
Nicola Tuveri
Antonis Michalas
Billy Bob Brumley (Eds.)

LN
CS

 1
31

15

Secure IT Systems
26th Nordic Conference, NordSec 2021
Virtual Event, November 29–30, 2021
Proceedings

Lecture Notes in Computer Science 13115

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Nicola Tuveri · Antonis Michalas ·
Billy Bob Brumley (Eds.)

Secure IT Systems
26th Nordic Conference, NordSec 2021
Virtual Event, November 29–30, 2021
Proceedings

Editors
Nicola Tuveri
Tampere University
Tampere, Finland

Billy Bob Brumley
Tampere University
Tampere, Finland

Antonis Michalas
Tampere University
Tampere, Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91624-4 ISBN 978-3-030-91625-1 (eBook)
https://doi.org/10.1007/978-3-030-91625-1

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5172-4568
https://orcid.org/0000-0001-9160-0463
https://orcid.org/0000-0002-0189-3520
https://doi.org/10.1007/978-3-030-91625-1

Preface

The NordSec conferences were started in 1996 with the aim of bringing together
researchers and practitioners within computer security in the Nordic countries, thereby
establishing a forum for discussions and cooperation between universities, industry, and
computer societies. Over the years, NordSec has developed into an international confer-
ence that takes place in the Nordic countries on a round-robin basis. It has also become a
keymeeting venue for Nordic university teachers and students with an interest in security
research.

These proceedings contain the papers presented at NordSec 2021: The 26th Nordic
Conference on Secure IT Systems held virtually, due to COVID-19 restrictions, during
November 29–30, 2021. The conference was organized by the Network and Information
Security (NISEC) group at Tampere University, Finland.

All of the 29 submissions received by the extended deadline (August 31), met the
requirements for peer review. Following a brief bidding process for manuscripts, the
review period was set between September 8 and September 27. During this period the
45-member Program Committee produced a total of 111 reviews. The average of 3.83
reviews per manuscript achieved by this well-organized effort brought us close to our
initial goal of 4 reviews per manuscript.

Based on the reviews and following a brief yet active discussion phase, we notified
authors on October 1 that 11 manuscripts had been accepted for presentation at NordSec
2021, resulting in a 37.93% acceptance rate. Amongst these papers, five clear themes
emerged: applied cryptography, security in Internet of Things, machine learning and
security, network security, and trust.

We were honored to have two brilliant invited speakers: David Arroyo from ITEFI-
CSIC, Spain, and Rafael Dowsley from Monash University, Australia.

As NordSec 2021 chairs, we extend our sincerest gratitude to everyone involved in
making this year’s event a success, including but not limited to the authors that submitted
their hardwork, the ProgramCommittee and external reviewers, and the invited speakers.

October 2021 Billy Bob Brumley
Antonis Michalas

Nicola Tuveri

https://research.tuni.fi/nisec/
https://dargcsic.github.io/
https://dowsley.net/

Organization

General Chair

Billy Bob Brumley Tampere University, Finland

Program Chair

Antonis Michalas Tampere University, Finland

Local Chair

Nicola Tuveri Tampere University, Finland

Steering Committee

Magnus Almgren Chalmers University of Technology, Sweden
Tuomas Aura Aalto University, Finland
Karin Bernsmed SINTEF ICT and Norwegian University of Science

and Technology, Norway
Billy Bob Brumley Tampere University, Finland
Sonja Buchegger KTH Royal Institute of Technology, Sweden
Bengt Carlsson Blekinge Institute of Technology, Sweden
Úlfar Erlingsson Google Inc., Mountain View, USA
Simone Fischer-Huebner Karlstad University, Sweden
Dieter Gollmann Hamburg University of Technology, Germany
Nils Gruschka University of Oslo, Norway
Audun Jøsang University of Oslo, Norway
Stewart Kowalski Norwegian University of Science and Technology,

Norway
Peeter Laud Cybernetica AS, Estonia
Helger Lipmaa University of Tartu, Estonia
Katerina Mitrokotsa Chalmers University of Technology, Sweden
Simin Nadjm-Tehrani Linköping University, Sweden
Hanne Riis Nielson Technical University of Denmark, Denmark
Juha Röning University of Oulu, Finland
Andrei Sabelfeld Chalmers University of Technology, Sweden

viii Organization

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Mikael Asplund Linköping University, Sweden
Stefan Axelsson Stockholm University, Sweden
Musard Balliu KTH Royal Institute of Technology, Sweden
Felipe Boeira Linköping University, Sweden
Sonja Buchegger KTH Royal Institute of Technology, Sweden
Hai-Van Dang Plymouth University, UK
Tassos Dimitriou Computer Technology Institute, Greece, and Kuwait

University, Kuwait
Nicola Dragoni Technical University of Denmark, Denmark
György Dán KTH Royal Institute of Technology, Sweden
Mathias Ekstedt KTH Royal Institute of Technology, Sweden
Ulrik Franke RISE, Sweden
Christian Gehrmann Lund University, Sweden
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Dieter Gollmann Hamburg University of Technology, Germany
Nils Gruschka University of Oslo, Norway
Mohammad Hamad Technical University of Munich, Germany
Rene Rydhof Hansen Aalborg University, Denmark
Tor Helleseth University of Bergen, Norway
Martin Gilje Jaatun SINTEF Digital, Norway
Meiko Jensen Kiel University of Applied Sciences, Germany
Thomas Johansson Lund University, Sweden
Audun Josang University of Oslo, Norway
Ulf Kargén Linköping University, Sweden
Mohsin Khan University of Helsinki, Finland
Marcel Kyas Reykjavík University, Iceland
Ville Leppänen University of Turku, Finland
Stefan Lindskog Karlstad University, Sweden
Olaf Maennel Tallinn University of Technology, Estonia
Raimundas Matulevicius University of Tartu, Estonia
Per Håkon Meland SINTEF ICT, Norway
Simin Nadjm-Tehrani Linköping University, Sweden
Nils Nordbotten Thales Norway and University of Oslo, Norway
Tomas Olovsson Chalmers University of Technology, Sweden
Nicolae Paladi Lund University and CanaryBit AB, Sweden
Arnis Paršovs University of Tartu, Estonia
Shahid Raza RISE SICS, Sweden
Hans P. Reiser University of Passau, Germany
Juha Röning University of Oulu, Finland
Einar Snekkenes Norwegian University of Science and Technology,

Norway
Emmanouil Vasilomanolakis Aalborg University, Denmark
Øyvind Ytrehus University of Bergen, Norway

Organization ix

Additional Reviewers

David Arroyo
Mariia Bakhtina
Anton Christensen
Ignacio Delgado-Lozano
Iaroslav Gridin
Mubashar Iqbal
Johannes Köstler
Cesar Pereida García
Henrich C. Pöhls
Mari Seeba
Stefan Varga

Contents

Applied Cryptography

Communicating Through Subliminal-Free Signatures . 3
George Teşeleanu

Size, Speed, and Security: An Ed25519 Case Study . 16
Cesar Pereida García and Sampo Sovio

Arrows in a Quiver: A Secure Certificateless Group Key Distribution
Protocol for Drones . 31

Eugene Frimpong, Reyhaneh Rabbaninejad, and Antonis Michalas

Security in Internet of Things

X-Pro: Distributed XDP Proxies Against Botnets of Things 51
Syafiq Al Atiiq and Christian Gehrmann

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 72
Calvin Brierley, Budi Arief, David Barnes, and Julio Hernandez-Castro

Machine Learning and Security

SQL Injections and Reinforcement Learning: An Empirical Evaluation
of the Role of Action Structure . 95

Manuel Del Verme, Åvald Åslaugson Sommervoll, László Erdődi,
Simone Totaro, and Fabio Massimo Zennaro

Secure Collaborative Learning for Predictive Maintenance in Optical
Networks . 114

Khouloud Abdelli, Joo Yeon Cho, and Stephan Pachnicke

Network Security

Gollector: Measuring Domain Name Dark Matter from Different Vantage
Points . 133

Kaspar Hageman, René Rydhof Hansen, and Jens Myrup Pedersen

Adversarial Trends in Mobile Communication Systems: From Attack
Patterns to Potential Defenses Strategies . 153

Hsin Yi Chen and Siddharth Prakash Rao

xii Contents

Trust

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 175
Arto Niemi, Vasile Adrian Bogdan Pop, and Jan-Erik Ekberg

Preliminary Security Analysis, Formalisation, and Verification
of OpenTitan Secure Boot Code . 192

Bjarke Hilmer Møller, Jacob Gosch Søndergaard,
Kristoffer Skagbæk Jensen, Magnus Winkel Pedersen,
Tobias Worm Bøgedal, Anton Christensen, Danny Bøgsted Poulsen,
Kim Guldstrand Larsen, René Rydhof Hansen, Thomas Rosted Jensen,
Heino Juvoll Madsen, and Henrik Uhrenfeldt

Author Index . 213

Applied Cryptography

Communicating Through Subliminal-Free
Signatures

George Teşeleanu(B)

Institute of Mathematics of the Romanian Academy, Bucharest, Romania
george.teseleanu@imar.ro

Abstract. By exploiting the inherent randomness used by certain digi-
tal signature protocols, subliminal channels can subvert these protocols
without degrading their security. Due to their nature, these channels
cannot be easily detected by an outside observer. Therefore, they pose a
severe challenge for protocol designers. More precisely, designers consider
certain assumptions implicitly, but in reality these assumptions turn out
to be false or cannot be enforced or verified. In this paper we exemplify
exactly such a situation by presenting several subliminal channels with a
small capacity in Zhang et al. and Dong et al.’s subliminal-free signature
protocols.

1 Introduction

The notion of covert channels was introduced by Lampson in [8]. These channels
have the capability of transporting information through system parameters appar-
ently not intended for information transfer. In order to be efficient, covert channels
should be hard to detect or control by the systems’ security mechanisms.

The prisoners’ problem, introduced by Simmons [12], captures the need of two
parties to communicate secretly through normal-looking communication over an
insecure channel. In the prisoners’ problem Alice (sender) and Bob (receiver) are
incarcerated and want to communicate confidentially and undetected by their
guard Walter who imposes to read all their communication. Note that Alice and
Bob can exchange a secret key before being incarcerated.

A special case of covert channels was introduced by Simmons [13,15–17] as a
possible solution to the prisoners’ problem. Subliminal channels achieve informa-
tion transfer by modifying the original specifications of cryptographic primitives
(for example, by modifying the way random numbers are generated). Hence,
allowing Alice and Bob to communicate without being detected by Walter.

Within the scenario presented previously a natural question rises: how can
one eliminate subliminal channels? To answer this question Simmons developed
in [14] an interactive protocol between Alice and Walter. Other countermeasures
against subliminal channels can be found in [1–3,5,6,10,11,21]. Unfortunately,
shortly after the publication of [14], Desmedt [4] found a flaw in the protocol.
When running Simmons’ protocol Alice can stop the protocol when certain con-
ditions are not achieved. Thus, enabling her to subliminally send a bit. This
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 3–15, 2021.
https://doi.org/10.1007/978-3-030-91625-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_1&domain=pdf
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-91625-1_1

4 G. Teşeleanu

method is called a fail-stop channel. To reduce the capacity of fail-stop channels,
Simmons describes in [18] a cut-and-choose method. Note that fail-stop channels
also exist in [6,7]1 due to their similarity to [14].

Another problem with [14] was described by Simmons himself in [16]. Sim-
mons suggests a method in which Walter can corrupt the protocol in such a way
that he can subliminally communicate to a third party. Such channels are called
cuckoo’s channels.

In this paper we analyse the protocols presented in [5,21]. We show that
fail-stop channels exist, although the authors claim that the protocols are free of
such channels. We also show that cuckoo’s channels exist in both cases. Hence,
we prove that their protocols are not subliminal-free. Due to their large commu-
nication overhead we suggest using other subliminal-free methods (for example,
the methods proposed in [3,6,10,11]2).

Structure of the Paper. We introduce notations and definitions in Sect. 2. In
Sect. 3 we describe fail-stop and cuckoo’s channels for the protocols proposed in
[5,21]. We conclude in Sect. 4.

2 Preliminaries

Notations. Throughout the paper λ and κ will denote security parameters. We
denote by x‖y the concatenation of the strings x and y. The set {0, 1}∗ denotes
the set of all bit strings and the cardinality of a set S is denoted by |S|,

The action of selecting a random element x from a sample space X is denoted
by x

$←−X. We also denote by x ← y the assignment of value y to variable x. The
encryption of a message m ∈ {0, 1} using one-time pad is denoted by ω ← m⊕b,
where b is random bit used only once.

2.1 Simmons’ Signing Protocol

2.1.1 Description
In [13,15], Simmons introduced several subliminal channels that can be embed-
ded into the DSA signature. These channels use as information carriers the
ephemeral keys used by Alice in the signing process. A possible method for
eliminating these channels was proposed by Simmons in [14]. He argued that
covert communications can be stopped if the ephemeral keys where jointly gen-
erated by Alice and Walter. Thus, making the exact values indeterminate to
both participants. Moreover, Walter must be able to check if Alice is honest.

We further describe the algorithms of Simmons’ signing protocol. For sim-
plicity, public parameters will further be considered implicit when describing an
algorithm.
1 In [6] a fail-stop channel is described, but it can be easily detected due to the protocol

being implemented in devices with limited computational power.
2 Note that in certain cases, hash channels [19,20] create the capability of subliminal

communication through these proposals.

Communicating Through Subliminal-Free Signatures 5

Public Parameters’ Generation(κ, λ): Select a prime number q ≥ 2κ and a prime
number p ≥ 2λ such that q|p − 1. Choose an element g ∈ Zp of order q and a
hash function h : {0, 1}∗ → Z

∗
q . Output the public parameters pp = (p, q, g, h).

Signer’s Key Generation(pp): Choose x
$←−Z

∗
q and compute y ← gx mod p. Out-

put the public key pk = y. The secret key is sk = x.
Signing Protocol(m): To sign a message m ∈ {0, 1}∗, the signer Alice and the

warden Walter start the interactive protocol described in Fig. 1. If the pro-
tocol succeeds, then Walter will relay (m, r, s) to Bob.

Verification(m, r, s, pk): To verify the signature (r, s) of message m, compute
u1 ← h(m)s−1 mod q and u2 ← rs−1 mod q. Then compute v ← (gu1yu2 mod
p) mod q and output true if and only if v = r. Otherwise, output false.

Fig. 1. Simmons’ signing protocol.

2.1.2 Fail-Stop Channel
Initially introduced in [4], this mechanism allows Alice to subliminally communi-
cate with Bob even if Walter imposes a protocol like the one described in Fig. 1.
To communicate ω to Bob, Alice must stop the protocol if certain conditions
are not achieved. If the protocol is stopped too often by Alice, Walter might
become suspicious and cut off any communication between the prisoners. Thus,
Alice can only send a few bits of data to Bob through this channel.

6 G. Teşeleanu

Fig. 2. Desmedt’s fail-stop channel. (Color figure online)

We further describe the fail-stop protocol in Fig. 2 and the corresponding
extraction algorithm (denoted by Extract). The changes made in the original
protocol are marked with red in Fig. 2.

Extract(r): To extract the embedded message ω compute ω ← r mod 2.

2.1.3 Cuckoo’s Channel
In an article about protocol failures, Simmons describes a subliminal channel
in his own protocol [16]. He called this type of channel the cuckoo’s channel.
Compared to fail-stop channels, cuckoo’s channels are used by a dishonest Walter
to convey information to a third party. Thus, just like a cuckoo that lays his
eggs in the nests of unsuspecting birds, Walter inserts his message into Alice’s
signature without her suspecting anything.

Let ω be the bit Walter subliminally embeds in Fig. 1. We briefly describe the
cuckoo’s channel in Fig. 3. As before, the changes made by Walter are written
in red.

Fig. 3. Simmons’ cuckoo’s channel. (Color figure online)

Extract(r): To extract the embedded message ω compute ω ← r mod 2.

To achieve indistinguishablility from Simmons’ protocol, Walter must use
sufficient parallel computing power. Thus, the more power Walter has, the longer
the conveyed message can be. Let assume that for Simmons’ protocol, Walter

Communicating Through Subliminal-Free Signatures 7

uses one computing unit CU . In the case of the cuckoo’s protocol presented in
Fig. 3, if Walter uses α CU , then the probability of Walter transmitting his
message undetected is 1 − 1/2α. Hence, we can consider the cuckoo’s channel as
a noisy channel with an error probability of 1/2α.

We further state without proof a security result from [16].

Lemma 1. The cuckoo’s channel presented in Fig. 3 preserves the distribution
of r.

3 Novel Fail-Stop and Cuckoo’s Channels

By using an interactive protocol between the signer and the warden, the authors
of [5,21] try to eliminate existing subliminal channels from the Schnorr signature
[21] and the ECDSA signature [5]. As we will later see, the protocols presented
in [5,21] do not manage to completely eliminate covert channels, although the
authors claim that they are subliminal-free.

3.1 Zhang et al.’s Signing Protocol

3.1.1 Description
The first subliminal-free proposal that we describe was presented in [21]. Accord-
ing to the authors, the signer cannot control the outputs of the signature. Hence,
the protocol is subliminal-free. We will see in the subsequent subsections that this
is not true. Note that Zhang et al. assume that Walter is an honest-but-curious3

warden that is disallowed to sign messages independently.
We further state Zhang et al.’s interactive protocol (Fig. 4) and the associated

algorithms, as presented in [21].

Public Parameters’ Generation(κ, λ): Select a prime number q ≥ 2κ and a prime
number p ≥ 2λ such that q|p − 1. Choose an element g ∈ Zp of order q and
two hash functions h : {0, 1}∗ → G and h′ : {0, 1}∗ × G → Z

∗
q . Output the

public parameters pp = (p, q, g, h, h′).
Warden’s Key Generation(pp): Choose t

$←−Z
∗
q and compute z ← gt. Output the

public key pkw = z. The secret key is skw = t.
Signer’s Key Generation(pkw): Choose x

$←−Z
∗
q and compute y ← zx. Output the

public key pk = y. The secret key is sk = x.
Signing Protocol(m): To sign a message m ∈ {0, 1}∗, the signer Alice and the

warden Walter start the interactive protocol described in Fig. 4. Note that in
Step 5, Fig. 4 Alice uses a non-interactive zero-knowledge proof P to convince
W that loge(f) = logz(y).

Verification(m, e, s, pk): To verify the signature (e, s) of message m, compute
r ← gsy−e mod p and u ← h′(m‖r). Output true if and only if u = e. Else
output false.

3 According to [9,21], an honest-but-curious adversary is a legitimate participant in
a communication protocol who will not deviate from the defined protocol but will
attempt to learn all possible information from legitimately received messages.

8 G. Teşeleanu

Fig. 4. Zhang et al. signing protocol.

Communicating Through Subliminal-Free Signatures 9

3.1.2 Fail-Stop Channel
To bypass the protections set in place by Zhang et al. we use a fail-stop channel.
Although Alice cannot control e, r and s, she can control if the protocol is
successful or not. Hence, since the final value of r is not modified by Walter
after Step 4, Fig. 4 she can use it to carry out her message.

We further describe our proposed fail-stop protocol (Fig. 5) and its corre-
sponding extraction algorithm. The changes made in the original protocol are
marked with red in Fig. 5.

Fig. 5. A fail-stop channel embedded into Zhang et al.’s protocol. (Color figure online)

Extract(e, s, pk): To extract the embedded message ω compute r ← gsy−e mod p
and ω ← r mod 2.

3.1.3 Cuckoo’s Channel
According to [21], Walter will not deviate from the signing protocol. Thus, in
Step 4, Fig. 4 Walter has to supply Alice with (r, γ), θ and s of a given distri-
bution. Keeping this restriction in mind, we have developed a cuckoo’s channel
in Zhang et al.’s protocol.

We briefly describe our proposed cuckoo’s channel in Fig. 6. As before, the
changes made by Walter are written in red.

Extract(e, s, pk): To extract the embedded message ω compute r ← gsy−e and
ω ← r mod 2.

Correctness. The correctness of the Verification algorithm follows from the
equality

s ≡ k′′s′ ≡ k′′[kh0 + θxe(γfδ)−1]

≡ kk′′h0 + k′′(η−1t)xe(γfδ)−1

≡ kk′′h0 + k′′[k′′−1(γfδ)t]xe(γfδ)−1

≡ kk′′h0 + txe mod q,

10 G. Teşeleanu

Fig. 6. A cuckoo’s channel embedded into Zhang et al.’s protocol. (Color figure online)

which leads to

r ≡ gsy−e ≡ gkk′′h0gtxey−e ≡ gkk′′h0 ≡ gk(ak′φ)h0 ≡ αkφh0 ≡ βφ mod p.

The following lemma proves that no matter how much computing power
Alice has, she will not be able to detect Walter’s cuckoo’s channel and she will
not be able to accuse Walter of being dishonest. Therefore, from the point of
view of Alice, Walter is honest-but-curious, even though he is not.

Lemma 2. The cuckoo’s channel preserves the distributions of (r, γ), θ and s.

Proof. In Zhang et al.’s protocol we have

r ≡ gkk′h0 mod p, ε ≡ k′−1 mod q, η ≡ k′(γfδ)−1 mod p and s ≡ k′s′ mod q,

while in the cuckoo’s version we have

r ≡ gkk′′h0 mod p, ε ≡ k′′−1 mod q, η ≡ k′′(γfδ)−1 mod p and s ≡ k′′s′ mod q.

Since φ ∈ Z
∗
q is chosen at random in the cuckoo’s version, then k′′ ≡ ak′φ mod

q is also a random element from Z
∗
q . Therefore, k′′ has the same distribution as

k′ value from Zhang et al.’s protocol. Thus, the distributions of (r, γ), θ and s
are preserved. 	

Communicating Through Subliminal-Free Signatures 11

3.2 Dong et al.’s Signing Protocol

3.2.1 Description
The authors of [5] use a similar approach to Zhang et al.’s for eliminating sublim-
inal channels. Note that in this case, the authors do not impose that Walter is
honest-but-curious. Fortunately for us, we were able to devise a fail-stop channel
and a cuckoo’s channel.

Before stating our results, we first describe Dong et al.’s protocol (Fig. 7) and
the associated algorithms, as presented in [5].

Public Parameters’ Generation(λ): Select an elliptic curve E(Zp) defined over
Zp, where p is prime. Generate a prime number q ≥ 2λ, such that q divides
|E(Zp)|. Generate a point P ∈ E(Zp) of order q and select a hash function
h : {0, 1}∗ → Z

∗
q . Output the public parameters pp = (q, P,E(Zp), h).

Signer’s Key Generation(pp): Choose d
$←−Z

∗
q and compute Q ← dP . Output the

public key pk = Q. The secret key is sk = d.
Warden’s Key Generation(pk): Choose t

$←−Z
∗
q and compute T ← tQ = (xt, yt).

Let ht = h(xt‖yt). Output the public key pkw = ht. The secret key is skw = t.
Signing Protocol(m): To sign a message m ∈ {0, 1}∗, the signer Alice and the

warden Walter start the interactive protocol described in Fig. 7. Note that in
Step 6, Fig. 7 Walter uses the Verification algorithm to check the validity of
(r, s, T).

Verification(m, r, s, T, pkw): To verify the signature (r, s, T) of message m, com-
pute u1 ← h(m)s−1 mod q, u2 ← rs−1 mod q and h∗

t = h(xt‖yt). Then com-
pute u1P + u2T = (x1, y1) and v ← x1 mod q. Output true if and only if
v = r and h∗

t = ht. Otherwise, output false.

3.2.2 Fail-Stop Channel The authors of [5] claim that they eliminate fail-
stop channels. Their main argument is that Alice does not know any information
about (r, s) before Walter finishes the signature and thus she cannot use r as a
carrier. Contrary to their statement, we managed to find such a channel.

We further describe our proposed channel (Fig. 8) and its corresponding
extraction algorithm. The changes made to the original protocol are written
in red in Fig. 8.

Extract(r, T): To extract the embedded message ω compute rT = (xs, ys) and
ω ← xs mod 2.

Correctness. The correctness of the Extract algorithm follows from the following
equality

θ−1Q = rtQ = rT.

12 G. Teşeleanu

Fig. 7. Dong et al. signing protocol.

Fig. 8. A fail-stop channel embedded into Dong et al.’s protocol. (Color figure online)

Communicating Through Subliminal-Free Signatures 13

3.2.3 Cuckoo’s Channel Using a technique similar to the Zhang et al.
cuckoo’s channel, we further present in Fig. 9 a cuckoo’s channel that can be
inserted into the Dong et al.’s protocol. As before, the changes made by Walter
are written in red.

Fig. 9. A cuckoo’s channel embedded into Dong et al.’s protocol. (Color figure online)

Extract(r): To extract the embedded message compute ω ← r mod 2.

Correctness. The check the correctness of the Verification algorithm we first
compute

s ≡ k′′−1s′θ−1 ≡ k′′−1k−1[h(m)θ + d]θ−1

≡ k−1k′′−1[h(m) + dθ−1]

≡ k−1k′′−1[h(m) + drt] mod q,

which leads to

u1P + u2T = s−1[h(m)P + rT] = s−1[h(m) + rtd]P
= kk′′P = k(ak′φ)P = kφα = φβ.

In order to be secure, we need to prove that our proposal cannot be detected
by Alice no matter how much computing power she has at her disposal. This is
proven in the following lemma.

Lemma 3. The cuckoo’s channel preserves the distributions of θ and (r, s).

Proof. In Dong et al.’s protocol we have

(x0, y0) ← kk′P, and s ← k′−1s′θ−1 mod q,

while in the cuckoo’s version we have

(x0, y0) ← kk′′P, and s ← k′′−1s′θ−1 mod q.

14 G. Teşeleanu

Since φ ∈ Z
∗
q is chosen at random in the cuckoo’s version, then k′′ ≡ ak′φ mod

q is also a random element from Z
∗
q . Therefore, k′′ has the same distribution as

k′ value from Dong et al.’s protocol. Thus, the distributions of θ and (r, s) are
preserved. 	

4 Conclusions

Zhang et al. [21] and Dong et al. [5] propose two signature protocols that they
claim to be subliminal-free. In this paper, we have proved that their claims are
false. Since, the main utility of these protocols was to be subliminal-free and they
failed to be so, we suggest that users employ other means of protection against
subliminal channels with a lower communication overhead (e.g. the methods
proposed in [3,6,10,11]).

References

1. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
ACM-CCS 2015, pp. 364–375. ACM (2015)

2. Bohli, J.-M., González Vasco, M.I., Steinwandt, R.: A subliminal-free variant of
ECDSA. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH
2006. LNCS, vol. 4437, pp. 375–387. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74124-4 25

3. Choi, J.Y., Golle, P., Jakobsson, M.: Tamper-evident digital signature protecting
certification authorities against malware. In: DASC 2006, pp. 37–44. IEEE (2006)

4. Desmedt, Y.: Simmons’ protocol is not free of subliminal channels. In: Ninth IEEE
Computer Security Foundations Workshop, pp. 170–175. IEEE (1996)

5. Dong, Q., Xiao, G.: A subliminal-free variant of ECDSA using interactive protocol.
In: ICEEE 2010, pp. 1–3. IEEE (2010)

6. Hanzlik, L., Kluczniak, K., Kuty�lowski, M.: Controlled randomness – a defense
against backdoors in cryptographic devices. In: Phan, R.C.-W., Yung, M. (eds.)
Mycrypt 2016. LNCS, vol. 10311, pp. 215–232. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61273-7 11

7. Horster, P., Michels, M., Petersen, H.: Subliminal Channels in Digital Logarithm
Based Signature Schemes and How to Avoid Them. Technical Report TR-94-13
(1994)

8. Lampson, B.W.: A Note on the Confinement Problem. Commun. ACM 16(10),
613–615 (1973)

9. Paverd, A.J., Martin, A., Brown, I.: Modelling and Automatically Analysing Pri-
vacy Properties for Honest-but-Curious Adversaries. Technical report (2014)

10. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

11. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a
kleptographic adversary. In: ACM-CCS 2017, pp. 907–922. ACM (2017)

12. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: CRYPTO
1983, pp. 51–67. Plenum Press, New York (1983)

https://doi.org/10.1007/978-3-540-74124-4_25
https://doi.org/10.1007/978-3-540-74124-4_25
https://doi.org/10.1007/978-3-319-61273-7_11
https://doi.org/10.1007/978-3-319-61273-7_11
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2

Communicating Through Subliminal-Free Signatures 15

13. Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4 25

14. Simmons, G.J.: An introductions to the mathematics of trust in security protocols.
In: CSFW 1993, pp. 121–127. IEEE (1993)

15. Simmons, G.J.: Subliminal communication is easy using the DSA. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 218–232. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 18

16. Simmons, G.J.: Cryptanalysis and protocol failures. Commun. ACM 37(11), 56–65
(1994)

17. Simmons, G.J.: Subliminal channels; past and present. Eur. Trans. Telecommun.
5(4), 459–474 (1994)

18. Simmons, G.J.: Results concerning the bandwidth of subliminal channels. IEEE J.
Sel. Areas Commun. 16(4), 463–473 (1998)

19. Teşeleanu, G.: Subliminal hash channels. In: Gueye, C.T., Persichetti, E., Cayrel,
P.-L., Buchmann, J. (eds.) A2C 2019. CCIS, vol. 1133, pp. 149–165. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-36237-9 9

20. Chuan-Kun, W.: Hash channels. Comput. Secur. 24(8), 653–661 (2005)
21. Zhang, Y., Li, H., Li, X., Zhu, H.: Provably secure and subliminal-free variant of

schnorr signature. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You,
I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804, pp. 383–391. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36818-9 42

https://doi.org/10.1007/3-540-39757-4_25
https://doi.org/10.1007/3-540-48285-7_18
https://doi.org/10.1007/978-3-030-36237-9_9
https://doi.org/10.1007/978-3-642-36818-9_42

Size, Speed, and Security:
An Ed25519 Case Study

Cesar Pereida García1(B) and Sampo Sovio2

1 Tampere University, Tampere, Finland
cesar.pereidagarcia@tuni.fi

2 Huawei Technologies Oy, Helsinki, Finland
sampo.sovio@huawei.com

Abstract. Ed25519 has significant performance benefits compared to
ECDSA using Weierstrass curves such as NIST P-256, therefore it is
considered a state-of-the-art digital signature algorithm, specially for
low performance IoT devices. However, such devices often have very
limited resources and thus, implementations for these devices need to
be as small and as performant as possible while being secure. In this
paper we describe a scenario in which an obvious strategy to aggres-
sively optimize an Ed25519 implementation for code size leads to a small
memory footprint that is functionally correct but vulnerable to side-
channel attacks. This strategy serves as an example of aggressive opti-
mizations that might be considered by cryptography engineers, develop-
ers, and practitioners unfamiliar with the power of Side-Channel Analy-
sis (SCA). As a solution to the flawed implementation example, we use
a computer-aided cryptography tool generating formally verified finite
field arithmetic to generate two secure Ed25519 implementations fulfill-
ing different size requirements. After benchmarking and comparing these
implementations to other widely used implementations our results show
that computer-aided cryptography is capable of generating competitive
code in terms of security, speed, and size.

Keywords: Applied cryptography · Public key cryptography ·
EdDSA · Ed25519 · Side-channel analysis · SCA · Computer-aided
cryptography

1 Introduction

The growing number of IoT devices around us is ever increasing, and thus the
need to secure these devices and their communication is of utmost importance.
Moreover, due to their nature, the attack surface of IoT devices is higher com-
pared to commodity PCs and servers, as attackers are able to get physical access
to them, thus exposing them to both physical and remote attacks, resulting

C. P. García—This research was done while the author was an intern at Huawei Tech-
nologies Oy.
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 16–30, 2021.
https://doi.org/10.1007/978-3-030-91625-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_2&domain=pdf
http://orcid.org/0000-0001-6812-8498
http://orcid.org/0000-0001-9598-7124
https://doi.org/10.1007/978-3-030-91625-1_2

Size, Speed, and Security: An Ed25519 Case Study 17

in new threat scenarios. Cryptography engineers face multiple challenges when
securing these devices as cryptography implementations must be not only secure
but also competitive in terms of speed and size since these are constrained devices
with limited power, memory, and processing resources.

EdDSA, and more specifically Ed25519 [7], is a popular algorithm choice for
digital signatures in the IoT world as it is small, fast, and it does not require
fresh randomness per signature thus reducing the risk of using a faulty random
number generator (RNG). EdDSA instead computes a deterministic nonce as
a function of the hashed message and the private key, and in general, it pro-
vides a more robust security against several attacks when compared to ECDSA.
During the development of Ed25519, choices were made to decrease the chances
of implementation flaws and unintentional information leakage. However, these
secure choices need to be clearly understood by cryptography engineers, as a
small deviation from the original specification can lead back to insecure imple-
mentations.

Cryptography engineers must follow general recommendations and coding
best practices when implementing algorithms that receive confidential informa-
tion as input values. These recommendations are mostly to protect against Side-
Channel Analysis (SCA), and failing to follow any of the best practices can
have devastating effects on the practical security of any implementation. Some
of these best practices include: (i) using algorithms that execute in constant-
time, i.e., the runtime of the algorithm is independent from the input secret
value; (ii) avoiding branching based on secret values; (iii) avoiding table-lookups
indexed by secret values; (iv) avoiding looping through a piece of code with a
bound dictated by a secret value. Generally speaking, cryptography engineers
must be aware that any line of code they write dealing with secret values, must
not leak any information through either execution time, EM emanations, power
consumption, microarchitecture components, temperature, or any other so-called
side-channel, thus all of them must be considered for IoT security.

In this work we present a case study on how aggressive optimizations aiming
for a small memory footprint can lead to SCA vulnerabilities on an otherwise
secure Ed25519 implementation. We describe the rationale for the aggressive
optimizations from the point of view of a cryptography engineer without SCA
expertise, trying to meet the requirements, and then we briefly analyse why
the approach is insecure against an adversary with SCA expertise. As a coun-
termeasure, we replace the flawed implementation with a secure one generated
with the help of ECCKiila [5], a computer-aided cryptography tool. We compare
the performance of the computer-aided Ed25519 against other well established
implementations on Intel and ARM architectures.

In summary, Sect. 2 gives an overview of background information and related
work. Section 3 describes the example of a flawed implementation due to aggres-
sive optimizations and its implications, we give a brief side-channel analysis.
Section 4 describes two implementations generated with the help of ECCKiila
and provides a performance comparison against other well established Ed25519
implementations. We conclude in Sect. 5.

18 C. Pereida García and S. Sovio

2 Background

2.1 EdDSA

The Edwards-curve Digital Signature Algorithm (EdDSA) is an elliptic curve
variant of the Schnorr signature system [27], thus it is a deterministic digital
signature scheme constructed over twisted Edwards curves. Despite being a rel-
atively new cryptographic primitive, EdDSA has gained traction over the last five
years on both, the research community, and industry, due to being fast, secure,
and hard to implement wrong—at least compared to ECDSA. Notably, EdDSA
does not require fresh randomness for each signature generated—therefore it is
more resilient against side-channel analysis (SCA)—and no special cases for the
point at infinity need to be handled due to exception free formulas for point
addition. EdDSA is generally defined by eleven parameters. An odd prime p
defining the Galois field GF (p), two elements a, d ∈ GF (p) defining the twisted
Edwards curve.

E : ax2 + y2 = 1 + dx2y2 (1)
An element B ∈ E different from the neutral element. An integer c and an

odd prime � such that #E = 2c�. An integer b defining the size of the EdDSA
public keys and EdDSA signatures in bits, an integer n defining the scalar size, an
encoding of the elements in GF (p), a hash function H and an optional “prehash”
function PH. Choosing parameter is outside of the scope of our work, but we
refer the reader to Bernstein et al. [7], RFC 8032 [19] and FIPS 186-5 [1].

Generally speaking, EdDSA is composed by three algorithms, namely, key
generation, signature generation, and signature verification. Each of these algo-
rithms is composed by several specific algorithms, which when converted to code,
dictate the security properties of the whole EdDSA scheme.

2.2 Ed25519

Originally described by Bernstein et al. [7], Ed25519 is EdDSA instantiated
with a twisted Edwards curve that is birationally equivalent to Curve25519 [6].
Ed25519 is allegedly the most widely used instance of EdDSA, and it is instan-
tiated with the parameters present in Table 1.

Key Generation. Given a random and uniformly chosen private key k, the user
hashes it using the chosen hash function H such that H(k) = (h0, h1, ..., h2s−1) =
(a, b) where a is a private scalar value, b is an auxiliary key, and then computes
the public key A = [a]B.

Signature Generation. Given the private scalar a, the auxiliary key b, and a
hash function H, the signature (R,S) on the message M is created by

r = H(b,M) R = [r]B
h = H(R,A,M) S = (r + ha) mod �

(2)

Signature Verification. Given the base point B, the public key A, and the
signature tuple (R,S), on the message M , the EdDSA signature is valid if h =
H(R,A,M) satisfies the equation

Size, Speed, and Security: An Ed25519 Case Study 19

Table 1. Ed25519 domain parameters.

Description Symbol Value
Power for GF (p) p 2255 − 19

Element in GF (p) a −1

Nonsquare in GF (p) d −121665/121666

Base point B (x, y) from [7]
Order of base point � 2252 + 27742317777372353535851937790883648493

Key length s 256

log2(cofactor) c 3
Scalar size n 254

Hash function H SHA-512
Prehash function PH None

8SB = 8R + 8hA (3)

Security. The mathematical security of EdDSA (and Ed25519) is similar to
that of other ECC primitives, namely, it relies on the hardness of the Elliptic
Curve Discrete Logarithm Problem (ECDLP), i.e., given a known base B and an
elliptic curve element [r]B, it is infeasible to compute the integer r. Additionally,
during EdDSA construction several choices were made to avoid common flaws
and vulnerabilities affecting the well established ECDSA. Some of these choices
include: (i) the usage of a deterministic ephemeral nonce instead of a random
nonce per signature, avoiding potential issues with a faulty RNG; (ii) the usage
of twisted Edwards curves providing complete addition law and thus avoiding
special cases that can be exploited; (iii) provide an open and freely available
reference implementation that is secure in the mathematical model and also
against SCA.

2.3 Ed25519 Implementations

In 2011, together with the original mathematical and technical description of the
new Ed25519, Bernstein et al. [7] released multiple implementations of their new
digital signature algorithm to the public domain through the eBACS project
[8]. The objective was to promote the widespread adoption of the new primitive
by providing implementations suitable for different architectures and systems
with different requirements. The original release included a portable, slow but
secure implementation written in C language named ref, a portable and faster
implementation with competitive performance also written in C language named
ref10, and two additional x86_64-specific, fast and highly optimized implemen-
tations written in assembly language named amd64-64-24k and amd64-51-30k
using radix 264 and 251 for field element representation, respectively. Shortly
after, the so-called donna1 implementation was released which included high
performance, portable 32-bit and 64-bit implementations for Ed25519.
1 https://github.com/floodyberry/ed25519-donna.

https://github.com/floodyberry/ed25519-donna

20 C. Pereida García and S. Sovio

Built on top of the reference implementation, Bernstein et al. [9] released
NaCl as an easy-to-use high-speed software library offering several state-of-the-
art implementations for several types of cryptographic primitives such as encryp-
tion, decryption, and signing. Similarly, libsodium2 was born as a fork of NaCl to
expand on the original API while supporting a variety of compilers and operating
systems, becoming the de-facto library for Ed25519 at that time.

In 2015, BoringSSL added support3 for Ed25519 to its codebase. Differ-
ent to previous implementations, instead of using custom finite field arithmetic
code, BoringSSL adopted formally verified finite field arithmetic generated with
fiat-crypto4 [15].

In 2017 monocypher5 was released, including its own implementation of
Ed25519 influenced by the ref10 implementation. This specific implementa-
tion targets devices with limited resources, and it offers a compact and portable
implementation compatible with libsodium.

In 2018 Tuveri and Brumley [28] added unofficial support for Ed25519 in
OpenSSL through their libsuola ENGINE, by leveraging Ed25519 computa-
tions to the libsodium library. Official support was later added to the code base
during the same year with the release of the newer version OpenSSL 1.1.16.

At the time of writing, most of the widely used general-purpose TLS and
cryptography libraries support Ed25519. One notable exception is the mbedTLS
library which is currently under development with an unspecified release date7.
It is worth noting that despite the variety of implementations, most of them use
code from the original reference implementations. This ultimately confirms that
the original goal of widespread adoption of Ed25519 was achieved by providing
robust reference implementations for other projects8.

2.4 Related Work

Although EdDSA is a secure signature algorithm, it is susceptible to attacks
derived from implementation flaws and SCA. Despite making secure design
choices to minimize the probability of bad implementations, EdDSA still requires
specialized knowledge and attention to detail during implementation, to avoid
leaking confidential information that renders the primitive insecure.

Samwel et al. [26] demonstrate that failing to protect the auxiliary key b
for any given signature can potentially lead to full key recovery, allowing an
attacker to forge signatures. More specifically, the authors apply Differential
Power Analysis (DPA) on the underline SHA-512 function of the WolfSSL library
to recover the auxiliary key b during the computation of the ephemeral nonce

2 https://github.com/jedisct1/libsodium.
3 https://boringssl.googlesource.com/boringssl/+/4fb0dc4b.
4 https://github.com/mit-plv/fiat-crypto.
5 https://monocypher.org/.
6 https://www.openssl.org/blog/blog/2018/09/11/release111/.
7 https://github.com/ARMmbed/mbedtls/pull/3245.
8 https://ianix.com/pub/ed25519-deployment.html.

https://github.com/jedisct1/libsodium
https://boringssl.googlesource.com/boringssl/+/4fb0dc4b
https://github.com/mit-plv/fiat-crypto
https://monocypher.org/
https://www.openssl.org/blog/blog/2018/09/11/release111/
https://github.com/ARMmbed/mbedtls/pull/3245
https://ianix.com/pub/ed25519-deployment.html

Size, Speed, and Security: An Ed25519 Case Study 21

r, which allows them to ultimately forge signatures for any message of their
choosing.

Romailler and Pelissier [24] propose the first differential fault attack (DFA)
on Ed25519 against an 8-bit Arduino nano device. The authors introduce a fault
to the output of the hash function, however this value is not public, thus they
need to bruteforce the value in order to exploit it to forge signatures.

Following the same attack principle, Samwel and Batina [25] introduce a
fault during the computation of R, resulting in R′ and therefore in a faulty hash
computation h′. Using a single pair of correct and faulty signatures, the authors
are able to recover the private scalar a solving a simple system of equations and
consequentially, forge signatures for any given message.

Similarly, Ambrose et al. [3] study the effects of DFA on deterministic digital
signature schemes, including EdDSA. In their work, the authors propose sev-
eral attacks against EdDSA using DFA and describe the place and the type of
fault that is needed allowing them to recover enough confidential information
to forge signatures. Moreover, the authors discuss practical countermeasures
against DFA, and possible changes to EdDSA to protect against this type of
attacks.

On the software side, Poddebniak et al. [23] demonstrate a practical cross-VM
fault attack against EdDSA by using the Rowhammer technique from a mali-
cious VM to introduce faults to the target VM running Minisign. The authors
successfully recover the private scalar a that allows them to forge signatures.

Exploiting the hardware translation lookaside buffers (TLBs), Gras et al.
[17] recover the full keys for an insecure Ed25519 implementation on libgcrypt
v1.6.3. Finally, Gras et al. [16] show a system that synthesizes new (port)
contention-based side-channels. The authors demonstrate the working system
on both, secure and insecure implementations of Ed25519 on libgcrypt.

3 When Optimization Goes Wrong

In this section we focus on how a relatively small change to the reference imple-
mentation trying to reduce the memory footprint, leads to a functionally correct
but insecure implementation of Ed25519. The implementation that we describe
in here is a custom implementation, thus this is not a real implementation affect-
ing any system nor an open source cryptography library. However, we believe
that this flawed implementation is a representative of aggressive optimizations
that might be considered by cryptography engineers and practitioners in order
to achieve specific memory requirements.

Implementation Description. In the original work, Bernstein et al. [7]
describe two different algorithms for scalar multiplication to be used during
Ed25519: a fixed-point scalar multiplication for key and signature generation,
and a double-scalar multiplication for signature verification. Additionally, each
scalar multiplication algorithm requires a recoded scalar value in a suitable
form for the chosen scalar multiplication algorithm, thus this involves additional
recoding algorithms which also affect the overall implementation size.

22 C. Pereida García and S. Sovio

For fixed-point scalar multiplication, the original implementation follows a
standard technique first discussed by Pippenger [22]. The technique consists of
computing the scalar multiplication as a sum of precomputed values with the
addition of supporting negative coefficients. This algorithm by itself does not
prevent nor protect against SCA, but instead allows to load all the precomputed
values into memory and then compute the correct value by using arithmetic
operations that do not branch or otherwise reveal the secret value through the
index accessed. After an analysis, the authors decide that a balance on perfor-
mance versus memory size is reached by storing 256 curve points consuming a
total of 30 kilobytes of RAM. In fact, the authors mention is possible to reduce
the table size by half at the expense of 8 additional elliptic curve doubles. While
this change already potentially reduces the size of the table by half, it might not
be enough for a constrained device, and more aggressive optimizations for code
size might be considered.

For the double-scalar algorithm the original implementation uses standard
techniques similar to the windowed Non-Adjacent Form (wNAF) scalar multi-
plication [21] which allows them to compute the result for both scalar values in
a single call, instead of performing a more costly fixed-point and variable-point
scalar multiplications. This algorithm achieves a fast result at a low memory cost,
as it does not require a precomputed table. However the algorithm execution is
highly dependent on its inputs, thus it is specially suitable during signature
verification where all the input values are public.

Considering these two algorithms to achieve the same result, namely a scalar
multiplication, an appealing approach to reduce code size is not only to use
the algorithm with the smallest memory footprint but also the most flexible
algorithm that can be adapted for multiple use cases. Therefore, the double-
scalar multiplication algorithm is a good candidate that can be adapted for
usage in key generation, signature generation, and signature verification.

Our custom implementation continues with this idea, by simply adding con-
ditional branches at the top of the double-scalar multiplication algorithm, we are
able to cover all use cases for Ed25519: if the input value to the function contain-
ing the variable-point is empty then the algorithm is equivalent to a fixed-point
scalar multiplication; if the input value to the function containing the fixed-point
is empty then the algorithm is equivalent to a variable-point scalar multiplica-
tion; otherwise it is the standard double-scalar multiplication. By following this
approach the implementation saves more than 30 KB of code since it does not
require a 30 KB precomputed table, and it only uses a single algorithm for fixed-
point, variable-point, and double-point scalar multiplication—and consequently
only one algorithm for scalar recoding.

SCA Analysis. We now give a brief analysis from a SCA perspective to demon-
strate the vulnerabilities enabled by the previous modifications to the original
implementation.

Recall that prior to the scalar multiplication computation, the integer repre-
senting the scalar value must be recoded into a different form. The algorithm used
for recoding, as any other algorithm dealing with secret information, must behave

Size, Speed, and Security: An Ed25519 Case Study 23

in a constant-time manner, i.e., no correlation must be observable between the
input value and the execution of the algorithm in order to prevent SCA leak-
age. The reference implementation achieves this by cleverly using arithmetic and
bitwise operations to recode the scalar as digits in the range [−8, 7]. These arith-
metic and bitwise operations do not branch nor loop based on the scalar value,
thus they are secure against SCA. However, one problem arises when using the
double-scalar multiplication as a fixed-point scalar multiplication, as the recod-
ing algorithm used for the latter is different than in the former. The recoding
algorithm for double-scalar multiplication is based on the work by Avanzi [4],
a left-to-right recoding variant commonly used during wNAF scalar multiplica-
tion. This variant in particular branches out according to individual bits of the
scalar value, therefore its usage is only suitable when the scalar is a public value
and does not need SCA protection, however this is not the case when using it for
fixed-point scalar multiplications as in our vulnerable implementation. Despite
being known to leak information, recoding algorithms were mostly ignored on
SCA research as attacking them requires techniques with fine granularity allow-
ing to capture leakage at a single-branch level. It was until recently, when Hassan
et al. [18] demonstrated that it is possible to recover the scalar value by per-
forming a microarchitecture attack on the wNAF recoding algorithm used in
Mozilla’s NSS during secp384r1 ECDSA computation.

A second, and more well known, SCA vulnerability in our example imple-
mentation is the double-scalar multiplication algorithm itself. Even if a SCA
secure recoding algorithm is in use, the scalar multiplication algorithm itself is
vulnerable against a SCA attacker, since its execution is highly dependent on the
wNAF representation of the scalar value. While the double-scalar multiplication
algorithm has not been exploited in the past, it follows the same execution flow
of the wNAF scalar multiplication algorithm, which has been repeatedly shown
to be vulnerable [2,12,29]. On a high level, this scalar multiplication algorithm
performs an elliptic curve point double for each recoded scalar digit, and an
elliptic curve point addition only when the recoded scalar digit is non-zero, thus
the general idea is that a SCA attacker is able to recognize the zero and non-
zero digits of the recoded scalar value, as well as being able to identify which
was the value of the digit since it is the index of the multiplier accessed from
the precomputed table during the elliptic curve point addition, giving enough
information to ultimately recover the private key.

Scalar multiplications are a basic operation for digital signature algorithms,
thus an attacker with SCA capabilities would have opportunity to recover a
secret key not only during key generation but also during signature generation.
We reckon that specifically for Ed25519, an attacker would require (near) perfect
traces as no practical lattice attacks have been demonstrated against it but we
speculate is only a matter of time before it is possible.

4 Computer-Aided Ed25519

It is easy to see from the analysis presented in Sect. 3 that an easy fix to the SCA
flaws presented is to either use a well established cryptography library providing

24 C. Pereida García and S. Sovio

an Ed25519 implementation, revert back to the reference implementation best
suited to our needs, or implement constant-time versions of those algorithms
leaking sensitive information. However, we decided to explore a different app-
roach. We decided to make use of a cryptography tool to generate “new” Ed25519
implementations, and then we compared them to other available implementa-
tions. This approach serves two purposes, it allows us: (i) to analyze the easiness
of producing and implementing different SCA-secure Ed25519 implementations
with the added benefit of (partial) formal verification; (ii) and to compare the
performance among computer-aided and widely used implementations.

For the computer-aided Ed25519 implementations, we used the ECCKiila9

cryptography tool created by Belyavsky et al. [5]. The tool uses the fiat-crypto
project to generate formally verified Galois Field (GF) arithmetic [15] for many
ECC curves including Ed25519, and on top of this layer it generates complete EC
arithmetic. Everything generated as portable code for 32-bit and 64-bit archi-
tectures, therefore useful for several use cases.

New Implementations. Harnessing the power of ECCKiila, we created two
portable and SCA-secure Ed25519 implementations with different memory size
requirements targeting different architectures: (i) a full-fledge portable imple-
mentation with a 30 KB precomputed table filling up an average L1 mem-
ory cache which we call ecckiila-precomp; and a lighter 32-bit implementa-
tion with a small 2.5 KB precomputed table suitable for smaller devices which
we call ecckiila-no-precomp. The ecckiila-precomp implementation uses a
constant-time fixed-point scalar multiplication based on the comb method [14,
9.3.3] and regular-NAF scalar recoding [20], while ecckiila-no-precomp uses a
constant-time variable-point scalar multiplication and regular-NAF scalar recod-
ing. Both implementations use the variable-time double-point scalar multiplica-
tion based on textbook wNAF [4] and Shamir’s trick [14, 9.1.5].

Once we generated all the EC arithmetic using the tool, we were left with the
task of adding EdDSA specific algorithms and creating the upper API layer. For
the missing Ed25519 specific algorithms—i.e., point decompression, multiply and
add, and modular reduction by the order of the base point—we ported them from
the ref10 implementation and adapted them accordingly. Then we implemented
the public API layer on top them, resulting in a working implementation.

4.1 Benchmarking

After generating two computer-aided Ed25519 implementations, we decided to
benchmark their performance and compare them against our aggressively opti-
mized implementation from Sect. 3 (called overoptimized) and against other
widely used implementations. For benchmarking we used the SUPERCOP10

framework developed as part of the EBACS [8] project. SUPERCOP is a well
established and well known cryptography benchmarking framework contain-
ing several different implementations for all types of cryptographic primitives,
9 https://gitlab.com/nisec/ecckiila/.

10 https://bench.cr.yp.to/supercop.html.

https://gitlab.com/nisec/ecckiila/
https://bench.cr.yp.to/supercop.html

Size, Speed, and Security: An Ed25519 Case Study 25

including hash functions, stream ciphers, block ciphers, key exchange, digital
signatures, etc. Moreover, SUPERCOP runs on several architectures, allowing
us to expand our comparison of implementations to include Intel and ARM
architectures for 32 and 64 bits.

SUPERCOP already ships with the original reference implementations
in its code, and in addition we included and adapted donna, monocypher,
ecckiila-no-precomp and ecckiila-precomp to its required API in order to
benchmark their performance. It is worth mentioning that adapting these imple-
mentations to SUPERCOP’s required API does not affect their performance, but
the reported values in this work might differ from each project self-reported val-
ues. This is due to each implementation using different RNG and hash function
implementations—i.e., for our benchmarks all of the Ed25519 implementations
use SUPERCOP’s own RNG and hash functions.

Intel Setup. For both 64-bit and 32-bit benchmarks our setup consists of an
Intel Xeon E5-1650 v2 Ivy Bridge EP at 3.50GHz running Ubuntu 18.04 LTS
“Bionic Beaver”. We disabled TurboBoost and set the frequency scaling governor
to performance.

ARM Setup. For both 64-bit and 32-bit benchmarks our setup consists of a
Raspberry Pi 3B equipped with a quad-core 1.2GHz Broadcom BCM2837 64-bit
CPU and 1GB RAM, running Ubuntu 18.04 LTS “Bionic Beaver”. The 64-bit
aarch64 has Linux kernel version 5.4.0-1026-raspi, and the 32-bit armv7l
has Linux kernel version 5.4.0-1015-raspi. We disabled frequency scaling via
software.

SUPERCOP Setup. SUPERCOP and all the implementations were compiled
with stock gcc version 7.5.0, and using the -O3 optimization level. The reported
values are in thousands of clock cycles and they correspond to the median value
of many measurements (as defined by SUPERCOP) for an operation on a 59-byte
message.
Results. Table 2 and Table 3 show the results of our benchmarks for Intel and
ARM architectures, respectively. Without surprise, donna is the most performant
among all the implementations on both architectures, and it specially excels on
the Intel architecture, where it is twice as fast as ref10. Another observation is
that monocypher shows good results for being an implementation with a smaller
memory footprint targeting IoT devices.

Our results confirm that optimizing for memory size not only has detrimen-
tal results for security, but also for speed, as observed in the overoptimized
results where we observe a decreased performance by 2.5× at the cost of saving
slightly more than 30 KB of memory used for precomputed tables during scalar
multiplication.

For our two computer-aided implementations the results show, on the one
hand, that ecckiila-no-precomp achieves similar size and performance results
as overoptimized on the Intel 32-bit architecture, with the added benefit of
being secure against SCA. On the other hand, we were positively surprised to

26 C. Pereida García and S. Sovio

Table 2. Comparison of timings on Intel architecture. � is the baseline. � means a
speedup (better) w.r.t. baseline. � means a slowdown (worst) w.r.t. baseline. Timings
are given in clock cycles (thousands).

Architecture Implementation Sign Verify KeyGen

x86_64 ref10 140 (� base) 455 (� base) 135 (� base)

ref 1560 (�11.1x) 5218 (�11.4x) 1531 (�11.3x)

amd64-64-24k 64 (�2.18x) 225 (�2.02x) 60 (�2.25x)

amd64-51-30k 66 (�2.12x) 210 (�2.16x) 62 (�2.17x)

donna 64 (�2.18x) 217 (�2.09x) 59 (�2.28x)

monocypher 230 (�1.64x) 525 (�1.15x) 210 (�1.55x)

overoptimized 264 (�1.88x) 455 (�1.00x) 227 (�1.68x)

ecckiila-precomp 101 (�1.38x) 280 (�1.62x) 96 (�1.4x)

x86 ref10 399 (� base) 1155 (� base) 374 (� base)

ref 4137 (�10.3x) 14105 (�12.2x) 4086 (�10.9x)

amd64-64-24k − − −
amd64-51-30k − − −
donna 310 (�1.28x) 962 (�1.20x) 291 (�1.28x)

monocypher 533 (�1.33x) 1347 (�1.16x) 471 (�1.25x)

overoptimized 958 (�2.40x) 1155 (�1.00x) 914 (�2.44x)

ecckiila-no-precomp 1133 (�2.83x) 1231 (�1.06x) 1075 (�2.87x)

ecckiila-precomp 427 (�1.07x) 1228 (�1.06x) 368 (�1.01x)

Table 3. Comparison of timings on ARM architecture. � is the baseline. � means a
speedup (better) w.r.t. baseline. � means a slowdown (worst) w.r.t. baseline. Timings
are given in clock cycles (thousands).

Architecture Implementation Sign Verify KeyGen

aarch64 ref10 245 (� base) 688 (� base) 238 (� base)

ref 2924 (�11.9x) 9579 (�13.9x) 2425 (�10.1x)

amd64-64-24k − − −
amd64-51-30k − − −
donna 196 (�1.25x) 638 (�1.07x) 162 (�1.46x)

monocypher 422 (�1.72x) 812 (�1.18x) 366 (�1.53x)

overoptimized 726 (�2.96x) 688 (�1.00x) 635 (�2.66x)

ecckiila-precomp 270 (�1.10x) 808 (�1.17x) 261 (�1.09x)

armv7l ref10 597 (� base) 1755 (� base) 582 (� base)

ref 9933 (�16.6x) 28642 (�16.3x) 8442 (�14.5x)

amd64-64-24k − − −
amd64-51-30k − − −
donna 508 (�1.17x) 1508 (�1.16x) 495 (�1.17x)

monocypher 983 (�1.64x) 2505 (�1.42x) 987 (�1.69x)

overoptimized 1622 (�2.71x) 1800 (�1.02x) 1534 (�2.63x)

ecckiila-no-precomp 2134 (�3.57x) 2237 (�1.27x) 2050 (�3.52x)

ecckiila-precomp 815 (�1.36x) 2213 (�1.26x) 732 (�1.25x)

observe that ecckiila-precomp outperforms ref10 on the Intel 64-bit architec-
ture and has very similar results on the Intel 32-bit architecture.

On ARM architecture both ecckiila-no-precomp and ecckiila-precomp
clearly lag behind when compared to their Intel counterpart. We speculate that
these underperforming results on ARM are due to internal parameters in the
ECCKiila tool used during code generation. These parameters try to calcu-

Size, Speed, and Security: An Ed25519 Case Study 27

late the correct size of the precomputed tables, however these parameters were
not fine-tuned for our ARM benchmark devices. Our devices were incapable of
internally generating the precomputed tables due to intensive computation by
fiat-crypto, thus we generated them externally. We believe the ARM results
could improve by correctly tweaking these parameters. In light of our results,
it is interesting to observe that ECCKiila generates competitive portable ECC
code that can potentially outperform handwritten, highly optimized code.

Finally, one more thing to consider for Ed25519 is that widely used imple-
mentations such as ref10 and donna were originally published almost a decade
ago, so these implementations do not consider new research results [10,11,13,30]
that further improve the security and performance of Ed25519.

5 Conclusion

Our toy example demonstrates, yet again, that implementing one’s own cryp-
tography is a complex task with a small margin for error, specially when strict
requirements must be met. Aggressive optimizations can easily lead to a situation
where both security and speed are greatly reduced at the cost of size as observed
from our experiments, so we hope this serves as a lesson of a strategy to avoid.
If implementation size is the main concern, a possible strategy to adopt is to use
a SCA-secure variable-point scalar multiplication algorithm for key generation,
signature generation, and signature verification. This reduces substantially the
speed of all the operations but is secure and saves memory by avoiding precom-
putation tables, and additional recoding and scalar multiplication algorithms.

More generally, we recommend cryptography engineers, developers, and prac-
titioners to avoid the usage of variable time algorithms on confidential inputs;
the mix usage of SCA-secure and SCA-vulnerable algorithms, and we recom-
mend to consider SCA good practices and recommendations if implementing
cryptography is a must.

Additionally, our results show that computer-aided cryptographic tools have
reached a maturity level where they can compete against code written by cryp-
tography researchers with advanced skills on software and hardware engineer-
ing, as reflected on their adoption in BoringSSL and NSS cryptographic libraries
[18]. Therefore, we highly recommend adopting them as part of the development
process.

Acknowledgments. The authors would like to thank Philip Ginzboorg for the com-
ments during the development of this research.

The first author thanks the Nokia Foundation for the generous support through a
Nokia Scholarship.

This project received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 804476).

28 C. Pereida García and S. Sovio

References

1. Digital signature standard (DSS): FIPS-PUB 186–5. National Institute of Stan-
dards and Technology, October 2019. https://doi.org/10.6028/NIST.FIPS.186-5-
draft

2. Allan, T., Brumley, B.B., Falkner, K.E., van de Pol, J., Yarom, Y.: Amplifying
side channels through performance degradation. In: Schwab, S., Robertson, W.K.,
Balzarotti, D. (eds.) Proceedings of the 32nd Annual Conference on Computer
Security Applications, ACSAC 2016, Los Angeles, CA, USA, 5–9 December 2016,
pp. 422–435. ACM (2016). http://dl.acm.org/citation.cfm?id=2991084

3. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS,
vol. 10808, pp. 339–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-76953-0_18

4. Avanzi, R.M.: A note on the signed sliding window integer recoding and a left-
to-right analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol.
3357, pp. 130–143. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30564-4_9

5. Belyavsky, D., Brumley, B.B., Chi-Domínguez, J., Rivera-Zamarripa, L., Ustinov,
I.: Set it and forget it! turnkey ECC for instant integration. In: ACSAC 2020:
Annual Computer Security Applications Conference, Virtual Event/Austin, TX,
USA, 7–11 December 2020, pp. 760–771. ACM (2020), https://doi.org/10.1145/
3427228.3427291

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.: High-speed high-
security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012). https://doi.org/10.1007/
s13389-012-0027-1

8. Bernstein, D.J., Lange, T.: eBACS: ECRYPT Benchmarking of Cryptographic
Systems, September 2020. https://bench.cr.yp.to

9. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33481-8_9

10. Bernstein, D.J., Yang, B.: Fast constant-time gcd computation and modular inver-
sion. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 340–398 (2019).
https://doi.org/10.13154/tches.v2019.i3.340-398

11. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of ed25519:
theory and practice. IACR Cryptol. ePrint Arch. 2020, 823 (2020). https://eprint.
iacr.org/2020/823

12. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7_39

13. Chalkias, K., Garillot, F., Nikolaenko, V.: Taming the many EdDSAs. In: van der
Merwe, T., Mitchell, C., Mehrnezhad, M. (eds.) SSR 2020. LNCS, vol. 12529, pp.
67–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64357-7_4

14. Cohen, H., et al. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. Chapman and Hall/CRC, Boca Raton (2005). https://doi.org/10.1201/
9781420034981

https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.6028/NIST.FIPS.186-5-draft
http://dl.acm.org/citation.cfm?id=2991084
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-319-76953-0_18
https://doi.org/10.1007/978-3-540-30564-4_9
https://doi.org/10.1007/978-3-540-30564-4_9
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1
https://bench.cr.yp.to
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.13154/tches.v2019.i3.340-398
https://eprint.iacr.org/2020/823
https://eprint.iacr.org/2020/823
https://doi.org/10.1007/978-3-642-10366-7_39
https://doi.org/10.1007/978-3-030-64357-7_4
https://doi.org/10.1201/9781420034981
https://doi.org/10.1201/9781420034981

Size, Speed, and Security: An Ed25519 Case Study 29

15. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23
May 2019, pp. 1202–1219. IEEE (2019). https://doi.org/10.1109/SP.2019.00005

16. Gras, B., Giuffrida, C., Kurth, M., Bos, H., Razavi, K.: Absynthe: auto-
matic blackbox side-channel synthesis on commodity microarchitectures. In:
27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, 23–26 February 2020. The Internet Soci-
ety (2020). https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-
blackbox-side-channel-synthesis-on-commodity-microarchitectures/

17. Gras, B., Razavi, K., Bos, H., Giuffrida, C.: Translation leak-aside buffer: defeat-
ing cache side-channel protections with TLB attacks. In: Enck, W., Felt, A.P.
(eds.) 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD,
USA, 15–17 August 2018, pp. 955–972. USENIX Association (2018). https://www.
usenix.org/conference/usenixsecurity18/presentation/gras

18. ul Hassan, S., et al.: Side-channel analysis of Mozilla’s NSS. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (eds.) CCS 2020: 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, USA, 9–13 November 2020,
pp. 1887–1902. ACM (2020). https://doi.org/10.1145/3372297.3421761

19. Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA).
In: RFC 8032, pp. 1–60 (2017). https://doi.org/10.17487/RFC8032

20. Joye, M., Tunstall, M.: Exponent recoding and regular exponentiation algo-
rithms. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 334–349.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_21

21. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45537-X_13

22. Pippenger, N.: On the evaluation of powers and related problems (preliminary
version). In: 17th Annual Symposium on Foundations of Computer Science, Hous-
ton, TX, USA, 25–27 October 1976. pp. 258–263. IEEE Computer Society (1976).
https://doi.org/10.1109/SFCS.1976.21

23. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking
deterministic signature schemes using fault attacks. In: 2018 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2018, London, UK, 24–26 April 2018.
pp. 338–352. IEEE (2018). https://doi.org/10.1109/EuroSP.2018.00031

24. Romailler, Y., Pelissier, S.: Practical fault attack against the ed25519 and eddsa
signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography, FDTC 2017, Taipei, Taiwan, 25 September 2017, pp. 17–24. IEEE Com-
puter Society (2017). https://doi.org/10.1109/FDTC.2017.12

25. Samwel, N., Batina, L.: Practical fault injection on deterministic signatures: the
case of EdDSA. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018.
LNCS, vol. 10831, pp. 306–321. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89339-6_17

26. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519
in WolfSSL. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 1–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_1

27. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0_22

https://doi.org/10.1109/SP.2019.00005
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/
https://www.ndss-symposium.org/ndss-paper/absynthe-automatic-blackbox-side-channel-synthesis-on-commodity-microarchitectures/
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://doi.org/10.1145/3372297.3421761
https://doi.org/10.17487/RFC8032
https://doi.org/10.1007/978-3-642-02384-2_21
https://doi.org/10.1007/3-540-45537-X_13
https://doi.org/10.1109/SFCS.1976.21
https://doi.org/10.1109/EuroSP.2018.00031
https://doi.org/10.1109/FDTC.2017.12
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-89339-6_17
https://doi.org/10.1007/978-3-319-76953-0_1
https://doi.org/10.1007/0-387-34805-0_22

30 C. Pereida García and S. Sovio

28. Tuveri, N., Brumley, B.B.: Start your ENGINEs: dynamically loadable contem-
porary crypto. In: 2019 IEEE Cybersecurity Development, SecDev 2019, Tysons
Corner, VA, USA, 23–25September 2019, pp. 4–19. IEEE (2019). https://doi.org/
10.1109/SecDev.2019.00014

29. Tuveri, N., ul Hassan, S., Pereida García, C., Brumley, B.B.: Side-channel anal-
ysis of SM2: a late-stage featurization case study. In: Proceedings of the 34th
Annual Computer Security Applications Conference, ACSAC 2018, San Juan, PR,
USA, 03–07 December 2018, pp. 147–160. ACM (2018), https://doi.org/10.1145/
3274694.3274725

30. de Valence, H., Grigg, J., Tankersley, G., Valsorda, F., Lovecruft, I.: The
ristretto255 group. Tech. Rep, IETF CFRG Internet Draft (2019)

https://doi.org/10.1109/SecDev.2019.00014
https://doi.org/10.1109/SecDev.2019.00014
https://doi.org/10.1145/3274694.3274725
https://doi.org/10.1145/3274694.3274725

Arrows in a Quiver: A Secure
Certificateless Group Key Distribution

Protocol for Drones

Eugene Frimpong(B) , Reyhaneh Rabbaninejad , and Antonis Michalas

Tampere University, 33720 Tampere, Finland
{eugene.frimpong,reyhaneh.rabbaninejad,antonios.michalas}@tuni.fi

https://research.tuni.fi/nisec/

Abstract. Drone-based applications continue to garner a lot of atten-
tion due to their significant potential in both commercial and non-com-
mercial use. Owing to this increasing popularity, researchers have begun
to pay attention to the communication security requirements involved in
deploying drone-based applications and services on a large scale, with
particular emphasis on group communication. The majority of exist-
ing works in this field focus on the use of symmetric key cryptographic
schemes or group key agreement schemes. However, in this paper, we
propose a pairing-free certificateless group authenticated key distribu-
tion protocol for drone-based applications which takes into considera-
tion drones with varying computational resources. The proposed scheme
ensures key freshness, group key secrecy, forward secrecy, and backward
secrecy while ensuring that the scheme is lightweight enough to be imple-
mented on very resource-constrained drones or smart devices. We exten-
sively prove the security of our scheme and demonstrate its real-world
applicability by evaluating its performance on three different kinds of
drone boards (UP Xtreme i7 board, SamL11-Xpro board, and a Zolertia
Re-mote Revb board).

Keywords: Certificateless public key cryptography · Group key
distribution · Drones

1 Introduction

Unmanned Aerial Vehicles (UAV) are gaining popularity in the Industries, Acad-
emia, and peoples’ personal lives at a rapid and accelerating pace. Big organi-
zations, like Uber and Amazon, are constantly hinting at offering drone-based
services such as package and food delivery [1]. Additionally, drones have been
used for other consumer-related activities such as aerial photography, landscape
surveying, and in some cases, delivering medical supplies to remote places. These

This research has received funding from the Technology Innovation Institute (TII),
Abu Dhabi for the project ARROWSMITH: Living (Securely) on the Edge.

c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 31–48, 2021.
https://doi.org/10.1007/978-3-030-91625-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_3&domain=pdf
http://orcid.org/0000-0002-4924-5258
http://orcid.org/0000-0002-4907-2844
http://orcid.org/0000-0002-0189-3520
https://www.tii.ae/
https://doi.org/10.1007/978-3-030-91625-1_3

32 E. Frimpong et al.

devices come equipped with various capabilities and features – from high def-
inition cameras to temperature sensors. Although drones are expected to offer
numerous benefits to consumers and companies, the proliferating adoption of
drone-based services presents a myriad of security concerns and requirements,
chief among them being secure communication [2,3]. Secure communication in
drones centres around securing the communication channel between drones and
their command centre, between individual drones, or groups of drones.

In this paper, we propose a pairing-free certificateless authenticated group
key distribution protocol for drone-based applications. Early group key manage-
ment schemes predominantly focused on symmetric-key based approaches where
symmetric session keys were pre-installed on devices. However, this approach
proved not be scalable for Wireless Sensor Networks (WSNs), a classification
that applies to drones [4]. Subsequently, improvements to Elliptic Curve Cryp-
tographic (ECC) primitives have led to an increased adoption of Public Key
Cryptographic (PKC) schemes for resource-constrained environments [5]. Unfor-
tunately, ECC schemes with certificates and pairing-based operations, incur
additional certificate and computational overhead. To mitigate the limitations
related to certificate overhead, many Certificateless Group Key Agreement (CL-
GKA) schemes [6–8] have been proposed. However, these schemes are based on
Group Key Agreement (GKA) protocols (all group members collaboratively cal-
culate the group session key without depending on a trusted party), as compared
to the Group Key Distribution (GKD) model we follow. There have been many
arguments for GKA over GKD, such as the security of GKD protocols being
broken when the group manager is compromised as well as its inappropriateness
for distributed environments where a trusted authority or central authority is
unavailable [9].

Contrary to these points, we argue that, for a drone-based application such as
a Smart City consisting of different drones with varying computational resources
and smart devices with equally varying resources, a GKA approach is inefficient.
To support our argument, we consider a case study involving a drone team leader
who receives mission plans and tasks from a central point and a group of edge
drones deployed to accomplish the tasks allocated by the drone team leader.
For our case study, the edge drones are assumed to have limited computational
resources, with the team leader, on the other hand having considerably high ones.
In such a case, a GKA approach is inefficient and is not scalable as the number of
edge drones increases. This is due to the fact that in order to compute a session
key, all devices are required to be online – which also introduces an additional
communication overhead. Our protocol provides an efficient group authenticated
key distribution protocol suitable for the case study described. Additionally, it
can also be extended for environments consisting of resource-constrained smart
devices deployed to sense and generate data.

Contributions: The contributions for this paper are summarized below:

C1. We propose a pairing-free certificateless group authenticated key distribu-
tion protocol for multi-drone applications and environments. The security
of existing identity-based public key solutions is impacted by the use of a

AinQ 33

fully trusted KGC (i.e., Key Escrow problem). In our proposed scheme, the
KGC is not fully trusted.

C2. We provide a comprehensive security analysis to prove the security of the
proposed protocol.

C3. Finally, we implement and evaluate the performance of the proposed pro-
tocol on three different device platforms to demonstrate its benefits and
applicability.

2 Related Work

One of the early key distribution schemes was introduced by Tian et al. [10].
They presented a scheme based on Identity-based cryptography (ID-PKC) and
bilinear pairings. Traditional ID-PKC suffer from the key escrow problem while
the computational costs required for pairing operations are considerably higher
than standard ECC operations such as EC point multiplications on resource-
constrained devices. Kumar et al. [11] also proposed an efficient centralized group
key distribution protocol based on the RSA public key cryptosystem, with par-
ticular emphasis on reducing the computation costs and storage complexity at
the Key Server (KS). The scheme offers both forward and backward secrecy -
an essential requirement [9,12] for any secure group key distribution protocol.
A few notable drawbacks with this scheme are the same key escrow problem,
certificate management overhead, and the computational complexity of the RSA
scheme on resource-constrained devices and environments [13]. As a result of the
key escrow and certificate management overhead, several certificateless public
key cryptography schemes have been proposed [6–8,14–16], both for one-to-one
communication and group-based communication instances.

In [6], authors propose a certificateless GKA scheme for unmanned aerial
vehicles. Similar to majority of key agreement protocols [17–21], this protocol
requires that each user contributes to the generation of the group key by way
of a series of key establishment requests. At the end of the final round of the
protocol, each user generates a similar session key. This work along with other
certificateless schemes such as [14] and [7] ensure mutual key agreement, key
escrow elimination, joint key control and key freshness. However, this scheme
incurs relatively high computational burden at each user based on the pairing-
based computations and does not consider a dynamic group where members of
the group can join or leave a group. Similar certificateless key agreement schemes
such as [16] and [15] also do not consider group environments.

More recently, a blockchain-based mutual healing group key distribution
scheme was proposed in [22]. In this work, the Ground control Station (GCS)
for the drones builds a private blockchain where the distributed group keys gen-
erated by the GCS as well as a list of membership certificates are recorded. The
GCS acts as the KS for this scheme and uses the blockchain to record transac-
tions. Transactions, in the context of this scheme, are instances when members
leave or join the group. Although authors prove that the proposed scheme is resis-
tant to various attacks as compared to other mutual healing schemes [10,23,24],

34 E. Frimpong et al.

it poses significant computational overhead resulting from constant interaction
with the blockchain.

To design an efficient and resource friendly protocol, AinQ, our pairing-free
certificateless key distribution protocol, uses a Key Generation Center (KGC)
to distribute partial private and public keypairs to all users. Our scheme utilizes
a hybrid encryption for multiple users and combines a data encapsulation and a
key encapsulation mechanism to distribute the group session key. Additionally,
the computational burden rests primarily on the team leader. As such, AinQ
can be extended to an IoT environment with significantly resource-constrained
devices.

3 System Model

Our setup consists of four entities: (i) Key Generation Center, (ii) Cloud Service
Provider (CSP), (iii) Edge Drones, and (iv) Team Leaders.

1. KGC: This is a semi-trusted entity responsible for generating and setting
the system parameters for the complete run of the protocol. The KGC gener-
ates partial private and public key pairs for each registered drone during the
protocol initialization phase.

2. CSP: We assume the existence of a CSP, an abstract external platform that
consists of cloud hosts operating virtual machines that communicate through
a network. The CSP will be the final destination of messages aggregated by
the set of drones within our environment. Specific capabilities and features of
the CSP are beyond the focus of this paper and as such are not discussed in
detail. Our proposed scheme is independent of the underlying cloud platform.

3. Edge Drones: Let D = {d1, . . . , dn} be the set of all edge drones in our
environment. Each drone is equipped with a number of sensors to monitor
and report on sensed events. Each di accepts mission tasks and securely stores
and updates mission data so that no adversary can learn anything.

4. Team Leaders: Let Q = {q1, . . . , qm} be the set of drones elected as Team
Leaders in our protocol. Each drone team leader maintains a group list which
contains the group members and their respective public keys. This group list
is updated when a drone joins or leaves the group. Each team leader accepts
missions from the CSP and assigns individual tasks to members of its group.
Note that a team leader is assumed to be a more powerful drone with far
more computational resources compared to a regular edge drone.

4 Arrows in a Quiver (AinQ)

In this section, we present AinQ, which constitutes the core of our contribution.
AinQ’s description is divided into two parts:

1. The construction of a scheme containing algorithms for individual and group
key generation, key retrieval and re-keying.

2. A protocol showing how our scheme can be effectively used to allow drones to
form groups and securely agree on secret keys that will allow them to securely
exchange information over an encrypted channel.

AinQ 35

4.1 AinQ Scheme

For the purposes of AinQ, we extend the functionalities of eCLSC-TKEM [16]
with the GenGroupKey,KeyRetrieval, and Re − Key algorithms to support
group key distribution (using a form of Multiple-Recipient/Multiple-Message
Public Key Encryption (MR-MM-PKE) [25]). In total, our scheme consists of
the following seven probabilistic algorithms.

Setup: This algorithm is run by the KGC to generate the system parameters
for the scheme and a master secret key. The algorithm takes as input a security
parameter λ ∈ Z

+, and outputs the system parameters Ω, and the KGC’s master
secret key msk. Given λ, KGC executes the following steps:

Step 1. Chooses a λ-bit prime q and a point P on the curve Gq.
Step 2. Chooses msk as x ∈ Z

∗.
Step 3. Computes the corresponding public key as Ppub = xP .
Step 4. Chooses the following cryptographic hash functions where n is the
key length of the symmetric key encryption scheme:

– H0 : {0, 1}∗ × G2
q × {0, 1}∗ → Z

∗
q∗,

– H1 : G3
q × {0, 1}∗ × Gq → {0, 1}n,

Step 5. Publishes the system parameters Ω = {Gq, Ppub, P,H0,H1}.

GenSecretValue: Each edge drone di ∈ D and team leader run this algorithm
to generate a secret value and a public key. The algorithm takes as input the
system parameters Ω generated in the Setup algorithm, the drone identity di,
and outputs a secret value xi along with a corresponding public key Pi. Given
Ω, di executes the following steps:

Step 1. Chooses a secret value xi ∈ Z
∗,

Step 2. Computes the corresponding public key as Pi = xiP .

GenPartialKey: The KGC runs this algorithm to generate a partial key for all
registered drones. It takes as input the drone’s identity di, its public key Pi, and
the master secret key x. On a successful run, GenPartialKey outputs the partial
private and public keys for di. Given Pi, the KGC executes the following steps:

Step 1. Chooses ri ∈ Z
∗

Step 2. Ri = ri · P
Step 3. si = ri + xH0(di, Ri, Pi) mod q

FullKeyGen: Each registered drone runs this algorithm to generate it’s full
private key ski and public key pki. The algorithm takes as input the drone’s
secret value xi, partial secret key si, public key Pi and partial public key Ri. On
successful run, it returns the drone’s full private and public key pair.
GenGroupKey: This algorithm is run by a designated team leader qk ∈ Q to
generate a symmetric group session key Kg for the group. Given a group list
GL = {d1, . . . , dh} containing a list of valid group members and their respective
public keys pki, i ∈ {1, . . . , h}, qk generates a list of ciphertexts Ci, i ∈ {1, . . . , h}.
The algorithm takes as input the group list GL and the valid time period tg.
Given GL, qk executes the following steps:

36 E. Frimpong et al.

Step 1. Chooses Kg ∈ Z
∗ and lk ∈ Z

∗ at random.
Step 2. Computes V = lk · P .
Step 3. Parses pki as (Ri, Pi) for all di ∈ GL.
Step 4. For each pki:

– Yi = Ri + H0(di, Ri, Pi) · Ppub + Pi.
– Ti = lk · Yi.
– Ci = Kg ⊕ H1(V, Ti, qk, pkk, di, pki, tg).

Step 5. Outputs (V,C1, C2, . . . , Ch, tg).

KeyRetrieval: This is the key retrieval algorithm run by each drone di ∈
GL to obtain the group key Kg generated by qk in GenGroupKey. Given the
broadcast message containing the list of ciphertexts (V,C1, C2, . . . , Ch), and the
respective private key and public key of the recipient drone, di retrieves the
group key Kg. We denote this by: Kg ← KeyRetrieval(V,C1, C2, . . . , Ch, ski, pki).
Given (V,C1, C2, . . . , Ch), each di ∈ GL executes the following steps:

– Step 1. Computes Ti = (si + xi) · V

(si + xi) · lk · P = lk · Yi

– Step 2. Kg = Ci ⊕ H1(V, Ti, qk, pkk, di, pki, tg).

Re − Key: This algorithm is run by the team leader qk whenever a new drone
joins the group, an existing member leaves, or the an existing group key expires
and a new one has to be issued. Given an updated group list GL = {d1, . . . , dh}
containing an up-to-date information on group members, qk generates a new
group key Kg

′. We denote this by: (V,C ′
1, C

′
2, . . . , C

′
h) ← ReKey(GL). Given the

updated GL, qk executes the following steps:

Step 1. Chooses a new group key Kg
′ ∈ Z

∗

Step 2. If di is a new member:

– Parse pki as (Ri, Pi) for di ∈ GL.
– Yi = Ri + H0(di, Ri, Pi,) · Ppub + Pi.
– Ti = lk · Yi.

Step 3. C ′
i = K ′

g ⊕ H1(V, Ti, qk, pkk, di, pki, t
′
g)

Step 4. Outputs (V,C ′
1, C

′
2, . . . , C

′
h).

4.2 AinQ Protocol

The proposed protocol is divided into 3 phases; (i) Setup and Initialization, (ii)
Key Generation and Retrieval, and (iii) Group Re-keying. To provide a detailed
and comprehensive description of each phase, we consider a drone-based scenario
consisting of an elected drone group leader and a number of edge drones in its
group. In our assumed scenario, the elected drone team leader qk wishes to

AinQ 37

distribute a group key Kg to all edge drones belonging to GL in the presence of
a KGC. Furthermore, we assume that all drones have a maximum flight time of
tg and are stored in a secure location when not on a mission.

AinQ - Setup and Initialization. The KGC runs the Setup algorithm at the
beginning of the protocol to generate a master secret key and system parame-
ters. The algorithm returns the system parameters, Ω, and the master secret key
x. These system parameters are public and accessible to each registered entity
partaking in the protocol. Each registered drone runs the GenSecretValue algo-
rithm to generate a secret value and a corresponding public key. On successful
run of this algorithm, the drones send their identity and public key to the KGC
in order to receive partial private and public keys valid for the length of their
flight. The KGC runs the GenPartialKey algorithm and returns to each drone
the partial private and public key pair. All communication in this phase of the
protocol occurs before the drones leave for a mission and is assumed to be over
a secure channel.

Upon receiving the partial private/public keypair, each drone runs the
GenPrivKey and GenPubKey to generate a full public/private key pair. We assume
that each drone makes its public key available to all other drones.

AinQ - Key Generation and Retrieval. In this phase of AinQ, the team
leader qk first generates a random number r1, and runs the GenGroupKey algo-
rithm to generate the symmetric group key Kg and the list of ciphertexts
(C1, C2, . . . , Ch). Kg that will be used to secure all ensuing communication
between the group members as well as with the team leader.

On successful run of the GenGroupKey algorithm, the team leader sends the
following broadcast message to drones in the network: m1 = 〈r1, V, C1, C2, . . . ,
Ch, qk, tg, σqk〉 where σqk = sigskk

(r1||V ||Kg). Upon receiving m1, each regis-
tered drone executes the KeyRetrieval algorithm to retrieve the group key Kg.
The freshness and integrity of m1 is verified using the team leader’s public key
and the generated group key. The protocol is aborted if the signature verification
process fails. Figure 1 provides an illustration of this phase.

AinQ - Group Re-Key. The team leader qk runs the Re − Key algo-
rithm in this phase to generate a new group key Kg

′ whenever a new drone
joins its group or an existing drone leaves the group. The re-keying pro-
cess ensures that AinQ is both forward and backward private. When a drone
leaves or joins a group, the leader updates the group list GL′, generates a
new random number r2, and broadcasts a new message m2 to the network.
m2 = 〈r2, V, C ′

1, C
′
2, . . . , C

′
h, qk, tg

′, σ′
qk

〉 where σ′
qk

= sigskk
(r2||V ||K ′

g).

38 E. Frimpong et al.

Fig. 1. Key Generation and Retrieval Phase

5 Security Analysis

In this section, we proceed to prove the security of our construction in the
presence of a malicious adversary A, who can be an outside adversary– which
covers a variety from a passive eavesdropper who just listens to the network to a
malicious entity who has captured some drones–, or inside adversaries including
a corrupt KGC and a revoked user. We begin by describing the main security
properties that a group key distribution scheme should satisfy (5) and follow
this up with the necessary security definitions that we consider for our threat
model (5).

Security Requirements: Consider a group where edge drones dynamically
join or leave. Furthermore, let K = {K0

g , . . . ,Ks
g} be the set of sequential group

keys generated during s successive sessions. Below we provide a list of the main
security properties that a GKD scheme should satisfy.

1. Key Freshness: A GKD scheme has this property if it guarantees a key to be
new, thus preventing the reuse an old key by an adversary.

2. Group Key Secrecy: A GKD scheme must guarantee that a session key is
only known to legitimate drones. This means that extracting a session key
Ki

g ∈ K, i ∈ [0, s] is computationally infeasible for an adversary.
3. Forward Secrecy: Assume an adversary possesses a consecutive subset of ses-

sion keys (e.g., {K0
g ,K1

g , . . . ,Ki
g}). This property guarantees that he can learn

nothing about a future session key Kj
g , for all i < j. Therefore, a revoked

drone cannot discover future session keys.
4. Backward Secrecy: Assume an adversary possesses a consecutive subset of

session keys (e.g., {Ki
g,K

i+1
g , . . . ,Kj

g}). This property guarantees that he
can learn nothing about a past session key Kl

g, for all l < i < j. Therefore, a
newly joined drone cannot discover previous session keys.

Security Model: We now formally define indistinguishability against adaptive
chosen ciphertext attack (IND-CCA2) through the following game between an

AinQ 39

adversary A (this can be an outside adversary, a corrupt KGC, or a revoked
user) and a challenger B.

Ainq-IND-CCA2 Game

– Challenger B runs the Setup algorithm to generate msk, the corresponding
public key Ppub, and system parameters Ω. B then forwards Ω and Ppub to A
and keeps msk confidential. In case A is a corrupt KGC, msk is also sent to
A.

– Adversary A can make the following queries to the challenger. In case A is a
revoked user, the run time of the operations executed by B is less than the
challenge time period.
1. GenSecretV alue Query. Adversary A queries the secret value and the

corresponding public key of a specified drone. B runs the GenSecretValue
algorithm and forwards the output to A. Note that we exclude a corrupt
KGC from these queries.

2. GenPartialKey Query. To respond to a query on the partial private and
public keypair of a specified drone from A, B runs the GenPartialKey
algorithm with msk and the drone’s public key as inputs, and forwards
the output to A.

3. GenGroupKey Query. Adversary A sends a query to OGenGroupKey oracle
by giving as input the group list GL, identity qk of the team leader, and
the valid time period tg. Using the key for group of drones GL generated
by team leader qk for time period tg. B runs GenGroupKey algorithm and
forwards the output to A.

4. KeyRetrieval Query. Adversary A queries OKeyRetrieval oracle to extract
a group key from the broadcast message. B runs KeyRetrieval algorithm
and forwards the output to A. Note that we exclude a corrupt KGC from
these queries.

5. Re − Key Query. Adversary A sends a query to ORe−Key oracle by giving
as input an updated group list GL, the team leader’s identity qk, and the
valid time period tg. B runs Re − Key algorithm and forwards the output
to A.

– At the end of query phase, A submits challenge inputs including group list
GL∗, team leader identity q∗

k, and a valid time period t∗g, and two session keys
K0

g ,K1
g . A may not have made FullKeyGen queries on any of the identities

in GL∗ and q∗
k by querying both OGenSecretV alue and OGenPartialKey oracles.

Also, A may not have made KeyRetrieval query on tuple (GL∗, q∗
k, t∗g) in

the query phase. In case A is a revoked user, the condition t∗g > tR must
also hold, where tR is the revocation time. That is, in the challenge time
period, A has no access to new information. B picks a random b ∈ {0, 1}
and runs (V ∗, C∗

1 , C∗
2 , . . . , C∗

h) ← GenGroupKey(GL∗, q∗
k, t∗g,K

b
g), where C∗

i =
Kb

g ⊕ H1(V ∗, Ti, q
∗
k, pk∗

k, d∗
i , pk∗

i , t∗g). Finally, B sends (V ∗, C∗
1 , C∗

2 , . . . , C∗
h) as

challenge to A.
– Excluding the case where A is a revoked user, A can continue the query

phase by adaptively making a polynomially bounded number of queries. A

40 E. Frimpong et al.

may not make FullKeyGen queries on any identities in GL∗ and q∗
k by query-

ing both OGenSecretV alue and OGenPartialKey oracles. Also, A may not make
KeyRetrieval query on same group list GL∗, team leader identity q∗

k, and
time period t∗g. Finally, A outputs a bit b′ and wins the game if b′ = b.

Definition. AinQ is IND-CCA2 secure if any probabilistic polynomial-time
adversary A has at most negligible advantage in the above security game. A’s
advantage is defined as below:

AdvIND−CCA2(A) = |Pr[b′ = b] − 1
2
|. (1)

5.1 Security Proof

Below, we provide the formal security proof for AinQ which relies on the hardness
of decisional Diffie-Hellman problem.

Definition: Decisional Diffie-Hellman (DDH) Assumption. Given a
prime q and a generator P on the curve Gq, for randomly and independently
chosen a, b ∈ Zq, the value abP is indistinguishable from a random element in
Gq. Formally, for each probabilistic polynomial-time adversary A which is given
(D1 = aP,D2 = bP) and a candidate solution D3, A’s advantage to distinguish
whether D3 = abP or whether D3 was chosen at random from Gq is negligible.
In other words, for any probabilistic polynomial-time algorithm A, we have:

|Pr[ADDH(Gq, P, aP, bP, cP) = 1]
− Pr[ADDH(Gq, P, aP, bP, abP) = 1]| ≤ negl(λ),

where a, b, c ∈ Zq are chosen at random.

Theorem 1. AinQ is IND-CCA2 secure under DDH assumption in the random
oracle model.

Proof. As noted in the security model, we consider three types of adversaries:
an outside adversary – which covers a variety from a passive eavesdropper who
just listens to the network to a malicious entity who has captured some drones–,
and inside adversaries including malicious KGC and a revoked user. Here we for-
mally prove AinQ security against an outside adversary. Security proofs against
malicious KGC and revoked user follow same arguments as proof below, which
are omitted due to the space limitation.

–Security Against Outside Adversary: Extracting a session key is compu-
tationally infeasible for an outside adversary. To show this, we prove that if an
outside adversary A has a non-negligible advantage in IND-CCA2 game, then
there exists an algorithm B that solves the DDH problem with overwhelming
probability.

Setup. Given a DDH challenge (D1 = aP,D2 = bP,D3), B sets the public key
Ppub = D1 and forwards it to A. Here, the virtual master secret key msk is equal
to x = a.

AinQ 41

GenSecretValue Query. To answer a query on secret value of drone di submitted
by A, B chooses random xi ∈ Z

∗ and sets the corresponding public key as
Pi = xiP . Then, B sends (xi, Pi) to A and also saves the pair (xi, Pi) into a
table Tdi

.

GenPartialKey Query. To answer a query on the partial key of a drone di submit-
ted by A, since B does not possess msk, he generates si = ri + xH0(di, Ri, Pi)
mod q by controlling the output of H0 as follows. B chooses random si ∈ Z

∗

as the queried partial key. B also selects random ci ∈ Z
∗ as the output of

H0(di, Ri, Pi) and computes Ri = siP −ciD1. Finally, B checks if ({di, Ri, Pi}, .)
is an entry in table TH0 ; if it is so, the random ci assigned to H0(di, Ri, Pi) is not
correct and the game aborts. Otherwise, B saves ({di, Ri, Pi}, ci) in table TH0

and outputs the queried partial key as (si, Ri) which is also recorded in table
Tdi

.

Hash Query. To answer H query on input ai, B first checks previously queried
values in table TH . If there is the same entry in TH , he outputs the corresponding
value. Otherwise, he outputs a random value ci ∈ Z

∗ and saves (ai, ci) in TH .

GenGroupKey Query. Adversary A sends GL, qk, tg to query OGenGroupKey ora-
cle. To answer this query, B chooses Kg ∈ Z

∗ and l′k ∈ Z
∗ at random, and

computes V = l′k · D2. Next, B extracts pki = (Ri, Pi) from table Tdi
, for all

di ∈ GL. Note that if table Tdi
for a drone di ∈ GL was empty, B gener-

ates the corresponding values by calling OGenSecretV alue and OGenPartialKey

oracles. For all pki, B computes Ti = l′ksi · D2 + l′kci · D3 + l′kxi · D2 and
Ci = Kg ⊕H1(V, Ti, qk, pkk, di, pki, tg). Finally, B outputs (V,C1, C2, . . . , Ch, tg)
as response to the query.

KeyRetrieval Query. Adversary A queries B to extract group key from a broad-
cast message (V,C1, C2, . . . , Ch, tg). B extracts ski = (si, xi) from table Tdi

, for
one di in group list GL corresponding to the broadcast message. B then com-
putes Ti = (si + xi) · V and Kg = Ci ⊕ H1(V, Ti, qk, pkk, di, pki, tg) to retrieve
the session key and forwards Kg to A.

Re-Key Query. Adversary A sends an updated group list GL, team leader qk, and
valid time period tg to query ORe−Key oracle. To answer this query, B performs
same process as he did in GenGroupKey Query except that the Ti values for old
drones can be reused from previous runs. Finally, the output is forwarded to A.

Challenge. At the end of query phase, A submits challenge inputs including group
list GL∗, team leader identity q∗

k, and a valid time period t∗g, and two session keys
K0

g ,K1
g . If the conditions described in Ainq-IND-CCA2 game hold, B (1) picks

a random b ∈ {0, 1} (2) runs GenGroupKey Query on input (Kb
g , GL∗, q∗

k, t∗g) to
generate (V ∗, C∗

1 , C∗
2 , . . . , C∗

h) (3) sends it as challenge to A.

Response. A can run another query phase by adaptively making a polynomially
bounded number of queries which must meet the conditions described in Ainq-
IND-CCA2 game. Finally, (1) A outputs a bit b′ (2) B responds to the DDH
challenge by outputtig 1 if b′ = b, and 0 otherwise.

42 E. Frimpong et al.

Analysis. Th probability of aborting in the above game, is equal to the proba-
bility of collision in H0 which is at most qH/2λ, where qH is the total number
of queries to H0. So, the probability that A wins the game is ε(λ)(1 − qH/2λ).
Regarding B’s response, two cases can be considered:

Case 1. The DDH challenge given to B is generated by randomly choosing
a, b, c ∈ Zq, and setting D1 := aP , D2 := bP , and D3 := cP . In this case, D3

is a random element in Gq and thus T ∗
i = l′∗ksi · D2 + l′∗kci · D3 + l′∗kxi · D2 is

uniformly distributed in Gq. Therefore, the view of A on the challenge ciphertext
C∗

i = Kb
g ⊕ H1(V ∗, T ∗

i , q∗
k, pk∗

k, di, pki, t
∗
g), is distributed exactly as A’s view in

one-time pad (OTP). Since B outputs 1 exactly when the output b′ of A is equal
to b, we have that:

Pr[BDDH(Gq, P, aP, bP, cP) = 1]
= (1 − qH/2λ) · Pr[AOTP (b = b′)]

=
1
2

· (1 − qH/2λ).

Case 2. The DDH challenge given to B is generated by randomly choosing
a, b ∈ Zq, and setting D1 := aP , D2 := bP , and D3 := abP . In this case, the
view of A on the challenge ciphertext C∗

i = Kb
g ⊕ H1(V ∗, T ∗

i , q∗
k, pk∗

k, di, pki, t
∗
g)

is distributed exactly as A’s view in AinQ. Since B outputs 1 exactly when the
output b′ of A is equal to b, we have that:

Pr[BDDH(Gq, P, aP, bP, abP) = 1]
= (1 − qH/2λ) · Pr[AAinQ(b = b′)]

= (
1
2

+ ε(λ)) · (1 − qH/2λ).

Therefore, B’s advantage in solving the DDH challenge is:

|Pr[BDDH(Gq, P, aP, bP, cP) = 1]
− Pr[BDDH(Gq, P, aP, bP, abP) = 1]|
= |1

2
− (

1
2

+ ε(λ))| · (1 − qH/2λ)

which implies that if ε(λ) is non-negligible, then the probability of solving DDH
problem ε(λ) · (1 − qH/2λ) is non-negligible too, completing the proof. �
Discussion. Now we consider how security requirements are satisfied by AinQ.
(1) key Freshness: this requirement is trivially satisfied since each new session
key is chosen uniformly at random from the key space making the event of rep-
etitious session keys unlikely to happen. (2) Group Key Secrecy: this is a trivial
inference of Theorem 1. (3) Forward Secrecy: whenever a revocation happens, the
team leader executes Re − Key algorithm to refresh session key and distributes it
through the network. Since the refreshed session key Kj

g is chosen independent
from all previous session keys {K0

g ,K1
g , . . . ,Ki

g} known to the leaving drone,

AinQ 43

revoked drone’s view is exactly same as the view of an outside adversary. There-
fore, a former drone cannot discover subsequent session keys. This can be also
deduced from Theorem 1. (4) Backward Secrecy: whenever a new drone joins
the group, the team leader executes Re − Key algorithm to refresh session key
randomly and distributes it through the network. Since all the new session keys
{Ki

g,K
i+1
g , ...,Kj

g} known to the new drone are chosen independent from a pre-
vious session key Kl

g, for all l < i < j, new drone’s view with respect to the
prior session keys is exactly same as the view of an outside adversary. Therefore,
based on Theorem 1, a new drone can learn about previous session keys only
with negligible advantage.

6 Experiments

In this section, we evaluate the performance of the AinQ’s core functions and
their impact on our target devices. For the purposes of this experiment, we
implemented the protocol on devices that are considered to be commercially
available. Our testbed was made up of the following boards:

– Team Leader: An UP Xtreme board equipped with an Intel Core i7-8665UE
SoC, 16 GB RAM, 64 GB storage capacity and an Intel UHD Graphics 620
graphics card1. We installed Ubuntu 20.04 on this board and utilized the
MIRACL cryptographic library [26] to implement the proposed protocol.

– Edge Drones: To provide a comprehensive evaluation on resource-constrai-
ned devices, we considered two boards for this role. The Zolertia Re-Mote
Revb board which comes equipped with a 32 MHz ARM Cortex-M3 SoC
with 512 KB flash, and 32 KB RAM2, and the SAML11 Xplained Pro board
with a 32 MHz ARM Cortex-M23 SoC, 64 KB flash, and 16KB SRAM3.
Implementations for both boards were built on top of the RIOT [27] OS
using the C25519 cryptographic library4 for RIOT.

6.1 Performance of Core Cryptographic Functions

In this phase of our experiments, we evaluated the performance of the proposed
cryptographic functions by measuring their execution times. For each specific
entity, we focused on the functions it executes directly. For example, when evalu-
ating the performance on the resource-constrained edge drone, we focused exclu-
sively on the GenSecretValue, and KeyRetrieval functions. For the team leader,
we focused on the GenSecretValue,GenGroupKey, and Re − Key functions.

1 https://up-board.org/up-xtreme/.
2 https://github.com/Zolertia/Resources/wiki/RE-Mote.
3 https://www.microchip.com/Developmenttools/ProductDetails/DM320205.
4 https://www.dlbeer.co.nz/oss/c25519.html.

https://up-board.org/up-xtreme/
https://github.com/Zolertia/Resources/wiki/RE-Mote
https://www.microchip.com/Developmenttools/ProductDetails/DM320205
https://www.dlbeer.co.nz/oss/c25519.html

44 E. Frimpong et al.

Edge Drone. During the course of these experiments, we observed that the
performance of the proposed functions on the resource-constrained edge drones
depended heavily on the number of EC point multiplications performed by the
device. Based on the specifications of the chosen target devices, we noticed
a considerable difference in the execution times. The SAML11-xpro executed
an EC multiplication in approximately 4.782 s while the Zolertia Re-mote
board used approximately 2.598 s. Subsequently, the SAML11-xpro executed
the GenSecretValue in approximately 5.343 s and the KeyRetrieval function in
approximately 4.783 s. The Zolertia Re-mote board on the other hand, executed
the GenSecretValue in approximately 2.943 s and the KeyRetrieval function in
approximately 2.613 s.

Table 1. Edge drone performance

SAML11-Xpro Zolertia Re-mote

EM Time (sec) Time (sec)

EC Multiplication 0 4.782 2.598

GenSecretValue 1 5.343 2.943

KeyRetrieval 1 4.783 2.613

Table 1 provides an overview of the results of the experiments conducted
on the edge drone. Each experiment was conducted 50 times with the average
time recorded. From the results, we observe that the Zolertia Re-mote is almost
twice as efficient as the SAML11 Xplained pro. The difference in the performance
results was to be expected based on the resources available to each of the boards.

Team Leader. The overall performance of our proposed protocol at the team
leader is determined by the execution of the GenGroupKey and Re − Key func-
tions. To this end, we measure the execution time of the GenGroupKey function
for a varying number of edge drones, ranging from 1 to 2,000. When the num-
ber of edge drones was 1, GenGroupKey took approximately 0.66 ms to execute
whereas when the number of edge drones was 2,000, it executed in approxi-
mately 0.72 s. We observed that as the number of edge drones in the group
increased, the execution time increased in an efficient manner due to the re-use
of the same V parameter for all drones. To be more precise, multiplying 0.66 ms
by 2,000 drones resulted in approximately 1.32 s. Consequently, we conclude that
the GenGroupKey algorithm achieved an execution time which was about 50%
more efficient than the expected performance.

As stated in Subsect. 4.1, the Re − Key function is executed when an edge
drone joins the group, leaves the group or the current group key expires. To this
end, we measured the execution of the Re − Key function by performing two sets
of experiments. The first set focused on renewing an expired key. Similar to the
experiments for the GenGroupKey function, we executed the function for a range
of 1 to 2,000 edge drones. For the instance of only 1 drone, the function execution

AinQ 45

0 500 1,000 1,500 2,000
0

150

300

450

600

750

Number of Edge Drones

T
im

e
(m

s)

GenGroupKey

Re-Key

Fig. 2. Performance of the team leader

time was approximately 0.03 ms, while when the number of drones in the group
was 2,000, the execution time was approximately 15.28 ms. Figure 2 shows the
overall execution times of both the GenGroupKey and Re − Key functions when
the number of edge drones ranged from 1 to 2,000.

As a next step, we evaluated the performance of the Re − Key function when
new edge drones join a group. To do this, we measured the execution of the
Re − Key function when a varying number of new edge drones joined a group
while maintaining a varying number of existing group members. When a new
drone joins group containing 1 member, the Re − Key function takes approxi-
mately 0.47 ms to execute while when 1,000 users join a group which has 1,000
existing members, Re − Key function takes approximately 389.88 ms. Table 2
illustrates the results from these sets of experiments. It is worth mentioning
that we exclude evaluations when a drone leaves a group as this is similar to a
simple group key re-keying operation.

Comparison with Similar Works: One of our intentions during the experi-
ments, was to compare our scheme with other similar works. We firmly believe
that this would make our experimental evaluation more comprehensive. How-
ever, this proved to be difficult as similar works based on GKD techniques have
not make their code publicly available and therefore we were unable to repro-
duce their results. However, since we believe that comparison with similar works
can give valuable insights about the performance of our work, we attempted to
compare our scheme to that presented in [6]. It is worth noting that the scheme
in [6] is a certificateless GKA scheme (CL-GAKA) whereas AinQ is certificate-
less GKD scheme. As such, a comparison was not straightforward. For example,
we compared the performance of the group key generation by the team leader
in AinQ to the group key agreement by x number of users in CL-GAKA. For
the purposes of this comparison, we implemented the CL-GAKA scheme on our
UP Xtreme board using the PBC library5. The implementation was executed
over a loopback interface (i.e. the same node emulates all clients considered

5 https://crypto.stanford.edu/pbc/.

https://crypto.stanford.edu/pbc/

46 E. Frimpong et al.

Table 2. Group re-key function

Existing Group Members New Group Members Time (ms)

1 1 0.47

1 100 32.48

1 500 185.79

1 1000 352.34

100 1 0.98

100 100 35.61

100 500 174.21

100 1000 355.44

500 1 0.59

500 100 39.89

500 500 183.71

500 1000 391.56

1000 1 8.40

1000 100 51.69

1000 500 209.42

1000 1000 389.88

during our experiments), with all measurements recorded over 50 iterations. We
measured the performance of CL-GAKA’s key agreement phase for three users,
excluding the communication overhead, and observed an average time of 24.3 ms.
Additionally, we measured a user’s performance when executing the computa-
tions needed to contribute to the key agreement phase and observed an average
time of 5.5 ms. On the other hand, the group key generation phase of AinQ takes
approximately 1.22 ms for three users while each user takes an average of 0.22 ms
to retrieve a received group key (summing up the group key retrieval time for
three users equates to approximately 0.66 ms). These results prove that the key
distribution and pairing-free cryptographic approach employed by AinQ make
it considerably more efficient than the pairing-based key agreement approach
used by CL-GAKA. We acknowledge that the number of users considered for
our implementation of CL-GAKA could have been more. However, practically
implementing a GKA scheme with a large numbers of users was not a straightfor-
ward task; hence, supporting our argument that a GKD scheme is more scalable
than a GKA scheme.

Open Science and Reproducible Research: To support open science and
reproducible research, our source code for the experiments is publicly available
on Github6.

6 https://github.com/iammrgenie/AinQ.

https://github.com/iammrgenie/AinQ

AinQ 47

7 Conclusion

In this paper, a secure pairing-free certificateless group authenticated key dis-
tribution protocol is presented. The proposed scheme, AinQ, meets the require-
ments for a secure group key distribution protocol and considers multiple drones
with varying resource constraints. AinQ has been proven efficient for a group
with up to 2,000 edge drones when considering a team leader with high com-
putational resources. Our experimental testbed also assessed the performance
of AinQ on the Zolertia Re-mote Revb and SamL11-xpro boards, which have
minimal resources, with results showing that the scheme can be extended to IoT
devices with significant resource constraints. We hope to use AinQ as a founda-
tional scheme to build more secure drone-based applications that can be applied
to multiple domains in future works. Additionally, we plan to investigate how to
accommodate edge drones off-line during the initial group key broadcast phase
using either self-healing, mutual healing, or any lightweight technique that would
compliment AinQ efficiently.

References

1. Kugler, L.: Real-world applications for drones. Commun. ACM 62(11), 19–21
(2019)

2. Altawy, R., Youssef, A.M.: Security, privacy, and safety aspects of civilian drones.
ACM Trans. Cyber-Phys. Syst. 1(2), 1–25 (2017)

3. Akram, R.N., et al.: Security, privacy and safety evaluation of dynamic and static
fleets of drones. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference
(DASC) (2017)

4. Frimpong, E., Bakas, A., Dang, H.-V., Michalas, A.: Do not tell me what i cannot
do! (the constrained device shouted under the cover of the fog): implementing
symmetric searchable encryption on constrained devices. In: Proceedings of the
5th International Conference on Internet of Things, Big Data and Security (2020)

5. Frimpong, E., Michalas, A.: IoT-CryptoDiet: implementing a lightweight crypto-
graphic library based on ECDH and ECDSA for the development of secure and
privacy-preserving protocols in Contiki-NG. In: Proceedings of the 5th Interna-
tional Conference on Internet of Things, Big Data and Security (2020)

6. Semal, B., Markantonakis, K., Akram, R.N.: A certificateless group authenticated
key agreement protocol for secure communication in untrusted UAV networks. In:
2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC) (2018)

7. Sun, H., Wen, Q., Zhang, H., Jin, Z.: A novel pairing-free certificateless authen-
ticated key agreement protocol with provable security. Front. Comput. Sci. 7(4),
544–557 (2013)

8. Yang, G., Tan, C.-H.: Strongly secure certificateless key exchange without pair-
ing. In: Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security - ASIACCS 2011 (2011)

9. Xiong, H., Yan, W., Zhenyu, L.: A survey of group key agreement protocols with
constant rounds. ACM Comput. Surv. 52(3), 1–32 (2019)

10. Tian, B., Han, S., Jiankun, H., Dillon, T.: A mutual-healing key distribution scheme
in wireless sensor networks. J. Netw. Comput. Appl. 34(1), 80–88 (2011)

48 E. Frimpong et al.

11. Kumar, V., Kumar, R., Pandey, S.K.: A computationally efficient centralized group
key distribution protocol for secure multicast communications based upon RSA
public key cryptosystem. J. King Saud Univ. Comput. Inf. Sci. 32(9), 1081–1094
(2020)

12. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 7

13. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In:
Advances in Cryptology - ASIACRYPT 2003, pp. 452–473 (2003)

14. Lee, E.-J., Lee, S.-E., Yoo, K.-Y.: A certificateless authenticated group key agree-
ment protocol providing forward secrecy. In: 2008 International Symposium on
Ubiquitous Multimedia Computing (2008)

15. Tedeschi, P., Sciancalepore, S., Eliyan, A., Di Pietro, R.: LiKe: lightweight certifi-
cateless key agreement for secure IoT communications. IEEE Internet Things J.
7(1), 621–638 (2020)

16. Won, J., Seo, S.-H., Bertino, E.: A secure communication protocol for drones and
smart objects. In: Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security (2015)

17. Boyd, C., Nieto, J.M.: Round-optimal contributory conference key agreement. In:
Public Key Cryptography - PKC 2003, pp. 161–174 (2002)

18. Bresson, E., Catalano, D.: Constant round authenticated group key agreement via
distributed computation. In: Public Key Cryptography - PKC 2004, pp. 115–129
(2004)

19. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou,
J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88.
Springer, Heidelberg (2005). https://doi.org/10.1007/11556992 6

20. Nam, J., Lee, J., Kim, S., Won, D.: DDH-based group key agreement in a mobile
environment. J. Syst. Softw. 78(1), 73–83 (2005)

21. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Comput. Surv. 35(3), 309–329 (2003)

22. Li, X., Wang, Y., Vijayakumar, P., He, D., Kumar, N., Ma, J.: Blockchain-based
mutual-healing group key distribution scheme in unmanned aerial vehicles ad-hoc
network. IEEE Trans. Veh. Technol. 68(11), 11309–11322 (2019)

23. Agrawal, S., Das, M.L.: Mutual healing enabled group-key distribution protocol in
wireless sensor networks. Comput. Commun. 112, 131–140 (2017)

24. Agrawal, S., Patel, J., Das, M.L.: Pairing based mutual healing in wireless sensor
networks. In: 2016 8th International Conference on Communication Systems and
Networks (COMSNETS) (2016)

25. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 4

26. Scott, M., McCusker, K., Budroni, A.: The MIRACL core library. https://github.
com/miracl/core

27. Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M., Schmidt, T.: RIOT OS: towards
an OS for the internet of things. In: 2013 IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS) (2013)

https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/11556992_6
https://doi.org/10.1007/3-540-45664-3_4
https://github.com/miracl/core
https://github.com/miracl/core

Security in Internet of Things

X-Pro: Distributed XDP Proxies Against
Botnets of Things

Syafiq Al Atiiq(B) and Christian Gehrmann

Department of Electrical and Information Technology, Lund University,
Lund, Sweden

{syafiq al.atiiq,christian.gehrmann}@eit.lth.se

Abstract. The steadily increasing Internet of Things (IoT) devices are
vulnerable to be used as bots to launch distributed-denial-of-service
(DDoS) attacks. In this paper, we present X-Pro, a distributed XDP
proxy to counteract DDoS attacks. We propose a source-based defense
mechanism where proxies located between the IoT devices and the vic-
tim performs flow policing on all IoT traffic from a single administrative
domain. The proposed proxy architecture can be integrated in widely
used IoT frameworks as well as telecommunication networks. The prox-
ies are working synchronously to block bogus messages and to detect
traffic levels above predefined thresholds. Our implementation lever-
ages eXpress Data Path (XDP), a programmable packet processing in
the Linux kernel, as the main engine in the proxy. We evaluate X-Pro
from several standpoints and conclude that our solution offers efficient
DoS traffic blocking for both low-rate or massive attacks. Depending on
the device side implementation selection, the computational overhead is
cheap at the cost of some bandwidth loss.

Keywords: Proxy · Denial of Service · Security

1 Introduction

Denial of Service Attacks (DoS) has harmed the internet since the early 1980s.
DoS prevents legitimate users from reaching their services and still constitute
a major problem. In September 2016, a tremendous Distributed DoS (DDoS)
attack was launched against several high-profile websites: OVH [1], Dyn [2],
and Krebs on Security [3]. Surprisingly, the source came from a vast amount of
embedded devices turned into bots. A master process controls these bots, which
is later known as the Mirai botnets [4]. Mirai scanned the internet and infected
embedded devices running with insecure default password.

Based on the attack strategy, an adversary can design the botnets to be
launched, either as a periodically low-rate [5–7], or a massive [8] DDoS attack.
The low-rate DDoS behaves identically to the regular traffic pattern, making

Work supported by framework grant RIT17-0032 from the Swedish Foundation for
Strategic Research and the EU H2020 project CloudiFacturing under grant 768892.

c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 51–71, 2021.
https://doi.org/10.1007/978-3-030-91625-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-91625-1_4

52 S. A. Atiiq and C. Gehrmann

it difficult to detect by firewalls, routers, and switches. Furthermore, in an
IoT setting, low-rate DDoS is not only a threat against the target nodes; as
IoT devices often are battery-driven and resource-constrained, such attacks can
severely harm the device itself.

Traditionally, DoS is handled at the victim-end or core-end, applying
network-level detection and filtering [9]. However, as the type of DoS threats are
very diverse, so are the suggested countermeasures. The majority of the works
focus on the detection and blocking of harmful traffic [10]. Three main detection
approaches occur in the literature: Signature-Based Approach (SBA), Anomaly
Based Approach (ABA), and Entropy-Based Approach (EBA). SBA and ABA
share many characteristics with traditional intrusion detection systems, while
EBA is a pure traffic analysis approach [11].

We have observed that this traditional way of handling DDoS does not con-
sider the new IoT communication patterns. Especially, the following aspects are
fundamentally different from an IoT perspective:

– IoT devices typically do not primarily communicate with general internet
services but are directed towards a specific backend.

– Botnet threats on IoT entities are undesirable from a resource perspective,
and this gives a large incentive for IoT device owners to implement DDoS
countermeasures at the source not just on the network level.

Inspired by earlier successful of source-end approaches such as D-WARD
[12], we reconsider the DDoS problem from an IoT application perspective. We
argue that DDoS blocking and detection can efficiently be applied by strong
policing on IoT flow level and that such policing preferably takes place at the
IoT backend. As we show in our paper, X-Pro can be easily integrated into
an existing IoT backend as well as into already deployed telecommunication
network. To show that this is indeed an efficient approach, we have designed
a DDoS filtering architecture based on simple flow counts where packet count
and policing take place on ordinary backend servers. This is very similar to
an EBA detection mechanism, but we argue that we can filter using absolute
flow thresholds in a strong and controlled IoT environment. To be able to get a
fast packet processing in the kernel context, we utilize XDP [13]. X-Pro can be
combined with traditional DoS detection mechanisms using, for instance, SBA
or ABA. However, to secure basic functionality and IoT availability, the first
step is to filter using flow thresholds. In this paper, we show how to use our
architecture with such flow threshold values and policing. We call our solution
X-Pro, coordinated XDP proxies running together as distributed systems to
detect and filter out attack messages. Our solution can be combined with more
advanced detection mechanisms, which will be left for future work. Our main
purpose is to show that our approach is efficient in terms of overload blocking
and that it can be implemented in existing IoT backends and devices with a
reasonable performance overhead. In summary, the paper presents the following
contributions:

– We provide a new framework (namely X-Pro) to counteract an attack towards
a victim from the context of the IoT unit as the adversary.

X-Pro: Distributed XDP Proxies Against Botnets of Things 53

– We suggest novel algorithms for packet filtering within a proxy and packet
data synchronization between proxies.

– We provide an implementation and performance evaluation of the proxy using
XDP, a novel programmable packet processing hook in the Linux kernel.

– We present IoT side realization and show the packet handling overhead.

The rest of the paper is organized as follows. We discuss related works and
backgrounds in Sects. 2 and 3. We provide the solution in Sect. 4. Section 5
presents the implementation, while in Sect. 6, we provide the performance eval-
uation. Section 7 draws our conclusions and anticipates future works.

2 Related Work

First, we distinguish between high and low-rate DDoS. We start by discussing
the former and then continue with the latter. DDoS can be performed by flooding
the victim with massive and bogus messages to consume bandwidth or resources.
Such mechanism, behavior, mitigation strategies, and the detailed taxonomy are
defined in [8]. The author distinguishes the DDoS mitigation strategy into two
categories, namely: (i.) collaborative, where multiple nodes are cooperating to
mitigate DDoS, and (ii.) non-cooperative, in which no collaboration between
network elements occurred.

Examples of collaborative strategies: FireCol [14], CoFence [15], and CoDef
[16]. FireCol observes the occurrence of DDoS attacks at the Internet Service
Provider (ISP) level, in which the ISPs form a subscription mechanism between
each other. If FireCol detects an attack within an ISP, it informs the occurrence
to the upstream ISPs, which consecutively perform a similar mitigation process.
To detect such an attack, one of the most widely used method is Kullback-Leibler
divergence and Shannon’s entropy, where malicious traffic is detected based on
IP address or packet size distribution statistics [17,18]. Our investigations use
simple packet frequency thresholds for DDoS detection, and we also adopt a
detection window approach. However, we do not focus on advanced detection
rules but use firm and a priori thresholds. This is motivated by the fact that the
main research goal in this paper is not to evaluate detection principles but rather
to introduce a new proxy model for DDoS prevention, an efficient filter based on
XDP and corresponding packet distribution data sharing principle between the
proxies. Our approach can be extended to handle traditional, statistical detection
methods based on the frequency counts provided by our solution.

Non-cooperative strategies include dynamic resource scaling [19], scaling via
low-cost untrusted CDN (Content Delivery Network) [20], and harnessing DPI
(Deep Packet Inspection) in SDN (Software Defined Networks) [21]. The dynamic
resource scaling offers a resource allocation strategy based on the queueing theory
when idle VMs (Virtual Machine) are utilized once DDoS occurred. However,
as the VM is not free, the occurrence of DDoS might emerge to become an
Economic-DoS [22], where the adversary shifts the target to the economic aspect
of the victim. In this case, the resources in the intermediate nodes are occupied
as the attack reaches the network between adversaries and victims.

54 S. A. Atiiq and C. Gehrmann

Both collaborative and non-cooperative mitigation approaches mentioned are
for high-rate DDoS. We argue that the occurrence of high-rate DDoS should
be solved along with the low-rate DDoS at the same time. Examples of low-
rate DDoS are shrew-attack [5], LoRDAS [6], and reduction-of-quality (ROQ)
[7]. Shrew-attack abuses the weakness of TCP’s retransmission timeout (RTO)
procedure. A legitimate TCP flow is being attacked by regularly dispatching a
high-rate bogus message simultaneously of the RTO. This way, once a sender
restores from timeout, they will instantly receive a subsequent attack and prob-
ably go back to the timeout phase again. Low-rate DDoS are usually detected
by employing a frequency domain analysis, i.e., Discrete-Fourier-Transform in
one of the component in the system. Example of such mechanism is described in
[23]. To this point, X-Pro does not utilize or employ such analysis or any related
statistical method to perform DDoS occurrence detection. But rather, we pro-
vide the data to be used by the system designer to employ such a method. It
is possible to use an advanced method, i.e., machine learning working together
alongside X-Pro, to perform more sophisticated analysis to set the X-Pro filtering
thresholds. Extending X-Pro in this regard is for future work.

We utilize XDP extensively in this work. XDP has been around for a couple
of years and has been used by some companies and open source projects to per-
form high-speed packet processing. Cloudflare [24] publicly announce that XDP
is used in their DDoS mitigation pipeline. Suricata, an open-source Intrusion
Detection System (IDS) provides XDP plugin [25] to their IDS. Also, Facebook
has been extensively harnessing XDP as they claim that every packet reaching
their network is being processing by XDP enabled application [26].

3 XDP and BPF Maps

Fig. 1. Execution flow of a typical XDP program, as described in [13]

X-Pro: Distributed XDP Proxies Against Botnets of Things 55

XDP [13] is a novel programmable packet processing hook living inside the
kernel-space. In XDP, the underlying operating system accommodates a safe exe-
cution environment to run an eBPF1 program. This execution happens within
the device driver context. XDP has been part of the mainland Linux kernel
since 4.8 [28]. XDP provides a safe, fast, and customizable packet processing
integrated with the kernel networking stack. An execution flow of a typical XDP
program can be seen in Fig. 1. The logic of the eBPF program running inside
the XDP hook is written in a high-level language, i.e., C, and compiled into
bytecode. The kernel has the job of safeguarding the eBPF program by verifying
it. This verification happens during the load time of the program.

Within the XDP execution environment, eBPF programs are executed in
return to an event, i.e., when the packet arrives. The eBPF program does not
have access to persistent memory within the boundary of its program context.
Instead, the kernel provides the eBPF program a similar feature with access to
a so-called BPF maps [13]. It is a generic data structure to store many different
data types. Similar to a database, the format of BPF maps are key/value stores
defined before loading an eBPF program to an interface. An eBPF code can
refer to BPF maps within its codebase, just like referring to a memory. Figure 1
shows the relationship between BPF maps with other entities in the system.

4 The X-Pro Solution

Fig. 2. Overall X-Pro architecture

1 eBPF [27] refers to extended-BPF, the newer version of original BPF (Berkeley
Packet Filter).

56 S. A. Atiiq and C. Gehrmann

In this section, we present X-Pro, a distributed XDP-based proxy to counteract
DDoS. Under the assumption that an adversary can infect IoT units but not
prevent packets from flowing over the proxies (see also our discussion regard-
ing device-side implementation in Sect. 4.5), X-Pro prevents servers from being
overwhelmed by DDoS by blocking the unwanted traffic with distributed prox-
ies. When a filtering decision is taken, the system also automatically detects a
potential DDoS attempt. To handle distributed DoS, information about traffic
condition is shared between the proxies via a centralized database node. For the
rest of the paper, we follow notations from Table 1.

4.1 Overall Architecture and Solution

Table 1. Notations

U Set of IoT units in the system

u ∈ U An IoT unit

P Set of proxies in the system

p ∈ P Proxy

i A unique index given to an IoT unit

ui An IoT unit with index i

j A proxy unique network address associated with a proxy

pj A proxy with address j

MDB A centralized database

LDB A local database at pj

Daddr Destination IP address of a packet

ts′
1 Time stamp in pj indicating the “oldest” packet time for a particular (i, Daddr)

ts′
2 Time stamp in pj indicating the “most recent” packet time for a particular (i, Daddr)

ts1 Time stamp in MDB indicating the “oldest” packet time for a particular (i, Daddr)

ts2 Time stamp in MDB indicating the “most recent” packet time for a particular (i, Daddr)

ts1∗ The minimum value of ts1 in pj for a specific destination address among U

ts2∗ The maximum value of ts2 in pj for a specific destination address among U

c Packet counter for a particular (i, Daddr) pair

dc Delta packet counter (internally within a proxy) for a particular (i, Daddr) pair

c∗ The sum of c and dc for a particular Daddr

TT1 First filtering reset threshold used by a proxy

TT2 Second Filtering minimum measure time threshold used by a proxy

TT3 Third filtering minimum measure time threshold used by a proxy

TT4 Fourth filtering minimum measure time threshold used by a proxy

TF1 First packet maximum allowed frequency threshold used by a proxy

TF2 Second packet maximum allowed frequency threshold used by a proxy

r Frequency division factor

X-Pro: Distributed XDP Proxies Against Botnets of Things 57

The X-Pro overall architecture can be seen in Fig. 2. The first part is a set of
proxy P � p1, ..., pn interconnected through internal network. To have a broader
view of the system at a particular time, each proxy node shares logging and load
information between each other, leveraging a centralized database MDB. The
synched information is described in more detail in Sect. 4.3. The next part in
the system is IoT units (U � u1, ..., un). Each unit must have the connectivity
to at least one available proxy within p1, ..., pn. It is possible to have multiple
connections from a single ui towards multiple pj . We allow the adversaries to
control IoT units U , meaning that a message proxy pj receives from an IoT unit
might be bogus.

One can apply X-Pro into an existing IoT backend, such as Thingsboard [29]
and Mainflux [30]. In Thingsboard, there is a transport layer where the job is
to receive messages from the devices, then parse the messages, which are then
forwarded to one of the queues. X-Pro acts as a complement of Thingsboard
transport with an additional feature of DDoS mitigation. As we show later in
Sect. 4.5, X-Pro requires an IoT device to set up an IP tunnel to the proxy.
This fits naturally in the connection between the device and the Thingsboard
transport. An advantage of this approach is the device does not have to resolve
the domain of the Thingsboard transport as everything happens in the IP layer.
However, as we require all the traffic from the device to pass the proxy, there is
an additional mechanism to forward the packet outside the Thingsboard core if
devices want to send the packet outside the X-Pro network. Hence, X-Pro can
live to coexist without having to break the existing implementation.

Another option is to put X-Pro into an existing telecom infrastructure. The
5G network allows us to have multi-access edge computing (MEC) [31] close to
the radio base station. As the purpose of MEC is to get an application closer
to the user, we can utilize distributed MEC to be attached with X-Pro software
in its network interface. This will make sure that the changes in the network
operator side will be as minimum as possible. Even if, for example, 5G network
deployment is still far away plan for some network operator, we can deploy
X-Pro (within MEC) in the existing 4G network [32]. One possibility is to make
X-Pro acts as a user plane packet inspection in the S1U interface between SGW
(Serving Gateway) and eNodeB.

4.2 Filtering Design

We use a filtering approach where each packet arrived at a particular proxy,
is analyzed, and potentially blocked2. Such mechanism is performed as early
as possible, i.e., in the XDP hook. The blocking decision is based on a set of
threshold parameters (see also the notation in Table 1). These can be tuned to get
the right trade-off between security and false blocking decisions. We discuss and
review different threshold parameter selections, performance, and DoS packet
endpoint reaching rates in Sect. 6.
2 Blocking automatically also implies a potential attack detection. Our solution can

be adapted such that we use lower threshold values for detection than blocking
decisions. For simplicity, we only consider a single blocking threshold.

58 S. A. Atiiq and C. Gehrmann

The filtering is done using a time window, defined by two-time values, ts1
and ts2 for each target address for any ongoing traffic flow at any pj . Each pj is
assumed to keep corresponding time values and packet counts. The current local
view of the time window is denoted by ts′

1 and ts′
2. The packet frequency for

each target destination is calculated regularly and compared with the frequency
thresholds TF1 and TF2. The first frequency threshold TF1 indicates the maxi-
mum allowed packet rate from one particular IoT unit to one specific endpoint.
The second threshold TF2 indicates the accumulated maximum allowed packet
rate (from all connected IoT units) towards one specific endpoint. In a corner
case, it might be possible for the legitimate ui to be falsely blocked by pj due
to a circumstance when a single victim is being attacked with a low-rate traf-
fic from many compromised ui. This will make the accumulated traffic become
higher than TF2. To accommodate this case, we provide a non-policed flow to be
attached to a specific source (i.e. legitimate ui). However, as it is now being done
manually, the proposal for performing this task automatically is left for future
work. For simplicity, we only consider a system-wide and common threshold val-
ues, TF1 and TF2. However, the very same principle can be applied to a system
where individual threshold values are given to specific destination addresses or
destination address ranges. The latter would be the case envisioned for most
applications, but our simplification will not make any major difference when
evaluating the effectiveness of our approach. The complete filtering algorithm
(Algorithm 2) is shown in Appendix B.

4.3 Synchronization Design

To have the same visibility on each proxy, one needs to have a synchronization
function between them. This section explains in more detail such procedures. For
every time period t, each proxy pj performs the synchronization procedure with
the centralized database, MDB. pj iterates through every (i,Daddr) received from
MDB, and for each pair of (i,Daddr), pj looks up at the corresponding values
in the local database, LDB . If a newer data is available, each entity (either pj
or MDB) will update each other. The rule of thumb here is that a newer data
will always replace an older one. The synchronization between pj and MDB are
assumed to be over a secure end-to-end communication channel. We consider
p ∈ P are trustworthy, hence a direct attack on them are out of scope of this
paper. We have come up with a synchronization procedure that tries to cover the
most important aspects for keeping consistent time window and counts among
the proxies; see the Algorithm 1 in Appendix A. The way MDB implemented is
agnostic to any particular technology. We assume that MDB is robust, reliable,
and impossible to be killed no matter how high the DDoS attack is. To achieve
that, it is possible to design MDB as a distributed system as described in [33,34].
However, the design of such system is out of scope of this paper.

X-Pro: Distributed XDP Proxies Against Botnets of Things 59

The main challenge with the synchronization lies in the counts and count
window in LDB might be different from MDB since the last synchronization.
Hence, the synchronization must be able to cope with these changes. The algo-
rithm handles this by comparing the local time window ts′

1 and ts′
2 with the

corresponding ones loaded from MDB , ts1 and ts2. Furthermore, to stop the
count window growing to infinity, we must reduce the size if the time window is
getting too large. Such identification happens locally, and the rest of the proxies
must adjust their values accordingly at their next synchronization. Besides, if no
record for a particular address occurs for a while, our filtering algorithm resets
the count (this is indicated through a mark parameter). Such reset should be
propagated to the rest of the proxies only if they have not received a similar
destination packet for a time exceeding a predefined threshold. These aspects,
as well as making sure that the counts and the window are consistent, are the
primary purpose of our synchronization design which has been verified through
the experiments. The different time thresholds can be tuned to get the suitable
trade-off between filtering efficiency and synchronization overhead.

4.4 Proxy Design Based on XDP

Fig. 3. A proxy instance

As mentioned in Sect. 3, XDP can process the packet at the earliest possible
hook. An advantage of this feature is the associated device driver, which handles
the packet, does not need to allocate the memory if it turns out that the incoming
packet is not legitimate. This, in return, would require a lot less resource on the
proxy if the attack turns out to be massive. We intend to exploit this feature as
the underlying mechanism as defined in more detail in this chapter.

60 S. A. Atiiq and C. Gehrmann

As described in Sect. 4.3, the information ts1, ts2, c for each incoming packet
needs to be shared among P . It is natural to pass this information to pj ’s
userspace first, then perform the synchronization with MDB from there. The
sync function should be executed between the local database, LDB , which is
represented by BPF maps, and the centralized MDB . It is fairly trivial to inte-
grate such mechanism using API provided by MDB as well as local API of BPF
maps [35]. For any new information ts1, ts2, c recorded from the XDP program,
the data is stored in LDB . If newer data is found, the old data is replaced.

Once the local BPF maps are filled with the needed information, the next
job is to propagate this to all other proxies in P , via MDB , as well as retriev-
ing data from MDB that is not available locally. Note that all the synchronized
information is only statistics of the packet, not the packet itself. Meaning that,
only small amount of transactions between pj and MDB is needed. This mech-
anism allows us to pass the information between proxies without sending the
invalid packet to the userspace. Hence, reducing the resource utilization in the
userspace. Therefore, the proxy can allocate the resource to a more essential
task, i.e., packet filtering in the kernel. Our rationale is that the fewer tasks
performed in the userspace, the more resource can be utilized by the XDP to
block the invalid messages; hence we get more packet filtering capacity in the
kernel. Furthermore, as our codebase does not require access to a specific kernel
helper, X-Pro can be offloaded entirely to, i.e., smart-NIC [36] to get a better
performance. Figure 3 represent the mechanism mentioned in this section.

4.5 Device Side Design

Fig. 4. An IoT implementation

X-Pro: Distributed XDP Proxies Against Botnets of Things 61

The X-Pro design requires all traffic from the IoT units are routed through the
proxy. An attacker aware of this principle can circumvent this mechanism by
avoiding the whole proxy network, and fulfill the DoS target. Therefore, it is a
mandatory design requirement for the IoT device to prevent its IP traffic control
part from being infected by a malicious software. A legacy IoT device can connect
to pj as long as it has a way to separate the main and network MCU securely, i.e.
through secure virtualization. Several different techniques are possible. In this
section, we discuss a possible design where the modem SoC is separated from
the main SoC, allowing secure proxy packet encapsulation.

The job of the modem SoC is to perform proxy management and provides
a standard network interface from the operating system within an IoT device.
Figure 4 shows the connection between the main SoC and the modem SoC within
the IoT unit ui. The modem SoC keeps track of available proxies P in the system.
It is possible to change the current destination proxy, pj , if, for example, the
one currently used is overloaded or unavailable. Information about load and
availability is obtained through a probing mechanism. Two different solutions
are possible:

– The modem SoC connected to an arbitrary proxy p and received the load
information of all the proxies within P . The received information is then
used to decide which pj has the minimum load among the proxies, P .

– The modem SoC measures multiple pj within P at once by sending a ping
request and calculate the lowest response time among the measured proxies.

As shown in Fig. 4, the modem SoC embed an additional header as a tun-
nel header. It tunnels all outbound traffic to the selected proxy from the pre-
vious mechanism. The tunnel itself can be implemented as a raw IP tunnel,
HTTP, or even CoAP [37] where the source IP packet is encapsulated. This way,
X-Pro would not prevent an IP level (or even HTTP) end-to-end security, such
as IPSec. Unlike the outbound connections, the inbound traffic is treated entirely
transparent and does not affect the modem or the whole IoT unit in any way.

5 Implementation

This section will describe the technical implementation of proxies, the centralized
database, and the device packet handling in more detail. The code is available
as open-source3.

5.1 Proxy

The proxy implementation consists of two different parts, that is kernel space
and userspace. The kernel space implementation mostly deals with the filtering
mechanism for each incoming packet, whereas the userspace implementation
deals with the synchronization between proxies. Within the kernel space, the

3 https://github.com/syafiq/xpro.

https://github.com/syafiq/xpro

62 S. A. Atiiq and C. Gehrmann

Algorithm 2 is implemented as an eBPF program [38], written in C. The eBPF
program is attached to one of the interfaces in the proxy, pj .

Each proxy pj synchronizes the local BPF map to MDB for every
pre-defined period t. The synchronization utilizes BPF helpers [39], i.e.
bpf map lookup elem and bpf map get next key. These functions is periodi-
cally called to iterate through the BPF maps and update the MDB. To read/write
through the MDB , we harness hiredis [40], a redis client written as a C library.

5.2 Centralized Database

The database MDB is a single Redis instance running inside a virtual machine.
MDB must have connectivity to all the proxies in the system.

5.3 IoT Units

We have developed the proof of concept for the IoT units using a low-cost plat-
form ESP32 [41] and FiPy [42]. The aim is to provide a real-world example of
performing procedures explained in Sect. 4.5. The process should be transpar-
ent to the applications running in the main SoC, and both processes should
be completely separated from each other. It means the application should not
handle the proxy selections and packet encapsulation mechanism, but rather the
modem SoC does. This gives a solid separation between the systems and strong
protection against software attacks of the main system. In our proof of concept,
the ESP32 acts as the modem SoC, whereas FiPy acts as the main SoC. Both
boards are connected through the UART pinouts. In our PoC, the ESP32 board
runs on a native operating system from espressif, esp-idf [41]. We modify the
firmware such that any outgoing packet is always encapsulated, with one of the
proxy p being the new destination IP. As mentioned earlier, the old destination
IP is preserved, along with the payload from the application in the main SoC.

Fig. 5. TCP/IP stack modification in ESP32

As UART speed is fairly slow compared to, i.e., wireless connection, we
decided to build a second prototype in which the encapsulation process happens
in the TCP/IP stack. We modify the lightweight TCP/IP stack from the ESP32
firmware at the last point of IP encapsulation (within the lwIP TX buffer) before
the packet is moved into the WiFi TX buffer. Figure 5 shows where exactly our
modification happen within the ESP32 TCP/IP stack. From a security point of
view, this would require either of the two following options:

X-Pro: Distributed XDP Proxies Against Botnets of Things 63

– The logic from Sect. 4.5 is implemented in a hardware (i.e., VHDL), such that
adversaries cannot tamper or modify the encapsulation process.

– The TCP/IP stack lives in a trusted environment (i.e., ARM TrustZone [43,
44]) such that the isolation is built-in into the main CPU and SoC.

In our proof of concept, we have not made a full implementation of any of
these two options. However, the overhead with a pure hardware solution would
undoubtedly be less than our chosen proof of concept implementation. The Trust-
Zone option or any other virtualization options like using a thin I/O hypervisor
[45] is left for future work.

6 Experimental Evaluation

Next, we evaluate the design and realization through a proof of concept. We have
made a full implementation of the design on the proxy and the device side as
described in Sect. 5. The proxies and the centralized database are implemented as
a virtual machine in Fedora 30 operating system, running kernel version 5.6. All
of the VMs of the proxies and centralized database are running with one vCPU
and 1024 MB of memory. We simulate the IoT units (infected and non-infected
with botnets) with a Linux machine, running pktgen [46] software from the
Linux kernel tree, with adjustable intensity. pktgen sends CoAP messages, in
which the size of each packet is 64 bytes. Message rates can easily be set through
the ratep value in the pktgen configuration file.

Our evaluation goal is to measure how effective the suggested solution in
terms of packet blocking for both single high-rate attack and low-rate attacks
using fixed attack thresholds. We also measure the pure overhead at the device
side for our two different implementation options (see also Sect. 5.3). As some
IoT units might be expected to send relatively high amount of traffic, typically
directed to a particular server node, we would like to measure how well our DoS
blocking principle works in a situation where we have a mixture of such high rate,
valid traffic, and DoS traffic. We use a simple approach where some IoT units
are allowed to send traffic at their maximum capacity without being blocked
while the rest are subject for the filtering with thresholds. In a more realistic
setting, the flows that should be policed or not can be set in a more fine grained
way and vary over time. However, to simplify our measurement, we only use two
static categories of devices, i.e. units with non policed traffic and devices with
policed flows. A more advanced principle that label flows in a more intelligent
way using for instance, machine learning, is left for future work [47,48].

6.1 Single-Proxy

In this scenario, a single proxy instance pj sits between IoT units and the vic-
tim. An infected unit becomes an adversary and an unit without policed traffic
(without upper-threshold) that is assumed to be not infected by the botnets.
Both the units, either the infected or the non blocked one, are sending packets

64 S. A. Atiiq and C. Gehrmann

towards the victim with various intensity, ranging from 50000–400000 packets
per second. These values are picked merely based on the capability of our test
hardware4. While performing packet forwarding to the backend server (or vic-
tim), pj drops incoming messages if it senses a DoS attack. This mechanism is
based on the algorithm we mention in Sect. 4.4. Even though it does not seem
to make sense that a single IoT unit can generate such magnitude of the attack,
we argue this measurement is still crucial for the following reason. We can test
the limit on how high proxy pj can cope with a DoS attack within the context
of provided hardware, i.e., one vCPU and 1 GB RAM.

Fig. 6. % of passed through messages on a single proxy varies to the attack intensity

Figure 6 shows the percentages of packets being passed to the backend server
by pj varies to the attack intensity in packets per second (PPS). As the intensity
of the incoming packet exceeds the value of TF1, more than 99% of the packets
are efficiently dropped if the source comes from the infected IoT units. When
this happens, only less than 1% of the bogus messages are forwarded as pj
needs some time to calculate the frequency before deciding what action needs
to be performed for the subsequent packet. For example, when TF1 = 300k and
attack messages = 400k, only 0.3% of total messages are forwarded to the final
destination, while the rest are dropped. However, no messages from IoT units
marked to not be subject to blocking are dropped by pj .

4 To put into perspective, the whole New York area has been deployed with 15000
security cameras by NYPD [49]. So, depends on what application is used and how
many sensors needed, we think that 50000–400000 make sense.

X-Pro: Distributed XDP Proxies Against Botnets of Things 65

Fig. 7. Average % of passed through messages on the multiple proxies P varies to the
attack intensity

6.2 Multiple-Proxy Working Together

In this scenario, a set of proxies pj ∈ P , where j = 1, 2, 3, 4 sits between multiple
IoT units. Also, a set of IoT units ui ∈ U where i = 1, 2, ..., 8 are connected to
the set of proxies P . Each pj is connected to two IoT units uiodd and uieven

, where
uiodd = 2j − 1 and uieven

= 2j. It means, for example, p1 is connected to u1 and
u2, p2 is connected to u3 and u4, and so on. In this experiment, we have set uiodd

to acts as an infected IoT unit, while uieven
are not subject to traffic policing,

i.e. they are allowed to send traffic at their maximum capacity. Each unit sends
packets to the victim with various intensity, ranging from 50000–400000 PPS,
and pj performs a synchronization towards MDB for every 4 s. Note that these
values are determined heuristically, in which the equation and/or derivation of
such values are out of the scope of this paper.

We perform this measurement to show how X-Pro handles a situation where
multiple adversaries are trying to launch an attack under the radar, i.e., send-
ing attack messages just below TF1 with the hope that attack packets can slip
through pj . As we can see later, this is not the case as pj has been implemented
with the procedure mentioned in Sect. 4.4. Figure 7 shows the average percent-
ages of packets being passed by pj varies to the packets intensity per second
from each ui. In the infected IoT units uiodd , we can clearly see that all pj ∈ P
start to drop incoming packet from uiodd when 4× incoming packets is greater
than TF2. This is expected, as we have four units of devices turned into botnets.

Among the units uieven
, all packets are forwarded to the backend server as

the incoming packets from these sources are not counted to get the frequency
value. We can see from Fig. 7, that the average percentages for uieven

are 100%.

66 S. A. Atiiq and C. Gehrmann

6.3 Overhead from the IoT Units

First, we measure our prototype where the main and the network MCU are com-
pletely separated hardware connected through UART. The main MCU sends a
CoAP request to the network MCU, followed by stripping off the old destination
IP with pj as the new destination address. It is then sent to pj and forwarded
to the final destination if deemed as a non-malignant packet. When the net-
work MCU receives the CoAP response, it is delivered back to the main MCU.
All those processes are counted while we measure the round trip time of the
response-request messages. We measure 100 times and calculate the average,
shown in Table 2. It is clear that X-Pro requires an additional 15 ms processing
time. The main reason for this overhead is the relatively slow UART commu-
nication. We did not measure the throughput of this approach as the UART
will permanently cap it. However, the adversary can’t tamper with the network
MCU by having two different entities in a separate hardware.

Table 2. Overhead of the IoT device

Separated main MCU and network MCU lwIP logic of encapsulation

Average RTT (ms) Average RTT (ms) Average throughput (Mbits/s)

X-Pro 50.55 37.67 25.86

vanilla 35.96 36.78 30.37

Second, to get a clear picture of how much overhead is added when we have
such an encapsulation process, we decided to implement our solution in a fully
softwarized manner. However, this is with the assumption that already men-
tioned in Sect. 5.3. We can see from Table 2 that our solution only adds about
1 ms of the total round trip time. However, the throughput is a bit decreased
by around 5 Mbits/s. The reason is there is additional overhead to process each
packet due to the IP tunnel, i.e., encapsulating a new header such that the new
destination IP is one of the proxy pj ∈ P . This gives an extra 32-bits (the size of
an IPv4) for each packet because the real destination should be preserved while
the new destination is installed.

All the IoT unit overheads and extra implementation penalties can be avoided
in the network situations where layer two mechanisms allow network enforced
routing through proxies. It is possible to mix such configuration with IoT IP
tunneling configurations for some IoT units in the system. It is also possible to
dynamically switch on and off the proxy forwarding function in the IoT units.
When a DDoS attack is not expected, the protection mechanism is switched off,
avoiding the bandwidth loss penalty for a certain amount of time.

X-Pro: Distributed XDP Proxies Against Botnets of Things 67

To complement the example that has been provided in Sect. 4.1, we measure
the average round trip time (RTT) from the IoT device to the Thingsboard
backend. The IoT device sends a CoAP message with the method POST and
subsequently expecting an acknowledgment message. We measure the RTT as
the time difference when the IoT device sends the CoAP message and receives
the respective acknowledgment. The CoAP POST message is repeated 100 times,
and the average value is calculated, as shown in Table 3. We can see that X-Pro
adds 2 ms overhead, a small fraction of the total average time.

Table 3. Thingsboard with and without X-Pro

Average RTT (ms)

Thingsboard + X-Pro 82.93

Thingsboard 80.98

7 Conclusion and Future Work

This paper has presented X-Pro, a distributed XDP proxies against botnets of
things. The design of distributed proxies is armed with a centralized database,
allowing the proxies to inform each other about the latest event in the networks.
Through this collaboration, it is possible to defend the victim amid the situations
when the adversaries are trying to send, (i.) a massive and well-coordinated
attack towards the victim through a single proxy, (ii.) periodically low-rate bogus
messages spanned to multiple proxies in which the intention is to fly under
the radar. We have proven that this is indeed the case in practice through our
experimental evaluations. The obtained results show that our solution allows
strong protection of overload to both of the IoT backend and external attack
targets. X-Pro requires the IoT units to be modified in regards to the network
interface modem. As the adversary cannot tamper with the modification, they
cannot re-route the destination of an outgoing packet, which always be forwarded
to one of X-Pro’s proxies.

Our paper shows that X-Pro is possible to realize with low overhead in typical
IoT scenarios and that it can be used to give protection from all kinds of packet
overload attacks. In future work, we will extend the solution with more advanced
DDoS detection mechanisms (i.e., machine learning), which will allow automatic
DDoS infection detection combined with efficient blocking.

68 S. A. Atiiq and C. Gehrmann

Appendix A Proxy Synchronization Protocol

Algorithm 1. Proxy Synchronization Protocol
1: pj looks all the pair (i,Daddr), for ui ∈ U
2: for each (i,Daddr) in MDB do
3: if LDB � i,Daddr then
4: if (mark′ = 1) then
5: < mark′ = 0 >
6: if (ts′

1 − ts1 > TT1) then
7: < dc′ = 0 >
8: < ts1 = ts′

1, ts2 = ts′
2, c = c′ >

9: end if
10: else if (mark′ �= 1) or (mark′ = 1 & ts′

1 − ts1 < TT1) then
11: if ts′

2 < ts2 then
12: < ts′

2 = ts2 >
13: else
14: if ts′

2 − ts1 > TT4 then
15: < ts′

1 = ts′
2 − (ts′

2 − ts1)/r >
16: < c = �c/r�, ts1 = ts′

1, ts2 = ts′
2 >

17: end if
18: < ts2 = ts′

2 >
19: end if
20: if ts′

1 > ts1 then
21: < ts′

1 = ts1 >
22: else
23: if ts′

2 − ts′
1 > TT4 then

24: < ts′
1 = ts1 >

25: else
26: < ts1 = ts′

1 >
27: end if
28: end if
29: < c′ = c + dc′, c = c′, dc′ = 0 >
30: end if
31: < c = c′, dc′ = 0 >
32: else
33: < ts′

1 = ts1, ts
′
2 = ts2 >

34: < c′ = c, dc′ = 0,mark′ = 0 >
35: end if
36: end for
37: for each (i,Daddr) in LDB do
38: if MDB � i,Daddr then
39: < ts1 = ts′

1, ts2 = ts′
2, c = c′ >

40: end if
41: end for

X-Pro: Distributed XDP Proxies Against Botnets of Things 69

Appendix B Packet Filtering Procedures

Algorithm 2. Packet Filtering Procedures
1: <Lookup ts′

1, ts
′
2, c for record (i,Daddr) in LDB >

2: if record found then
3: if t − ts′

2 > TT1 then
4: ts′

1 = t, c′ = 0, dc = 0,mark = 1
5: end if
6: else
7: ts′

1 = ts′
2 = t, c′ = 0, dc = 0,mark = 0

8: end if
9: c′ = c′ + 1, dc = dc + 1, ts′

2 = t
10: if ts′

2 − ts′
1 > TT2 then

11: if c′/(ts′
2 − ts′

1) > TF1 then
12: <Drop packet>
13: <Send an overload warning>
14: end if
15: end if
16: ts1∗ = minui∈UDaddr

ts1
′
i

17: ts2∗ = maxui∈UDaddr
ts2

′
i

18: c∗ = Σui∈UDaddr
(ci + dci)

19: if ts2 ∗ −ts1∗ > TT3 then
20: if c ∗ /(ts2 ∗ −ts1∗) > TF2 then
21: <Drop packet>
22: end if
23: end if
24: <forward packet>

References

1. Klaba, O.: Octave Klaba Twitter (2016). https://twitter.com/olesovhcom/status/
778830571677978624

2. Hilton, S.: Dyn Analysis Summary of Friday October 21 Attack (2016). https://
dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

3. Krebs, B.: KrebsOnSecurity Hit With Record DDoS (2016). https://
krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

4. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and
other botnets. Computer 50(7), 80–84 (2017)

5. Luo, J., Yang, X., Wang, J., Xu, J., Sun, J., Long, K.: On a mathematical model
for low-rate shrew DDoS. IEEE Trans. Inf. Forensics Secur. 9(7), 1069–1083 (2014)

6. Macia-Fernandez, G., Diaz-Verdejo, J.E., Garcia-Teodoro, P.: Mathematical model
for low-rate DoS attacks against application servers. IEEE Trans. Inf. Forensics
Secur. 4(3), 519–529 (2009)

7. Guirguis, M., Bestavros, A., Matta, I., Zhang, Y.: Reduction of quality (RoQ)
attacks on Internet end-systems. IEEE Infocom. 2, 1362–1372 (2005)

https://twitter.com/olesovhcom/status/778830571677978624
https://twitter.com/olesovhcom/status/778830571677978624
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

70 S. A. Atiiq and C. Gehrmann

8. Shameli-Sendi, A., Pourzandi, M., Fekih-Ahmed, M., Cheriet, M.: Taxonomy of
Distributed Denial of Service mitigation approaches for cloud computing. J. Netw.
Comput. Appl. 58, 165–179 (2015)

9. Sharma, M., Arora, B.: Detection and prevention of DoS and DDoS in IoT. In:
Singh, P.K., Wierzchoń, S.T., Tanwar, S., Ganzha, M., Rodrigues, J.J.P.C. (eds.)
Proceedings of Second International Conference on Computing, Communications,
and Cyber-Security. LNNS, vol. 203, pp. 845–855. Springer, Singapore (2021).
https://doi.org/10.1007/978-981-16-0733-2 60

10. Mahjabin, T., Xiao, Y., Sun, G., Jiang, W.: A survey of distributed denial-of-
service attack, prevention, and mitigation techniques. Int. J. Distrib. Sens. Netw.
13(12) (2017)

11. Wang, J., Yang, X., Long, K.: A new relative entropy based app-DDoS detection
method. In: The IEEE Symposium on Computers and Communications (2010)

12. Mirkovic, J., Reiher, P.: D-WARD: a source-end defense against flooding denial-
of-service attacks. IEEE Trans. Dependable Secure Comput. 2(3), 216–232 (2005)

13. Høiland-Jørgensen, T., et al.: The express data path: fast programmable packet
processing in the operating system kernel. In: CoNEXT 2018, pp. 54–66. ACM
(2018)

14. Francois, J., Aib, I., Boutaba, R.: FireCol: A Collaborative Protection Network for
the Detection of Flooding DDoS Attacks. ACM (2012)

15. Rashidi, B., Fung, C., Bertino, E.: A collaborative DDoS defence framework using
network function virtualization. IEEE Trans. Inf. Forensics Secur. 12(10), 2483–
2497 (2017)

16. Lee, S.B., Kang, M.S., Gligor, V.D.: CoDef: collaborative defense against large-
scale link-flooding attacks. In: CoNEXT 2013, pp. 417–428. ACM, New York (2013)

17. Yu, S., Zhou, W., Doss, R., Jia, W.: Traceback of DDoS attacks using entropy
variations. IEEE Trans. Parallel Distrib. Syst. 22(3), 412–425 (2011)

18. Xiang, Y., Li, K., Zhou, W.: Low-rate DDoS attacks detection and traceback by
using new information metrics. IEEE Trans. Inf. Forensics Secur. 6(2), 426–437
(2011)

19. Yu, S., Tian, Y., Guo, S., Wu, D.O.: Can we beat DDoS attacks in clouds? IEEE
Trans. Parallel Distrib. Syst. 25(9), 2245–2254 (2014)

20. Gilad, Y., Herzberg, A., Sudkovitch, M., Goberman, M.: CDN-on-demand: an
affordable DDoS defense via untrusted clouds. In: NDSS (2016)

21. Tsai, S.-C., Liu, I.-H., Lu, C.-T., Chang, C.-H., Li, J.-S.: Defending cloud comput-
ing environment against the challenge of DDoS attacks based on software defined
network. In: Advances in Intelligent Information Hiding and Multimedia Signal
Processing. SIST, vol. 63, pp. 285–292. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-50209-0 35

22. Idziorek, J., Tannian, M.F., Jacobson, D.: The insecurity of cloud utility models.
IT Prof. 15(2), 22–27 (2013)

23. Fouladi, R.F., Kayatas, C.E., Anarim, E.: Frequency based DDoS attack detection
approach using naive Bayes classification. In: 2016 39th International Conference
on Telecommunications and Signal Processing (TSP), pp. 104–107 (2016)

24. Bertin, G.: XDP in practice: integrating XDP in our DDoS mitigation pipeline
(2017). https://netdevconf.info/2.1/session.html?bertin

25. Suricata: eBPF and XDP (2019). https://suricata.readthedocs.io/en/latest/
capture-hardware/ebpf-xdp.html

26. Shirokov, N.V.: XDP: 1.5 years in production. Evolution and lessons learned
(2018). http://vger.kernel.org/lpc-networking2018.html

https://doi.org/10.1007/978-981-16-0733-2_60
https://doi.org/10.1007/978-3-319-50209-0_35
https://doi.org/10.1007/978-3-319-50209-0_35
https://netdevconf.info/2.1/session.html?bertin
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
http://vger.kernel.org/lpc-networking2018.html

X-Pro: Distributed XDP Proxies Against Botnets of Things 71

27. Fleming, M.: A thorough introduction to eBPF (2017). https://lwn.net/Articles/
740157/

28. Miller, D.: [GIT] Networking (2016). https://lore.kernel.org/lkml/20160727.
010753.2221383279830501569.davem@davemloft.net/

29. Thingsboard: Thingsboard (2020). https://thingsboard.io/
30. Mainflux: Open Source IoT Platform (2020). https://www.mainflux.com/
31. Kekki, S., et al.: MEC in 5G networks. ETSI White Paper 28, 1–28 (2018)
32. Giust, F., et al.: MEC deployments in 4G and evolution towards 5G. ETSI White

Paper 24(2018), 1–24 (2018)
33. Agrawal, D., El Abbadi, A., Das, S., Elmore, A.J.: Database scalability, elasticity,

and autonomy in the cloud. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011. LNCS, vol. 6587, pp. 2–15. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20149-3 2

34. Jimenez-Peris, R., Patino-Martinez, M., Kemme, B., Alonso, G.: Improving the
scalability of fault-tolerant database clusters. In: Proceedings 22nd International
Conference on Distributed Computing Systems, pp. 477–484 (2002)

35. Page, L.M.: BPF - perform a command on an extended BPF map or program
(2020). https://man7.org/linux/man-pages/man2/bpf.2.html

36. Miano, S., Doriguzzi-Corin, R., Risso, F., Siracusa, D., Sommese, R.: Introducing
SmartNICs in server-based data plane processing: the DDoS mitigation use case.
IEEE Access 7, 107161–107170 (2019)

37. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC, June 2014. http://www.rfc-editor.org/rfc/rfc7252.txt

38. Linux Kernel Team: BPF Documentation. The Linux Kernel documentation,
August 2020. https://www.kernel.org/doc/html/latest/bpf/index.html

39. Linux Kernel Team: BPF-HELPERS (2020). https://man7.org/linux/man-pages/
man7/bpf-helpers.7.html

40. Sanfilippo, S., Noordhuis, P., Rediger, J.: Hiredis (2020). https://redislabs.com/
lp/hiredis/

41. Espressif: ESP32 (2020). https://www.espressif.com/en/products/socs/esp32
42. Pycom: FiPy (2020). https://pycom.io/product/fipy/
43. Arm: Arm TrustZone Technology (2020). https://developer.arm.com/ip-products/

security-ip/trustzone
44. Pinto, S., Santos, N.: Demystifying arm TrustZone: a comprehensive survey. ACM

Comput. Surv. 51(6), 1–36 (2019)
45. Shinagawa, T., et al.: BitVisor: a thin hypervisor for enforcing I/O device security.

In: VEE 2009, pp. 121–130. ACM, New York (2009)
46. Turull, D., Sjödin, P., Olsson, R.: Pktgen: measuring performance on high speed

networks. Comput. Commun. 82, 39–48 (2016)
47. Bhuyan, M.H., Elmroth, E.: Multi-scale low-rate ddos attack detection using the

generalized total variation metric. In: 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 1040–1047 (2018)

48. Zhijun, W., Qing, X., Jingjie, W., Meng, Y., Liang, L.: Low-rate DDoS attack
detection based on factorization machine in software defined network (2020)

49. Fussell, S.: The All-Seeing Eyes of New York’s 15,000 Surveillance Cameras (2021).
https://www.wired.com/story/all-seeing-eyes-new-york-15000-surveillance-
cameras/

https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://lore.kernel.org/lkml/20160727.010753.2221383279830501569.davem@davemloft.net/
https://lore.kernel.org/lkml/20160727.010753.2221383279830501569.davem@davemloft.net/
https://thingsboard.io/
https://www.mainflux.com/
https://doi.org/10.1007/978-3-642-20149-3_2
https://doi.org/10.1007/978-3-642-20149-3_2
https://man7.org/linux/man-pages/man2/bpf.2.html
http://www.rfc-editor.org/rfc/rfc7252.txt
https://www.kernel.org/doc/html/latest/bpf/index.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://redislabs.com/lp/hiredis/
https://redislabs.com/lp/hiredis/
https://www.espressif.com/en/products/socs/esp32
https://pycom.io/product/fipy/
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.wired.com/story/all-seeing-eyes-new-york-15000-surveillance-cameras/
https://www.wired.com/story/all-seeing-eyes-new-york-15000-surveillance-cameras/

Industrialising Blackmail: Privacy
Invasion Based IoT Ransomware

Calvin Brierley(B) , Budi Arief , David Barnes ,
and Julio Hernandez-Castro

School of Computing, University of Kent, Canterbury, UK
{C.R.Brierley,B.Arief,D.J.Barnes,jch27}@kent.ac.uk

Abstract. Ransomware (malware that threatens to lock or publish vic-
tims’ assets unless a ransom is paid) has become a serious security threat,
targeting individual users, companies and even governments, causing sig-
nificant damage, disruption and cost. Instances of ransomware have also
been observed stealing private data and blackmailing their victims. Wor-
ryingly, the prevalence of Internet of Things (IoT) devices and the mas-
sive amount of personal data that they collect have opened up another
avenue of attack. The main aim of this paper is to determine whether pri-
vacy invasion based ransomware would be a viable vector for attackers
to use on IoT devices. The secondary aim is to identify countermea-
sures that can be implemented to prevent such attacks from being used.
To accomplish these aims, we examined how private data accessible via
IoT devices could be obtained, processed and managed by a ransomware
attacker. We identified a number of data sources on IoT devices that can
be used to access private data, such as audio and video feeds. We then
investigated methods to interpret such data in order to blackmail the
device’s owner. We then produced proof of concept malware for multiple
IoT devices, including an external “collator” that manages the valu-
able data collected, demonstrating that an attack could be performed at
scale. This research shows that attackers can use the functionality of an
infected device to invade the privacy of the device’s owner, as part of a
ransomware attack. We have demonstrated that, given suitable infras-
tructure, attackers would be able to ransom users for values higher than
the cost of the compromised device, as well as heavily damage the trust in
the device itself, which would cause further negative impact on the device
manufacturer. Finally, we highlight the need for proactive measures to
deter this style of attack by applying the suggested countermeasures.

Keywords: Security · Privacy · IoT · Ransomware · Malware · Cloud
services · Cybercrime · Blackmail

1 Introduction

The increasing popularity of the Internet of Things (IoT) has lead to a corre-
sponding increase in attacks on IoT devices. While IoT devices themselves are
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 72–92, 2021.
https://doi.org/10.1007/978-3-030-91625-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_5&domain=pdf
http://orcid.org/0000-0001-8766-822X
http://orcid.org/0000-0002-1830-1587
http://orcid.org/0000-0001-6073-0951
http://orcid.org/0000-0002-6432-5328
https://doi.org/10.1007/978-3-030-91625-1_5

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 73

used for many different purposes – such as light bulbs, digital video recorders,
and fridges – when infected, they are typically used to perform either Distributed
Denial of Service (DDoS) attacks [2], or to mine cryptocurrency [48]. However,
ransomware has also become increasingly prevalent [5,9,41], and its success has
garnered significant interest in carrying out ransomware attacks on IoT devices.

The volume and the relative insecurity of IoT devices make them a poten-
tially profitable target for ransomware authors. To evaluate the potential threat
of IoT ransomware, researchers have developed proof of concepts investigating
how IoT devices could be attacked [6,26]. However, as IoT devices rarely store
files that their user may consider essential, typical crypto ransomware may not
be as effective as they would be on regular personal computers. Instead, early
IoT ransomware strains typically “lock” infected devices, preventing them from
working correctly unless a payment is made [6]. While this method of ransom
may be effective, there are a number of limitations (discussed later in this paper),
which may dissuade ransomware operators from using it. Attackers are likely to
explore other methods of monetising IoT-based ransomware in the future. One
such method involves extracting private data from and/or using the IoT device,
which can then be used to extort the user under threat of public release.

In this paper, we aim to determine the viability of ransomware attack leverag-
ing privacy invasion techniques on IoT devices, and devise countermeasures that
can be implemented to prevent such attacks from being used by cybercriminals.

Contributions. The key contributions of our paper are: (i) a demonstration of
how attackers may identify and extract private data accessible via IoT devices
to facilitate ransomware; (ii) an overview of how such an attack might be struc-
tured and managed; (iii) an identification of possible weaknesses that may be
introduced by attackers when performing such an attack; (iv) a list of counter-
measures that could be used to hinder or prevent such an attack.

The rest of the paper is organised as follows. Section 2 covers previous pri-
vacy based ransomware attacks and IoT privacy research. Section 3 investigates
data sources commonly found on IoT devices, and how they could be accessed by
attackers. Section 4 describes how attackers could interpret exfiltrated data to
identify private information. Section 5 shows how attackers could collate infor-
mation extracted from IoT devices during a ransomware campaign. Section 6
demonstrates some of the privacy-invasion techniques on IoT devices with dif-
fering sensors and uses. Section 7 discusses countermeasures that could be used
to prevent such attacks, the limitations of the current work, and further research
that could be performed. Finally, Sect. 8 summarises our findings.

2 Background and Related Work

Ransomware is class of malware that uses a number of techniques to restrict
access to assets owned by users, typically requiring a payment in cryptocurrency
to be made for access to be returned [30,34]. As ransomware continues to evolve,
new methods have been used to ransom victims more effectively. One of the
latest trends is for ransomware operators to steal sensitive data and to threaten

74 C. Brierley et al.

the owners with its release, unless a ransom demand is paid. This method is
particularly effective if the stolen data is confidential or embarrassing in nature,
as it could be severely damaging if made public.

Multiple companies have already been impacted by this method. In Febru-
ary 2021, CD Projekt Red, a games development company, was subjected to a
ransomware attack. As part of the ransom note, the attackers claimed to have
stolen source code, employee details and accounting information, which they
threatened to release if payment was not made within 48 h [8]. After CD Projekt
Red refused to pay the ransom, the source code was put up for auction [38].
It was later revealed that portions of the data were potentially being leaked
online [15]. In December 2020, the Scottish Environmental Protection Agency
(SEPA) was also subject to a ransomware attack, with the attackers stealing
approximately 1.2 GB of files. After refusing to pay the ransom, the attackers
publicly released over 4,000 documents on the dark web, including emails and
databases used for contracts and commercial services [39,45].

2.1 IoT Based Ransomware

As both IoT devices and ransomware have become more popular, it is not surpris-
ing to see an increased interest in IoT based ransomware – from both security
researchers and attackers. Initial attempts to produce IoT based ransomware
have implemented various “locking” methods to ransom users, i.e., preventing
infected devices from functioning correctly until a payment is made [6,28,51].
More complex types of ransomware may require persistence, which while possi-
ble, may be difficult to achieve, depending on the design of the device [7].

While these techniques may work in certain circumstances, consumer IoT
devices impose two obvious limitations for successful crypto- and locker-based
ransomware: replaceability (most IoT devices are designed to be relatively
“cheap” when compared to traditional desktop targets – as such, users may
instead opt to simply replace the device rather than pay a ransom); and lack of
valuable files (IoT devices rarely contain files that are essential to the user, so
crypto-based ransomware is unlikely to be as effective). However, as IoT devices
are often designed to have access to data associated with their user’s personal
environment, they thereby may provide a unique opportunity for attackers. In
what follows, we describe how IoT devices may be used by attackers to invade
the privacy of their users.

2.2 Privacy Invasion

IoT devices often have direct access to sensors within a user’s home, which has
lead to a significant amount of research into the privacy of data that they manage
or create [29,42,43]. This is especially important as IoT devices are, by design,
required to be connected to the Internet. Therefore, if a device is found to be
exploitable, this information may be exposed to remote attackers.

Previous research has investigated how attacks on IoT devices may impact
users, including case studies that demonstrate the possible methods attackers

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 75

could use to track user activity [3]. Various attacks have also been performed
“in the wild”; for instance, there have been numerous instances of attackers
accessing network cameras exposed to the Internet, allowing them to view video
feeds inside homes and, in some cases, sell obtained “adult content” to others [47].
In one instance, an attacker used a camera’s speaker to threaten victims and
demand a ransom of 50 bitcoin [1].

It is therefore straightforward to see that the natural progression of ran-
somware attack strategy would be to threaten to leak data belonging to victims
in order to encourage payment. It may be possible for attackers to exploit IoT
devices’ access to sensors – e.g., by monitoring or turning on a microphone or
camera without the owner’s knowledge – in order to capture personal or poten-
tially embarrassing data. In the next section, we will discuss the possible sources
of private information that could be exploited by an attacker.

3 Data Sources

Many IoT devices – such as wearables, smart toys, and medical devices – pro-
cess or generate private data that their legitimate users may not want to be
publicly exposed. Below, we discuss the data sources commonly found on such
IoT devices, and how they could be used by a malicious attacker:

– In-built Sensors. An IoT device typically uses sensors to measure aspects
of its environment in order to function. Some of the most commonly avail-
able sensors are cameras (which are often used in Internet-connected security
systems), microphones (which are sometimes used for communication and
control) and geolocation sensors (which can be used to determine the current
location of the user).

– Network Data. IoT devices, by definition, must be able to connect to the
Internet, allowing them to communicate with other devices and their users.
However, if the device has permissions to send, receive or view any sensitive
data, attackers who exploit the device will gain the same privileges. It can
lead to security and privacy issues such as passive monitoring, where if the
infected device acts as a gateway to the internet (e.g. a router), the attacker
may be able to “sniff” the packets sent through it. The attacker may also be
able to scan the internal network of the device’s local network, which could
lead to the discovery of additional sources of personal information such as
network accessible file storage or other vulnerable IoT devices.

– Local Configuration settings. While IoT devices are less likely to contain signif-
icant amounts of user-created data, they may still store personal information
that is of value. An IoT device may request information from their users dur-
ing the device’s set-up stage – such as their name or email address – which is
often stored within the device’s configuration settings. If the location of this
information is known to the attacker, it could be extracted to facilitate com-
munication with, or intimidate, the victim. The attacker could also scan the
memory of local processes or storage for data with a recognisable structure,
such as email addresses or dates, using regular expressions.

76 C. Brierley et al.

4 Identifying Private Data

For privacy based ransomware attacks to be successful, the attacker must first
be able to extract data from IoT devices, but more importantly, identify data
of value which could be used to extort their victims. For large ransomware cam-
paigns, it is infeasible to manually search through large volumes of collected data
to pick out relevant information. Instead, it would be necessary for attackers to
develop methods to categorise and sift through the available data automatically
and efficiently. Below, we discuss some the methods that could be used.

4.1 Malicious Use of Machine Learning

IoT devices typically have access to various types of structured data, such as
configuration settings, which would be relatively easy for attackers to access and
interpret. However, raw data collected from IoT devices’ sensors will first need
to be processed before its “value” can be determined. One approach is to use
machine learning tools to automatically classify input data, drastically lowering
the amount of manual intervention required by the attacker. This method could
exploit two data sources commonly found on IoT devices, as shown below.

Identifying Private Images with Image Recognition. Cameras are often
considered as a vector to invade a user’s privacy, as if an attacker is able to gain
access, they would also be able to extract images from within a victim’s home
without their knowledge. However, the attacker must be able to identify which
images are likely to be “valuable”. The process for selecting potentially ransom-
able images could be performed manually by the attacker, but it would be a
time-consuming process that would not scale well. Therefore, automating this
process would be desirable for the attacker. There are various different models
that may assist in identifying ransom-able images, such as:

– Theme/Object Recognition. If certain themes or objects are detected – such
as cars, buildings, or crowds – it could indicate that the infected device is
stationed outside, and are likely to produce images of “low value”. If people
or objects likely to be inside, such as furniture, are detected, they will raise
the potential value of the images extracted from the device.

– Face Detection. Face detection could be used to confirm the presence of human
victims within obtained images. If a victim is confirmed to be within the
image, it could be very valuable when used in a ransom note as proof of
exploitation, especially if the victim was caught in a compromising position.

– Explicit Content Detection. Some online services offer explicit content detec-
tion for uploaded images/videos. A typical use case would be to prevent
the upload/transmission of explicit content on “safe-for-work” platforms. An
attacker could use this maliciously by scanning for explicit content taken
without the victim’s consent, which could then be used to ransom the victim.

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 77

Identifying and Transcribing Private Conversations. The possibility
of eavesdropping via vulnerable IoT devices has been explored in previous
research [13,50] but not in the context of ransomware. For this method, the
attacker aims to transcribe using speech-to-text engines private conversations
held by the victim. Once the audio has been transcribed, the attacker can use
automated methods to search for keywords, such as those related to potentially
exploitable activity.

4.2 Network-Based Privacy Invasion

There are several techniques that attackers could use to extract private infor-
mation by interacting with the local network using compromised IoT devices.

Intercepting Browsed Domains. If an attacker is able to intercept a user’s
Internet traffic via an infected device (such as a router), they may be able to
extract sensitive information about the user’s browsing habits. In this case, the
attacker may intercept traffic passing through the device and extract domain
names of any websites that the user visits from various protocols, such as
DNS [33], HTTP [14] or HTTPS [10]. The websites can then be compared against
a list of domains associated with illegal or compromising activities. If a match is
found, details could then be logged to a Command and Control (C&C) server.

Intercepting Web Content. It may also be possible to intercept the content
of visited web pages, and the content of websites with known structures could
be read to extract important information, such as video titles, usernames or per-
sonal information. For HTTP traffic, this is relatively simple, as communication
is typically performed in plaintext, allowing attackers to access any transferred
content. Increasingly, web traffic is using HTTPS, which encrypts the commu-
nication between the client and server when transmitting web content [11,18].
However, it could still be possible to gain access to encrypted content using
“man in the middle” (MitM) attacks, such as SSLStrip, which allows attackers
to intercept and modify victim’s web requests to bypass HTTPS encryption [32].
This allows the attacker to catch inattentive users unaware and extract plain-
text communication from typically encrypted traffic. A similar style of attack
has been previously implemented by the IoT malware VPNFilter to extract
usernames, passwords and logins [24].

Identifying Device Locations via WiFi Positioning. The location of the
infected device could be used to determine the address of the user. However, in
order to ascertain the location of the infected device, the attacker must make
use of the available data sources. Some devices need to be aware of their current
position in order to function correctly, such as fitness trackers, which may need
to periodically acquire the current location of the device to track a user’s running
activity and route. Ideally, this type of information would be acquired using a

78 C. Brierley et al.

Global Positioning System (GPS), however, most IoT devices are unlikely to
implement GPS sensors, especially if they are not designed to be moved often.

Online WiFi Positioning systems allow users to triangulate their current posi-
tion by comparing a scan of local WiFi signals to a list of known signal locations
stored in an online database. The accuracy of this measurement is dependant on
various factors, such as the number of detected signals, or matches found in the
service providers’ database.

If an infected device has wireless capabilities, attackers may be able to per-
form a scan to discover the SSIDs, MAC addresses and signal strengths of nearby
routers, which can then be sent to the C&C server. The attacker could then
upload it to an online service such as Mozilla Location Services or the Google
Cloud platform to obtain an estimate of the device’s location [22,36].

Internal Network Structure. Infected devices could provide attackers with
access to other devices on the local network which would be otherwise inac-
cessible from the Internet. The attackers would then be able to scan or attack
previously inaccessible devices, potentially gaining access to further private data.

4.3 Data Processing

Once data has been successfully extracted from the device, it must then be
processed to identify any potentially ransomable information. For network data,
which is typically well structured, this is a computationally inexpensive process.

Less structured data, such as that which is collected from device sensors,
can be much more difficult to interpret. While the use of machine learning can
significantly reduce the amount of manual effort required to identify ransomable
data, there are some logistical issues that attackers may need to overcome before
it can be considered viable. Many IoT devices are unlikely to have the hardware
to run the required machine learning models, and IoT devices’ internal memory
is often limited to only what is required to run the system, which may prevent
collected data from being locally stored.

To circumvent these issues, attackers may instead process, classify, and store
images collected by infected devices on remote systems. For example, attackers
could choose to process collected data on their own server using publicly available
models. However, this may not scale well, and a large ransomware campaign
may cause immense network strain on the attacker’s infrastructure, which could
be quite costly to maintain. Therefore, it may become necessary to outsource
processing to a third party, such as cloud services.

5 Data Collation

The privacy invasion methods we have discussed present possible avenues for
ransomware authors to extract private information from IoT devices. However,
using the extracted information to perform a ransomware attack in a large cam-
paign presents multiple challenges, such as how to manage the collected data,

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 79

how to generate an effective ransom note, and how the information could be
published should the ransom not be paid. In this section, we will examine how
these challenges may be approached by future attackers.

5.1 Data Management

As demonstrated in the previous section, there are various methods attackers
may use to extract private data from victims. However, the collected data must
be correctly managed for threats of publication to be effective. As part of this
research, we created a basic proof of concept collator that allows the attacker to
manage data collected from various compromised devices. An abstract view of
the collator’s operating structure can be found in Appendix A.1 (Fig. 4).

The collator exposes an API for infected devices to interact with, allowing
various types of private data to be uploaded, such as images, audio recordings or
browsing history. Once data is received by the collator, it can be processed using
the appropriate method, such as those described in Sect. 4.3. Each data point is
associated with the infected device’s MAC address, as it is an easily available
unique identifier that is unlikely to change, even through reboots.

The attacker can then access the data processed by the collator via a web
interface, shown in Appendix A.2 (Fig. 5a). Additional features, such as high-
lighting particularly interesting collected information, such as valuble words in
audio transcripts or private browsing activity, could also be implemented.

5.2 The Ransom

Once adequate personal information has been collected, a ransom note demand-
ing payment can be generated and displayed to the victim. If any contact infor-
mation has been extracted from the device, such as an email address, the ransom
note could be sent directly to the user. Alternatively, the attacker could attempt
to display the ransom note by hijacking communication methods native to the
device, such as attached screens or network services [6].

Typically for ransomware attacks, the ransom note would likely contain a
description as to what has occurred, a timer, and instructions for paying the
ransom. However, unlike ransomware that prevents users from accessing their
resources, privacy invasion ransomware threatens to release private information
unless a ransom is paid before a certain time. Therefore, including select private
information in the ransom note that has been obtained throughout the collection
stage may provide sufficient evidence to force the victim into making a payment.
By “personalising” ransom notes in this manner, it may lead less technically-
aware victims to conclude that the attack was a manual effort made to target
them specifically, which may further encourage payment.

5.3 Publishing Private Information

As part of a privacy-based ransomware attack, the victim is threatened with the
release of their private information unless a payment is made. Private informa-
tion could be publicised in a number of ways, varying in complexity.

80 C. Brierley et al.

Centralised Publication. One method attackers could use to publicise infor-
mation is to create a centralised “leaking platform” available via a publicly
accessible website. Any victims that do not make a payment would have their
information published to the website for anyone to view. As part of the ransom
note, victims would be encouraged to visit the website for further information or
to facilitate payment, acting as form of advertisement. Previous victims’ private
information would be visible to the “new users”, which would serve as proof that
the attacker will follow through with threats to publicise.

“Direct” Publication. Attackers could use information previously gathered
about the victim to determine who would be most impacted by its release, such
as friends, family or co-workers. For example, if the attacker identifies the vic-
tim’s social media accounts during the information gathering stage, they may
be able to enumerate people that the victim associates with. They could then
attempt to use the same social media platforms to distribute the victim’s private
information, such as through the use of automated chat-bots. If this technique
is used alongside the aforementioned leaking platform method of distribution,
these messages could also serve to advertise it.

While this approach could drastically increase the impact of publicising infor-
mation, it may also increase the complexity of the ransomware, as the attacker
would need to automate account identification, enumeration and distribution for
supported social media platforms.

5.4 Scale of Operation

Previously, such malware would require significant manual oversight. The
automation steps outlined above, such as the use of machine learning and man-
aging large volumes of data with a collator, would allow attacks to be performed
without needing costly manual labour.

6 Proof of Concepts

To test the viability of privacy-based ransomware on IoT devices, we attempted
to extract private information from a number of different device types, then
collated it such that it could be used to ransom a user. For an attack to succeed,
it is assumed that the attacker is able to access the vulnerable service such that
they are able to exploit it remotely.

6.1 Netgear R6250 Router

As routers often act as the main gateway for Internet traffic in a network, we
determined that they would be ideal for testing the network data extraction
techniques discussed in Sect. 4.2. We chose to use a Netgear R6250 router for
testing, which could be exploited using a previously discovered command injec-
tion vulnerability [31,37].

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 81

Domain Extraction. To test extracting data from network activity, we created
a program to sniff local packets using the libpcap library [25], which was cross-
compiled to be compatible with the target router’s architecture. The program
intercepts any packets destined for port 80 or 443 (the default ports for HTTP
and HTTPS), extracts visited domain names and compares them against a hard-
coded list. If a match is found, an API call is made to the collator, which records
the visited domain, a timestamp of the visit, and the device’s MAC address.

We created a network consisting of the R6250 router, a phone and a desk-
top computer. After exploiting the router, we uploaded and ran the application,
then browsed various websites using the connected devices. The application suc-
cessfully identified and reported domains visited using both HTTP and HTTPS
to the collator, which the “attacker” was then able to view. For this proof of
concept, we did not implement interpretation of any web content, but this could
theoretically be implemented by a dedicated attacker in the future.

WiFi-Positioning. While the router did exhibit wireless capabilities, we were
not able to scan for nearby SSIDs and MAC addresses. This may be due to
limitations imposed by the expected usage of the device. However, we were able
to view the local MAC address and SSID of the router, which could then be
used to query a WiFi-Positioning service. While only one “signal” would be
available for reference, which may reduce the result’s accuracy, it should still
allow attackers to make an approximate guess of the user’s location, as WiFi
signals have a limited range within which they can be detected.

Configuration Extraction. During the investigation of the device, we
attempted to identify where user settings were being stored. We found that
user settings were being saved to the second partition on the flash chip, which
was accessible via the /dev/mtdblock1 file. By using a simple grep command,

Fig. 1. Extracting configuration data

82 C. Brierley et al.

(a) IBM demo recognising keywords (b) Ransom note hijacking the screen

Fig. 2. Attacking the Yealink SIP-T38g

we were able to view sensitive configuration data that was stored in plain text,
as shown in Fig. 1.

Ransom Note. Previous research has shown that it was possible to redi-
rect DNS requests made to a compromised router [6]. Using this technique,
an attacker could redirect users browsing the internet to a webpage containing
a ransom note. In addition to traditional ransomware elements, such as a timer
and a demand for payment, it could also include select personal information
collected by the malware to act as “proof of compromise”. An example of how
the ransom note could be presented is shown in Fig. 5b in Appendix A.2.

6.2 Yealink SIP-T38g Phone

The SIP-T38g is an Internet connected IP phone with a built in LCD screen.
As the device is designed for direct communication, we used it to test the audio
extraction techniques described in Sect. 4.1.

Private Conversation Extraction. The first step for extracting private con-
versations is to obtain audio from the device when a call is made. While we could
have potentially recorded audio directly from the device’s microphone, we instead
chose to extract call data from the device’s network activity, as this would allow
us to hear both sides of the conversation. To do this, we used VoIPong [4,12], an
open source tool that allows the interception and decoding of VoIP calls.

We modified, configured, and cross-compiled a custom version of VoIPong
such that it would be able to run natively on the phone. We then exploited
the device using a command injection vulnerability present in its web interface,
allowing us to upload and run the application, which would then save calls to
a pre-defined folder. Unfortunately, the phone had limited storage, with only a
collective 60 MB of space across all the available partitions. To overcome this,
we hosted a Network File System (NFS) share on the collator server, which the
phone could then mount and modify as if it were a local directory. The collator

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 83

then periodically checked for “file close” events within the share folder such that,
when recordings were finished, conversations could be transcribed.

When the audio is ready to be processed, it is passed to a speech-to-text ser-
vice for transcription. Initially, we attempted to use a local instance of Mozilla’s
“deepspeech” engine with a pre-trained model and scorer [35]. However, audio
extracted from the intercepted calls were sampled at a rate of 8 kHz, also known
as “narrowband”, while the Mozilla model expected a sample rate of 16 kHz,
which lead to unsatisfactory performance. While a new model could be trained
to understand narrowband audio, it was considered to be out of scope for this
paper. Instead, we tested various online services to transcribe the call accurately.

The Google Cloud Services API [23] successfully transcribed conversations
with higher accuracy. We also tested using an “IBM Watson Speech to Text”
demo [27] (which included support for narrowband audio), to successfully extract
key components of the conversation. This demo also featured keyword identifica-
tion, which could be used by attackers to listen for subjects of interest, as shown
in Fig. 2a. Finally, we were able to upload the call to YouTube after converting
it to a video format. Approximately ten minutes after the initial upload, cap-
tions had been automatically added, and could be scraped from the source of
the video’s webpage. Given that YouTube provides this feature for free, it could
potentially be used by attackers to avoid paying for the use of cloud services.

After the conversation has been transcribed, the text and audio file can be
inserted into the collator. The attacker can then search for “valuable” words in
the text, such as “password” or “address”, as potential blackmail material. This
entire process can be fully automated without giving the victim any indication
that they are being monitored, until the ransom note is triggered.

Ransom Note. As with the R6250 router, the attacker could hijack the device’s
web server to display a ransom note, including “proof of compromise” such as
recordings of the victim. However, as the web server is unlikely to be accessed
in day to day usage, they could also hijack the connected screen [6], as shown
in Fig. 2b. It could be possible to expand to other communication media, such
as using the speakers to play back recorded conversations, but this is unlikely to
be unnecessary if the previous approaches are successful.

6.3 DCS-932L Camera

The DCS-932L is an Internet connected camera designed by D-Link. We selected
this device to test WiFi-positioning based location extraction, and image based
privacy invasion.

WiFi-Positioning. During our testing, we found that when the camera uses
WiFi to connect to the Internet, it was possible to scan for nearby SSIDs and
MAC addresses. We used a previously discovered buffer overflow exploit [44]
to upload and run a WiFi scanning application, which returned information on
three nearby access points. By uploading the access point information to Google
Cloud Services we were able to determine our location within 15 m.

84 C. Brierley et al.

Fig. 3. Labelling images extracted from an infected DCS-932L Camera

Table 1. Privacy invasion methods used for each device

Device Domain

extraction

Config

extraction

Audio

transcription

Image

recognition

Location

identification

Netgear R6250 ✓ ✓ - - Partiala

Yealink SIP-T38g - - ✓ - -

D-Link DCS-932L - - - ✓ ✓

aUnfortunately, we were unable to fully test the WiFi-positioning method for the R6250
router, as it was only powered when performing our analysis, preventing its MAC
address from being detected or stored by any WiFi-positioning services.

Image Extraction. As the camera is intended to be used for surveillance,
this device was ideal for testing image based privacy invasion techniques. We
found that during normal operation, the device would provide a snapshot from
the camera to the user when they visited the web server. After infecting the
device, we were able to make direct requests to this snapshot at /image.jpg on
the local webserver. We uploaded an application that would save, encode and
transfer images to the collator, which would then use Google Cloud services [16]
to label recognised objects, locations and activities [21]. As shown in Fig. 3, the
platform was able to recognise and correctly label objects within the extracted
images. If required, other services such as face detection [20] or explicit content
detection [19] could also be applied with minimal changes.

Ransom Note. The DCS-932L camera did not contain many methods to com-
municate with the user. As most interaction with the device was performed via
the web service (which displays the current view from the camera), the attacker
could use the same method as described in Sect. 6.1 to hijack the webserver to
display a ransom note.

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 85

6.4 Summary

In this section, we demonstrated practical examples of how private informa-
tion could be extracted from various IoT devices of differing types: router-based
information, audio data and image data. We have also shown how the collected
data could feasibly be analysed, organised, and used by an attacker to facilitate
privacy invasion based IoT ransomware.

Table 1 provides a summary of the six privacy invasion methods that can
be used, namely Domain Extraction, Config Extraction, Audio Transcription,
Image Recognition, and Location Identification. Additionally, Table 1 also shows
how these methods fare when applied against the three IoT devices we included
in our proof of concepts.

While using IoT devices to invade the privacy of users has been theorised
in the past, it has rarely been explored as a practical option for the average
attacker. Here, we have shown several examples as to how such privacy invasions
could potentially be monetised using ransomware, and how such attacks could
be implemented at scale.

7 Discussion

Privacy-based IoT ransomware could have very negative impacts on users and
their perception of IoT devices. Therefore, it is important to investigate potential
countermeasures. Additionally, some limitations of our current work is discussed,
along with several ideas for future research.

7.1 Countermeasures

There are a number of countermeasures that could be implemented by device
developers, cloud providers, or IoT device users, as discussed below.

Domain Interception Protections. As shown in Sect. 6.1, it is possible for
an attacker to extract the domains of websites that victims visit. While users
can protect themselves by using privacy tools such as VPNs or Tor [46], it is
unrealistic to suggest every user use such tools just in case one of their devices
is infected with such malware. Alternative methods to secure communication
between users and web services must instead be implemented by website hosts.

As HTTP traffic is designed to be unencrypted by default and requires the
domain to be included within the headers, it is very simple to extract information
from any traffic generated by the victim. By using HTTPS, the user can limit
the information that an attacker can extract through the use of encryption.
However, as mentioned in Sects. 4.2 and 4.2, it is still possible to extract the
visited domain or perform downgrade attacks. These attacks can be prevented
through the use of:

86 C. Brierley et al.

– Encrypted Server Name Indication (ESNI). While the contents of HTTPS
communication is encrypted, the domain can be extracted from the SNI por-
tion of HTTPS handshake packets. Encrypting this portion of the header
using a compatible DNS server will prevent the attacker from being able to
discern the visited domain [10]. Encrypted Client Hello (ECH), a more recent
protection mechanism, could also be used to prevent domain extraction in
the future [40].

– HTTP Strict Transport Security (HSTS). In Sect. 4.2, HTTPS downgrade
attacks were highlighted as a possible method for intercepting the contents of
web service communications. HSTS allows web hosts to force clients to only
use HTTPS when visiting their domain, preventing such downgrade attacks.
Some of the most popular browsers even contain hard-coded lists of HTTPS-
only websites by default [17].

Malicious Activity Detection in Cloud Services. Currently, attackers may
find it difficult to natively implement software on infected IoT devices that can
process data collected from its sensors, such as object recognition on captured
images. While this may change in the future – either through more cost-efficient
machine learning algorithms, or more resources being made available on the
average IoT device – attackers are currently more likely to rely on outside pro-
cessing, such as online cloud services. As such, attackers may need to use these
cloud services at scale in order to adequately manage the throughput of infected
devices. Cloud providers may be able to detect such malicious behaviour through
the measuring of various metrics, such as:

– An account using multiple IP addresses to call the API, which may imply
that functions are being called directly from infected IoT devices.

– “Privacy related” functions being called excessively or in certain sequences,
such as facial or object recognition followed by nudity detection.

– Whether a trial account is being used, as it may imply that the attacker is
aiming to reduce costs by using free processing without payment.

If the cloud service provider is able to identify a user as malicious, banning or
shutting down the associated account may delay the operation of the malware
campaign. A more extreme approach may be to prevent accounts from accessing
certain functionality commonly associated with privacy based ransomware until
the owner has provided sufficient proof of identity.

Data Devaluation. If a victim is threatened with the public release of their
private data, there are very few steps that they can take to reduce the impact,
as they do not have any method to remove the stolen data from the attacker’s
storage. However, it may be possible to reduce the trustworthiness of informa-
tion attained by the attackers by providing false data to the C&C server, thus
reducing the overall value of files that are released. This may also waste the
attacker’s time and resources, as they would need to receive, store and analyse
any data sent by the fake “victim”.

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 87

Updating. While this has often been mentioned, it is worth re-enforcing the
principle that applying updates and patches, and changing default passwords,
are important steps in securing IoT devices against possible compromise.

7.2 Limitations and Further Work

Countermeasure Creation. Due in part to the variety in the design of IoT
devices, the creation of universal countermeasures is not a simple process. While
the countermeasures discussed above can be effective, it could be argued that
some are only applicable in certain scenarios. This work highlights the need for
further research as to how IoT devices can be designed to limit the effectiveness
of privacy-invasion based malware.

Native Malicious Machine Learning. Currently, the identification and man-
agement of data presents a significant hurdle that attackers must overcome in
order to create effective privacy invasion based ransomware. The infrastructure
required to transfer, store, and process collected data may dissuade malicious
actors from attempting to perform these types of attacks. However, as the hard-
ware present in IoT devices continues to improve, and machine learning tech-
niques become increasingly efficient, it may eventually be possible to run machine
learning tools natively on infected devices rather than outsourcing the data pro-
cessing. It may be beneficial to investigate the viability of such native tools, as
it may heavily reduce the costs when running a large malware campaign.

Psychological Effects. Unlike other malware, which typically targets the
restriction of information, privacy based ransomware instead threatens to expose
it, which has the potential of being very distressing for victims. A study of the
psychological effects of this malware could reveal the non-monetary costs of infec-
tion, such as how public perception may change concerning IoT devices, should
this affect a significant number of devices.

ARP Poisoning. In Sect. 4.2 we described techniques that intercept network
traffic to extract private information. Typically, these require the infected device
to be positioned such that it is a “man in the middle” (MitM), with the user’s
network activity passing through it. Routers are perfectly positioned for this
type of attack. However, devices that do not hold this position, such as network
cameras, will only be able to examine their own network activity.

A possible way that infected IoT devices could use is an Address Resolution
Protocol (ARP) poisoning attack, which would allow attackers to insert them-
selves in-between the network gateway and another target [49]. If IoT devices are
shown to be capable of performing such attacks, they may be able to use MitM
attacks on other devices on the same network without acting as the gateway.

88 C. Brierley et al.

8 Conclusions

In this paper we investigated how IoT devices could be used to facilitate privacy-
invasion based ransomware targeting consumers. To do this, we first examined
various data sources commonly found on IoT devices and how they could be
leveraged by attackers to extract data. We then proposed methods attackers
could use to identify and process that data to extract sensitive user information
for the purpose of performing a ransomware attack. We discussed how automated
machine learning and data collation could be used to manage data collected from
vulnerable IoT devices to perform ransomware attacks at a large scale.

We showed how some of the privacy-invasion techniques could be realised on
three IoT devices with differing sensors and data sources. During the demonstra-
tion, we were able to extract various mock “private data” and send it to a remote
data collation service, such that an attacker could easily track and process it.

We then discussed potential countermeasures that could be implemented by
users or IoT developers to prevent or reduce the impact of such attacks, before
finally identifying the work’s limitations and opportunities for future research.

A Appendices

A.1 Data Collator Structure

Fig. 4. Data collator structure

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 89

A.2 Collator and Ransom Note

(a) IoT Collator summarising information
collected from a router

(b) An example ransom note, including
proof of compromise

Fig. 5. Collator and example ransom note

References

1. abcNEWS: Terrifying video of family’s hacked ring camera system (2019). https://
abcnews.go.com/GMA/News/video/terrifying-video-familys-hacked-ring-camera-
system-67704081/. Accessed June 2021

2. Antonakakis, M., et al.: Understanding the Mirai botnet. In: 26th USENIX Security
Symposium (USENIX Security 2017), pp. 1093–1110 (2017)

3. Arias, O., Wurm, J., Hoang, K., Jin, Y.: Privacy and security in internet of things
and wearable devices. IEEE Trans. Multi-Scale Comput. Syst. 1(2), 99–109 (2015)

4. Balaban, M.: Voipong user’s manual (2005). http://www.enderunix.org/voipong/
manual/. Accessed April 2021

5. Bitdefender: Security 2020 consumer threat landscape report (2021). https://
www.bitdefender.com/files/News/CaseStudies/study/395/Bitdefender-2020-
Consumer-Threat-Landscape-Report.pdf. Accessed July 2021

6. Brierley, C., Pont, J., Arief, B., Barnes, D.J., Hernandez-Castro, J.: PaperW8: an
IoT bricking ransomware proof of concept. In: Proceedings of the 15th International
Conference on Availability, Reliability and Security, pp. 1–10 (2020)

7. Brierley, C., Pont, J., Arief, B., Barnes, D.J., Hernandez-Castro, J.: Persistence in
linux-based IoT malware. In: Asplund, M., Nadjm-Tehrani, S. (eds.) NordSec 2020.
LNCS, vol. 12556, pp. 3–19. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-70852-8 1

https://abcnews.go.com/GMA/News/video/terrifying-video-familys-hacked-ring-camera-system-67704081/
https://abcnews.go.com/GMA/News/video/terrifying-video-familys-hacked-ring-camera-system-67704081/
https://abcnews.go.com/GMA/News/video/terrifying-video-familys-hacked-ring-camera-system-67704081/
http://www.enderunix.org/voipong/manual/
http://www.enderunix.org/voipong/manual/
https://www.bitdefender.com/files/News/CaseStudies/study/395/Bitdefender-2020-Consumer-Threat-Landscape-Report.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/395/Bitdefender-2020-Consumer-Threat-Landscape-Report.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/395/Bitdefender-2020-Consumer-Threat-Landscape-Report.pdf
https://doi.org/10.1007/978-3-030-70852-8_1
https://doi.org/10.1007/978-3-030-70852-8_1

90 C. Brierley et al.

8. @CDPROJEKTRED: Important update (2021). https://twitter.com/
CDPROJEKTRED/status/1359048125403590660. Accessed June 2021

9. Internet Crime Complaint Center: Internet crime report 2020 (2021). https://www.
ic3.gov/Media/PDF/AnnualReport/2020 IC3Report.pdf. Accessed July 2021

10. Chai, Z., Ghafari, A., Houmansadr, A.: On the importance of encrypted-SNI
(ESNI) to censorship circumvention. In: 9th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 2019) (2019)

11. Let’s Encrypt: Let’s encrypt stats. https://letsencrypt.org/stats/. Accessed July
2021

12. EnderUNIX: Voipong (2011). https://github.com/EnderUNIX/VoIPong. Accessed
July 2021

13. Fabian Bräunlein, L.F.: Smart Spies: Alexa and Google Home expose users to vish-
ing and eavesdropping (2019). https://www.srlabs.de/bites/smart-spies. Accessed
July 2021

14. Fielding, R., et al.: RFC2616: Hypertext transfer protocol-http/1.1 (1999)
15. Goodin, D.: CD projekt red does an about-face, says ransomware crooks are leak-

ing data (2021). https://arstechnica.com/gadgets/2021/06/cd-projekt-red-says-
its-data-is-likely-circulating-online-after-ransom-attack/. Accessed June 2021

16. Google: Cloud computing services — Google Cloud. https://cloud.google.com/.
Accessed July 2021

17. Google: HTTP strict transport security. https://www.chromium.org/hsts/.
Accessed July 2021

18. Google: HTTPS encryption on the web. https://transparencyreport.google.com/
https/overview. Accessed July 2021

19. Google: Detect explicit content (safesearch) (2021). https://cloud.google.com/
vision/docs/detecting-safe-search. Accessed Aug 2021

20. Google: Detect faces (2021). https://cloud.google.com/vision/docs/detecting-
faces. Accessed Aug 2021

21. Google: Detect labels (2021). https://cloud.google.com/vision/docs/labels.
Accessed Aug 2021

22. Google: Geolocation API (2021). https://developers.google.com/maps/
documentation/geolocation/overview. Accessed July 2021

23. Google: Method: speech.recognize (2021). https://cloud.google.com/speech-to-
text/docs/reference/rest/v1/speech/recognize. Accessed July 2021

24. Talos Intelligence Group: VPNFilter update - VPNFilter exploits endpoints,
targets new devices (2018). https://blog.talosintelligence.com/2018/06/vpnfilter-
update.html. Accessed July 2021

25. The TCPDUMP Group: TCPDUMP/LIBCAP public repository (2021). https://
www.tcpdump.org/. Accessed July 2021

26. Hron, M.: The fresh smell of ransomed coffee (2020). https://decoded.avast.io/
martinhron/the-fresh-smell-of-ransomed-coffee/. Accessed July 2021

27. IBM: Speech to text demo. https://speech-to-text-demo.ng.bluemix.net/.
Accessed July 2021

28. Ilascu, I.: Hacker used ransomware to lock victims in their IoT chastity belt (2021).
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-
lock-victims-in-their-iot-chastity-belt/. Accessed June 2021

29. Kalbo, N., Mirsky, Y., Shabtai, A., Elovici, Y.: The security of IP-based video
surveillance systems. Sensors 20(17), 4806 (2020)

https://twitter.com/CDPROJEKTRED/status/1359048125403590660
https://twitter.com/CDPROJEKTRED/status/1359048125403590660
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://letsencrypt.org/stats/
https://github.com/EnderUNIX/VoIPong
https://www.srlabs.de/bites/smart-spies
https://arstechnica.com/gadgets/2021/06/cd-projekt-red-says-its-data-is-likely-circulating-online-after-ransom-attack/
https://arstechnica.com/gadgets/2021/06/cd-projekt-red-says-its-data-is-likely-circulating-online-after-ransom-attack/
https://cloud.google.com/
https://www.chromium.org/hsts/
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://cloud.google.com/vision/docs/detecting-safe-search
https://cloud.google.com/vision/docs/detecting-safe-search
https://cloud.google.com/vision/docs/detecting-faces
https://cloud.google.com/vision/docs/detecting-faces
https://cloud.google.com/vision/docs/labels
https://developers.google.com/maps/documentation/geolocation/overview
https://developers.google.com/maps/documentation/geolocation/overview
https://cloud.google.com/speech-to-text/docs/reference/rest/v1/speech/recognize
https://cloud.google.com/speech-to-text/docs/reference/rest/v1/speech/recognize
https://blog.talosintelligence.com/2018/06/vpnfilter-update.html
https://blog.talosintelligence.com/2018/06/vpnfilter-update.html
https://www.tcpdump.org/
https://www.tcpdump.org/
https://decoded.avast.io/martinhron/the-fresh-smell-of-ransomed-coffee/
https://decoded.avast.io/martinhron/the-fresh-smell-of-ransomed-coffee/
https://speech-to-text-demo.ng.bluemix.net/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/
https://www.bleepingcomputer.com/news/security/hacker-used-ransomware-to-lock-victims-in-their-iot-chastity-belt/

Industrialising Blackmail: Privacy Invasion Based IoT Ransomware 91

30. Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., Kirda, E.: Cutting the Gor-
dian knot: a look under the hood of ransomware attacks. In: Almgren, M., Gulisano,
V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 3–24. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20550-2 1

31. Land, J.: Multiple netgear routers are vulnerable to arbitrary command injection
(2016). https://www.kb.cert.org/vuls/id/582384/. Accessed July 2021

32. Marlinspike, M.: New tricks for defeating SSL in practice. Black Hat DC 2 (2009)
33. Mockapetris, P.: Domain names - concepts and facilities (1987). https://

datatracker.ietf.org/doc/html/rfc1034#section-5.3.2. Accessed July 2021
34. Mohurle, S., Patil, M.: A brief study of wannacry threat: ransomware attack 2017.

Int. J. Adv. Res. Comput. Sci. 8(5), 1938–1940 (2017)
35. Morais, R.: Deepspeech 0.9.3 (2020). https://github.com/mozilla/DeepSpeech/

releases/tag/v0.9.3. Accessed July 2021
36. Mozilla: Geolocate (2020). https://ichnaea.readthedocs.io/en/latest/api/

geolocate.html. Accessed July 2021
37. NIST: CVE-2016-6277 detail (2017). https://nvd.nist.gov/vuln/detail/CVE-2016-

6277. Accessed July 2021
38. Orland, K.: CD projekt red source code reportedly sells for millions in dark web

auction [updated] (2021). https://arstechnica.com/gaming/2021/02/cd-projekt-
red-source-code-reportedly-sells-for-millions-in-dark-web-auction/. Accessed
June 2021

39. Palmer, D.: Hackers publish thousands of files after government agency refuses
to pay ransom (2021). https://www.zdnet.com/article/hackers-publish-thousands-
of-files-after-government-agency-refuses-to-pay-ransom/. Accessed July 2021

40. Patton, C.: Good-bye ESNI, hello ECH! (2020). https://blog.cloudflare.com/
encrypted-client-hello/. Accessed July 2021

41. SonicWall: Sonicwall cyber threat report (2021). https://www.sonicwall.com/
medialibrary/en/white-paper/2021-cyber-threat-report.pdf. Accessed July 2021

42. Sun, K., Chen, C., Zhang, X.: “Alexa, stop spying on me!” speech privacy protec-
tion against voice assistants. In: Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, pp. 298–311 (2020)

43. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: analyzing the security and privacy risks of IFTTT
recipes. In: Proceedings of the 26th International Conference on World Wide Web,
pp. 1501–1510 (2017)

44. tacnetsol: CVE-2019-10999 (2019). https://github.com/tacnetsol/CVE-2019-
10999. Accessed July 2021

45. Tidy, J.: Cyber criminals publish more than 4,000 stolen sepa files (2021). https://
www.bbc.co.uk/news/uk-scotland-55757884. Accessed June 2021

46. Tor: Tor project — anonymity online. www.torproject.org/. Accessed July 2021
47. TrendMicro: Exposed video streams: how hackers abuse surveillance cameras

(2018). https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/
exposed-video-streams-how-hackers-abuse-surveillance-cameras. Accessed June
2021

48. TrendMicro: Over 200,000 mikrotik routers compromised in cryptojack-
ing campaign (2018). https://www.trendmicro.com/vinfo/nl/security/news/
cybercrime-and-digital-threats/over-200-000-mikrotik-routers-compromised-in-
cryptojacking-campaign. Accessed July 2021

49. Whalen, S., Engle, S., Romeo, D.: An introduction to ARP spoofing. Node99
[Online Document] (2001). https://www.cavalcantetreinamentos.com.br/blog/
material-sala-de-aula/SegurancaemRedes/Outros/arp spoofing slides.pdf

https://doi.org/10.1007/978-3-319-20550-2_1
https://www.kb.cert.org/vuls/id/582384/
https://datatracker.ietf.org/doc/html/rfc1034#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc1034#section-5.3.2
https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3
https://github.com/mozilla/DeepSpeech/releases/tag/v0.9.3
https://ichnaea.readthedocs.io/en/latest/api/geolocate.html
https://ichnaea.readthedocs.io/en/latest/api/geolocate.html
https://nvd.nist.gov/vuln/detail/CVE-2016-6277
https://nvd.nist.gov/vuln/detail/CVE-2016-6277
https://arstechnica.com/gaming/2021/02/cd-projekt-red-source-code-reportedly-sells-for-millions-in-dark-web-auction/
https://arstechnica.com/gaming/2021/02/cd-projekt-red-source-code-reportedly-sells-for-millions-in-dark-web-auction/
https://www.zdnet.com/article/hackers-publish-thousands-of-files-after-government-agency-refuses-to-pay-ransom/
https://www.zdnet.com/article/hackers-publish-thousands-of-files-after-government-agency-refuses-to-pay-ransom/
https://blog.cloudflare.com/encrypted-client-hello/
https://blog.cloudflare.com/encrypted-client-hello/
https://www.sonicwall.com/medialibrary/en/white-paper/2021-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/2021-cyber-threat-report.pdf
https://github.com/tacnetsol/CVE-2019-10999
https://github.com/tacnetsol/CVE-2019-10999
https://www.bbc.co.uk/news/uk-scotland-55757884
https://www.bbc.co.uk/news/uk-scotland-55757884
www.torproject.org/
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/exposed-video-streams-how-hackers-abuse-surveillance-cameras
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/exposed-video-streams-how-hackers-abuse-surveillance-cameras
https://www.trendmicro.com/vinfo/nl/security/news/cybercrime-and-digital-threats/over-200-000-mikrotik-routers-compromised-in-cryptojacking-campaign
https://www.trendmicro.com/vinfo/nl/security/news/cybercrime-and-digital-threats/over-200-000-mikrotik-routers-compromised-in-cryptojacking-campaign
https://www.trendmicro.com/vinfo/nl/security/news/cybercrime-and-digital-threats/over-200-000-mikrotik-routers-compromised-in-cryptojacking-campaign
https://www.cavalcantetreinamentos.com.br/blog/material-sala-de-aula/Seguranca em Redes/Outros/arp_spoofing_slides.pdf
https://www.cavalcantetreinamentos.com.br/blog/material-sala-de-aula/Seguranca em Redes/Outros/arp_spoofing_slides.pdf

92 C. Brierley et al.

50. Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y., Qian, F.: Understanding and
mitigating the security risks of voice-controlled third-party skills on Amazon Alexa
and Google Home. arXiv preprint arXiv:1805.01525 (2018)

51. Zhang, Y., et al.: A11 your PLCS belong to me: ICS ransomware is realistic.
In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pp. 502–509. IEEE (2020)

http://arxiv.org/abs/1805.01525

Machine Learning and Security

SQL Injections and Reinforcement
Learning: An Empirical Evaluation
of the Role of Action Structure

Manuel Del Verme1,2(B), Åvald Åslaugson Sommervoll3, László Erdődi4,
Simone Totaro2,5, and Fabio Massimo Zennaro3

1 McGill University, Montreal, Canada
2 Mila, Montreal, Canada

3 Department of Informatics, University of Oslo, Oslo, Norway
4 Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, Trondheim, Norway

5 Université de Montréal, Montreal, Canada

Abstract. Penetration testing is a central problem in computer secu-
rity, and recently, the application of machine learning techniques to this
topic has gathered momentum. In this paper, we consider the problem of
exploiting SQL injection vulnerabilities, and we represent it as a capture-
the-flag scenario in which an attacker can submit strings to an input form
with the aim of obtaining a flag token representing private information.
We then model the attacker as a reinforcement learning agent that inter-
acts with the server to learn an optimal policy leading to an exploit.
We compare two agents: a simpler structured agent that relies on signif-
icant a priori knowledge and uses high-level actions; and a structureless
agent that has limited a priori knowledge and generates SQL statements.
The comparison showcases the feasibility of developing agents that rely
on less ad-hoc modeling and illustrates a possible direction to develop
agents that may have wide applicability.

Keywords: Reinforcement learning · Penetration testing · Capture
the flag · SQL injection

1 Introduction

In recent years several works have explored applications of machine learning to
computer security problems, ranging from anomaly detection models used to
sift through large network data sets [12,26] to language models trained on code
repositories to spot malicious programs [23,29]. In all these cases, whenever a
problem could be fit into one of the paradigms of machine learning, and suffi-
cient data and computational resources could be provided, machine learning has
delivered statistical models able to produce accurate and fast predictions.

A relevant area in the field of computer security is penetration testing (PT).
Loosely speaking, PT embraces a large set of activities carried out by legitimate
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 95–113, 2021.
https://doi.org/10.1007/978-3-030-91625-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-91625-1_6

96 M. Del Verme et al.

or ethical hackers in order to test the security of a system. Simulations of PT
often takes the form of security capture-the-flag (CTF) challenges, that is, com-
petitions in which penetration testers compete to detect, and possibly exploit,
vulnerabilities on systems specifically configured for such an event. CTFs consti-
tute not only a useful learning resource for human hackers, but they also provide
well-defined and legitimate environments that may be used to train artificial
agents. Formalizing PT is a topic of interest in the academia and the industry,
as witnessed, for instance, in the development of CTF challenges for autonomous
agents, such as the DARPA Cyber grand challenge1.

We consider the reduction of a representative CTF challenge to a reinforce-
ment learning (RL) problem, and we analyze how agents trained using different
approaches fare on this task. Specifically, we take into consideration the emblem-
atic problem of SQL injection (SQLi), in which an agent tries to craft a malicious
string that, once embedded in a SQL statement, leads to some form of unwanted
information disclosure. Exploiting SQLi vulnerabilities is a non-trivial problem
which requires a hacker to detect a potential vulnerability, probe the target
system, collect information from the responses, and finally submit the malicious
input. In our work, we develop RL agents designed to try to automate the process
of SQLi. Assuming the existence of a vulnerability has been already detected,
we deploy our agents in an environment containing a vulnerable system, and
we let them work out a SQLi through interaction and inference. We compare
two different models: agents relying on a priori knowledge, and agents endowed
with a more restricted knowledge about the environment. The first type of agent,
which we name structured agent, relies on user-injected knowledge of SQL syntax
and the form of queries run by the target system; this model closely resembles
the model presented in [11]. The second type of agent, which we name instead
structureless agent, has a more limited knowledge of SQL syntax or of the target
system; it builds its SQLi from SQL tokens and alphanumeric characters.

We compare these two approaches, the structured and the structureless, on
a common CTF task representing a simple yet realistic instance of SQLi vulner-
ability. Although the two agents have significant differences hindering a direct
comparison, we evaluate both of them in terms of their performance (measured
on the task they are trained to solve), flexibility and cost (evaluated in terms of
a trade-off between level of generalization of the model, need for encoding of a
priori knowledge, and computational resources).

Our results advance the research on the development of RL agents for PT and
CTF-like problems, contributing to a better understanding of the role of struc-
ture and shedding light on possible future lines of development. While results on
structured agents have already been presented in the literature [11], this work
extends existing results by considering the application of structured agents to a
more realistic settings (using a real instance of a SQL server instead of a sim-
ulated server), by deploying more sophisticated agents (relying on actor-critic
agents instead of value-based agents), and by providing the agent with a richer
feedback (returning a more nuanced error message). More importantly, the paper

1 https://www.darpa.mil/program/cyber-grand-challenge.

https://www.darpa.mil/program/cyber-grand-challenge

SQL Injections and Reinforcement Learning: Role of Action Structure 97

introduce a new approach to solve the CTF problem that relies on significantly
less prior knowledge, delegating the task of building such a knowledge to the
RL agent itself. This RL agent shows the feasibility of training machine learning
models for security that could learn in a strongly autonomous way; by requiring
less ad-hoc modelling and injection of knowledge, these agents thus hold the
promise to be easily deployable across many different problems. Finally, we offer
a comparison between the structured and the structureless agent along the line
of [32], by contrasting the advantages and disadvantages of both approaches.

The rest of the paper is organized as follows: in Sect. 2 we define the main
concepts related to RL and SQLi; in Sect. 3 we review existing work on the
topic of automating PT and solving SQL-based problems; in Sect. 4 we explain
our methods, including the environment and the agents we designed; in Sect. 5
we present and discuss the results of our experiments. Finally, Sect. 6 contains
ethical consideration about this work, while Sect. 7 summarizes our work and
points to future developments.

2 Background

We review the main ideas from RL and PT relevant to this work. We provide
the definition of a RL problem and of RL agents, and we discuss the generation
of strings at character level within a RL context; for PT, we illustrate CTF
problems and we explain the specific instance of SQLi.

2.1 Reinforcement Learning

We first recall the main aspects of the RL problem. RL provides a framework
to train agents in a dynamic environment by letting them perform actions and
observe the consequences of their choices; through a trial-and-error process, the
agents infer a strategy (or policy) that allow them to achieve high long-term
returns. Formally, a typical RL problem is embedded in a Markov Decision Pro-
cess (MDP) M. An MDP is defined via the tuple 〈S,A, r,P, d0〉, where S and
A are the state and action space set, which are possibly large but finite and
discrete; r : S × A → R is the reward function used to encode a description of
the desired behaviour, often chosen by the practitioner; P : S ×A → Δ(S) is the
transition dynamics of the environment (or simply dynamics) which provides a
probabilistic description of how the environment transitions from a given state
upon an action of the agent; d0 is a distribution over the initial state of the
environment. A solution of the RL problem is a policy π∗ : S → Δ(A) that max-
imizes a long-term cumulative objective, for example the expected cumulative
discounted reward. More formally:

π∗(a|s) = argmax
π∈Π

Eπ

[∞∑
t=0

γtr(st, at) | s0

]
s0 ∼ d0, (1)

where Π is the space of probability distributions, the expectation Eπ is with
respect all possible trajectories starting from s0 following policy π, and γ ∈ [0, 1)
is a factor discounting future rewards.

98 M. Del Verme et al.

Actor-Critic Methods. One approach to solving Eq. 1 is via direct policy opti-
mization, where we parametrize the policy πθ via a set of parameters θ:

θ∗ = argmax
θ∈Θ

Eπθ

[∞∑
t=0

γtr(st, at) | s0

]
s0 ∼ d0, (2)

where Θ is now the space of parameters, and the expectation Eπθ
is with

respect to the parametrized policy πθ. Policy gradient methods optimize this
objective directly via gradient ascent. In order to reduce variance, actor-critic
methods optimize this objective while at the same time learning an esti-
mate of the reward r(st, at); the actor module is responsible for the opti-
mization of πθ, while the critic module estimates the return in terms of a
value function V π(s) = Eπ[

∑∞
t=0 γtr(st, at)|s0 = s], an action-value function

Qπ(s, a) = Eπ[
∑∞

t=0 γtr(st, at)|s0 = s, a0 = a], or an advantage function
Aπ(s, a) = Qπ(s, a) − V π(s).

Proximal Policy Optimization. Proximal Policy Optimization (PPO) [25] is a
state-of-the-art actor-critic algorithm which has been proven successful on a
variety of complex tasks. PPO, in its proximal form, maximizes the following
objective via multiple iteration of gradient ascent:

πθk+1 = argmax
θ∈Θ

E
[

πθk

πθk+1

Aπθk (s, a)
]

− ηE
[
KL(πθk−1 , πθk

)
]
, (3)

where πθk
is the parametrized policy using the parameter values at time k, η

is a regularization hyper-parameter, and KL(p, q) is the Kullback-Leibler (KL)
divergence from distribution p to q. The KL penalty guarantees that the size of
the steps in every gradient ascent iteration remains bounded.

Alternatively, the optimization in the PPO agent may be reformulated using
a clipping operator:

πθk+1 = argmax
θ∈Θ

E [min(z(πθk
)Aπθk (s, a), clip(z(πθk

), 1 − ε, 1 + ε)Aπθk (s, a))] ,

(4)
where z(πθk

) = πθk

πθk+1
, and the clip(a, 1 − ε, 1 + ε) operator clips the value a to

force it within the interval [a(1− ε), a(1 + ε)], with ε ∈ R. The clipping operator
in the new objective achieves the same aim of KL divergence, by keeping the
update at every gradient ascent iteration bounded.

Direct policy parametrization and a simple optimization procedure make
policy gradient methods interesting candidates for high dimensional state and
action space, such as the text-based setting that we discuss next.

2.2 Word Level RL

The appealing property of policy gradient method stems from the temporal
decomposition of the log-likelihood. The idea is to consider a sentence as an
action made of a sequence of tokens and model the policy as a conditional

SQL Injections and Reinforcement Learning: Role of Action Structure 99

distribution over that sequence. More formally, let a = (a0, . . . , ak) be a sequence
of tokens, and let policy πθ(a|s) be a joint distribution on a conditioned on s.
Note that log πθ(a, s) =

∑T
i=0 log πθ(ai | s, ai−1), where the starting is simply an

empty token i.e. a−1 = ε. Plugging in the new objective in Eq. 3, and substitut-
ing the expected value with the empirical average, we can rewrite the objective
as follows:

L̂(θ) = 1
N + 1

N∑
n=0

1
Tn

Tn∑
i=0

πθk
(ai | sn)

πθk+1(ai | sn)
Aπθk (sn,a) + ηE

[
KL(πθk−1 , πθk

)
]
, (5)

where N is the number of samples for estimating the empirical average, Tn

is the number of tokens in the nth sample. Note that the advantage function,
which provides the update direction of the policy gradient, depends on the com-
plete sequence of tokens. Furthermore, in sparse reward settings like the one we
will be considering, the gradient of the policy is effectively zero until a posi-
tive return is found. This optimization objective thus presents two significant
challenges: exploration and credit assignment. We discuss here a heuristic explo-
ration inspired by Thompson sampling, which proved to work well in practice,
and leave credit assignment for future work.

Exploration. Typical heuristics rely on reward shaping either via sub-goals [2,4]
or on an entropic regularizer that promotes exploration [14,20]. Both solu-
tions change the optimal policy. Here, we take inspiration from Thompson sam-
pling [18], and propose a “prior” distribution over sentences that ensure meaning-
ful exploration of the query space. While the injection of knowledge in the form
of a “prior” tailored by a user is appealing, it does explicitly introduce bias in
the exploration process of the agent. Instead, we propose to learn a prior distri-
bution over sequences by maximizing its entropy. More formally, let νθ(a, s) be a
parametric distribution over sequences which maximizes the following objective:

argmax
θ

H(νθ) = argmax
θ

−
T∑
i

νθ(ai | s) log νθ(ai | s) (6)

Over a finite domain, as in the case of our actions, the solution of this optimiza-
tion problem is the uniform distribution. If θ is parametrized by a neural network
with softmax activation, then achieving a uniform distribution is not trivial. We
nonetheless add this contribution to our loss, and finally obtain the objective:

L̂(θ) =
1

N + 1

N∑

n=0

1

Tn

Kj∑

i=0

νθk(ai, sn)
πθk (ai | sn)

πθk+1(ai | sn)
Aπθk (sn, an) + ηE

[
KL(πθk−1 , πθk)

]

(7)

The prior distribution ν effectively slows down the optimization process, by
reducing the magnitude of the importance ratio in (7) preventing the policy from
becoming deterministic too quickly, while maintaining the optimal policy intact.

100 M. Del Verme et al.

This form of Thompson Sampling is in contrast with the standard Bayesian
literature, as we attempt to learn a suitable prior distribution from data, instead
of handcrafting from prior knowledge.

2.3 Penetration Testing

The complexity of modern computer systems and networks entails the existence
of several types of vulnerabilities which could be exploited by malicious actors
with varying forms of motivation and expertise. An effective way to discover
and patch vulnerabilities consists in penetration testing, that is mimicking the
behaviour of attackers; indeed checking a system from the perspective of an
attacker may reveal serious security deficiencies that could have been otherwise
overlooked.

Capture the Flag. A prototypical example of penetration testing, used for edu-
cation and training, are CTF-style security challenges, in which systems with
simulated vulnerabilities are set up and probed by penetration testers. CTFs
provide a simple and usable abstraction of a technical security challenge. The
exploitation of a security vulnerability (or a chain of vulnerabilities) is rewarded
in a non-ambiguous way in the form of a flag token. A flag is just a string in a
special format that is easy to recognize and that can be gained by an attacker
only after carrying out all the steps necessary to exploit a vulnerability. The cap-
ture of the flag is the criterion of success in a CTF, with no further exploitation
required. According to the vulnerability under considerations, CTF challenges
may be categorized in different groups, such as web hacking challenges or binary
exploitation challenges. As human factors are normally excluded from these chal-
lenges, penetration testers are expected to rely only on their expertise and logic.
CTFs thus constitute a relevant model for artificial agents, since these chal-
lenges may be framed as games with enumerable sets of actions, clear success
conditions, and strategies that may be derived through reasoning and inference.

SQL Injection. In this work, we restrict our attention to web hacking CTFs.
More precisely, we consider a simple CTF made up of a dynamic website with a
SQLi vulnerability. Dynamic websites are common websites designed to offer rich
user experiences on the web; they normally receive and store large amounts of
data in order to improve and customize the experience of the users (for instance,
they may store sensitive data to perform user authentication). For reasons of effi-
ciency this data is often stored in dedicated relational databases, such as mysql,
mssql, or posgresql. The website can query the database server using the stan-
dard Structured Query Language (SQL). Simple queries for data retrieval (using
a SELECT command along with a WHERE clause) or advanced statements (con-
catenating, for instance, multiple SQL queries with a UNION statement) allow
the website to extract the necessary information. To customize these queries
the website may embed in the query some user input. The possibility for a
SQLi vulnerability opens when user input is not properly validated and directly
embedded in a pre-generated query. In such a case, a malicious user may craft an

SQL Injections and Reinforcement Learning: Role of Action Structure 101

input string allowing her to get full or partial control over the query. In the least
threatening case, the attacker can modify the expression evaluation of the query
to disclose information; in more severe cases, a determined attacker may be able
to write local files to or even run operating system instructions. Even if there
are no clearly defined methodologies to perform SQLi exploitation, a typical
approach involves a first exploratory phase aimed at uncovering the character-
istics of the vulnerability (identifying the vulnerable web input parameter, the
type of input parameter, restrictions and filtering of the input, structure of the
pre-generated query, SQL answer presentation from the website), and then an
exploitation phase in which the vulnerability is exploited and the flag captured.

3 Related Work

In this section we review both previous work related to using automation, arti-
ficial intelligence and machine learning to tackle the PT problem, and exist-
ing work related to RL agents dealing with textual actions or with SQL-based
problems.

Automated tools for PT. Automating PT is an old challenge in computer
security. The most immediate way to automate the process of PT is to develop
tools that can follow scripted directives and quickly execute repetitive and menial
tasks. Security scanners like Nessus2 or applications like sqlmap3 fit in this cat-
egory. These tools distill human knowledge, encode it in an executable script,
and execute it; as such, they do not perform any learning, and their adaptability
to new scenarios depends on how foreseeing and inclusive are their codes.

Planning for PT. Symbolic approaches to AI and optimal planning offered
a higher-level approach to the PT problem: instead of encoding solutions, it is
possible to express a problem in a rigorous formalism and produce a solution
through a solver. Models of interest include plans [6], attack graphs [3], MDPs,
partially observable MDPs [24], Stackelberg games [27], and Petri nets [5]. [16]
provides a taxonomy of these models along the dimensions of uncertainty in the
model and property of the agent actions. Whenever a problem has a limited
dimensionality, these models may be solved exactly, providing an optimal solu-
tion. The drawback of this approach is that it requires a rigorous modelling of
the problem, and that the complexity for solving the model may quickly diverge,
making it unfeasible to solve realistic challenges.

RL for PT. A more versatile approach to solve larger and less formalized
PT problems is provided the RL paradigm. While the problem environment can
still be expressed in terms of a MDP or a POMDP, its solution is not achieved
through exact planning, but through learning via inference. The idea of training
RL to solve PT problems goes back, at least, to the work of [10,22] and [13],
all considering different levels of abstraction of the PT problem and different
RL agent algorithms. More recently [9] analyzed the problem of automating the
development of RL environments for PT, [32] considered trade-offs in providing
2 https://www.tenable.com/products/nessus.
3 http://sqlmap.org/.

https://www.tenable.com/products/nessus
http://sqlmap.org/

102 M. Del Verme et al.

RL agents with a priori knowledge, and [19] extended the application of RL
agents to modelling post-exploitation actions. Finally, a more fine-grained mod-
elling of the specific PT problem of SQLi is studied in [11], which also offers a
preliminary evaluation of RL agents tackling this challenge. The current paper
follows that line of work, studying and analyzing more realistic challenges and
agents.

Interactive Fiction. The problem of generating strings to exploit a SQLi vul-
nerability has resemblances with the problem of solving interactive fiction games
(IF). In IF, a player is presented with text describing a situation; the player can
then interact with the environment by taking actions; these actions are processed
by the system which provides a new textual description of the consequences of
the actions and the new state of the environment. There are some obvious simi-
larity between IF games and SQLi challenges: they both require actions in forms
of strings (natural language in IF, SQL in SQLi) and the agent is provided a
textual description of the state of the world (natural language description of a
situation in IF, HTML responses in SQLi). Moreover, it is possible to distinguish
two types of IF games that may be further put in relation to our work. The first
type is choice-based IF, in which a player can choose actions from a restricted set
of pre-defined textual actions. RL agents have been proposed that embed and
process the textual description of the environment and the actions, and then
estimate the value of actions [15,31]. Our structured agent adopts a similar app-
roach to the SQLi problem, in the sense that it selects its action from a set of
strings; however, it does not currently perform any embedding or processing of
textual inputs (such as, HTML responses). The second type is parser-based IF,
in which a player can autonomously generate a textual description of the action
it wants to undertake; this provides the player with a much larger degree of free-
dom, although the large majority of IF games has parsers able to process a very
limited number of commands based on an elementary verb-object syntax. RL
agents have been developed that again embed and process the textual descrip-
tion of the environment, and then exploit the verb-object structure of commands
to generate actions [17,21,30]. Our structureless agent has some similarities with
these approaches, in the sense that it generates its actions in the form of strings.
However, beyond the surface similarity, there is a significant difference in the
underlying environment in IF and SQLi. In IF games, the environment tends
to be very rich in structure, with a complex interrelated set of states; this con-
stitutes an exploratory challenge of its own, which has been addressed with
several techniques such as rewarding the discovery of new states [30], defining
sub-tasks [17], learning admissible actions in different states [17], or identification
of bottleneck states [1]. In our SQLi problem, instead, the environment tends to
have little structure and to provide responses that are minimally informative; a
challenge for the agent is to capture this structure, without which the problem
could turn to a trivial brute-forcing or a bandits problem [18].

SQL semantic parsing. Finally, a last line of work that may bear some relation
to our work is SQL semantic parsing. In SQL semantic parsing a RL agent is
trained to generate correct SQL queries given a natural language description

SQL Injections and Reinforcement Learning: Role of Action Structure 103

of the desired output [28,33]. Once again, this setup has some correspondence
with SQLi challenges, especially when using a structureless agent: actions are
SQL strings, and the state has a textual description (natural language in SQL
semantic parsing, HTML responses in SQLi). Differences are noticeable too:
although often trained using RL, the finalized SQL semantic parsing agent is
required to produce outputs without interacting with an environment; moreover,
significant guidance to the SQL semantic parsing agent is given through the
natural language input, while the SQLi agent lacks such hints for discovering a
vulnerability.

4 Methods

In this section we present the environment we designed for our experiments, we
provide details on the agents we developed, and offer some consideration about
the role of structure (or its absence).

4.1 Environment

We construct an artificial environment with a union SQLi vulnerability. In
designing such an environment we make a trade-off between two desiderata: (i)
an environment that guarantees some degree of realism; and, (ii) an environment
that would allow us to seamlessly train our agents.

Concerning the first aim, we decided to devise a CTF-like environment in
which agents are required to perform some degree of information-gathering anal-
ogous to the one carried out by real hackers; specifically, our challenge requires
the agent to perform exploratory actions aimed at discovering the type of input
necessary for SQLi and the underlying structure of the pre-generated query.
Inferring these characteristics is essential in order to achieve a SQLi in a reason-
able number of steps.

Concerning our second aim, we chose to create a challenge that would allow
us to train and test both our structured agent which relies on strong a priori
knowledge of the task (SQL syntax, format of useful commands) and our struc-
tureless agents which is supposed to start with almost zero-knowledge (except
for the knowledge that commands are made up by alphabetic characters and
SQL keywords). By training both models on the same challenge, this allows us
to highlight the strengths and the weaknesses of each agent. Although the two
models learn different action policies (the structured agents develop an action
policy over the finite set of pre-made SQL strings available, while the struc-
tureless agents learn to generate syntactically correct SQL statements to exploit
SQLi), the identical environment allows us to compare them by analyzing how
they achieve their objective and by considering the trade-offs that they offer in
terms of abstraction, versatility, and efficiency. Next, we describe the setup of
our webserver environment, and the form of SQLi it admits.

104 M. Del Verme et al.

Setup. We instantiate a mock webserver hosting a dynamic page populated
by sending queries to a back-end database a SQL query is composed by using
pre-generated string appended with a provided input. The definition of the pre-
generated query opens up the possibility of a SQL injection.

The back-end database contains two tables: a Users table, containing data
meant to populate the page hosted by the webserver, and a Private table con-
taining confidential information. The basic schema of the two tables is presented
in Table 1 and Table 2. The content of the table Private is the information that
the agent aims to disclose through a SQL injection. In CTF terms, the content
of the table Private constitute the flag the agent aims to retrieve.

Table 1. Users table schema.

ID username firstName lastName age nationality create_at

.

Table 2. Private table schema.

ID user account

.

The pre-generated query accessing the database takes one of the following
forms:

SELECT cols FROM Users WHERE firstName =′′<input>′′

SELECT cols FROM Users WHERE nationality =′<input>′

SELECT cols FROM Users WHERE age =<input>

where cols corresponds to a list from one to three column names, and
<input> is a user-defined string. Given the absence of any processing of the
input string, an agent can exploit the intrinsic SQL injection by crafting a mali-
cious input.

Exploit. To successfully exploit the SQL injection vulnerability in these queries,
the agent has to submit a input string of the form: [0|′′|′] UNION SELECT
account[, NULL]∗ FROM Private − − where [0|′′|′] denotes the choice of the right
escape character, with 0 being an arbitrary integer; [, NULL]∗ denotes the repeti-
tion from zero to an arbitrary number of times of the keyword NULL in order to
match the number of columns with the UNION command; −− is a comment opera-
tor to ignore the rest of the pre-generated string. An SQL command with a union
operator can only be evaluated if the number of selected columns are the same for
the queries that are concatenated by the union. In order to match the number of
columns with the original query we add null values to the attacker created selec-
tion. For instance, if the server is instantiated with the pre-generated query:
SELECT firstName, lastName, age FROM Users WHERE nationality =′input′
then the correct input for SQL injection would be: ′UNION SELECT
account, NULL, NULL FROM Private − −.

SQL Injections and Reinforcement Learning: Role of Action Structure 105

4.2 Structured Agent

The structured agent relies on a priori knowledge of the form of the pre-generated
SQL query running on the target server. This shrinks the search space to well-
formed SQL statements that would match the pre-generated query.

Action Space. We then generate a small finite action space A containing 25
actions. These actions can roughly be partitioned into four sub-sets of actions
depending on their aim: (i) exploratory SQL statements aimed at probing the
escape character in the pre-generated SQL statement (6 actions); (ii) exploratory
SQL statements aimed at guessing the number of columns necessary for the SQLi
(9 actions); (iii) exploitative SQL statements attempting a SQLi (9 statements);
(iv) other actions (1 action). Refer to AppendixA.1 for the complete list of
actions and their partitioning.

Implementation. The structured agents is implemented as a PPO agent using
the formulation in Eq. 4. The actor develops its own parametric policy πθ over
the finite set of actions in A. After choosing an action a, the input string is
sent to the server, embedded in the pre-generated query and sent to SQL server.
The response of the server is a HTML page that could be handled by a static
parser; since this parsing is not relevant to our study, we abstract it away and
just provide the agent with a numeric code corresponding to the result of the
action. This code allows to discriminate between an action that was syntactically
wrong and generated a SQL error, an action that was syntactically correct and
returned an empty string, an action that was syntactically correct and returned
some content, and an action that successfully performed the SQLi.

Optimal Policy. While a brute-forcing agent may guess the right SQLi by simply
trying out all the actions, this approach would be extremely inefficient; if we
assume the agents simply goes through all his action until it finds the right SQLi
statement, this procedure would require on average 12.5 actions4. In addition,
the scalability of finding the right syntax with brute-forcing is extremely bad. As
the learning environment becomes more complex, using brute-forcing is not an
option. We also would like to emphasize that this approach is not similar to the
activity of fuzzing. With fuzzing the attacker tries to discover the vulnerability
by sending the right input to trigger the vulnerability, whilst the aim of our
approach is to learn the optimal policy for the exploitation of the vulnerability.
Sending random input in the beginning of the learning phase is normal with the
applied ML paradigm. Through interacting with the environment, the RL agent
is expected to learn the structure underlying its exploratory actions, and use
it efficiently to find out the information necessary to perform the SQLi. Notice
that, given the overlap between exploratory and exploitative SQL statements, a
human agent is expected to achieve SQLi in less than 5 actions (using at most 2
actions to find the escape, and 3 actions to guess the correct number of columns).

4 A completely random agent would use an average of 17 actions.

106 M. Del Verme et al.

Thus, the structured agent learns a reasonable distribution of probability over
the given SQL commands which allows it to efficiently solve and to generalize
to all problems of the form presented in our environment.

4.3 Structureless Agent

The structureless agent assumes limited knowledge of the environment. It is
not provided with pre-generated SQL statements; instead it learns by trial-and-
error to form syntactically correct inputs, the aim of this agent is to exploit
the system to the fullest extent, restricting ourselves to correct SQL statements
would prevent the agent from exploiting bugs in the SQL implementation.

Action Space. The most generic action space A for the structureless agent is
defined by a set of all strings that may be generated by sampling tokens from
a generic alphabet A . The alphabet A contains letters {a, b, c, ...}, numbers
{0, 1, 2, ...}, linguistic tokens including space ◦, empty string ε, escape charac-
ters, end-of-string symbols and other punctuation marks {◦, ε,′ ,′′ , EOF, ,, ...}5,
and SQL keywords {UNION, SELECT, NULL, FROM,−−, ...}. An atomic action by
the structureless agent is then a list a of elementary tokens; for instance the
SQLi string in the example above would correspond to the 28-element list: a =
[′, UNION, ◦, SELECT, ◦, a, c, c, o, u, n, t, ,, NULL, ,, NULL, ◦,FROM, ◦, P, r, i, v, a, t, e,
◦,−−]. Such a list can then be parsed into an actual SQL statement.

Solving a RL problem with a large alphabet like A requires substantial
resources. Therefore, we decided to investigate first of all the actual feasibility
of learning with our structureless agent given alphabets with smaller cardinal-
ity. Tuning the number of tokens will allow us to control the complexity and
the training time of the agents, while at the same time validate our structure-
less approach. This setup also exposes a natural setting for curriculum learning,
where the complexity of the task at hand may be fixed according to the length
of the shortest valid sequence to achieve the SQLi.

Implementation. We instantiate a PPO agent implementing the loss function in
Eq. 7. At every interaction, the agent first observes a response from the server,
converts the text into tokens, processes the sequence of token with a GRU [8]
based autoregressive model, and finally it produces a latent vector. The latent
vector is then fed into the actor-critic network, which is provided with a policy
head, a value head and a prior head. The value head is used by the critic to output
a single scalar per sentence, the policy head generated the actor output in the
form of a vector of a fixed length, and the prior head also outputs a vector of a
fixed length encoding our exploration prior. We found this approach to be more
stable than using another auto regressive model as output. A sequence of tokens
is then converted into a readable string, sent to the SQL engine, embedded in
the pre-generated query, and processed by the SQL server. In return, the agent
receives a new state and a reward upon completion.

5 ◦ represents the concatenation symbol, space characters and, a comma character.

SQL Injections and Reinforcement Learning: Role of Action Structure 107

Optimal Policy. Generating successful actions over such a large alphabet is very
challenging. While the structured agent could still achieve a solution in reason-
able time by brute forcing and simply trying all the options in its finite action
space, this approach is infeasible for the structureless agent. Given an alphabet
even of modest size, the combinatorial explosion of strings that may be gener-
ated with the available tokens quickly becomes unmanageable. Moreover, a large
number of these randomly generated string would consist of syntactically wrong
or meaningless SQL statements. The structureless agent is not provided any a
priori knowledge about the structure of a SQL statement. In order to learn how
to perform SQLi, it has to learn first the basics on how to generate legal SQL
statement, and then learn how to craft the necessary input to achieve an exploit.
The structureless agent is expected to learn a useful distribution over characters
and SQL tokens that will lead to the instantiating of string that may lead to a
SQL injection in the type of problems on which it was trained.

Role of Structure. Priori knowledge about the SQL syntax has often been argued
to be a good design choice, for instance the case of SQL parsing in [28]. Although
at first not knowing the basic SQL syntax may look like a weakness, we want to
remark that it constitutes one of the main desirable traits of the structureless
approach. Providing knowledge in the form of a fixed SQL query pattern may be
problematic; while this makes sense in the case of SQL parsing when the agent
is required to form well-behaving complete SQL statements [28], this does not
hold in our case, where the agent has to create snippets of SQL statements that
in isolation would be incomplete, but that embedded in a pre-generated query
may lead to an exploit. Providing patterns bias the agents towards standard
solutions, while, we would like the agent to discover new exploits, for instance,
to the specific way in which an implemented SQL server may handle inputs.

5 Experiments

In this section we run the structured and the structureless agents on the environ-
ment described in Sect. 4. The environment has been developed following the RL
standards of OpenAI gym [7], while the agents have been implemented relying
on standard libraries. The code for all experiments is openly available6.

5.1 Reference Agents

Solving the task by bruteforce (given the same dictionary as the structureless
agent) would take an average of 110 trial per successful flag retrieval, while
common tools like sqlmap7 can not solve the task without expertly picked flags.

6 https://github.com/manuel-delverme/sql_env.
7 https://github.com/sqlmapproject/sqlmap.

https://github.com/manuel-delverme/sql_env
https://github.com/sqlmapproject/sqlmap

108 M. Del Verme et al.

5.2 Structured Agent

Setup. We run a PPO agent complying to the formulation in Eq. 4 from a stan-
dard library8. We use default hyperparameters in the library for our PPO agents,
in particular a learning rate of 3 · 10−4 and a clipping value ε = 0.2. To collect
reliable statistics we trained 10 PPO agents for 106 episodes, with a maximum
number of iterations per episode set at 30.

Results. Figure 1a shows the evolution of the performance of the agent during
training. At the beginning the performance of the agent is similar to a guessing
agent, but after 104 episodes the mean number of queries that the agent executes
settles between 1 to 5. Towards the end of the training, an increase in standard
deviation suggests more exploratory actions on the side of the agent.

Figure 1b shows the performance statistics of each individual agent at the
end of training. After 106 episodes of training, each agent was further tested on
103 episodes, and the distribution of the number of queries required to perform
SQLi is reported. All the agents present a very similar distribution.

(a) Mean # of queries to perform SQLi
executed by the 10 PPO agents during
(log) training, shaded is deviation.

(b) Number of queries required to
SQLi by each of the 10 trained PPO
agents. In orange, the median, green
for mean; the notches give a 95% con-
fidence interval; the boxes and the
whiskers mark the 25th and 50th per-
centiles respectively.

Fig. 1. Performance of the structured agent.

Discussion. The PPO agent was able to learn an effective policy to achieve
SQLi across the set of problems presented in our environment. As discussed
above, it was expected that an optimally trained structured agent would take
up to five queries before finding the flag. Surprisingly, all the agents consistently
8 https://stable-baselines3.readthedocs.io/en/master/.

https://stable-baselines3.readthedocs.io/en/master/

SQL Injections and Reinforcement Learning: Role of Action Structure 109

took between one and four queries, with the same median of three across all of
them. The structured agent is able to reach this optimal behaviour by learning
to exploit information present in the error messages returned by the server. In
particular it is able to distinguish between empty and error results, providing
valuable information in the choice of the next action. This distinction voids the
necessity for explicit exploratory actions, allowing the agent to gain information
about the escape and the number of rows while using exploitative actions that
may immediately lead to success. The feedback information thus allows the agent
to develop a more effective policy than the one originally presented in [11].

5.3 Structureless Agent

Setup. We run a PPO agent implementing the formulation in Eq. 7. We use cus-
tomized hyperparameters documented in the online implementation. We trained
the agent on two environments with a different level of complexity, defined by
the alphabet A available to the agent. The first environment with complexity 3
uses an alphabet of size 6, while the second environment with complexity 4 uses
an alphabet of size 7. Refer to Appendix A.2 for details on the alphabets. In our
experiments we use a complexity of 3 and 4, for each of them we evaluate each
sub task, from 1 to 3 column index. The key difference between 1 to 2 or three
column indexes is the randomness of the initial condition. To collect statistical
data we train the same PPO agents with 10 seeds. Each episode has a maximum
duration of 30 queries, after which it is reset by sampling a new pre-generated
query made by an escape character and the number of columns.

Results. Figure 2a shows the average cumulative return, averaged across seeds,
and the maximum return averaged in a window of the latest 10 episodes. Recall
that the reward is binary: 1 in case of success and 0 in case of failure. When
running an environment with complexity 3, some of the agents do successfully
learn a policy; instead, when running an environment with complexity 4, only
one or two agents on average manage to learn a policy leading to SQLi.

In Fig. 2b we show the return in an environment with complexity of 4 as
a function of the number of columns necessary to perform the SQLi. The plot
highlights the drop in performance of the agent as the problem gets more chal-
lenging with the increase of the number of columns to consider in the union
SQLi. When using 3 columns, the return points to a failure in learning.

Discussion. The structureless PPO agent showed a degree of success in solving
simple SQLi problems in an environment with low complexity. Increasing the
complexity turned out to be problematic; the instability of policy gradient proved
to be a challenge as it prevents the agent to advance in its curriculum.

6 Ethical Considerations

While developed for legitimate defensive purposes, PT tools carry with them
the risk of misuse; in particular, the same tools that may be used to guarantee

110 M. Del Verme et al.

(a) Average reward across seeds during.
The shaded region gives the standard de-
viation.

(b) Average reward across the number
of columns during training when running
on an environment with complexity 4.

Fig. 2. Performance of the structureless agent.

the safety of a system, may also be adopted by malicious actors to probe and
exploit vulnerable targets. The authors of this research strongly condemn any
use of their results for criminal or illegal activities, or for the development of
autonomous agents to be used in the context of conflict9.

7 Future Work and Conclusions

In this paper we modeled the problem of learning how to perform SQLi as a RL
problem. We considered two approaches for solving the problem: one based on
a structured agent provided with relevant a priori knowledge about the prob-
lem, and one based on a structureless agent with limited a priori knowledge.
We then designed an environment on which we empirically tested both agents.
The structured agent was able to quickly learn an effective policy, but its suc-
cess strongly depended on the expert coding of the action space. On the other
hand, the structureless agent presents a more promising approach, as it does
not require the hardcoding of a specific action space, nor it is affected by any
bias implicitly or explicitly introduced by an expert defining the action space.
However, learning in this scenario turns out to be much more challenging, as the
space of possibilities is extremely large. Our PPO agents managed to learn in a
low-complexity setting, but scaling up to more realistic scenarios would require
more computational power and tuning. We observed that the use of a prior in
the loss function helps preventing the policy of the agent to collapse on a deter-
ministic policy too quickly; however it does not solve the exploration problem
nor the the credit assignment. More versatile agents like the structureless one
represent a useful direction of development. On one hand, future work will be
directed to shed some of the structure still coded in the structureless agent. On
the other hand, research will focus on the problem of improving the learning of
the agent, and deploying it to solve more realistic CTF challenges.

9 https://futureoflife.org/awos-signatories/.

https://futureoflife.org/awos-signatories/

SQL Injections and Reinforcement Learning: Role of Action Structure 111

A Implementation Details

A.1 Structured Agent

The following is the list of actions available to the structured agent:

1. ε
2. 1’ or 1=1 –
3. 1’ or 1=2 –
4. 1’ union select NULL –
5. 1’ union select NULL, NULL –
6. 1’ union select NULL, NULL, NULL –
7. 1’ union select account from private –
8. 1’ union select account, NULL from private –
9. 1’ union select account, NULL, NULL from private –

10. 1” or 1=1 –
11. 1” or 1=2 –
12. 1” union select NULL –
13. 1” union select NULL, NULL –
14. 1” union select NULL, NULL, NULL –
15. 1” union select account from private –
16. 1” union select account, NULL from private –
17. 1” union select account, NULL, NULL from private –
18. 1 or 1=1 –
19. 1 or 1=2 –
20. 1 union select NULL –
21. 1 union select NULL, NULL –
22. 1 union select NULL, NULL, NULL –
23. 1 union select account from private –
24. 1 union select account, NULL from private –
25. 1 union select account, NULL, NULL from private –

where ε denotes an empty string. Actions are partitioned in SQL state-
ments aimed at probing the escape character in the pre-generated SQL
statement (action number 2, 3, 10, 11, 18, 19), SQL statements aimed at
guessing the number of columns necessary for the SQLi (action number
4, 5, 6, 12, 13, 14, 20, 21, 22), SQL statements attempting a SQLi (action number
7, 8, 9, 15, 16, 17, 23, 24, 25), other actions (action number 1).

A.2 Structureless Agent

The following are the alphabets at different levels of complexity. For complex-
ity three we use the following alphabet: A3 = {◦UNION ◦ SELECT◦,◦NULL,◦,,
◦1◦, ◦′◦, ◦′′◦, ◦′′◦, ◦′′◦, ◦a FROM p − −◦, ε} where a and p are aliases for
account and private, respectively. For complexity four we use the follow-
ing alphabet: A4 = {◦UNION ◦ SELECT◦,, ◦NULL,◦, ◦a◦, ◦1◦, ◦′◦, ◦′′◦, ◦ FROM
p − −◦, ε}

112 M. Del Verme et al.

References

1. Ammanabrolu, P., Tien, E., Hausknecht, M., Riedl, M.O.: How to avoid being
eaten by a grue: structured exploration strategies for textual worlds. arXiv preprint
arXiv:2006.07409 (2020)

2. Andrychowicz, M., et al.: Hindsight experience replay. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems, pp. 5055–5065
(2017)

3. Applebaum, A., Miller, D., Strom, B., Korban, C., Wolf, R.: Intelligent, automated
red team emulation. In: Proceedings of the 32nd Annual Conference on Computer
Security Applications, pp. 363–373 (2016)

4. Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.:
Unifying count-based exploration and intrinsic motivation. In: Advances in Neural
Information Processing Systems, vol. 29, pp. 1471–1479 (2016)

5. Bland, J.A., Petty, M.D., Whitaker, T.S., Maxwell, K.P., Cantrell, W.A.: Machine
learning cyberattack and defense strategies. Comput. Secur. 92, 101738 (2020)

6. Boddy, M.S., Gohde, J., Haigh, T., Harp, S.A.: Course of action generation for
cyber security using classical planning. In: ICAPS, pp. 12–21 (2005)

7. Brockman, G., et al.: Openai gym (2016)
8. Cho, K., van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of

neural machine translation: encoder-decoder approaches. In: Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation,
pp. 103–111 (2014)

9. Chowdary, A., Huang, D., Mahendran, J.S., Romo, D., Deng, Y., Sabur, A.:
Autonomous security analysis and penetration testing. In: The 16th International
Conference on Mobility, Sensing and Networking (MSN 2020) (2020)

10. Elderman, R., Pater, L.J., Thie, A.S.: Adversarial reinforcement learning in a cyber
security simulation. Ph.D. thesis, Faculty of Science and Engineering (2016)

11. Erdődi, L., Sommervoll, Å.Å., Zennaro, F.M.: Simulating SQL injection vulner-
ability exploitation using q-learning reinforcement learning agents. J. Inf. Secur.
Appl. 61, 102903 (2021). https://doi.org/10.1016/j.jisa.2021.102903. https://www.
sciencedirect.com/science/article/pii/S2214212621001290

12. Gardiner, J., Nagaraja, S.: On the security of machine learning in malware C&C
detection: a survey. ACM Comput. Surv. (CSUR) 49(3), 1–39 (2016)

13. Ghanem, M.C., Chen, T.M.: Reinforcement learning for efficient network penetra-
tion testing. Information 11(1), 6 (2020)

14. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: International
Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

15. He, J., et al.: Deep reinforcement learning with a natural language action space.
In: Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1621–1630 (2016)

16. Hoffmann, J.: Simulated penetration testing: from “Dijkstra” to “Turing Test++”.
In: Twenty-Fifth International Conference on Automated Planning and Scheduling
(2015)

17. Jain, V., Fedus, W., Larochelle, H., Precup, D., Bellemare, M.G.: Algorithmic
improvements for deep reinforcement learning applied to interactive fiction. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4328–
4336 (2020)

http://arxiv.org/abs/2006.07409
https://doi.org/10.1016/j.jisa.2021.102903
https://www.sciencedirect.com/science/article/pii/S2214212621001290
https://www.sciencedirect.com/science/article/pii/S2214212621001290

SQL Injections and Reinforcement Learning: Role of Action Structure 113

18. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press,
Cambridge (2020)

19. Maeda, R., Mimura, M.: Automating post-exploitation with deep reinforcement
learning. Comput. Secur. 100, 102108 (2021)

20. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937. PMLR (2016)

21. Narasimhan, K., Kulkarni, T.D., Barzilay, R.: Language understanding for text-
based games using deep reinforcement learning. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing (2015)

22. Pozdniakov, K., Alonso, E., Stankovic, V., Tam, K., Jones, K.: Smart security
audit: reinforcement learning with a deep neural network approximator. In: 2020
International Conference on Cyber Situational Awareness, Data Analytics and
Assessment (CyberSA), pp. 1–8. IEEE (2020)

23. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.:
Malware detection by eating a whole exe. In: Workshops at the Thirty-Second
AAAI Conference on Artificial Intelligence (2018)

24. Sarraute, C., Buffet, O., Hoffmann, J.: Penetration testing== pomdp solving? In:
Workshop on Intelligent Security (Security and Artificial Intelligence) (2011)

25. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

26. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network
intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

27. Speicher, P., Steinmetz, M., Hoffmann, J., Backes, M., Künnemann, R.: Towards
automated network mitigation analysis. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pp. 1971–1978 (2019)

28. Xu, X., Liu, C., Song, D.: SQLNet: generating structured queries from natural
language without reinforcement learning. arXiv preprint arXiv:1711.04436 (2017)

29. Xue, H., Sun, S., Venkataramani, G., Lan, T.: Machine learning-based analysis of
program binaries: a comprehensive study. IEEE Access 7, 65889–65912 (2019)

30. Yuan, X., et al.: Counting to explore and generalize in text-based games. arXiv
preprint arXiv:1806.11525 (2018)

31. Zelinka, M.: Baselines for reinforcement learning in text games. In: 2018 IEEE
30th International Conference on Tools with Artificial Intelligence (ICTAI), pp.
320–327. IEEE (2018)

32. Zennaro, F.M., Erdodi, L.: Modeling penetration testing with reinforcement learn-
ing using capture-the-flag challenges: trade-offs between model-free learning and a
priori knowledge. arXiv preprint arXiv:2005.12632 (2020)

33. Zhong, V., Xiong, C., Socher, R.: Seq2SQL: generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103
(2017)

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1711.04436
http://arxiv.org/abs/1806.11525
http://arxiv.org/abs/2005.12632
http://arxiv.org/abs/1709.00103

Secure Collaborative Learning
for Predictive Maintenance

in Optical Networks

Khouloud Abdelli1,2, Joo Yeon Cho1(B), and Stephan Pachnicke2

1 ADVA Optical Networking SE, Fraunhoferstrasse 9a, 82152 Martinsried, Germany
{KAbdelli,JCho}@adva.com

2 Christian-Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
stephan.pachnicke@tf.uni-kiel.de

Abstract. Building a reliable and accurate machine learning (ML)
model is challenging in optical networks when training datasets are
business-sensitive. We propose a framework of secure collaborative ML
learning for predictive maintenance on cross-vendor datasets. Our frame-
work is based on federated learning and multi-party computation tech-
nologies. Each vendor builds a local ML model based on its own private
data. A server builds a global ML model by aggregating multiple local
ML models in a private-preserving way. The server computes only the
sum of the local models but cannot see any local model individually by
the multi-party computation technique. The vendor-confidential dataset
is never exposed to the server or other vendors. Moreover, after the global
ML model is deployed in optical networks, the measured data compared
to the prediction are privately distributed to the local model owners,
which is beneficial to vendors. We applied our framework to the remain-
ing useful life (RUL) prediction of laser device. Our experiments show
that an accurate ML model can be built using sensitive datasets in a
federated learning setting.

Keywords: Federated learning · Multi-party computation · Machine
learning · Predictive maintenance · Optical network

1 Introduction

Machine learning (ML) and artificial intelligence (AI) have received tremen-
dous attention recently in many applications, e.g. from self-driving cars and lan-
guage translators to disease diagnosis and anomaly detection systems, to name
a few. The widespread use of mobile devices accelerates the development of AI-
supported applications based on rich and sensitive user data. While ML and AI
cannot solve every problem, there are many sets of well-defined applications that
are suited to this approach.

ML methods have been emerging as a promising tool for predictive main-
tenance in manufacturing industry and communication networks. Fiber optic
networks build the spine of telecommunication networks today due to their high
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 114–130, 2021.
https://doi.org/10.1007/978-3-030-91625-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-91625-1_7

Secure Collaborative Learning for Predictive Maintenance 115

Fig. 1. ML-based predictive maintenance process in federated learning

capacity of data transmission. Proactively predicting the degradation of hard-
ware components of optical networks and maintaining their supply chain can
help prevent outages of services.

It is challenging to build an accurate and reliable ML model in optical net-
works. Since hardware network elements are usually manufactured by small
and medium-sized companies, an ML model is often built based on the limited
amount of training data. This situation can be relieved, if the training dataset
can be aggregated from multiple vendors and consolidated in a central location
to build a collaborative ML model. Since collaborative learning allows to train a
model on larger datasets rather than the dataset available in any single vendor,
it leads to a higher quality and more accurate ML model.

However, such collaboration is not straightforward in reality since vendors are
not willing to share their training data with external companies. Training data
are often company-confidential and the data sharing itself may violate privacy
protection regulations in their home countries. With the federated learning (FL)
technique, the training data is not required to be centralized, but can instead
remains with the data owners.

Our Contribution. In this paper, we propose a framework of secure collabo-
rative learning for predictive maintenance on cross-vendor datasets. We assume
that each vendor manufactures the same type of hardware and competes each
other to offer the hardware to an optical network operator. Note that our frame-
work can be extended to a scenario based on heterogeneous type of hardware,
predicting not a specific type of hardware but an overall hardware failure rate
of the target network.

A training dataset remains in the vendor’s domain and is never exposed to
other companies. A global ML model is built by aggregating local ML models
from multiple vendors in a secure way by multi-party computation (MPC) tech-
nology. An aggregation server is assume to be located in the domain of optical
network and controlled by the network maintenance operator. A global model is
used to predict the maintenance work for the hardware components running in

116 K. Abdelli et al.

optical networks, while each vendor receives the personalized maintenance report
on their hardware failure rate after the global ML model is deployed. Since a
local dataset is usually obtained by the aging test, a maintenance report by the
field test can be useful to improve the test process and, eventually, the quality
of products. An overview of the ML-based predictive maintenance process in FL
is shown in Fig. 1.

Related Work. In [5] a practical secure aggregation technique in an FL setting
was proposed over large mobile networks. Such framework does not fit for our
use case due to multiple reasons. Firstly, in our use case, a global model is not
shared with data owners (vendors). Each vendor gets benefit by receiving an
individual maintenance result (e.g. the difference between the prediction and
the real failure) after the global model is deployed and hardware degradation is
predicted. Secondly, the scalability is not important since the number of vendors
are not very large and dropouts are expected to be rare. On the other hand,
secure aggregation is critical since the disclosure of the private training dataset
may give negative impact on the data owner’s business.

Another interesting work on collaborative predictive maintenance was pre-
sented in [16], where a combination of blockchain and federated learning tech-
niques was applied. We apply a multi-party computation technique for data
privacy since it is more suitable for our use case. Details are given in Sect. 2.

The rest of this paper is structured as follows: first, the background technolo-
gies are briefly explained. Then, our framework is described. Next, the experi-
mental results are presented. Finally, we conclude the paper.

2 Background

Predictive Maintenance by ML. Telecommunication networks rely on fully
functional hardware components that run under optimal conditions. In order
to reduce the risk of unplanned network interruption and service outage, it is
important to estimate correctly the degradation of hardware network compo-
nents using analyzing tools and techniques, by which the maintenance cost and
resource allocation are determined.

ML-based prediction is an emerging method to improve the accuracy of esti-
mation of maintenance work for large networks. ML techniques can be useful if
a sufficiently large, diverse, and realistic set of training data exists. Since an ML
model relies so heavily on good training data, the availability of such a dataset
is a crucial requirement for this approach. However, it is challenging to develop
a high-precision ML model for predictive maintenance mainly due to the lack of
training data. Since the hardware failures or maintenance events do not occur
frequently, it takes time until good and meaningful training data are collected.
Hence, in reality, the accelerated aging test results (e.g. a life cycle under the
extreme temperature or the over-powered condition) are usually used for training
a model.

Secure Collaborative Learning for Predictive Maintenance 117

Federated Learning. Federated learning (FL) is a tool that enables distributed
parties to work together to train machine learning models without sharing the
underlying data or trusting any of the individual participants [6]. FL can be used
to build an ML model from various companies for the purpose of predicting the
failures, repairs, or maintenance of network systems. In FL, each vendor trains an
ML model on their private data and using their own hardware. These models are
then aggregated by a central server (e.g. a network operator) to build a unified
global model that has learned from the private data of every vendor without ever
directly accessing it. Hence, confidential training data (e.g. aging test results of
products) are not visible to a server, nor other competitive vendors.

However, private data might be still extractable from the local models by so-
called model inversion attacks [11]. It was demonstrated that extracted images
from a face recognition system look suspiciously similar to images from the
underlying training data. This type of attack can be mitigated by applying dif-
ferential privacy techniques; adding noise to the local models before sending them
to the server. However, such noise will degrade the overall model performance,
which is not preferable to our use case. That’s why the secure aggregation using
an MPC protocol comes to play.

Secure Multi-Party Computation (MPC). MPC is a subfield of cryptogra-
phy that allows a set of distrusting parties to jointly evaluate a function on their
input without revealing any private input beyond the intended output [23]. MPC
can be used to run machine learning models on data without revealing the data to
the model owner and without revealing the model to the data owner. MPC proto-
cols for an honest majority typically use a secret sharing scheme as a basic tool.
Shamir’s secret sharing scheme was published in 1979 [20]. A dealer wishes to share
a secret amongst n parties. Any subset of t + 1 or more of the parties can recon-
struct the secret, but no subset of t or fewer parties can learn anything about the
secret. Since then, many different protocols have been developed for constructing
secret sharing schemes with different properties, and for different settings.

Secure Aggregation. An important challenge in federated learning is to pre-
vent a server or other vendors from reconstructing the private data of any vendor
while collaborating. A secure aggregation protocol provides strong privacy guar-
antees even when vendors behave maliciously. Moreover, the protocols are robust
against dropout during the operation, and resistant to the multi-round aggre-
gation attack [21]. It is still an open question how to construct an efficient and
robust secure aggregation protocol that addresses all the challenges.

There is a rich literature exploring secure aggregation in both the single-
server setting (via additive masking [4], via threshold homomorphic encryption
(HE) [12], and via generic secure multi-party computation (MPC) [7]) as well
as in the multiple non-colluding servers setting [10]. Secure aggregation can also
be approached using trusted execution environments, as presented in [13].

Among those, MPC allows multiple parties to jointly compute a function
without revealing their inputs to each other. By taking an end-to-end approach

118 K. Abdelli et al.

to the system design, MPC allows multiple parties with complex economic rela-
tionships to safely collaborate on machine learning computation through the
use of release policies and auditing, while also enabling users to achieve good
performance without manually navigating the complex performance trade-offs
between MPC protocols.

Gated Recurrent Unit (GRU). GRU, proposed by Cho et al. in 2014 as solu-
tion to the gradient vanishing problem [9], is a type of recurrent neural networks
(RNNs) used to process sequential data and to capture long-term sequential
dependencies. Compared to other RNNs such as long-short term memory, it
requires less memory requirements. GRU has a simple structure: it contains two
gates namely update gate and reset gate, controlling the flow of the information.
The forward propagation of the GRU is expressed by the following equations:

zt = σ(Wz · xt + Wz · h(t−1) + bz) (1)
rt = σ(Wr · xt + Wr · h(t−1) + br) (2)
ht = zt ◦ h(t−1) + (1 − zt) ◦ tanh(Wh · xt + Wh · (rt ◦ h(t−1)) + bh) (3)

where zt denotes the update gate, rt represents the reset gate, xt is the input
vector, ht is the output vector, W and b represent the weight and the bias
matrices respectively. σ is the gate activation function and tanh represents the
output activation function. The ‘·’ operator denotes a matrix multiplication, the
‘◦’ operator represents the dot product.

3 Framework

We consider training an ML model in a federated learning setting, wherein each
vendor maintains the private dataset of its own hardware. A global ML model
is trained under the coordination of a central server based upon multiple local
models that are built by different vendors. A server can get only a sum of the
local models and does not see individual local models. Based on the global model,
the maintenance work on optical networks is predicted and the replacement are
prepared. Vendors can get benefit by receiving the personalized report on the
discrepancy between the local model and the real failure rate that has been
measured while the network is in operation.

3.1 Secure Aggregation Protocol

Secure aggregation enables each vendor to submit a local model privately and a
server to learn nothing but the sum of the local models. A secure aggregation
protocol for mobile networks was proposed in [6] and [3]. This method relies on a
pairwise secret exchange and Shamir’s t-out-of-n secret sharing scheme, focusing
on the setting of mobile devices where communication is extremely expensive,
and dropouts are common. Our use case is different in a sense that the number
of local models are not very big, and the dropouts are very rare. If a dropout
occurs, the protocol is reset and started again. Local models can be aggregated
under the following two threat scenarios.

Secure Collaborative Learning for Predictive Maintenance 119

Semi-honest Behavior. The server and vendors are assumed to behave hon-
estly but curiously. That is, all participants follow the protocol exactly as
instructed but also try to retrieve the private data of other vendors, if possi-
ble. Under this assumption, the n-out-of-n secret sharing scheme is used.

Suppose N is the number of vendors and each vendor trains its own local
model using its own private dataset. The i-th client generates a random linear
mask si and sends (fi + si) to the server. In parallel, the si is divided into N

additive shares, {pi1, . . . , piN} where si =
∑N

j=1 pij . Note the size of shares are
similar to si. These N shares are distributed to other vendors in such a way
that each vendor receives a unique share out of N shares. In result, the i-th
vendor receives {p1i, . . . , pNi}. Finally, the i-th vendor sends the sum of the
shares

∑n
j=1 pji to the server.

By aggregating one-time padded local models and the sum of the shares, the
server can calculate the sum of the local models as follows:

N∑

i=1

(fi + si) −
N∑

i=1

N∑

j=1

pji =
N∑

i=1

fi +
N∑

i=1

(si −
N∑

j=1

pij) =
N∑

i=1

fi (4)

Malicious Behavior. In this model, the corrupted vendors may arbitrarily
deviate from the secure aggregation protocol. Though they are not major, some
vendors may not behave honestly and provide an incorrect local model or shares.
There are two strategies against malicious adversaries: verifiable secret sharing
[18] and Byzantine-resilient FL [17]. This topic is beyond scope of this paper
and will be addressed in a future publication.

3.2 Training Procedure

Suppose that a server (network provider) builds a global ML model for predictive
maintenance with N vendors. The model training procedure is as follows.

1. Setup: A server selects N vendors that join the development of the global
model in an FL setting. The selected vendors receive a model training soft-
ware.

2. Local models: Each vendor locally trains a local model using its own
dataset. Since each vendor has a different size of dataset, the weight of local
models can be normalized or trained with a fixed size of data in multiple
rounds.

3. Secure aggregation: Every vendor performs a secure aggregation protocol
which is described in Subsect. 3.1. In results, the server receives the one-time
padded local models and the sum of shares. Using Eq. (4) the sum of the
local models can be calculated.

4. Global model: The server develops a global model by averaging the local
models that have been received from vendors. The global model training can
be done in multiple rounds.

120 K. Abdelli et al.

Fig. 2. Secure collaborative learning using FL and secret sharing

5. Deployment: The server deploys the global model on the network and per-
forms predictive maintenance. When the degradation and failure of hardware
components are observed, the prediction accuracy is measured and a global
model is updated.

6. Secure feedback: The server produces the statistical results of the main-
tenance per vendor and sends them back to vendors individually.

An overview of the secure collaborative learning procedure is shown in Fig. 2
and the pseudo code of the training process is given in Algorithm 1.

4 Experiments

4.1 Description of Use Case

Semiconductor lasers are the most commonly used optical transmitters for high-
speed data transmission due to their high efficiency, low cost, and compactness.
Their reliability directly impacts the reliability and the availability of the whole
optical communication system. Unexpected failure or sudden degradation of a
laser device during operation can lead to high maintenance costs, excessive down-
time, and optical network disruption.

Therefore, it is highly required to monitor the performance of the laser device
while in operation, and to predict the remaining useful life (RUL) defined as the
estimated time before device failure, in order to plan an effective maintenance
schedule. Hence, maximizing the operational availability, enhancing system reli-
ability, and minimizing the maintenance costs.

Secure Collaborative Learning for Predictive Maintenance 121

Recently, data-driven approaches [1,14], extracting useful insights from the
operational collected data to learn the degradation trend and thus to perform the
RUL estimation without requiring any specific knowledge or using any physical
model, have gained popularity. The development of such models requires the
availability of run-to-failure data sets modeling the normal operation behavior
as well as the degradation process under different operating conditions. However,
these data are often unavailable due the scarcity of the failures during the system
operation and the long time needed to monitor the device up to failing and then
to generate the reliability data. That’s why accelerated aging tests are often
used to collect run-to-failure data in a shorter amount of time by causing the
device to fail more quickly under normal conditions by applying accelerated
stress conditions resulting in the same degradation process leading to failure [8].

However, the burn-in aging tests are carried out just for a few devices due
to the high costs of performing such tests. Hence, the amount of the run-to-
failure data that can be derived from such tests, might be small, which can
adversely impact the performance of the ML model [2]. Therefore, a secure FL
framework, where many laser manufacturers collaborate with their small local
dataset, derived from burn-in aging tests, stored at their premises, in order to
build an accurate and reliable global RUL prediction model, can be a good
solution to tackle the aforementioned problem.

We consider a FL system composed of a server and N vendors that collabora-
tively train a robust global predictive model, while keeping every vendor’s data
private. It is to be noted that the global model is run in a server hosted by an
optical network operator owning the infrastructure in which the semiconductor
lasers manufactured by the different vendors are deployed, and that the vendors
might have different types of lasers with various characteristics resulting in dif-
ferent degradation trends, and thereby the data owned by each vendor can be
different from the other vendors’ data, leading to heterogeneous FL settings.

4.2 Data Generation and Preprocessing

To validate the FL framework proposed for the above-described use case, a
dataset by combining experimental and synthetically generated data is built.

Experimental Data. To generate the experimental dataset, accelerated aging
tests are performed for different laser devices operating at high temperature of
90 ◦C to strongly increase the laser degradation and thus accelerating the device
failure. For each aging test, the current (e.g. degradation parameter) is monitored
periodically up either to 2,000 h or 3,000 h (the end of the test) under constant
output power. The time to failure of the device, denoted by tf , is defined as
the time at which the current has increased 20% of its initial value. The current
measurements of the different devices, recorded from the beginning of the aging
test until tf of the device or the end of the test, are segmented with a sliding
window of size 10. In total, an experimental data set of 278 samples is built.

122 K. Abdelli et al.

Fig. 3. Synthetic laser reliability data generation using GAN model

Synthetic Laser Data Generation. To increase further the amount of data,
a generative adversarial network (GAN) model is used to synthetically generate
realistic laser reliability data, from a random noise. The GAN model is trained
with the experimental laser reliability data incorporating the 10-length sequences
of current measurements. It is composed of two sub-models, namely the generator
and the discriminator, competing against each other.

As shown in Fig. 3, the generator is trained to produce new data from the
noise input, whereas the discriminator is trained to distinguish the fake data
generated by the generator and the real data. This process continues till the
generator can generate data samples that the discriminator can not differentiate
them from real data. The architecture of the generator and the discriminator
contains 3 GRU hidden layers with 16 cells. The loss function of GAN model,
whereby the generator tries to minimize it and the discriminator tries to maxi-
mize it, can be formulated as follows:

LGAN = min
G

max
D

[Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z))]] (5)

where D and G denote the discriminator and the generator models respectively.
pdata(x) represents the probability distribution of real training data. pz(z) is the
probability distribution of the noise vector z.

Once the GAN model is trained, the generator sub-model is used to cre-
ate synthetic data. To evaluate the quality of the synthetic data, the metrics
namely root mean square error (RMSE), Fréchet distance (FD) and Percent
root mean square difference (PRD), are adopted. RMSE is used to quantify the
stability between the original data and the synthetic data. FD calculates the
similarity between the real data and the generated data. PRD evaluates the dif-
ference between the real data and the generated data. Table 1 shows that the
different evaluation metrics are so small, which proves that the synthetic data
is very similar to the real data. To visually inspect how close the distribution of
the synthetic data is to that of real data, the t-distributed stochastic neighbor
embedding (t-SNE) visualization [22] is adopted. Figure 4 illustrates that the
distribution of the synthetic data resembles that of the original experimental
data, which proves the effectiveness of the generator in producing realistic data.

Secure Collaborative Learning for Predictive Maintenance 123

Table 1. Comparison of evaluation metrics

Metric RMSE FD PRD

Value 0.03 0.05 0.31

FL Data Preprocessing. The experimental data is combined with the syn-
thetic data to build a large dataset of 5162 samples. The RUL of each sample
is estimated as the difference between tf and the time t at which the RUL is
predicted. The built dataset is normalized and randomly divided into a training
(comprising of 80% of the samples used for training the local models) and a test
dataset (the remaining 20% for testing). The training dataset is split then into
10 vendors with different parts of 350, 400, 500, 600, 382, 520, 450, 445, 300,
and 380, respectively.

Fig. 4. t-SNE visualization of the synthetic and real data distributions

4.3 Local Models

The selected ML model of each vendor is GRU as it is good at pre-processing
sequential data and to capture the dependency modeling the degradation
trend. Figure 5 shows the architecture of the proposed local model. The GRU
model takes as input a sequence of length 10 historical current measurements
{I(t−9), I(t−8), . . . , It} and outputs the RULt at the time t. It is composed of
3 hidden layers of 64, 32 and 16 memory cells, respectively. Exponential linear
unit (ELU) is selected as an activation function for the hidden layers. The loss
function used to update the weights of the model based on the error between
the predicted and the desired output is the mean square error (MSE). Adam
is chosen as an optimization algorithm to update the weights of the local ML
Model.

124 K. Abdelli et al.

Fig. 5. Structure of the GRU model

4.4 Global Model

The server performs a secure weighted average aggregation of the local model
updates sent by the vendors by combining FedAVG algorithm [15] and MPC:
whereby the former is used to get the gradient information from the vendors,
and the latter is utilized to ensure the secure aggregation. The training of the
global model is carried out in an iterative process as follows:

– The vendor k trains the model locally using its local data xk, and updates
the model f

(t)
k for b epochs of Adam with mini-batch size of B to compute

f
(t+1)
k .

– The server securely aggregates each vendor’s f
(t+1)
k using MPC.

– A global model F is computed by summing f
(t+1)
k for k = 1, . . . , N .

The above-described process is repeated for multiple rounds to improve the
performance of the global model. For our experiments, b, B and Nround are
set to 16, 16 and 100 respectively. The pseudo code of the algorithm is given in
Algorithm 1.

Secure Collaborative Learning for Predictive Maintenance 125

Algorithm 1. Federated averaging algorithm using MPC
Input The N vendors are indexed by i; xi is the local training dataset; ni is the
size of the dataset; si is the linear mask; pij is the j-th share of the linear mask si;
n is the size of the aggregated datasets of all the vendors; B is the local mini-batch
size; and η is the learning rate.
Output A global ML model F

for round t = 1, 2, · · · do
for i = 1, 2, . . . , N do

(fi + si)
t+1 ← LocalUpdate(i, f t

i)
qt+1
i ← LocalShares(i)

end for
F t+1 ← ∑N

i=1(
ni
n

fi + si)
t+1 +

∑N
i=1 qt+1

i

end for

LocalUpdate(i, f):
B ← (split xi into batches of size B)
for each epoch B do

for batch b ∈ B do
f ← f − η · A(f, b)

end for
f ← f + si

end for
return fi to the server.

LocalShares(i):
for j = 1, 2, . . . , N do

qi ← ∑N
j=1 pij

end for
return qi to the server.

4.5 Performance Evaluation Metrics

The accuracy of the ML model RUL prediction is evaluated by using several
evaluation metrics namely the root mean square error (RMSE), the mean abso-
lute error (MAE), the standard deviation (SDEV), and the scoring function S
[19] which are formulated respectively as follows:

RMSE =

√
(RULpred(i) − RULi)2

N
(6)

MAE =
∑N

i=1 |RULpred(i) − RULi|
N

(7)

SDV E =
√

RMSE2 − MAE2 (8)

S =

⎧
⎨

⎩

e

∑N
i=1 RULpred(i)−RULi

a1 , if RULpred(i) < RULi

e

∑N
i=1 RULpred(i)−RULi

a2 , if RULpred(i) ≥ RULi

(9)

126 K. Abdelli et al.

where RULi and RULpred(i) denote the true RUL and the predicted RUL for the
test sample i, respectively, and N represents the total number of test samples.
The parameters a1 and a2 are user-defined parameters managing the asymmetric
preference of underestimated predictions over overestimated predictions.

The RMSE and MAE metrics are used to calculate the closeness of the pre-
dicted RULs to the actual RULs by equally penalizing the underestimated and
overestimated predictions, while the scoring metric penalizes overestimated cases
more than the underestimated cases since if the predicted RUL is larger than the
actual RUL, the maintenance plan will be scheduled later (after the failure of
the device), leading not to predict the outage of the device and thereby resulting
in higher costs.

5 Analysis

The performance of the FL approach is compared to the following two
approaches:

– Centralized approach: the GRU model is trained with the aggregated training
dataset X =

∑N
i=1 xi : the dataset from each vendor is stored and aggregated

at a centralized database and then the ML model is applied to that data;
– Decentralized approach: each vendor trains the GRU model on its local data

without participating in the FL approach.

The performances of the different decentralized ML models trained with the local
data of each vendor Ci are illustrated in Table 2. It can be observed that the small
amount of local data (xi ≤ 600 samples) impacts badly the ML model’s RUL

Table 2. Decentralized ML models

Vendor MAE(h) SDVE(h)

C1 622.01 595.07

C2 421.32 462.87

C3 295.78 392.19

C4 262.15 350.41

C5 561.85 433.24

C6 652.36 591.42

C7 487.92 520.48

C8 305.51 350.23

C9 666.47 678.78

C10 436.98 472.21

Secure Collaborative Learning for Predictive Maintenance 127

Fig. 6. Comparison of the federated (FL), centralized and decentralized approaches
using RMSE, MAE and scoring metrics

prediction capability by yielding high MAE (≥262 h) and SDVE (≥350 h) scores.
For the decentralized approach, the best model achieved by C4 is selected as a
reference to be compared with the other approaches. The different techniques
are evaluated on the unseen test dataset and using the above-mentioned met-
rics. The results of the comparison, shown in Fig. 6, demonstrate that the FL
framework outperforms the decentralized approach by yielding smaller values of
all the evaluation metrics, and that the FL approach can achieve similar and
even better performance than the centralized approach. As depicted in Fig. 7,
the predicted RULs by the FL approach are very close to the true RUL values,
which proves the effectiveness of the FL framework in accurately estimating RUL
of the laser. The performances of the FL and centralized approaches are very
similar, which demonstrates that the FL framework achieves good prediction
capability while ensuring the data privacy and confidentiality. Figure 8 shows
that the FL approach could achieve the same RMSE as the centralized approach
after reaching 50 rounds. The results prove that the FL framework has good
convergence and stability.

128 K. Abdelli et al.

Fig. 7. Predicted RULs by FL and centralized approaches vs. actual RULs

Fig. 8. Normalized RMSE of the FL approach with number of rounds. The dashed line
represents the RMSE achieved by the centralized approach.

6 Conclusion

Optical networks often require a high level of reliability and sustainability.
Machine learning techniques are expected to improve maintaining such networks
efficiently. We showed that our framework would be a useful tool to build an
accurate ML model for predictive maintenance by aggregating business-sensitive
datasets in a private-preserving way. For the future work, we will apply our
framework to other use cases and extend the threat model to malicious adver-
saries scenario.

Acknowledgment. This work has been performed in the framework of the CELTIC-
NEXT project AI-NET-PROTECT (Project ID C2019/3-4), and it is partly funded
by the German Federal Ministry of Education and Research (FKZ16KIS1279K).

Secure Collaborative Learning for Predictive Maintenance 129

References

1. Abdelli, K., Griesser, H., Pachnicke, S.: Machine learning based data driven diag-
nostic and prognostic approach for laser reliability enhancement, pp. 1–4 (2020)

2. A hybrid CNN-LSTM approach for laser remaining useful life prediction (2021)
3. Bell, J., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server

aggregation with (poly)logarithmic overhead, Cryptology ePrint Archive, Report
2020/704 (2020). https://ia.cr/2020/704

4. Bonawitz, K.A., et al.: Practical secure aggregation for federated learning on user-
held data. CoRR abs/1611.04482 (2016)

5. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pp. 1175–1191 (2017)

6. Bonawitz, K., et al.: Practical secure aggregation for privacy preserving machine
learning, Cryptology ePrint Archive, Report 2017/281 (2017). https://ia.cr/2017/
281

7. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-
preserving aggregation of multi-domain network events and statistics. In: 19th
USENIX Security Symposium (USENIX Security 10) (Washington, DC), August
2010

8. Celaya, J.R., Saxena, A., Saha, S., Goebel, K.F.: Prognostics of power mosfets
under thermal stress accelerated aging using data-driven and model-based method-
ologies, September 2011

9. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation (2014)

10. Corrigan-Gibbs, H., Boneh, D.: PRIO: private, robust, and scalable computation of
aggregate statistics. In: Proceedings of the 14th USENIX Conference on Networked
Systems Design and Implementation, NSDI 2017, pp. 259–282 (2017)

11. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS 2015, pp.
1322–1333 (2015)

12. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

13. Lie, D., Maniatis, P.: Glimmers: Resolving the privacy/trust quagmire. CoRR
abs/1702.07436 (2017)

14. Liu, Z., Wang, Q., Song, C., Cheng, Y.: Similarity-based difference analysis app-
roach for remaining useful life prediction of GAAS-based semiconductor lasers.
IEEE Access 5, 21508–21523 (2017)

15. Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., Agüera y Arcas, B.:
Communication-efficient learning of deep networks from decentralized data (2017)

16. Mohr, M., Becker, C., Möller, R., Richter, M.: Towards collaborative predictive
maintenance leveraging private cross-company data. In: Reussner, R.H., Koziolek,
A., Heinrich, R. (eds.) INFORMATIK 2020, Gesellschaft für Informatik, Bonn, pp.
427–432 (2021)

17. Prakash, S., Hashemi, H., Wang, Y., Annavaram, M., Avestimehr, S.: Byzantine-
resilient federated learning with heterogeneous data distribution (2021)

https://ia.cr/2020/704
https://ia.cr/2017/281
https://ia.cr/2017/281
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8

130 K. Abdelli et al.

18. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority, STOC 1989, pp. 73–85 (1989)

19. Saxena, A., Goebel, K.: Phm08 challenge data set (2008)
20. Shamir, A.: How to share a secret. CACM 22(11), 612–613 (1979)
21. So, J., Ali, R.E., Guler, B., Jiao, J., Avestimehr, S.: Securing secure aggre-

gation: Mitigating multi-round privacy leakage in federated learning. CoRR
abs/2106.03328 (2021)

22. van der Maaten, L., Hinton, G.: Viualizing data using t-sne 9, 2579–2605 (2008)
23. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th

Annual Symposium on Foundations of Computer Science, Toronto, Canada, vol.
1986, pp. 162–167. IEEE Computer Society (1986)

Network Security

Gollector: Measuring Domain Name Dark
Matter from Different Vantage Points

Kaspar Hageman1(B) , René Rydhof Hansen2 , and Jens Myrup Pedersen1

1 Department of Electronic Systems, Aalborg University, Aalborg, Denmark
{kh,jens}@es.aau.dk

2 Department of Computer Science, Aalborg University, Aalborg, Denmark
rrh@cs.aau.dk

Abstract. This paper proposes Gollector, a novel tool for measuring
the domain name space from different vantage points. Whereas such
measurements have typically been conducted from a single (or few) van-
tage point, our proposed solution combines multiple measurements in a
single system. Gollector allows us to express the relative difference in
the covered domain name space, and the temporal characteristics, as
domain name dark matter. We leverage a three-week trace from four
vantage points, by applying the tool to three security-related use cases:
early domain registration detection, data leakage in a split-horizon sit-
uation, and a proposed method for subdomain enumeration. We release
the Gollector source code to the research community to support future
research in this field.

Keywords: DNS · TLS · Domain names · Measurements

1 Introduction

The Domain Name System (DNS) has historically played, and continues to play,
a vital role in many different areas of network security research, including exam-
ining Internet censorship [31], spam detection [26,38], and identifying botnet
communication [20]. The highly distributed nature of DNS, with information
scattered across millions of domain name servers, means there exists neither
a method to reliably observe all interactions with the DNS, nor a method to
reconstruct the full domain name space. Consequently, researchers (implicitly or
explicitly) choose one or more vantage points, e.g., network locations or network
datasets, from which to conduct DNS measurements.

The (DNS) vantage point has a major impact on the DNS-related data that
can be collected and processed. This is the case both for passive measurements,
e.g., traffic monitoring of DNS resolvers that is highly dependent on physical
location, but also for active measurements, e.g., due to geographical split hori-
zons [11] or censorship [31]. We will refer to the part(s) of the domain name
space that cannot be observed from a given vantage point as DNS dark matter
(with respect to that viewpoint).
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 133–152, 2021.
https://doi.org/10.1007/978-3-030-91625-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_8&domain=pdf
http://orcid.org/0000-0002-4245-9798
http://orcid.org/0000-0002-5688-6432
http://orcid.org/0000-0002-1903-2921
https://doi.org/10.1007/978-3-030-91625-1_8

134 K. Hageman et al.

Different (partial) solutions have been deployed by the research community,
including simply increasing the number of vantage points covered as well as
including more different types of vantage points. However, to the best of our
knowledge, there have been no studies focusing specifically on the impact of
choosing different vantage points, and solutions discussed in the literature have
been mostly ad-hoc. In this paper, we introduce the Gollector tool and frame-
work as a step towards a more systematic and structured treatment of vantage
points specifically, and DNS data collection and analysis in general. In particu-
lar, we intend Gollector to become the “one-stop-shop” for DNS collection and
analysis. Therefore, we open-source the tool for the research community to use,
and the source code can be found at:

https://github.com/aau-network-security/gollector

We start the paper by providing the relevant background (Sect. 2) and place our
work in the context of prior research (Sect. 3). In the remainder of the paper, we
present the main contributions of the paper:

– We provide an overview of the existing vantage points, describing their con-
ceptual advantages and drawbacks (Sect. 4).

– We present a novel tool and framework, Gollector , which combines data col-
lected from different vantage points, allowing for the comparison of each van-
tage point (Sect. 5).

– We apply the tool to a sample dataset (Sect. 6) and leverage the data
(in Sect. 7) for three previously unexplored use cases related to DNS dark
matter, and show that combining vantage points has a positive impact on
DNS studies: (i) early domain detection, (ii) data leakage with split horizons
and (iii) subdomain enumeration.

2 Background

Systems on the Internet are commonly addressed within two namespaces: the IP
address name space and the domain name space. IP addresses are used by routing
devices to forward network traffic to the correct host, whereas domain names are
more user-friendly and are therefore used by humans to address hosts. The DNS
has been facilitating the translation between these two namespaces since the
1980s [30]. The domain name space forms a tree structure, where each node in
the tree is a label, and a domain name is a composition of all labels in a path of
the tree from the root to a leaf. The nodes in the first layer are referred to as top-
level domains (TLDs) and for the right-most label in a domain name (e.g., .com
is the TLD for the domain www.example.com). A domain – sometimes referred
to as a Fully Qualified Domain Name (FQDN) – can further be decomposed
into an apex part and a subdomain part; the apex domain is the part that is
registered at a domain registry, with the subdomain being the remaining part
of the domain name. The higher levels of the domain name space are highly-
regulated and reserved, and newly created domains (i.e., the apex domains) can
be created under so-called public suffixes only [16]. A part of the domain name

https://github.com/aau-network-security/gollector

Gollector: Measuring Domain Name Dark Matter 135

space that is managed by a particular organization is referred to as a zone. For
instance, registries - the operators of the TLDs – are authoritative for the zone
which comprises all domains under that TLD, and maintains a zone file in which
all mappings between the domain and IP name space are stored, or DNS records.
The content of these zone files is served by authoritative name servers to DNS
clients, answering queries with the appropriate DNS records if the name server is
authoritative for the queried data, or with a reference to another name server if
not. Clients commonly rely on intermediate DNS servers, referred to as resolving
name servers or resolvers, to resolve DNS queries on their behalf while caching
data locally to increase the performance of the DNS ecosystem as a whole.

The functionality of the DNS forms a fundamental basis for the workings of
many other protocols on the Internet, including the Hypertext Transfer Protocol
(HTTP) and Transport Layer Security (TLS). HTTP and TLS form the secure
communication channel used by web browsers and web servers to communicate.
Documents are exchanged by requesting specific locations identified by (among
others) the domain name of the server that hosts the resource. TLS, providing the
encryption layer to this exchange, relies on digital certificates exchanged between
the browser and server which are used by clients to verify the authenticity of the
web server [33]. These digital certificates embed a set of domain names in them,
which denote the domains for which the certificate is valid. A certificate is signed
by one of hundreds of trusted third parties, the Certificate Authority (CA), who
is tasked to verify the identity of an owner behind a certificate request before
issuing the certificate. Due to two major incidents in which a CA erroneously
issued a certificate [1,32], the Certificate Transparency (CT) was developed to
audit the issuance behavior of each CA [29]. In this framework, CAs submit
newly issued certificates to publicly available, append-only logs, and as such,
any third party can monitor these logs.

3 Related Work

Given the ubiquitous nature of domain names on the Internet, the vast major-
ity of applications interact with them in one way or another, including appli-
cations with malicious intent. For example, phishing websites are commonly
hosted on typosquatted domains (i.e., a catch-all term for domain names that
are similar-looking to benign domains) [37] and bots within a botnet rely on
the DNS as a communication channel to dynamically identify the location of
their bot masters [36]. As such, the security community has relied on data col-
lected through domain name measurements to better understand and mitigate
such types of malicious behavior. Relying on network traces, including DNS and
TLS, to build extensive domain name-related datasets has been an ongoing pro-
cess for many years. Passive DNS was proposed in 2004 as a method to support
DNS data recovery, by collecting DNS queries in the wild, thereby being able
to replicate the state of zone files at a particular point in time [40]. The ISC
implemented a version of these ideas in 2012 [25], which resulted in the commer-
cialization of the framework in 2013 under the company Farsight Security [21].

136 K. Hageman et al.

The ENTRADA project focuses on collecting passive DNS traffic from the per-
spective of authoritative name servers instead [41]. Alternatively, researchers
relied on active measurements for creating longitudinal datasets. The OpenIntel
project collects a fixed set of DNS records for all apex domains within a set
of TLD zones daily [34]. In their paper, the authors have collected data from
three general TLD zone files comprising 50% of the apex domain name space,
but have since then expanded to more general TLDs and sixteen country-code
TLDs1 [10]. Hohlfeld [27] expands upon this approach, by both collecting more
than only DNS records (e.g., TLS support and particular TCP settings) and
by relying on more domain name sources besides zone files (i.e., passive DNS
and domains extracted from CT logs). Similarly, Project Sonar scans the IPv4
address space for (among others) TLS certificates, reverse DNS misconfigura-
tions, and various TCP and UDP services [15].

Reconstructing the full domain name space is a complex task due to the
distributed nature of the DNS. For many TLDs, access to zone files is con-
trolled through the Centralized Zone Data Service (CZDS) [13], whereas access
to other TLDs is more restricted, available ad-hoc involving non-disclosure
agreements [27], making a full replication of the apex domain space diffi-
cult. Several techniques have been used to circumvent this, such as “zone-
walking” for DNSSEC-enabled zones [18,35] or abusing misconfigurations of
DNS name servers, that allowed for a full zone file disclosure through zone
transfer request [23]. Alternatively, these zones can be partially reconstructed
by relying on other data sources, including certificate transparency [39] and the
aforementioned passive DNS [25,40]. Even though passive DNS collects FQDNs
(in addition to apex domains), mapping out the full FQDN domain name space
is even more complex than the apex domain name space. The penetration test-
ing community has relied on domain enumeration as one method of “recon-
naissance”, or information gathering about a particular target. As a result, a
number of tools exist that support subdomain enumeration or DNS-based recon-
naissance [2,3,5–7]. Typically, these subdomains are identified by scraping third-
party sources that have collected this information prior (e.g., search engines) [22]
or by generating candidate FQDNs [3,5,7].

Gollector stands apart because it is intended to collect passive domain name-
related data from more vantage points than any of these research or commer-
cial initiatives. Furthermore, the tool is unique in the sense that it specifically
emphasizes the differences between vantage points, allowing us to evaluate the
relative dark matter between each vantage point. Lastly, in contrast to tools
from the penetration testing community, Gollector collects traffic from a global
perspective, rather than focusing on a small set of individual domain names.

4 Vantage Points

When passively collecting traffic in the DNS (i.e., capturing traffic generated by
a client population, rather than generating own DNS traffic) the measurement
1 as of July 2021.

Gollector: Measuring Domain Name Dark Matter 137

vantage point is a determining factor for what fraction of the total DNS traffic
one can observe, as illustrated by Fig. 1. Similarly, TLS traffic (prior to version
1.3) can be passively collected to observe the certificate (and other parameters)
exchanged during a TLS handshake, which suffers from the same vantage point
limitation as passive DNS collection. Alternatively, domain name related infor-
mation can be extracted from other data sources that are not related to passive
traffic. Besides active measurement – the process of actively probing servers
for their responses to acquire information – sources are available that provide
insight into the management and operation of a domain name. TLD zone files
act as the ground-truth for all domains registered directly under a TLD, and
can be used to infer registrations and domain expirations. The CT framework
is an alternative source of TLS certificates, as it provides researchers access to
publicly available, append-only logs of newly issued certificates by CAs. The logs
guarantee that new certificates are published within a certain time frame – the
Maximum Merge Delay (MMD) – such that the logs remain up to date with the
latest issued certificates.

C1

C2

C3

aNSorg

example.com?

example.org?

example.com?

recursive
NSs

authoritative
NSs

clients routing
devices

RD1

RD2 rNS2

rNS1 aNScom

aNSexample

Fig. 1. The different vantage points (denoted by •) from which to conduct passive
DNS measurements. Each arrow represents a DNS query send between two devices,
where the colors indicate from which client the request originated. The various vantage
points have different observations based on the querying behavior of the three clients:
RD1 observes {C1, C2}, rNS2 observes {C1, C3} and aNScom observes {C2, C3}. (Color
figure online)

Even though these vantage points have their inherent differences, there is a
commonality between them: the part of the domain name space they observe
and the timing of those observations. Certain domain names or even full TLDs
may be observed from one vantage point, but would never be observable from
another. As such, a part of the domain name space can be considered dark
matter for the latter. Out of our previously-discussed vantage points, we identify
four vantage points that significantly differ from each other2: passive DNS from

2 The difference between data collected from a routing device from a network operator
and a DNS resolver may be insignificant if both vantage points are owned by the
same party, in the case of an ISP.

138 K. Hageman et al.

a resolver, passive DNS from an authoritative name server, CT logs, and zone
files. We can compare these vantage points according to the following properties.
The width indicates how many TLDs the vantage point is capable of capturing
domains across. The depth shows what part of the FQDN a vantage point is
capable of collecting domain names from. The time granularity represents
the precision at which particular events are registered. A related dimension is
the maximum time delay, which denotes how long it takes, worst case, for
an event to be registered by a particular vantage point. Lastly, for the vantage
points that passively collect data from a number of clients, the population

coverage illustrates the size of the overall population that is being covered by
the vantage point.

Table 1 shows an overview of the four vantage points and their dimensions.
Both a DNS resolver and CT logs are capable of observing across a variety of
TLDs, although it depends on the DNS client population and certificate issuers,
respectively, which TLDs are actually observed. The domains covered by the
zone file of a TLD are registered at an apex domain level, and thereby this
vantage point does not cover FQDNs as opposed to the others. Furthermore, the
zone files provided by the CZDS are updated daily [12], and therefore have a
one-day granularity, whereas the other vantage points have a highly precise (i.e.,
sub-second) granularity. Every CT log operator defines a MMD, or maximum
merge delay, which denotes the amount of time the operator will take as a
maximum to publish newly issued certificates to the log, which tends to be 24 h.
The one-day granularity of zone files indicates that it can take up to a day for
a newly registered domain to appear in the zone file. Lastly, for the two passive
DNS vantage points, there is a difference in the DNS population coverage; an
authoritative name server receives global traffic for domains within its zone,
whereas a resolver serves only a local, smaller population.

Table 1. Summary of vantage points

Dimension

Vantage points Width Depth

Time

granularity

Maximum

time

delay

Population

coverage

CT logs All TLDs FQDN Precise MMD –
Resolver All TLDs FQDN Precise – Local
Authoritative NS One TLD FQDN Precise – Global
TLD Zone file One TLD Apex Daily One day –

5 Design

The current state-of-the-art tooling lacks the possibility of conducting analyses
between vantage points at a full domain name space scale. Based on this, we
derived a set of design goals that shaped the design and implementation of

Gollector: Measuring Domain Name Dark Matter 139

Gollector . We first present these design goals, followed by an overview of the
architecture of Gollector describing how each of the individual goals is met.

Firstly, the main purpose of Gollector is to allow for the data collection of
DNS and domain name-related information from different vantage points (G1).
The design of the tool must allow the collection from new vantage points to
be added at a future point in time (G2). Given the large number of existing
domain names, and the volume of DNS and TLS data that is generated on
the Internet, the tool should handle data collection at a large scale and remain
highly performant (G3). The data structures in which the data is stored must
allow for post-collection analysis (G4). The collection of DNS traces may contain
sensitive information, which third-party data sources may be hesitant to share
with researchers, and may only be willing to do so in an anonymized form.
However, the anonymization of data may make post-collection analysis more
difficult, and less detailed, and as such we would like to preserve the relationship
between unanonymized data and anonymized data in Gollector (G5).

5.1 Architecture

To meet G1, the architecture of Gollector consists of modular components: (1)
a set of data collectors, (2) a data sink, and (3) a database for persistent data
storage (see Fig. 2a). Each individual collector is a small component dedicated
to collecting domain name-related data from one vantage point and sending the
resulting data to the sink. So far, we implemented four collectors (see Sect. 5.2).
The collectors and the sink communicate securely using gRPC, allowing the
collectors and sink to operate on different machines and thereby collectors to
operate in different network environments (i.e., collect data from different van-
tage points). The decoupling of collectors from the other components of Gollector
allows new collector modules to be developed in the future, thereby meeting G2.

The sink is designed to accept messages from the various collectors, extract
database models from the messages and insert these models in the underlying
database. As of now, we use PostgreSQL as the underlying database, as our
database models naturally fit in a relational database model, and for future
implementations, we can switch to a database intended for big-data analytics.
The sink inserts new models in the database in batches rather than individual
queries, resulting in a high-performance insertion rate (meeting G3).

Domain names are stored in the database as a collection of database mod-
els (see Fig. 2b how the models relate to each other). Each collected FQDN is
segmented in its parts, according to the domain name hierarchy (i.e., top-level
domain, its public suffix, the apex domain, and the FQDN). Each segment is
inserted as its separate row in its own table and has a foreign key to all parts
higher in the hierarchy. The data in this database is enriched by adding more
tables with pointers (i.e., foreign keys) to these domain-related tables; a times-
tamped certificate may point to an FQDN, whereas a timestamped zone file
entry may point to an apex domain instead. This makes it easy to answer ques-
tions such as “How many unique apex domains are observed under each TLD?”

140 K. Hageman et al.

or “For a given apex domain, how many certificates have we seen?”, and thereby
fulfills G4.

Lastly, the segmented storage of domain names also applies to anonymized
domain names. Instead of storing the domain name directly, we store an
anonymized version of each segment by hashing3 the segment after append-
ing a salt to the segment. The database maintains a mirrored set of tables for
anonymized segments, including the foreign keys from segments lower in the hier-
archy to upper segments. To analyze data collected in both their anonymized
and unanonymized form, we link the two sets of tables by adding a reference
from the anonymized table to the unanonymized table (meeting G5). This link
will only exist if a particular segment has been seen in both an anonymized
dataset and an un-anonymized dataset, and thus will not apply to all observed
domain names. As such, this method only provides anonymity for segments that
have only been seen in their anonymized form, and only until an unanonymized
form is collected.

Fig. 2. Design of Gollector

5.2 Collectors

Each collector registers events related to a domain name. These events range
from individual DNS queries to domain registrations. Depending on the collector,
a collector may generate only one or a few events per domain or may generate
many events over the course of a measurement. The current implementation of
Gollector consists of the collectors described below.

3 using SHA256.

Gollector: Measuring Domain Name Dark Matter 141

Zone File Collection. This collector can fetch zone files from the CZDS [13] and
zone files over HTTP from servers that provide access. The former is an API pro-
vided by ICANN that allows for a standardized way to access zone files of over
a thousand gTLDs including .com and .net, whereas the latter is used to fetch
the Danish .dk TLD. In both cases, the authentication is handled by the collec-
tor and is configured through a configuration file during startup. The collector
automatically requests access for zone files daily when the granted access expires,
ensuring that data collection continues during long measurements. All available
zone files are then collected daily, and any changes between zone files of two
consecutive days are tracked. Domain names that appear and disappear in the
most recent zone file are considered new registrations and expirations/removals
respectively. Furthermore, we collect all domain names observed on the first day
but do not consider these to be registrations or expirations. Gollector stores the
zone files both raw on disk as well as in a processed form in the underlying
database, so it allows researchers to work with the raw zone file if needed.

Passive Resolver DNS. Gollector itself does not perform any passive DNS mea-
surements itself, but rather relies on previously collected datasets instead. The
supported format for parsing passive DNS data is in Splunk Stream [9] export
data, which consists of a condensed form of individual DNS request-response
pairs in a JSON format. From the logs, Gollector extracts the queried domain
name and timestamp of the resolution, omitting any DNS-specific information,
such as query types or resolved IP addresses.

CT Logs. Each CT log provides an HTTP API that can be used to fetch CT log
entries. Such entries contain a full certificate chain of the newly-signed certificate,
including the timestamp it was added to the log. Gollector traverses each log (as
recognized by Google4), fetching all entries per log. This collector parses each
entry, extracts the embedded domain names from the newly-signed certificate,
and stores them with a timestamp when the certificate was submitted to the CT
logs. Furthermore, the certificates are stored in their raw format in the underlying
database, allowing for further, more in-depth, investigation when necessary.

ENTRADA. This collector interfaces with the dataset generated by ENTRADA,
used to collect DNS resolutions at an authoritative name server level. This
dataset comprises DNS-specific attributes of each resolution, such as the query
type, the specific resolved IP address(es), and the IP addresses from which the
query originates. We summarize this information by collecting some basic statis-
tics related to an individual domain name that has been queried; the first time
and the last time the domain was queried. As such, the information in Gollector
is far smaller in size than the source dataset, at the cost of losing details.

4 https://github.com/google/certificate-transparency-community-site/blob/master/
docs/google/known-logs.md.

https://github.com/google/certificate-transparency-community-site/blob/master/docs/google/known-logs.md
https://github.com/google/certificate-transparency-community-site/blob/master/docs/google/known-logs.md

142 K. Hageman et al.

6 Dataset

We applied Gollector to four types of data sources, for which we implemented
the aforementioned four collectors (Sect. 5.2). We collected the data over a time
period of three weeks5. For our experiments, we collected the passive DNS traffic
from our Danish university network (with 10 s of thousands of users) and the
ENTRADA data from the Danish .dk TLD. We collected our certificate data
from all recognized CT logs and attempted to retrieve all TLDs available from
CZDS. Figure 2 illustrates the unique number of events, FQDNs, apexes, public
suffixes, and TLDs observed per vantage point. Note that for the zone files,
we only collected domains registrations and expirations, rather than all entries
in the zone files. Since domains are registered at an apex domain level at a
DNS registry, the collected zone files do not contain any FQDNs. Whereas our
ENTRADA collector found the most unique FQDNs (161.5M), these FQDNs
tend to be centralized under a relatively small set of TLDs (272) compared to
the other vantage points. Conversely, our passive DNS collector identified the
smallest number of FQDNs (6.0M), which is unsurprising given the relatively
small number and homogeneity of clients the university network serves (i.e.,
primarily Danish students and academic staff). The CT log data spans most
TLDs (1,087), which comprises 72.6% of all recognized TLDs [14].

Table 2. Overview of the collected data, denoting the unique number of events,
FQDNs, apexes, public suffixes and TLDs observed per vantage point.

Events FQDNs Apexes
Public

suffixes
TLDs

Zone files 8,371,731 – 7,920,217 572 607

CT logs 114,182,670a 89,989,143 27,807,193 4,222 1,087

Passive DNS 200,146,260 6,046,480 1,213,405 1,125 580

ENTRADA 161,497,905 161,497,905 124,318,163 328 272
aWe identify a CT event as a uniquely observed certificate.

We hypothesize that the ENTRADA and the passive DNS traffic are highly
biased towards Danish traffic. To test this hypothesis, we analyze the distribution
of unique apexes found per TLD for each of the vantage points. Table 3 shows
for each vantage points, the percentage of apexes identified by that vantage
point under a particular TLD, showing the top 10 TLDs per vantage point.
The results show our hypothesis to be confirmed for ENTRADA, with nearly all
apexes falling under the .dk TLD, whereas this is not the case for the passive
DNS traffic. The passive DNS traffic contains a large number of apexes under
reserved TLDs for internal use (i.e., mynet, my net, home, lan [24]), and the .com
TLD is more popular than the Danish TLD. The CT and zone file datasets are
more in line with the general size of the TLDs; .com and .net are the largest
TLDs.
5 Between February 1st, 2021 and February 21st, 2021.

Gollector: Measuring Domain Name Dark Matter 143

Table 3. The top ten TLDs per vantage point in terms of unique number of apex
domains identified under the TLDs.

CT Zones Passive ENTRADA

TLD % TLD % TLD % TLD %

com 44.3% com 59.2% mynet 23.9% dk 100%

tk 4.5% icu 10.7% my net 22.0% arpa 0.0%

de 4.4% net 4.4% home 19.1% com 0.0%

net 3.9% xyz 3.9% lan 16.5% org 0.0%

org 2.9% org 3.1% com 4.9% net 0.0%

uk 2.3% wang 2.4% dk 2.0% se 0.0%

ru 1.6% page 2.2% localdomain 1.2% 0 0.0%

nl 1.6% site 1.8% net 1.1% 0 0.0%

br 1.5% bar 1.0% dlinkrouter 0.7% 0 0.0%

it 1.4% club 0.8% org 0.6% 0 0.0%

7 Use Cases

We demonstrate the utility of Gollector by diving deeper into three use cases.
Firstly, we evaluate the impact of the time differences of the four vantage points
by analyzing how effective they are in recognizing newly registered domains.
Additionally, we leverage the relative dark matter differences between passive
DNS measurements from a resolver and an authoritative name server perspective
to investigate the split-horizon setup of our local university network. These two
use cases showcase the benefits of multiple vantage points. Lastly, we leverage the
full set of FQDNs for a domain name generation algorithm, as an alternative to
brute-force subdomain enumeration techniques employed by penetration testing
tools.

7.1 Early Detection of Domain Names

Various malicious actors rely on domain registrations for their operations, such
as botnet operators (for domain fluxing) and phishers (for typo-squatting and
hosting phishing sites in general). Prior work has demonstrated that the involved
domains tend to be abused within a few days after their registration, after which
they have already served their (malicious) purpose [42]. From a defense perspec-
tive, identifying such domains in the early part of their lifecycle is therefore of
critical importance. A domain registration can be detected at different points
of time depending on the vantage point. Zone files are a logical choice, as they
originate from the party that registers new domains (i.e., registries) but have as
a limitation that they are created with a one-day granularity6. We investigate
6 Registries will have access to more accurate registration data than just the zone files,

so this is a limitation for researchers who only have access to the zone files.

144 K. Hageman et al.

if other vantage points provide a more accurate – and thereby earlier – time of
registration, especially focusing on CT logs, as they cover all TLDs rather than
just one (which is the case for ENTRADA and to a lesser extent the passive
DNS from university network).

We identified a registration of 4,438,966 domains over the course of 20 days7

for an average of 221,948 domains per day. For each of these registrations,
we identify if the other three vantage points (i.e., CT logs, passive DNS, and
ENTRADA) observed the domains as well. Firstly, we identify if these vantage
points observed the domain registrations at all in the full timeline. This serves
as an indication to what extent domain registrations remain undetected and the
coverage of the domain name space the vantage points have compared to zone
files. We follow this up by identifying which of these domains were detected before
the zone files registered these domains. For those domains, the one-day granu-
larity of zone files is surpassed by the granularity of the other vantage point.
Lastly, we identify the domains that were detected within seven days after the
zone file identified the domain as registered. Wullink et al. [42] showed that
phishing domains tend to be most active within the first seven days of their reg-
istration (based on the DNS traffic the domain receives). Therefore, identifying
such domain registrations within seven days is highly beneficial for mitigation
these attacks.

Table 4 shows the results, both in absolute numbers and the percentage of
the total number of zone file registrations. Since the ENTRADA dataset oper-
ates at a single TLD’s name server, we differentiate between the full dataset and
the dataset for the .dk domains only. Across all TLDs, the CT logs have rela-
tively high coverage, with almost one in four domain registrations being detected
across the whole dataset. The passive DNS and ENTRADA datasets have a
much smaller coverage, with only 0.01% and 1.1% of domain registrations being
detected. Notably, CT logs provide earlier detection of domains compared to zone
files for 13.8% of domains. When looking at the .dk domain only, all vantage
points detect more registrations than the full dataset, with ENTRADA detect-
ing nearly all registrations. Furthermore, of the domain registrations detected
by the passive DNS dataset, almost all of them were .dk domains (with only
133 non-Danish registrations detected). In none of the cases, the percentage of
identified registrations was significantly improved by including the first seven
days after registration. For identifying new domain registrations, zone files are
still primarily the best vantage points, but this can be supported by CT logs
and ENTRADA for individual TLDs.

7.2 Split Horizon and Data Leakage

Large organizations commonly operate a split-horizon DNS infrastructure, where
DNS resolutions receive different responses depending on the location of the
requester. Use cases include load balancing, or protecting sensitive information
that should only be accessible from within a corporate network [19]. Further-
more, the exposure of the existence of a particular hostname can already provide
7 Since a registration is detected by computing the difference of the zone files of two

subsequent days, we are missing the registrations on the first day of our measurement.

Gollector: Measuring Domain Name Dark Matter 145

Table 4. Detection of newly registered domain names for non-zone files vantage points.
The results for both the full set of TLDs and the .dk zone only are shown.

All TLDs

Absolute Percentual

CT Passive ENTRADA CT Passive ENTRADA

Overall 971,318 533 46,628 23.6% 0.01% 1.1%

Before 568,436 216 25,713 13.8% 0.01% 0.62%

Within 7 days 325,277 169 4688 7.9% 0.00% 0.11%

.dk only

Overall 16,476 63 46,495 34.9% 0.13% 98.5%

Before 0 0 25,673 0.00% 0.00% 54.4%

Within 7 days 639 3 4,601 1.35% 0.01% 9.74%

insight into an organization’s inner workings and should potentially be protected
against. We leverage our passive DNS data and ENTRADA dataset – both rel-
atively biased towards the dk TLD – to investigate potential data leakage in
our dataset. We identify which domain names are likely to be only used inter-
nally and what data is leaked outside the network through DNS queries. The
split-horizon setup should result in particular domain names only being queried
within the university network.

As a first step, we identify what apex domain names are likely to be owned by
the university network. We assume that internal apex domains are heavily used
for various services within the network, thereby having many different FQDNs in
use. As such, we collect the unique number of FQDNs observed under each apex
domain in our dataset. Table 5 shows this count for the 10 most prevalent apex
domains, and also shows the percentage of total FQDNs observed in the passive
DNS dataset it encompasses. FQDNs under aau.dk are seen most often (more
than 63% of observed FQDNs fall under this apex), suggesting that this domain
is used for internal systems within the network. Indeed, this domain is owned
by the university, whereas the other domains in the table are related to back-
ground services such as advertisement/analytics (e.g., googlesyndication.com,
cedexis-radar.net), or network management (e.g., bbsyd.net, emnet.dk), and
are not associated with the university.

From our ENTRADA dataset, we found 18,499 FQDNs under the aau.dk
apex domain, a much lower number than the 3,8M seen in the passive DNS
dataset. Not all of these domain names are necessarily sensitive information, as
some of the domains used by the university are likely used to host public web-
sites. Therefore, we turn to the domains that have both been seen by the passive
DNS and the ENTRADA dataset: this set of domains comprises 2,813 FQDNs,
or 15.2% of the aau.dk FQDNs seen in the ENTRADA dataset. Since we have
no ground truth of what is a sensitive domain and what is not, we compare this
list of domains to the most common subdomains instead [8]. We found 435 (or

146 K. Hageman et al.

15.5%) of these domains is in the public list, leaving more than 2,300 subdo-
mains potentially leaked. As a result of the anonymization practice of Gollector ,
we are unable to further investigate these potentially leaked domains, as these
domains are anonymized and the unanonymized version can (deliberately) not
be retrieved.

Table 5. The 10 apex domains with the most observed unique FQDNs in the passive
DNS dataset collected from the university network.

Apex
domain

Unique FQDN
count %

aau.dk 3,829,837 63%

googlesyndication.com 344,058 6%

technicolor.net 61,151 1.01%

cedexis-radar.net 44,771 0.74%

sophosxl.net 39,297 0.65%

bbsyd.net 36,758 0.61%

office.com 30,215 0.50%

emnet.dk 23,540 0.39%

obelnet.dk 22,909 0.38%

webspeed.dk 21,569 0.36%

7.3 Subdomain Enumeration

Part of the reconnaissance phase in penetration testing is subdomain enumer-
ation, or the process of identifying all subdomains under a given apex domain.
Strategies include scraping third parties or generating (i.e., brute-forcing) candi-
date FQDNs [3,5,7]. Gollector supports the former, as its database model allows
to easily query all FQDNs observed under a particular apex domain. We present
a method to support the latter as well. As opposed to the existing brute-forcing
techniques, we infer a relationship between sets of subdomains, based on the co-
occurrence of these subdomains under a shared set of apex domains. As a result,
our proposed method generates accurate candidate FQDNs and identifies rela-
tionships between subdomains that otherwise would not be found. This inference
is motivated by a particular use case in which subdomains are likely to co-occur
under the same apex domain; cPanel defines a set of Service Subdomains, or sub-
domains exposed by cPanel to provide interfaces to external components [17].
Therefore, the existence of a cPanel subdomain may indicate that the other
Service Subdomains are also “in use” under the particular apex domain, even if
a DNS dataset has not identified its existence. Our proposed method consists of
the following steps: (1) we convert our dataset of subdomains and apex domains
in a graph, (2) we compute a clique cover of this graph, (3) we prune these
cliques according to the weights in each clique to filter out nodes that are not

Gollector: Measuring Domain Name Dark Matter 147

relevant to the clique, and (4) we generate a set of candidate FQDNs, based on
the pruned cliques.

As a first step, we split up our set of FQDNs into their subdomain and apex
parts, and subsequently create a graph in which the subdomains are modeled as
nodes. Edges between two subdomains express the measure of overlap of the sets
of apex domains under which both subdomains have been seen. The edge weight
is computed as the Jaccard index [28] of the set of apex domains under which
the first subdomain has been seen and the set of apex domains under which
the second subdomain has been. We prune the edges that have a weight of zero
(i.e., between subdomains that are never seen under the same apex domain), and
remove any nodes that are without edges (i.e., subdomains never seen under the
same apex domain as another subdomain).

We split up the nodes in our graph into a clique cover. Cliques are induced
subgraphs such that each node is adjacent to all other nodes in the subgraph.
This implies that every subdomain within a clique has been observed under the
same apex domain with all other subdomains at least once. By assigning each
node to a clique we reach a clique cover, which we achieve by relying on the
algorithm defined in AppendixA8.

A clique cover ensures every subdomain falls in a clique, but this does not
guarantee there is a strong connection between the nodes within the clique.
Therefore, we prune each clique to remove nodes that are not considered relevant.
We scale the edge weights in each clique such that the highest weight equals
1, and then prune the nodes whose maximum edge weight falls under a given
threshold. In our experiments, we used a threshold value of 0.6, which we found
through thorough experimentation.

For each clique, we can now generate a set of candidate FQDNs. We maintain
a set for each subdomain, denoting the apex domains under which the subdo-
main has been observed, based on all FQDNs in our dataset. For each clique,
we define the set of apex domains that any of the subdomains in the clique has
been observed under. The Cartesian product of the apex domains and subdo-
mains then forms the tuples of apex domains and subdomains representing the
candidate FQDNs. The FQDNs already seen in data are left out from this set,
forming the final set of candidate FQDNs.

We applied this methodology to a dataset of 2 million randomly sampled
FQDNs from our dataset, In total, we identified 8,410 cliques comprising 22,519
subdomains. AppendixB shows several examples of subdomains that form a
clique. These subdomains were previously seen under a set of 1,021,175 apex
domains. Given our cliques, we generated 2,349,911 FQDN candidates, resulting
in an average of only 2.3 FQDNs per apex domain. Out of these candidates, we
could successfully resolve 1,396,129 FQDNs or 59% of candidates. Additionally,
we also manually investigated some of the cliques to understand what the nature
of these cliques is. This manual investigation was far from exhaustive, but we
found cliques related to the software that runs on these domains (such as the

8 There are potentially many clique covers, and our purpose is not to achieve a minimal
clique cover.

148 K. Hageman et al.

cPanel example that drove this research) and cliques pointing to a specific orga-
nization. An example of the former clique type is cliques for subdomains used by
Magento, a highly-popular open-source eCommerce platform [4]. We identified
470 cliques related to this platform with subdomains containing the keyword
magento, often having shop or store as another keyword being embedded in
one of the subdomains. The latter type includes a clique formed by subdomains
under the apex domains fbcdn.net and whatsapp.net, containing 118 subdo-
mains, indicating the relationship between Whatsapp and Facebook.

Our proposed method can be integrated into existing penetration testing
tools as an alternative to wordlist-based domain generators. On top of that, our
cliques can be used to identify shared domain name ownership, and to assist
security researchers in identifying domains hosting the same services.

8 Conclusions

In this paper, we introduced Gollector as a novel platform for collecting domain
name and DNS-related information. Through a thorough overview of the DNS
and TLS ecosystem, we present a set of vantage points from which this infor-
mation can be retrieved. Through three uses cases, we leverage the differences
between these vantage points. Firstly, we show that that CT logs and passive
DNS traffic collected at an authoritative name server can serve as a source for
early domain registration detection. Zone files are outperformed by the CT logs
in 13.8% of domains under all TLDs, and by the passive authoritative traffic
in 54.4% of domains under the .dk TLD. Secondly, we compare passive DNS
measurements from a university network with authoritative name server mea-
surements to shed light on potential data leakage of subdomains under the main
domain name in use by the university. Lastly, we present a method to generate
potentially existing FQDNs, which infers these FQDNs based on the association
of subdomains and apex domains.

Acknowledgments. This research was carried out under the SecDNS project, funded
by Innovation Fund Denmark. We would like to express our gratitude to Finn Büttner
and Erwin Lansing for their assistance in collecting our passive DNS datasets.

Appendix A Clique Cover Algorithm

Algorithm 1 denotes the algorithm used to compute a clique cover for graph G.
The intuition behind the algorithm is that two nodes – connected through an
edge with the largest weight – have the largest priority to form a clique. The
algorithm iterates over all edges in the graph and assigns a clique to each node
in the graph based on the interactions that are observed through the edges.
Depending on whether the source and destination nodes of the edge are already
in a clique, the algorithm creates new cliques, adds nodes to existing cliques, or
merges cliques. The output of the algorithm is a hashmap of the clique assigned
to each node in the graph. The implementation of the algorithm includes several
optimizations to reduce the edges to evaluate.

Gollector: Measuring Domain Name Dark Matter 149

Algorithm 1: Clique cover algorithm
1 Function cliqueCover (G);

Input : graph G of subdomain nodes
Output: set of subdomain lists

2 edges = edgeListFrom(G);
3 edges = sortByWeight(edges);
4 cliques = {};
5 for edge in edges do
6 src, dst = nodes in edge;
7 cliqueSrc = cliques[src];
8 cliqueDst = cliques[dst];
9 if src not in clique and dst not in clique then

/* both are without clique, create a new one */
10 c = newClique(src, dst);
11 cliques[src] = c;
12 cliques[dst] = c;

13 else if src in same clique as dst then
/* src and dst are already in the same clique */

14 else if src not in clique and dst in clique then
/* try to add dst to cliqueSrc */

15 if cliqueSrc.formsCliqueWith(dst) then
16 cliques[src].add(dst);
17 end

18 else if src in clique and dst not in clique then
/* try to add src to cliqueDst */

19 if cliqueDst.formsCliqueWith(src) then
20 cliques[dst].add(src);
21 end

22 else if src and dst in different cliques then
/* try to merge the two cliques */

23 if cliqueSrc.formsCliqueWith(cliqueDst) then
24 c = mergeCliques(cliqueSrc, cliqueDst);
25 cliques[src] = c;
26 cliques[dst] = c;

27 end

28

29 end
30 return cliques;

Appendix B Examples of Cliques

Table 6 contains several examples of cliques. The table shows a general descrip-
tion of what the subdomains may be intended for, the number of subdomains in
the clique, the number of apexes associated with these subdomains, and the list
of subdomains comprised by the clique.

150 K. Hageman et al.

Table 6. Examples of cliques

Description Subdomain count Apex count Subdomains

High-entropy subdomains 237 2 adfqjkxr, aeovrpvk, anhpfctcxzcp,

asqzcggxiy, bdzvxofezaejku, . . .

Email servers 5 34,249 imap, xwa, xas, pop, smtp

Western language-related subdomains 7 26,730 en, es, fr, pt, it, ru, de

More language-related subdomains 6 3,764 ko, zh, cs, nl, ar, ja

Content deliver network 9 5,197 cdn-1, cdn-3, cdn-2, cdn-5, cdn-7,

. . .

References

1. Comodo SSL affiliate the recent RA compromise. https://blog.comodo.com/other/
the-recent-ra-compromise/. Accessed 23 July 2021

2. DNSdumpster. https://dnsdumpster.com/. Accessed 10 July 2021
3. DSNRecon. https://github.com/darkoperator/dnsrecon. Accessed 10 July 2021
4. Magento. https://magento.com/. Accessed 27 July 2021
5. OWASP/Amass. https://github.com/OWASP/Amass. Accessed 10 July 2021
6. Subfinder. https://github.com/projectdiscovery/subfinder. Accessed 10 July 2021
7. Sublist3r. https://github.com/aboul3la/Sublist3r. Accessed 10 July 2021
8. The most popular subdomains on the internet (2016). https://bitquark.co.uk/

blog/2016/02/29/the most popular subdomains on the internet. Accessed 27 July
2021

9. About Splunk stream (2020). https://docs.splunk.com/Documentation/StreamAp
p/7.3.0/DeployStreamApp/AboutSplunkStream. Accessed 10 July 2021

10. Openintel - current coverage (2020). https://openintel.nl/coverage/. Accessed 10
July 2021

11. Using GeoIP with BIND 9 (2020). https://kb.isc.org/docs/aa-01149. Accessed 10
July 2021

12. About zone file access (2021). https://www.icann.org/resources/pages/zfa-2013-
06-28-en. Accessed 30 Aug 2021

13. Centralized zone data service (2021). https://czds.icann.org/. Accessed 30 Aug
2021

14. List of top-level domains (2021). https://www.icann.org/resources/pages/tlds-
2012-02-25-en. Accessed 30 Aug 2021

15. Project sonar (2021). https://opendata.rapid7.com/about/. Accessed 10 July 2021
16. Public suffix list (2021). https://publicsuffix.org/. Accessed 10 July 2021
17. value (2021). https://documentation.cpanel.net/display/CKB/Service+Subdomai

ns+Explanation. Accessed 30 Aug 2021
18. van Adrichem, N.L.M., et al.: A measurement study of DNSSEC misconfigurations.

Secur. Inform. 4(1) (2015). https://doi.org/10.1186/s13388-015-0023-y
19. Aitchison, R.: DNS techniques, pp. 163–207. Apress, Berkeley (2011). https://doi.

org/10.1007/978-1-4302-3049-6 8
20. Alieyan, K., Almomani, A., Manasrah, A., Kadhum, M.M.: A survey of botnet

detection based on DNS. Neural Comput. Appl. 28(7), 1541–1558 (2017). https://
doi.org/10.1007/s00521-015-2128-0

21. Behjat, A.: ISC spins off its security business unit (2013). https://www.isc.org/
blogs/isc-spins-off-its-security-business-unit/

https://blog.comodo.com/other/the-recent-ra-compromise/
https://blog.comodo.com/other/the-recent-ra-compromise/
https://dnsdumpster.com/
https://github.com/darkoperator/dnsrecon
https://magento.com/
https://github.com/OWASP/Amass
https://github.com/projectdiscovery/subfinder
https://github.com/aboul3la/Sublist3r
https://bitquark.co.uk/blog/2016/02/29/the_most_popular_subdomains_on_the_internet
https://bitquark.co.uk/blog/2016/02/29/the_most_popular_subdomains_on_the_internet
https://docs.splunk.com/Documentation/StreamApp/7.3.0/DeployStreamApp/AboutSplunkStream
https://docs.splunk.com/Documentation/StreamApp/7.3.0/DeployStreamApp/AboutSplunkStream
https://openintel.nl/coverage/
https://kb.isc.org/docs/aa-01149
https://www.icann.org/resources/pages/zfa-2013-06-28-en
https://www.icann.org/resources/pages/zfa-2013-06-28-en
https://czds.icann.org/
https://www.icann.org/resources/pages/tlds-2012-02-25-en
https://www.icann.org/resources/pages/tlds-2012-02-25-en
https://opendata.rapid7.com/about/
https://publicsuffix.org/
https://documentation.cpanel.net/display/CKB/Service+Subdomains+Explanation
https://documentation.cpanel.net/display/CKB/Service+Subdomains+Explanation
https://doi.org/10.1186/s13388-015-0023-y
https://doi.org/10.1007/978-1-4302-3049-6_8
https://doi.org/10.1007/978-1-4302-3049-6_8
https://doi.org/10.1007/s00521-015-2128-0
https://doi.org/10.1007/s00521-015-2128-0
https://www.isc.org/blogs/isc-spins-off-its-security-business-unit/
https://www.isc.org/blogs/isc-spins-off-its-security-business-unit/

Gollector: Measuring Domain Name Dark Matter 151

22. Bharath: A penetration tester’s guide to subdomain enumeration (2018). https://
blog.appsecco.com/a-penetration-testers-guide-to-sub-domain-enumeration-
7d842d5570f6. Accessed 24 July 2021

23. Borges, E.: Wrong Bind configuration exposes the complete list of Russian TLD’s to
the Internet, March 2018. https://securitytrails.com/blog/russian-tlds. Accessed
30 Aug 2021

24. Eastlake, D., Panitz, A.: Reserved Top Level DNS Names, RFC ed. BCP 32, June
1999

25. Edmonds, R.: ISC passive DNS architecture (2012). https://mirror.yongbok.net/
isc/kb-files/passive-dns-architecture.pdf

26. Hao, S., Kantchelian, A., Miller, B., Paxson, V., Feamster, N.: PREDATOR: proac-
tive recognition and elimination of domain abuse at time-of-registration. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2016, pp. 1568–1579. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2976749.2978317

27. Hohlfeld, O.: Operating a DNS-based active internet observatory. In: Proceedings
of the ACM SIGCOMM 2018 Conference on Posters and Demos, SIGCOMM 2018,
pp. 60–62. Association for Computing Machinery, New York (2018). https://doi.
org/10.1145/3234200.3234239

28. Jaccard, P.: Distribution de la flore alpine dans le bassin des dranses et dans
quelques régions voisines. Bull. Soc. Vaudoise. Sci. Nat. 37, 241–272 (1901)

29. Laurie, B., Langley, A., Kasper, E.: Certificate Transparency, RFC ed. RFC 6962,
June 2013

30. Mockapetris, P.: Domain Names - Implementation and Specification, RFC ed. STD
13, November 1987. http://www.rfc-editor.org/rfc/rfc1035.txt

31. Pearce, P., et al.: Global measurement of DNS manipulation. In: 26th USENIX
Security Symposium (USENIX Security 2017), pp. 307–323. USENIX Association,
Vancouver, August 2017. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/pearce

32. Prins, J.: DigiNotar certificate authority breach “operation black tulip” (2011).
https://media.threatpost.com/wp-content/uploads/sites/103/2011/09/07061400/
rapport-fox-it-operation-black-tulip-v1-0.pdf. Accessed 23 July 2021

33. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3, RFC ed.
RFC 8446, August 2018

34. van Rijswijk-Deij, R., Jonker, M., Sperotto, A., Pras, A.: A high-performance,
scalable infrastructure for large-scale active DNS measurements. IEEE J. Sel. Areas
Commun. 34(6), 1877–1888 (2016). https://doi.org/10.1109/JSAC.2016.2558918

35. Schlyter, J.: DNS Security (DNSSEC) NextSECure (NSEC) RDATA Format, RFC
ed. RFC 3845, August 2004

36. Singh, M., Singh, M., Kaur, S.: Issues and challenges in DNS based botnet
detection: a survey. Comput. Secur. 86, 28–52 (2019). https://doi.org/10.1016/
j.cose.2019.05.019. https://www.sciencedirect.com/science/article/pii/S016740481
9301117

37. Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., Kanich, C.:
The long “taile” of typosquatting domain names. In: 23rd USENIX Secu-
rity Symposium (USENIX Security 2014), pp. 191–206. USENIX Association,
San Diego, August 2014. https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/szurdi

https://blog.appsecco.com/a-penetration-testers-guide-to-sub-domain-enumeration-7d842d5570f6
https://blog.appsecco.com/a-penetration-testers-guide-to-sub-domain-enumeration-7d842d5570f6
https://blog.appsecco.com/a-penetration-testers-guide-to-sub-domain-enumeration-7d842d5570f6
https://securitytrails.com/blog/russian-tlds
https://mirror.yongbok.net/isc/kb-files/passive-dns-architecture.pdf
https://mirror.yongbok.net/isc/kb-files/passive-dns-architecture.pdf
https://doi.org/10.1145/2976749.2978317
https://doi.org/10.1145/3234200.3234239
https://doi.org/10.1145/3234200.3234239
http://www.rfc-editor.org/rfc/rfc1035.txt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pearce
https://media.threatpost.com/wp-content/uploads/sites/103/2011/09/07061400/rapport-fox-it-operation-black-tulip-v1-0.pdf
https://media.threatpost.com/wp-content/uploads/sites/103/2011/09/07061400/rapport-fox-it-operation-black-tulip-v1-0.pdf
https://doi.org/10.1109/JSAC.2016.2558918
https://doi.org/10.1016/j.cose.2019.05.019
https://doi.org/10.1016/j.cose.2019.05.019
https://www.sciencedirect.com/science/article/pii/S0167404819301117
https://www.sciencedirect.com/science/article/pii/S0167404819301117
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/szurdi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/szurdi

152 K. Hageman et al.

38. van der Toorn, O., van Rijswijk-Deij, R., Geesink, B., Sperotto, A.: Melting the
snow: using active DNS measurements to detect snowshoe spam domains. In:
NOMS 2018–2018 IEEE/IFIP Network Operations and Management Symposium,
pp. 1–9 (2018). https://doi.org/10.1109/NOMS.2018.8406222

39. VanderSloot, B., Amann, J., Bernhard, M., Durumeric, Z., Bailey, M., Halderman,
J.A.: Towards a complete view of the certificate ecosystem. In: Proceedings of
the 2016 Internet Measurement Conference, IMC 2016, pp. 543–549. Association
for Computing Machinery, New York (2016). https://doi.org/10.1145/2987443.
2987462

40. Weimer, F.: Passive DNS replication. In: FIRST Conference on Computer Security
Incident (2005)

41. Wullink, M., Moura, G.C.M., Müller, M., Hesselman, C.: ENTRADA: a high-
performance network traffic data streaming warehouse. In: NOMS 2016–2016
IEEE/IFIP Network Operations and Management Symposium, pp. 913–918
(2016). https://doi.org/10.1109/NOMS.2016.7502925

42. Wullink, M., Muller, M., Davids, M., Moura, G.C.M., Hesselman, C.: ENTRADA:
enabling DNS big data applications. In: 2016 APWG Symposium on Electronic
Crime Research (eCrime), pp. 1–11 (2016). https://doi.org/10.1109/ECRIME.
2016.7487939

https://doi.org/10.1109/NOMS.2018.8406222
https://doi.org/10.1145/2987443.2987462
https://doi.org/10.1145/2987443.2987462
https://doi.org/10.1109/NOMS.2016.7502925
https://doi.org/10.1109/ECRIME.2016.7487939
https://doi.org/10.1109/ECRIME.2016.7487939

Adversarial Trends in Mobile
Communication Systems: From Attack

Patterns to Potential Defenses Strategies

Hsin Yi Chen1 and Siddharth Prakash Rao1,2(B)

1 Aalto University, Espoo, Finland
hsin-yi.chen@aalto.fi

2 Nokia Bell Labs, Espoo, Finland
sid.rao@nokia-bell-labs.com

Abstract. Understanding attack patterns and attacker behavior has
always been a prominent security research topic to provide insights into
adversarial trends and defense strategies. In this paper, we demonstrate
the process of analyzing adversarial trends in mobile communication sys-
tems using a conceptual threat modeling framework combined with graph
analysis methodologies. We model 60 attacks using the Bhadra frame-
work [30] and conduct graph-theory-based analysis to deduce insights.
We observed the attack patterns, the diversity of attack paths given an
attacker’s ability or target impact, and the importance of each technique
from a network graph viewpoint and discussed potential defense strate-
gies that mobile operators can deploy accordingly. Our main contribu-
tion is demonstrating the potential of Bhadra for analyzing the security
posture of an operator’s network and simplifying the complexity of the
mobile networks to communicate the security analysis results.

Keywords: Threat modeling · Mobile networks · Attack patterns

1 Introduction

As the threat landscape of mobile communication systems expands with the
broader adoption of newer technologies and the involvement of more parties,
threat intelligence sharing has become essential. As a response, the industry
partners, including standardization and regulatory bodies (e.g., 3GPP, ENISA)
and academia, have conducted many security analyses. However, there is a lack of
common taxonomy and conceptual framework to gather all the knowledge in one
place. In this work, we argue that such a framework is essential in understanding
adversarial trends. It forms the first step in security communication towards
threat intelligence sharing.

To our best knowledge, the recently proposed Bhadra framework [30] is the
only conceptual threat and attack modeling framework that captures attack
vectors in the end-to-end mobile communication systems from 2G to 4G. In
this work, we demonstrate how a framework like Bhadra can be used to gain

c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 153–171, 2021.
https://doi.org/10.1007/978-3-030-91625-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-91625-1_9

154 H. Y. Chen and S. P. Rao

insights on adversarial trends and provide potential defense strategies for mobile
operators. In particular, we model individual attacks with Bhadra and apply
graph-theoretic analysis on the modeled attack data. By visually representing
our analysis, we discuss how operators can use similar methods to discover attack
patterns, analyze the importance of techniques to the attackers and explore
the possible impact given the attackers’ capability. Our main contribution is
to demonstrate how to use a framework like Bhadra for analyzing the security
posture of an operator’s network using readily available graph algorithms and
simple visualizations.

Although threat modeling has always been an integral part of system secu-
rity, it is mostly confined to using well-known frameworks – such as STRIDE [39]
or MITRE ATT&CK [6] in recent years – on different types of systems. However,
research on how to communicate threat modeling findings, especially graph anal-
ysis techniques, is far less explored. Some of the recent works [1,44] have used
the MITRE ATT&CK framework for enterprise systems that initiated such a
line of research. We continue to extend the research in the context of mobile
communications systems and with the Bhadra framework. In this realm, one of
our contributions is to explore Bhadra’s potential in simplifying the complexity
of mobile network security while building narratives for security communication.

The rest of the paper is organized as follows. Section 2 presents an overview
of the mobile communication networks, the Bhadra framework, and exist-
ing research that summarizes analysis methods in attack patterns. Section 3
describes the methodology we used to collect attacks and conduct graph analy-
sis. Section 4 presents the graph analysis results. Section 5 discusses limitations
of our work and potential research directions in overcoming them. Finally, Sect. 6
contains concluding remarks.

2 Background

This section gives a high-level overview of mobile network topology to show
the attack surface covered in the Bhadra framework. We discuss some of the
known security weaknesses, specifically mobile network protocols, to illustrate
the types of attack techniques that can be modeled using Bhadra. Then, we
briefly introduce Bhadra and its design philosophy. Finally, we present related
work in finding attack patterns and attack graph analysis.

2.1 Mobile Network Topology

Figure 1 shows a simplified version of mobile network topology that consists of
the following components. User Equipment (UE) contains a Subscriber Identi-
fication Module (SIM) card that supports the identification of the subscriber
to its mobile operator with the International Mobile Subscriber Identity (IMSI)
stored in the SIM card. Radio Access Network (RAN) is the air interface that
connects UEs to operators’ networks. Core Network (CN) comprises components

Adversarial Trends in Mobile Communication Systems 155

Fig. 1. Overview of mobile networks topology [4]

that are responsible for managing subscribers’ authentication and mobility, ini-
tiating connections, and providing core telephony services such as SMS, voice
calls, and Internet data.

Service and Application Network includes components that are responsible
for billing and charging of the mobile service used by the subscribers. It also
includes IP multimedia subsystem (IMS) and Value-added Services (VAS) that
provide supplementary services to mobile subscribers on top of the core telephony
services. In addition, Interconnection and Roaming Network enables roaming
scenarios when a subscriber is outside their operator’s serving area (i.e., home
network). In a roaming scenario, the visited operator is connected to the sub-
scriber’s home network over the General Packet Radio Service (GPRS) roaming
exchange or IP exchange carrier and retrieves the subscriber’s profile from the
Home Location Register (HLR) using signaling protocols.

2.2 Security Weaknesses

This section briefly describes some of the known security weaknesses in differ-
ent mobile generation and communication protocols. Although these weaknesses
are not exhaustive, we intend to help the readers to understand the techniques
defined in the Bhadra framework or the attacks analyzed in this paper.

The 2nd generation (2G) or GSM networks offers three main security fea-
tures, namely, subscriber authentication, encryption at the radio interface for

156 H. Y. Chen and S. P. Rao

communication, and the use of temporary identities for identity confidential-
ity [9]. Nevertheless, they are susceptible to active eavesdropping attacks on
the radio interface because there is no mutual authentication between the sub-
scriber and base stations of the connected operator. Security design of the 3G
networks improves such weaknesses in 2G by introducing mutual authentication
between UE and the base stations, along with mandatory integrity protection
for signaling messages that the mobile and network exchange.

While the security features on the RAN have improved between generations,
the 3G core network still uses legacy communication protocols such as the Sig-
nalling System 7 (SS7) that raise security concerns. SS7 was developed in 1975,
where mobile networks were run by a closed network of mutually trusted and
government-owned operators. Therefore, security was not a top priority in the
design considerations. Eventually, the number of mobile operators and other
service providers from the private sector in the mobile communication network
increases, and SS7 become an attractive target to exploit. Due to the lack of
authentication to verify the message origin, SS7 can be abused for obtaining
subscriber information, eavesdropping, financial theft, and disruption of sub-
scriber service [29,43].

Another often exploited protocol is GPRS Tunnelling Protocol (GTP), a suite
of IP-based communication protocols that transport user data over the mobile
network. The GPRS network connects many internal network elements and other
external networks such as the public Internet and other network operators, thus
providing broad attack surfaces for attackers. However, since no built-in security
mechanism is supported in GTP, operators are suggested to implement security
protection such as IP Security (IPsec) at their network interfaces. Failing to do
so may path the way for attackers to successfully carry out GTP attacks that
leads to data interception, billing frauds, DoS against the network or user, and
privacy leaks [41].

Session Initial Protocol (SIP) is yet another protocol with many known vul-
nerabilities. SIP is the underlying session control protocol used in IMS to provide
multimedia communications services. Exploiting the vulnerabilities in SIP allows
the attackers to, for example, send spoof SMS and perform Denial of Service
(DoS) on SMS clients [42]. Commonly targeted IMS services include IMS-based
Voice over IP (VoIP), Voice over LTE (VoLTE), SMS [42].

The 4G LTE network inherits several security weaknesses from 2G and 3G,
mainly because it has to support backward compatibility. Also, since LTE con-
tains several IP-based systems, attackers can now use IP-based penetration tools
or exploit network components (e.g., DNS servers) they are more familiar with.
This would naturally increase the attack surface and undermines the overall
security. Among several other threats against Evolved Packet System (EPS) [9],
jamming or flooding the radio channels of the mobile users to cause DoS is one
of the common threats to LTE networks.

Adversarial Trends in Mobile Communication Systems 157

Initial
Access Persistence Discovery Lateral

Movement
Standard

Protocol Misuse
Defense
Evasion Collection Impact

Access from UE

SIM-based
compromised

Access from
radio access

network

Access from
partner mobile

network

Access from
inside the

operator network

Access from
operator's IP

network
infrastructure

Access from the
public Internet

Infecting UE
hardware or

software

Infecting
network

elements

Hard-to-repair
vulnerabilities

Command and
control

channels

Operator
network
mapping

CN-protocol
scanning

Target
intelligence
gathering

Internal
resource
search

UE knocking

Exploit roaming
agreements

Abusing
interworking

functionalities

Core-network
access from

compromised base
station

SS7-based
techniques

Diameter-
based

techniques

GTP-based
techniques

IP-based
techniques

Pre-AKA
techniques

Blacklist evasion

Exploit
misconfigurations
& implementation

errors

Bypass firewall

Bypass
homerouting

Downgrading

Redirection

Stealth scanning

Admin,node,
and user

credentials

User-specific
identifiers

Communication
metadata

User data

Operator-
specific

identifiers

Location
tracking

Calls
eavesdropping

SMS and IMS
interception

Data
interception

Billing frauds

DoS against
the network

DoS against a
specific user

Identity-related
attacks

Attack Mounting Attack Execution Attack Results

Malware anti-
detection

techniques

Reconnaissance

Perimeter
mapping of

network
infrastructure

Perimeter
mapping for

mobiles

Target
intelligence
gathering

Compromised
Insiders and

Human Errors

Exploit platform-
& service-specific

vulnerabilities

SIP-based
techniques

Operator
data

Fig. 2. Bhadra threat modeling framework [30]

2.3 Bhadra Framework

Bhadra is a conceptual threat and attacks modeling framework that captures
attack vectors in end-to-end mobile communication systems. Bhadra provides
a taxonomy to map attacks and threats to 2G, 3G, and 4G mobile networks,
where it describes the adversarial behaviors in terms of tactics and techniques.
For more details about Bhadra, refer to the original paper [30].

Similar to the MITRE ATT&CK framework, Bhadra’s taxonomy is arranged
as a matrix (as shown in Fig. 2). The column titles are called Tactics, and they
are essentially categories of techniques. Tactics are the attacker’s intermediate or
final goals, and techniques are the methods to accomplish those goals. Bhadra
takes inspiration for its design philosophy from the ATT&CK framework and
hence, shares several commonalities. Nevertheless, Bhadra’s taxonomy covers
techniques specific to network environment and protocols used in telecommu-
nication systems, which are missing from the ATT&CK framework. For more
complex mobile network attacks, one can use both Bhadra and ATT&CK in
conjunction. This work solely uses the Bhadra framework.

Bhadra can be used for both attack and threat modeling. While modeling,
the modeler would manually express the attack or threat as a set of tactic and
techniques pairs which is referred to as models in this paper. Depending on the
complexity of the attack, models may contain all or only a few tactics, and each
tactic selected may contain more than one technique.

158 H. Y. Chen and S. P. Rao

2.4 Attack Pattern and Graph Analysis

As network topologies are of graph-based structure, researchers have explored the
possibility of using graph analysis methods to simulate and predict the attackers’
behavior, assess risk in the network, and harden network security in, for exam-
ple, enterprise network and cyber-physical systems. The graph analysis methods
include graph algorithms, Bayesian networks, Markov models, cost optimiza-
tion algorithms like game theory, and uncertainty algorithms [46]. However, we
have not found any existing research in attack graph analysis focusing on mobile
communication networks.

Research also exists that extracts attack patterns observed with threat
modeling frameworks. In recent work, Al-Shear et al. investigated the MITRE
ATT&CK techniques associations using hierarchical clustering to represent inter-
dependencies among the techniques. These relations can help predict adversarial
behavior based on observed attacks and support threat mitigation [1].

3 Methodology

This section explains the methodology we use to collect and model attacks.
Moreover, we introduce the graph algorithms we use to associate with different
aspects of the adversarial trends.

3.1 Attack Collection and Sampling

First, through a thorough literature review, we collected different types of attacks
for modeling with the Bhadra framework. We mainly reused the broad literature
presented in Bhadra’s original paper [30]. It contains two groups of literature:
Group I includes peer-reviewed papers that describe one or multiple attacks
scenarios. Group II consists of security reports from standardization bodies (e.g.,
3GPP, GSMA) and regulatory agencies (e.g., ENISA).

Out of this pool, we used the following three criteria for sampling the attacks
for our study. (1) We selected multi-staged attacks that contain mounting, execu-
tion, and result collection stages. (2) We prioritized attacks where their descrip-
tions clearly state at least the initial access and final impact along with some
details on the attack procedures. (3) We picked attacks that cover different initial
accesses, protocols, and network components for variety. The first and second
criteria ensured that we could model the selected attacks using Bhadra as per
its threat modeling procedure. At the same time, the third criteria allowed us
to imitate a real-life scenario of an operator – where the observed attacks often
consist of a variety of attack vectors – while seeking insights from the analysis.
Our sampling yielded us 30 sources (i.e., attack papers) in total.

After the sampling, we further reviewed the selected attacks and found many
similar ones with minor variants. In such attacks, the end goals and some inter-
mediate steps were the same. However, the only varying aspect was the message
types used for attacks, such as different Radio Resource Control (RRC) proce-
dure messages in Pre-AKA techniques. We decided to count those as separate

Adversarial Trends in Mobile Communication Systems 159

attacks while modeling even though they have a partially similar pattern. This
way, we keep the graph analysis weighting more realistic as using different mes-
sage types can be seen as different paths with which an attacker can reach the
same end goals. We populated 60 attacks primarily from 30 of the sources that
we had sampled. Table 2 in the appendix lists all the attacks that we considered.

It is important to note that the mobile operators rarely discuss actual attacks
on their networks in public forums. Due to the lack of such attack data, we treat
our collection of 60 attacks as if they were observed on a single operator’s network
premise for the rest of the paper. We believe that the attacks in our collection
represent real-world scenarios (in terms of their practicality and variety), and
an actual audit of an operator’s network might yield a similar collection. This
reasonable generalization helps us communicate our observations from graph
analysis and potential defense strategies from an operator’s point of view.

3.2 Attack Modeling

From our previous threat modeling experience with Bhadra, we observed that
even with the clear technique description and examples that Bhadra provides,
people may still come up with different models given the same attack scenario.
This is because the results of any threat or attack modeling would vary based on
the expertise (domain knowledge) of the person modeling it and of the details
provided about the attack/threat. To minimize this effect, our modeling process
involved the following two stages.

1. Independent modeling: In this stage, all the authors of this paper indepen-
dently modeled all the attacks from our sample using Bhadra. While doing so,
we first understood the attack and mapped their steps to the tactical objective
as per Bhadra. We then tried to select at least one technique. Nevertheless,
in some cases, depending on the details available about the attack, we had to
select either all applicable techniques or none based on our reasoning.

2. Discussion: All the authors participated in a discussion where we jointly
reviewed the attacks from our sample. Here, when conflicts were found (e.g.,
mismatch of techniques), we discussed until all the authors were convinced
about the techniques applicable to the attack for final analysis. We found that
such discussions helped us improve the reliability of our results as they col-
lectively utilized the independent expertise of each author and compensated
for the lack of details (if any) about a specific attack.

3.3 Graph Analysis

Our goal from graph analysis is to discover common attack patterns, impor-
tance, and diversity of techniques from our modeled attacks. After reviewing
different methods, we chose graph algorithms because they had readily available
algorithms that matched goals. We explain them in detail as follows. We used
Python Networkx [12] package for our graph analysis.

160 H. Y. Chen and S. P. Rao

Common Subpaths—Association of Techniques. We derived common sub-
paths (as an attack pattern) among the attack models to understand how the
techniques are associated with each other. Networkx does not contain any read-
ily available function to calculate common subpaths among paths. Hence, we
wrote a simple python script to find common subpaths containing three to five
nodes.

Connectivity—Importance of Techniques. Researchers have used graph
connectivity to measure the communication network survivability [7]. We asso-
ciate the similar idea to quantify the importance of a technique with the loss
of average node connectivity after removing all the edges to and from the indi-
vidual node. The more average connectivity loss, the lower the possibility an
attacker would successfully finish all the tactics to finish his final goal covered
in the impact tactical category.

Following the definition [2], we calculate average node connectivity K̄ of a
graph G as the average of local node connectivity over all pairs of nodes of G:

K̄(G) =

∑
u,v KG(u, v)

(
n
2

) (1)

where KG(u, v), the local node connectivity for two non-adjacent nodes u
and v, is the minimum number of nodes to be removed to disconnect the two
nodes.

Unique Paths—Diversity of Attack Techniques. The number of unique
paths to reach a certain goal has been used to infer the diversity of attack meth-
ods an attacker can choose [18]. We are particularly interested in visualizing
the diversity of attack methods from a particular initial access point to a spe-
cific impact. Therefore, we calculate the number of simple paths between two
nodes [38] given the attack graph built from our attack models using the built-in
function in NetworkX [26].

4 Results

This section presents the graph analysis results based on the 60 attack models.
We constructed an attack graph (as shown in Fig. 3) with the Python Networkx
package.

Each node represents a technique, and each edge represents the connection
of adjacent techniques used in the same attack. The thickness of each edge
represents its weight, meaning how many times two nodes are connected in the
attack models. We calculated and presented the weight in and out of a technique
node in the figure. Also, each node is color-coded based on the number of unique
connections where the node links next.

Adversarial Trends in Mobile Communication Systems 161

Fig. 3. Attack graph of the 60 modeled attacks

Strategy 1: By visualizing basic graph analysis results, a security
analyst can identify the strong association of techniques and the highly
connected nodes as an information source to prioritize their defense.
In Fig. 3, thickest edges represent the strong association of techniques.
Similarly, the node with the highest value for the (weight-in, weight-out)
pair represents the highly connected nodes.

If Fig. 3 is treated like a real-life scenario of visualization of attacks
observed on an operator’s network, the operator’s goal is to build defense
strategies such that it either eliminate or reduce the thickest edges or
reduce the (weight-in, weight-out) of the highly connected nodes.

We now highlight some insights derived from other results and explain the
reason behind them with examples from the collected attack scenarios. Similar to
the above example, we first describe our observation and then present a potential
defense strategy.

4.1 Common Attack Patterns

Table 1 shows the common sub-paths of the modelled attacks. We observed a
strong association of techniques that are used before and after exploiting roam-
ing agreements. For example, attackers often use internal resource search or
CN-protocol scanning in the discovery phase to gain information on the target
network nodes. After initial access and discovery, attackers often misuse GTP,
Diameter, and SS7 protocols and send crafted messages to exploit their target.

162 H. Y. Chen and S. P. Rao

Since the attackers are connected to the target network through an intercon-
nection network or spoof as a partner network node, they can easily bypass
the firewall and evade blacklisting to reach their target. It is worth noting that
the initial access point and impact are not highly associated since an attacker
can access the roaming network using different techniques. Also, these core net-
work attacks can target more broad attack surfaces and lead to various types of
impact.

Another such association is the techniques used in attacks originated from
the radio access network. In these attack scenarios, threat intelligence gather-
ing is often required in the reconnaissance phase. Attackers need to gain some
knowledge on the target UE (e.g., which operator it subscribes to) and its oper-
ators’ network characteristics to find some operator-specific vulnerabilities, such
as GUTI allocation mechanism [16].

Moreover, in LTE, signal strength is not the only factor in tricking UE to
connect to the BS. An attacker might need to perform operator network mapping
by, for example, listening to the base station broadcast message that includes
frequency priority to adjust the fake BS configuration [25]. After the target UEs
connect to the fake BS, an attacker often use the UE knocking technique that
triggers the paging message by silent calls and messages to identify the location
of a subscriber or spoof other paging message content and metadata. As we
observed, Pre-AKA protocols are usually misused in radio attacks. For example,
an attacker can send an identity request to the target UE to get the IMSI that
links to identity-related attacks and location tracking. Besides, an attacker can
also craft the RRC connection message or trigger NAS Detach Procedure to
achieve denial of service or downgrading.

We observe some strong association in the attack patterns. Note that the
distribution of the technique selection may not represent the actual number
of incidents seen in the wild since we only modeled publicly available attack
scenarios mostly from academic publications. Nevertheless, these associations
can help prioritize defense deployment.

Strategy 2: Exploiting roaming agreements can be seen as a bottle-
neck that, if succeeded, could lead to a broader attack surface that
allows an attacker to exploit signaling protocols such SS7, Diame-
ter, or GTP. These protocols that do not have a secure mechanism to
verify the sender and attacker can impersonate a benign roaming partner.

In this case, the operator’s strategy would be to deploy the edge agents
(if not already deployed) and impose strict policies for any traffic coming
from the interconnection network for filtering the message content [13,32].
Authenticating the benign roaming partners would be another possible
strategy if the operators can run a public-key infrastructure.

Adversarial Trends in Mobile Communication Systems 163

Table 1. Common subpaths

of nodes Count Path

3 6 (Exploiting roaming agreements, GTP-based techniques, Bypass firewall)

5 (Exploiting roaming agreements, DIAMETER-based techniques, Bypass firewall)

5 (Internal resource search, Exploiting roaming agreements, SS7-based techniques)

5 (Exploiting roaming agreements, SS7-based techniques, Blacklist evasion)

5 (Exploiting roaming agreements, SS7-based techniques, Bypass firewall)

4 (Target intelligence gathering-R, Access from Radio Access Network, UE

knocking)

4 (Access from Radio Access Network, UE knocking, Pre-AKA techniques)

4 (UE knocking, Pre-AKA techniques, UE protection evasion)

4 (Exploiting roaming agreements, DIAMETER-based techniques, Blacklist

evasion)

4 (Internal resource search, Exploiting roaming agreements, GTP-based techniques)

4 (Operator network mapping, SIP-based techniques, Exploit misconfigurations and

implementation errors)

4 (Access from Radio Access Network, Operator network mapping, Pre-AKA

techniques)

4 5 (Internal resource search, Exploiting roaming agreements, SS7-based techniques,

Blacklist evasion)

5 (Internal resource search, Exploiting roaming agreements, SS7-based techniques,

Bypass firewall)

4 (Internal resource search, Exploiting roaming agreements, GTP-based techniques,

Bypass firewall)

3 (Target intelligence gathering-R, Access from Radio Access Network, UE

knocking, Pre-AKA techniques)

3 (Internal resource search, Exploiting roaming agreements, DIAMETER-based

techniques, Bypass firewall)

3 (Access from the public Internet, Command and control channels, UE knocking,

IP-based techniques)

3 (Infected UE hardware or software, Operator network mapping, SIP-based

techniques, Exploit misconfigurations and implementation errors)

3 (Infected UE hardware or software, Operator network mapping, SIP-based

techniques, UE protection evasion)

5 2 (Target intelligence gathering-R, Access from Radio Access Network, UE

knocking, Pre-AKA techniques, UE protection evasion)

2 (Access from Radio Access Network, UE knocking, Pre-AKA techniques, UE

protection evasion, Location tracking)

2 (Access from Radio Access Network, UE knocking, Pre-AKA techniques, UE

protection evasion, Identity-related attacks)

2 (Target intelligence gathering-R, Access from partner mobile network,

CN-protocol scanning, Exploiting roaming agreements, DIAMETER-based

techniques)

2 (Access from partner mobile network, CN-protocol scanning, Exploiting roaming

agreements, DIAMETER-based techniques, Blacklist evasion)

2 (Access from partner mobile network, CN-protocol scanning, Exploiting roaming

agreements, DIAMETER-based techniques, Bypass firewall)

2 (Access from the public Internet, Command and control channels, UE knocking,

IP-based techniques, Redirection)

2 (Access from the public Internet, Infected UE hardware or software, Operator

network mapping, SIP-based techniques, Exploit misconfigurations and

implementation errors)

2 (Access from the public Internet, Infected UE hardware or software, Operator

network mapping, SIP-based techniques, UE protection evasion)

2 (Target intelligence gathering-R, Access from the public Internet, Command and

control channels, UE knocking, IP-based techniques)

2 (Access from the public Internet, Command and control channels, UE knocking,

IP-based techniques, Exploit misconfigurations and implementation errors)

164 H. Y. Chen and S. P. Rao

4.2 Loss of Connectivity

Figure 4 shows the loss of average connectivity after removing edges to and from a
particular technique node. As shown in the figure, operator network mapping and
internal resource research, the two most commonly used discovery techniques,
have a significantly higher percentage in loss of connectivity than the rest. Our
prior network analysis experience confirms that operator network mapping and
internal resource techniques are commonly observed. These techniques help the
attackers learn information about the target node, such as IP address and open
port. The attacker then effectively uses them in the later stages of an attack,
such as lateral movement techniques.

O
perator netw

ork m
apping

Internal resource search

Exploiting platform
- and service-specific vulnerabilities

Exploiting roam
ing agreem

ents

G
TP-based techniques

U
E knocking

S
IP-based techniques

Target intelligence gathering-R

B
ypass firew

all

Pre-A
K
A
 techniques

S
S
7-based techniques

C
N

-protocol scanning

Exploit m
isconfigurations and im

plem
entation errors

Perim
eter m

apping of netw
ork infrastructure

Perim
eter m

apping for m
obiles

IP-based techniques

C
om

m
and and control channels

B
lacklist evasion

A
busing inter-w

orking functionality

R
edirection

D
IA

M
ETER

-based techniques

D
ow

ngrading

H
ard-to-repair vulnerabilities

U
E protection evasion

Infecting netw
ork elem

ents

B
ypass hom

e routing

Infected U
E hardw

are or softw
are

S
tealth scanning

M
alw

are anti-detection techniques

Target intelligence gathering

C
ore-netw

ork access from
 com

prom
ised bases station

0

5

10

15

Technique

Lo
ss

 o
f
C
on

ne
ct

iv
ity

(%
)

Fig. 4. Loss of connectivity after removing edges to and from individual technique

On the other end, malware and anti-detection techniques, target intelligence
gathering in the discovery phase, and core-network access from the compromised
base station are the ones with the most negligible loss of connectivity. This result
is also consistent with the impression we got from our reviewing and attack
modeling process since not many publicly available attacks that gain access to
core networks through compromised based stations or perform malware anti-
detection techniques were found, and target intelligence sharing is primarily
already used in the reconnaissance phase.

Adversarial Trends in Mobile Communication Systems 165

Strategy 3: An operator can use the loss of connectivity result to pri-
oritize the defense against those techniques that are more important to
attackers. In Fig. 4, the most important technique would be “operator
network mapping”. So, the operator has to deploy defense mechanisms
that hinder the attackers from mapping their network, or at worst case,
alerts them if any network-wide mapping activity is observed. It could
also imply that the operators audit their network regularly, for example,
to close any ports that are left open.

4.3 Unique Paths

Figure 5 shows the result from the unique paths calculation. From the initial
access dimension, we found that attacks from UE, radio access networks, inside
the operator network, and public Internet have more diverse paths to reach
the target impacts. The result is predictable as we did not find many attacks
involving compromised insiders and human errors, access from operators’ IP
network infrastructure, and SIM-based compromise.

Fig. 5. Number of unique paths from initial access to impact

166 H. Y. Chen and S. P. Rao

From the impact dimension, there are more unique paths to reach location
tracking, SMS and IMS interception, billing frauds, DOS-user, and identify-
related attacks. We can interpret that these impacts are relatively easy to achieve
than call or data interception since call interception is only possible in lower
generation (e.g., 2G) where the communication is not required to be encrypted.

Strategy 4: From the result of the unique path, the operator can prior-
itize their defense effort in two ways. One is to evaluate from the attack-
ers’ point of view, based on the potential threat actors’ capability to gain
initial access and their final target impacts. Another is to analyze the
operator’s own system to identify the weakest points in the network that
an attacker might gain access to and the most impacted assets. Once
focused on specific initial access or impact combination, the operator can
investigate each unique path and strengthen their defense.

5 Discussion

Our results demonstrate potential uses of the framework—to form defense strate-
gies or prioritize threats—by providing insight on the attack patterns, diversity
of attack paths given an attacker’s ability or target impact, and the importance
of techniques from a network graph viewpoint. It is important to note that the
analysis presented in this work does not provide any insight into the expected
adversarial trends in 5G. On the one hand, this limitation comes from Bhadra’s
taxonomy that covers only 2G, 3G, and 4G mobile networks. On the other hand,
since most public 5G attacks are still theoretical, we decided to limit our analysis
strictly to only practical attacks while creating our sample. Nevertheless, with a
taxonomy covering the 5G attack surface, similar analysis as shown in this work
could potentially help uncover new attack patterns. We aim to explore it in our
future work.

We sampled publicly available literature to collect various types of attacks
that are indicative of an operator’s network premises because there is hardly any
information on the attacks observed in the wild. Hence, we could only present
mostly high-level results that may seem trivial to readers with strong mobile
network backgrounds. Nevertheless, while analyzing real-world attacks, the oper-
ators would have access to intrinsic details of the security incidents (e.g., in the
form of network logs and configuration settings of their nodes). We argue that
applying the methodology presented in our work in such cases would provide
more in-depth insights. Similarly, adding more sub-techniques to Bhadra would
help add more details while modeling, offering potentially concrete insights.

Furthermore, we had to make assumptions either about missing techniques
or about specific details of attack procedures. In particular, we model recon-
naissance, discovery, and defense evasion tactics with assumptions based on our
domain expertise due to the lack of descriptions about the actual procedure in
the sources we referred to. Our sources from the attack collections are mostly

Adversarial Trends in Mobile Communication Systems 167

experiments conducted in academic lab setup or high-level reports on observed
attacks in the wild. We missed knowing how exactly an attacker would per-
form reconnaissance, discovery, and defense evasion in either case. Therefore, we
admit that some of our results may be skewed. For instance, even though oper-
ator network mapping and internal resource search are the two highest in terms
of connectivity loss, they may not be representative of real-world scenarios.

The lack of real-world attack data of the mobile communication networks
is a major barrier for academic research. Although sometimes the attacks and
lessons learned from defending them are discussed in 3GPP and GSMA meet-
ings, operators rarely share any specific data about attack incidents, even among
themselves. One of the reasons for the hesitance to openly discuss security issues
could be that operators seem to believe that any such discussions would affect
their business and reputation. Nevertheless, we argue that sharing information
about security incidents and learning from each other’s failures could be ben-
eficial. In this direction, Bhadra would provide a suitable abstraction for shar-
ing threat- or attack-related incidents. We urge that the operators utilize such
abstractions, apply a similar analysis as shown in this work, and release it in the
public domain to inculcate future research efforts.

6 Conclusion

Our work demonstrated that a conceptual framework like Bhadra establishes
a common taxonomy to describe adversarial behaviors and provides valuable
insights when combined with analysis methodologies to find relations between
different attacks. In particular, our work provides high-level insights into the
adversarial trends in mobile communication systems. Using Bhadra, we model
60 attacks that are carefully chosen as a representative sample of different kinds
of attacks on the mobile network. We analyze the modeled attacks using graph
analysis techniques to understand the importance of the techniques to attackers,
the diversity of attack paths an attacker can choose, and the common attack
patterns. We also discuss how these insights on different adversarial trends can
help the operators prioritize defense strategies. We demonstrated the potential of
Bhadra for analyzing the security posture of an operator’s network and explored
how Bhadra can help simplify the complexity of mobile network security for
security communication (such as threat intelligence sharing). Given the initial
results and the potential use of the analysis presented in this work, we hope
future research efforts can extend a similar study on a large scale and include
more diverse attacks (e.g., 5G). Also, we hope our work initiates wider adoption
of Bhadra and more collaboration on threat intelligence sharing.

Acknowledgement. The authors would like to thank Professor Tuomas Aura for
providing constructive feedback and Nokia Bell Labs for funding the research work.

168 H. Y. Chen and S. P. Rao

Appendix

Table 2. Attacks collected from different sources for modeling

Title Attack name (as per the source)

Billing Attacks on SIP-Based VoIP System [47] – SIP-based VoIP Billing Attack

Survey of network security systems to counter SIP-based

denial-of-service attacks [8]

– SIP message payload tempering

– SIP message flooding

– SIP message flow Tempering

Mobile data charging: new attacks and countermeasures [27] – Toll-free data access attack

– Stealth Spam Attack in UDP-based Services - VoIP

– Stealth Spam Attack with Malicious Link Connection

SIM cards are prone to remote hacking [22] – Remote SIM hacking

Unveiling the hidden dangers of public IP addresses in

4G/LTE cellular data networks [23]

– Data Quota Drain

– Battery Drain

Gaining control of cellular traffic accounting by spurious TCP

retransmission [11]

– TCP retransmission attacks - Usage Inflation

– TCP retransmission attacks - Free riding

On Her Majesty’s Secret Service: GRX & A Spy Agency [34] – GTP Data Session Hijacking

Analysis and mitigation of recent attacks on mobile

communication backend [29]

– Location disclosure using call setup messages

LTE and IMSI catcher myths [3] – Simple IMSI Catcher

Unblocking stolen mobile devices using SS7-MAP

vulnerabilities: Exploiting the relationship between IMEI and

IMSI for EIR access [31]

– Unblocking stolen mobile devices using SS7-MAP

Breaking and fixing volte: Exploiting hidden data channels

and mis-implementations [20]

– VoLTE Mis-implementation: Permission model mismatch

– VoLTE Mis-implementation: Direct Communication in P-GW

Massive Hack of 70 Million Prisoner Phone Calls Indicates

Violations of Attorney-Client Privilege [19]

– Illegitimate Surveillance

User location tracking attacks for LTE networks using the

interworking functionality [15]

– IMSI catcher with interworking functions

– Location disclosure using CAMEL messages

New security threats caused by IMS-based SMS service in 4G

LTE networks [42]

– IMS-based SMS - Silent SMS abuse

– IMS-based SMS - client DoS

– IMS-based SMS - SMS spoofing

– IMS-based SMS - SMS spamming towards IMS

Subscriber profile extraction and modification via diameter

interconnection [13]

– Extraction and Modification of Subscriber Profile

Diameter Security: An Auditor’s Viewpoint [24] – DoS on subscriber via S6a messages

– Location tracking via Sh User-Data-Request

Threats to packet core security of 4G networks [40] – EPC Tunnel Endpoint Identifier Thief

– GTP-based IMSI catcher

– GTP-based billing evasion - Create session Request

– Exploit Charging Gateway Function

– Connection Hijacking with GTP messages

– GTP-based DoS attack on subscribers

– GTP-based DoS attack on the operator’s equipment

– Control packets inside a user tunnel: GTP-in-GTP

SMS and one-time-password interception in LTE networks

[14]

– Diameter-based SMS Interception

GUTI Reallocation Demystified: Cellular Location Tracking

with Changing Temporary Identifier [16]

– Location Tracking Attack on VoLTE User

– Smart Tracking Attack

How Criminals Recruit Telecom Employees to Help Them

Hijack SIM Cards [10]

– SIM Swap Attack

LTEInspector: A systematic approach for adversarial testing

of 4G LTE [17]

– 4G LTE Paging Channel Hijacking

– 4G LTE Authentication Relay Attack

Touching the untouchables: Dynamic security analysis of the

LTE control plane [21]

– BTS resource depletion attack

– Blind DoS attack

Understanding How IMSI- Catchers Exploit Cell Networks

[25]

– IMSI Catcher - Communication Interception

– Basic Location Area Test

– Smart Paging Test

– Active GPS location tracking

– TAU Reject - Communication Interception

– TAU Reject - DoS

Breaking LTE on layer two [35] – LTE User Data Manipulation Attack

– Passive Layer 2 Attack - Identity Mapping Attack

MESSAGETAP: Whofis Reading Your Text Messages? [33] – MessageTap

LTE security disabled: misconfiguration in commercial

networks [5]

– Impersonation Attack based on Misconfiguration

LTE Phone Number Catcher: A Practical Attack against

Mobile Privacy [45]

– LTE Phone Number Catcher

Hidden Agendas: bypassing GSMA recommendations on SS7

networks [28]

– SS7 - Use ACN for illegitimate component

– SS7 - Modify user profile with InsertSubscriberData Message

– SS7 - Operation Cod Tag Misuse

Simjacker - Next Generation Spying Over Mobile [37] – SimJacker

IMP4GT: IMPersonation Attacks in 4G NeTworks [36] – IMPersonation Attacks in 4G Networks

Adversarial Trends in Mobile Communication Systems 169

References

1. Al-Shaer, R., Spring, J.M., Christou, E.: Learning the associations of MITRE
ATT&CK adversarial techniques. In: 2020 IEEE Conference on Communications
and Network Security (CNS), pp. 1–9. IEEE (2020)

2. Beineke, L.W., Oellermann, O.R., Pippert, R.E.: The average connectivity of a
graph. Discret. Math. 252(1–3), 31–45 (2002)

3. Borgaonkar, R., Shaik, A., Asokan, N., Niemi, V., Seifert, J.-P.: LTE and IMSI
catcher myths. BlackHat Europe (2015)

4. Chen, H.-Y.: Domain-specific threat modeling for mobile communication systems.
Master’s thesis, Department of Computer Science and Engineering, Aalto Univer-
sity School of Science and Technology, Espoo, Finland (2021)

5. Chlosta, M., Rupprecht, D., Holz, T., Pöpper, C.: LTE security disabled: mis-
configuration in commercial networks. In: Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile Networks, pp. 261–266. ACM (2019)

6. The MITRE Corporation. The MITRE ATT&CK. https://attack.mitre.org/
7. Duque-Anton, M., Bruyaux, F., Semal, P.: Measuring the survivability of a net-

work: connectivity and rest-connectivity. Eur. Trans. Telecommun. 11(2), 149–159
(2000)

8. Ehlert, S., Geneiatakis, D., Magedanz, T.: Survey of network security systems to
counter SIP-based denial-of-service attacks. Comput. Secur. 29(2), 225–243 (2010)

9. Forsberg, D., Horn, G., Moeller, W.-D., Niemi, V.: LTE Security. Wiley, Chichester
(2012)

10. Franceschi-Bicchierai, L.: How criminals recruit telecom employees to help them
hijack SIM cards (2018). https://www.vice.com/en/article/3ky5a5/criminals-
recruit-telecom-employees-sim-swapping-port-out-scam. Accessed 25 Apr 2021

11. Go, Y., Jeong, E., Won, J., Kim, Y., Kune, D.F., Park, K.: Gaining control of
cellular traffic accounting by spurious TCP retransmission. In: NDSS. Internet
Society (2014)

12. Hagberg, A., Swart, P., Chult, D.S.: Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab. (LANL),
Los Alamos, NM (United States) (2008)

13. Holtmanns, S., Miche, Y., Oliver, I.: Subscriber profile extraction and modification
via diameter interconnection. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R.
(eds.) NSS 2017. LNCS, vol. 10394, pp. 585–594. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-64701-2 45

14. Holtmanns, S., Oliver, I.: SMS and one-time-password interception in LTE net-
works. In: 2017 IEEE International Conference on Communications (ICC), pp.
1–6. IEEE (2017)

15. Holtmanns, S., Rao, S.P., Oliver, I.: User location tracking attacks for LTE net-
works using the interworking functionality. In: 2016 IFIP Networking Conference
(IFIP Networking) and Workshops, pp. 315–322. IEEE (2016)

16. Hong, B., Bae, S., Kim, Y.: GUTI reallocation demystified: cellular location track-
ing with changing temporary identifier. In: NDSS. Internet Society (2018)

17. Hussain, S., Chowdhury, O., Mehnaz, S., Bertino, E.: LTEInspector: a systematic
approach for adversarial testing of 4G LTE. In: NDSS. Internet Society (2018)

18. Idika, N., Bhargava, B.: Extending attack graph-based security metrics and aggre-
gating their application. IEEE Trans. Dependable Secure Comput. 9(1), 75–85
(2010)

https://attack.mitre.org/
https://www.vice.com/en/article/3ky5a5/criminals-recruit-telecom-employees-sim-swapping-port-out-scam
https://www.vice.com/en/article/3ky5a5/criminals-recruit-telecom-employees-sim-swapping-port-out-scam
https://doi.org/10.1007/978-3-319-64701-2_45
https://doi.org/10.1007/978-3-319-64701-2_45

170 H. Y. Chen and S. P. Rao

19. The Intercept: Massive hack of 70 million prisoner phone calls indicates violations
of attorney-client privilege (2015). https://theintercept.com/2015/11/11/securus-
hack-prison-phone-company-exposes-thousands-of-calls-lawyers-and-clients/.
Accessed 25 Apr 2021

20. Kim, H., et al.: Breaking and fixing VoLTE: exploiting hidden data channels and
mis-implementations. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 328–339 (2015)

21. Kim, H., Lee, J., Lee, E., Kim, Y.: Touching the untouchables: dynamic security
analysis of the LTE control plane. In: 2019 IEEE Symposium on Security and
Privacy (SP), pp. 1153–1168. IEEE (2019)

22. Security Research Labs: SIM cards are prone to remote hacking. https://srlabs.
de/bites/rooting-sim-cards/. Accessed 17 June 2021

23. Leong, W.K., Kulkarni, A., Xu, Y., Leong, B.: Unveiling the hidden dangers of
public IP addresses in 4G/LTE cellular data networks. In: Proceedings of the 15th
Workshop on Mobile Computing Systems and Applications, pp. 1–6 (2014)

24. Mashukov, S.: Diameter security: an auditor’s viewpoint. J. ICT Stand. 5(1), 53–68
(2017)

25. Nasser, Y.: Gotta Catch ′Em All: Understanding How IMSI-Catchers Exploit Cell
Networks. White paper, Electronic Frontier Foundation (2019). https://www.eff.
org/files/2019/07/09/whitepaper imsicatchers eff 0.pdf

26. NetworkX: Network Analysis in Python. A generator that produces lists of simple
paths (2019). https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms.simple paths.all simple edge paths.html. Accessed
25 Sept 2021

27. Peng, C., Li, C., Tu, G., Lu, So., Zhang, L.: Mobile data charging: new attacks
and countermeasures. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 195–204 (2012)

28. Puzankov, K.: Hidden agendas: bypassing GSMA recommendations on SS7 net-
works. In: Hack in the Box Conference (2019)

29. Rao, S.P.: Analysis and mitigation of recent attacks on mobile communication
backend. Master’s thesis, Department of Computer Science and Engineering, Aalto
University School of Science and Technology, Espoo, Finland (2015)

30. Rao, S.P., Holtmanns, S., Aura, T.: Threat modeling framework for mobile com-
munication systems. arXiv preprint arXiv:2005.05110 (2020)

31. Rao, S.P., Holtmanns, S., Oliver, I., Aura, T.: Unblocking stolen mobile devices
using SS7-MAP vulnerabilities: exploiting the relationship between IMEI and IMSI
for EIR access. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 1171–1176.
IEEE (2015)

32. Rao, S.P., Kotte, B.T., Holtmanns, S.: Privacy in LTE networks. In: Proceedings
of the 9th EAI International Conference on Mobile Multimedia Communications,
pp. 176–183 (2016)

33. Leong, D.P.R., Dean, T.: MESSAGETAP: Who’s Reading Your Text Messages?
(2019). https://www.fireeye.com/blog/threat-research/2019/10/messagetap-who-
is-reading-your-text-messages.html. Accessed 25 Apr 2021

34. Corelan Cybersecurity Research: On Her Majesty’s Secret Service: GRX & A
Spy Agency. https://www.corelan.be/index.php/2014/05/30/hitb2014ams-day-2-
on-her-majestys-secret-service-grx-a-spy-agency/. Accessed 25 Apr 2021

35. Rupprecht, D., Kohls, K., Holz, T., Pöpper, C.: Breaking LTE on layer two. In:
2019 IEEE Symposium on Security and Privacy (SP), pp. 1121–1136. IEEE (2019)

https://theintercept.com/2015/11/11/securus-hack-prison-phone-company-exposes-thousands-of-calls-lawyers-and-clients/
https://theintercept.com/2015/11/11/securus-hack-prison-phone-company-exposes-thousands-of-calls-lawyers-and-clients/
https://srlabs.de/bites/rooting-sim-cards/
https://srlabs.de/bites/rooting-sim-cards/
https://www.eff.org/files/2019/07/09/whitepaper_imsicatchers_eff_0.pdf
https://www.eff.org/files/2019/07/09/whitepaper_imsicatchers_eff_0.pdf
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_edge_paths.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_edge_paths.html
http://arxiv.org/abs/2005.05110
https://www.fireeye.com/blog/threat-research/ 2019/10/messagetap-who-is-reading-your-text-messages.html
https://www.fireeye.com/blog/threat-research/ 2019/10/messagetap-who-is-reading-your-text-messages.html
https://www.corelan.be/index.php/2014/05/30/hitb2014ams-day-2-on-her-majestys-secret-service-grx-a-spy-agency/
https://www.corelan.be/index.php/2014/05/30/hitb2014ams-day-2-on-her-majestys-secret-service-grx-a-spy-agency/

Adversarial Trends in Mobile Communication Systems 171

36. Rupprecht, D., Kohls, K., Holz, T., Pöpper, C.: IMP4GT: impersonation attacks in
4G networks. In: Symposium on Network and Distributed System Security (NDSS).
ISOC (2020)

37. AdaptiveMobile Security: New Simjacker vulnerability exploited by surveillance
companies for espionage operation (2019). https://simjacker.com/. https://
www.adaptivemobile.com/blog/simjacker-next-generation-spying-over-mobile.
Accessed 25 Apr 2021

38. Sedgewick, R.: Algorithms in C, Part 5: Graph Algorithms. Pearson Education,
Boston (2001)

39. Shostack, A.: Experiences threat modeling at microsoft. MODSEC@ MoDELS
(2008)

40. Positive Technologies: Threats to Packet Core Security of 4G Network. White
paper, GSMA (2017)

41. Positive Technologies: Threat vector: GTP (2020). https://positive-tech.com/
storage/articles/gtp-2020/gtp-2020-eng.pdf. Accessed 24 May 2021

42. Tu, G.-H., Li, C.-Y., Peng, C., Li, Y., Lu, S.: New security threats caused by IMS-
based SMS service in 4G LTE networks. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1118–1130 (2016)

43. Welch, B.: Exploiting the weaknesses of SS7. Netw. Secur. 2017(1), 17–19 (2017)
44. Xiong, W., Legrand, E., Åberg, O., Lagerström, R.: Cyber security threat modeling

based on the Mitre enterprise ATT&ACK matrix. Softw. Syst. Model., 1–21 (2021)
45. Yu, C., Chen, S., Cai, Z.: LTE phone number catcher: a practical attack against

mobile privacy. Secur. Commun. Netw. 2019 (2019)
46. Zeng, J., Shuang, W., Chen, Y., Zeng, R., Chengrong, W.: Survey of attack graph

analysis methods from the perspective of data and knowledge processing. Secur.
Commun. Netw. 2019 (2019)

47. Zhang, R., Wang, X., Yang, X., Jiang, X.: Billing attacks on SIP-based VoIP
systems. WOOT 7, 1–8 (2007)

https://simjacker.com/
https://www.adaptivemobile.com/blog/simjacker-next-generation-spying-over-mobile
https://www.adaptivemobile.com/blog/simjacker-next-generation-spying-over-mobile
https://positive-tech.com/storage/articles/gtp-2020/gtp-2020-eng.pdf
https://positive-tech.com/storage/articles/gtp-2020/gtp-2020-eng.pdf

Trust

Trusted Sockets Layer: A TLS 1.3 Based
Trusted Channel Protocol

Arto Niemi(B) , Vasile Adrian Bogdan Pop, and Jan-Erik Ekberg

Huawei Technologies Oy (Finland) Co. Ltd., Itämerenkatu 9, Helsinki, Finland
{arto.niemi,bogdan.pop,jan.erik.ekberg}@huawei.com

Abstract. Trusted channels are important when communication
requires end-point integrity assurance in addition to secure channel
guarantees. To facilitate adoption, trusted channel protocols are often
designed as extensions to the widely-used TLS protocol by augmenting
it with mutual attestation. We discuss the security requirements for such
protocols, and provide a survey of prior art. Then, we present a new TLS
1.3 based trusted channel protocol that can be conveniently implemented
via callback function interfaces of existing TLS libraries. Distinguishing
itself from earlier proposals, our protocol uses the latest and most secure
TLS version, requires no additional round-trips for end-point attesta-
tion, and has stronger channel bindings between TLS handshake and
attestation to prevent relay and collusion attacks.

Keywords: Trusted channel · Trusted computing · Remote
attestation · TLS

1 Introduction

A secure channel can be defined as a bidirectional communication medium that
authenticates its end-points and provides a message transmission facility with
confidentiality, integrity and freshness guarantees. End-points can establish a
secure channel by executing a secure channel protocol. One such protocol is
Transport Layer Security (TLS), defined in RFC 8446. It is the most widely-
used [15] security protocol in the Internet, where it is typically layered on top of
TCP, providing a transparent secure channel for the transmission of application
layer messages, such as HTTP, FTP or SMTP payloads [21].

A secure channel protects data in-transit, but provides no protection against
compromised end-points. In the words of Gene Stafford, “using encryption on
the Internet is the equivalent of arranging an armored car to deliver credit card
information from someone living in a cardboard box to someone living on a park
bench” [12]. This lack of end-point integrity guarantees is unacceptable in many
applications, including, for example, digital rights management, mobile wallets
or Covid-19 tracking applications. For such use cases, a critical requirement is
that the end-point software must be trustworthy, i.e. trusted to follow a certain
security policy when handling the data.

c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 175–191, 2021.
https://doi.org/10.1007/978-3-030-91625-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_10&domain=pdf
http://orcid.org/0000-0003-3118-4511
https://doi.org/10.1007/978-3-030-91625-1_10

176 A. Niemi et al.

Informally, a software component can be deemed trustworthy when it is guar-
anteed to perform the expected operations and nothing more. The guarantee is
typically established using a cryptographic proof, delivered via remote attesta-
tion—a process in which a receving component produces, for the sender, a verifi-
able statement that vouches for its trustworthiness. Vice versa, for the receiver,
getting assurance that the sending entity is well-behaved and not, for exam-
ple, susceptible to injection of malicious data or code, is equally important. A
communication channel that provides mutual attestation in addition to secure
channel guarantees is called a trusted channel [12].

While it possible to design a trusted channel protocol from scratch, it is
easier and safer to integrate attestation into a well-established secure channel
protocol such as TLS. A large number of proposals for this have been presented
in prior work. However, all these solutions suffer from at least one of the fol-
lowing disadvantages: they mandate drastic changes to the TLS protocol or its
implementation, work only with a specific kind of hardware, such as Trusted
Platform Modules (TPMs), use insufficient channel bindings, or integrate only
with an obsolete TLS version, such as TLS 1.2. Especially, the lack of strong
channel bindings can be considered a major flaw, as this leaves the door open
for relay and collusion attacks, where the operator of a compromised end-point
extracts an attestation from a valid end-point, and then presents it as its own.

In this paper, we first study and analyze previous proposals for integration of
TLS and attestation. Then, we present a new, convenient and well-argumented
design for a TLS 1.3 based trusted channel protocol. Attestations are generated
during the handshake to allow for strong channel binding and to avoid having
to run an extra attestation protocol on top of TLS. Our solution can be imple-
mented as a TLS extension, without requiring changes to the protocol spec and
can be taken into use in a TLS application with minimal code changes. Thus,
our solution upholds the TLS promise of transparent, easy-to-use security. We
conclude that our protocol seems ideal for migration of mobile agents between
secure enclaves.

2 Background

2.1 Transport Layer Security

Transport Layer Security (TLS) combines authenticated key exchange with
authenticated encryption to create a secure channel between two communication
end-points (client and server). TLS must be layered on top of a reliable trans-
port mechanism, like TCP. It is intended to provide a transparent secure channel
service for applications, as indicated by its earlier name, Secure Sockets Layer
(SSL). For example, the OpenSSL implementation provides the SSL_write and
SSL_read APIs that have similar semantics to standard write and read system
calls that are used with Unix sockets.

TLS consists of two main sub-protocols. Authenticated key exchange (AKE),
parameter negotiation and key confirmation are provided by the handshake pro-
tocol, while authenticated encryption and replay protection is provided by the

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 177

record protocol. The end result of the handshake protocol are two sets of symmet-
ric application data protection keys (one for each direction), with the guarantee
that only an end-point that successfully participated in the AKE can compute
the keys.

TLS has a long, checkered history of attacks and reactive fixes. Some, but
not all, of the attacks can be mitigated within the same protocol version by
disabling certain features or by sending additional extension messages. However,
it is always more secure to switch to a newer version that has built-in protec-
tions for the attacks. Indeed, in March 2021, the IETF formally deprecated TLS
versions 1.0 and 1.1 due to lingering vulnerabilities [18]. Even version 1.2 is not
secure by default. It supports insecure cryptography such as the CBC mode
of encryption, which is vulnerable to padding attacks against the MAC-then-
Encrypt construction (e.g. Lucky Thirteen [1]) or RSA key transport, which is
not forward secure and is vulnerable to attacks against RSA PKCS #1.5 padding
(e.g. the Bleichenbacher attacks such as ROBOT [9]). Furthermore, TLS 1.2 sup-
ports insecure protocol features such as renegotiation [20] or compression [19,
pp. 158–162], and transmits authentication messages in plaintext. The latter
represents a privacy risk, as these messages typically bind a public key value
to an identifier such as a DNS name or device serial number. Only the latest
1.3 version [23] can be regarded as secure by default. In TLS 1.3, most of the
handshake is encrypted, only secure cryptographic primitives are allowed, and
the protocol flow has been optimized for better latency.

2.2 Trusted Computing

Trusted computing1 is an umbrella term that refers to technologies for establish-
ing trust in computer systems [3]. All trusted computing solutions depend on
a trusted computing base (TCB)—the part of the system that is uncondition-
ally trusted without proof, and whose failure would compromise the security of
the system as a whole [3,17]. The TCB usually consists of both software and
hardware components. These components work together to create one or more
secure execution environments (SEEs) [26], in which it is possible to execute
programs under certain isolation guarantees. Especially, an SEE protects the
code and memory of the program from the operating system and from applica-
tions running outside the SEE. Other key features typically provided by SEEs
are secure storage for secrets and the ability to convince remote verifiers. There
are three kinds of SEEs deployed in practice: external security elements such as
hardware security modules (HSMs), embedded ones such as Trusted Platform
Modules (TPMs) [25] and SIM cards, and processor secure environments such
as Intel SGX or ARM TrustZone [3].

1 In the cloud context, the term confidential computing is sometimes used instead of
trusted computing.

178 A. Niemi et al.

2.3 Attestation

In trusted computing, attestation refers to a process in which a target environ-
ment, or a prover, with the help of a TCB-backed attesting environment, pro-
duces a proof regarding some of its locally observable properties, and presents
the proof to a verifier [25,27]. The properties that are covered by the proof
are called attestation claims and the proof itself is called attestation evidence.
The attestating environment vouches for the attestation claims by signing them
with its secret key. To validate the attestation evidence, the verifier checks the
signature, and then the attestation claims. If the signature is valid, and the
attestation claims match the verifier’s attestation policy, the verifier accepts the
attestation evidence. To ensure that the attestation evidence is fresh, the verifier
typically initiates the attestation process by sending an attestation challenge to
the prover. An attestation evidence is then considered valid only when the same
challenge is included in the attestation claims.

The attesting environment must be in the position to verify the properties
of the target environment that will be listed in the attestation evidence. This
can be accomplished with a process called measuring, which typically involves
hashing, for example, the target environment’s code. Analogously, the verifier
must be in a position to compare the attestation claims against some expected,
known-good values.

Attestation evidences are typically transmitted in the form of X.509 cer-
tificates. These are digitally signed documents that list the properties of the
target environment, such as the hashes of the application binary and the oper-
ating system kernel. The attesting environment indicates that it vouches for
these properties by signing the certificate with its secret key. Such certificates
are called attestation certificates, to differentiate them from standard public-key
certificates used e.g. in TLS end-point authentication. Note that an attestation
certificate may, and in practice usually does, contain a public key.

The desired end-effect of attestation is that the verifier program receives a
valid proof that a prover application is trustworthy. This requires the prover
application to provide evidence that it is running in a trustworthy SEE. The
SEE, in turn, needs to prove that it is secured by a trustworthy TCB. The TCB
component that produces evidence about the rest of the TCB and the SEE is
called a root-of-trust. The root-of-trust needs to be trusted by the verifier. One
way to establish the trust is to pre-provision authentic copies of the root-of-
trust’s public keys to potential verifiers.

2.4 Channel Binding

A secure channel protocol must authenticate its end-points to ensure that no
man-in-the-middle (MITM) attacker gets access to the channel’s payload pro-
tection keys. Successful end-point authentication is not enough, however: the
protocol must also ensure that the entity that gets access to the payload pro-
tection keys is the same entity that was authenticated [4,16]. Similarly, when
combining two security protocols—such as a remote attestation and a secure

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 179

channel protocol—it must be guaranteed that only the end-point of the first
protocol can get access to the session keys of the second protocol. The pro-
cess of establishing that no MITM exists between the two end-points that have
authenticated in one protocol (called the inner protocol), but are using a secure
channel provided by another, outer protocol, is called channel binding. The stan-
dard technique for channel binding is to compute a unique identifier for the outer
protocol, and bind it to the run of the inner protocol. The unique identifier is
called, following the terminology of [30], channel bindings.

Channel binding can be accomplished either by including the channel bind-
ings as an extra input in the derivation of the secure channel keys, or by mandat-
ing the participants of the first protocol to verify that they have independently
computed matching channel bindings for the secure channel. We call the for-
mer approach implicit channel binding and the latter explicit channel binding.
Implicit channel binding is used e.g. in TLS 1.3, to bind the end-point authenti-
cation of the handshake protocol to the record protocol session by including the
handshake transcript, which covers the authentication messages (Certificate and
CertificateVerify) in the derivation of the record protection keys (Section 7.1 of
[23]). Explicit channel binding is useful when converting a secure channel to a
trusted channel protocol, by requiring the end-points to successfully participate
in a separate remote attestation protocol as a precondition for establishing the
secure channel.

RFC 5056 defines two types of channel bindings: unique channel bindings that
identify the secure channel uniquely in time, and end-point channel bindings that
identify the authenticated channel end-points, without identifying the channel
uniquely in time [30]. For TLS 1.2 and below, RFC 5929 [2] specifies the tls-
unique unique channel bindings. The tls-unique is a byte sequence consisting of
the first Finished message sent in the TLS connection. TLS Finished messages
contain a MAC of the previously exchanged messages, including authentication
messages. However, tls-unique is not defined for TLS 1.3 [23, Appendix C.5.])
and it is vulnerable to the triple handshake attack, violating the promise that
tls-unique uniquely identifies the TLS connection [8]. The TLS 1.3 specification
[23, Section 7.5.] recommends instead to use the key material export mechanism
(TLS-Exporter) [22] to derive channel bindings. TLS-Exporter is a mechanism
for deriving new, handshake-specific secret key material from a label and a base
secret. The base secret can be either the early exporter master secret (affected by
the ClientHello message and possible PSK value) or the exporter master secret
(affected by the handshake messages from ClientHello to server Finished) and
the ECDHE shared secret. TLS libraries typically provide an API for deriving
the exporter values, making it easy to use TLS-Exporter for derivation of channel
bindings.

180 A. Niemi et al.

3 Survey: Combining TLS and Attestation

3.1 Design Considerations

The designer of the trusted channel protocol faces two critical questions: when
to generate the attestation evidence and how to link the attestation to the TLS
session. Attestation can be generated either before, during or after the TLS
handshake. We call these approaches pre-handshake, intra-handshake and post-
handshake attestation. Of these, post-handshake is the simplest to implement,
but requires a full round-trip to perform attestation over the negotiated TLS
record layer connection. The pre-handshake approach makes it hard to bind the
attestation evidence to a specific handshake, risking replay and relay attacks.
The intra-handshake approaches seems the most promising from a security and
efficiency point-of-view. In this section, we describe a few selected examples of
each approach from the literature.

Without channel binding between attestation and the TLS connection a relay
attack is possible, as discussed for the first time by Goldman et al. [13]. In such
an attack, a compromised end-point receiving an attestation challenge over a
TLS connection can open a separate TLS connection to forward the challenge to
a valid end-point. Then, the compromised end-point can present the attestation
evidence returned by the valid end-point as its own to attest successfully over
the first TLS connection. To prevent relay attacks, Goldman et al. [13] proposed
to include the TLS end-point authentication certificate among the attestation
claims. This binds the attestation to the long-term TLS end-point identity of
the prover. However, this approach has drawbacks, discussed in subsequent work,
such as [12]. First, it does not bind the attestation to the current TLS connection,
leaving the door open for replay attacks. Second, the solution requires the prover
to have a distinct TLS end-point identity (such as a DNS name) and CA-signed
TLS end-point certificate. Third, if the attacker controls both a compromised
and a valid end-point, he can perform a collusion attack by extracting the TLS
end-point keypair from the valid end-point and using it in the compromised end-
point—this makes attestation evidence of the valid end-point look valid even
when it is actually presented by the compromised end-point. Clearly, channel
binding between TLS end-point identity and attestation is insufficient for trusted
channel establishment.

3.2 Proposals with Pre-handshake Attestation

Knauth et al. [14] present a trusted channel protocol between two enclaves. They
embed SGX attestation evidence into a TLS end-point authentication certificate.
The prover enclave creates a new TLS end-point authentication keypair, called
RA-TLS, when the enclave is launched. A hash of the public key is included in
the attestation claims. The quoting enclave then signs the claims to produce the
attestation evidence. Next, the enclave requests a TLS authentication certificate
for RA-TLS, embedding the attestation evidence in a custom X.509 extension.
The certificate can be either CA-signed or self-signed with SGX as the trust root.

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 181

The certificate is re-generated periodically to keep the attestation fresh. When
establishing a TLS connection with the verifier, the prover sends the certificate
in the standard TLS Certificate handshake message. The attestation extension
can be verified in the certificate validation callback offered by most TLS libraries.
This makes the solution especially convenient for verifiers. However, the attesta-
tion evidence is not bound to a specific handshake, and the attestation certificate
may be used in multiple handshakes, risking replay and collusion attacks.

The pre-handshake approach is also used by Walsh et al. [29], whose aim
is to replace PKI-based authentication with attestation-based authentication
for microservices. In contrast to [13], Walsh et al. include the public key of
the ephemeral (EC)DH keypair, used in the key exchange portion of the TLS
handshake, in the attestation claims. This decreases the risk of replay attacks,
provided that the (EC)DH public key is used for only one connection, although
the paper proposes to generate a new key pair only when connecting to a peer for
the first, and to reuse the key after that, as an optimization. Collusion attacks
may still be possible, especially if the ECDH keypair is cached, as the attestation
is bound only to the ECDH key, but not to the handshake itself. The claims are
exchanged over the established TLS connection, meaning that an extra round-
trip is needed for mutual attestation.

3.3 Proposals with Intra-handshake Attestation

An example of the intra-handshake approach is the work of Gasmi et al. [12].
The authors propose a deeply modified TLS 1.0 handshake that relies on RSA
key transport, where the RSA decryption key is bound to a specific end-point
configuration (attestation claims) and is fully confined to the TCB, which in this
case is the TPM module. Only the TCB can compute the record protection keys
and allows them to be used only when the end-point configuration is unchanged.
The solution is rather complex, and requires major modifications to the TLS
protocol and its implementation. For example, because the handshake messages
are sent unencrypted in TLS 1.0, an additional exchange of public attestation
evidence encryption keys is performed using ClientHello and ServerHello exten-
sions. In addition, the solution offers no forward security due to the use of RSA
key transport, and is tightly bound with TPMs, making it hard to reuse with
other kinds of SEE, such as enclaves.

The proposal of Yu et al. [31] also supports intra-handshake attestation,
although the authors are not explicit about whether attestation evidence should
be generated before or during the handshake. The main issue in their proposal
is that they do not seem to include a handshake-specific challenge, or even a
nonce, in the attestation claims. Thus, their protocol is vulnerable to simple
relay attacks. Although Yu et al. claim that their protocol is compliant with
the TLS 1.1 specification, they send attestation evidences as extra messages
during the handshake, while TLS only allows extra messages if they have been
registered with IANA, which is not the case here. Second, sending attestation
evidences during the handshake in TLS 1.2 and below means that they are sent
in plaintext, possibly leaking privacy-sensitive data to eavesdroppers.

182 A. Niemi et al.

3.4 Proposals with Post-handshake Attestation

The benefit of post-handshake attestation is that it requires no changes to the
TLS protocol or its implementation. The designers of two protocols used in prac-
tice, the Posture Transport Protocol over TLS (PT-TLS) [24] and Industrial
Data Space Communication Protocol (IDSCP) [28] have chosen this approach.
In PT-TLS, the TLS connection is established first, and the posture (a form of
attestation evidence) is transmitted as application data over the connection. To
prevent relay and collusion attacks, PT-TLS proposes to include the tls-unique
channel bindings in the attestation claims. However, as noted in Sect. 2.1, this
only works for TLS 1.2 and is vulnerable to the triple handshake attack. IDSCP
is similar, but uses a hash of verifier’s TLS authentication certificate and a nonce,
transmitted over the TLS connection prior to attestation, as the channel bind-
ings. This results in the same problem as in [13], namely, that attestation is
bound only to the end-point identity, and not to the secure channel instance.
A collusion attack against IDSCP was presented by Wagner et al. [28]. In their
attack, a compromised end-point first establishes a TLS connection with the ver-
ifier who, at this point, cannot detect that the other end-point is compromised.
The compromised end-point stores the verifier’s TLS authentication certificate
from the handshake and receives the verifier’s nonce over the established TLS
connection. Finally, it sends the verifier’s authentication certificate and the nonce
as attestation challenges to a valid end-point on the same device. The returned
attestation thus has the right channel bindings, and will be deemed valid by the
verifier, even though it was generated for an end-point that is not a participant
in the current TLS session. Both PT-TLS and IDSCP require two round-trips
over the TLS connection to perform the mutual attestation.

An example of an academic protocol that uses post-handshake attestation
is the proposal of Aziz et al. [6]. After the initial TLS connections, the end-
points derive fresh AIK (attestation signing) keys and certificates. A “unique
identifier” from the prover’s TLS authentication certificate and a nonce from its
hello message are included in the AIK certificate as channel bindings. During
the remote attestation phase, both parties exchange additional nonces, that are
to be included in the attestation claims. The claim are signed using the AIK
key. One possible weakness this approach is that the channel bindings for the
AIK key are both over-the-wire in plaintext. When combined with a successful
insider attack that extracts the long-term TLS private key of a valid end-point,
a relay attack becomes possible. Another interesting feature in their proposal is
the reuse of the TLS record protection key as a MAC key to protect the remote
attestation messages. Reusing a key for two different purposes violates the key
separation principle, which is considered important for security, see e.g. [7, p.
33]. For this reason, most TLS libraries do not provide an API for extracting
the record protection key, making the proposed solution somewhat inconvenient
to use. Finally, like [12], the authors present their protocol as a TPM-specific
trusted channel solution.

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 183

3.5 Summary and Conclusions

Fig. 1. Comparison of the surveyed trusted channel protocols from [6,12–14,24,28,29].

The results of our survey are summarized in Fig. 1. From our study, we deduce
the following lessons for the design of a TLS-based trusted channel protocol:

– To prevent relay and collusion attacks, the attestation claims should contain
channel bindings of the TLS handshake that is used to establish the trusted
channel. It is not enough to tie attestation to a long-term end-point identity
keypair. The pre-handshake approach is hard to use securely, since it is not
possible to include a unique channel bindings in the attestation claims before
the handshake has started.

– To minimize the round-trips, it is best to generate and present the attes-
tation evidences during the TLS handshake, i.e. to use the intra-handshake
approach.

– The tls-unique channel bindings should not be used, as tls-unique is only
defined for TLS 1.2 and below and is vulnerable to attacks.

4 Trusted Sockets Layer Protocol

4.1 Requirements

Our goal is to establish a trusted channel between two end-points on different
host devices. The end-points are supported by TCB-backed modules. These mod-
ules (attesting environments) must be able to measure the end-points (provers),

184 A. Niemi et al.

generate attestation evidences and to verify each other’s attestation evidences.
The last requirement can be fulfilled with e.g. a public key infrastructure (PKI),
where each attesting environment has a public key certificate signed by a com-
mon certification authority (CA). The attesting environment then uses the cor-
responding private key to sign attestation claims.

We have the following security requirements:

– SR1 (Secure channel guarantees). Confidentiality, integrity and freshness
of the exchanged application data and authentication of the channel end-
points.

– SR2 (End-point trustworthiness). The secure channel end-points must
exchange and verify attestation evidences. Based on the attestation claims,
each end-point can decide whether the other end-point fulfills its security pol-
icy requirements. No TLS connection shall be established without successful
attestation.

– SR3 (Channel binding). Each attestation evidence must be valid only in
a specific TLS connection, and only if it has been generated for the sending
end-point in the connection, in order to prevent relay and collusion attacks.

– SR4 (Privacy). The attestation claims and the end-point identities must
not be revealed to unauthorized third parties.

– SR5 (Forward secrecy). Disclosure of long-term keys should not lead to
compromise of previous protocol runs.

4.2 Threat Model

We assume the attacker has similar capabilities as in the Dolev-Yao model [11].
He can, for example, read or modify transmitted data, replay old messages or
relay messages to another end-point. Furthermore, we assume that the attacker
may have both compromised and uncompromised end-points at hand, and may
have administrator level access to valid end-points. This means the attacker
can extract long-term secrets, such as TLS authentication keypairs of that end-
point without modifying its code or state and thus without being detectable
via attestation. Such an attack is called insider attack by Wagner et al. [28].
Critically, however, we assume that the attacker cannot extract or use keying
material of a live handshake or session from an uncompromised end-point. This
kind of attack could be prevented by running the TLS end-point in a secure
enclave, as in [5]. However, this requires hardware support for enclaves, such as
Intel SGX, and reduces performance. We do not take this approach here, but
instead allow the TLS software to run as normal untrusted code, and execute
only attestation generation and verification within an SEE or in the TCB.

The goal of the attacker is to get access to confidential data or to cause
transmitted data to be processed against the security policy of the sender, by
compromising the recipient’s platform. We assume that attesting environment is
either an SEE or part of the platform’s TCB. Thus, while a compromised end-
point may be under the control of the attacker, attestation evidences generated
for the compromised end-point will be rejected by all uncompromised end-points.

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 185

Furthermore, we assume that the endpoints have a secure channel with their local
attestation modules.

4.3 Design

We call our protocol Trusted Sockets Layer (TSL) to highlight the some of its
critical features. No modifications are needed to the TLS protocol specification:
all extra functionality can be accomplished using protocol extension messages
and implemented with callbacks provided by the TLS library.

The main features of our trusted channel protocol design are:

– As the underlying secure channel protocol, we use TLS 1.3. This avoids the
multitude of security vulnerabilities associated with earlier TLS versions, pro-
vides privacy protection for the attestation, because handshake messages after
ServerHello are encrypted in TLS 1.3.

– We use the intra-handshake attestation approach, i.e. attestation evidences
are generated and exchanged during the handshake. This optimizes the pro-
tocol execution time as no additional round-trips are needed for attestation,
and turns TLS 1.3 into a single, convenient trusted channel protocol without
requiring an extra attestation protocol on top.

– All functionality we add on top of standard TLS 1.3, i.e. the generation
and verification of attestation evidences, is performed in the TLS library
callbacks. This allow us to conform to the TLS specification and use existing
TLS implementations without modifications.

– Channel bindings are derived using TLS-Exporter when possible and included
in the attestation claims. We use explicit channel binding, where both ends
are required to verify that they have computed and attested the same channel
bindings.

The next section describes our protocol in more detail.

4.4 Protocol Flow

The flow of our protocol is shown in Fig. 2. The figure shows the differences of
our protocol compared to standard mutually authenticated TLS 1.3.

TLS 1.3 Configuration. We require that an end-point must generate a new
ECDH key pair for every handshake attempt. Caching of ECDH key pairs is not
allowed. It is forbidden to send early 0RTT data, as this will not be protected
by attestation. Also, session resumption is not allowed; each handshake must
be a full one with mutual attestation. This is because in our threat model, the
attacker may have access to long-term secrets of an uncompromised (from the
attestation point-of-view) platform, including session tickets.

186 A. Niemi et al.

REE

Endpoint

REE

ClientHello(A�ReqExts)

ServerHello, EncryptedExtensions(A�ReqExtT), Cer�ficateRequest

Cer�ficate(A�Ev(TCBT, EndpointT,cT)), Cer�ficateVerify, Finished

Cer�ficate(A�Ev(TCBS,EndpointS,cS)) Cer�ficateVerify, Finished

Trusted Sockets LayerInternal IO Internal IO

SEE/TCB SEE/TCB

A�esta�on
module

A�esta�on
module

A�Ev(TCBT, EndpointT,cT)

A�Ev(TCBS,EndpointS,cS)

Verify
A�Ev

Verify
A�Ev

Endpoint

cT

A�Ev(TCBT,EndPointT,cT),
cT

’,cS

A�Ev(TCBS,EndpointS,cS),
cS

’

Measure

Measure

Trusted channel

Protected applica�on data

TCP/IP

Fig. 2. TLS 1.3 handshake with mutual authentication and attestation

Parameter Negotiation. The first difference compared to standard TLS 1.3
is the attestation request extension (AttReqExt in Fig. 2), sent by the client and
the server in the ClientHello and EncryptedExtensions messages, respectively.
This extension serves two purposes: it is a demand for the remote end-point to
attest itself and it indicates the verifier’s attestation policy. The latter enables
the prover to choose the attestation claims so that they may fulfill the verifier’s
policy. The policy may also indicate e.g. the roots-of-trust whose signatures the
verifier is willing to accept. The extensions are obligatory in our protocol. If
either extension is missing, the receiver must terminate the handshake with a
fatal alert.

Generation of Attestation Evidence. End-points are required to gener-
ate attestation certificates during the handshake. The certificates must con-
tain a public key (PKTLS) and the attestation claims, one of which must be a
handshake-specific challenge (cS or cT in Fig. 2). The other claims depend on the
attestation policy and the specific TCB hardware. Typically, both claims about
the endpoint and the TCB are included in the attestation evidences (AttEv in
Fig. 2). The challenge cS , to be included in the client’s certificate, must be gen-
erated using TLS-Exporter, with the exporter master secret as the base secret.
For cT , there are two alternatives: the challenge can be either the SHA-256 hash
of the ClientHello handshake message or derived with TLS-Exporter, but now
with the early exporter master secret as the base secret. These two alterna-
tives are equivalent security-wise, as both depend on the ClientHello hash, but
which challenge is easier to compute depends on the TLS library implementa-
tion. To generate the attestation evidence, the end-point passes the challenge,
and optionally the verifier’s attestation policy, to the attestation module. The
evidence is then inserted into a X.509 public-key certificate within a custom

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 187

X.509 extension. The certificate must be freshly signed. The certificate is trans-
mitted in the standard Certificate handshake message. Extra certificates, e.g. a
certificate chain leading up to an attestation root-of-trust may be included as
usual. For end-point authentication, it is often possible to rely entirely on attes-
tation. However, if the end-point also has a distinct network-level identity, such
as a DNS name, CA-signed certificate may also be needed. In the latter case,
two certificate chains need to be sent, but the TLS authentication public key
PKTLS should be the same in both leaf certificates, to confirm that both the
attestation and the CA-signed certificate were created for the same end-point.
Even when end-point authentication relies on attestation, we still require the
attestation certificate to contain a public key PKTLS in order to comply with
the protocol specification. The private counterpart of PKTLS must be used to
sign the CertificateVerify message.

Verification of Attestation Evidence. After receiving a Certificate mes-
sage, the end-point must invoke a trusted verification module to validate the
certificate. To verify the challenge in the attestation claims, the end-point must
independently compute a reference challenge (c′

S or c′
T), which should be passed

as a parameter to the verification module. The attestation module must at least
verify the signature of the certificate and that the included challenge matches
the reference value. If case of validation failure, the end-point must immedi-
ately abort the handshake and send a fatal alert message. Thus, the handshake
results either in a fatal alert or in the establishment of a trusted channel. It
should be noted that the generation and verification of attestation evidence is
always dependent on the underlying TCB hardware. We leave the binding of our
protocol with specific TCB hardware for future work.

4.5 Implementation

Our protocol has been designed so that the extra steps compared to standard
TLS 1.3 can be implemented entirely with callback functions offered by widely-
used TLS libraries. For sending and processing custom client and server param-
eter negotiation extensions such as AttReqExt in Fig. 2, most TLS libraries pro-
vide standard APIs. The attestation evidences and attestation certificates can
be conveniently generated in the certificate selection callbacks offered by most
TLS libraries. The challenges are easy to compute as well, as most TLS libraries
provide an API for TLS-Exporter, as well as a mechanism for computing the
ClientHello hash. All TLS libraries provide certificate validation callbacks, that
can be used to perform custom validation steps. These callbacks can be used to
send the attestation evidence to the attestation module for verification.

Proof-of-Concept. We first implemented our protocol using our proprietary,
size-optimized, stand-alone TLS 1.3 library. The code footprint of our library can
be as low as 20 KB for some configurations, and a fully-featured build for x86

188 A. Niemi et al.

results in a code size of around 60 KB. In addition, there are no dynamic mem-
ory allocations within the library. This makes the library ideal for constrained
environments, including secure enclaves or TrustZone-style trusted applications.
Augmenting the library with mutual attestation only required the addition of two
custom callback functions for certificate selection and validation to the existing
client and server applications. We are currently working towards an open source
release of our TLS library, including the TSL proof-of-concept code.

To evaluate the effort of implementing our protocol with a well-known TLS
library, we wrote a second proof-of-concept using OpenSSL. Here, the attestation
request extensions can be set and processed using the SSL_CTX_add_custom_ext
API. It was not possible to use the SSL_CTX_set_cert_cb API to generate the
attestation evidence, as the callback is called too early, before the TLS-Exporter
base secret is available. Instead, we used the SSL_CTX_set_msg_callback API,
which provides much more flexibility. The message callback can be used to
compute the challenges and to generate the attestation evidence and certifi-
cate. Given that OpenSSL does not provide the possibility to compute the early
exporter master secret without using early data, the TLS-Exporter is used only
for the challenge cS that is included in the client’s attestation evidence. As the
server’s challenge (cT), we used the ClientHello hash. The implementation of
the message callback is mostly the same on both end-points, the only difference
lies in the specific hanshake state where the challenges are computed or where
the certificate is set. The validation of the attestations is done by comparing the
received challenge against the self-computed challenge in the message callback.
In OpenSSL, the additional custom validation code of the X509 certificates can
be set using the SSL_set_verify API.

4.6 Security Analysis

The security requirements of Sect. 4.1 are fulfilled by our protocol as follows:

– SR1 (Secure channel guarantees). Our protocol augments the TLS 1.3
handshake in two ways. First, we use the TLS 1.3 protocol extension mecha-
nism (Section 4.2. of [23]) to send and process the attestation requests. Sec-
ond, attestation evidences are added into X.509 public-key certificates within
a custom X.509 extension. This extension provides extra inputs to certifi-
cate verification, but does not otherwise change the validation process. More
specifically, we add an extra step (verification of attestation evidence) to
the certification path validation algorithm of RFC 5280 [10], as allowed by
Section 6.2. of the RFC 5280.

– SR2 (End-point trustworthiness). Since we perform mutual attestation
as part of the handshake and require the verifier to terminate the handshake
with a fatal alert when it fails to verify the received attestation, no secure
channel can be established without mutual trustworthiness guarantees.

– SR3 (Channel binding). We claim that the challenges included in the
attestation claims strongly bind each attestation evidence to the current
handshake. First, we consider server-side relay and collusion attacks. Assume

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 189

that the attacker controls a compromised server-side end-point (S1) and an
uncompromised one (S2). A ClientHello (CH) message is sent by target client
(C) to S1. In TLS, the CH message includes a unique, unpredictable nonce
(client random). Thus, the server’s attestation evidence, including the CH-
dependent challenge (cT in Fig. 2) among its claims, is valid only in a hand-
shake that includes this specific CH message. Now, S1 may relay the CH to S2,
which sends back attestation evidence in the Certificate message. However,
this message is encrypted with handshake keys. Decryption would require
the attacker to get access to the private ECDHE key of either C or S2, but
this is not possible: according to our threat model, the attacker may have
administrator-level access to S2, and be able to extract the end-point’s long-
term secrets, but is unable to extract the handshake-specific secrets such as
the handshake keys or S2’s ECDH private key. The attacker may try to switch
the ECDHE public key in CH with its own, but this affects the value of the
challenge cT included by S2 in the attestation evidence so that it will not
match the reference challenge c′

T computed by C. Thus, it not possible for
the attacker to get access to a server-side attestation evidence that will be
deemed valid by C. Next, we consider the client-side. The challenge cS is influ-
enced by the handshake messages up to and including server Finished, but
also by the handshake secrets. This makes the challenge not only specific to a
single handshake (as in the case of the server challenge), but also confidential,
i.e. visible only to the end-points of the handshake, making relay and collusion
attacks even harder against server-side verifiers. Replay attacks are prevented
on both sides because the challenges are affected by handshake-specific values
chosen or otherwise influenced by the verifier.

– SR4 (Privacy). Privacy of the attestation evidences and the TLS end-point
identities against eavesdroppers is provided by standard TLS 1.3 handshake
message encryption. A compromised client can still receive the server’s cer-
tificate message by initiating a handshake with the server. This is caused by
a chicken-and-egg problem, also present in the TLS 1.3 protocol: one end-
point must authenticate and attest itself before the other. Privacy of the
client side is stronger, because the client will only send its certificate after
it has successfully authenticated and attested the server. For attestation pri-
vacy, this asymmetry is a feature of the intra-handshake attestation gener-
ation approach. The benefits of the intra-handshake approach still outweigh
the disadvantage, especially since a similar asymmetry exists in the secu-
rity requirements of many use cases. For example, in credential injection, it is
typically more important to avoid injecting a secret to a compromised (server-
side) device than to ensure that a credential comes from an uncompromised
(client-side) source.

– SR5 (Forward secrecy.) Since TLS 1.3 only offers forward-secure cipher-
suites, and re-using an ECDHE key pair for multiple handshakes is not
allowed, the only long-term secret that the attacker may try to compromise
is the TLS end-point authentication private key. But this is not useful (i.e.
cannot be used to establish a trusted channel) without a valid attestation,
and the TCB’s attestation signing key is secure by definition.

190 A. Niemi et al.

5 Conclusions and Further Work

In this paper, we have presented a TLS 1.3 based trusted channel protocol called
Trusted Sockets Layer (TSL). We have shown how our protocol fulfills the secu-
rity requirements of a trusted channel, is secure against relay and insider attacks,
and can be easily implemented with callback functions, without modifying TLS
library code. We believe our protocol has wide applicability in domains where
trusted communication is required. This includes, for example, key injection,
digital rights management, IOT device-to-device communication, collection of
privacy-sensitive data, etc. In future work, we plan instantiate our protocol with
TPM-based attestation, and to use it to migrate mobile agents between secure
enclaves.

References

1. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: breaking the TLS and DTLS
record protocols. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy, pp. 526–540, May 2013

2. Altman, J., Williams, N., Zhu, L.: Channel bindings for TLS. RFC 5929, July 2010
3. Asokan, N., et al.: Mobile trusted computing. Proc. IEEE 102, 1189–1206 (2014)
4. Asokan, N., Niemi, V., Nyberg, K.: Man-in-the-middle in tunnelled authentication

protocols. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security
Protocols 2003. LNCS, vol. 3364, pp. 28–41. Springer, Heidelberg (2005). https://
doi.org/10.1007/11542322 6

5. Aubling, P.L., et al.: TaLoS: secure and transparent TLS termination inside SGX
enclaves. Technical report, Department of Computing (2017)

6. Aziz, N., Udzir, N., Mahmod, R.: Extending TLS with mutual attestation for
platform integrity assurance. J. Commun. 9, 63–72 (2014)

7. Barker, E.: NIST Special Publication 800–57: Recommendations for Key
Management: Part I - General, May 2020. https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-57pt1r5.pdf

8. Bhargavan, K., Lavaud, A.D., Fournet, C., Pironti, A., Strub, P.Y.: Triple hand-
shakes and cookie cutters: breaking and fixing authentication over TLS. In: Pro-
ceedings of the 2014 IEEE Symposium on Security and Privacy. IEEE, March 2014

9. Böck, H., Somorovsky, J., Young, C.: Return of Bleichenbacher’s oracle threat
(ROBOT). In: Proceedings of the 27th USENIX Security Symposium, August 2018

10. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, May 2008

11. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29, 198–208 (1983)

12. Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond secure chan-
nels. In: Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing,
pp. 30–40. ACM Press, New York, January 2007

13. Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. Technical report, IBM Research Division (2006)

14. Knauth, T., Steiner, M., Chakrabarti, S., Lei, L., Xing, C., Vij, M.: Integrating
remote attestation with Transport Layer Security. Technical report, Intel Labs
(2018)

https://doi.org/10.1007/11542322_6
https://doi.org/10.1007/11542322_6
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf

Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol 191

15. Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Rodriguez, N.V.,
Caballero, J.: Coming of age: a longitudal study of TLS deployment. In: 2018
Internet Measurement Conference. ACM (2018)

16. Manulis, M., Stebila, D., Kiefer, F., Denham, N.: Secure modular password authen-
tication for the web using channel bindings. Int. J. Inf. Secur. 15(6), 597–620
(2016). https://doi.org/10.1007/s10207-016-0348-7

17. Martin, A.: A ten-page introduction to trusted computing. Technical report,
Oxford University Computing Laboratory (2008)

18. Moriarty, K., Farrell, S.: Deprecating TLS 1.0 and TLS 1.1. RFC 8996, March 2021
19. Oppliger, R.: SSL and TLS: Theory and Practice, 2nd edn. Artech House, Norwood

(2016)
20. Ray, M., Dispensa, S.: Renegotiating TLS. Technical report, PhoneFactor, Inc.

(2009)
21. Rescorla, E.: SSL and TLS - Designing and Building Secure Systems. Addison-

Wesley, Boston (2001)
22. Rescorla, E.: Keying material exporters for Transport Layer Security (TLS). RFC

5705, March 2010
23. Rescorla, E.: The Transport Layer Security (TLS) Protocol version 1.3. RFC 8446,

August 2018
24. Sangster, P., Cam-Winget, N., Salowey, J.A.: A posture transport protocol over

TLS (PT-TLS). RFC 6876, February 2013
25. Segall, A.: Trusted Platform Modules: Why, When and How to Use Them. Insti-

tution of Engineering and Technology, London, United Kingdom (2017)
26. Szefer, J.: Principles of Secure Processor Architecture Design. Morgan & Claypool

Publishers, San Rafael (2019)
27. Trusted Computing Group: DICE Attestation Architecture, March 2021. Rev. 0.23
28. Wagner, P.G., Birnstill, P., Beyerer, J.: Establishing secure communication chan-

nels using remote attestation with TPM 2.0. In: Markantonakis, K., Petrocchi, M.
(eds.) STM 2020. LNCS, vol. 12386, pp. 73–89. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-59817-4 5

29. Walsh, K., Manferdelli, J.: Mechanisms for mutual attested microservice commu-
nication. In: UCC 2017 Companion: Companion Proceedings of the 10th Interna-
tional Conference on Utility and Cloud Computing, pp. 59–64. ACM, December
2017

30. Williams, N.: On the use of channel bindings to secure channels. RFC 5056, Novem-
ber 2007

31. Yu, Y., Wang, H., Liu, B., Yin, G.: A trusted remote attestation model based on
trusted computing. In: Proceedings of the 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, pp. 1504–1509.
IEEE (2013)

https://doi.org/10.1007/s10207-016-0348-7
https://doi.org/10.1007/978-3-030-59817-4_5
https://doi.org/10.1007/978-3-030-59817-4_5

Preliminary Security Analysis,
Formalisation, and Verification of
OpenTitan Secure Boot Code

Bjarke Hilmer Møller1, Jacob Gosch Søndergaard1, Kristoffer Skagbæk Jensen1,
Magnus Winkel Pedersen1, Tobias Worm Bøgedal1, Anton Christensen1(B) ,

Danny Bøgsted Poulsen1 , Kim Guldstrand Larsen1 ,
René Rydhof Hansen1 , Thomas Rosted Jensen2, Heino Juvoll Madsen2,

and Henrik Uhrenfeldt2

1 Department of Computer Science, Aalborg University, Aalborg, Denmark
bjarke.h.moeller@gmail.com, jacob.gosch97@gmail.com,

kristoffer.sj111@gmail.com, magnus.w.p@inktopixels.com,

tobias.boegedal@gmail.com, {achri,dannybpoulsen,kgl,rrh}@cs.aau.dk
2 Huawei, Copenhagen, Denmark

{thomas.rosted.jensen,heino.madsen,henrik.uhrenfeldt}@huawei.com

Abstract. We perform a preliminary security analysis of the initial boot
stage for the OpenTitan silicon root of trust, including formalisation and
verification of relevant security goals using both bounded model check-
ing and (unbounded) model checking. We further report on a potential
vulnerability in the platform and show how it can be reproduced using
formal modelling and argue that co-verification would be able to detect
such vulnerabilities for high assurance projects.

Keywords: Security · Co-verification · Formal methods · Hardware
modelling

1 Introduction

Protecting sensitive operations and cryptographic keys of a system against
attackers that have physical access to the system is a fundamental and difficult
challenge in security engineering. One commonly proposed solution is to rely on
specialised hardware, e.g., a security token/key, a Hardware Security Module
(HSM) or secure storage. However, that leaves the challenge of designing and
implementing such secure hardware to be sufficiently robust against attacks,
itself a non-trivial task where even the smallest mistakes may be exploited by
an attacker [4,19,22].

Due to the critical nature and challenging threat model of security hard-
ware in general, co-verification using formal methods has been proposed in
the literature to ensure a high degree of security and assurance for such sys-
tems [3,5]. Here, co-verification is the simultaneous verification of both the soft-
ware (firmware) and the hardware of an application. While co-verification facil-
itates deep analysis for a specific system or system specification, it frequently
requires specialised tools, training, and methods [3,5,6,20].
c© Springer Nature Switzerland AG 2021
N. Tuveri et al. (Eds.): NordSec 2021, LNCS 13115, pp. 192–211, 2021.
https://doi.org/10.1007/978-3-030-91625-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91625-1_11&domain=pdf
http://orcid.org/0000-0002-9430-603X
http://orcid.org/0000-0001-9623-0748
http://orcid.org/0000-0002-5953-3384
http://orcid.org/0000-0002-5688-6432
https://doi.org/10.1007/978-3-030-91625-1_11

Preliminary Security Analysis, Formalisation, and Verification 193

In this paper we perform a preliminary security analysis of the OpenTi-
tan1 silicon Root-of-Trust (RoT) and investigate how two off-the-shelf modelling
and verification tools, CBMC and UPPAAL, can be applied not only to formal
(co-)verification of security properties but also as tools for formally modelling,
exploring, and documenting a system under design. We have chosen to use these
two tools, employing widely differing technology, based on our experience that
they complement each other well and thus cover different aspects well. The
OpenTitan boot ROM is a hardware RoT since it is immutable and it is intrin-
sically/inherently trusted as the foundation of the chain of trust2. Therefore,
finding vulnerabilities and proving correctness and security before tape-out is
crucial for avoiding costly new hardware revisions or chip respins and main-
taining brand reputation. OpenTitan is inspired and motivated by the Titan
Security Key3, Google’s secure hardware keys, and is sponsored by a consortium
of partners from industry, including Google, and academia.

We further report on a potential vulnerability in a cryptographic signing
module, called the HMAC (see next section for more details), that may leave the
entire platform compromised. We show how the vulnerability can be reproduced
and could be detected using CBMC and UPPAAL, demonstrating the usefulness
of formal modelling and co-verification even during the design stage, not least
for security critical systems that involve both hardware and software.

Contributions. In summary the contributions of this paper are (1) the first (to
our knowledge) security analysis of the OpenTitan platform; (2) steps toward
formal methods based co-verification of security properties (using off-the-shelf
tools); and (3) the discovery of a potential security vulnerability in the Open-
Titan platform.

Related Work. Although co-verification is not a novel idea it has primarily been
simulation- and testing-based [1]. As noted independently in [9,12] there is only
little published work on applying formal methods for co-verification.

In addition to UPPAAL and CBMC based approaches [7,8], the so-called
Instruction Level Abstraction (ILA) of [5,20] includes semi-automatic modelling,
heavily based on SMT solving, and mostly automatic proofs of equivalence, e.g.,
between specification and implementation. Finally, CoCo is a novel highly spe-
cialised tool for co-verification of masked programs in cryptographic modules [3].

2 OpenTitan

OpenTitan is a reference design for a silicon Root of Trust, which can be defined
as “a system element that provides services, including verification of system, soft-
ware & data integrity and confidentiality, and data (software and information)

1 https://opentitan.org/.
2 Here chain of trust is taken to mean establishing, through cryptographic certificates,
that only certified and allowed software is executed on the platform.

3 https://cloud.google.com/titan-security-key.

https://opentitan.org/
https://cloud.google.com/titan-security-key

194 B. H. Møller et al.

integrity attestation between other trusted devices in a system or network” [2].
In other words, a silicon RoT provides a way to move trust boundaries and secu-
rity mechanisms down to the silicon level. Furthermore, a RoT must provide the
means to maintain and verify the security and integrity of the onboard boot code
and firmware, as well as cryptographic material and any additional application
specific code. In the following we give a necessarily brief, high-level overview of
the OpenTitan components that are relevant to our purposes. We refer to the
OpenTitan website for further details.

OpenTitan is first and foremost concerned with the design of the hardware
components and additionally suggests how Original Equipment Manufacturers
(OEMs) can design a set of secure boot stages that provide only OEM selected
features to the loaded kernel and userspace layers. In Fig. 1 we see that OEMs,
OpenTitan calls these creators, have the responsibility of the first boot stage that
is stored in ROM, i.e., the code that runs first during boot. This ROM stage loads
the subsequent boot stage that is either a larger, less security critical, updatable
and rollback protected ROM extension stage (‘ROM EXT’ in the OpenTitan
terminology), or a product owner ’s initial kernel bootloader. In OpenTitan a
ROM extension is firmware provided by OEM’s that is executed at boot time,
e.g., in order to initialise OEM specific hardware or configurations. Either way
the ROM must make sure the system is in an uncompromised state and verify
that the subsequent stage is unmodified and cryptographically signed by a valid
key.

2.1 Hardware Components

This paper will deal exclusively with the initial ROM stage and the on-chip
peripherals required to load the boot code for the second stage of the overall boot
process. The only exception is the potential attack in Sect. 4 which may involve
an attacker entering at a later stage. The hardware components of primary
significance here are:

Flash Controller: The Flash Controller defines a common open source interface
for software to interact with different closed source flash implementations. The
flash controller is used to load the later boot stages.

Key Manager: The Key Manager manages secret keys and controls what soft-
ware and hardware components get access to them. Before the Key Manager
exposes a key to either software or hardware, it first performs a signed hash-
ing operation on the key. This way the secret keys are never given directly
to any component. Furthermore, the Key Manager derives keys as the sys-
tem progresses in booting. Depending on the current boot stage, the input
for this derivation differs. As an example, the first key (the so called Cre-
atorRootKey) is derived by combining other key material, e.g., a seed, with
information about the specific hardware configuration [15,16].

Life Cycle Controller: This component manages configuration information
regarding a chip’s current stage in its life cycle, e.g., manufacturing, develop-
ment, deployment.

Preliminary Security Analysis, Formalisation, and Verification 195

Fig. 1. Diagram showing a proposed boot stack on OpenTitan (source [17]). In the
diagram “U mode” refers to user mode, “M Mode” to machine mode, and “BL{0 N}” to
bootloader(s), e.g., for booting an operating system or an application.

PMP: The Physical Memory Protection (PMP) is a RISC-V feature that allows
for handling access rights to specific memory regions. The main benefit of
using PMP to handle memory access rights is that once memory regions are
locked with PMP, they cannot be unlocked by software or hardware until
the system is reset. For OpenTitan the PMP is used to ensure that memory
cannot be executed until it is verified (among other things).

OTBN: The OpenTitan Big Number Accelerator (OTBN) is a co-processor
specifically used for cryptographic operations such as those used for RSA.

HMAC: The Hash-based Message Authentication Code (HMAC) module is
used to check the validity of signed messages. It does so by generating (secret)
key based authentication codes that can then be verified. The key to use is a
parameter chosen at runtime by the HMAC client.

Since the OpenTitan project does not have a complete version of the boot
ROM code at the time of writing, we have created our own version based on
the available documentation [21]. This code is used as basis for our verification
throughout this paper. The top level function ‘mask_rom_boot()’ of the boot code
is shown in Listing 1.1 and proceeds as follows: First, the boot policy found in
flash is read. This boot policy contains information about which manifests4 the

4 A boot manifest is an “on-disk” data structure containing the image code for the next
boot stage along with important metadata, e.g., version, timestamp, and signature.

196 B. H. Møller et al.

ROM stage should try to load. The code then extracts this information from the
boot policy and iterates through the manifests and checks their validity. This
mainly consists in checking that the specified signing key is valid and that the
manifest is correctly signed by the specified key. If any of these checks fail, the
code goes on to (try to) validate the next manifest found in the boot policy
(if any). If a manifest passes all checks, then a PMP region is created so that
execution of the manifest’s image code becomes possible. Afterwards, the code
transfers execution to the corresponding ROM extension code’s entry point. If
the ROM extension code returns or if no manifest is validated, then the system
enters a failure state.

1 void mask_rom_boot(){

2 policy_t boot_policy = read_boot_policy();

3 rom_exts_manifests_t manifests = rom_ext_manifests(boot_policy);

4

5 for (int i = 0; i < manifests.size; i++) {

6 rom_ext_manifest_t current_rom_ext_manifest =

7 manifests.rom_exts_mfs[i];

8 pub_key_t rom_ext_pub_key = read_pub_key(current_rom_ext_manifest);

9 if (!check_rom_ext_manifest(current_rom_ext_manifest) ||

10 !check_pub_key_valid(rom_ext_pub_key) ||

11 !verify_rom_ext_signature(rom_ext_pub_key,current_rom_ext_manifest))

12 continue;

13 pmp_unlock_rom_ext();

14 if (!final_jump_to_rom_ext(current_rom_ext_manifest))

15 boot_failed_rom_ext_terminated(boot_policy,current_rom_ext_manifest);

16 }

17 boot_failed(boot_policy);

18 }

Listing 1.1. mask ROM pseudocode

3 Security Analysis

In the following, we discuss a preliminary security analysis of the OpenTitan
platform. Preliminary because, as already noted, OpenTitan is a project that is
still in development. However, due to the inherent complexity and high assur-
ance requirements of the OpenTitan platform, or indeed any security critical
platform, we argue that important and necessary insights can be gained by per-
forming security analyses at the early design stage and continually throughout
the project lifetime. Furthermore, we argue (and illustrate in later sections) that
early stage security analyses can benefit from a formal approach by showing how
a potential flaw in the OpenTitan HMAC module can be exploited. In addition
to documenting and disambiguating designs, formal models may also be used to
verify and prove formal properties of a system thus enabling very high levels of
assurance.

We focus here on a subset of the full security analysis, and refer to [11] for
the analysis in its entirety. The subset analysis considered here is concerned

Preliminary Security Analysis, Formalisation, and Verification 197

with the overarching security objective of establishing the system’s ability to
securely transfer execution from the initial boot stage (mask ROM) to a verified
boot ROM extension (ROM EXT). Here we consider an attacker model in which
the attacker is interested in subverting the OpenTitan boot process in order to
execute (malicious) code on the platform. We further assume that an attacker has
access to the platform to be able to flash arbitrary code/data to the ROM EXT.
However, we do not take glitching or other sophisticated physical attacks into
account. The attacker cannot alter the mask ROM code or anything else stored
in ROM. Next we define the security policies and goals needed to establish the
overall security target mentioned above.

3.1 Security Policies and Goals

The security analysis proceeds by first defining the high-level security policies
(P1 through P4 below) that are needed to support the overarching security
objective of the system. The policies are derived from a close reading of the
OpenTitan documentation including explicit (and implicit) security objectives.
Each of the policies are broken down into one or more security goals (denoted G
below) mapping security policies unto the corresponding security mechanisms
of the platform. The goals are thus more specific and amenable to verifica-
tion. Finally, the goals are further broken down into security properties relating
goals to concrete elements of the system description and the corresponding tool-
dependent model of the system, e.g., what is needed to perform a signature
validation. Since the specific formulation of properties depends on the (tool-
specific) model, we do not further describe properties here, but refer to the later
tool-specific sections where they will be exemplified.

The policies and goals considered are as follows5:

P1: The mask ROM must only execute code that securely transfers
execution to a verified ROM EXT or terminates.
If the boot process does not validate the authenticity and integrity of code
before executing it, it is easy for an attacker to execute malicious code by
flashing it to the ROM EXT. Therefore the mask ROM stage must ensure
that ROM EXT has not been tampered with before transferring control.
G1: The cryptographic signature of the ROM EXT image must be verified

by mask ROM before it is executed, to ensure authenticity and integrity
of the image.

P2: Boot stages must only succeed in validating the following boot
stage if the environment that the boot was initiated from is secure.
The Key Manager component in OpenTitan derives several cryptographic
keys throughout the booting process of the system. If these keys become
public then an attacker could sign their own messages to fool the system into

5 Security goals are not numbered sequentially, instead they retain the numbering from
the full security analysis [10,11,21]; some goals have been rephrased to fit better with
the flow of the paper.

198 B. H. Møller et al.

accepting malicious messages. The first key derived by the Key Manager, that
is used throughout the rest of the key derivation scheme, uses Health State
Measurements as part of the input for its creation; these include the device
life cycle state, state of debug mode, and a hash of the boot ROM [15]. This
is necessary, since an environment that is compromised by an attacker could
affect the key derivation in an adverse manner and thereby potentially be
able to guess or reconstruct secret keys held by the Key Manager.
G5: mask ROM must validate ROM EXT using a unique key that is

“baked” into the silicon. If the environment, e.g., the health state as
mentioned above, is not as expected the validation must not succeed.

P3: Cryptographic material and other secrets must not be leaked.
The OpenTitan authenticity and integrity checks of ROM EXT and any sub-
sequent software stages are dependent on the secrecy of the keys used for
signing. If a cryptographic key is compromised then the attacker could forge a
valid signature for malicious boot code and pass the authenticity and integrity
checks.
G8: Only authorised applications have access to cryptographic keys.
G9: Secret information stored in memory must be cleared or scrambled after

the termination of the respective boot stage.
P4: The privilege hierarchy must be enforced, i.e., access rights must

be configured correctly.
OpenTitan uses RISC-V PMP regions to restrict or grant access to mem-
ory regions. Configuration of the PMP must follow the order specified in the
OpenTitan documentation. If OpenTitan code could disregard preceding con-
figuration of PMP regions then the memory would be susceptible to attacks
that read secrets, jumps to execute previous boot stage code, and overwrite
memory.
G10, G11, G12: The PMP configuration must ensure that only soft-

ware with write/read/execute access to some memory section may mod-
ify/read/execute it.

In the following sections, we first discuss a potential vulnerability in the imple-
mentation of the HMAC module; followed by sections describing how the Open-
Titan secure boot can be modelled in CBMC and UPPAAL and how these
models can be used to examine and verify (some of) the security goals above.

4 Potential Vulnerability in HMAC Wipe

While the models discussed in the following sections are designed to fit the
OpenTitan documentation as faithfully as possible, we discovered an inconsis-
tency between the specification of the HMAC module and its implementation6.
The module has a wipe feature whereby the documentation states that when
a value is written to the wipe register “The internal variables will be reset to
6 We have raised the issue with the OpenTitan developers, tracking it at: https://
github.com/lowRISC/opentitan/issues/8506.

https://github.com/lowRISC/opentitan/issues/8506
https://github.com/lowRISC/opentitan/issues/8506

Preliminary Security Analysis, Formalisation, and Verification 199

121 always_ff @(posedge clk_i or negedge rst_ni) begin

122 if (!rst_ni) begin

123 secret_key <= ’0;

124 end else if (wipe_secret) begin

125 secret_key <= secret_key ^ {8{wipe_v}};

126 end else if

127 ...

128 end

129 end

Listing 1.2. Wipe function implementation in Verilog [14]

the written value” [13]. Wiping of internal hardware registers is a security mea-
sure that can be requested by a client of the HMAC module (other modules
have similar functionality) in order to erase potentially sensitive cryptographic
information. Wiping is implemented at the hardware level as a register update.
However, looking at the implementation, reproduced in Listing 1.2, we see that
instead of overwriting the secret key directly with the wipe value, the secret key
is assigned the value of itself XOR’ed with eight copies of the wipe value.

By modelling the implementation rather than the specification, we found a
potential attack that may compromise the security of cryptographic keys used
for signing with HMAC: The attack relies on using a guessed or known wipe
value to perform a second wipe, i.e., another XOR, of a secret key in the HMAC
module and thereby reversing the effect of the first wipe action. This allows
an attacker to reinstate and freely use a secret key in the HMAC module. This
would allow an attacker to sign arbitrary messages and undermine the trust base
of the entire system.

If the attacker does not have prior knowledge of the wipe value, it can be
brute-forced with relative ease since wipe values are only 32 bits long. Thus
instead of 2255 guesses on average to guess a secret signing key an attack can
be mounted with only 231 guesses on average. Note that the attack only enables
an attacker to sign arbitrary messages with the HMAC module, it does not
provide the attacker with the actual key (in cleartext). Below, we describe the
brute-force attack in more detail. In Sect. 5.1 and 6.1 we model the wipe imple-
mentation, using CBMC and UPPAAL respectively, and show how such formal
models enable a developer to find the “double wipe” attack. Both models show
the system is vulnerable and as such, in adherence to security goal G9, we must
treat the wipe value with the same level of security as the secret keys and take
care to remove it from memory.

Systematic Discovery. Based on the experience and work reported on in this
paper, we conjecture that any serious attempt at verifying that the HMAC
module implementation follows the specification would discover the vulnerability
discussed here. However, a more abstract approach to verification, assuming the
specification to be correct or verifying only the software parts, would likely not

200 B. H. Møller et al.

discover the vulnerability. This emphasises the potential and importance of co-
verification.

4.1 Brute Forcing Wipe Values

If we can verify that a message has been signed with a valid key, then simply
iterating through and calling wipe for every possible 32-bit wipe value should
eventually yield the HMAC module in a state where the attacker can sign mes-
sages. For every value that yields no result, we must reset the state by wiping
with the same value again.

1 for i in [0..(232 − 1)]:

2 hmac.wipe(i)

3 if verify(hmac.sign(msg)):

4 return i

5 else:

6 hmac.wipe(i)

In modelling the attack in CBMC and UPPAAL we did not model the attacker
this way, instead leaving the tools to find the right strategy by letting it choose
any arbitrary sequence of actions on the HMAC API.

5 Formalisation and Verification in CBMC

In the following, we discuss the development of a formal model of parts of the
OpenTitan platform boot process suitable for verification using the CBMC tool.
Since CBMC is a tool primarily developed to verify properties of C programs,
models and properties must be formulated directly in the C programming lan-
guage, albeit with specialised macros for specifying properties to be verified.
This approach is well-suited to co-verification, where C programs simulating or
modelling hardware are often developed as a testing harness or runtime environ-
ment for developing the concomitant firmware, typically also using C. We finish
this section by showing how CBMC can be used to verify one of the security
properties needed to show that the OpenTitan boot process is in compliance
with the security goals discussed in Sect. 3.

Since OpenTitan is still in development, it was necessary to write code mod-
elling not only the relevant hardware, but also for the boot process itself. This
code is based on OpenTitan pseudocode and documentation [18]. Since the doc-
umentation is also work in progress and not always up to date, we have had to
make certain assumptions regarding the implementation to be able to model a
functional system, e.g., exactly which cryptographic keys are used to sign the
ROM EXT. In this particular case we chose to model the signature key as a
separate key stored in mask ROM.

CBMC is a Bounded Model Checker for C code [7]. Bounded model checking
represents a program and a set of constraints formalising properties to check as a
SAT-problem which can then be solved by a SAT/SMT solver. This is very simi-
lar to the way symbolic execution works, but quite different from “classic” model

Preliminary Security Analysis, Formalisation, and Verification 201

checking, e.g., using UPPAAL as discussed in Sect. 6. This approach enables a
form of verification that is better suited for taking (some) data flow into account,
compared with traditional model checking. Furthermore, it allows a relatively
precise analysis of the code, albeit only for a bounded number of loop iterations:
CBMC combines loop unrolling with a loop bound property to check that loops
have been unrolled “enough”.

A further concern is to avoid running out of memory during model checking,
or indeed most forms of automated verification. One traditional way of managing
memory consumption, is by working on abstract data or data of reduced size, e.g.,
assuming limited size on input. This is exemplified in our OpenTitan model by
the ROM EXT model: the size of ROM EXT is limited to 10 bytes: big enough to
model the relevant fields and properties but also small enough to keep the state
space in check. While this is a common approach both in bounded and in classic
model checking, it does mean that the verification results in principle come with
the major caveat that they are only guaranteed for a subset of data values.
However, for properties that are mainly control flow dependent or structural,
such as many of the properties discussed here, the impact is minimal or non-
existent.

5.1 Wipe Attack in CBMC

In order to recreate the wipe attack using CBMC, we first modelled the Verilog
implementation (of the wipe function) as C code (the input language of CBMC).
We next modelled an (abstract) attacker guessing the HMAC wipe value and
non-deterministically calling the HMAC module in order to determine if the
wipe of a key can be reversed, leaving the HMAC module open for abuse. Both
of these models are straightforward and we thus elide them here.

Running CBMC on these models showed that, indeed, if the wipe value is
known to an attacker, it is possible to recreate the original secret key used for
HMAC computation and thus enabling an attacker to impersonating the key’s
owner and signing messages and code with the owner’s key.

5.2 Modelling and Verification of Security Goals

In the following we show how to specify and verify a single security property in
more detail, as discussed in Sect. 3, and refer to [21] for the full list of security
properties. The property discussed here (Property 6) is fundamental to one of
the main security goals (G1) that captures the essential secure boot security
requirement to ensure that only verified code is executed. The property specifies
where execution should continue after validation:

Property 6: If all validation steps have succeeded, then transfer execution to
ROM EXT by starting execution at the entry point of the ROM EXT image
code. If execution returns, execute the fail ROM EXT returned function pro-
vided by the boot policy.

202 B. H. Møller et al.

1 void __PROOF_HARNESS() {

2 policy_t boot_policy = FLASH_CTRL_read_boot_policy();

3 manifests_t manifests = FLASH_CTRL_manifests(boot_policy);

4 ...

5 __CPROVER_assume(boot_policy.fail == &__func_fail);

6 __CPROVER_assume(

7 boot_policy.fail_rom_ext_terminated == &__func_fail_rom_ext);

8 ...

9 for (int i = 0; i < manifests.size; i++) {

10 ...

11 if(__validated_manifests[i]) {

12 ...

13 __CPROVER_postcondition(__rom_ext_called[i],

14 "PROPERTY 6: rom_ext VALIDATED => rom ext code inititated");

15 ...

16 }

17 else{ //invalidated

18 ...

19 __CPROVER_postcondition(!__rom_ext_fail_func[i],

20 "PROPERTY 6: invalid rom_ext => rom_ext term not called");

21 ...

22 }

Listing 1.3. CBMC Proof Harness

For convenience we have included the full list of properties needed to verify G1
in Appendix 1.

Listing 1.3 shows an excerpted version of the ‘ PROOF HARNESS’ function
which is the main driver of our CBMC verification responsible for setting up the
verification environment and base assumptions7. The function is written in C
with CBMC specific annotations (prefixed with ‘ ’); these annotations are trans-
lated directly to constraints that must be satisfied in the SAT/SMT model of
the code generated by CBMC. The PROOF HARNESS non-deterministically
creates and initialises (using CBMC assumptions) all the objects needed for ver-
ification (lines 2–7). The main verification is performed at lines 13 and 19 where
we assert that if a ROM EXT manifest is validated then the ROM EXT image
code is executed otherwise the ROM EXT fail function is executed (implying
that the image code is not executed).

We will not go into further detail with the CBMC code here, merely refer
to [21] for full details.

7 The full source code is available at: https://github.com/Tutter/OpenTitan-Formal-
Verification.

https://github.com/Tutter/OpenTitan-Formal-Verification
https://github.com/Tutter/OpenTitan-Formal-Verification

Preliminary Security Analysis, Formalisation, and Verification 203

5.3 Results of CBMC Verification

Using CBMC the property discussed above, Property 6, can be verified. In addi-
tion we have used a similar approach to verify all the properties related to
security goal G1 (see Appendix 1 for a full list) and thus conclude that the full
goal has been verified for (our model of) the OpenTitan platform.

Using a similar approach we have modelled and partially verified security
goals G10/G11/G12 all related to the PMP configuration (see Sect. 3 for
details). These goals have only been partially verified, since our current CBMC
model does not include a sufficiently detailed model of the PMP module to fully
verify these goals. This was mainly caused by lack of time and we conjecture that
it would be straightforward to extend our model to include the PMP module
and, by extension, to verify these goals. In the same vein goals G8 and G9 have
not been attempted since these require more detailed models of memory and
relevant peripherals.

6 Formalisation and Verification in UPPAAL

Model checking, as used here, is the process of creating a model of a system, in the
form of a timed automaton, and verifying that the model satisfies a specification
or a property defined in terms of logic formulae, often called query. These queries
are written in a subset of Timed Computation Tree Logic (TCTL) [8]. Given these
the model checker executes the queries against the model and outputs either that
the model satisfies the specification or a counterexample if it does not.

UPPAAL is a model checker that uses timed automata as the foundation of
its modelling formalism [8]. Like other automata, timed automata are defined
in terms of states and state transitions, but extend these fundamentals with the
notion of time, represented by so-called clocks that are used to specify timing
aspects of a model, e.g., how long a timed automaton can stay in a given state or
how long time a transition takes. For the purposes of this paper, we will not delve
further into the timing aspects. The UPPAAL model checker further supports a
rich C-like language for specifying and enhancing models, simplifying advanced
model building.

Using UPPAAL we have modelled the initial boot stage of OpenTitan. This
is done by reading through the available OpenTitan documentation in detail
and creating models based on that information. Concretely, the C code for the
boot stage is modelled by a straightforward translation of the code’s control flow
graph into a timed automaton. The boot stage code is then used as a starting
point for determining what hardware to model: only those modules that are
needed to execute the boot stage (and the modules they transitively depend on)
need to be modelled. Consider for example the Flash Controller which is used to
access flash memory but flash memory operations have to go through the PMP
module. Because of this we need to model all these hardware components to
correctly model flash memory.

The resulting model captures a sequential flow through the code and the
relevant hardware components. The automaton created for the mask ROM boot

204 B. H. Møller et al.

code itself can be seen in Fig. 2. The code fetches the ROM EXT manifests
from a boot policy (solid green box) and goes through the checks needed to
validate the identifier (blue dashed box), public key (red dotted box), and image
signature (black dashed and dotted box). If a manifest passes these three checks
it is considered valid. Lastly, execution is transferred to the ROM EXT if a
valid manifest has been found as seen in the pink dashed and double dotted
box. The automaton uses channel synchronization (a UPPAAL feature allowing
automata to synchronize with other automata on signals sent over channels) to
invoke the functions used throughout mask ROM. Similarly, it waits for similar
synchronization messages from these functions which signify return statements.
The full UPPAAL model can be found in [10]8.

Fig. 2. The model created for the boot code in UPPAAL.

In order to manage the large input domains of some of the OpenTitan com-
ponents, e.g., cryptographic keys and manifests, we model (some) specific data
types in an abstract way. This is similar to the approach taken for CBMC
(Sect. 5). It is for example infeasible to directly model and check the RSA-3072
image signature of each manifest along with the rest of the initial boot stage
because UPPAAL would have to enumerate all possible signatures. Concretely,
we represent an image signature as either 1 (correct) or 2 (incorrect). This level
of abstraction is sufficient to model how the system should behave given a correct
or incorrect signature but avoids the overhead of a full implementation of the

8 The source files in full are available at: https://github.com/Tutter/OpenTitan-
Formal-Verification.

https://github.com/Tutter/OpenTitan-Formal-Verification
https://github.com/Tutter/OpenTitan-Formal-Verification

Preliminary Security Analysis, Formalisation, and Verification 205

RSA algorithm. This approach is sufficient to verify properties that are mainly
concerned with the control flow through the system, e.g., that proper checks are
performed before executing code.

Figure 3 shows an example of how the data abstraction affects the modelling
of hardware. For the hardware models, we wish to represent the state transitions
they perform but not the details of how these transitions are performed. When
the OTBN is called it starts collecting the necessary data to perform signature
validation from RAM. It then collects the manifest signature, the digest (created
by the HMAC module in a previous step), and the manifest public key. Once
these items have been fetched, they are used by the function ‘checkSignature()’
which evaluates to a bool. This bool is true if the items have the expected values
and false otherwise. Using this function as a guard on the transitions away from
the CheckingSignature location, the OTBN either synchronizes over the channel
RSAValid (if the signature is valid) or RSANotValid (if the signature is not valid)
and goes back to the Idle location.

Fig. 3. The model created for the OTBN module in UPPAAL.

6.1 Wipe Attack in UPPAAL

To recreate and model the wipe vulnerability in UPPAAL (see Sect. 4): we
have implemented a version of the HMAC module which models the imple-
mentation rather than the specification. Furthermore, we have modelled that
the ROM EXT is malicious and is trying to exploit the vulnerability to reuse a
previously used secret key. With these changes to the model, we have formulated
the following query in UPPAAL:

E<> exists(i : int[0, NumberOfFlashBanks - 1]) RomExt(i).Success

This query is executed to verify that there exists a path, i.e., a sequence of state
transitions, in the model such that for an integer i that is in the range of the
number of flash banks currently in the system, RomExt(i) is eventually in the
Success location. The Success location in this case indicates that the ROM EXT
has been able to reuse a secret key to create a valid authentication code. This
query succeeds, showing that an attacker can use the protocol to reuse a secret
key by brute force guessing wipe values. Figure 4 shows the ROM EXT model.

206 B. H. Møller et al.

Fig. 4. The ROM EXT model created to test the wipe vulnerability in UPPAAL.

6.2 Results of UPPAAL Verification

For each goal of the security analysis as described in Sect. 3 we have created a set
of queries corresponding to the security properties related to the goal. The only
exception is G5 of the security analysis since, as mentioned earlier, it is infeasible
to model full implementations of cryptographic operations. For illustration and
convenience we have included the full set of queries corresponding to the security
properties needed to verify G1 in Appendix 2.

As an example, consider the query below, specifying what it means for a
manifest to have a correct signature: The query states that it must always hold
for all paths (indicated by the A[]) that if the ROMStage model is in a state
where the signature has been checked, denoted CheckedSignature, then the cur-
rent manifest must have correct values, since otherwise the initial boot stage is
incorrectly validating the signature of untrusted ROM EXT manifests. However,
this query alone is not enough to validate G1 since, e.g., it does not verify that
the image code contained in correctly signed manifests are eventually executed.
This is why we have several queries to verify G1.

A[] ROMStage.CheckedSignature imply
(ROMStage.currentManifest.identifer == 1 &&
ROMStage.currentManifest.publicKey.modulus == 1 &&
ROMStage.currentManifest.publicKey.exponent == 1 &&
ROMStage.currentManifest.signature == 1)

When using UPPAAL to evaluate all the queries related to G1, (see Appendix 2)
on the model, they all pass. This means that the model satisfies G1. Using this
strategy for proving whether the model satisfies the different goals or not we have
been able to fully verify G1, G9, G10, G11, and G12. Furthermore, we have
been able to partially verify G8; it is considered partially verified because the

Preliminary Security Analysis, Formalisation, and Verification 207

model does not capture enough detail to fully verify that only intended receivers
are able to access keys. We can only state that keys used during the initial boot
stage are not stored in SRAM.

7 Summary Results and Evaluation

In the following we give a brief summary of the results obtained by modelling and
verifying the OpenTitan boot process. Table 1 summarises our formal findings.

First and foremost, we uncovered a potential security flaw in the wipe func-
tionality of the OpenTitan HMAC module and showed how both UPPAAL and
CBMC are able to uncover this flaw. Second, but equally important, the pri-
mary security goal, G1, has been verified with both UPPAAL and CBMC; goals
G10, G11, and G12 have been fully verified in UPPAAL and partially verified
in CBMC due to lacking a model of the OpenTitan PMP module. Furthermore,
goal G8 has been partially verified and G9 fully verified in UPPAAL, but nei-
ther has been attempted in CBMC and are therefore left for future work. We
believe that, in part, this is because UPPAAL lends itself very well to modelling
at this level of abstraction. In contrast, our CBMC models tended to include
more details, arguably enabling more precise modelling and verification. Finally,
goal G5 has not been verified by either tool, mainly because it requires verifi-
cation of implementations of cryptographic algorithms, something that requires
more specialised tools.

Table 1. Comparison of CBMC and UPPAAL verification.

G1 G5 G8 G9 G10/G11/G12 Time

CBMC � (�) 16m 34 s

UPPAAL � (�) � � 2 h 30m 50 s

Even within the limited scope of this project, we have in relatively short time
been able to model parts of a complex system and verify a number of essential
security properties, and hence security goals, of a security critical hardware/-
software co-design.

8 Conclusion

We have shown how formal models, in CBMC and UPPAAL, of the OpenTitan
boot process can be used to document a system that is being designed as well
as perform early verification of important security properties. This has allowed
us to find a security flaw in the wipe functionality of the HMAC module for
cryptographic signing, potentially subverting the authenticity and trust base of
the entire platform.

208 B. H. Møller et al.

Appendix 1 Security Properties

Here we list the full set of security properties, formulated for the CBMC analysis,
related to security goals G1, G10, G11, and G12. For a full list of security
policies, goals, and their related security properties we refer to [21].

1.1 Goal G1

Property 1: The ROM EXT manifest for a ROM EXT must be signed with a
RSA-3072 signature. If a ROM EXT manifest for a ROM EXT is unsigned
(i.e., the signature is a sequence of zeros) the ROM EXT is considered invalid
to boot from.

Property 2: The public RSA-3072 key used for the signature contained in the
ROM EXT manifest must be valid in order to be valid to boot from.

Property 3: The HMAC hash must be calculated by either a SHA2-256, SHA3-
256, SHA3-384, or SHA3-512 hash function.

Property 4: The computed HMAC hash message must be calculated from
(system state value || device usage value || signed area(ROM EXT)).

Property 5: The signature in the ROM EXT manifest must be validated
using the RSASSA-PKCS1-V1 5-VERIFY function with inputs: public RSA-
3072 key, the appended message (system state value || device usage value
|| signed area(ROM EXT)), and RSA-3072 signature. If the function
returns false the ROM EXT is invalid to boot from.

Property 6: If all validation steps have succeeded, then transfer execution to
ROM EXT by starting execution at the entry point of the ROM EXT image
code. If execution returns, execute the fail ROM EXT returned function pro-
vided by the boot policy.

Property 7: If at any point a ROM EXT is invalidated, the ROM EXT is
considered unsafe to boot from and the mask ROM must proceed to validate
the next ROM EXT.

Property 8: If validation fails for all the ROM EXTs, mask ROM must execute
the fail function provided by the boot policy.

1.2 Goal G10/G11/G12

Property 9: The entire flash must be covered by a PMP region at the ini-
tialization of mask ROM. The PMP region must be locked and restricted to
read-only access.

Property 10: If a ROM EXT is validated, then mask ROM must create a PMP
region covering the ROM EXT memory that is locked and allows for read and
execution access.

Appendix 2 UPPAAL Queries for G1

Table 2 shows all the queries made for the verification of G1. They are excerpts
from [10].

Preliminary Security Analysis, Formalisation, and Verification 209

Table 2. Queries made for checking if the UPPAAL model satisfies G1.

Name Query

Checking Manifest
Identifier

A[] ROMStage. IdentifierChecked imply

ROMStage.currentManifest.identifier == 1

Checking Valid
Manifest Identifier

A[] (CheckRomExtManifest.manifest.identifier == 1)

== CheckRomExtManifest.checkRomExtManifest()

Checking Public Key A[] ROMStage.CheckingSignature imply

(ROMStage.currentManifest.identifer == 1 &&

ROMStage.currentManifest.publicKey.modulus == 1 &&

ROMStage.currentManifest.publicKey.exponent == 1)

Checking Signature A[] ROMStage.CheckedSignature imply

(ROMStage.currentManifest.identifier == 1 &&

ROMStage.currentManifest.publicKey.modulus == 1 &&

ROMStage.currentManifest.publicKey.exponent == 1 &&

ROMStage.currentManifest.signature == 1)

PMP Execute A[] ROMStage.ReadyToRunROMExt

imply (PmpRegions[0].execute &&

PmpRegions[0].startAddress <=

ROMStage.currentManifest.entryPoint &&

PmpRegions[0].endAddress >=

ROMStage.currentManifest.entryPoint + 4)

Valid Key ID A[] (CheckPubKeyValid.currentPubKeyId == 1) ==

CheckPubKeyValid.checkPublicKey()

Valid Key Leads to
Valid Key ID

(CheckPubKeyValid.publicKey.exponent == 1 &&

CheckPubKeyValid.publicKey.modulus == 1) -->

CheckPubKeyValid.currentPubKeyId == 1

Valid Signature A[] (OTBN.signature == 1 &&

OTBN.digest == 3 &&

OTBN.key.modulus == 1 &&

OTBN.key.exponent == 1)

== OTBN.checkSignature()

Valid Manifest Leads
to Rom Ext Running

EqualManifestContents(validManifest,

ROMStage.currentManifest) -->

(FinalJumpToRomExt.ROMExtRunning &&

EqualManifestContents(validManifest,

ROMStage.currentManifest))

Invalid Manifest
Leads to Failure

!EqualManifestContents(validManifest,

ROMStage.currentManifest) --> (ROMStage.StartOfLoop

|| ROMStage.BootFailed)

Invalid Key Leads to
Invalid Key ID

(CheckPubKeyValid.publicKey.exponent != 1 ||

CheckPubKeyValid.publicKey.modulus != 1) -->

CheckPubKeyValid.currentPubKeyId == 0

210 B. H. Møller et al.

References

1. Andrews, J.R.: Co-verification of Hardware and Software for ARM SoC Design.
Elsevier (2005)

2. Casper, W.D., Papa, S.M.: Root of trust. In: Encyclopedia of Cryptography and
Security, 2nd edn. pp. 1057–1060. Springer, New York (2011). https://doi.org/10.
1007/978-1-4419-5906-5 789

3. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: COCO: co-design and
co-verification of masked software implementations on CPUs. In: Proceedings of
the 30th USENIX Security Symposium (USENIX Security 2021), pp. 1469–1468,
August 2021. https://www.usenix.org/conference/usenixsecurity21/presentation/
gigerl

4. Google: Advisory: Security issue with Bluetooth Low Energy (BLE) Titan security
keys. Google Security Blog, May 2019. https://security.googleblog.com/2019/05/
titan-keys-update.html. Accessed 21 Aug 2021

5. Huang, B., Ray, S., Gupta, A., Fung, J.M., Malik, S.: Formal security verification
of concurrent firmware in SoCs using instruction-level abstraction for hardware.
In: Proceedings of the 55th Annual Design Automation Conference (DAC 2018),
pp. 91:1–91:6 (2018). https://doi.org/10.1145/3195970.3196055

6. Huang, B., Zhang, H., Subramanyan, P., Vizel, Y., Gupta, A., Malik, S.:
Instruction-level abstraction (ILA): a uniform specification for system-on-chip
(SoC) verification. CoRR abs/1801.01114 (2018). http://arxiv.org/abs/1801.01114

7. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

8. Larsen, K., Pettersson, W., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1, 134–152 (1997)

9. Mukherjee, R., Joshi, S., O’Leary, J., Kroening, D., Melham, T.: Hard-
ware/software co-verification using path-based symbolic execution. arXiv CoRR
abs/2001.01324 (2020). http://arxiv.org/abs/2001.01324

10. Møller, B., Pedersen, M., Bøgedal, T.: Formally Verifying Security Properties for
OpenTitan Boot Code with Uppaal. Master’s thesis, Aalborg University (2021).
https://projekter.aau.dk/projekter/files/422795285/P10 24 .pdf

11. Møller, B.H., Søndergaard, J.G., Jensen, K.S., Pedersen, M.W.,
Bøgedal, T.W.: Evaluation of Tools for Formal Verification of Open-
Titan Boot Code. Project report, Aalborg University (2020). https://
github.com/Tutter/OpenTitan-Formal-Verification/blob/d830c/P9-
EvaluationOfToolsForFormalVerificationOfOpenTitan.pdf

12. Nunes, I.D.O., Eldefrawy, K., Rattanavipanon, N., Steiner, M., Tsudik, G.:
VRASED: a verified hardware/software co-design for remote attestation. In:
28th USENIX Security Symposium (USENIX Security 2019). pp. 1429–
1446 (2019). https://www.usenix.org/conference/usenixsecurity19/presentation/
de-oliveira-nunes

13. OpenTitan: HMAC HWIP technical specification. https://docs.opentitan.org/hw/
ip/hmac/doc. Accessed 26 Aug 2021

14. OpenTitan: hmac.sv. https://github.com/lowRISC/opentitan/blob/dcdadc72072/
hw/ip/hmac/rtl/hmac.sv#L121. Accessed 26 Aug 2021

15. OpenTitan: Identities and root keys. https://docs.opentitan.org/doc/security/
specs/identities and root keys/. Accessed 19 Aug 2021

https://doi.org/10.1007/978-1-4419-5906-5_789
https://doi.org/10.1007/978-1-4419-5906-5_789
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://www.usenix.org/conference/usenixsecurity21/presentation/gigerl
https://security.googleblog.com/2019/05/titan-keys-update.html
https://security.googleblog.com/2019/05/titan-keys-update.html
https://doi.org/10.1145/3195970.3196055
http://arxiv.org/abs/1801.01114
https://doi.org/10.1007/978-3-642-54862-8_26
http://arxiv.org/abs/2001.01324
https://projekter.aau.dk/projekter/files/422795285/P10__24_.pdf
https://github.com/Tutter/OpenTitan-Formal-Verification/blob/d830c/P9-EvaluationOfToolsForFormalVerificationOfOpenTitan.pdf
https://github.com/Tutter/OpenTitan-Formal-Verification/blob/d830c/P9-EvaluationOfToolsForFormalVerificationOfOpenTitan.pdf
https://github.com/Tutter/OpenTitan-Formal-Verification/blob/d830c/P9-EvaluationOfToolsForFormalVerificationOfOpenTitan.pdf
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes
https://www.usenix.org/conference/usenixsecurity19/presentation/de-oliveira-nunes
https://docs.opentitan.org/hw/ip/hmac/doc
https://docs.opentitan.org/hw/ip/hmac/doc
https://github.com/lowRISC/opentitan/blob/dcdadc72072/hw/ip/hmac/rtl/hmac.sv#L121
https://github.com/lowRISC/opentitan/blob/dcdadc72072/hw/ip/hmac/rtl/hmac.sv#L121
https://docs.opentitan.org/doc/security/specs/identities_and_root_keys/
https://docs.opentitan.org/doc/security/specs/identities_and_root_keys/

Preliminary Security Analysis, Formalisation, and Verification 211

16. OpenTitan: Key manager HWIP technical specification. https://docs.opentitan.
org/hw/ip/keymgr/doc/. Accessed 25 Aug 2021

17. OpenTitan: OpenTitan logical security model. https://docs.opentitan.org/doc/
security/logical security model/. Accessed 17 Aug 2021

18. OpenTitan: Opentitan secure boot. https://docs.opentitan.org/doc/security/
specs/secure boot/. Accessed 19 Aug 2021

19. Roche, T., Lomné, V., Mutschler, C., Imbert, L.: A side journey to Titan. In:
Proceedings of the 30th USENIX Security Symposium (USENIX Security 2021),
pp. 231–248, August 2021. https://www.usenix.org/conference/usenixsecurity21/
presentation/roche

20. Subramanyan, P., Vizel, Y., Ray, S., Malik, S.: Template-based synthesis of
instruction-level abstractions for SoC verification. In: Proceedings of Formal Meth-
ods in Computer-Aided Design (FMCAD 2015), pp. 160–167 (2015)

21. Søndergaard, J., Jensen, K.: Formally Verifying the Correctness and Safety of
OpenTitan Boot Code using CBMC. Master’s thesis, Aalborg Univeristy (2021).
https://projekter.aau.dk/projekter/files/422795280/P10 23 .pdf

22. Yubico: Security advisories, security advisories relating to Yubi key. Yubico web
page. https://www.yubico.com/support/security-advisories/. Accessed 21 Aug
2021

https://docs.opentitan.org/hw/ip/keymgr/doc/
https://docs.opentitan.org/hw/ip/keymgr/doc/
https://docs.opentitan.org/doc/security/logical_security_model/
https://docs.opentitan.org/doc/security/logical_security_model/
https://docs.opentitan.org/doc/security/specs/secure_boot/
https://docs.opentitan.org/doc/security/specs/secure_boot/
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://projekter.aau.dk/projekter/files/422795280/P10__23_.pdf
https://www.yubico.com/support/security-advisories/

Author Index

Abdelli, Khouloud 114
Arief, Budi 72
Atiiq, Syafiq Al 51

Barnes, David 72
Bøgedal, Tobias Worm 192
Brierley, Calvin 72

Chen, Hsin Yi 153
Cho, Joo Yeon 114
Christensen, Anton 192

Del Verme, Manuel 95

Ekberg, Jan-Erik 175
Erdődi, László 95

Frimpong, Eugene 31

Gehrmann, Christian 51

Hageman, Kaspar 133
Hansen, René Rydhof 133, 192
Hernandez-Castro, Julio 72

Jensen, Kristoffer Skagbæk 192
Jensen, Thomas Rosted 192

Larsen, Kim Guldstrand 192

Madsen, Heino Juvoll 192
Michalas, Antonis 31
Møller, Bjarke Hilmer 192

Niemi, Arto 175

Pachnicke, Stephan 114
Pedersen, Jens Myrup 133
Pedersen, Magnus Winkel 192
Pereida García, Cesar 16
Pop, Vasile Adrian Bogdan 175
Poulsen, Danny Bøgsted 192

Rabbaninejad, Reyhaneh 31
Rao, Siddharth Prakash 153

Sommervoll, Åvald Åslaugson 95
Søndergaard, Jacob Gosch 192
Sovio, Sampo 16

Teşeleanu, George 3
Totaro, Simone 95

Uhrenfeldt, Henrik 192

Zennaro, Fabio Massimo 95

	 Preface
	 Organization
	 Contents
	Applied Cryptography
	Communicating Through Subliminal-Free Signatures
	1 Introduction
	2 Preliminaries
	2.1 Simmons' Signing Protocol

	3 Novel Fail-Stop and Cuckoo's Channels
	3.1 Zhang et al.'s Signing Protocol
	3.2 Dong et al.'s Signing Protocol

	4 Conclusions
	References

	Size, Speed, and Security: An Ed25519 Case Study
	1 Introduction
	2 Background
	2.1 EdDSA
	2.2 Ed25519
	2.3 Ed25519 Implementations
	2.4 Related Work

	3 When Optimization Goes Wrong
	4 Computer-Aided Ed25519
	4.1 Benchmarking

	5 Conclusion
	References

	Arrows in a Quiver: A Secure Certificateless Group Key Distribution Protocol for Drones
	1 Introduction
	2 Related Work
	3 System Model
	4 Arrows in a Quiver (AinQ)
	4.1 AinQ Scheme
	4.2 AinQ Protocol

	5 Security Analysis
	5.1 Security Proof

	6 Experiments
	6.1 Performance of Core Cryptographic Functions

	7 Conclusion
	References

	Security in Internet of Things
	X-Pro: Distributed XDP Proxies Against Botnets of Things
	1 Introduction
	2 Related Work
	3 XDP and BPF Maps
	4 The X-Pro Solution
	4.1 Overall Architecture and Solution
	4.2 Filtering Design
	4.3 Synchronization Design
	4.4 Proxy Design Based on XDP
	4.5 Device Side Design

	5 Implementation
	5.1 Proxy
	5.2 Centralized Database
	5.3 IoT Units

	6 Experimental Evaluation
	6.1 Single-Proxy
	6.2 Multiple-Proxy Working Together
	6.3 Overhead from the IoT Units

	7 Conclusion and Future Work
	A Proxy Synchronization Protocol
	B Packet Filtering Procedures
	References

	Industrialising Blackmail: Privacy Invasion Based IoT Ransomware
	1 Introduction
	2 Background and Related Work
	2.1 IoT Based Ransomware
	2.2 Privacy Invasion

	3 Data Sources
	4 Identifying Private Data
	4.1 Malicious Use of Machine Learning
	4.2 Network-Based Privacy Invasion
	4.3 Data Processing

	5 Data Collation
	5.1 Data Management
	5.2 The Ransom
	5.3 Publishing Private Information
	5.4 Scale of Operation

	6 Proof of Concepts
	6.1 Netgear R6250 Router
	6.2 Yealink SIP-T38g Phone
	6.3 DCS-932L Camera
	6.4 Summary

	7 Discussion
	7.1 Countermeasures
	7.2 Limitations and Further Work

	8 Conclusions
	A Appendices
	A.1 Data Collator Structure
	A.2 Collator and Ransom Note

	References

	Machine Learning and Security
	SQL Injections and Reinforcement Learning: An Empirical Evaluation of the Role of Action Structure
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Word Level RL
	2.3 Penetration Testing

	3 Related Work
	4 Methods
	4.1 Environment
	4.2 Structured Agent
	4.3 Structureless Agent

	5 Experiments
	5.1 Reference Agents
	5.2 Structured Agent
	5.3 Structureless Agent

	6 Ethical Considerations
	7 Future Work and Conclusions
	A Implementation Details
	A.1 Structured Agent
	A.2 Structureless Agent

	References

	Secure Collaborative Learning for Predictive Maintenance in Optical Networks
	1 Introduction
	2 Background
	3 Framework
	3.1 Secure Aggregation Protocol
	3.2 Training Procedure

	4 Experiments
	4.1 Description of Use Case
	4.2 Data Generation and Preprocessing
	4.3 Local Models
	4.4 Global Model
	4.5 Performance Evaluation Metrics

	5 Analysis
	6 Conclusion
	References

	Network Security
	Gollector: Measuring Domain Name Dark Matter from Different Vantage Points
	1 Introduction
	2 Background
	3 Related Work
	4 Vantage Points
	5 Design
	5.1 Architecture
	5.2 Collectors

	6 Dataset
	7 Use Cases
	7.1 Early Detection of Domain Names
	7.2 Split Horizon and Data Leakage
	7.3 Subdomain Enumeration

	8 Conclusions
	A Clique Cover Algorithm
	B Examples of Cliques
	References

	Adversarial Trends in Mobile Communication Systems: From Attack Patterns to Potential Defenses Strategies
	1 Introduction
	2 Background
	2.1 Mobile Network Topology
	2.2 Security Weaknesses
	2.3 Bhadra Framework
	2.4 Attack Pattern and Graph Analysis

	3 Methodology
	3.1 Attack Collection and Sampling
	3.2 Attack Modeling
	3.3 Graph Analysis

	4 Results
	4.1 Common Attack Patterns
	4.2 Loss of Connectivity
	4.3 Unique Paths

	5 Discussion
	6 Conclusion
	References

	Trust
	Trusted Sockets Layer: A TLS 1.3 Based Trusted Channel Protocol
	1 Introduction
	2 Background
	2.1 Transport Layer Security
	2.2 Trusted Computing
	2.3 Attestation
	2.4 Channel Binding

	3 Survey: Combining TLS and Attestation
	3.1 Design Considerations
	3.2 Proposals with Pre-handshake Attestation
	3.3 Proposals with Intra-handshake Attestation
	3.4 Proposals with Post-handshake Attestation
	3.5 Summary and Conclusions

	4 Trusted Sockets Layer Protocol
	4.1 Requirements
	4.2 Threat Model
	4.3 Design
	4.4 Protocol Flow
	4.5 Implementation
	4.6 Security Analysis

	5 Conclusions and Further Work
	References

	Preliminary Security Analysis, Formalisation, and Verification of OpenTitan Secure Boot Code
	1 Introduction
	2 OpenTitan
	2.1 Hardware Components

	3 Security Analysis
	3.1 Security Policies and Goals

	4 Potential Vulnerability in HMAC Wipe
	4.1 Brute Forcing Wipe Values

	5 Formalisation and Verification in CBMC
	5.1 Wipe Attack in CBMC
	5.2 Modelling and Verification of Security Goals
	5.3 Results of CBMC Verification

	6 Formalisation and Verification in UPPAAL
	6.1 Wipe Attack in UPPAAL
	6.2 Results of UPPAAL Verification

	7 Summary Results and Evaluation
	8 Conclusion
	1 Security Properties
	1.1 Goal G1
	1.2 Goal G10/G11/G12

	2 UPPAAL Queries for G1
	References

	Author Index

