders given the base semantics defined by the protocol analyzer CPSA. Numer-
ous details prevent us from rigorously proving this correspondence, so we record
it as Conjecture 1.

The paper is structured as follows. We first present some preliminary def-
initions and lemmas in Sect. 2. We then treat attack trees in Sect. 3, showing
how to turn the white-box semantics into a black-box one that allows us to
define a general construction of preorders. We introduce Copland in Sect. 4, and
demonstrate the syntactic and semantic similarities with sequential attack trees.
In Sect. 5 we show to leverage that connection to extract useful performance
attributes along which to compare Copland phrases. We then alter the Copland
base semantics to obtain a trust ordering in Sect. 6. Finally, in Sect. 7, we argue
that the protocol strength ordering in an instance of our general construction.

2 Preliminaries

The common thread among all the formalisms we consider here is that they per-
tain to graphs. While some of the structures are graphs with extra information,
the core of the structure is still a graph. We therefore focus the types of graphs
and homomorphisms between them that will interest us in the current study.

Definition 1 (Graph). A directed, labeled, acyclic graph G “ pN,E, �q is a
triple in which N is a finite set of nodes, E Ď N ˆ N is a finite set of edges
(represented as ordered pairs of nodes from N), and � : N Ñ L is a labeling
function from nodes to some set L of labels. Furthermore, the edge relation is

On Orderings in Security Models 373

acyclic. When we use the unqualified term graph, the qualifiers “directed, labeled,
and acyclic” are implied unless otherwise stated.

Definition 2 (Homomorphism). A (graph) homomorphism η : G Ñ H
between graphs G “ pNG, EG, �Gq and H “ pNH , EH , �Hq is a function η : NG Ñ
NH on the nodes such that for every edge pn1, n2q P EG, pηpn1q, ηpn2qq P EH ,
and for every node n P NG, �Gpnq “ �Hpnq.

A homomorphism is injective iff the underlying map on nodes is injective. A
smoothing homomorphism is one which is bijective on nodes.

Homomorphisms between graphs bestow a preorder on graphs as follows:
G ď H if and only if there is some homomorphism η : G Ñ H. In fact, any class
of structures that admit homomorphisms will bestow a preorder in the natural
way. We will rely on this later when we consider graphs with “extra structure”.
If we only allow injective homomorphisms, then the preorder is actually a partial
order (up to isomorphism) because injective homomorphisms in both directions
between (finite) graphs G and H imply that G and H are isomorphic.

The homomorphism preorder on graphs admits the standard notions of up-
sets (or order filters) and down-sets (or order ideals) [2].

Definition 3 (Up-/down-sets). Given a preorder pP, ďq, a set S Ď P is an
up-set (or order filter) iff for all structures G and H, whenever G P S and
G ď H, then H P S. S is a down-set (or order ideal) iff for all structures G
and H, whenever H P S and G ď H, then G P S.

The upward closure of a set S is φpSq “ {H P P | DG P S ^ G ď H}.
Similarly the downward closure of a set S is ιpSq “ {G P P | DH P S ^G ď H}.

The symbols φ and ι reflect the terminology of order filters and order ideals.
Since an important aspect of the present work is to connect with Horne et al.’s
work [6], it is important to note that they use an order that is dual to the
homomorphism preorder. The result is that their notions of “up” and “down” are
reversed from the use in this paper; so their order filters are our order ideals, etc.
Readers familiar with [6] will have to swap φ and ι when translating between the
papers. Of course, the duality principle for ordered sets ensures such translations
are possible and meaningful. Despite these challenges of translation, we prefer
to work in the homomorphism preorder because homomorphisms are a central,
unifying theme across all the formalisms we study here.

We are now ready to define a few operations on graphs that allow us to build
new graphs from old ones. They are not new and can already be found in [6].

Definition 4 (Z, ˚). Let G “ pNG, EG, �Gq and H “ pNH , EH , �Hq be graphs.
Then we can define

– N “ NG ˆ {0} Y NH ˆ {1}
– E “ {ppx, 0q, py, 0qq | px, yq P EG} Y {ppx, 1q, py, 1qq | px, yq P EH}
– �pn, 0q “ �Gpnq and �pn, 1q “ �Hpnq.

374 P. D. Rowe

N is the disjoint union of the nodes of G and H, E is the disjoint union of the
edges of G and H, and � is the natural labeling of the nodes in N inherited from
�G and �H .

We call the graph pN,E, �q the disjoint union of G and H, denoted G Z H.
If we additionally define E′ “ E Y ppNG ˆ {0}q ˆ pNH ˆ {1}qq, then we call

the graph pN,E′, �q the sequential composition of G and H, denoted G ˚ H.

We can easily lift these two operations on graphs into two corresponding
operations on sets of graphs in the following way.

Definition 5 (’,�). If S1 and S2 are sets of graphs, then the distributive
product S1 ’ S2 is defined by {G1 Z G2 | G1 P S1 ^ G2 P S2}. The pointwise
sequential composition of two sets of graphs S1 � S2 is defined by {G1 ˚ G2 |
G1 P S1 ^ G2 P S2}.

We now prove a few properties about how upward and downward closures
distribute over the above graph operations.

Lemma 1. For any sets of labeled digraphs S and T , the following equalities
hold.

ιpS Y T q “ ιpSq Y ιpT q
ιpS ’ T q “ ιpSq ’ ιpT q
ιpS � T q “ ιpιpSq � ιpT qq

Proof. We only prove here the most interesting of the equations. The other two
proofs are quite similar.

ιpS � T q “ {G | DS P S, T P T , G ď S ˚ T}
“ {G | DG1, G2, G1 ď S,G2 ď T,G ď G1 ˚ G2}
“ {G | DG1 P ιpSq, DG2 P ιpT q, G ď G1 ˚ G2}
“ ιpιpSq � ιpT qq

��

Lemma 2. For any sets of graphs S and T , the following equalities hold.

φpS Y T q “ φpSq Y φpT q
φpS ’ T q “ φpφpSq ’ φpT qq
φpS � T q “ φpφpSq � φpT qq

Proof. The proof is similar to the proof of Lemma 1 and so is omitted. ��

On Orderings in Security Models 375

3 Attack Trees

Attack trees [15] are a popular way for security experts to formalize their thought
process about how an adversary might attack a system. They allow an analyst
to express combinations of activities an adversary may or must perform in order
to successfully attack a system. In their original formulation, the leaves of attack
trees were labeled with adversary activities, and the internal nodes were labeled
with attacker sub-goals. Two types of branching were defined: disjunctive branch-
ing in which satisfying any of the child nodes is sufficient to satisfy the parent,
and conjunctive nodes in which all children must be satisfied in order for the
parent node to be satisfied. More recently, Jhawar et al. [7] have introduced
a sequence node to attack trees in which all the children must be satisfied in
the given order for the parent node to be satisfied. This allows attack trees to
capture causal or dependency relationships among the actions. Such sequential
attack trees are the object of study in this section.

A full treatment of attack trees in general, and sequential attack trees in
particular, is out of scope for this work. For a more comprehensive introduction
to all types of attack trees, we direct the reader to a useful survey by Wide�l
et al. [17].

A key observation is that the structure of attack trees allows them to be
expressed as terms in a grammar in which internal nodes of the tree are repre-
sented by an operator corresponding to the intended semantics of satisfaction
as described above. That is, we can build up attack trees out of internal nodes
labeled by one of the following three operators: Ź, Ÿ, Ż representing disjunction,
conjunction, and sequence, respectively. They satisfy the following grammar:

T :: A | T Ź T | T Ÿ T | T Ż T (1)

where A represents a set of atomic actions. In practice we can allow the operators
to have arity greater than 2, as is done in [7], however it is more convenient for
our purposes (and without loss of generality) to use this more restricted syntax.

Numerous semantic interpretations have been given to this syntax, but we
focus on the series-parallel graph semantics in which the meaning of an attack
tree is given as a set of series-parallel graphs. The original semantics for sequen-
tial attack trees given in [7] uses graphs with labeled edges instead of labeled
nodes. We follow the presentation in [6] and consider a dual notion of series-
parallel. As discussed in [16], series parallel graphs as defined below are precisely
the line graphs of so-called two-terminal series-parallel graphs as used in [7].

Definition 6 (Series-parallel). A series-parallel graph over a set of possible
nodes N is defined inductively as follows.

– A single labeled node is a series-parallel graph.
– If G and H are series-parallel graphs then G Z H is a series-parallel graph.
– If G and H are series-parallel graphs then G˚H are both series parallel graphs

The original semantics of [7] associates to any sequential attack tree a set of
series-parallel graphs. The transitive closure of a series-parallel graph defines a

376 P. D. Rowe

partially ordered set. The idea of the semantics is that node represent atomic
events which are ordered in the induced partially ordered set if one event depends
on the results of another. Disjunction in attack trees results in several possibilities
requiring a set of graphs. Thus the union in the following definition is a union
of sets of graphs (not the disjoint union Z of graphs).

Definition 7 (Base semantics). The base semantics for attack trees is defined
inductively as follows, where Na denotes the graph with a single node whose label
is a.

rr a ssB “ {Na} rr t1 Ź t2 ssB “ rr t1 ssB Y rr t2 ssB
rr t1 Ÿ t2 ssB “ rr t1 ssB ’ rr t2 ssB rr t1 Ż t2 ssB “ rr t1 ssB � rr t2 ssB

The base semantics in Definition 7 was designed to determine equivalence of
attack trees. That is, two trees are equivalent precisely when they have the same
semantics. But when this semantics was introduced in [7], no attention was paid
to distinguishing the strength of attack trees.

To address this questions of relative strength, Horne et al. [6] introduced
two additional semantics for sequential attack trees that create a “specializa-
tion” preorder on them. These preorders correspond closely to two variations on
the base semantics, one involving down-sets and the other involving up-sets of
graphs.1

Definition 8 (Down-set semantics). The down-set semantics for attack trees
is given by the following.

rr a ssI “ {Na} rr t1 Ź t2 ssI “ rr t1 ssI Y rr t2 ssI
rr t1 Ÿ t2 ssI “ rr t1 ssI ’ rr t2 ssI rr t1 Ż t2 ssI “ ιprr t1 ssI � rr t2 ssIq

Definition 9 (Up-set semantics). The up-set semantics is given by the fol-
lowing:

rr a ssF “ φp{Na}q rr t1 Ź t2 ssF “ rr t1 ssF Y rr t2 ssF
rr t1 Ÿ t2 ssF “ φprr t1 ssF ’ rr t2 ssF q rr t1 Ż t2 ssF “ φprr t1 ssF � rr t2 ssF q

In these definitions, we only apply the downward (respectively upward) clo-
sures whenever the combining operator does not produce an down-set (respec-
tively up-set). Applying them in the other cases would be redundant. Since we
do not restrict ourselves to smoothing homomorphisms, we must close under φ in
more cases than is needed for the corresponding semantics in [6]. It is interesting
that this difference resulted in no change for our down-set semantics.

These two semantics generate two natural preorders on attack trees:

t1 ĺI t2 iff rr t1 ssI Ď rr t2 ssI
t1 ĺF t2 iff rr t1 ssF Ď rr t2 ssF (2)

1 Recall that we are working in an order that is dual to the one used in [6]. In comparing
with that work, the reader must substitute ι with φ (and vice versa) and similarly
for I and F .

On Orderings in Security Models 377

The purpose of these preorders is to enable quantitative comparisons among
attack trees. It is possible to make assertions about quantitative comparisons
using only the two preorders used above, provided the quantitative measures are
sound with respect to the preorders. The details of such comparisons (including
a definition of soundness) are given in Sect. 5. In the meantime, we proceed with
an alternative derivation of the preorders in Eq. 2.

Specialization Using rr · ssB. Definitions 8 and 9 interleave the graph opera-
tions with the downward and upward closure operations. Our first novel insight
regarding these two semantics is that they are equivalent to first applying the
base semantics of Definition 7, then applying either the downward or the upward
closure.

Theorem 1. For any attack tree t, rr t ssI = ιprr t ssBq.
Proof. We proceed by induction on the structure of t. We start with the case
in which the tree is an atom a. rr a ssI “ {Na}. And rr a ssB “ {Na} “ ιp{Na}q.
When t “ t1 Ż t2 we have

rr t1 Ż t2 ssI “ ιprr t1 ssI � rr t2 ssIq
“ ιpιprr t1 ssBq � ιprr t2 ssBqq
“ ιprr t1 ssB � rr t2 ssBq
“ ιprr t1 Ż t2 ssBq

where the second equality is the inductive hypothesis and the third equality is
by Lemma 1. The other inductive cases follow analogously from Lemma 1. ��

The analogous result holds for the up-set semantics.

Theorem 2. For any attack tree t, rr t ssF “ φprr t ssBq.
Proof. The proof uses the same ideas as that of Theorem 1 and so is omitted.��

In a sense, Theorems 1 and 2 show that the downward and upward closures
in Definitions 8 and 9 are needlessly entangled with aspects of the syntax of
attack trees. The base semantics of Definition 7 provides a natural and clear
interpretation for attack trees. Instead of messing with the internal structure of
that semantics to extract information about specialization, we can first compute
the base semantics rr t ssB and then compute either the downward or upward
closure.

While the semantics of [6] generate finite sets because they restrict them-
selves to smoothing homomorphisms that do not add any new nodes to graphs,
we have chosen to consider arbitrary homomorphisms which means that the
upward closure is an infinite set. This introduces a new challenge not faced
in [6]. Namely, to determine if t1 ĺF t2 we must devise a procedure for deciding
whether φprr t1 ssBq Ď φprr t2 ssBq that does not require us to compute either set.
It turns out we can easily do this by considering the homomorphisms that exist
between rr t1 ssB and rr t2 ssB. This allows us to reduce an infinite question of set
membership to a finite questions about what homomorphisms exists among two
finite sets of graphs.

378 P. D. Rowe

Definition 10 (Supports, Covers). Given two sets of graphs S and T , we
say that S supports T iff for every H P T , there is some G P S, such that
G ď H. We say that T covers S iff for every G P S there is some H P T such
that G ď H.

Intuitively, S supports T if S is big enough to contain sources of homomor-
phisms to everything in T . Similarly, T covers S if T is big enough to contain
targets of homomorphism from everything in S.

Theorem 3. For any two sets of graphs S and T , ιpSq Ď ιpT q if and only if T
covers S. Similarly, φpSq Ď φpT q if and only if T supports S.

Proof. Suppose ιpSq Ď ιpT q. We have S Ď ιpSq Ď ιpT q “ {G | DH P T , G ď H}.
So, for every G P S, there is some H P T such that G ď H. But that’s precisely
the definition of T covers S.

Now suppose that T covers S. Then, for every G P S, there is some H P T
such that G ď H. Now let K P ιpSq, so that there is some G P S such that
K ď G. But from above, there is some H P T such that G ď H. Transitivity of
ď gives us K ď H, and hence K P ιpT q. Since K was chosen arbritrarily from
ιpSq we conclude that ιpSq Ď ιpT q as required.

Now suppose that φpSq Ď φpT q. We have S Ď φpSq Ď φpT q “ {H | DG P
T , G ď H}. So for all H P S there is some G P T such that G ď H. But this is
the definition of T supports S as required.

Finally, suppose that T supports S. So, for every H P S, there is some G P T
such that G ď H. Now consider K P φpSq. By definition, there is some H P S
such that H ď K. But from above, there is some G P T such that G ď H.
Using the transitivity of ď we find G ď K, showing that K P φpT q. Since K
was chosen arbitrarily from φpSq, we conclude φpSq Ď φpT q as required. ��

Theorem 3 gives us an effective procedure for resolving any question of the
form t1 ĺF t2 or t1 ĺI t2. We simply compute rr t1 ssB and rr t2 ssB and enumerate
the homomorphisms that exists between elements of those finite sets to determine
if one of them covers or supports the other.

Interestingly, while Horne et al. were not faced with this challenge, they nev-
ertheless devised a procedure for resolving such questions that does not amount
to a direct check of set inclusion between finite sets. Instead, they develop
two additional semantics into an extension of a fragment of linear logic (called
MAV [5]) and proving that two trees can be ordered precisely when the linear
logic interpretation of one implies the interpretation of the other. Since MAV is
decidable, they can extract a decision procedure. This logical encoding is remi-
niscent of prior work by the author with Guttman and Liskov [13]. In that work,
we developed a method for comparing the strength of cryptographic protocols
by assigning them formulas in first order logic (expressing the security goals they
satisfy) and ordering them according to implication. We will say more about this
connection in Sect. 7.

An immediate corollary of Theorem 3 is the following theorem that says we
can recover the intended preorders on attack trees without explicit reference to
the downward and upward closures.

On Orderings in Security Models 379

Corollary 1. For any two attack trees t1 and t2 we have the following.

t1 ĺI t2 iff rr t2 ssB covers rr t1 ssB
t1 ĺF t2 iff rr t2 ssB supports rr t1 ssB

This corollary gives us a reusable recipe for generating preorders. If we are
given a class of objects, and some semantic operator rr · ss on those objects yielding
sets of graphs, we can define two preorders ĺI and ĺF in terms of which semantic
sets cover or support which others. In fact, since the notions of covering and
supporting are well defined for any structures that admit homomorphisms, this
construction is quite general.

Throughout the rest of the paper, we repeatedly take inspiration from Corol-
lary 1 to define new orders. For structures other than attack trees, we identify a
“base” semantics playing the same role as Definition 7, and then define preorders
according to which sets in those semantics cover or support which others. When
the base semantics has a structural connection with rr · ssB (such as Copland,
presented in the next section) we will see that we can transport some results
from attack trees to the new setting. However, it is important to note that this
construction works even when the base semantics bears no resemblance to rr · ssB,
and we will explore two such instances in Sects. 6 and 7.

4 Copland

In this section we turn our attention to Copland, a domain-specific language for
specifying layered attestations [11]. On the surface, Copland has little to do with
attack trees. However, we will describe a surprisingly deep connection between
the two formalisms that allows some results about the preorders on attack trees
to be applied directly to Copland specifications. We also believe research into
attack trees can benefit from insights established about Copland.

Remote attestation is a technique for establishing trust in the integrity of a
remote system. This is done by having agents local to the target system mea-
sure various aspects of the target. This typically involves hashing portions of a
component’s memory with predictable values that are likely to be changed as
a result of an attack to the component. The measurement evidence gathered
from various subcomponents is then bundled together both to reflect the way
in which it was collected (who measured what, and in what order), and to pro-
vide integrity protection to the evidence itself so it cannot be tampered with in
transit. Layered attestations leverage hierarchical dependencies built into many
modern systems to ensure trust in the measurement apparatus can be estab-
lished before relying on it to establish trust in the target. Copland was designed
to support flexible specifications of layered attestations, and connect to a trust
analysis framework [12] (about which more will be said below).

What follows is a very brief overview of the syntax and semantics of Copland.
The reader should consult [4,11] for more in-depth descriptions and motivations.
An expression in Copland is called a phrase. The syntax of Copland phrases is
given by the following grammar:

380 P. D. Rowe

C :: ApV q Atomic action with arguments
| C Ñ C Linear sequence
| C

π
ă C Sequential branching

| C
π„ C Parallel branching

| @P r C s At place
| p C q Grouping

Copland is parameterized by the set of atomic actions available to use. The
syntax is designed to specify both the control flow of actions as well as the
data flow of evidence among them. The control flow operators are similar to the
operators used in attack trees. Copland contains two sequential operators (Ñ, ă),
and one conjunction operator („). The purpose of having two distinct sequential
operators is to define distinct data flow patterns for the sequential control flow.
This will manifest in the semantics given below. Copland does not contain any
disjunction operators. There is no fundamental barrier to including disjunction;
it simply was not immediately relevant for the intended use of Copland phrases.
Copland also contains a new type of operator @P . It indicates the transfer of
data and control from one entity to another. The decorators π above

π
ă and π„

specify fine grained aspects of data flow that do not affect the results of this
paper, so we will say no more about them.

The semantics of Copland is reminiscent of the base semantics of Definition 7
for sequential attack trees from [7], but it is significantly complicated by the
need to carefully track data flow. As with attack trees, Copland semantics is also
given in terms of series-parallel graphs, but it relies on an auxiliary evidence-
type semantics that defines how the type of evidence is transformed throughout
the execution of a phrase. In addition to a Copland phrase c, this evidence-type
semantics, denoted Epc, p, eq, is sensitive to the place p currently in control of the
execution and to the evidence type e built up so far. The details of this semantics
is not relevant to our current study, so we treat it as a black box that returns
a given type of evidence. The semantics associated with some of the operators
includes some “extra” events (req, rpy, split, and join) that serve to coordinate
the evidence-type semantics with the data flow. In contrast with Definition 7,
the Copland semantics results in a single graph, not a set of graphs, so it uses
the graph constructors from Definition 4, and not Definition 5.

Definition 11 (Copland semantics). The Copland semantics for a Copland
phrase is a graph defined by the following.

rr apv̄q ssep “ Napv̄, p, eq
rr @q c ssep “ reqpp, qq ˚ rr c sseq ˚ rpypp, qq

rr c1 Ñ c2 ssep “ rr c1 ssep ˚ rr c2 ssEpc1,p,eq
p

rr c1
π
ă c2 ssep “ splitpp, πq ˚ rr c1 ssπ1peq

p ˚ rr c2 ssπ2peq
p ˚ joinsppq

rr c1
π„ c2 ssep “ splitpp, πq ˚ prr c1 ssπ1peq

p Z rr c2 ssπ2peq
p q ˚ joinpppq

On Orderings in Security Models 381

There is enough detail in Definition 11 to warrant a more detailed comparison
with attack tree base semantics from Definition 7. Notice first that, since the
event semantics relies on the evidence-type semantics it is also parameterized by
the current entity in control p and the input evidence type e denoted by sub- and
superscripts on the semantics operator. The semantics carefully transforms these
values in recursively evaluating the semantics of sub-phrases. Nothing of this sort
exists in the attack tree semantics because data flow is not accounted for. As
mentioned above, the data flow is the key differentiator between Copland’s two
sequential operators. With c1 Ñ c2, c2 is evaluated with the evidence produced
by c1. By contrast, in c1

π
ă c2, c2 is evaluated with π2peq which is derived from

the evidence type built up before c1 and c2 are sequenced.
The “extra” events, such as reqpp, qq, splitpp, πq etc., are essential for keeping

the series-parallel graph semantics in sync with the evidence-type semantics.
However, these events to not alter the fundamental way in which the semantics
of the sub-phrases are connected. Namely, sequential operators use the sequential
composition of graphs, and the conjunction operator uses the disjoint union of
graphs. The primary difference in these connections is that Copland does not
use the corresponding ’ and � operators which work on sets of graphs. This
is entirely due to the absence of a disjunctive operator in Copland. The result
is that the semantics of a given phrase is a single graph instead of a set of
graphs. In fact, we could easily re-write the Copland semantics to work on sets
of graphs using ’ and �, but as the resulting sets would be singletons, there is no
advantage to doing so beyond clarifying the connection to attack tree semantics.

Based on these observations, the following table depicts a rough correspon-
dence between Copland operators and attack tree operators. As each side has
features not captured by the other, it is not a simple bijection. Furthermore,
details regarding data flow mean there is not an exact equivalence in the seman-
tics of corresponding operators. Nevertheless, this table represents a surprisingly
deep connection between the two formalisms, especially considering they were
developed independently.

The correspondence is strong enough to suggest leveraging the results from
Sect. 3 to obtain two preorders on Copland phrases. After all, the Copland seman-
tics was not designed with strength comparison in mind, just as was the case
with the original semantics for sequential attack trees. A naive approach would
be to attempt to replicate the semantics from Definition 8 and 9. But it is not
immediately obvious how to interleave the upward and downward closures with
the series-parallel graph operations. Taking inspiration from Corollary 1, we can
avoid taking upward and downward closures altogether and define two preorders
on Copland phrases as follows:

382 P. D. Rowe

Table 1. Correspondence between Copland and Attack Tree operators.

Copland Attack Trees

apv̄q a

qc

c1 Ñ c2 t1 Ż t2

Copland Attack Trees

c1
π
ă c2 t1 Ż t2

c1
π„ c2 t1 Ÿ t2

t1 Ź t2

Definition 12 (Copland preorders). The two preorders ĺC
I and ĺC

F on Cop-
land phrases are defined as follows.

c1 ĺC
I c2 iff {rr c2 ssep} covers {rr c1 ssep}

c1 ĺC
F c2 iff {rr c2 ssep} supports {rr c1 ssep}

Since the Copland semantics produces a single series-parallel graph, this is
equivalent to:

c1 ĺC
I c2 iff rr c1 ssep ď rr c2 ssep

c1 ĺC
F c2 iff rr c2 ssep ď rr c1 ssep

(3)

Notice that, since the Copland semantics produces a single series-parallel graph,
c1 ĺC

I c2 iff c2 ĺC
F c1. This is not true in general for semantics that result in sets

of graphs.

5 Attribute Domains

In this section we demonstrate that the connection between attack trees and Cop-
land is not a superficial similarity. The syntactic correspondence identified in the
previous section allows us to transport results about attack trees to results about
Copland phrases. In particular, we focus on how the preorders of Corollary 1 and
Definition 12 relate to quantitative comparisons using attribute domains.

Definition 13 (Attribute domain). An attribute domain is a tuple D “
pV, f1, . . . , fnq where V is a set of values ordered by ď, and f1, . . . , fn are func-
tions associated with a set of operators o1, . . . , on. An attribute is a pair pD, νq
where D is an attribute domain and ν : A Ñ V is a function from the set of
basic actions to the set of values.

When applied to attack trees or Copland phrases, attribute domains provide
a way of giving them quantitative values, assuming a base function ν : A Ñ V is
given. The value V for an attack tree or a Copland phrase is defined inductively
as follows:

Vνpaq “ νpaq Vνpt1 oi t2q “ fipVνpt1q,Vνpt2qq
where oi is an operator, and fi is its associated function.

On Orderings in Security Models 383

Since the order of functions matters in the definition of an attribute domain,
we fix an order for the operators of attack trees and Copland phrases respectively.
For attack tree attribute domains, the list of functions pf1, f2, f3q will correspond
to the list pŹ, Ÿ, Żq, in that order. For Copland attribute domains, the list of
functions pf1, f2, f3, f4q will correspond to the list p π„, Ñ,

π
ă,@qq, in that order.

Definition 14 (Soundness). An attribute domain D is sound with respect to
a given preorder ĺ if and only if either

– for all t1, t2, ν, t1 ĺ t2 implies Vνpt1q ď Vνpt2q, or
– for all t1, t2, ν, t1 ĺ t2 implies Vνpt2q ď Vνpt1q.
In the former case we call it co-variantly sound, in the latter case it is contra-
variantly sound.

Notice that soundness is not a bi-conditional. Completeness would involve
the reverse implication. But since many examples of interest involve using sets
of values V that are totally ordered, and since the preorders on attack trees and
Copland phrases are only preorders, we should not expect completeness in most
cases.

Horne et al. [6] identify four attribute domains that are sound with respect
to ĺI and ĺF . These are presented in Table 2.

Table 2. Some sound attribute domains for attack trees.

Attribute domain Preorder Soundness direction Interpretation

pN, min, +, max) ĺI Contra-variant Minimum experts required

pR, min, max, +) ĺF Contra-variant Minimum attack time

pN, max, +, max) ĺF Co-variant Guards needed to counter attack

pR, max, max, +) ĺI Co-variant Time required for all attacks

The first attribute domain can represent the minimum number of experts
required to attack the system. This is like a measure of parallelism. If two actions
can be done in parallel, then two distinct experts will be required to take advan-
tage of this parallelism. So this is a measure of the minimal parallelism allowed
by any attack. The second row can represent the minimum time required to
perform an attack. The third row is sort of dual to the first row in that it essen-
tially measures the maximal amount of parallelism of any attack. This could
correspond to the number of guards required to be on duty to thwart an attack.
Finally, the last row can represent the time required to make all attacks possible.

The correspondence from Table 1 suggests corresponding attribute domains
for Copland. By assigning the same functions to corresponding operators, and
by interpreting @q in such a way that it contributes nothing to the attribute,
we immediately get a few attribute domains that are sound for the Copland
semantics.

384 P. D. Rowe

Table 3. Sound attribute domains for Copland phrases.

Attribute domain Preorder Soundness direction

pN, +, max, max, 0) ĺC
I Contra-variant

pR, max, +, +, 0) ĺC
F Contra-variant

pN, +, max, max, 0) ĺC
F Co-variant

pR, max, +, +, 0) ĺC
I Co-variant

Theorem 4. The attribute domains in each row of Table 3 are each sound with
respect to the corresponding preorder in the indicated direction.

Theorem 4 can be proved directly, but it is also a consequence of the sound-
ness results shown in Table 2 and the structural semantic connection between
attack trees and Copland phrases.

Notice that the four attribute domains for attack trees are collapsed down
to two attribute domains for Copland. This is because the attack tree attribute
domains differ in pairs only in how disjunction is interpreted. As Copland has
no disjunction, the correspondence collapses each pair. In the context of layered
attestation, rows 1 and 3 can be interpreted as identifying the number of CPU
cores required to take advantage of parallelism. As there is only one graph, the
maximum is the same as the minimum, so these collapse to the same attribute
domain. Rows 2 and 4 correspond to the time it takes to execute a Copland
phrase. This could be interpreted as either the minimum time or the maximum
time, depending on the interpretation of the function ν used.

These attribute domains are slightly contrived in the context of Copland
because they essentially ignore the extra events that get added in the Copland
semantics. We can easily account for these by incorporating values for these
extra events into the functions corresponding to the operators that add them. For
example, if the events req, rpy, split, and join took at least q, p, s, and j time units
to complete, then we would want to consider the attribute domain specified as
pR,maxs`j , `, `s`j , q ` pq where a `s`j b is defined to be s ` a ` b ` j and
maxs`jpa, bq is defined to be maxps ` a ` j, s ` b ` jq. This attribute domain
builds in the time for the added events in the natural way. We then easily get
two more soundness results.

Corollary 2. The attribute domain pR,maxs`j , `, `s`j , q ` pq is co-variantly
sound with respect to ĺC

I and contra-variantly sound with respect to ĺC
F .

Proof. It is a simple exercise to verify that the consistent addition of s, j, q,
and p to the values does not affect the relative order of the resulting functions.
Soundness thus follows immediately from Theorem 4. ��

The connection between attack trees and Copland thus provides a way for us
to preorder phrases according to certain performance aspects. This is potentially
very useful in designing selection policies for layered attestations. There are
potentially numerous reasons to prefer one phrase over another, many of which

On Orderings in Security Models 385

concern the performance profiles. Some of these performance profiles are well
captured by attribute domains sound with respect to ĺC

I and ĺC
F . However,

the direct translation of Table 2 to attribute domains for Copland only yields
two attribute domains from the original four. This suggests an opportunity to
research other attribute domains that might be relevant to the performance
profile in executing a Copland phrase. Are there other dimensions along which
we would like to compare Copland phrases that are not captured by attribute
domains sound with respect to either ordering?

6 Copland Trust Ordering

Our primary interest in Copland phrases is not their performance aspects such
as how quickly they can be executed, i.e., those attributes that correspond to the
preorders defined in Sect. 4. We are more interested in ordering phrases based
on how well they convey system trust in the presence of an active adversary.

In this section we apply the recipe for defining preorders suggested by
Corollary 1 to a base semantics that incorporates adversary events into the
graphs of actions. Since Copland phrases have no syntactic elements correspond-
ing to adversarial actions, this semantics has a much looser connection to the
syntactic structure of a phrase. As a consequence, we must contend with the
fact that there is no straightforward way to leverage attribute domains as in the
previous section.

The base adversarial semantics for Copland phrases derives from our prior
work on layered attestations [12] in which we established a suitable adversary
model. Concretely, we assume that adversaries can corrupt and repair compo-
nents at will. Corrupted measurers will fail to detect any corruption in their
targets. If the target of a measurement is corrupt before it is measured, then
to avoid detection the adversary must either repair the target or corrupt the
measurer (or some component the measurer depends on to correctly measure).
In this model it is always possible for the adversary to undetectably corrupt a
given component. But we can ask, “assuming that some given target was corrupt
at the time it was measured, and that the attestation detects no corruptions,
what else must the adversary have done to avoid detection?”

We recently developed a tool chain to answer such questions [14]. This tool
chain computes all minimal, adversarial executions consistent with the tradi-
tional Copland semantics of Definition 11, together with some initial assump-
tions or hypotheses H. These include assumptions of the form that some set of
components are corrupt at the time they are measured, and that all corruptions
go undetected.

Let us denote this minimal set computed by the tool chain as AHptq, where
A indicates it is an adversary-enriched semantics, and H denotes the particular
hypotheses assumed. This is a set of graphs with extra structure to encode
assumptions about which components are corrupt at which events. Taking this
as our new “base” semantics, we again define new two preorders on Copland
phrases. This time they are parameterized by the hypotheses H used in the
computation of the semantics.

386 P. D. Rowe

Definition 15 (Copland trust ordering).

c1 ĺH
I c2 iff AHpc2q covers AHpc1q

c1 ĺH
F c2 iff AHpc2q supports AHpc1q

Definition 15 is a mechanical application of the recipe suggested by
Corollary 1. A key question is whether these preorders correspond to the strength
of a Copland phrase, i.e., its ability to accurately convey trust information in
the presence of an active adversary. Do either of the preorders in Definition 15
capture a useful notion of trustworthiness? If so, which one?

To better understand the situation, consider the notion of trustworthiness
developed in [12]. As mentioned above, the underlying adversary model always
admits ways for the adversary to corrupt components without being detected. It
can simply corrupt components between the time they are measured and the time
they take a measurement. Alternatively, it can corrupt components deep enough
in the system to undermine measurements at higher layers. We refer to these
two strategies as recent or deep corruptions, respectively. Thus, recent or deep
strategies allow an adversary to go undetected by an attestation. The primary
question becomes whether or not the adversary has any other strategies that
might be easier to perform. A rough measure of the strength of a Copland phrase
is to say that it is strong (or strong enough) if the recent or deep corruption
strategies are the only ones that will succeed.

Since the new base semantics AHp·q is not inductively defined according to
the syntactic structure of a Copland term, we cannot meaningly define attribute
domains in the same way as Sect. 5. However, we can still define natural maps
into other ordered sets that clearly correspond to the notion of trust described
above. In particular, we can define a mapping RD (for recent or deep) of Copland
phrases into the 2-point lattice {K, J}. RDpcq “ J if the only way for an adver-
sary to avoid detection is by employing recent or deep strategies. RDpcq “ K
if there is some strategy that is neither recent nor deep that still allows the
adversary to avoid detection. In fact, this mapping will depend on the set
of hypotheses H as described above. Thus, we really have a family of maps
RDH : Copland Ñ {K, J} and a corresponding family of induced orders ĺH

RD .
At a coarse level, then, we consider a Copland phrase c to be sufficiently trust-
worthy relative to hypotheses H if RDHpcq “ J, and untrustworthy otherwise.

We can now ask whether either of the preorders of Definition 15 capture the
notion of trust described above. That is, we can ask if either of c1 ĺH

I c2 or c1 ĺH
F

c2 implies the same (or possibly opposite) order on RDHpc1q and RDHpc2q. This
would be a type of soundness of RDH with respect to the preorders.

To investigate this question, consider a simple attestation scenario involving
two measurements. Atomic Copland phrase m1px, yq represents the measurement
of some component y by a well-protected component x. Atomic phrase m2py, zq
represents the measurement of component z by component y. Thus, x represents
a “deep” component of the system. There are (at least) three natural ways to
order these measurements.

On Orderings in Security Models 387

c1 “ m1px, yq π„ m2py, zq (4)

c2 “ m2py, zq π
ă m1px, yq (5)

c3 “ m1px, yq π
ă m2py, zq (6)

Using the tool chain we developed in [14] we can compute AHpciq for 1 ď i ď 3,
where H is the hypothesis that z is corrupt when it is measured. The details of
how they are computed are well beyond the scope of this work, but the results are
shown in Figs. 1, 2 and 3. The figures show the transitive reduction of the edge
relations which are all transitive. This semantics also “forgets” non-measurement
events. The events labeled cp·q (respectively rp·q) represent an event in which the
adversary corrupts (respectively repairs) the given component.

Fig. 1. The three graphs in AHpc1q.

Fig. 2. The two graphs in AHpc2q.

Fig. 3. The two graphs in AHpc3q.

Phrases c1 and c2 each admit executions in which the deep component x
is not corrupted, and the corruptions of y and z need not occur recently (e.g.
after the start of the attestation). Thus RDHpc1q “ RDHpc2q “ K. In the
executions admitted by c3, there is either a deep corruption of x, or there is a
recent corruption of y. Thus RDHpc3q “ J.

We can similarly determine which of the sets AHpciq cover or support which
others. It is a simple exercise to check that AHpc1q supports both AHpc2q and
AHpc3q, and that neither of the latter two support each other. Also, none of the
sets covers any of the others. Thus, the only orders involving ĺH

I and ĺH
F that

hold are c2 ĺH
F c1 and c3 ĺH

F c1.

388 P. D. Rowe

This small investigation suggests that ĺH
RD is not related to ĺH

I , but that
it might be related (contravariantly) to ĺH

F . Indeed, we can prove that ĺH
RD is

contravariantly sound with respect to ĺH
F .

Theorem 5. If c1 ĺH
F c2 then c2 ĺH

RD c1.

Proof. Since c2 ĺH
RD c1 holds for all values of RDHpc1q and RDHpc2q except

RDHpc2q “ K and RDHpc1q “ J, it suffices to show that whenever c1 ĺH
F c2

and RDHpc1q “ J then RDHpc2q “ J as well.
First note that RDHpc1q “ J means that for every G P AHpc1q, G contains

a recent corruption or a deep corruption. Also, recent and deep corruptions are
both preserved under homomorphisms. Since c1 ĺH

F c2, we know that for every
G2 P AHpc2q, there is some G1 P AHpc1q such that G1 ď G2. But since G1 has a
recent or deep corruption, this is preserved by the homomorphism to G2. Thus
every element of AHpc2q has a recent or deep corruption. So RDHpc2q “ J. ��

Theorem 5 is encouraging. It shows that the generalized up-set (adversary-
enriched) semantics for Copland captures an intuitive, and independently defined
notion of trust. This works out despite the fact that we are in a setting where the
“base” semantics is given as an arbitrary set of structures not explicitly tied to
the syntax. In fact, it is encouraging enough to suggest that research in attack
trees might benefit from applying such a generalization. For example, attack-
defense trees have been proposed as a richer formalism to discuss offensive and
defensive strategies for system security. Could there be a semantics in the spirit
of the adversary-enriched semantics for Copland that could be leveraged in this
way to order attack(-defense) trees? Copland’s tracking of dataflow could also
be replicated to enrich the semantics of attack trees along that dimension.

Nevertheless, the soundness of Theorem 5 is a little unsatisfying. For one
thing, the same soundness does not hold for the strict preorders. This is evident
from the fact that c2 ăH

F c1 but c1 �ăH
RD c2. It is, in some sense, too sensitive

to differences in Copland phrases. Just because two phrases are strictly ordered,
we cannot conclude that one must force the adversary into recent or deep cor-
ruptions. Thus, we can only leverage c1 ĺH

F c2 for our purposes if we know
RDHpc2q “ J or RDHpc1q “ K. The fact that c2 and c3 are ĺH

F -incomparable
is also worrisome. Knowing that one phrase forces the adversary into recent or
deep corruptions and the other doesn’t is not enough to guarantee they will be
ordered by ĺH

F . This indicates that ĺH
F is, in some sense, not sensitive enough.

Theorem 5 encourages us to push forward with new ideas for ordering Cop-
land phrases (or other formalisms), but it raises at least as many questions as
it answers. What security aspects is ĺH

F really capturing beyond the notion of
recent or deep adversary strategies? Is soundness enough to view it as a general-
ization of the 2-point lattice ordering, or do the issues in the previous paragraph
undermine that viewpoint? Is there a logical characterization of the content of
models found in AHpcq that enables soundness with respect to logical implica-
tion? We hope the investigation of this paper will spur research along these lines.
The generality of the approach enables progress to be made by those working in
diverse subfields of formal methods for security.

On Orderings in Security Models 389

7 Cryptographic Protocols

While we were spurred to investigate the connection between attack trees and
Copland due to the similarities in their underlying syntax and semantics, the
results of Sect. 6 show that the general construction can yield interesting results
even in cases with semantics that are utterly unrelated to that of attack trees.
Therefore, before concluding, we make a brief detour into the world of crypto-
graphic protocols to demonstrate the generality of the recipe for constructing
preorders suggested by Corollary 1.

In 2016, Guttman, together with the author and our colleague Moses Liskov
established a methodology for determining a strength order on cryptographic
protocols [13]. As we outline below, the preorder generated in this way seems to
correspond to the preorder that would arise from the construction we have used
repeatedly throughout this paper. Due to space limitations, we can only give a
very high-level overview, and the correspondence, while highly suggestive, is still
technically conjectural.

The general idea from [13] is to derive a logical formula

LpΦ,P q “ @X.pΦ “⇒1ďiďn DY.Ψiq
that expresses the strongest conclusion achievable by protocol P from hypoth-
esis Φ. For those familiar with CPSA, Φ represents the input to a search, and
each Ψi represents one of the shapes of protocol P , while X and Y range over
events and the variables used in messages. In general, protocols need their own
set of predicates to describe their possible executions. That is, a predicate say-
ing that some role of protocol P1 has executed some number of steps with a
given set of parameters will not, in general, have an interpretation in the exe-
cutions of protocol P2. However, when the protocols are sufficiently similar, the
same logical language can easily apply to both protocols. This allows us to cre-
ate a preorder on protocols parameterized by the hypothesis Φ: P1 ĺΦ P2 iff
LpΦ,P2q “⇒ LpΦ,P1q. This says that P2 is stronger than P1 (with respect to Φ)
if any goal achieved by P1 is also achieved by P2.

It has been shown in [9] that LpΦ,P q corresponds to a run of the protocol ana-
lyzer CPSA [10] when provided an input A that corresponds to Φ. CPSA works
in the strand spaces model of cryptographic protocols (pioneered by Guttman),
and produces the minimal, essentially different executions of a protocol con-
sistent with some initial assumptions. Concretely, given a skeleton (i.e. partial
execution) A of protocol P , it produces a finite set SApP q of realized skeletons
(i.e. full executions) B for which A ď B.2 Furthermore, SApP q supports the set
of all realized skeletons C satisfying A ď C. That is, for all realized skeletons C

such that A ď C, there is an element B P SApP q such that B ď C.
The correspondence between LpΦ,P q and CPSA’s search arises from the abil-

ity to associate to every skeleton A a characteristic formula χpAq. For certain
syntactic classes of formulas Φ we can revert the process to get a characteristic

2 For technical reasons, we must restrict ourselves to injective homomorphisms only.

390 P. D. Rowe

skeleton σP pΦq. (The inverse σP depends on the protocol because different pro-
tocols admit different structures.) For our purposes we may assume these two
processes are inverses. Thus, in the previous paragraph, we choose A to be σP pΦq.
The correspondence is completed by the fact that Ψi “ χpBiq for Bi P SP pAq [9].

When comparing the strength of two protocols, we start with a common
hypothesis Φ. We then translate that hypothesis into (possibly distinct) skeletons
A1 “ σP1pΦq and A2 “ σP2pΦq of P1 and P2 respectively. Applying CPSA, we
obtain the two sets of shapes SA1pP1q and SA2pP2q. We then recover LpΦ,Piq by
applying χ to the sets of shapes. This now gives us access to the preorder ĺΦ.

One key advantage of converting CPSA’s analysis back into logical form is
that it allows direct comparison between the results. Due to the detailed message
structure that is purposefully not represented in the logical formulas, we typically
can’t talk about homomorphisms between skeletons of two different protocols.
This prevents us from directly applying our recipe for defining preorders that
requires us to determine whether SA1pP1q covers or supports SA2pP2q, or vice
versa. The translation into logic acts as a substitute in much the same way that
Horne et al. [6] define a translation into linear logic to help them compute the
comparisons. However, Guttman has developed a way to convert skeletons of
P1 into skeletons of P2, provided there is a well-defined protocol transformation
T : P1 Ñ P2 [3]. So if A1 is a skeleton of P1, then T pA1q is a skeleton of
P2. Furthermore, for sufficiently close protocols, χpA1q “ χpT pA1qq. (For more
distantly related protocols, the equality must be downgraded to an equivalence.)
Using this theory of protocol transformation we conjecture that the ĺΦ preorder
corresponds to one of the preorders generated using Theorem 3.

Conjecture 1. Suppose that σP1pΦq “ A1 and σP2pΦq “ A2. Let T : P1 Ñ P2

be a well-defined protocol transformation. Then

P1 ĺΦ P2 iff SA2pP2q covers T pSA1pP1qq, and
P2 ĺΦ P1 iff T pSA1pP1qq covers SA2pP2q.

We leave it as a conjecture for now because a treatment that attends to all
the details about protocol transformations and conversions to and from logical
formulas would require considerable care and is beyond the aims of this paper.
Indeed, it is not entirely clear that the bi-implication is correct. Perhaps it only
follows that if the semantic sets are in the right covering relationship, then the
corresponding order holds. Our main purpose is to highlight similarities and
differences with the preorders from earlier sections to gain insights into how we
might fruitfully generalize the approach to generating preorders.

We conclude with a few remarks about this conjecture that speak to the gen-
erality of our construction. Firstly, although, skeletons of a protocol are graph-
like, they actually contain more information than is contained in the structures
for attack trees or Copland phrases. This demonstrates that the approach is not
tied to semantics that use sets of graphs, but can apply to other structures that
admit a homomorphism ordering. Additionally, the conjecture would not hold
if we restricted attention to smoothing homomorphisms only as is done in [6].

On Orderings in Security Models 391

P1 ĺΦ P2 will hold when the shapes of P2 can infer the existence of more activ-
ity (more nodes of the graph), not just more orderings among events. This was
one of the principal drivers for our choice not to restrict ourselves to smoothing
homomorphisms in Sect. 3 which resulted in an alteration to the up-set semantics
compared to it counterpart in [6].

Just as in Sect. 6, the base CPSA semantics is not tightly tied to the syntax of
protocols. So, although we cannot easily define attribute domains for protocols,
the translation into logic can be viewed as serving a similar purpose. Indeed,
because the logical content captures all the needed details, the corresponding
order is not only sound, but the conjecture is that it is also complete with
respect to the order defined through our construction. If true, this would mean
that the preorder constructed according to the methods of this paper precisely
capture the intended content of security goals. The connection between ĺH

RD and
ĺH

F in Sect. 6 was much weaker. Perhaps we could identify a sound and complete
logical characterization of ĺH

F that comes with a clear interpretation in terms of
trust.

Finally, notice that the conjecture only uses the notion of “covers” and not the
notion of “supports”. Thus, ĺΦ is a kind of down-set semantics. That is, it shares
the same form as the ĺI order on attack trees. If we write it as ĺΦ

I , this suggests
the natural alternative ĺΦ

F defined according to an up-set semantics. That is,
which P1 ĺΦ

F P2 when T pSA1pP2qq supports SA2pP1q. It is not immediately
clear what this preorder captures. We consider it an open problem to provide a
preorder with a natural interpretation that corresponds to (or at least is sound
with respect to) ĺΦ

F .

8 Conclusion

In this paper we explored numerous security-related preorders from the litera-
ture. We developed a way to generalize specialization preorders of attack trees [6]
to essentially any formalism which has a set-based denotational semantics for
which there exists a notion of homomorphism on elements of the sets. In partic-
ular, we defined the two notions of covers and supports, and showed how these
generate a preorder on the semantic sets that corresponds to the up- and down-
set semantics of attack trees respectively. We applied this general construction to
Copland phrases for layered attestation in two settings. The first is an adversary-
free setting in which the preorders correspond to certain performance aspects of
the intended executions. The second is an adversary-enriched setting in which
the semantics no longer closely reflects algebraic properties of the syntax. Along
the way we identified a similarity to preorders defined on cryptographic proto-
cols. While the details are beyond this paper, we conjectured that the protocol
preorders can be viewed as an instance of the general construction used here.

While our focus has been on three formalisms, the results obtained are sug-
gestive that the construction may have a much greater reach. But the current
study also raises some questions. The protocol preorder is constructed using the
covers relation, while the corresponding construction for Copland adversarial

392 P. D. Rowe

semantics requires the supports relation. It is not clear when to expect the use of
one versus the other. In fact, the covers and supports notions have been previ-
ously identified as providing a basis for constructing powerdomains for programs
with non-deterministic execution [8,18]. A more thorough investigation into the
relation of the current study with that past work may shed light on our questions
and suggest a more abstract standpoint from which to view security orderings.

Acknowledgments. I would like to thank Ian Kretz and John Ramsdell for our con-
tinued collaboration on the topic of layered attestation. This paper arose out of our
earlier shared attempt to leverage attack trees to help order Copland phrases.

References

1. Adão, P., Focardi, R., Guttman, J.D., Luccio, F.L.: Localizing firewall security
policies. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF),
pp. 194–209 (2016). https://doi.org/10.1109/CSF.2016.21

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2 edn. Cambridge
University Press (2002). https://doi.org/10.1017/CBO9780511809088

3. Guttman, J.D.: Establishing and preserving protocol security goals. J. Comput.
Secur. 22(2), 203–267 (2014). https://doi.org/10.3233/JCS-140499

4. Helble, S.C., Kretz, I.D., Loscocco, P.A., Ramsdell, J.D., Rowe, P.D., Alexander,
P.: Flexible mechanisms for remote attestation. ACM Trans. Priv. Secur. 24(4)
(2021). https://doi.org/10.1145/3470535

5. Horne, R.: The consistency and complexity of multiplicative additive system vir-
tual. Sci. Ann. Comput. Sci. 25(2), 245–316 (2015). https://doi.org/10.7561/
SACS.2015.2.245

6. Horne, R., Mauw, S., Tiu, A.: Semantics for specialising attack trees based on linear
logic. Fundam. Informaticae 153(1–2), 57–86 (2017). https://doi.org/10.3233/FI-
2017-1531

7. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

8. Plotkin, G.D.: A power domain construction. SIAM J. Comput. 5(3), 452–487
(1976). https://doi.org/10.1137/0205035

9. Ramsdell, J.D.: Deducing security goals from shape analysis sentences. CoRR
abs/1204.0480 (2012)

10. Ramsdell, J.D., Guttman, J.D., Liskov, M.D., Rowe, P.D.: The CPSA specification:
A reduction system for searching for shapes in cryptographic protocols (2012)

11. Ramsdell, J.D., et al.: Orchestrating layered attestations. In: Nielson, F., Sands,
D. (eds.) POST 2019. LNCS, vol. 11426, pp. 197–221. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17138-4 9

12. Rowe, P.D.: Confining adversary actions via measurement. In: Kordy, B., Ekstedt,
M., Kim, D.S. (eds.) GraMSec 2016. LNCS, vol. 9987, pp. 150–166. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46263-9 10

13. Rowe, P.D., Guttman, J.D., Liskov, M.D.: Measuring protocol strength with secu-
rity goals. Int. J. Inf. Secur. 15(6), 575–596 (2016). https://doi.org/10.1007/
s10207-016-0319-z

https://doi.org/10.1109/CSF.2016.21
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.3233/JCS-140499
https://doi.org/10.1145/3470535
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.7561/SACS.2015.2.245
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.3233/FI-2017-1531
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1137/0205035
https://doi.org/10.1007/978-3-030-17138-4_9
https://doi.org/10.1007/978-3-319-46263-9_10
https://doi.org/10.1007/s10207-016-0319-z
https://doi.org/10.1007/s10207-016-0319-z

On Orderings in Security Models 393

14. Rowe, P.D., Ramsdell, J.D., Kretz, I.D.: Automated trust analysis of Copland
specifications for layered attestation. In: Proceedings of the 23rd International
Symposium on Principles and Practice of Declarative Programming. PPDP 2021.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3479394.3479418

15. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
16. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs.

In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing,
STOC 1979, pp. 1–12. Association for Computing Machinery, New York (1979).
https://doi.org/10.1145/800135.804393

17. Wide�l, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: formal methods for
attack tree-based security modeling. ACM Comput. Surv. 52(4) (2019). https://
doi.org/10.1145/3331524

18. Winskel, G.: On power domains and modality. Theoret. Comput. Sci. 36, 127–137
(1985). https://doi.org/10.1016/0304-3975(85)90037-4

https://doi.org/10.1145/3479394.3479418
https://doi.org/10.1145/3479394.3479418
https://doi.org/10.1145/800135.804393
https://doi.org/10.1145/3331524
https://doi.org/10.1145/3331524
https://doi.org/10.1016/0304-3975(85)90037-4

Prototyping Formal Methods Tools:
A Protocol Analysis Case Study

Abigail Siegel, Mia Santomauro, Tristan Dyer, Tim Nelson(B),
and Shriram Krishnamurthi

Computer Science Department, Brown University, Providence, RI, USA
tbn@cs.brown.edu

Abstract. Modern-day formal methods tools are more than just a core
solver: they also need convenient languages, useful editors, usable visu-
alizations, and often also scriptability. These are required to attract a
community of users, to put ideas to work in practice, and to conduct eval-
uations of the formalisms and core technical ideas. Off-the-shelf solvers
address one of these issues but not the others. How can full prototype
environments be obtained quickly?

We have built Forge, a system for prototyping such environments.
In this paper, we present a case-study to assess the utility of Forge.
Concretely, we use Forge to build a basic protocol analyzer, inspired by
the Cryptographic Protocol Shape Analyzer (cpsa). We show that we
can obtain editing, basic visualization, and scriptability at no extra cost
beyond embedding in Forge, and a modern, domain-specific visualization
for relatively little extra effort.

1 Introduction

Formal methods are (finally) surging in popularity, including numerous domain-
specific tools, even of industrial origin [2,7–9,18,41,46]. This suggests that there
are many new tools that people might want to build; as exposure grows, so
will the number of tools. But there’s a long road from a formalism to a tool.
Researchers need to quickly build prototypes that can be experimented with and
refined (and perhaps even turned into a bespoke tool).

Many tools [5,28,29,32,33,36,38,44] already layer a domain atop a model-
finder like Alloy [23], Alloy’s core engine Kodkod [54], SMT, or SAT. While these
are wonderful as embedded solvers, they are only the beginning, not the end, to
building a useful tool. Some additional concerns include:

– the development environment (IDE) experience;
– translating the domain-specific surface input language;
– visualization of the output;
– perhaps even domain-specific and interactive output visualization; and
– extensibility and scriptability.

These concerns are not academic. Tools benefit from user communities. While
early adopters will use almost any interface, as communities grow, they expect
all the standard modern conveniences.
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 394–413, 2021.
https://doi.org/10.1007/978-3-030-91631-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_22

Prototyping Formal Methods Tools 395

Independent of community growth, our formalisms benefit from (and need)
evaluations with users, especially because these can cough up unpleasant sur-
prises [11]. But to perform such evaluations, we must equip them with at least
minimal usable interfaces. Otherwise, our studies will be studying the (poverty
of the) interface, not the formalism and its consequences.

Our response to this problem is a new framework, Forge1 (the name is a
tribute to Alloy), that enables researchers to quickly prototype tools. Forge is
based on the language-oriented programming (lop) principle [16] of the Racket
programming system. That is, Racket is a system (and language) designed for
building (programming) languages. The resulting languages can be used from the
DrRacket programming environment [17] or with external environments (such
as Visual Studio Code) using the Common Language Interface. Forge provides
the Kodkod [54] and Pardinus [10] solvers. It also incorporates the Sterling [15]
visualizer, which enables domain-specific visualizations. Finally, domain-specific
programs can be scripted using the Racket language.

This paper presents a case study that exercises these aspects of Forge. Con-
cretely, we will use Forge to build a prototype analyzer for cryptographic pro-
tocols, inspired by Joshua Guttman’s Cryptographic Protocol Shapes Analyzer
(cpsa) [12]. This prototype was largely executed by a pair of undergraduates
(the first two authors) as part of a course project (while taking a regular course
load). We believe that this demonstrates the potential utility of frameworks like
Forge, and hope that this work prompts further development to support end-to-
end prototyping of formal tools.

2 End-To-End Language-Oriented Modeling

The key philosophy of Forge lies in extending the idea of lop to language-
oriented modeling. We illustrate this process in Fig. 1, which is organized by
tiers according to the different user perspectives involved. For concreteness, we
specialize the presentation to our specific crypto-analysis case study.

Atop the pre-existing Forge engine, Tool Authors (in this case study, the
undergraduate lead authors) model their domain (the “Base spec”), define
domain-specific languages (dsls) in Racket, the translation of those languages to
Forge constraints (#lang), and—if needed—a domain-specific visualizer (“Cus-
tom Visualization”). These enable other user perspectives: domain experts, such
as Protocol Creators, use dsls (like cpsa’s defprotocol syntax) to specify arti-
facts of interest in their domain without needing expertise in relational logic.
Analysts can then phrase queries about protocol behavior. They may use Forge’s
query language, a dsl (such as cpsa’s defskeleton syntax), or both, and benefit
from domain-customized output. Others, such as students, might even bypass
the dsls entirely and only interact with visualizations produced by others. While
a specific user may naturally belong to multiple tiers (e.g., a protocol creator
may wish to double-check their specification by viewing example executions), we
find this separation a useful way to think about different tool perspectives.
1 Available at: www.forge-fm.org.

www.forge-fm.org

396 A. Siegel et al.

Forge Developers

Domain Modelers &
Tool Authors

Protocol Creators

Protocol Analysts

solver

defprotocol

defskeleton
further goals

Base spec
Derived spec

#lang Custom
Visualization

Fig. 1. Tiered organization of Domain-Specific Modeling in Forge. Components that
must be implemented for each new domain (e.g., our case-study prototype) are shaded
in grey. A base specification for the domain is enriched with additional constraints
generated from the domain-specific input. Results from the solver are relayed to a
custom visualizer. As the process is embedded in Racket, additional structure can be
added via scripting (not shown) from outside the core workflow.

Crucially, this process is not specific to cryptographic protocols. Any domain
that can be modeled in the relational logic of Forge (which it shares with Alloy)
is a potential target of this approach.

We now briefly step through the perspective of each user, and address
corresponding system-design concerns raised in Sect. 1. As a running exam-
ple throughout, we use the Needham-Schroeder [35] asymmetric protocol with
the known (Lowe [26]) vulnerability, taken verbatim from the cpsa example
repository (https://github.com/mitre/cpsa). Concretely, this protocol describes
a three-step secret exchange between two principals (initiator and responder)
facilitated by a public-key cryptosystem.

2.1 Protocol Analysts: Custom Visualization and Queries

A concrete example of Needham-Schroeder in action might look like Fig. 2, where
horizontal arrows denote the flow of messages between principals. Our case-study
prototype’s model and visualization are based on the strand-space formalism [51],
just as is cpsa. We discuss differences in logic (Sect. 4) and visualization (Sect. 6)
later, but note that our visual layout concretizes the Dolev-Yao [13] perspective:
the attacker is synonymous with the medium of communication. Our visualizer
is also interactive: users can click at any point on the diagram to see the state of
agents’ knowledge at that time. Figure 3 shows one such report: the initiator’s
knowledge before the first message is sent.

https://github.com/mitre/cpsa

Prototyping Formal Methods Tools 397

Fig. 2. A good execution of Needham-Schroeder. The “Attacker” strand represents the
medium of communication. As the secrets (text0 and text1) are encrypted, they are
learned (in this execution) by only the initiator and responder. The “agent:” annota-
tions denote which agent owns each strand.

Fig. 3. Detail of initiator’s knowledge in
the first timestep.

Visual Design Considerations. There
are many different visualizations that a
tool author might create. The lowest-
cost approach would be to use the stan-
dard Alloy-style directed graphs that
Forge provides by default. However,
these fail to communicate domain-specific intuitions, expose unnecessary mod-
eling details, and can become overwhelming after a certain level of complexity is
reached. Instead, Forge leverages the Sterling [15] visualizer, which allows tool
authors to build their own custom visualizations in JavaScript. These then exe-
cute in the browser, and benefit from the many advantages of a modern web
interface.

Figure 4 shows three points in the design space of visualizing an attack on,
rather than a good run of, Needham-Schroeder:

1. the default Alloy-style visualization, projected by timeslot and with unused
atoms removed;

2. a lightweight (roughly 100 lines of JavaScript) custom visualization; and
3. the full interactive visualizer (900 lines of JavaScript).

Note that even with some effort to clean up the display, the default visualization
is cluttered with modeling details and can be difficult to break down. While
Alloy and Sterling do provide an alternative table-based modality, these same
issues apply (with, e.g., 38 rows in the learned_times relation alone). In contrast,
the custom visualizations at least communicate some pertinent information at a
brief glance, and the full visualization provides more (e.g., agent knowledge) on
click events. Section 6 presents the visualizer in greater detail.

398 A. Siegel et al.

(a) Default Visualization (for one timeslot)

(b) Lightweight Custom Visualization

(c) Full Custom Visualization

Fig. 4. Three different visualizations of a concrete attack on Needham-Schroeder. Here,
the man-in-the-middle attack is realized by the initiator starting a session with the
attacker or an agent whose private key is known to the attacker.

Prototyping Formal Methods Tools 399

Development Environment. Building atop Racket gives us immediate recourse to
the DrRacket IDE, which comes with useful features such as error highlighting, a
Read-Eval-Print-Loop (REPL), debugging features, etc. Moreover, many other
mature editors (such as Visual Studio Code) are readily usable via a language
server interface.

Query Language. Forge exposes a parenthetical query language based on the
first-order relational logic of Kodkod [54]. Generating the known attack on
Needham-Schroeder (instead of a good execution) requires only asking for sce-
narios where both of the initiator’s nonce values are eventually learned by the
attacker:

1 (in (+ (join ns_init ns_init_n1)

2 (join ns_init ns_init_n2))

3 (join Attacker learned_times Timeslot)))

Section 5 gives more detailed background for the identifiers used here. For now,
we observe that ns_init represents an initiator strand and that ns_init_n1 and
ns_init_n2 are relations that contain the values of each nonce variable for each
initiator. The learned_times relation represents the state of each agent’s knowl-
edge at each point in time. The values for specific strands are obtained via
relational join (i.e., lookup), as is the attacker’s knowledge across all timeslots
(the Timeslot relation). + denotes union, and in the (possibly improper) subset
relationship.

2.2 The Protocol Creator: Translating Domain-Specific Input

In cpsa’s input language, the Needham-Schroeder protocol is represented by:

1 (defprotocol ns basic

2 (defrole init

3 (vars (a b name) (n1 n2 text))

4 (trace

5 (send (enc n1 a (pubk b)))

6 (recv (enc n1 n2 (pubk a)))

7 (send (enc n2 (pubk b)))))

8 (defrole resp

9 (vars (b a name) (n2 n1 text))

10 (trace

11 (recv (enc n1 a (pubk b)))

12 (send (enc n1 n2 (pubk a)))

13 (recv (enc n2 (pubk b)))))

14 (comment "Needham -Schroeder "))

The defprotocol construct specifies the behaviors corresponding to well-
behaved protocol participants, and is the way a protocol author would describe
their protocol in cpsa’s domain perspective.

cpsa also provides a defskeleton construct, which describes fragments of
execution that analysts use to search for specific protocol behaviors. For example,
the Needham-Schroeder file from cpsa’s example suite contains this skeleton:

400 A. Siegel et al.

1 (defskeleton ns

2 (vars (a b name) (n2 text))

3 (defstrand resp 3 (a a) (b b) (n2 n2))

4 (non -orig (privk a) (privk b))

5 (uniq -orig n2)

6 (comment "Responder point -of-view"))

which defines a particular search in the space of executions. Each defstrand
defines a single process executing the appropriate protocol role. The 2-tuples
(e.g. (n1 n1)) are called maplets in cpsa parlance, and bind values (skeleton
variables) to role variables in the protocol. The non-orig and uniq-orig anno-
tations give constraints on how principals may behave. They enforce that these
values are freshly chosen and either never sent by a principal in decryptable form
(non-orig), or that their appearance originates on a single strand (uniq-orig).

One advantage of cpsa’s parenthetical language is that no parser is required
to process it; Racket macros can expand protocol and skeleton definitions directly
into Forge formulas. While Racket permits non-parenthetical syntaxes [16], this
underlying parenthetical layer saves domain modelers of having to construct
source by unwieldy and bug-inducing string concatenation, as often happens
when mapping to other tools. We trust that the Verified LISP [21] instantiation
of Joshua Guttman would especially appreciate this.

2.3 Scripting and Extensibility

Users at any level may wish to script analysis in Forge for their own purposes.
They might wish to numerate protocol runs for pattern mining, generate “ensem-
bles” of differing runs, work with the solver iteratively [33], etc.

The core of Forge is implemented as a library in Racket. Users may work
with the logic language directly (akin to what Alloy’s UI provides), or use Forge
as a library in a larger program. While Forge is meant to be used for prototyp-
ing “solver-aided” languages, it differs from tools like Rosette [52] by sharply
separating the logic language from Racket. Thus, the engine need not be able to
reason about (e.g.) recursion or other programming constructs, although com-
putation over the logic language can still be scripted. The formula derived from
a cpsa defprotocol s-expression can be used either as a helper predicate in
the logic language or as a programmatic object in Racket. Likewise, the custom
visualization applies to both naive scenario enumeration and custom exploration
strategies [27,37,45].

Roadmap. After some brief background (Sect. 3), this paper covers the techni-
cal heart of the prototype: the core model (Sect. 4), the translation from cpsa
inputs to supplemental constraints (Sect. 5), and custom visualization (Sect. 6),
which includes graphical demonstrations on further example protocols. We then
examine performance (Sect. 7), summarize related work (Sect. 8) and conclude
with a discussion of lessons learned (Sect. 9).

Prototyping Formal Methods Tools 401

3 Relational Model Finding

Model-finding tools find concrete solutions that satisfy a given set of declarative
constraints. Relational model-finders, of which Alloy [23] is an especially popular
example, take input in a relational constraint language and produce relational
structures as output. Alloy’s core engine, Kodkod [54], translates input con-
straints into boolean logic and then invokes an off-the-shelf SAT-solver. There
are various enhancements to Kodkod, such as Pardinus [10], which Forge uses
directly. However, since all these derive from Kodkod, we will disambiguate by
using it as our exemplar when we speak of Forge’s solver engine.

We borrow from Milicevic [33] and others by calling the input to Kodkod a
specification, rather than the broader Alloy community’s use of “model”. Using
“model” in this way would conflict with the fact that, in a mathematical context,
the term describes an interpretation for a (relational) language—which is the
type of a model-finder’s output, not its input.

4 Modeling Protocol Executions

Our base specification provides a generic framework into which individual pro-
tocols and skeletons may be instantiated. This common framework defines the
notion of message passing between strands, the knowledge of various agents
involved in protocol execution, the construction of ciphertext terms, and many
other ideas central to approximating the strand-space perspective.

The sorts and subsorting relationships in our specification largely echo the
basic cpsa algebra: a top-level mesg sort for arbitrary values, skey and akey

sorts for symmetric and asymmetric keys, text for plain values like nonces, etc.
An ordered Timeslot sort serves as an index for message events. Relations on
these sorts track key ownership (owners, pairs), long-term keys (ltks), mes-
sage contents (data), the state of each agent’s knowledge at any given time
(learned_times), ciphertext contents (plaintext), and other essential properties
of a protocol run.

Using this relational signature, the specification imposes well-formedness cri-
teria that should hold regardless of the specific protocol being examined. Briefly,
these constraints include:

– standard type constraints (e.g., that every Ciphertext has exactly one encryp-
tion key);

– every mesg is a key, name, text, or Ciphertext;
– all messages are either sent to, or received from, the attacker strand;
– sent messages only include values known to the sender;
– the plaintext relation is acyclic;
– the pairs relation defines one unique key pair per name;
– the ltks relation defines a partial function on ordered pairs of names; and
– a characterization of when an agent learns a value (the contents of a message

they can encrypt, a value they have just generated, their own name, etc.)

402 A. Siegel et al.

This specification approximates the strand space formalism, but in the spirit
of cpsa itself, it is worth examining the explicit and implicit assumptions made
and briefly discussing their consequences. Indeed, it is worth noting that Forge’s
bounded relational logic was not always the most natural idiom to express our
goals—we return to this in Sect. 9.

Concrete Agents. One of our goals was to explicitly represent the state of each
agent’s knowledge throughout a protocol execution. However, in general an agent
may run multiple strands of the same protocol, and so our specification separates
the notion of strand (and its variable bindings) from the corresponding agent
(and its pool of knowledge at any given time). We make this explicit in our
visualization (Sect. 6) by naming every strand’s corresponding principal.

An Explicit Attacker. The Attacker strand is synonymous with an untrusted
communication medium and is thus an explicit version of the Dolev-Yao [13]
adversary. We found this to be useful, both for debugging the prototype and for
visualization, since it makes it easy to track exactly which messages are delayed
or rewritten and what knowledge has been exposed.

Strands and Messages. A satisfying model for our specification contains a set
of strands, along with information about message send and receive events. Mes-
sages may involve an arbitrary (user-bounded) number of nested encryptions.
We make two simplifying assumptions. First, we do not view strands as hav-
ing a length, but rather a specific pattern of send and receive events over the
duration of the run. No model can contain a partial strand. Second, message
components are implicitly unordered. These choices are a semantic mismatch
versus cpsa—and indeed prevent detection of some attacks!—but eased first-
cut development, sufficed for the examples in Sect. 7, and could be corrected via
standard techniques with some engineering effort.

Origination and Pre-existing Knowledge. In cpsa, a strand originates a term if
(broadly) that strand sends the term, and all other strands that send the term
must first receive it. cpsa uses this idea to speak of a nonce being freshly created
or a key never being sent by any honest participant. We echo this idea as:

1 pred originates[s: strand, d: mesg] { -- d originates on
s

2 some m: sender.s | { -- m sent by strand s

3 d in subterm[m.data] -- contains d as a sub -term

4 all m2: (sender.s + receiver.s) - m | { -- all else

5 {m2 in m.^(~(next))} -- if m2 occurred before m

6 implies

7 {d not in subterm[m2.data]} -- d is not in m2

8 }

9 }

10 }

Prototyping Formal Methods Tools 403

Moreover, since our specification explicitly represents knowledge, certain terms
must originally come to be in an agent’s knowledge-base. We enforce the exis-
tence of a public-private key pair for every principal, and assert that it is known
in advance, along with the identities of all participants, their public keys, and
any long-term keys the principal is party to.

The Evolution of Knowledge. The learned_times relation indicates how an
agent’s knowledge grows over time. For every tuple (n, v, t), where n is a name,
v is a term, and t is a timeslot, (n, v, t) is in learned_times if and only if n can
derive v at time t from prior knowledge and any message received at t. Some
caution is needed: naively, this can lead to self-justifying knowledge. We use an
analogy to defining the transitive closure (TC) of a relation R in first-order logic.
One might be tempted (especially after seeing the idea in Datalog) to write TC
as:

∀x, y |TC(x, y) ⇐⇒ (R(x, y) ∨ ∃z |TC(x, z) ∧ R(z, y))

Unfortunately, this sentence fails to encode that TC must be the least such
relation. Similarly, suppose we state that (1) a ciphertext term may be known if
an agent knows its contents and the appropriate public key; and (2) a term within
a ciphertext may be known if an agent knows the ciphertext and the matching
private key. Now it is consistent for any agent to know any value, provided they
also know a ciphertext wrapping both the value and its own decryption key.

We might prevent this spurious knowledge by allowing only one such action
per timeslot, but that solution would prevent fully learning from messages
that contain decryption keys. Any agent receiving the two values k1 and
{k2, {k3}k2}k1 must be able to learn the innermost value k3: the key k1 can be
used to decrypt the outermost ciphertext, which itself contains a new ciphertext
and key k2 to decrypt it, and so on.

Instead, we impose a microtick discipline, inspired by simulation tools like
Ptolemy [43]. Microticks subdivide every timeslot, providing a frame that helps
ensure that knowledge is well-founded. In any microtick, knowledge may be
derived only if it was just received, was known in a previous timeslot, or has been
decomposed from more complex terms in a previous microtick. Then (n, v, t) is
in learned_times if and only if n has just received a message and v is in the
current workspace for some microtick.

The Challenge of Bounds. Since Kodkod, and thus Forge, uses a bounded rela-
tional logic (Sect. 3), there is an inherent incompleteness to its analysis. This
includes not merely how many nonces may be generated, but also more subtle
factors like the maximum term depth. Bounds also pose a user-facing challenge:
at the moment, queries must provide bounds, which can require much effort
and mental arithmetic to produce. Some of these issues could be ameliorated by
taking advantage [39] of sorting information on terms, and others, such as the
inherent bound on the number of timesteps, cannot.

404 A. Siegel et al.

5 Processing cpsa Declarations

Our prototype uses Racket macros to expand defprotocols and defskeletons to:

1. sort definitions (e.g., every role induces a new sub-sort of strand);
2. relation definitions (e.g., every role variable becomes a new relation that maps

strands of that role to the variable’s sort); and
3. relational formula sets (called predicates in Forge) that define the meaning of

the protocol or skeleton.

The predicates for each protocol, skeleton, etc. can be invoked in queries, giving
the user control over which aspects of the cpsa input to include in the analysis.

Because Forge builds atop Kodkod’s formalism, it has only a notion of rela-
tions, atop which functions must be defined via constraints. This means that
function application must be expressed via relational algebra—most commonly
by using the join operator. For instance, constraints ensure that, if s is a member
of the strand sort, then the expression (join s agent) evaluates to the agent
running strand s. Likewise, in the Needham-Schroeder example, strands s of role
init have a field a. This field is represented by a relation named ns_init_a and
the value of variable a in s can be found via (join s ns_init_a).

5.1 Deriving Relational Constraints

For every role R in protocol P, the translator produces a Forge formula (named
exec_P_R) that constrains the behavior of every strand of that role. In the case of
roles, the main bulk of the work lies in enforcing that all strands with that role
obey the provided trace declaration. E.g., in the Needham-Schroeder initiator
strand, the first event must send the term (enc n1 a (pubk b)), and so on. One
subtlety here is that Forge’s constraint language has no notion of a term in the
sense of cpsa’s algebra; it has only relations. The translator cannot speak of
(enc n1 a (pubk b)) directly to mean the result of encrypting n1 and a with b’s
public key. Consequently, we use existentially quantified variables to stand in
for non-ground terms, and recursively traverse every event to ensure the proper
ordering and nesting between events and terms.

For skeletons, the main challenge is in encoding the maplets that equate
variables in the skeleton with terms over variables in strands that the skeleton
contains. A responder point-of-view skeleton for Needham-Schroeder (Sect. 2.2)
contains the variables a and b (names) and a text value n2. These are bound in
the strand definition (defstrand resp 3 (a a) (b b) (n2 n2)), which says that
the skeleton’s a is the same as the responder strand’s a, and so on. We enforce
these via equality constraints on the field relations for the corresponding strand
and skeleton variables.

Prototyping Formal Methods Tools 405

Declarations within a skeleton, such as a unique-origination requirements, as
well as listener-strand definitions, become quantified formulas as follows:

(uniq-orig v): ∃!s : Strand | originates[s, v]
(non-orig v): ∀s : Strand | ¬originates[s, v]
(listener v): ∃t : Timeslot | (Attacker, v, t) ∈ learned_times

That is, respectively, there is a unique strand that originates the value, no strand
originates the value, and the value is compromised at some point. Should a
uniq-orig declaration appears in a role R, rather than a skeleton, it applies
locally to all strands r with that role:

(uniq-orig v): (∃!s : Strand | originates[s, v]) ∧ originates[r, v]

5.2 Queries and Predicates

Users write queries in terms of the base and derived specifications combined.
Since every role and skeleton formula is a Racket value, queries can build on,
deconstruct, or otherwise manipulate these formulas. A full query formula might
then look something like the following parenthetical Racket expression:

1 (and wellformed ; base constraints

2 exec_reflect_init ; initiator strand

3 exec_reflect_resp ; responder strand

4 constrain_skeleton_ns_1) ; responder point -of -view

where wellformed enforces the base specification, the two exec_ predicates add
strand roles, and constrain_skeleton_ns_1 asserts that only protocol runs con-
taining skeleton 1 and its declarations should be included.

Breaking the overall query into multiple predicates has several virtues. Not
only does it ease debugging, experimentation, etc. but it is also how our proto-
type supports cpsa-style input files with many skeletons: queries reference the
pertinent skeleton(s) and no others.

6 Visualizing Strands

Alloy comes with a directed-graph-based model visualizer that has not altered
much over its lifetime. In Forge, we have instead integrated the Sterling visual-
izer [15]. While Sterling reproduces (a slightly more modern and attractive ver-
sion of) Alloy’s visualizer, it also enables scripting using JavaScript and React.
Thus, anyone familiar with these widely-used systems can create custom visu-
alizations for their domain. In spite of the theoretical literature on reasoning
from diagrams [3,47], we are largely unaware of other general model-finding
tools that deliberately provide scaffolding for domain-specific visualization. (A
notable exception is the gupu pedagogic Prolog system [40], which lets users
define visualizations over answer substitutions returned by the engine.)

406 A. Siegel et al.

Fig. 5. The Sterling visualizer, with a Needham-Schroeder execution loaded.

Many protocol-analysis tools implement custom visualizations. Two of the
most idiosyncratic are VerifPal [24] and cpsa [12], with VerifPal’s more concrete
display of (e.g.) agent knowledge contrasting against cpsa’s minimal abstrac-
tion. We opted for a more concrete approach in order to showcase the power of
custom visualizations. Figure 5 shows a full Sterling window containing a custom
visualization. The left-hand pane shows the visualizer script being run—enabling
changes without restarting either Sterling or Forge. The “Next” button advances
to a different execution. Other key design choices include:

A Concrete Attacker. Our visualizer shows the medium of communication explic-
itly as an attacker who, like others, can gain knowledge over time. One downside
of this approach is that, depending on strand positioning, messages may be
shown “crossing over” uninvolved strands. The attacker could be factored out
in alternative visualizations (perhaps replaced with a terse “...”), but we found
that an explicit attacker reinforces the Dolev-Yao adversary model.

Disambiguating Key Ownership. Nonces, keys, agent names, and other data are
represented in the visualizer by concrete atoms: text0 might be a nonce or secret,
skey2 a symmetric key, name1 the identity of an agent, and so on. Crucially, atoms
are not the same as cpsa-algebra terms: while the terms a and b may denote the
same value, the atoms name0 and name1 are necessarily different. This difference
is especially important for key atoms. It would be baffling to see only that a
ciphertext is encrypted with akey3—an asymmetric key, but whose? Because of
this, our visualizer converts key atoms to equivalent cpsa-style terms whenever
possible: e.g., akey3 to pubk(name0) when akey3 is name0’s public key.

Telescoping Knowledge State. If a user is trying to understand how a certain
attack occurs, information about agents’ knowledge can be vital. Yet, showing all
knowledge quickly becomes overwhelming. To mitigate this issue, we made the
visualization interactive: users may click to expand (or hide) agent knowledge at

Prototyping Formal Methods Tools 407

Fig. 6. A good execution of Blanchet’s protocol with initial knowledge fully expanded.
Freshly generated values are colored blue, and derived values (some unused) are colored
red. Note also the nested ciphertexts, enabled by Sect. 4. (Color figure online)

Fig. 7. A reflection attack from cpsa’s example suite.

any point in time. In Sect. 2, Fig. 3 gave a magnified view of this feature; Fig. 6
shows it in the context of a full visualization of Blanchet’s [4] simple example
protocol. While agent knowledge is not always pertinent to understanding an
attack (as in the simple reflection shown in Fig. 7), telescoping knowledge display
makes it far easier to see how a value may be compromised.

7 Prototype Performance

Our goal is not to produce an optimized analysis tool, but rather a prototype
that is “good enough” to iterate on. New language constructs, enrichments to
the spec, or improved visualizations are all possible within the Forge framework.
While some improvements such as custom search algorithms are not yet possible,
many parts (especially the visualization) are portable. In addition, the prototype
may be useful for validating a new, optimized engine via model-based testing.

Despite these disclaimers, honesty compels us to report performance for all
examples in this paper—extreme runtimes would undermine our stated goals.

408 A. Siegel et al.

Protocol run sat? Runtime (sec)

Needham-Schroeder validation � 5
Needham-Schroeder attack � 6
Needham-Schroeder non-attack � 5
Needham-Schroeder (fixed) validation � 6
Needham-Schroeder (fixed) attack 6
Reflection validation � 4
Blanchet validation � 4
Blanchet init atk 5
Blanchet resp atk � 4
Blanchet (revised) validation � 4
Blanchet (revised) resp atk 5

Fig. 8. Runtime performance (rounded to nearest second).

All examples were taken from cpsa’s repository (Sect. 2) and run on a 2017
MacBook Pro (i5 2.3 GHz, 8 GB RAM). Concretely, we ran on:

– the original Needham-Schroeder [35] public-key protocol;
– Lowe’s [26] modification to Needham-Schroeder;
– Blanchet’s simple example protocol (from the cpsa manual [25]); and
– the “reflection” protocol demo (from the cpsa example suite).

These protocols exercise a number of core ideas in the basic cpsa algebra: asym-
metric key pairs, short- and long-term symmetric keys, and nested ciphertexts.

For each protocol, we first ran a validation check to ensure the prototype
found concrete executions. All validation checks were satisfiable. For Needham-
Schroeder, we demonstrated the well-known attack and verified that the attack
is no longer possible in the revised version. For Blanchet’s simple-example pro-
tocol, we confirmed that the secret cannot be compromised from the initiator’s
perspective, but that it can be from the responder’s perspective. We also con-
firmed that this vulnerability does not exist in the revised version.

Figure 8 reports results. The Protocol and run columns indicate which anal-
ysis was being performed. The sat? column denotes whether the analysis was
satisfiable—i.e., whether any models were produced, or if the solver completed
its search empty-handed. Finally, the Time (sec) column reports the runtime
in seconds for the analysis.

Interpretation. We find that runtime is largely uniform, in the single-digit sec-
onds, across these simple protocols. This suggests that our (unoptimized) proto-
type scales reasonably to small examples. The cpsa analyzer is over an order of
magnitude faster. However, roughly 2 s of Forge’s time is spent on expanding the
protocol and skeleton definitions and then compiling them to Racket bytecode.
There may be strategies for reducing this overhead.

Prototyping Formal Methods Tools 409

8 Related Work

Our end-to-end concept is partly inspired by Rosette [53], but differs signifi-
cantly because of our focus on a direct encoding of domains in Forge, as well
as our cultivation of domain-specific visualizations. Forge itself uses a heavily
modified version of Rosette’s Ocelot [6] interface to access the Kodkod [54] and
Pardinus [10] relational solvers.

Our case-study prototype draws broadly from the strand-space formalism [51]
and specifically from cpsa [12]. Strand spaces have been used to reason about a
variety of protocols and related topics; a representative sample of which would
include Guttman’s work on fair exchange [20] and trust management [22]. Strand
spaces also provide an interesting domain to ask foundational questions about
model finding, chiefly which [14] models ought to be presented—a question that
our prototype largely sidesteps in its present form.

There are of course several cryptographic analysis tools, such as VerifPal [24]
and Proverif [4]. As our current effort focuses largely on strand spaces and cpsa’s
input language, from a specification perspective these other tools are largely
unrelated. However, we note that Proverif’s use of Horn clauses could potentially
lend itself to similar prototyping in Forge. Even more, we drew inspiration from
visualizations in other tools, especially Proverif, in building our prototype.

9 Discussion

We have presented the Forge system for prototyping solver-based DSLs atop
Racket, and demonstrated its use in a prototype crypto-analysis tool in the vein
of cpsa. The vast majority of the specification and visualization work was done
by a pair of undergraduates over a (somewhat less than) one-semester course
project. While we believe this work shows the viability of the approach, we
would be remiss to close without first addressing a few limitations and sharing
lessons learned beyond the trivial specification tricks seen in Sect. 4.

Fidelity w.r.t. cpsa. We focused our effort here on sketching Forge’s language-
oriented prototyping process, rather than completely conforming to the seman-
tics of cpsa. Further refinement along these lines (such as resolving limitations
mentioned in Sect. 4, automated bounds inference, support for other algebras,
etc.) would have been a matter of added engineering effort for little benefit: we
have no desire to actually reproduce the already-excellent cpsa in Forge, but
rather make an experiment in prototyping.

Which Models? The question of which output model is beginning to be well
studied: some works focus on minimality [37,45], or closeness to a target [10,27].
Other tools, like AUnit [48,49] and CompoSAT [42] have prioritized models
based on ideas from software-testing like coverage and mutation. Works like Bor-
deaux [34] have even argued for producing non-models to ease comprehension
and debugging. We largely sidestep this question here, providing the user with
an Alloy-style “Next” button, but no further control. This can be frustrating,

410 A. Siegel et al.

especially when compared against cpsa’s sparse enumeration. We often found
ourselves refining our queries and restarting the solver from scratch, rather than
continuing manually. Thus, although we believe that cpsa’s supreme abstract-
ness can be a barrier to entry, especially for non-experts, we freely admit that
its parsimonious output is more readily explorable at a high level than ours.

A Downside of Concreteness: Equality. Since Forge produces models in terms
of concrete atoms, it is free to have one atom serve multiple purposes unless
prevented by the constraints it is given. Concretely, it might return first a run
of Needham-Schroeder where the initiator and responder strands are hosted by
the same agent, and then another run where the agents differ. This can lead to
a plethora of seemingly spurious protocol runs, unless the user adds additional
constraints to their query. In contrast, cpsa does not suffer from this issue: it
will not equate two terms unless it can justify doing so. It would be informative
to try this prototype using a different solver, perhaps one that is more amenable
to an “enrich-by-need” analysis [14].

Forge and Solvers. Forge currently uses only the Kodkod toolchain. Although it
has recourse to weighted Max-SAT and other algorithmic extensions, it currently
lacks a Satisfiability Modulo Theories engine. Forge is thus limited at present in
its ability to reason about mathematical integers, strings, and other mainstays of
SMT. Moreover, as we observed in Sect. 4, we needed non-trivial technical effort
to even approximate cpsa’s term algebras in Forge. However, we are encouraged
by efforts to both translate relational specifications into SMT [1,19,30,50] and
encode a theory of relations directly in SMT [31]. As Forge’s algorithmic capa-
bilities evolve, so too will its capacity to be used as a prototyping framework;
improvements to Forge would be immediately available to domain modelers and
tool authors (Fig. 1) via configuration options.

Acknowledgments. We are grateful to Joshua Guttman for many enjoyable and pro-
ductive conversations. We thank the creators of cpsa for their vision, the anonymous
reviewers for their feedback, and the editors for putting together this much-deserved
Festschrift. This work was partly supported by the US National Science Foundation.
This research was also developed with funding from the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL). The views,
opinions and/or findings expressed are those of the author and should not be inter-
preted as representing the official views or policies of the Department of Defense or the
U.S. Government.

References

1. Abbassi, A., Day, N.A., Rayside, D.: Astra version 1.0: evaluating translations
from Alloy to SMT-LIB. CoRR abs/1906.05881 (2019). http://arxiv.org/abs/1906.
05881

2. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver
verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 11

http://arxiv.org/abs/1906.05881
http://arxiv.org/abs/1906.05881
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-642-14295-6_11

Prototyping Formal Methods Tools 411

3. Barwise, K.J., Allwein, G. (eds.): Logical Reasoning with Diagrams. Oxford Uni-
versity Press (1996)

4. Blanchet, B.: Modeling and verifying security protocols with the applied Pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

5. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14052-5 11

6. Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Programming Language Design and Implementation (PLDI)
(2017)

7. Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 26

8. Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 467–486. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2 28

9. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 37

10. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational model finding.
In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 17–31. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8 2

11. Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017.
LNCS, vol. 10469, pp. 168–184. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66197-1 11

12. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
523–537. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 41

13. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theor. 29(2), 198–207 (1983). https://doi.org/10.1109/TIT.1983.1056650

14. Dougherty, D.J., Guttman, J.D., Ramsdell, J.D.: Security protocol analysis in con-
text: computing minimal executions using SMT and CPSA. In: Furia, C.A., Win-
ter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 130–150. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98938-9 8

15. Dyer, T., Baugh, J.: Sterling: a web-based visualizer for relational modeling lan-
guages. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709, pp. 99–104.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 7

16. Felleisen, M., et al.: A programmable programming language. In: Communications
of the ACM (2018)

17. Findler, R.B., et al.: DrScheme: a programming environment for Scheme. J. Funct.
Program. 12(2), 159–182 (2002)

18. Fogel, A., et al.: A general approach to network configuration analysis. In: Net-
worked Systems Design and Implementation, pp. 469–483 (2015). https://doi.org/
10.5555/2789770.2789803

19. Ghazi, A.A.E., Taghdiri, M.: Analyzing Alloy formulas using an SMT solver: a
case study. CoRR abs/1505.00672 (2015). http://arxiv.org/abs/1505.00672

https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-642-14052-5_11
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/978-3-642-54804-8_2
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-319-66197-1_11
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1007/978-3-540-71209-1_41
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1007/978-3-319-98938-9_8
https://doi.org/10.1007/978-3-030-77543-8_7
https://doi.org/10.5555/2789770.2789803
https://doi.org/10.5555/2789770.2789803
http://arxiv.org/abs/1505.00672

412 A. Siegel et al.

20. Guttman, J.D.: Fair exchange in strand spaces. In: International Workshop on
Security Issues in Concurrency, EPTCS, vol. 7, pp. 46–60 (2009). https://doi.org/
10.4204/EPTCS.7.4

21. Guttman, J.D., Ramsdell, J.D., Wand, M.: VLISP: a verified implementation of
Scheme. LISP Symb. Comput. 8(1–2), 5–32 (1995)

22. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen,
B.T.: Trust management in strand spaces: a rely-guarantee method. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24725-8 23

23. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT
Press (2012). https://doi.org/10.5555/2141100

24. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: cryptographic protocol analy-
sis for the real world. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578, pp. 151–202. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65277-7 8

25. Liskov, M.D., Ramsdell, J.D., Guttman, J.D., Rowe, P.D.: The cryptographic
protocol shapes analyzer: a manual. https://github.com/mitre/cpsa/blob/master/
doc/cpsamanual.pdf. Accessed 6 Jun 2021

26. Lowe, G.: An attack on the Needham-Schroeder public-key authentication pro-
tocol. Inf. Process. Lett. 56(3), 131–133 (1995). https://doi.org/10.1016/0020-
0190(95)00144-2

27. Macedo, N., Cunha, A., Guimarães, T.: Exploring scenario exploration. In: Egyed,
A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 301–315. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46675-9 20

28. Macedo, N., Guimarães, T., Cunha, A.: Model repair and transformation with
Echo. In: Automated Software Engineering (2013). https://doi.org/10.1109/ASE.
2013.6693135

29. Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of
Java programs. In: Automated Software Engineering (2001). https://doi.org/10.
1109/ASE.2001.989787

30. McCormick, K.D., Cinelli, F.C.: Translating Alloy to SMT-LIB. Major qualifying
project (b.s. thesis), Worcester Polytechnic Institute (2018)

31. Meng, B., Reynolds, A., Tinelli, C., Barrett, C.: Relational constraint solving in
SMT. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 148–165.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 10

32. Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: a tool for gener-
ating structurally complex test inputs. In: International Conference on Software
Engineering (2007)

33. Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: a general-purpose higher-
order relational constraint solver. In: International Conference on Software Engi-
neering (2015)

34. Montaghami, V., Rayside, D.: Bordeaux: a tool for thinking outside the box. In:
Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 22–39. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 2

35. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.org/
10.1145/359657.359659

36. Nelson, T., Ferguson, A.D., Scheer, M.J.G., Krishnamurthi, S.: Tierless program-
ming and reasoning for software-defined networks. In: Networked Systems Design
and Implementation (2014)

https://doi.org/10.4204/EPTCS.7.4
https://doi.org/10.4204/EPTCS.7.4
https://doi.org/10.1007/978-3-540-24725-8_23
https://doi.org/10.5555/2141100
https://doi.org/10.1007/978-3-030-65277-7_8
https://github.com/mitre/cpsa/blob/master/doc/cpsamanual.pdf
https://github.com/mitre/cpsa/blob/master/doc/cpsamanual.pdf
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1007/978-3-662-46675-9_20
https://doi.org/10.1109/ASE.2013.6693135
https://doi.org/10.1109/ASE.2013.6693135
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1007/978-3-319-63046-5_10
https://doi.org/10.1007/978-3-662-54494-5_2
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659

Prototyping Formal Methods Tools 413

37. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: International Conference
on Software Engineering (2013)

38. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: USENIX Large Installation System Adminis-
tration Conference (2010)

39. Nelson, T., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Toward a more com-
plete Alloy. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 136–149.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7 10

40. Neumerkel, U., Kral, S.: Declarative program development in prolog with GUPU.
In: International Workshop on Logic Programming Environments, pp. 77–86 (2002)

41. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How AWS uses formal methods. Commun. ACM 58(4), 66–73 (2015). https://doi.
org/10.1145/2699417

42. Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: specification-
guided coverage for model finding. In: International Symposium on Formal Meth-
ods (FM) (2018)

43. Ptolemaeus, C. (ed.): System design, modeling, and simulation using Ptolemy II.
Ptolemy.org (2014). http://ptolemy.org/books/Systems

44. Rupakheti, C.R., Hou, D.: An abstraction-oriented, path-based approach for ana-
lyzing object equality in Java. In: Working Conference on Reverse Engineering
(2010). https://doi.org/10.1109/WCRE.2010.30

45. Saghafi, S., Danas, N., Dougherty, D.J.: Exploring theories with a model-finding
assistant. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 434–449. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6 30

46. Sergey Bronnikov: Practical FM. https://github.com/ligurio/practical-fm.
Accessed 23 Jan 2021

47. Shimojima, A.: On the Efficacy of Representation. Ph.D. thesis. The Department
of Philosophy, Indiana University (1996)

48. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation
and mutation testing for Alloy. In: Software Testing, Verification and Validation
(ICST) (2017). https://doi.org/10.1109/ICST.2017.31

49. Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a test automation
framework for Alloy. In: Symposium on Model Checking of Software (SPIN). pp.
113–116 (2014). https://doi.org/10.1145/2632362.2632369

50. Tariq, Khadija: Linking Alloy with SMT-based Finite Model Finding. Master’s
thesis, University of Waterloo (2021). http://hdl.handle.net/10012/16756

51. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. J. Comput. Secur. 7(1), 191–230 (1999)

52. Torlak, E., Bodik, R.: Growing solver-aided languages with Rosette. In: Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software. SPLASH Onward! (2013)

53. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Programming Language Design and Implementation (PLDI) (2014)

54. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

https://doi.org/10.1007/978-3-642-30885-7_10
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
http://ptolemy.org/books/Systems
https://doi.org/10.1109/WCRE.2010.30
https://doi.org/10.1007/978-3-319-21401-6_30
https://doi.org/10.1007/978-3-319-21401-6_30
https://github.com/ligurio/practical-fm
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1145/2632362.2632369
http://hdl.handle.net/10012/16756
https://doi.org/10.1007/978-3-540-71209-1_49

Principles of Remote Sattestation

Paul Syverson(B)

U.S. Naval Research Laboratory, Washington, D.C., USA
paul.syverson@nrl.navy.mil

Abstract. Joshua Guttman has collaborated with others to set out
principles for attestation of trust in the setting of trusted computing.
I describe herein attestation of trust in authentication of web addresses
via a means of binding security into the addresses themselves, and I
discuss the analogues of such attestation principles in this setting.

1 Introduction

Remote attestation and trust were explored by Joshua Guttman and co-authors
in a pair of papers about a decade ago. The authors were primarily focused on
trusted computing, in which a remote principal can form beliefs about compu-
tation by a trusted platform module (TPM) [9,10].

As such their roots of trust were devices that could reliably measure hardware
or software behavior and devices that could reliably store information in a secrecy
preserving way and, most relevant to our present concerns, attest to the results of
a measurement. The work described below concerns trust on the web. (Or more
accurately, trust within the web: one of our goals is to embed trust into the
fabric of the web rather than derive it entirely from security mechanisms that
have merely been ubolted onto its structure.) We do not build directly from
the work of Joshua and his colleagues. We are looking at attesting to different
phenomena, and I will consider out-of-scope the justification for grounding the
roots of trust chosen. Nonetheless, the assumptions about what trust is and
in-scope analogues to their principles are instructive. First, however, I should
explain a bit more about the means by which trust can be built into the nodes
(URLs) and arcs (hyperlinks) that comprise the web.

2 Overview of Self-authenticating Traditional Addresses

Trust for us is established through SATAs (self-authenticating traditional
addresses) [18–20]. These are internet addresses based on traditional, typically
human-meaningful, domain names like apple.com, nrl.navy.mil, or wpi.edu.
But they also include a self-authenticating element that encodes a public key
used in its authentication. This element is the same as an onion address.

Tor’s onion addresses are self-authenticating: the address encodes a public
key used to authenticate the address. Though onion addresses are an IETF
standard [2] used by many Fortune 500 companies, government agencies, and
c© Springer Nature Switzerland AG 2021
D. Dougherty et al. (Eds.): Guttman Festschrift, LNCS 13066, pp. 414–424, 2021.
https://doi.org/10.1007/978-3-030-91631-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91631-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-91631-2_23

Principles of Remote Sattestation 415

major media and news organizations, they are generally only reachable via the
Tor network, typically via Tor Browser. The Tor Project’s overview of onion
services [1] provides a basic description, a list of some notable onionsites, and
links to further documentation. Though self-authenticating, onion addresses are
comprised only of an encoding of a public key. They thus generally appear to
be meaningless, random-looking strings, though some large sites commit signifi-
cant computational resources to make a portion of the address meaningful, e.g.,
facebookwkhpilnemxj7asaniu7vnjjbiltxjqhye3mhbshg7kx5tfyd.onion.

Thus a SATA for the base domain example.com can be given as
[onion-address].example.com, where [onion-address] is a 56 character
string comprising a base-32 encoding of an ed25519 key, and a checksum and
a few other things [16]. This subdomain format of SATA was described in [20].
Usability improvements for both client users and service operators are made pos-
sible via the query-string format introduced in [19], in which the URL-bar display
for this example would be https://example.com/?onion=[onion-address].

Another advantage of SATAs is that they support discovery of the SATA
simply by redirection from a given domain, while still maintaining that same
domain in the URL bar and using the same TLS certificate. SATAs and sat-
testation thus counter attacks that are possible when redirection is to an ordi-
nary onion address [19]. And the query-string format additionally counters the
problem noted by Reynolds et al. [17] that “when examining confusing URL
transforms, we found that users were least able to understand URLs with long
subdomains/FQDNs.”

Unlike plain onion addresses, visiting a SATA also does not require routing
over Tor. Indeed, browsers that know nothing about Tor or onion addresses will
process a SATA the same as any domain visited via HTTPS. Browsers that
understand SATAs gain additional authentication protections, which we will
explain presently. And, if Tor Browser is used, the additional routing and address
lookup protections of an onion address are provided, but with the bonus of a
displayed URL for a meaningful domain name rather than just a random-looking
encoding of a public key. SATAs do not abandon the traditional web root of trust
in certificate authorities (CAs), but they do supplement it so that, for example,
CAs cannot simply usurp a website’s autonomy over its own authentication by
fraudulently or mistakenly issuing a TLS certificate. To be explicit, these are not
alternative roots sufficient to provide the same trust. Rather they are additional
roots that must occur in appropriate combination with existing roots (CAs) in
order for trust to be established in the authentication of the address in question.

Connecting to a SATA is authenticated by the traditional mechanisms of
TLS and TLS certificates, but to support autonomy of site owners, it is also
authenticated by a credential, sent as an HTTP header, that attests to the
binding of the domain name, the onion address, and optionally contextual labels
about the type of site, e.g., that it is a news media site, or is a domain owned
by Microsoft. We call such an attestation a sattestation. Such sattestations are
made by a SATA, either a third-party SATA, or by a SATA about itself, in

416 P. Syverson

which case it also includes a fingerprint of the TLS certificate. We will return to
third-party sattestations below.

After the TLS handshake, SATA-aware services send an HTTP header signed
by the private key corresponding to [onion-address], i.e., the self-sattestation
credential. The header data includes a timestamp, the domain name, the onion
address, and a fingerprint of a TLS certificate. A self-sattestation for our running
example in JSON format is given in Fig. 1. The TLS certificate should itself be for
example.com and should contain [onion-address].example.com as an subject
alternative name (SAN). In this way the TLS certificate and the signed HTTP
header authenticate each other: by including this alternative name the TLS
certificate indicates that the domain name example.com is bound to the onion
address, [onion-address], and the signed HTTP header also authenticates that
the TLS certificate, the domain name, and the onion address are all bound
together. (The figure reflects that we have the flexibility to handle the case that
a site might use multiple different TLS certificates and the self-sattestation will
work for a connection using any of them as long as the fingerprint is given.)

{ "sattestation": {

"sattestation_version":1,

"sattestor_domain":"example.com",

"sattestor_onion":"..." // sattestor’s onion addr.

"sattestor_refresh_rate":"7 days",

"sattestees": [

{

// bind domain to a self auth. address

"domain": "example.com",

"onion": "...", // same as sattestor

"cert_fingerprint": ["632B119944 ...",

"23964A1368 ..."],

"issued": "2021-06-01",

"refreshed_on": "2021-10-25" }]

},

// signature by sattestor

"signature": "..." }

Fig. 1. An example sattestation in JSON format

A SATA-aware browser, such as one incorporating the Firefox WebExten-
sion we have implemented for this, will verify the onion signature, and verify
that the signed information matches the TLS certificate and its contents, and
that the header timestamp is within a validity window (default of one week). A
connection by client Alice to https://example.com/?onion=[onion-address]
cannot be validated by a TLS certificate that does not match the SATA header
and signature. Thus, a CA cannot issue a fraudulent certificate that Alice will
accept for this SATA because an attacker’s service attempting to authenticate a
connection to it will not have the private key corresponding to that address.

Principles of Remote Sattestation 417

2.1 Third-Party Sattestation

A CA could still issue a fraudulent certificate for [onion-address2].example.
com, where the adversary holds the private key corresponding to [onion-
address2]. How is Alice to know which address to trust with any greater
assurance than that already provided by the TLS PKI? This is where an
additional root of trust is needed. Unlike [9], the attestation statements
that principals make regarding SATAs are of a single simple kind, specifi-
cally that the components of a SATA are properly bound together. In par-
ticular that the traditional domain name and the self-authenticating onion
address belong to the same entity. Suppose Alice trusts Tom to make asser-
tions about the binding of [onion-address] to example.com and Alice receives
[onion-address].example.com on a channel she trusts to be authenticated to
Tom. For example, this could be on a business card he hands her, in a GPG signed
message, in a link to https://example.com/?onion=[onion-address] sent via
Signal, etc. Tom could be the owner of example.com or it could be that Alice trusts
him to only make such an assertion if he has verified that the entity who manages
example.com also possesses the private key associated with [onion-address]. We
are only concerned with attestations about the binding of SATAs. They are not
meant to, e.g., indicate anything about the veracity of content found at the SATA,
reliability of services or goods offered there, etc. We have chosen to call such attes-
tations, ‘sattestations’ to reinforce the narrow scope of these attestations and avoid
confusions with any other type of attestations.

An important property that such sattestations support is dirt-simple trust.
Ordinarily for Alice to trust that she has been directed in a hijack-resistant way
to a domain, she would need to receive additional statements from Tom at least
about the current TLS key. Such are already provided by verification of a TLS
handshake. But that is rooted in trust of statements by CAs, and we are seeking
trust that site owners can control in a way that CAs cannot usurp or be tricked
into granting through certificate hijack, a recognized significant problem [3,4].
With SATAs, if Alice has a properly configured browser (and other software and
hardware is all proper), then she can simply be given an address from someone
she trusts and that is sufficient. The address is all she needs. And if that address
is, e.g., in a Signal message, then she only needs to follow the link and she is done.
If Tom wanted to sattest to the binding of [onion-address].example.com he
could also do so by posting that sattestation on his web page that itself has a
SATA. If Alice trusted the binding of the SATA for his page (e.g. by one of the
above methods) and trusted its association with Tom, that posting could serve
as a sattestation.

Of course to learn about these sattestations, Alice must either request or
receive a message from Tom or visit his SATA. The sattestation credential for-
mat introduced in [19] not only provides a standardized way for Tom to make
sattestations, it also allows a sattestee site to send to clients third-party sattes-
tations it has been granted without the client needing to directly contact the
sattestor. These third-party sattestations have essentially the same format as
the self-sattestation illustrated in Fig. 1, just without the limitation that the

418 P. Syverson

sattestor be the same as the sattestee. They also do not need to include cer-
tificate fingerprints: Tom is not making an assertion about binding of a TLS
certificate to [onion-address] or example.com, only that these are bound to
each other. Continuing with the above personal trust scenario, most sites would
not be inclined to provide sattestations from Alice’s friend Tom. So retrievals of
sattestations directly from Tom might still be needed unless the site is specifi-
cally associated with Tom in some way or some other means of discovering them
is devised.

But the same structures scale up nicely so that, e.g., if Alice trusts a base
Microsoft SATA for sattestations about Microsoft, then this could support sattes-
tations from that SATA about SATAs for live.com, office.com, office.net,
microsoftonline.com, msn.com, etc. Note that even at the enterprise level,
the trust we establish remains contextual. If Microsoft were trusted to provide
sattestations for any site, e.g. apple.com, or nrl.navy.mil, then this would
effectively be the same sort of purely structural trust already afforded CAs. To
support contextual trust, our JSON sattestation credentials also support contex-
tual labels. The above sites would likely have a microsoft or similar label, while,
nrl.navy.mil might have a label for the U.S. Government or the Department
of Defense. And clients are likely to have preloaded trusted sattestors for at least
the largest, most significant entities. For government agencies, this could help
obviate very real large-scale DNS attacks against them [13,14].

Likewise, even companies that are not huge can create sattestations for their
domains and preconfigure employee and contractor browsers to require sattes-
tations for these and trust a corporate SATA to sign them. This can help resist
leaking login credentials or sensitive data to a hijacker site. And, a web-based
VPN could be hosted at a SATA to make it hijack-resistant. Man in the Middle
attacks have occurred against domains not intended to be reachable—much less
accessed—by the public [7]. Making SAT versions of these domains can provide
defense in depth against attacks on these internal namespaces.

2.2 Trust Yourself. . . , But Verify

Joshua has also explored body area networks (BANs) where “no central trusted
parties can be the root of trust except that the user trusts herself” [15]. One of the
virtues of sattestation is that the same mechanisms that support centralized trust
at the scale of all of .gov will also support decentralized trust from individuals,
small organizations, etc. In other words these mechanisms scale both up and
down. Similarly, Alice can include amongst those SATAs she trusts, a list of
SATAs that she has validated herself.

Many notions called ‘trust’ are transitive [12], though this is also sometimes
criticised [8]. Like [9] our notion is not inherently transitive. Suppose Alice trusts
Tom’s sattestation of a SATA for Freedom of the Press Foundation (FPF). And
suppose Alice sees a sattestation by that FPF SATA of a SATA for CNN. Even
if she thus justifiably believes that this sattesation was made by FPF, she should
not trust this sattestation unless she additionally trusts the FPF SATA to make
such sattestations [20].

Principles of Remote Sattestation 419

Nonetheless, if Alice trusts Tom to evaluate the trustworthiness of some prin-
cipals to provide sattestations, then he could indicate to her that he thinks FPF
is to be trusted as a sattestor (of, e.g., SAT addresses labeled news). As a more
broadly applicable example, if Alice trusts the General Services Administration
to evaluate the trustworthiness of U.S. government and military SATAs to pro-
vide appropriate sattestations, then a trusted GSA SATA could indicate to her,
e.g., that it thinks that a given SATA for navy.mil is to be trusted as a sat-
testor of SAT addresses labeled navy. It is practical to be able to reason about
such cases with formal statements. [20] simply disallows such iterated trust, and
though it mentions the possibility of contextual labels, it provides no means to
express or reason about them. An implementation supporting such labeled sat-
testations and ability to express explicitly transitive trust is described in [19].
And we are in the process of producing a formal language and logic of sattesta-
tions to support reasoning about these that will be presented in future work.

Further, if sattestations were implicitly transitive in the usual sense, notions
of autonomy from centralized trust authorities would become more problematic,
even with general max-flow, min-cut or similar limitations on trust propagation.
Limiting iteration of trust to cases where specific iterations or contextual classes
of iterations are explicitly assumed permits greater flexibility without letting go
of independence from third-party authorities.

3 Principles of (S)attestation

The above is a quick overview of SATAs and sattestation, and the reader is
encouraged to consult the cited papers and search for ones published since this
was written for more details and developments. This overview is hopefully suffi-
cient to revisit the principles of remote attestation set out in [9,10], and see how
they apply to sattestations.

Before stating the principles, we note that the meaning we attach to “trust”
is the same as given in [9].

Principal B trusts principal A with regard to the statement ϕ if and only
if, from the fact that A has said ϕ, B infers that ϕ was true at a given time.

The first principle is,

Principle 1 (Fresh information): Assertions about the target should reflect
the running system, rather than just disk images. While some measurement tools
may provide start-up time information about the target, others will inspect the
current state of an active target. An attestation architecture should ensure access
to the live state of the target.

I have stated the principle in its entirety. Obviously much of it is about
attesting to the state of running software. I have presented it in its entirety to
underscore that. While sattestations do not need to be made about the current
state of software running on a web server, they do include a timeliness window
that provides a freshness guarantee. The default is set to a week to allow for clock

420 P. Syverson

skew at the browser of up to 3.5 days in the past or the future of the sattestation,
but other windows are possible. A self-sattestation that is not fresh (within the
window) will not be accepted by the WebExtension, which will produce an error
message, and the connection will not be allowed to continue.

SATAs thus also support timeliness guarantees for certificate revocation with-
out the overhead or problems associated with revocation lists or OCSP (or OCSP
stapling or OCSP must-staple). This is a side benefit to their primary purpose of
strengthening authentication and requires no additional overhead. A site want-
ing to revoke a TLS certificate simply stops providing SATA headers attesting to
that certificate. A browser aware of that SATA (or once SATAs are widespread
enough, configured to expect SATAs for any site) will not complete the connec-
tion and will instead raise a warning. Until SATAs and sattestation checks are
widespread, however, it is necessary to continue relying on existing mechanisms.
But SATAs have the ultimate potential to greatly reduce the costs of supporting
revocation, and they already support a form of revocation that does not force a
site owner to depend on CAs.

Finally, the TLS handshake will still have its freshness guarantees limiting
decency to initiation of the handshake—provided the TLS key is still valid. Thus,
sattestation decency is limited to the window provided in the self-sattestation
header, which is still within the current decency requirements for OCSP if set
to default values. But, absent TLS problems that sattestation is designed to
counter, the overall decency guarantee for the connection is since the session
was established. (I will not discuss freshness issues or other concerns stemming
from permitting TLS session resumption in this paper.)

Principle 2 (Comprehensive information): Attestation mechanisms should
be capable of delivering comprehensive information about the target, and its full
internal state should be accessible to local measurement tools.

SATA headers and sattestations are only about the (timely) binding of the
elements of a SATA. So, this principle can either be viewed as having no sattes-
tation analogue or as having one that is always trivial to satisfy.

Principle 3 (Constrained disclosure): A target should be able to enforce
policies governing which measurements are sent to each appraiser.

In general this is another principle without direct analogue. Sattestation does
not imply any approval or attestation by the sattestee of the sattestor. In prin-
ciple, it should not matter to the owner of a SATA if an entirely unfriendly
or disreputable entity wants to provide a sattestation for that SATA. A SATA
can, however, specify the labels under which it considers itself classifiable, e.g.
government. Then unless a client trusts a sattestor to issue sattestations with
that label, it will not trust sattestations from that sattestor for that sattestee.

SATAs do, nonetheless, support a number of disclosure protections. First,
signing of headers is implemented so that signing with onion keys can be done
offline (e.g., each week). This means that the key to authenticate the SATA
header is less vulnerable to exposure than the key certified for TLS handshakes.

Principles of Remote Sattestation 421

Second, SATAs are in general ordinary domains with DNS records. If desired,
however, e.g., for domains not intended to be used by the public, lookup informa-
tion can be given only to the Tor onion service directory system under its onion
address. We briefly describe this, but readers not familiar with onion services
and their protocols may wish to consult [1]. The onion service directory system
is comprised of a regularly rotating distributed hash table of Tor relays where
even the Tor relay holding lookup information for a specific onion service can-
not in general discover for which onion addresses it has lookup information: the
lookup record is stored under a hash of the onion address. So the relevant direc-
tory relays must know the onion address in order to determine the record, which
is similarly cryptographically protected. And the authentication of lookup and
access for connecting via onion service protocols uses a key delegation system
permitting offline signatures even for realtime authenticating of the connection,
separate from authenticating the TLS handshake or SATA header [16].

Third, as noted, which onion addresses a relay holds cannot be discovered
without knowing the onion address already. In addition, the records can be stored
so that, without an authentication key known to trusted clients, it will not be
possible to know for which onion address a lookup record was recovered or to
decrypt the information in that record—which is needed to know where and how
to connect to the onion service [16].

Principle 4 (Semantic explicitness): The semantic content of attestations
should be explicitly presented in logical form.

Coker et al. go on to state, “The identity of the target should be determined
by this semantics, so an appraiser can collect attestations about it. The appraiser
should be able to infer consequences from several attestations, e.g., when different
measurements of the target jointly imply a prediction about its behavior. Hence,
attestations should have uniform semantics and be composable using valid logical
inferences” [9].

As already noted, a logic for sattestations is in development including a
soundness result that effectively says that a principal trusts a sattestation for a
SATA only if there is a chain of sattestations from a trusted root sattestation to
that one. The logic is still being developed at the time of writing, and setting it
out in full is, in any case, beyond the intended scope of this paper.

Principle 5 (Trustworthy mechanism): Appraisers should receive evidence
of the trustworthiness of the attestation mechanisms on which they rely. In par-
ticular, the attestation architecture in use should be identified to both appraiser
and target.

The last principle is one that sattestations, at least as currently conceived,
do not support down to the root level. While the structure above the root level
is identified, the reason that a client trusts a sattestor for a particular SATA
or class of SATAs is not standardized in some equivalent of an architecture of
measurement attestors, reporting attestors, storage attestors, etc. It is generally
outside of our scope to say why Alice trust Tom to sattest to some SATA. This
is not an accident. Sattestations are meant to support contextual, not merely
structural trust.

422 P. Syverson

It may be that Alice’s trust in Tom reflects a human personal trust relation-
ship on which this is based. Or, as already noted, it may be institutional: Alice
may trust a particular Microsoft SATA to sattest to any SATA that declares
itself as belonging to Microsoft, or some U.S. Government sattestor for any .gov
or .mil SATAs, etc.

Nonetheless, it is possible to have general and standardized evidence of trust-
worthiness of sattestation. For example, a CA supporting sattestations could set
out both the standard criteria for issuance of, e.g., a Domain Validation (DV)
certificate as given in CA/Browser Forum Guidelines [5] coupled with a simul-
taneous check of control over an onion key included in a SATA that is a SAN in
a certificate and that is used to sign the domain(s) checked by existing means.
No CA currently does this for subdomain SATAs per se. But the CA/Browser
Forum Guidelines stipulate checking possession of the private onion key for a
certificate in which a corresponding .onion address is either the subject or an
alternative name. And HARICA has recently begun issuing DV certificates for
.onion addresses. Others have been issuing EV certificates for these for several
years. Since for any certificate containing both a domain name and an onion
address, issuance involves both the usual checks for control of the registered
domain and possession of the private onion key, this amounts to an implicit
structural sattestation from the CA. Of course it is limited to the checks that a
CA performs during issuance, and as noted, strengthening authentication beyond
the hijack-resistance of such issuance is a primary motivation for SATAs and sat-
testation.

Evidence of such checks and issuance would be included in Certificate
Transparency (CT) logs [6]. CT logs are independently-operated and publicly-
accessible append-only ledgers of certificates issued by CAs. Major browsers
include checks during a TLS handshake for a signed certificate timestamps
(SCT), a commitment by a CT log to include the certificate in its ledger. Tor
Browser currently does not natively support such checks, though the steps needed
to do so have been investigated [11]. Further, Tor Browser still currently benefits
from the public availability and general support for checking of them, e.g., at
https://crt.sh. Because of the availability of CT logs and the rules regarding
issuance of certificates, it is thus possible to have architectural evidence of the
trustworthiness of structural sattestations from CAs, but ultimately rooted in
the limited authentication assurances of certificate issuance.

This leads to a related advantage of such evidence being contained in CT
logs: it would separate cases of fraudulent issuance by CAs from DNS hijack
or other attack occurring during issuance. (The CA would not be able to show
that someone possessing the private onion key had participated in the issuance
unless it can produce a signature using that key that it received during issuance.)
That plausible deniability of such an attack is removed could thus serve as an
incentive for a CA to market itself as an inherently more trustworthy (because
verifiable) issuer of certificates. Thus, it is not without any advantages. Nonethe-
less, what such sattestations gain in scalability they lose in context. There is no
contextual reason to trust the CA’s sattestations for such bindings because there

Principles of Remote Sattestation 423

is no contextual reason to trust the CA’s check of control over a domain. Trust
becomes merely structural. For contextual trust, contextual sattestations would
still be needed.

In this paper we have looked at attestation principles as set out by Joshua
Guttman and his collaborators. In particular, we have explored how such princi-
ples apply beyond their original intended setting of trusted computing. We have
found them to have illuminating analogues in the setting of what might be called
trusted webbing, building security into the web itself (via SATAs and sattesta-
tion). Of course this depends on the correctness of the security protocols that
establish and validate this built-in security. Establishing correctness of security
protocols is the topic of other work by Joshua, perhaps the work for which he is
best known, but alas, a topic for another paper.

References

1. Onion services. https://community.torproject.org/onion-services/
2. Appelbaum, J., Muffett, A.: The .onion special-use domain name (2015). https://

tools.ietf.org/html/rfc7686
3. Birge-Lee, H., Sun, Y., Edmundson, A., Rexford, J., Mittal, P.: Bamboozling cer-

tificate authorities with BGP. In: 27th USENIX Security Symposium, pp. 833–849.
USENIX Association (2018)

4. Birge-Lee, H., Sun, Y., Edmundson, A., Rexford, J., Mittal, P.: Using BGP to
acquire bogus TLS certificates. In: Hot Topics in Privacy Enhancing Technologies
(HotPETs) (2017)

5. CA/Browser Forum Baseline Requirements Certificate Policy for the Issuance and
Management of Publicly-Trusted Certificates, Version 1.6.9. https://cabforum.org/
wp-content/uploads/CA-Browser-Forum-BR-1.6.9.pdf (27 March 2020)

6. Certificate Transparency. https://certificate.transparency.dev/
7. Chen, Q.A., Osterweil, E., Thomas, M., Mao, Z.M.: MitM attack by name collision:

cause analysis and vulnerability assessment in the new gTLD era. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 675–690. IEEE (2016)

8. Christianson, B., Harbison, W.S.: Why isn’t trust transitive? In: Lomas, M. (ed.)
Security Protocols 1996. LNCS, vol. 1189, pp. 171–176. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-62494-5 16

9. Coker, G., et al.: Principles of remote attestation. Int. J. Inf. Secur. 10(2), 63–81
(2011)

10. Coker, G., Guttman, J., Loscocco, P., Sheehy, J., Sniffen, B.: Attestation: evidence
and trust. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308,
pp. 1–18. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88625-
9 1

11. Dahlberg, R., Pulls, T., Ritter, T., Syverson, P.: Privacy-preserving &
incrementally-deployable support for Certificate Transparency in Tor. Proc. Priv.
Enhancing Technol. 2021(2), 194–213 (2021)

12. Fagin, R., Halpern, J.Y.: I’m OK if you’re OK: on the notion of trusting commu-
nication. J. Philos. Logic 17, 329–354 (1998)

13. Hirani, M., Jones, S., Read, B.: Global DNS hijacking campaign: DNS record
manipulation at scale, 9 January 2019. https://www.fireeye.com/blog/threat-
research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-
scale.html

https://community.torproject.org/onion-services/
https://tools.ietf.org/html/rfc7686
https://tools.ietf.org/html/rfc7686
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.6.9.pdf
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-1.6.9.pdf
https://certificate.transparency.dev/
https://doi.org/10.1007/3-540-62494-5_16
https://doi.org/10.1007/978-3-540-88625-9_1
https://doi.org/10.1007/978-3-540-88625-9_1
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html

424 P. Syverson

14. Krebs, C.C.: Emergency directive 19-01: mitigate DNS infrastructure tampering,
22 January 2019. https://cyber.dhs.gov/assets/report/ed-19-01.pdf

15. Li, M., Yu, S., Guttman, J.D., Lou, W., Ren, K.: Secure ad hoc trust initialization
and key management in wireless body area networks. ACM Trans. Sens. Netw.
9(2), 1–35 (2013)

16. Mathewson, N.: Next-generation hidden services in Tor (Tor proposal 224).
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt

17. Reynolds, J., et al.: Measuring identity confusion with uniform resource locators.
In: Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pp. 1–12. ACM (2020). https://doi.org/10.1145/3313831.3376298

18. Syverson, P.: The once and future Onion. In: Foley, S.N., Gollmann, D., Snekkenes,
E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 18–28. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66402-6 3

19. Syverson, P., Finkel, M., Eskandarian, S., Boneh, D.: Attacks on onion discovery
and remedies via self-authenticating traditional addresses. In: Livraga, G., Park,
N. (eds.) ACM Workshop on Privacy in the Electronic Society, WPES 2021. ACM
Press (November 2021)

20. Syverson, P., Traudt, M.: Self-authenticating traditional domain names. In: 2019
IEEE Secure Development (SecDev), pp. 147–160. IEEE (September 2019)

https://cyber.dhs.gov/assets/report/ed-19-01.pdf
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt
https://doi.org/10.1145/3313831.3376298
https://doi.org/10.1007/978-3-319-66402-6_3

Author Index

Ahmadpanah, Mohammad M. 1
Aparicio-Sánchez, Damián 22

Balliu, Musard 1
Bhandary, Prajna 50
Bhargavan, Karthikeyan 77
Bichhawat, Abhishek 77
Biswas, Sayan 232
Bruni, Alessandro 98

Carbone, Marco 98
Cortier, Véronique 112
Cuellar, Jorge 293

Degano, Pierpaolo 124
Di Pierro, Alessandra 139
Do, Quoc Huy 77
Dougherty, Daniel J. 156
Dyer, Tristan 394

Escobar, Santiago 22

Focardi, Riccardo 175

Galletta, Letterio 124
Gerali, Selene 124
Giustolisi, Rosario 98

Hansen, René Rydhof 312
Hedin, Daniel 1
Hosseyni, Pedram 77

Incudini, Massimiliano 139

Jamroga, Wojciech 198
Johnson, Dale M. 218
Jung, Kangsoo 232

Kanovich, Max 251
Kirigin, Tajana Ban 251
Krishnamurthi, Shriram 394
Küsters, Ralf 77

Luccio, Flaminia L. 175

Malladi, Sreekanth 276
Meadows, Catherine 22
Meseguer, José 22
Millen, Jonathan 276
Mödersheim, Sebastian 98, 293

Nelson, Tim 394
Nicholas, Charles 50
Nielson, Flemming 312
Nielson, Hanne Riis 312
Nigam, Vivek 251

Olsson, Lars Eric 1

Palamidessi, Catuscia 232
Pavlovic, Dusko 332
Pinsky, Sylvan 348

Rakotonirina, Itsaka 112
Ramsdell, John D. 355
Rowe, Paul D. 370
Ryan, Peter Y. A. 198

Sabelfeld, Andrei 1
Santomauro, Mia 394
Sapiña, Julia 22
Scedrov, Andre 251
Schmitz, Guido 77
Schneider, Steve 198
Schürmann, Carsten 98, 198
Siegel, Abigail 394
Stark, Philip B. 198
Syverson, Paul 414

Talcott, Carolyn 251

Würtele, Tim 77

Zieglar, Edward 50

	Preface
	Contents
	Securing Node-RED Applications
	1 Introduction
	2 Node-RED Vulnerabilities
	2.1 Node-RED Platform
	2.2 Platform-Level Isolation Vulnerabilities
	2.3 Application-Level Context Vulnerabilities

	3 Formalization
	3.1 Language Syntax and Semantics
	3.2 Security Condition and Enforcement

	4 Related Work
	5 Conclusion
	References

	Protocol Analysis with Time and Space
	1 Introduction
	1.1 Related Work

	2 Two Time and Space Protocols
	3 A Time and Space Process Algebra
	3.1 New Syntax for Location
	3.2 Time and Space Intruder Model
	3.3 Time and Space Process Semantics

	4 Time and Space Process Algebra into Untimed Process Algebra
	5 Timed Process Algebra into Strands in Maude-NPA
	6 Conclusions
	References

	Searching for Selfie in TLS 1.3 with the Cryptographic Protocol Shapes Analyzer
	1 Introduction
	2 Background
	2.1 Cryptographic Protocol Shapes Analyser
	2.2 TLS 1.3 Pre Shared Key Authentication
	2.3 Selfie Attack

	3 Modeling TLS 1.3 PSK Authentication
	3.1 Models of the TLS 1.3 PSK Authentication
	3.2 Modeling the Proposed Fixes to the Selfie Attack

	4 Discussion
	5 Conclusions
	A Appendix
	References

	A Tutorial-Style Introduction to DY
	1 Introduction
	2 The DY Framework
	3 The ISO-DH Protocol
	4 Modeling ISO-DH in DY
	5 Security Analysis
	5.1 Forward Secrecy
	5.2 Authentication Properties

	6 Conclusion
	References

	Security Protocols as Choreographies
	1 Introduction
	2 The Envelope Protocol and Its Choreographic Description
	3 Projection and Refinement
	3.1 Projection
	3.2 Refinement

	4 Verification in Tamarin
	5 Related Work
	6 Conclusion
	References

	How to Explain Security Protocols to Your Children
	1 Introduction
	2 Storyboard
	2.1 Our First Security Protocol
	2.2 How the Postman Steals Isabelle's Cake
	2.3 A Fix: Asymmetric Encryption
	2.4 Denial of Service?

	3 When it Gets Really Dark
	3.1 Challenge and Respond
	3.2 Man in the Middle Attack
	3.3 A Countermeasure

	4 A Practical Session
	4.1 The Material
	4.2 A Typical Session
	4.3 Long-Term Variants of the Design-Attack Parts (advanced)

	5 Conclusion: Have Fun!
	References

	Verifying a Blockchain-Based Remote Debugging Protocol for Bug Bounty
	1 Introduction
	2 Background: VeriOSS
	2.1 Workflow Overview
	2.2 Challenge-Response Interaction
	2.3 Remote Debugging, and Challenge Generation and Solution

	3 Protocol Encoding
	4 Verification in ProVerif
	5 Conclusion
	References

	Quantum Machine Learning and Fraud Detection
	1 Introduction
	2 Detecting Fraudulent Transactions
	2.1 Support Vector Machines
	2.2 Quantum Matrix Inversion and Probabilistic Abstract Interpretation

	3 Quantum Machine Learning
	3.1 Quantum Support Vector Machines
	3.2 Quantum Support Vector Machines as PAI

	4 Implementation of Quantum Fraud Detection
	4.1 Experiments on the IBM Quantum Platform

	5 Conclusion
	References

	Model Finding for Exploration
	1 Introduction
	2 Foundations
	2.1 Homomorphism Orderings

	3 Approaches to Model Finding
	4 Three Principles for Model Finding Assistants
	4.1 Fitness
	4.2 Exploration of Individual Models
	4.3 Completeness

	5 Geometric Logic
	6 Direct Model Finding Methods
	6.1 Chase-Based Approaches
	6.2 cpsa

	7 Programming Against a Solver: Theory
	7.1 Building Blocks
	7.2 Minimization
	7.3 Set of Support

	8 Programming Against a Solver: Practice
	8.1 Constructing HomTo and HomFrom for Arbitrary Homomorphisms
	8.2 Constructing HomTo and HomFrom for Submodel Morphisms
	8.3 Constructing homTo and homFrom for Injective Morphisms

	9 Conclusion
	References

	Secure Key Management Policies in Strand Spaces
	1 Introduction
	2 Background and Related Work
	2.1 The Strand Space Model
	2.2 The CPSA Tool
	2.3 Attacks on the PKCS#11 API
	2.4 Related Work

	3 Key Management Policies
	4 Key Management APIs
	4.1 An Untyped, Vulnerable API
	4.2 A Secure, Typed API
	4.3 Examples

	5 Conclusion
	References

	A Declaration of Software Independence
	1 Introduction
	2 Formalizing Software Independence
	2.1 Software Independence... of What?
	2.2 Voting System and Its Software
	2.3 Available Audits

	3 Possibilistic Formulation of Software Independence
	3.1 Basic Formulation
	3.2 Relationship to End-to-End Verifiability
	3.3 SI with Adaptive Audits
	3.4 A Refinement
	3.5 Software Resilience
	3.6 Thought Experiment
	3.7 Software Independence for Probabilistic Audits

	4 Probabilistic/Game-Theoretic Definition
	4.1 Terminology and Notation
	4.2 Game-Theoretic Definition of SI

	5 Conclusions
	References

	Formal Methods and Mathematical Intuition
	1 Introduction
	2 Formal Methods and Research at MITRE
	3 Mathematical Intuition and Heuristics
	4 Example: Development of Dimension Concepts and Dimension Theories
	5 L. E. J. Brouwer's Breakthrough to Invariance of Dimension
	6 Conclusion: Formal Methods, Mathematical Intuition, and Rigorous Mathematical Exposition
	References

	Establishing the Price of Privacy in Federated Data Trading
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Shapley Value

	3 Related Works
	4 Differentially Private Data Trading Mechanism
	4.1 Mechanism Outline
	4.2 Earning Splitting

	5 Experimental Results
	5.1 Experimental Environments
	5.2 Number of Rounds Needed for Data Collection
	5.3 Number of Free Riders by Penalty Scheme
	5.4 Reduced Shapley Value Computation Time

	6 Conclusion
	A Proofs
	References

	On the Complexity of Verification of Time-Sensitive Distributed Systems
	1 Introduction
	2 Multiset Rewriting Systems
	2.1 Progressing Timed Systems

	3 Quantitative Temporal Properties
	3.1 Critical Configurations and Compliant Traces
	3.2 Time Sampling
	3.3 Verification Problems

	4 Relations Among Properties of Timed MSR
	4.1 Relations Among Different Properties of Timed MSR and PTS

	5 Complexity Results for PTSes
	5.1 PSPACE-Completeness of Verification Problems for PTSes

	6 Related and Future Work
	References

	Adapting Constraint Solving to Automatically Analyze UPI Protocols
	1 Introduction
	2 Background
	3 Constraint Solving
	4 CSolver
	5 Modeling in the Constraint Solver
	6 Representation of SMS
	7 Implementation and Testing
	8 Conclusion
	References

	Three Branches of Accountability
	1 Introduction
	2 The Agent Model
	3 The Legislative Branch
	4 The Executive Branch
	5 The Judicial Branch
	6 Security Based on Perfect Crimes
	7 Løglog
	8 Related Work and Conclusion
	References

	Benign Interaction of Security Domains
	1 Introduction
	2 Syntax
	3 Local Security: Information Flow Type System
	4 Global Security: Change of Security Domain
	5 Taking Security Violations into Account
	6 Conclusion
	A Semantics
	References

	Probabilistic Annotations for Protocol Models
	1 Introduction
	2 Crypto-Logical Systems
	2.1 Crude and Overly General Definition
	2.2 Information Sets and Preorders of States
	2.3 Refining the Definition of Crypto-Logical Systems
	2.4 Probability vs. Knowledge
	2.5 Global Semantics
	2.6 Knowledge of Probability vs Probability of Knowledge

	3 Cryptographic Definitions in Crypto-Logic
	4 Examples of Reasoning in Crypto-Logic
	4.1 Security of the Vernam Cryptosystem
	4.2 El-Gamal
	4.3 Towards Protocols for Noisy Muddy Mistrustful Children

	References

	Joshua Guttman: Pioneering Strand Spaces
	1 Introduction
	2 Strand Spaces
	3 Concluding Remarks
	References

	Cryptographic Protocol Analysis and Compilation Using CPSA and Roletran
	1 Introduction
	2 Message Algebras
	3 Strand Spaces with Channels
	3.1 Unilateral Protocol Example
	3.2 Channel Assumptions

	4 Abstract Execution Semantics
	4.1 Correctness

	5 A Runtime with Probabilistic Encryption
	6 Concrete Execution Semantics
	7 Relating Execution Semantics
	8 Epilogue
	References

	On Orderings in Security Models
	1 Introduction
	2 Preliminaries
	3 Attack Trees
	4 Copland
	5 Attribute Domains
	6 Copland Trust Ordering
	7 Cryptographic Protocols
	8 Conclusion
	References

	Prototyping Formal Methods Tools: A Protocol Analysis Case Study
	1 Introduction
	2 End-To-End Language-Oriented Modeling
	2.1 Protocol Analysts: Custom Visualization and Queries
	2.2 The Protocol Creator: Translating Domain-Specific Input
	2.3 Scripting and Extensibility

	3 Relational Model Finding
	4 Modeling Protocol Executions
	5 Processing cpsa Declarations
	5.1 Deriving Relational Constraints
	5.2 Queries and Predicates

	6 Visualizing Strands
	7 Prototype Performance
	8 Related Work
	9 Discussion
	References

	Principles of Remote Sattestation
	1 Introduction
	2 Overview of Self-authenticating Traditional Addresses
	2.1 Third-Party Sattestation
	2.2 Trust Yourself…, But Verify

	3 Principles of (S)attestation
	References

	Author Index

