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Abstract

Vitamin D plays an essential role in calcium
and inorganic phosphate (Pi) homeostasis,
maintaining their optimal levels to assure ade-
quate bone mineralization. Vitamin D, as
calcitriol (1,25(OH)2D), not only increases
intestinal calcium and phosphate absorption
but also facilitates their renal reabsorption,
leading to elevated serum calcium and phos-
phate levels. The interaction of 1,25(OH)2D
with its receptor (VDR) increases the effi-
ciency of intestinal absorption of calcium to
30–40% and phosphate to nearly 80%. Serum
phosphate levels can also influence 1,25
(OH)2D and fibroblast growth factor
23 (FGF23) levels, i.e., higher phosphate
concentrations suppress vitamin D activation
and stimulate parathyroid hormone (PTH)
release, while a high FGF23 serum level
leads to reduced vitamin D synthesis. In the

vitamin D-deficient state, the intestinal cal-
cium absorption decreases and the secretion
of PTH increases, which in turn causes the
stimulation of 1,25(OH)2D production,
resulting in excessive urinary phosphate loss.
Maintenance of phosphate homeostasis is
essential as hyperphosphatemia is a risk factor
of cardiovascular calcification, chronic kidney
diseases (CKD), and premature aging, while
hypophosphatemia is usually associated with
rickets and osteomalacia. This chapter
elaborates on the possible interactions between
vitamin D and phosphate in health and disease.
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5.1 Introduction

Vitamin D research has more than 100 years of
history since McCollum and Davis’s discovered
the “growth-promoting fat-soluble vitamin” that
was found in cod liver oil [20]. The effect of this
growth-promoting factor in the treatment of rick-
ets was so effective that cod liver oil was regarded
as a panacea and gave a powerful impetus to
further research on vitamin D throughout the
world [71]. In the last 20 years, it has been
shown that vitamin D‘s biological activities
extend far beyond its involvement in calcium
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metabolism. Along with proven efficacy in path-
ological conditions and diseases such as rickets,
bone loss, and osteomalacia, some novel effects
of vitamin D on very diverse physiological pro-
cesses have been well established [8, 39]. Vitamin
D deficiency remains a critical health issue world-
wide, and it has been estimated that around one
billion people suffer from various vitamin
D-related disorders [35].

The biological effects of 1,25(OH)2D can be
divided into two types: skeletal (primarily related
to calcemic and phosphatemic activities) and
non-skeletal, typically not associated with min-
eral metabolism [15]. The homeostasis of serum
phosphate mediated by vitamin D is of paramount
importance for adequate bone mineralization,
muscle contraction, nerve conduction, and many
other vital functions [26]. This brief chapter
reviews our understanding of vitamin D-mediated
regulation of phosphate homeostasis in health and
diseases.

5.2 Physiological Regulation
of Phosphate Homeostasis

Phosphorus is the sixth most abundant chemical
element in the body [34]. In nature it mainly
exists as phosphates, the form most suitable for
living organisms [14]. In mammals, the phos-
phate group is primarily concentrated (~85%) in
bones and teeth as hydroxyapatite. The remaining
~15% are distributed in the other tissues as intra-
cellular ortho- and pyrophosphate groups, either
free (“inorganic”) or as a part of nucleotides,
coenzymes, and high-energy phosphate
compounds. (referred to as “organophosphates”).
Inorganic phosphates exist in two forms: mono-
valent dihydrogen phosphate (H2PO4

�) and diva-
lent hydrogen phosphate (HPO4

2�). In the cytosol
dihydrogen phosphate is contributing bulk
amounts (62% of all cytosolic phosphates).

The extracellular fluid contains only <1% of
the whole pool of body’s inorganic phosphates
[27, 33]. Interestingly, compared to the cytosol,
the proportion H2PO4

�/ HPO4
2� is inverted, so

that the major component is now hydrogen phos-
phate (61% of all phosphates). In general, a

70-kilogram adult with 25% body fat content
would have total body phosphorus of approxi-
mately 630 g (~21 mol) [34].

Due to its unique chemical structure, various
phosphate groups (especially as nucleoside
triphosphates) are key players in cellular energy
metabolism, in genetic information storage, in
signaling pathways, and as phospholipid compo-
nents of the cell membranes [37]. Inorganic
phosphates, together with bicarbonate and protein
buffer systems, constitute the basis of the acid-
base homeostasis of the body [42].

A healthy adult consumes 1000 mg on average
of dietary phosphate per day (Fig. 5.1). Of this
amount 700 mg. is absorbed in the small intestine
through passive and active pathways [97]. The
unabsorbed phosphate is excreted in the feces.
Approximately 150 mg. phosphate is secreted
into the gut in the saliva, intestinal and pancreatic
secretions, while some of it is reabsorbed
[47]. Although dietary phosphate intake differs
from day to day, principally, phosphate homeo-
stasis is adjusted by intestinal absorption, renal
reabsorption, and skeletal resorption. The average
serum phosphate concentration in healthy adults
is 2.5–4.9 mg/dl [67].

The kidneys filter about 9000 mg. of phos-
phate daily, 80–90% of which is reabsorbed
mainly in the proximal tubule [68]. At least
three distinct cotransporters are involved for
phosphate transcellular reabsorption in the proxi-
mal tubule, namely NaPi-IIa (SLC34A1), NaPi-
IIc (SLC34A3), and PiT-2 (SLC20A2) [7]
(Fig. 5.2). Phosphate reabsorption is coupled
with sodium-dependent (Na+) transport. Type
NaPi II cotransporters are capable of transporting
both H2PO4

� and HPO4
2� across brush border

membrane (BBM) of the proximal tubules
[90]. In contrast, in the small intestine, phosphate
is absorbed by both transcellular (active) and
paracellular (passive) processes, with the active
transport being mainly mediated by NaPi-
IIb [55].

Given the generally acknowledged role of
phosphate in almost every molecular and cellular
function, altered phosphate balance can lead to
untoward effects. The serum phosphate homeo-
stasis is firmly regulated by endocrine
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Fig. 5.2 Main transcellular phosphate traffic mechanisms

Fig. 5.1 Phosphate flows
and balances in the human
body [66, 83]

5 Vitamin D and Phosphate Interactions in Health and Disease 39



communication among parathyroid hormone
(PTH), calcitriol (1,25(OH)2D), and fibroblast
growth factor 23 (FGF-23) [5, 11].

5.2.1 Parathyroid Hormone (PTH)

PTH, a polypeptide containing 84 amino acids
with MW 9500 Da, is secreted by chief cells of
parathyroid glands [92]. Extracellular calcium
concentration is the main modulator of PTH
secretion [60]. PTH stimulates calcium resorption
from bone tissue, increases calcium reabsorption
in the renal tubules, facilitates hydroxylation of
25(OH)D to 1,25(OH)2D in the kidneys, and
induces renal excretion of phosphate [50, 69].

In bone tissue, PTH at a permissive level of
1,25(OH)2D promotes calcium resorption by
activating osteoclasts [93]. In the intestine, PTH
increases the reabsorption of calcium and phos-
phate by enhancing 1,25(OH)2D synthesis
[69]. High serum PTH levels and hypopho-
sphatemia lead to activation of vitamin
D-activating enzyme 1α-hydroxylase [57]. 1,25
(OH)2D facilitates absorption of calcium and
phosphate for bone mineralization and homeo-
static metabolism, preventing low serum levels
of these elements [43]. PTH also stimulates the
synthesis of vitamin D in the kidneys [52].

The effect of PTH on the renal tubules leads to
decreased phosphate reabsorption and its
increased renal excretion due to the lowered
NaPi cotransporters. In general increased PTH
secretion results in a decrease in serum phosphate
levels [30]. The main role of 1,25(OH)2D is to
determine the availability of calcium and phos-
phate to form new bone and prevent the develop-
ment of hypocalcemia and hypophosphatemia
[3, 30]. This hormone increases intestinal phos-
phate absorption elevating its serum
concentration.

Secretion PTH by the parathyroid glands is
mainly triggered by low extracellular calcium by
acting on Ca-sensing receptors (CaSR) [85]. Stim-
ulation of CaSR (they belong to the class of G-
protein-coupled receptors) activates multiple
heterotrimeric G-proteins, in turn passing the sig-
nal to mitogen-activated protein kinase (MAPK)

pathways. This cascade of reactions ultimately
leads to the suppression of PTH secretion by a
negative feedback loop. It has been shown that
1,25(OH)2D upregulates the transcription of the
gene encoding the CaSR in the parathyroid gland
[13]. Additionally, a low level of calcium indi-
rectly induces parathyroid hyperplasia [23]. How-
ever, there is also evidence of the opposite effect
of stimulation of parathyroid cell proliferation in
response to a high calcium concentration [81].

Interestingly, high serum phosphate levels
(hyperphosphatemia) also increase PTH secretion
independently of shifts in extracellular calcium
[41, 86]. The further secretion of PTH is directly
suppressed by 1,25(OH)2D, acting on VDR of
parathyroid glands [79].

5.2.2 Vitamin D (Calcitriol)

From a biological point of view, vitamin D is a
steroid hormone, as it is synthesized in the body
and has a highly specific receptor (VDR). Most
vitamin D (90–95%) is formed in the skin under
the influence of UVB light, and only a minor
fraction of it is obtained from dietary sources [8].

Vitamin D is stored mainly in the liver with a
half-life of approximately 14 days. When a larger
amount of vitamin D is absorbed, its excess is
stored mainly in adipose tissue [1]. Furthermore,
vitamin D in association with the vitamin
D-binding protein (VBP) is transferred to the
liver, where it is hydroxylated to form 25
(OH)D, which subsequently undergoes 1-
α-hydroxylation in the renal tubules, turning into
1,25(OH)2D. This biologically active form of
vitamin D is under control by serum PTH, phos-
phate, and FGF23 concentrations. The synthesis
of 1,25(OH)2D is stimulated by low serum phos-
phate levels and high PTH concentrations [78].

Vitamin D promotes the intestinal absorption
of calcium and phosphate, significantly increases
their renal reabsorption, and also inhibits the PTH
secretion [40] (Fig. 5.3). Thus the major effects of
1,25(OH)2D are to augment the intestinal absorp-
tion of both calcium and phosphate for proper
bone mineral matrix formation [40]. In the intes-
tine and kidneys, 1,25(OH)2D increases the
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formation of calcium-binding proteins
(calbidins), which promote transmembrane cal-
cium transport to control homeostasis [2]. In
bone, 1,25(OH)2D potentiates the effects of
PTH, stimulates bone resorption by osteoclasts,
and promotes maturation of monocytes into
osteoclasts [70, 84]. In parathyroid glands, 1,25
(OH)2D binds to the VDR, resulting in the sup-
pression of PTH production [96]. The optimal
level of serum phosphate is maintained by the
interaction of hormones; lowering serum phos-
phate level by PTH and FGF23, while, increasing
serum phosphate level by elevating its absorption
in the intestine (1,25(OH)2D) and its resorption
from bones (PTH, 1.25(OH)2D) [37]. PTH
directly activates osteoclasts and causes phos-
phate resorption, and indirectly enhances intesti-
nal phosphate absorption by stimulating 1,25
(OH)2D production [44].

Activation of the VDR is a potent and rapid
modulator of FGF23 expression, thus forming a
“classical” endocrine negative feedback loop
between FGF23 and vitamin D [17]. In addition,
1,25(OH)2D is a potent suppressor of PTH gene
expression [9].

5.2.3 Fibroblast Growth Factor
23 (FGF23)

FGF23, secreted in bone (osteocytes, osteoblasts,
and odontoblasts), is an around 32 kDa glycopro-
tein, which can be converted in its inactive form
through cleavage by a proconvertase-type
enzyme into two smaller fragments: 18 kDa
(amino fragment) and 12 kDa (carboxy
fragment) [32].

FGF23, like PTH, reduces renal phosphate
reabsorption, which leads to a drop-in plasma
phosphate levels [18]. This hormone also
suppresses the secretion of PTH and inhibits the
1α-hydroxylase activity of the kidneys, thus
reducing the synthesis of 1,25(OH)2D
[46, 51]. FGF23 acts by stimulating its receptors,
for the normal function of which a cofactor is
needed, i.e. the Klotho protein, synthesized,
mostly in the kidneys [87]. The transmembrane
Klotho protein is essential for FGF23 to exert its
phosphaturic effects in the kidney [72–74, 89].

A decrease in serum phosphate under the
FGF23 is achieved by inhibiting phosphate reab-
sorption in the renal tubules, as well as by

Fig. 5.3 Possible
regulation of phosphate
homeostasis by vitamin D
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stimulating PTH secretion and suppressing 1,25
(OH)2D synthesis [12, 51, 56, 72, 91]. In contrast,
calcitonin, is another hormone produced by the
thyroid gland, slightly lowers serum calcium due
to inhibition of renal and intestinal calcium reab-
sorption, reducing calcium and phosphate resorp-
tion from bones [36]. Plasma calcium is regulated
by a complex system involving PTH and
1,25(OH)2D on the intestine, bones, and kidneys.
As mentioned, parathyroid gland cells respond to
serum calcium concentration via CaSR. A high
level of calcium in extracellular fluid stimulates
CaSR receptors and activates cellular mecha-
nisms, which ultimately leads to inhibition of
PTH release [6].

Imbalance of calcium and phosphate is
manifested as a shift in the calcium, phosphate
levels in serum and the levels of serum hormones
[PTH and 25(ОН)D], as well as the development
of bone pathology and cardiovascular calcifica-
tion with soft anomalies [76, 88]. The exact etiol-
ogy and pathogenesis of serum phosphate
derangements (hyperphosphatemia and
hypophosphatemia) will need further studies.

5.3 Hyperphosphatemia

Renal failure is the most common cause of
hyperphosphatemia [80]. The decline in
estimated glomerular filtration rate disrupts phos-
phate homeostasis: when it falls below 30 mL/
min/1.73 m2, the reabsorption of phosphate is
maximally suppressed and fractional excretion
markedly reduced. As a result, the serum level
of phosphate increases [16, 21]. A primary
increase in tubular reabsorption of phosphate is
less common and can be observed in hypopara-
thyroidism, acromegaly, and tumoral
calcification [38].

Excessive phosphate can be released from the
intracellular compartment, which is observed in
acute tumor lysis syndrome, rhabdomyolysis,
hemolysis, hyperthermia, profound catabolic
stress, and acute leukemia. Tumor lysis syndrome
is commonly observed in malignant hemato-
logical patients, particularly non-Hodgkin’s
lymphoma and acute leukemia, following chemo-
therapy [4]. Risk factors for developing the

syndrome include impaired renal function,
increased levels of lactate dehydrogenase, and
hyperuricemia [95]. The latter is caused by the
disturbances in FGF23-mediated phosphate regu-
lation in the proximal tubule of the kidney
[10]. Increased intestinal phosphate absorption is
mainly caused either by the use of phosphate-
containing oral laxative, or by vitamin D
overdoses [59].

5.4 Hypophosphatemia

Hypophosphatemia may be a consequence of
the decreased intestinal absorption, internal
redistribution, and increased urinary loss of phos-
phate [31]. The acute shift of phosphate from the
extracellular to the intracellular compartment
is most often caused by respiratory alkalosis and
refeeding syndrome in hospitalized patients
[19, 54]. Respiratory alkalosis causes an increase
in intracellular pH, which stimulates phos-
phofructokinase, leading to severe hypophospha-
temia with plasma phosphate of >0.32 mmol/L
[82]. The intracellular shift of phosphate is also
observed in the treatment of diabetic ketoacidosis
and hungry bone syndrome, which occurs after
parathyroidectomy performed for patients with
long-standing hyperparathyroidism [31]. At the
same time, in the postoperative period, serum
calcium and phosphate concentrations signifi-
cantly decrease.

Low phosphate intake rarely causes
hypophosphatemia, probably because the phos-
phate content in the diet almost always exceeds
the phosphate loss through the gastrointestinal
tract, and the kidneys can reabsorb nearly all of
the filtered phosphate [24]. Excessive urinary loss
of phosphate is observed in both primary and
secondary hyperparathyroidism caused by
impaired vitamin D metabolism, Fanconi syn-
drome, diuretics, and tumor-induced osteomala-
cia (TIO) [31, 48]. TIO is a rare paraneoplastic
syndrome characterized by hypophosphatemia,
phosphaturia, decreased 1,25(OH)2D level, nor-
mal 25(OH)D levels, and osteomalacia [29].
Overproduction of FGF23 caused by TIO reduces
tubular phosphate reabsorption and 1,25(OH)2D
production [58].
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5.5 Genetic Disorders Associated
with Hypophosphatemia

Several inherited abnormalities are characterized
by phosphate-wasting syndromes, commonly
mediated by FGF23. These diseases, resulted by
impaired FGF23 metabolism, include autosomal
dominant hypophosphatemic rickets (ADHR),
X-linked hypophosphatemic rickets (XLHR),
and autosomal recessive hypophosphatemic rick-
ets (ARHR) [94].

ADHR (OMIM 193100) is produced by
FGF23 gain-of-function mutation, which causes
the resistance of the mutant FGF23 to proteolytic
degradation [22]. ADHR manifests as a defect in
renal phosphate transport, associated with
decreased 1,25(OH)2D levels, while the PTH
levels remain normal. ADHR is characterized by
hypophosphatemia, renal phosphate loss, short
stature, and bone disorders [25].

ARHR (OMIM 241520) is caused by
mutations in the DMP1 gene (located on chromo-
some locus 4q21). Patients with ARHR suffer
from decreased renal phosphate reabsorption
and typically display hyperphosphaturia,
hypophosphatemia, reduced 1,25(OH)2D concen-
tration, with PTH values remaining normal
[28, 49].

XLHR (OMIM 307800) appears as a result of
mutations inactivating PHEX (phosphate-
regulating gene with homologies to
endopeptidases located on the X-chromosome).
The PHEX gene encodes a zinc-dependent
metalloproteinase, and is strongly expressed in
osteoblasts, osteocytes, and odontoblasts
[53]. The XLHR symptoms include growth retar-
dation, hypophosphatemia, osteomalacia, and
defective renal phosphate reabsorption. The dis-
eased state is resistant to phosphate and vitamin D
therapy [63].

5.6 Conclusions

Serum phosphate levels are tightly regulated by
hormonal and metabolic factors mainly related to
the triad “vitamin D-PTH-FGF23” as well as

dietary phosphate. Experimental studies have
convincingly shown that disorders and
disturbances in phosphate regulation can lead to
serious systemic complications [45, 61, 62, 64,
65, 75, 77]. Particular attention should be placed
on the central activity of vitamin D in phosphate
metabolism, as 1,25(OH)2D both, directly and
indirectly, impact serum phosphate levels. How-
ever, despite the well-studied pivotal roles of
vitamin D in phosphate homeostasis, many
aspects remain unclear. For instance, what are
the underlying mechanisms by which vitamin D
acts on renal phosphate reabsorption, and how
exactly do calcium and vitamin D modulate
FGF23 production? A better understanding of
these processes and interactions would help to
develop more efficient strategies for the treatment
of phosphate-related disorders.
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