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Preface

I am pleased to present this book, entitled Phosphate Metabolism: From
Physiology to Toxicity. Phosphate is a widely distributed mineral in the
human body. It is an integral component of bone and is also involved in cell
signaling, energy metabolism, and nucleic acid synthesis. Phosphate is present
in virtually every human system, and its optimal balance is essential for the
biological activities of the cells. This book volume contains the works of the
authors who are actively involved in research in determining various aspects
of phosphate regulation in health and diseases. All chapters present the current
state of knowledge, ranging from physiologic regulation of phosphate homeo-
stasis to adverse effects of phosphate toxicity, and discuss future clinical
perspectives. The chapters in this book fall broadly into three groups based
on their focus: (1) factors regulating phosphate homeostasis, (2) mode of
cytotoxic effects of phosphate, and (3) organ damage induced by phosphate
toxicity. Despite widening our understanding of in vivo regulation of phos-
phate, there has not been much in-depth research conducted to determine the
underlying mechanisms of organ-specific phosphate toxicity and its long-term
cumulative effects on human health. I expect that this book will encourage
more interdisciplinary collaboration to enhance our understanding of phos-
phate toxicity and identify possible interventions to delay or reduce the
eventual debilitating health consequences associated with the dietary phos-
phate burden. My time and efforts of writing, editing, and organizing this
book will be worthwhile if the content inspires young physicians and
scientists to take on the challenges of finding innovative ways of reducing
the amount of phosphate-based preservatives in our processed foods and
drinks. As editor, I hope that the broad portfolio of its contents offered to
the readership will help foster a more enlightened insight into phosphate
regulation in the human body.

I would like to take this opportunity to express my thanks and gratitude to
each of the contributors of this book volume for sharing their knowledge and
expertise. Finally, I acknowledge my family's kind support and encourage-
ment (Rafi, Yuki, Lisa, Newaz, Zahid, Muhit, Shahed, and my mother, Nilufar
Begum) that helped me complete this book.

Erie, PA, USA Mohammed S. Razzaque
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Phosphate Metabolism: From
Physiology to Toxicity 1
Mohammed S. Razzaque

Abstract

Systemic phosphate homeostasis is tightly
controlled by the delicate cross-organ talk
among intestine, kidney, bone, and parathy-
roid glands. The endocrine regulation of phos-
phate homeostasis is primarily mediated by
fibroblast growth factor 23 (FGF23),
vitamin D, and parathyroid hormone (PTH).
Bone-derived FGF23 acts on the proximal
tubular epithelial cells of the kidney to partly
maintain the homeostatic balance of the phos-
phate. FGF23, through binding with its cell
surface receptors in the presence of klotho,
can activate downstream signaling kinases to
reduce the functionality of the sodium-
phosphate (NaPi) co-transporters of the kidney
to influence the systemic phosphate homeosta-
sis. Given the complexity of molecular regula-
tion of phosphate homeostasis, providing
information on all aspects of its homeostatic
control in a single volume of a book is an
overwhelming task. As the Editor, I have
organized the chapters that I believe will pro-
vide necessary information on the physiologic
regulation and pathologic dysregulation of
phosphate in health and diseases. Readers
will be able to use this volume as a quick
reference for updated information on

phosphate metabolism without prior acquain-
tance with the field.

Keywords

FGF23 · Klotho · Vitamin D · PTH · EMT ·
Cytotoxicity

1.1 Phosphate Homeostasis

Phosphate exerts essential biological functions in
humans; around 85% of it is present in the bone
[1]. Low phosphate status is linked to musculo-
skeletal deformities in humans, including rickets
or osteomalacia and skeletal myopathy [2–
4]. Contrary, high phosphate status is linked to
cardiovascular calcification, commonly observed
in patients with chronic kidney disease (CKD) on
hemodialysis [5–8]. Fibroblast growth factor
23 (FGF23) is the master regulator of systemic
phosphate homeostasis [2, 4]. Several other
humoral factors, including parathyroid hormone
(PTH) and 1,25-dihydroxyvitamin D [1,25
(OH)2D], also play crucial roles in fine-tuning
phosphate balance [9, 10]. Of relevance, phos-
phate, 1,25(OH)2D, and PTH have feedback reg-
ulation on FGF23, while calcium can also induce
FGF23 (Fig. 1.1). The osteoblasts and osteocytes
mainly produce FGF23; it can specifically bind to
the FGF receptors in klotho expressing organs,
including kidney and parathyroid glands [11–
13]. In the kidney FGF23 suppresses the
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expression of sodium-phosphate (NaPi)
cotransporters (type IIa and type IIc) in the proxi-
mal renal tubules to reduce renal phosphate reab-
sorption [14–19]. FGF23 also reduces the
generation of the active form of vitamin D [1,25
(OH)2D] by suppressing the renal expression of
1α-hydroxylase, which converts inactive
25-hydroxyvitamin D [25(OH)2D] to active 1,25
(OH)2D. Multiple steps of vitamin D metabolism
are illustrated in our earlier publications [20–
25]. Of importance, 1,25(OH)2D can increase
intestinal phosphate absorption. FGF23, there-
fore, can reduce both intestinal phosphate absorp-
tion (indirectly by reducing vitamin D activities)
and renal phosphate reabsorption (directly by
suppressing NaPi co-transporter activities) to
reduce the overall phosphate content of the
body, which might reflect as a low serum level
of phosphate. Bone cell-derived full-length
FGF23 is biologically active [26, 27], while
proteases like Furin can cleave the full-length
FGF23 into inactive smaller fragments [28]. A
phosphate-rich diet and 1,25(OH)2D3 can
increase the serum level of full-length FGF23 in
experimental animals [29]. Furthermore,
transforming growth factor β (TGFβ), erythropoi-
etin (EPO), inflammation, iron deficiency, and
hypoxia are the positive regulator of FGF23,

whereas insulin is shown to be a negative regula-
tor [30–33] (Fig. 1.2).

1.2 Book Chapters

The chapters in this book fall broadly into three
groups based on their focus: (1) factors regulating
phosphate homeostasis, (2) mode of cytotoxic
effects of phosphate, and (3) organ damage
induced by phosphate toxicity. The organ cross-
talk during physiologic and pathologic phosphate
regulations by various factors is elaborated in the
chapter contributed by Akimbekov et al.
[34]. The chapter is adequately illustrated to pres-
ent simplistic views of the roles and regulation of
FGF23, vitamin D, and PTH in controlling phos-
phate homeostasis [34]. In a follow-up chapter,
Nakatani et al. has discussed the effects of FGF23
on vitamin D metabolism and explained how
increased serum FGF23 might be an important
indicator of adverse clinical outcomes of patients
with kidney diseases [35]. Existing evidence
suggests that even in individuals with normal
renal function, FGF23 plays an important role in
vitamin D metabolism; an increased level of
FGF23 and a decreased level of vitamin D are

Fig. 1.1 Simplified
diagram showing feed-back
regulation of FGF23 by
phosphate, 1,25(OH)2D,
and PTH. Calcium can also
positively influence FGF23
synthesis
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associated with commonly encountered adverse
events in patients with CKD [36].

One of the unresolved areas of phosphate
homeostasis is how the body senses the alteration
of phosphate status to trigger the release of
phosphate-regulatory factors. The chapter
contributed by Takashi and Fukumoto detailed
about phosphate sensing, and explained how
FGFR1c has the potential to be a phosphate sen-
sor [37]. Studies have also proposed PiT1, PiT2,
and calcium-sensing receptor (CaSR) as
phosphate-sensors, although detail mechanisms
are not yet clear [37]. In a separate chapter,
Abbasian and colleagues have elucidated how
endothelial cells can sense the elevated inorganic
phosphate concentration to generate subcellular
signals to induce various vascular responses,
ranging from angiogenesis to endothelial-
mesenchymal transition (EndoMT) [38]. Phos-
phate toxicity can cause cytotoxicity (cell stress,
senescence, apoptosis, and necrosis) and induce
epithelial to mesenchymal transition (EMT)
[39]. Potential subcellular regulations of
phosphate-induced TGF-β-dependent and -inde-
pendent EMT are elaborated by Lewis and
colleagues [40]. Hu and Moe, in their chapter,
described the underlying mechanisms of
phosphate-induced cellular senescence and
detailed the potential roles of klotho and

plasminogen activator inhibitor-1 in senescence
[41]. The role of phosphate-induced inflammation
in tissue /organ damage and tumorigenesis is an
evolving area of research and is briefly
deliberated in another chapter (Fig. 1.3) [42]. A
separate chapter by Michigami et al. discussed
how phosphate could generate abnormal cell sig-
naling and oxidative stress to induce cytotoxicity
and inflammatory events [43].

Processed foods often contain high phosphate-
rich additives that are more readily absorbed into
the body than organic phosphate sources. The
Food and Drug Administration (FDA) does not
mandate food manufacturers or retailers to report
per serving phosphate amounts on food labels
[44]. A chapter of this book volume is devoted
to elaborating the common dietary sources of
natural and artificial phosphate-containing foods
in the U.S. and Japan [45]. Cardiovascular
anomalies are the major consequence of phos-
phate toxicity [5, 12, 24, 44, 46]. How phosphate
can act as one of the cardiovascular toxins, is
discussed in the chapter contributed by Leifheit-
Nestler et al. [46]. Studies have shown that
magnesium-based phosphate binders can reduce
phosphate-induced cardiovascular calcification
[47–49]. Bruna et al. reviewed how bacteria
sense and respond to intracellular changes in
phosphate and magnesium concentrations. The

Fig. 1.2 Factors influencing production of FGF23. Transforming growth factor β (TGFβ), erythropoietin (EPO),
inflammation, iron deficiency, and hypoxia are the positive regulator of FGF23, whereas insulin is a negative regulator
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authors provided experimental evidence to
explain how these two minerals are functionally
linked, and that excessive cytoplasmic phosphate
microenvironment mimics conditions resulting
from insufficient cytoplasmic magnesium and
contrariwise [50].

Further understandings into the molecular
details of phosphate-medicated cytotoxicity, phe-
notypic alteration of cell behaviors, and inflam-
matory events are likely to offer novel therapeutic
targets for minimizing phosphate toxicity-
induced tissue and organ damages, with
far-reaching impacts on tumorigenesis,
vasculogenesis, fibrogenesis and neuronal
toxicity [51–53].

1.3 Conclusion

All the chapters in this book present the current
state of understanding of physiologic and patho-
logic regulations of phosphate homeostasis. The
wide range of topics that are covered will provide
the reader with a fundamental understanding of
phosphate regulation during health and diseases.
The goal is to encourage more interdisciplinary

collaboration to enhance our understanding of
organ-specific phosphate toxicity and identify
possible approaches to reduce the amount of
phosphate-based preservatives used in the
processed foods and drinks. The sincere expecta-
tion will be that among the readers, a few will be
encouraged to take up the challenge and reap the
rewards for themselves to enhance further under-
standing of pathomechanisms of phosphate toxic-
ity that will lead to better patient care.

Acknowledgement I want to express my sincere grati-
tude to Dr. Nuraly Akimbekov (Al-Farabi Kazakh
National University, Kazakhstan) for his help in drawing
the illustrations. I also wish to thank Dr. Margo Wolfe for
reading the manuscript and providing useful suggestions.
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Abstract

Phosphate is an essential macromineral often
introduced to the body through dietary intake.
The mechanisms for maintaining phosphate
levels are tightly controlled via hormonal
interactions and excretion via the kidneys.
However, western diets consist of high levels
of inorganic phosphate, which can overwhelm
the regulatory mechanisms in place for
maintaining homeostasis. Recent studies have
found that phosphate burden can lead to acti-
vation of inflammatory signaling in various
parts of the body. In addition, individuals
with impaired kidney function may also expe-
rience exacerbated symptoms of phosphate
overload due to decreased filtration and elimi-
nation. Many disease states can arise as a result
of phosphate burden and subsequent inflam-
matory signaling, including cardiovascular
diseases, tumorigenesis, depression, and

neuronal disorders. While the pathophysiolog-
ical causes of these diseases have been
elucidated, there remains a need to address
the clinical impacts of excessive dietary phos-
phate intake and to clarify potential drug
candidates that may help alleviate these
conditions. This brief chapter looks to explain
the overall connection between phosphate bur-
den and inflammation in various diseases.

Keywords

Inflammation · Phosphate burden · FGF23 ·
Cytokines · IL-1 · Tumorigenesis

2.1 Phosphate in the Human
Body

Phosphate was first discovered by Hennig Brand
in 1669 using a urine preparation; since then,
extensive research has been performed
investigating its essential role in living organisms.
This mineral is a crucial component in the struc-
ture of nucleic acids and phospholipid
membranes; in addition, it is involved in several
biological processes, including the phosphoryla-
tion of proteins, and the formation of cyclic AMP
and ATP [19]. Phosphate is a relatively abundant
mineral found in the human body, measuring
between 500 and 800 grams (g) [13]. The normal
plasma concentration of inorganic phosphate in
adults is 2.5–4.5 mg/dL; men typically have a
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slightly higher concentration than women
[13]. Around 85% of phosphate is found in the
bones and teeth, 10–15% in soft tissues, and
approximately 1% in blood. Serum phosphate
levels, therefore, might not always reflect the
total amount and distribution of phosphate.
Blood is constantly being filtered by the kidneys,
and phosphate is partly reabsorbed there. In
individuals with a normal phosphate intake,
between 80 and 90% of filtered phosphate is
reabsorbed [17].

Fibroblastic growth factor 23 (FGF23),
calcitriol, and parathyroid hormone (PTH) levels
are responsible for regulating phosphate
concentrations in the body by regulating
the amount of urinary excretion [31, 32]. Intake
of dietary phosphate stimulates PTH secretion
which in turn increases bone FGF23 synthesis
and release, and is key in triggering the synthesis
of calcitriol by the kidneys. FGF23 suppresses
both PTH and calcitriol levels, and calcitriol
inhibits PTH synthesis and secretion, while
stimulating FGF23 release. The regulatory trian-
gle formed between these three substrates creates
a fine balance for the maintenance of serum phos-
phate levels. Since filtration and urinary excretion
rely heavily on the kidneys, individuals with
reduced kidney function are susceptible to high
levels of phosphate in their blood. This disruption
in homeostasis can lead to the development of
hyperphosphatemia.

Hyperphosphatemia is a condition defined by
high plasma concentrations of phosphate
(>4.5 mg/dL) [19]. It is often caused by a
decrease in renal processing and excretion of
phosphate; in other cases, thyroid diseases such
as hypoparathyroidism or pseudohypothyroidism
may be to blame [19]. While most individuals
with hyperphosphatemia are asymptomatic, other
conditions, such as hypocalcemia may exacerbate
symptoms (e.g., tetany) [13]. Hyperphosphatemia
is sometimes associated with concomitant cardio-
vascular disease in patients with chronic kidney
disease (CKD). In those with normal kidney func-
tion, elevated phosphate levels have been
associated with cardiovascular events and vascu-
lar calcification.

2.2 Inflammation Associated
with Phosphate Toxicity

Inflammation is a biological process generated in
response to pathogens and tissue injury. It is a
feed-forward system that, once activated,
continues to recruit inflammatory cells and drive
inflammation at the cellular level. While it is
beneficial in most cases, chronic inflammation
can increase the risk of developing diseases such
as cancer, CKD, and cardiovascular disease
(CVD). Traditionally, identified mediators of
inflammation are cytokines and chemokines;
however, lipid mediators involving phosphate
may also play a role in inflammation, and
tumorigenesis [13].

Phosphate is a relatively abundant mineral
found in almost all the places in the human
body. While it has important physiologic roles
in maintaining musculoskeletal functions, it can
also become pathogenic when it precipitates with
calcium in extra-skeletal systems. This ectopic
precipitation can lead to cell damage and initiate
inflammatory responses. In healthy individuals,
calcium-phosphate crystals are adsorbed by the
serum protein fetuin-A; this interaction prevents
the crystals from forming large, pathogenic
precipitates. However, these formations can also
break off into nanoparticles, known as
calciprotein particles (CPPs), which circulate in
the blood. Over time, serum CPP levels increase
due to aging and elevated phosphate. CPPs have
been implicated in chronic non-infectious inflam-
mation and vascular stiffness [17].

The kidneys are vital in maintaining phosphate
homeostasis, as excess phosphate is excreted
from the body in urine. Elevated levels of plasma
FGF23 have been linked to expression of inflam-
matory cytokines (IL-6, TNF-α), C-reactive pro-
tein (CRP), fibrinogen, and flares in autoimmune
diseases in patients with CKD [39]. Increases in
serum phosphate have also been found to promote
inflammation in individuals with CKD via induc-
tion of inflammatory gene programs in the liver
[9]. In rat models of CKD, fluctuations in dietary
phosphate intake were found to influence inflam-
mation and vascular calcification [37].
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The role of dietary phosphorus in inflamma-
tion and oral diseases has also been studied in
human diseases. Of relevance, Western diets con-
tain high levels of refined carbohydrates, fat,
sodium, and phosphorus, contributing to the
growing number of cardiovascular and metabolic
diseases. For instance, inorganic phosphate
salts are used as a flavor enhancer and preserva-
tive [17]. Ingested phosphate is absorbed through
the small intestine after it is cleaved by alkaline
phosphatases in the cells lining the intestine
[17]. Higher phosphorus intake significantly
correlated with the presence of gingivitis and
elevated levels of pro-inflammatory cytokine
IL-1 beta, and inversely correlated with the anti-
inflammatory cytokine IL-4 in saliva [12].

As mentioned, phosphate toxicity is associated
with the activation of cellular stress response
systems and inflammation. Cortisol, which is
released by the hypothalamic-pituitary-adrenal
axis response to stress and inflammation, is
speculated to be associated with phosphate toxic-
ity and depression [6]. In turn, phosphate toxicity
may negatively impact adrenal gland function,
potentially leading to adrenal insufficiency and
increased depression. Furthermore, Alzheimer’s
disease is associated with hyperphosphorylated
tau protein which self-assembles into neurofibril-
lary tangles, perhaps utilizing excessive amounts
of phosphate in the brain and central nervous
system (CNS) [6].

2.3 Mechanisms
of Phosphate-Induced
Inflammation

Exposure to inorganic phosphate activates inflam-
matory signaling pathways, particularly through
activation of the transcription factor nuclear fac-
tor κ-light-chain-enhancer of activated B cells
(NK- κB) [45]. This has been studied extensively
in vascular smooth muscle cells (VSMCs) in
regard to inflammatory signaling and its effects
on calcification in cardiovascular disease. NF-κB
affects multiple signaling pathways to mediate

inflammatory signaling and calcification. For
example, it inhibits IκB kinase (IKK), which is
known to have an anti-calcific effect [1, 41]. NF-κ
B can also be activated by the pro-inflammatory
mediator TNF and TNF-related weak inducer of
apoptosis (TWEAK) [16]. VSMCs that have been
exposed to high levels of inorganic phosphate
in vitro have been shown to release the inflamma-
tory cytokine IL-6 [44]. IL-6 induces expression
of CBFA1 through activation of the transcription
factor STAT3 [18]. In addition, IL-6 plays a role
in the inorganic phosphate-induced senescence of
VSMCs. This is linked to oxidative stress, which
activates a DNA damage response and can further
induce inflammation [10, 43]. Exposure to inor-
ganic phosphate can also result in upregulation of
IL-1β and the NALP3 inflammasome, which can
promote senescence [15, 42].

2.4 Phosphate Toxicity
and Cardiovascular Disease

Phosphate toxicity is associated with an increased
risk of cardiovascular disease [11, 28, 34]. This
includes heart failure, chronic obstructive pulmo-
nary disease (COPD), and cardiovascular mortal-
ity caused by stroke or noncoronary heart
diseases [39]. While it has been shown that
patients with CKD are more susceptible to
CVD, circulating excess phosphate can also play
a role in vascular calcification and cardiovascular
events in individuals with normal kidney function
[8, 39].

Research now shows that the connection
between hyperphosphatemia and cardiovascular
events is linked to pro-inflammatory signaling
and effects [3, 38, 40]. Circulating phosphate
levels can be associated with inflammatory
mediators such as IL-6 and CRP [39]. Phosphate
exposure activates pro-inflammatory cellular sig-
naling via the expression of the transcription fac-
tor NF-κB in VSMCs. In VMSCs, exposure to
phosphate can initiate oxidative stress; however,
when phosphate burden is pharmacologically
blocked, VSMC-calcification is inhibited
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[2, 20]. Oxidative stress causes DNA damage,
which then activates a DNA damage response.
This process can lead to more inflammation and
vascular calcification [36].

In CKD patients, high phosphate levels are
associated with cardiovascular disease. Multiple
in vitro studies have investigated the effects of
phosphate concentrations on human aortic smooth
muscle cells. Exposure to phosphate induces
the expression of pro-inflammatory mediators
such as interleukins (IL-1β, IL-6, IL-8), and
TNF-α [21, 44, 46]. In addition, an increase in
reactive oxygen/nitrogen species (ROS/RNS)
production, can be detected, further indicating an
inflammatory response [21]. Animal models of
CKD have also demonstrated that high-phosphate
diets induce inflammation both locally in the
arteries and systemically, which may also play a
role in the pathogenesis of the vascular calcifica-
tion associated with hyperphosphatemia [29]. It is
worth noting, klotho knockout mice are a well-
studied model for phosphate toxicity that can lead
to cardiovascular calcification and premature
aging [22–26, 33, 35]. Dysregulated inflammatory
cytokines were detected in serum collected from
hyperphosphatemic klotho knockout mice com-
pared to their age-matched normophosphatemic

wild-type mice (Fig. 2.1). Such molecular signa-
ture of inflammation in klotho knockout mice with
phosphate toxicity was associated with signifi-
cantly reduced longevity. More importantly,
reducing phosphate toxicity in klotho knockout
mice could reduce cardiovascular calcification
and increase longevity [23, 27].

2.5 Phosphate Toxicity
and Tumorigenesis

Phosphate toxicity leading to cellular phosphate
burden has been identified as a cause of cancer
cell growth. Tumor cells are unable to regulate
phosphate homeostasis due to their higher expres-
sion of phosphate cotransporters and ability to
store more phosphate than healthy cells. Animal
models have demonstrated that high dietary
intake of phosphate leads to the growth of skin
and lung tumors [39].

A potential interaction between the excess of
blood vessels supplying a tumor (inflammatory
hyperemia) and hyperphosphatemia has been
speculated in the formation and progress of can-
cer [5]. Hyperemia increases the blood flow rate
and volume to tumors. This combined with the

Fig. 2.1 Serum IL-1α and IL-1β levels in hyperpho-
sphatemic klotho knockout mice (n ¼ 5) and
age-matched (6-weeks-old) normophosphatemic wild-
type mice (n ¼ 4). Note that compared to control wild-

type mice (with normal serum phosphate), klotho knock-
out mice (with high serum phosphate) show elevated
IL-1α and reduced IL-1β levels (*: p < 0.05)
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inflammatory nature of hyperphosphatemia leads
to an increase in inorganic phosphate circulating
within the tumor microenvironment [5]. Elevated
intracellular phosphorus levels may trigger
the synthesis of ribosomal RNA (rRNA), which
leads to increased protein synthesis, driving
tumor growth [5]. Research has also been
performed investigating the role of sphingosine-
1-phosphate (S1P) and ceramide-1-phosphate
(C1P) in inflammation and cancer [7, 14]. These
pro-inflammatory metabolites have been found to
participate in and promote tumorigenesis [4, 30].

2.6 Conclusions

Phosphate toxicity can induce a wide range of
tissue injuries, including cardiovascular damage
and premature aging (Fig. 2.2) [26, 27]. Recent

investigations have highlighted the inflammatory
effects of excess phosphate and various disease
states. An elevated level of circulating phosphate
is partly the result of an increase in dietary phos-
phate intake, insufficient kidney function, and
abnormal FGF23 and PTH levels. Combined,
these factors can lead to tumorigenesis, cardio-
vascular events, and mental health conditions.
These facts raise the point that phosphate intake
should be monitored, particularly in susceptible
groups such as those with chronic kidney disease.
Further work is needed in elucidating the exact
mechanisms and treatments available to prevent
inflammation from worsening any of these
conditions.

Acknowledgement We want to express our sincere grat-
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Fig. 2.2 Partial list of
various pathologies induced
by phosphate toxicity [34]
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Abstract

Phosphorus is an essential nutrient that plays a
crucial role in various biological processes,
including cell membrane integrity, synthesis
of nucleic acids, energy metabolism, intracel-
lular signaling, and hard tissue mineralization.
Therefore, the control of phosphorus balance
is critical in all living organisms, and the fibro-
blast growth factor 23 (FGF23)-αKlotho sys-
tem is central to maintain phosphate
homeostasis in mammals. Although phosphate
is indispensable for basic cellular functions, its
excessive retention is toxic and can affect
almost all organ systems’ functionality. In
human patients, hyperphosphatemia has been
implicated in an increase in morbidity and
mortality. Also, mouse models with hyperpho-
sphatemia generated by disruption of the
FGF23-αKlotho system exhibit extensive tis-
sue damage, premature aging, and a short
lifespan. Experimental studies using cell and
animal models suggest that cytotoxic and
inflammatory effects of elevated phosphate

are partly mediated by abnormal cell signaling
and oxidative stress. This review provides an
overview of our current understanding regard-
ing the toxicity of phosphate.
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3.1 Introduction

Phosphorus is an essential nutrient for all
organisms, being involved in various biological
processes that include cellular membrane compo-
sition, synthesis of deoxyribonucleic acid (DNA)
and ribonucleic acid (RNA), intracellular signal-
ing and energy metabolism, as well as skeletal
mineralization in vertebrates. Phosphorus
ingested through food usually exists as both
organic and inorganic forms of phosphate in the
body. In human adults, ~90% of the total phos-
phorus is distributed in the bone as hydroxyapa-
tite (calcium-phosphate) crystals, and the
remainder is mostly present in soft tissues. The
extracellular fluid contains <1% of phosphorus
[54, 55]. Phosphorus in serum exists mostly as
inorganic phosphate (Pi) in the form of free ions
HPO4

2� and H2PO4
�, and HPO4

2� is dominant
in physiological pH. Intracellular phosphate
mostly exists as a bound form or inorganic

T. Michigami (*) · M. Yamazaki
Department of Bone and Mineral Research, Research
Institute, Osaka Women’s and Children’s Hospital, Izumi,
Osaka, Japan
e-mail: michigami@wch.opho.jp;
miwayama@wch.opho.jp

M. S. Razzaque
Department of Pathology, Lake Erie College of
Osteopathic Medicine, Erie, PA, USA
e-mail: mrazzaque@lecom.edu

# Springer Nature Switzerland AG 2022
M. S. Razzaque (ed.), Phosphate Metabolism, Advances in Experimental Medicine and Biology 1362,
https://doi.org/10.1007/978-3-030-91623-7_3

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91623-7_3&domain=pdf
mailto:michigami@wch.opho.jp
mailto:miwayama@wch.opho.jp
mailto:mrazzaque@lecom.edu
https://doi.org/10.1007/978-3-030-91623-7_3#DOI


phosphate esters, phospholipids in the cell mem-
brane, or phosphorylated intermediate molecules
involved in various biochemical processes, which
include the generation, storage, and transport of
cellular energy through the formation of adeno-
sine 50-triphosphate (ATP) by oxidative phos-
phorylation [54, 55].

Mammalian cells take up Pi from extracellular
fluid mainly through membrane transporters that
function dependently on sodium (Na+) gradient
across the plasma membrane. These Na+-depen-
dent Pi transporters (Na+/Pi cotransporters) have
been classified into three families in mammals
[87]. Type I transporter that belongs to the solute
carrier family 17 (SLC17) is involved in the
transport of organic ions in addition to Pi, and
human type 1 transporter NPT1 has been
suggested to function as a urate transporter
[16]. Among type II transporters, type IIa and
IIc encoded by the SLC34A1 and SLC34A3
genes in human, respectively, are predominantly
expressed in brush border membrane of proximal
tubules in the kidney and responsible for renal
reabsorption of Pi, while type IIb transporter
encoded by SLC34A2 is expressed in various
tissues and accountable for active transcellular
absorption of Pi in the small intestine. Type III
Na+/Pi cotransporters PiT1 and PiT2 encoded by
SLC20A1 and SLC20A2, respectively, are widely
expressed with different expression patterns, and
their main function is likely to supply Pi to indi-
vidual cells [32, 87].

Renal reabsorption and intestinal absorption of
Pi are critical for Pi homeostasis in mammals.
Renal Pi reabsorption by type IIa and IIc Na+/Pi
cotransporters (NaPi2a and NaPi2c) is suppressed
by several humoral factors, including parathyroid
hormone (PTH) and fibroblast growth factor
23 (FGF23), which increases urinary Pi excretion
[66, 67]. Intestinal Pi absorption by type IIb Na+/
Pi cotransporter (NaPi2b) is increased by both
1,25-dihydroxyvitamin D [1,25(OH)2D] and low
dietary phosphate [30]. It was reported that mice
deficient for NaPi2b absorbed approximately
50% less phosphate than wild-type animals,
confirming the major contribution of this trans-
porter in Pi homeostasis [76]. However, in
humans, the daily need for phosphate is covered

by intestinal absorption from ingested food, so
serum Pi level is virtually maintained by renal
phosphate excretion.

3.2 FGF23-αKlotho System
and Phosphate Metabolism

Mounting evidence has established the central
roles of FGF23 in Pi metabolism. FGF23 is a
secreted protein of 32 kDa produced by bone
and exerts its effects on the distant target organs,
including the kidney, in an endocrine fashion. In
the kidney, FGF23 increases Pi excretion by
suppressing the expression of NaPi2a and
NaPi2c. Also, FGF23 decreases the production
of 1,25(OH)2D by suppressing the expression of
25-hydroxyvitamin D-1α-hydroxylase and induc-
ing that of 25-hydroxyvitamin D-24-hydroxylase
[55, 66, 67]. To evoke its signal through FGF
receptor (FGFR), FGF23 requires αKlotho
[46, 86]. αKlotho is a 130-kDa type I membrane
protein, which was initially identified as an aging-
related factor [45]. In addition to the transmem-
brane form, soluble form of αKlotho is also
detectable in serum and CSF, although its physi-
ological roles are not clarified yet [37, 93,
94]. Because of the predominant expression of a
transmembrane form of αKlotho in the kidney,
parathyroid gland, and the choroid plexus, these
organs have been considered to be the physiolog-
ical targets for FGF23 action [45]. In the parathy-
roid gland, it has been shown that FGF23
suppresses the gene expression and secretion of
PTH [8]. In addition, we previously reported that
the placenta also expresses αKlotho and that a
high level of maternal FGF23 up-regulates the
placental expression of the Cyp24a1 gene
encoding 25-hydroxyvitamin D-24-hydroxylase
and affects fetal vitamin D metabolism in a
mouse model of human X-linked
hypophosphatemic rickets [61, 62].

Disruption of FGF23-αKlotho system by loss-
of-function mutations in FGF23, αKlotho, or
GalNAc-transferase 3 that is an enzyme responsi-
ble for O-glycosylation of FGF23, causes
hyperphosphatemic familial tumoral calcinosis
[3, 35, 36]. Similarly, mice deficient for Fgf23
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or αKlotho also exhibit hyperphosphatemia and
increased level of 1,25(OH)2D [70, 77]. Thus,
FGF23-αKlotho system is central in Pi and vita-
min D metabolism, and its impairment leads to
excessive retention of Pi in the body.

On the other hand, the excess action of FGF23
has been implicated in the pathogenesis of vari-
ous hypophosphatemic diseases, including some
heritable rickets/osteomalacia [26]. Mutations
in FGF23 that make the protein resistant to
cleavage are responsible for autosomal dominant
hypophosphatemic rickets (ADHR), which is
characterized by renal Pi wasting, hypo-
phosphatemia, and inappropriately low levels
of serum 1,25(OH)2D [2]. In addition, loss-of-
function mutations in several genes such as
the phosphate-regulating gene homologous to
endopeptidases on X chromosome (PHEX), den-
tin matrix protein 1 (DMP1) and family with
sequence similarity 20, member C (FAM20C)
cause increased levels of FGF23 and hypopho-
sphatemic rickets [25, 34, 49, 84], and over-
production of FGF23 by tumors also causes
hypophosphatemic osteomalacia [78]. Recently,
Burosumab, a monoclonal antibody against
FGF23, has been developed as a new drug to
treat FGF23-related hypophosphatemic rickets/
osteomalacia [13, 26].

Although the physiological actions of FGF23
require αKlotho, recent studies have suggested
that massively elevated levels of circulating
FGF23 as found in patients with chronic kidney
disease (CKD) might result in pathological
changes in cells and tissues lacking αKlotho [74].

3.3 Phosphate and Morbidity
and Mortality

Although phosphorus is an essential nutrient for
all living organisms, excessive retention of Pi
in the body is toxic and causes various cellular
and tissue injuries [24, 38, 68, 69]. Mice deficient
for Fgf23 or αKlotho, which exhibit markedly
elevated levels of serum Pi and 1,25(OH)2D,
suffer from premature aging, vascular calcifica-
tion, and early mortality. They also manifest
hypogonadism, infertility, emphysema, and

generalized tissue atrophy [45, 56]. Interestingly,
it was shown that a low-phosphate diet corrected
hyperphosphatemia, prevented vascular calci-
fication, and prolonged survival in Fgf23-
deficient mice, despite the persistent elevation in
1,25(OH)2D levels [82]. Moreover, genetic inac-
tivation of NaPi2a in αKlotho-deficient mice
restored severe hyperphosphatemia and reduced
vascular and soft tissue calcification, even in the
presence of extremely high levels of serum cal-
cium and 1,25(OH)2D. These mice lacking both
NaPi2a and αKlotho also recovered body weight,
regained reproductive ability, reduced their tissue
atrophy, and exhibited the longer survival, com-
pared to the mice deficient for αKlotho alone
[63, 64]. However, when fed with a high-
phosphate diet, the NaPi2a/αKlotho double-
deficient mice again suffered from premature
aging and shortened lifespan [64]. These
observations in mouse models clearly indicate
that excessive Pi can be toxic to multiple organs
and accelerates the aging process.

Human studies also have suggested the toxic
effects of Pi. In CKD (CKD), elevated serum Pi
has been implicated as a risk factor for cardiovas-
cular diseases and higher mortality in both dialy-
sis and non-dialysis patients [9, 23, 27, 43, 65,
81]. Hyperphosphatemia and elevated calcium-
phosphate product levels are associated with cal-
cification of soft tissues and blood vessel walls in
CKD patients and are predictive of high morbid-
ity and mortality [20, 27]. In addition to the
passive precipitation of calcium-phosphate in
soft tissues, substantial evidence suggests that
high extracellular Pi induces the expression of
osteoblastic genes in vascular smooth muscle
cells, which contributes to calcification [40]. It
has also been reported that higher serum Pi is
associated with high mortality even in individuals
with preserved renal function. Tonelli, et al.
performed a post hoc analysis of the data from
the Cholesterol And Recurrent Events (CARE)
study and found a graded independent relation
between higher serum Pi and the risk of death
and cardiovascular events in 4127 subjects, most
of whom had serum Pi levels within the normal
range [85]. Li, et al. performed a meta-analysis
study using 24 clinical trials with a total of
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147,634 patients without CKD and revealed a
positive association between serum Pi level and
mortality [47]. A prospective study demonstrated
that a higher serum Pi predicted mortality in renal
transplantation recipients [18].

Phosphate overload can also be associated
with a diet rich in phosphate additives and treat-
ment with phosphate-containing laxatives or
enema [7]. It was reported that the high-
phosphate diet containing much food additives
increased the serum and urinary Pi levels as well
as the excretion of hydroxyproline and cyclic
adenosine monophosphate (cAMP), while
decreased serum and urinary calcium levels [7].
A randomized controlled trial demonstrated that
avoiding phosphate-containing food additives
resulted in a modest improvement in hyperpho-
sphatemia among patients with end-stage renal
disease [83]. The administration of phosphate-
containing enemas also caused serum Pi elevation
and decreased serum calcium [29]. Several case
reports describe the complications such as tetany,
hypocalcemic coma, and brain damage, induced
by administration of phosphate-containing enema
[22, 50, 80].

3.4 Phosphate and Pathological
Calcification

Pathological calcification is one of the primary
mechanisms for harmful effects induced by
phosphate overload. Hyperphosphatemia and
the increased calcium-phosphate products may
facilitate the ectopic calcification of soft tissue
and blood vessels [72, 73]. In addition to the
accelerated formation of calcium-phosphate
crystals, in vitro studies using cultured vascular
smooth muscle cells (VSMCs) demonstrated that
elevated extracellular Pi caused osteoblastic
transdifferentiation [17, 40]. The treatment of
VSMCs with high Pi induced the expression of
RUNX2, a master transcription factor required for
osteoblastic differentiation, and BGLAP encoding
osteocalcin, an osteoblast-specific matrix protein
[40]. Since it was reported that ablation of Runx2

prevented vascular calcification in mice [48], the
Pi-induced up-regulation of Runx2 might sub-
stantially contribute to the ectopic calcification
caused by phosphate overload.

3.5 Phosphate and Inflammation

Inflammation is a common feature of advanced
renal disease [60]. It was reported that serum Pi
and calcium-phosphate product levels directly
correlated with serum levels of C-reactive protein
(CRP) and interleukin-6 (IL-6) in 133 patients
with CKD not on dialysis and not receiving cal-
cium supplements, phosphate binders, or vitamin
D, whereas HDL-cholesterol and estimated glo-
merular filtration rate (eGFR) inversely correlated
with the levels of inflammatory state [57]. The
authors of this study suggested that serum Pi was
an independent risk factor for the presence of an
inflammatory state, based on their logistic regres-
sion analysis. In an animal study, Yamada, et al.
reported that dietary phosphate overload resulted
in an increase in serum and tissue levels of TNF-α
and developed malnutrition in adenine-induced
CKD rat model [91]. Emerging evidence has
suggested that pro-inflammatory response might
mediate the development of phosphate overload-
related vascular calcification [88].

Duchenne muscular dystrophy is a lethal
inherited disease caused by dystrophin deficiency
and characterized by progressive muscle degener-
ation, increased macrophage infiltration, and
ectopic calcification. It was reported that dietary
phosphorus overload dramatically aggravated the
dystrophic phenotype in the dystrophin-deficient
mdx mouse, a model of Duchenne muscular dys-
trophy, by increasing the number of necrotic mus-
cle fibers and the degree of inflammation
associated with infiltration of M1 macrophages
[89]. More recently, a human study has
demonstrated that dietary phosphorus enhances
inflammatory response in gingivitis [28]. Thus,
phosphate overload may induce inflammation in
various conditions.
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3.6 Phosphate-Induced Signaling
and Cytotoxicity

Although the underlying mechanisms are still not
fully understood, the direct inflammatory and
cytotoxic effects of extracellular Pi are likely
to be involved. It has been shown that elevated
extracellular Pi itself triggers signaling to regulate
gene expression and cellular functions in some
cell types [6, 41, 44, 55, 93, 94]. Especially,
Pi-induced signaling has been extensively
investigated in bone cells. In an osteoblastic cell
line MC3T3-E1, elevated extracellular Pi induced
the expression of several genes, including that
for osteopontin [4–6, 19, 59, 71]. In early
chondrocytes of proliferating stage, extracellular
Pi up-regulated the cyclin D1 expression [44].
In mature chondrocytes, elevated Pi induced the
expression of matrix Gla protein (MGP) that
is related to mineralization [41]. These studies
revealed that gene regulation by the elevated
extracellular Pi involved the type III Na+/Pi
cotransporter Pit-1 and the activation of
MEK/ERK pathway [4, 41, 44, 55]. It is also
reported that signaling pathways activated by
elevated Pi include FGF receptor signaling,
G-protein signaling, N-ras signaling [11] and
Akt/mTORC signaling [31, 42]. In addition to
the effects on gene expression, elevated extra-
cellular Pi facilitates apoptosis in terminally
differentiated chondrocytes [51, 52, 75]. Thus,
extracellular Pi is physiologically an important
regulator of proliferation, differentiation and func-
tion of bone cells. However, as mentioned above,
a pathologically elevated concentration of extra-
cellular Pi induced the expression of several
osteoblast-specific genes such as Runx2 and
osteocalcin in vascular smooth muscle cells in a
Pit-1-dependent manner, leading to a phenotypi-
cal change to predispose calcification [40]. By
expressing wild-type or various mutant Pit-1
proteins in Pit-1-deficient vascular smooth muscle
cells, Chavkin, et al. demonstrated that both Pi-
uptake-dependent and –independent functions of
Pit-1 are involved in vascular calcification [14].

As described above, an elevation in extracel-
lular Pi also triggers a signal for apoptosis in

hypertrophic mature chondrocytes [52, 75]. In
pathological conditions, elevated levels of extra-
cellular Pi may accelerate apoptosis in other cell
types as well. Indeed, the apoptosis rate was
increased in various organs in the hyperpho-
sphatemic αKlotho-deficient mice, which was
restored in the NaPi2a/αKlotho double-deficient
mice with lowered serum Pi [64]. ISO-HAS is an
endothelial cell line originally established from
human hemangiosarcoma [53]. Using this cell
line (obtained from Cell Resource Center for Bio-
medical Research Institute for Development,
Aging and Cancer, Tohoku University, Japan),
elevated Pi-induced apoptosis was associated
with the cleavage of caspase-3 (Fig. 3.1).
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Fig. 3.1 Increased extracellular phosphate (Pi)
accelerated the activation of caspase-3, a crucial mediator
of apoptosis, in an endothelial cell line, ISO-HAS. The
cells were starved in the Pi-free medium for 24 h and then
treated for 24 or 48 h with the indicated concentration of Pi
or sulfate as a negative control. Media containing Pi or
sulfate were prepared by addition of sodium salts to
Pi-free medium. The experiments were performed in the
presence of 0.1% fetal bovine serum, which provided addi-
tional 0.01 mM Pi. Whole cell lysates were harvested and
subjected to Western blotting using antibodies against
caspase-3 and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH). Treatment with high Pi caused an increase in
the amount of cleaved caspase-3, suggesting apoptosis
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A recent study using HEK293 cells and HeLa
cells suggested that abnormally elevated extracel-
lular Pi might rewire interwoven network of sig-
naling pathways such as Akt pathway, ERK
pathway and JNK pathway, leading to a wide
variety of cytotoxic effects including abberant
proliferation, endoplasmic reticulum (ER) stress,
epithelial-mesenchymal transition (EMT) and cell
death [31] (Fig. 3.2).

3.7 Phosphate and Oxidative
Stress

A line of evidence has revealed the involvement
of oxidative stress in the harmful effects by ele-
vated extracellular Pi. Zhao, et al. reported that
high extracellular Pi induced the generation of
mitochondrial reactive oxygen species (ROS),
which promoted the nuclear translocation of
nuclear factor κB p65 and accelerated the osteo-
genic transdifferentiation of the cultured smooth
muscle cells [95]. Nguyen, et al. demonstrated
that high extracellular Pi induced defective insu-
lin secretion and cytotoxicity in pancreatic
β-cells, which was also mediated by oxidative

stress and hyperpolarization of mitochondria
[58]. It has been demonstrated that oxidative-
stress induces DNA damage and senescence in
human fibroblasts [15]. In αklotho-deficient mice
characterized by tissue atrophy and premature
aging, urinary 8-hydeoxy-20-deoxyguanosine
(8-OHdG), a marker for oxidative stress-induced
DNA damage, is increased [42, 92]. In brown
adipose tissue of αklotho-KO mice, we
demonstrated that hyperphosphatemia-induced
activation of Akt/mTORC1 signaling pathway
might be involved in suppressing antioxidant
genes and oxidative damage [42], thus, the cyto-
toxic effects of Pi overload appear to be partly
mediated by increased oxidative stress. It has also
been reported that elevated Pi induces autophagy,
which counteracts vascular calcification by reduc-
ing matrix vesicle release [21].

It is reported that hyperphosphatemia impairs
endothelial cell function [79]. Dialysis patients
have an increased concentration of circulating
procoagulant endothelial microparticles,
contributing to cardiovascular occlusive events
[10]. Abbasian, et al. reported that treatment of
cultured human endothelial cells with elevated
extracellular Pi led to a rise in intracellular Pi

Fig. 3.2 Simplified
diagram illustrating various
toxic effects of the elevated
extracellular phosphate
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concentration and a marked increase in cellular
tropomyosin-3, plasma membrane blebbing, and
release of microparticles. This effect of Pi was
suggested to be independent of oxidative stress or
apoptosis [1].

3.8 Effects of Phosphate
on Tumorigenesis

The toxicity of phosphate is also implicated in
tumorigenesis. It was shown that a high Pi diet
increased the development of lung and skin
cancers in animal models [12, 39]. In a mouse
model of lung cancer, high dietary Pi stimulated
pulmonary Akt activity and increased lung
tumorigenesis [39], and knockdown of type IIb
Na+/Pi co-transporter in the lung suppressed the
lung tumorigenesis [33]. In humans, a population-
based prospective study investigated the relation-
ship between serum Pi and risk of cancer in
human, and showed a positive link between Pi
quartiles and the risk of cancer of the pancreas,
lung, thyroid gland, and bone in men, and cancer
of the esophagus, lung, and nonmelanoma skin
cancer in women [90]. Interestingly, the risks of
breast, endometrial and other endocrine cancers
were lower in the population of higher Pi levels in
both men and women, probably due to the effects
of hormonal factors [90].

3.9 Conclusions

Although phosphate is an essential nutrient
involved in various biological processes, its over-
load in the body can be toxic and cause damage to
multiple organs. The pathological effects of Pi
include premature aging, calcification and blood
vessels and soft tissues, impaired fertility,
increased inflammation, accelerated cell death,
and tumorigenesis, leading to a short lifespan.
Abnormal cell signaling and oxidative stress
have been implicated in the direct cytotoxicity
of the elevated extracellular Pi, although the
underlying molecular mechanisms are still not
fully understood. Excess phosphate retention
can be associated with various conditions,

including renal dysfunction, administration of
phosphate-containing laxatives and enemas, and
ingestion of diet rich in phosphate food additives.
Since phosphate overload can induce severe med-
ical complications, phosphate balance in the diet
should be considered for health promotion.
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Phosphate-Sensing 4
Yuichi Takashi and Seiji Fukumoto

Abstract

The blood level of phosphate is tightly
regulated in a narrow range. Hyperpho-
sphatemia and hypophosphatemia both lead
to the development of diseases, such as
hyperphosphatemic tumoral calcinosis and
rickets/osteomalacia, respectively. Although
several humoral factors have been known to
affect blood phosphate levels, fibroblast
growth factor 23 (FGF23) is the principal hor-
mone involved in the regulation of blood phos-
phate. This hormone is produced by bone,
particularly by osteocytes and osteoblasts,
and has the effect of lowering the blood level
of phosphate in the renal proximal tubules.
Therefore, some phosphate-sensing mecha-
nism should exist, at least in the bone. How-
ever, the mechanisms through which bone
senses changes in the blood level of phosphate,
and through which the bone regulates FGF23
production remain to be fully elucidated. Our

recent findings demonstrate that high extracel-
lular phosphate phosphorylates FGF receptor
1c (FGFR1c). Its downstream extracellular
signal-regulated kinase (ERK) kinase (MEK)/
ERK signaling pathway regulates the expres-
sion of several transcription factors and the
GALNT3 gene, which encodes GalNAc-T3,
which plays a role in the regulation of post-
translational modification of FGF23 protein,
which in turn enhances FGF23 production.
The FGFR1c-GALNT3 gene axis is considered
to be the most important mechanism for
regulating the production of FGF23 in bone
in the response to a high phosphate diet.
Thus—in the regulation of FGF23 production
and blood phosphate levels—FGFR1c may be
considered to function as a phosphate-sensing
molecule. A feedback mechanism, in which
FGFR1c and FGF23 are involved, is present
in blood phosphate regulation. In addition,
other reports indicate that PiT1 and PiT2
(type III sodium-phosphate cotransporters),
and calcium-sensing receptor are also involved
in the phosphate-sensing mechanism. In the
present chapter, we summarize new insights
on phosphate-sensing mechanisms.
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4.1 General

Phosphate is an essential mineral for humans and
plays many functions in the body. Approximately
85% of phosphate is stored in the bone as a
hydroxyapatite [Ca10(PO4)6(OH)2] in humans
[24]. The skeleton, which is composed of
hydroxyapatite crystals and matrix proteins, is
physically hard enough to support the weight of
the body. Thus, chronic hypophosphatemia
induces rickets/osteomalacia and skeletal muscle
myopathy [26]. On the other hand, hyperpho-
sphatemia is also harmful to the body. Hyperpho-
sphatemia leads to ectopic calcification, which is
typically seen in patients with hyperphosphatemic
tumoral calcinosis [26]. Hyperphosphatemia is
also well known to induce vascular calcification,
resulting in ischemic heart disease and stroke in
patients with end-stage renal disease (ESRD) on
hemodialysis [45]. Therefore, the blood phos-
phate level needs to be regulated within a narrow
range. It is well known that there are several
humoral factors that help to maintain blood phos-
phate level in an appropriate range [16]. Fibroblast
growth factor 23 (FGF23), a bone derived hor-
mone, is the principal hormone in the regulation
of blood phosphate [14, 31, 42]. Therefore, it
could be considered that a phosphate-sensing
mechanism has the function of regulating
FGF23 production in bone. However, phos-
phate-sensing mechanism has been largely
unknown.

4.2 Fibroblast Growth Factor 23:
FGF23

Several humoral factors maintain the blood level
of phosphate in humans, FGF23, parathyroid
hormone (PTH) and 1,25-dihydroxyvitamin D
[1,25(OH)2D] [16]. Among these humoral
factors, FGF23 is the principal hormone in the
regulation of blood phosphate levels [14, 31,
42]. This hormone is produced by bone (particu-
larly osteocytes and osteoblasts). The main action
of FGF23 is observed in the renal proximal
tubules [14, 31, 42]. In the presence of α-Klotho
(the expression of which is limited to several

tissues, including the kidney and parathyroid
glands), FGF23 can bind to the FGF receptor 1c
(FGFR1c) [27, 28, 50]. FGF23 suppresses the
type IIa and IIc sodium-phosphate cotransporters
expression in the renal proximal tubules and
inhibits proximal tubular phosphate reabsorption.
In addition, FGF23 reduces the synthesis of 1,25
(OH)2D by suppressing the expression of
CYP27B1, which produces 25-hydroxyvitamin
D-1α-hydroxylase, and by enhancing the expres-
sion of CYP24A1, which encodes 25-
hydroxyvitamin D-24-hydroxylase. Because
1,25(OH)2D enhances intestinal phosphate
absorption, FGF23 reduces the blood phosphate
level by inhibiting both proximal tubular phos-
phate reabsorption and intestinal phosphate
absorption via the reduction of 1,25(OH)2D [42].

4.2.1 The Structure of FGF23 Protein

FGF23 protein (a peptide with 251 amino acids)
is produced by bone. After cleavage of a signal
peptide (24 amino acids), FGF23 protein
(227 amino acids) is secreted into circulation
[40]. Before or during its secretion, part of this
protein is proteolytically cleaved into inactive
fragments. FGF23 can be cleaved between
arginine (Arg) 179 and serine (Ser) 180 by
enzymes, such as a Furin, which recognize the
Arg176-X177-X178-Arg179 motif [42]. The
important thing is that only full-length FGF23
protein is biologically active [18, 41, 53]. This
cleavage was previously demonstrated to be
inhibited by O-glycosylation of threonine (Thr)
178 in FGF23 protein initiated by UDP-N-acetyl-
alpha-D-galactosamine: polypeptide N-acetylgalac-
tosaminyltransderase 3 (GalNAc-T3)—a gene
product of UDP-N-acetyl-alpha-D-galactosamine:
polypeptide N-acetylgalactosaminyltransderase 3
(GALNT3)— [17]. Thus, O-glycosylation of
FGF23 protein—which is initiated by GalNAc-
T3—works to increase active full-length FGF23
protein. On the other hand, the phosphorylation of
Ser180 in FGF23 protein by family with sequence
similarity 20, member C (FAM20C)was reported to
inhibit O-glycosylation of FGF23 protein by
GalNAc-T3 and enhance the processing of FGF23
protein (Fig. 4.1) [44].
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4.2.2 The Posttranslational
Modification of FGF23 Protein
Via a Phosphate
Responsive Gene: GALNT3

Inactivating mutations of GALNT3 cause
hyperphosphatemic familial tumoral calcinosis
(HFTC) in humans [48]. These patients show
that hyperphosphatemia and high blood 1,25
(OH)2D levels like Fgf23 knockout mice [48]. It
could be considered that FGF23 protein, in which
O-glycosylation is impaired, is susceptible to this
processing, which results in low active full-length
FGF23 and impairs the actions of FGF23.
GALNT3 is one of 20 GALNT gene families in
humans; however, the gene product of GALNT3
is necessary for the initiation of O-glycosylation
of Thr178 in FGF23. No other GALNT gene
products can initiate O-glycosylation [5].
According to these facts, it could be considered
that the activity of FGF23, namely the level of
full-length FGF23 in the blood, is regulated by
the transcription and translation of FGF23, as
well as by the posttranslational modification of
FGF23 by the gene product of GALNT3. Previ-
ously, it was reported that a high phosphate diet
increased blood levels of full-length FGF23 in
both mice and humans [15, 37]. Recent data
demonstrated that a high phosphate diet did not
enhance the expression of Fgf23 in the bone,
while a high phosphate diet increased blood full-
length FGF23 level in mice [46]. On the contrary,
a high phosphate diet increases Galnt3 levels in
bone [46]. Taken together, a high phosphate diet

is considered to increase the blood level of full-
length FGF23 by increasing the expression of the
Galnt3 gene. Furthermore, when we performed
Western blotting in in vitro experiments to deter-
mine the ratio of full-length FGF23 to cleaved
fragments of FGF23 in culture media of the oste-
oblastic UMR106 cell line, the ratio of full-length
FGF23 protein under a high extracellular phos-
phate condition was higher in comparison to that
under a low phosphate condition [46]. In vitro
experiments demonstrated that high extracellular
phosphate levels increased the Galnt3 gene
expression in a dose dependent manner, and
enhanced the GalNAc-T3 protein (encoded by
Galnt3) expression [46]. Taken together, we con-
sider Galnt3 to be a phosphate responsive gene.

As mentioned above, the posttranslational
modification of FGF23 protein was reported to
be regulated not only by GalNAc-T3 but also by
FAM20C. Both a high phosphate diet and high
levels of extracellular phosphate also enhanced
the expression of Fam20c [46]. From the obser-
vation that the blood full-length FGF23 level was
increased by a high phosphate diet, the role of
GalNAc-T3 in response to high phosphate levels
seemed to be dominant over that of FAM20C. In
addition, the processing of FGF23 protein is
mediated by proteases like Furin [44]. Neither a
high phosphate diet nor a high level of extracellu-
lar phosphate changed the expression of Furin
[46]. It was already reported that 1,25(OH)2D3

increases the blood level of full-length FGF23 in
murine models [38]. 1,25(OH)2D3 enhanced the
expression of Fgf23 in osteoblastic UMR106

Fig. 4.1 The structure of
FGF23 protein and
posttranslational
modification via a gene
product of GALNT3
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cells, however, 1,25(OH)2D3 had no effect on the
expression of Galnt3 [46]. Furthermore, a high
phosphate diet increased the blood level of PTH,
while PTH was reported to suppress the expres-
sion of Galnt3 [23]. It is therefore considered
unlikely that 1,25(OH)2D3 and PTH are involved
in the increase in the expression of Galnt3 or in
the increase in the blood level of full-length
FGF23 that is caused by high phosphate levels.

Taken together, posttranslational modification
of FGF23 by the gene product of Galnt3 is con-
sidered to be the main mechanism of the response
to high dietary phosphate and Galnt3 is consid-
ered to be responsive to phosphate.

4.3 Phosphate-Sensing

4.3.1 Intracellular Signaling Induced
by Phosphate: MEK/ERK
Pathway

Alternations of extracellular phosphate have been
shown transduce signals into the cells to regulate
the expression of gene and the behavior of cells
[33]. High levels of extracellular phosphate were
shown to stimulate the extracellular signal-
regulated kinase (ERK) kinase (MEK)/ERK path-
way [4]. Furthermore, high levels of extracellular
phosphate were demonstrated to induce a number
of genes, including osteopontin (Opn), dentin
matrix protein 1 (Dmp1), cyclin D1, and early
growth response 1 (Egr1) through this same path-
way [3, 25, 35, 54].

It was recently reported—based on a DNA
microarray analysis using osteoblastic UMR106
cells—that high levels of extracellular phosphate
induced the expression of several transcription
factors downstream of the MEK/ERK pathway
[46]. High extracellular phosphate induced the
phosphorylation of ERK1/2 in a dose-dependent
manner [46]. In addition, inhibition of the
MEK/ERK pathway suppressed the enhancement
of Galnt3 gene, a phosphate responsive gene as
mentioned above, by high extracellular phosphate
[46]. MEK/ERK pathway activation by high
levels of extracellular phosphate is therefore con-
sidered necessary for the induction ofGalnt3. The
same study also revealed the necessity of a

number of transcription factors (e.g., Egr1 and
ETS variant 5 [Etv5]) for high levels of extracel-
lular phosphate to induce the expression of
Galnt3 [46]. However, Egr1 and Etv5 were not
sufficient to enhance the Galnt3 gene expression;
thus, other transcriptional activators are needed.

4.3.2 A Potential Candidate Molecule
for Phosphate-Sensing
in the Bone: FGFR1c

As mentioned above, high extracellular phos-
phate was reported to activate the MEK/ERK
pathway by several research groups [3, 4, 25,
35, 46, 54]. Until today, however, the upstream
molecules of the MEK/ERK pathway have been
unknown. The MEK/ERK pathway is activated
by a number of receptor tyrosine kinases (RTKs),
including—but not limited to—epidermal growth
factor receptor (EGFR) and FGFRs [32]. An
experiment was performed in order to investigate
whether high extracellular phosphate levels can
activate RTKs, and if so, to determine the RTKs
that are activated using proteomics. Osteoblastic
UMR106 cells were treated with high levels of
extracellular phosphate and an LC-MS/MS anal-
ysis was performed after digestion of the cell
extract with trypsin and immunoprecipitation
with an anti-phosphotyrosine antibody [1]. The
proteomic analysis demonstrated that FGFR1 was
the only RTK to be phosphorylated by high levels
of extracellular phosphate [46].

Alternative splicing produces two types of
FGFR1 (FGFR1b and FGFR1c) [36]. Osteoblastic
UMR106 cells only express FGFR1c endoge-
nously [46]. Furthermore, this analysis identified,
two types of FGFR1 peptides—one with
phosphotyrosine 583 and 585, the other with
phosphotyrosine 653 and 654—in which high
extracellular phosphate levels induced tyrosine
(Tyr) phosphorylation [46]. Six Tyr residues,
which are located in the cytoplasmic region of
FGFR1, Tyr653, 583, 463, 766, 585, and 654, are
sequentially phosphorylated in this order follow-
ing the activation of FGFR1 [19, 29]. Among
them, the phosphorylation of the two Tyr residues
(Tyr653 and 654) is known to dramatically
increase the tyrosine kinase activity of FGFR1
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[36]. Parallel-reaction monitoring (PRM) was
applied to quantify the amount of this peptide
with phosphotyrosine 653 and 654, which
revealed that high extracellular phosphate levels
increased the amount of this peptide approxi-
mately threefold [46]. Moreover, treatment with
an FGFR inhibitor and Fgfr1 silencing aborted
both the enhanced Galnt3 expression and the
ERK1/2 phosphorylation induced by high levels
of extracellular phosphate [46]. These findings
were in line with previous reports that suggested
that FGFR1 is involved in the cellular responses
to high levels of extracellular phosphate
[35, 54]. In addition, these findings are supported
by the findings of a previous study reporting
that— in patients with osteoglophonic dyspla-
sia—some activating mutations in FGFR1 gene
induce high blood levels of FGF23 as well as
hypophosphatemia [52].

4.3.2.1 The Significance of FGFR1c
as a Phosphate-Sensing
Molecule In Vivo

In addition to these in vitro data, some in vivo
experiments to examine the significance of
FGFR1c have been reported. First, enhanced
phosphorylation of ERK1/2 in the bone by a
high phosphate diet was visible in the whole
tissue extracts by immunoblotting in intact
animals [46]. Second, an FGFR inhibitor,
NVP-BGJ398 [22], was administered to mice
fed a high phosphate diet. Although the blood
phosphate levels of mice fed a high phosphate
diet were significantly higher than those of mice
fed a control diet, under NVP-BGJ398 treatment,
neither the blood level of full-length FGF23 nor
Galnt3 gene expression in the bone showed a
clear increase, confirming the proposed function
of FGFR in Galnt3 gene induction [46]. Finally, a
selective ablation of Fgfr1 in the bone by crossing
Osteocalcin-Cre [55] mice with floxed Fgfr1 [49]
mice abolished the increase of the blood level of
full-length FGF23 and the Galnt3 gene
upregulation in bone by a high phosphate diet
[46]. These in vivo data again support the function
of FGFR1c in the regulation of the Galnt3 gene
expression by high phosphate.

4.3.2.2 The Specific FGFR1c Signal
Transduction Mediated by
Phosphate

Although high levels of extracellular phosphate
induced the expression of the Galnt3 gene
through activated FGFR1c, it was unclear
whether canonical FGFR ligands (e.g., FGF2)
also enhance the expression of Galnt3. However,
FGF2 did not enhance the expression of Galnt3
gene [46]. It is therefore possible that a molecular
mechanism is involved in the differences of
FGFR1c activation caused by high levels of
extracellular phosphate and the canonical FGFR
ligands. Given that FGFR1 activates the
MEK/ERK pathway through FGFR substrate
2α (FRS2α)—a phosphorylation substrate of
activated FGFR—and that FRS2α is necessary
to activate the downstream MEK/ERK pathway
[20, 21], we investigated the phosphorylation of
FRS2α. FGF2 was observed to phosphorylate
Tyr196 and 436 of FRS2α; however, only
Tyr196 was phosphorylated by high levels of
extracellular phosphate. Monitoring of the time
course of ERK1/2 activation revealed that ERK1/
2 activation by high levels of extracellular phos-
phate was transient; in contrast, activation by
FGF2 was sustained [46]. Thus, there are
differences in signal transduction by high extra-
cellular phosphate and the canonical FGFR
ligands.

Three typical intracellular signaling pathways
are known to exist downstream of the FGFRs;
these are the MEK/ERK pathway, the phosphoi-
nositide 3-kinase (PI3K)/protein kinase B (Akt)
pathway, and the phospholipase C-γ (PLCγ)/
calcineurin/Nuclear Factor of Activated T cells
(NFAT) pathway [20]. Among these, FRS2α
activates the MEK/ERK and PI3K/Akt pathways.
In contrast, PLCγ/calcineurin/NFAT activation
occurs independently of the phosphorylation of
FRS2α [20]. PRM demonstrated that the protein
level of ERK2 with phosphorylated Tyr183 and
185 was increased by both high extracellular
phosphate and FGF2. However, while FGF2
effectively increased the protein level of
phosphorylated PLCγ, high extracellular phos-
phate did not. While Akt was also phosphorylated
by FGF2, Akt was not phosphorylated by high
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extracellular phosphate. Furthermore, a PI3K
inhibitor and a calcineurin inhibitor did not influ-
ence the induction of Galnt3 gene expression by
high levels of extracellular phosphate [46]. Taken
together, these findings indicate that the PI3K/Akt
and PLCγ/calcineurin/NFAT pathways are not
involved in the induction of the expression of
Galnt3 by high levels of extracellular phosphate.

4.3.2.3 The Activation Model
of Unliganded FGFR1c by
Phosphate

FGFR1c is necessary for the induction of the
Galnt3 gene expression by high levels of phos-
phate. Thus, phosphate is considered to function
as the first messenger to regulate the level of full-
length FGF23 in the blood and a feedback sys-
tem—which involves FGFR1c and FGF23—
exists in regulation of the blood level of phos-
phate. However, the exact mechanism through
which FGFR1c is activated by high phosphate
levels remains to be elucidated. FGFRs can form
either homodimers to facilitate the binding of
paracrine FGFs (e.g., FGF1 and FGF2) or
heterodimers with coreceptors (e.g., Klothos) to
bind endocrine FGFs including FGF23 [20]. The
phosphorylation and dimerization of FGFRs are
known to be coupled with the activation of FGFR
by the binding of FGFR ligands, while the
strength of FGFR activation differs according to
the type of FGFR ligand [39]. Several reports
have proposed a dimerization of unliganded
FGFR model [12, 30, 39]. For the dimerization
of unliganded FGFRs on the cell surface, the
transmembrane domain is pivotal, while the
extracellular and intracellular tyrosine kinase
domains are not [12]. Activating mutations in
FGFR1 that change amino acids in the FGFR1
transmembrane domain have been identified in
patients with osteoglophonic dysplasia [52]. Fur-
thermore, FGFR1 with these mutations has been
reported to be more prone to induce FGFR1
dimerization in comparison to intact FGFR1 in
the absence of canonical FGFR ligands [12]. We
hypothesize that the activation of unliganded
FGFR1c by high extracellular phosphate levels
is mediated by an alternation in the protein struc-
ture of FGFR1c (e.g., stabilization of the interac-
tion between the transmembrane domains).

4.3.3 The Involvement of Type III
Sodium-Phosphate
Cotransporters: PiT1 and PiT2

Several studies indicate the involvement of
sodium-phosphate cotransporters in the process
of phosphate-sensing [4, 25, 35, 54]. Bacteria
and yeast use some types of phosphate
transporters as phosphate-sensors [33]. However,
such a phosphate “transceptor” model has not
been established in mammals. Mammalian
sodium-phosphate cotransporters are classified
into two distinct families: type II and III
sodium-phosphate cotransporters [6]. SLC20A1
and SLC20A2 encode the two types of type III
sodium-phosphate cotransporters, PiT1 and PiT2,
respectively [51]. Treatment with
phosphonoformic acid (foscarnet: PFA), which
is a sodium-phosphate cotransporter inhibitor,
was shown to block the uptake of phosphate by
cells as well as the effects of phosphate on the
expression of Opn [4]. Studies in several types of
cultured cells suggested the involvement of PiT1
in the signal transduction and gene regulation
triggered by high extracellular phosphate
[25, 54]. In addition, several reports have
indicated that silencing Slc20a1, which encodes
PiT1, reduced the activation of FGFR1 and
MEK/ERK pathway by high levels of extracellu-
lar phosphate [25, 54]. Conversely, PiT2—rather
than PiT1—was recently reported to be involved
in the regulation of FGF23 secretion high extra-
cellular phosphate [8]. Moreover, these authors
reported that extracellular phosphate both
induced PiT1-PiT2 heterodimerization and
mediated the MEK/ERK pathway activation inde-
pendently of the uptake of phosphate. They
concluded that phosphate binding to Ser128
(in PiT1) and Ser113 (in PiT2) is the key factor
in mediating phosphate signaling through the PiT
proteins [7]. In contrast, our data showed that a
high phosphate diet did not induce the expression
of Slc20a2, which encodes PiT2, in the bone, and
the induction ofGalnt3 gene by high extracellular
phosphate was not suppressed by the silencing on
Slc20a2 in osteoblastic UMR106 cells [46]. It
remains to be clarified how the transporters solely
can activate the MEK/ERK signaling in mamma-
lian cells. Furthermore, whether or not PiT1 and
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PiT2 (type III sodium-phosphate cotransporters)
play a role in the activation of unliganded
FGFR1c by high phosphate remains unclear.

4.3.4 A Molecule
for Phosphate-Sensing
in the Parathyroid Glands:
Calcium-Sensing Receptor

Calcium-sensing receptor (CaSR) is the key mol-
ecule for the regulated secretion of PTH, which is
the principal hormone to maintain the blood cal-
cium (Ca) level [10]. PTH not only works to
increase blood Ca level but also inhibit phosphate
reabsorption in the renal proximal tubules
[9, 13]. Although increased blood phosphate
level stimulates PTH secretion from parathyroid
glands, phosphate-sensing mechanism on the
parathyroid cells also remained unclear [2, 34,
43, 47]. It was recently reported that extracellular

phosphate stimulates PTH secretion through
CaSR in parathyroid cells. Phosphate was found
to function as a noncompetitive antagonist for
CaSR and phosphate-binding sites in the extra-
cellular domain of CaSR [11]. Thus, several
molecules may have phosphate-sensing
mechanisms that work in a cell- or tissue-specific
manner.

4.4 Perspectives

The identification of FGF23 has advanced the
understanding of not only the regulatory mecha-
nism of phosphate metabolism but also the
pathogenesis of hypophosphatemic and hyperpho-
sphatemic diseases. Recent findings have uncov-
ered an unreported function of FGFR1c and
demonstrated a novel molecular basis for phos-
phate-sensing in regulated production of FGF23
in bone (Fig. 4.2). However, the precise

Fig. 4.2 The model of phosphate-sensing in the bone to regulate the production of FGF23 and the blood level of
phosphate
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mechanism through which FGFR1c is activated by
high phosphate remains to be fully elucidated. Fur-
thermore, while PiT1 and PiT2 are also reported to
play a role in phosphate-sensing, the precise mech-
anism of their involvement has not been
determined.

As the identification of CaSR has led to the
discovery of new drugs for the treatment of pri-
mary and secondary hyperparathyroidism,
elucidating the mechanism of phosphate-sensing
may facilitate the optimization of treatment
strategies for abnormal phosphate metabolism.
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Vitamin D and Phosphate Interactions
in Health and Disease 5
Nuraly S. Akimbekov, Ilya Digel, Dinara K. Sherelkhan,
and Mohammed S. Razzaque

Abstract

Vitamin D plays an essential role in calcium
and inorganic phosphate (Pi) homeostasis,
maintaining their optimal levels to assure ade-
quate bone mineralization. Vitamin D, as
calcitriol (1,25(OH)2D), not only increases
intestinal calcium and phosphate absorption
but also facilitates their renal reabsorption,
leading to elevated serum calcium and phos-
phate levels. The interaction of 1,25(OH)2D
with its receptor (VDR) increases the effi-
ciency of intestinal absorption of calcium to
30–40% and phosphate to nearly 80%. Serum
phosphate levels can also influence 1,25
(OH)2D and fibroblast growth factor
23 (FGF23) levels, i.e., higher phosphate
concentrations suppress vitamin D activation
and stimulate parathyroid hormone (PTH)
release, while a high FGF23 serum level
leads to reduced vitamin D synthesis. In the

vitamin D-deficient state, the intestinal cal-
cium absorption decreases and the secretion
of PTH increases, which in turn causes the
stimulation of 1,25(OH)2D production,
resulting in excessive urinary phosphate loss.
Maintenance of phosphate homeostasis is
essential as hyperphosphatemia is a risk factor
of cardiovascular calcification, chronic kidney
diseases (CKD), and premature aging, while
hypophosphatemia is usually associated with
rickets and osteomalacia. This chapter
elaborates on the possible interactions between
vitamin D and phosphate in health and disease.

Keywords

Vitamin D · PTH · FGF23 · Klotho ·
Phosphate · Kidney · Intestine · Bone

5.1 Introduction

Vitamin D research has more than 100 years of
history since McCollum and Davis’s discovered
the “growth-promoting fat-soluble vitamin” that
was found in cod liver oil [20]. The effect of this
growth-promoting factor in the treatment of rick-
ets was so effective that cod liver oil was regarded
as a panacea and gave a powerful impetus to
further research on vitamin D throughout the
world [71]. In the last 20 years, it has been
shown that vitamin D‘s biological activities
extend far beyond its involvement in calcium
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metabolism. Along with proven efficacy in path-
ological conditions and diseases such as rickets,
bone loss, and osteomalacia, some novel effects
of vitamin D on very diverse physiological pro-
cesses have been well established [8, 39]. Vitamin
D deficiency remains a critical health issue world-
wide, and it has been estimated that around one
billion people suffer from various vitamin
D-related disorders [35].

The biological effects of 1,25(OH)2D can be
divided into two types: skeletal (primarily related
to calcemic and phosphatemic activities) and
non-skeletal, typically not associated with min-
eral metabolism [15]. The homeostasis of serum
phosphate mediated by vitamin D is of paramount
importance for adequate bone mineralization,
muscle contraction, nerve conduction, and many
other vital functions [26]. This brief chapter
reviews our understanding of vitamin D-mediated
regulation of phosphate homeostasis in health and
diseases.

5.2 Physiological Regulation
of Phosphate Homeostasis

Phosphorus is the sixth most abundant chemical
element in the body [34]. In nature it mainly
exists as phosphates, the form most suitable for
living organisms [14]. In mammals, the phos-
phate group is primarily concentrated (~85%) in
bones and teeth as hydroxyapatite. The remaining
~15% are distributed in the other tissues as intra-
cellular ortho- and pyrophosphate groups, either
free (“inorganic”) or as a part of nucleotides,
coenzymes, and high-energy phosphate
compounds. (referred to as “organophosphates”).
Inorganic phosphates exist in two forms: mono-
valent dihydrogen phosphate (H2PO4

�) and diva-
lent hydrogen phosphate (HPO4

2�). In the cytosol
dihydrogen phosphate is contributing bulk
amounts (62% of all cytosolic phosphates).

The extracellular fluid contains only <1% of
the whole pool of body’s inorganic phosphates
[27, 33]. Interestingly, compared to the cytosol,
the proportion H2PO4

�/ HPO4
2� is inverted, so

that the major component is now hydrogen phos-
phate (61% of all phosphates). In general, a

70-kilogram adult with 25% body fat content
would have total body phosphorus of approxi-
mately 630 g (~21 mol) [34].

Due to its unique chemical structure, various
phosphate groups (especially as nucleoside
triphosphates) are key players in cellular energy
metabolism, in genetic information storage, in
signaling pathways, and as phospholipid compo-
nents of the cell membranes [37]. Inorganic
phosphates, together with bicarbonate and protein
buffer systems, constitute the basis of the acid-
base homeostasis of the body [42].

A healthy adult consumes 1000 mg on average
of dietary phosphate per day (Fig. 5.1). Of this
amount 700 mg. is absorbed in the small intestine
through passive and active pathways [97]. The
unabsorbed phosphate is excreted in the feces.
Approximately 150 mg. phosphate is secreted
into the gut in the saliva, intestinal and pancreatic
secretions, while some of it is reabsorbed
[47]. Although dietary phosphate intake differs
from day to day, principally, phosphate homeo-
stasis is adjusted by intestinal absorption, renal
reabsorption, and skeletal resorption. The average
serum phosphate concentration in healthy adults
is 2.5–4.9 mg/dl [67].

The kidneys filter about 9000 mg. of phos-
phate daily, 80–90% of which is reabsorbed
mainly in the proximal tubule [68]. At least
three distinct cotransporters are involved for
phosphate transcellular reabsorption in the proxi-
mal tubule, namely NaPi-IIa (SLC34A1), NaPi-
IIc (SLC34A3), and PiT-2 (SLC20A2) [7]
(Fig. 5.2). Phosphate reabsorption is coupled
with sodium-dependent (Na+) transport. Type
NaPi II cotransporters are capable of transporting
both H2PO4

� and HPO4
2� across brush border

membrane (BBM) of the proximal tubules
[90]. In contrast, in the small intestine, phosphate
is absorbed by both transcellular (active) and
paracellular (passive) processes, with the active
transport being mainly mediated by NaPi-
IIb [55].

Given the generally acknowledged role of
phosphate in almost every molecular and cellular
function, altered phosphate balance can lead to
untoward effects. The serum phosphate homeo-
stasis is firmly regulated by endocrine
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Fig. 5.2 Main transcellular phosphate traffic mechanisms

Fig. 5.1 Phosphate flows
and balances in the human
body [66, 83]
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communication among parathyroid hormone
(PTH), calcitriol (1,25(OH)2D), and fibroblast
growth factor 23 (FGF-23) [5, 11].

5.2.1 Parathyroid Hormone (PTH)

PTH, a polypeptide containing 84 amino acids
with MW 9500 Da, is secreted by chief cells of
parathyroid glands [92]. Extracellular calcium
concentration is the main modulator of PTH
secretion [60]. PTH stimulates calcium resorption
from bone tissue, increases calcium reabsorption
in the renal tubules, facilitates hydroxylation of
25(OH)D to 1,25(OH)2D in the kidneys, and
induces renal excretion of phosphate [50, 69].

In bone tissue, PTH at a permissive level of
1,25(OH)2D promotes calcium resorption by
activating osteoclasts [93]. In the intestine, PTH
increases the reabsorption of calcium and phos-
phate by enhancing 1,25(OH)2D synthesis
[69]. High serum PTH levels and hypopho-
sphatemia lead to activation of vitamin
D-activating enzyme 1α-hydroxylase [57]. 1,25
(OH)2D facilitates absorption of calcium and
phosphate for bone mineralization and homeo-
static metabolism, preventing low serum levels
of these elements [43]. PTH also stimulates the
synthesis of vitamin D in the kidneys [52].

The effect of PTH on the renal tubules leads to
decreased phosphate reabsorption and its
increased renal excretion due to the lowered
NaPi cotransporters. In general increased PTH
secretion results in a decrease in serum phosphate
levels [30]. The main role of 1,25(OH)2D is to
determine the availability of calcium and phos-
phate to form new bone and prevent the develop-
ment of hypocalcemia and hypophosphatemia
[3, 30]. This hormone increases intestinal phos-
phate absorption elevating its serum
concentration.

Secretion PTH by the parathyroid glands is
mainly triggered by low extracellular calcium by
acting on Ca-sensing receptors (CaSR) [85]. Stim-
ulation of CaSR (they belong to the class of G-
protein-coupled receptors) activates multiple
heterotrimeric G-proteins, in turn passing the sig-
nal to mitogen-activated protein kinase (MAPK)

pathways. This cascade of reactions ultimately
leads to the suppression of PTH secretion by a
negative feedback loop. It has been shown that
1,25(OH)2D upregulates the transcription of the
gene encoding the CaSR in the parathyroid gland
[13]. Additionally, a low level of calcium indi-
rectly induces parathyroid hyperplasia [23]. How-
ever, there is also evidence of the opposite effect
of stimulation of parathyroid cell proliferation in
response to a high calcium concentration [81].

Interestingly, high serum phosphate levels
(hyperphosphatemia) also increase PTH secretion
independently of shifts in extracellular calcium
[41, 86]. The further secretion of PTH is directly
suppressed by 1,25(OH)2D, acting on VDR of
parathyroid glands [79].

5.2.2 Vitamin D (Calcitriol)

From a biological point of view, vitamin D is a
steroid hormone, as it is synthesized in the body
and has a highly specific receptor (VDR). Most
vitamin D (90–95%) is formed in the skin under
the influence of UVB light, and only a minor
fraction of it is obtained from dietary sources [8].

Vitamin D is stored mainly in the liver with a
half-life of approximately 14 days. When a larger
amount of vitamin D is absorbed, its excess is
stored mainly in adipose tissue [1]. Furthermore,
vitamin D in association with the vitamin
D-binding protein (VBP) is transferred to the
liver, where it is hydroxylated to form 25
(OH)D, which subsequently undergoes 1-
α-hydroxylation in the renal tubules, turning into
1,25(OH)2D. This biologically active form of
vitamin D is under control by serum PTH, phos-
phate, and FGF23 concentrations. The synthesis
of 1,25(OH)2D is stimulated by low serum phos-
phate levels and high PTH concentrations [78].

Vitamin D promotes the intestinal absorption
of calcium and phosphate, significantly increases
their renal reabsorption, and also inhibits the PTH
secretion [40] (Fig. 5.3). Thus the major effects of
1,25(OH)2D are to augment the intestinal absorp-
tion of both calcium and phosphate for proper
bone mineral matrix formation [40]. In the intes-
tine and kidneys, 1,25(OH)2D increases the
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formation of calcium-binding proteins
(calbidins), which promote transmembrane cal-
cium transport to control homeostasis [2]. In
bone, 1,25(OH)2D potentiates the effects of
PTH, stimulates bone resorption by osteoclasts,
and promotes maturation of monocytes into
osteoclasts [70, 84]. In parathyroid glands, 1,25
(OH)2D binds to the VDR, resulting in the sup-
pression of PTH production [96]. The optimal
level of serum phosphate is maintained by the
interaction of hormones; lowering serum phos-
phate level by PTH and FGF23, while, increasing
serum phosphate level by elevating its absorption
in the intestine (1,25(OH)2D) and its resorption
from bones (PTH, 1.25(OH)2D) [37]. PTH
directly activates osteoclasts and causes phos-
phate resorption, and indirectly enhances intesti-
nal phosphate absorption by stimulating 1,25
(OH)2D production [44].

Activation of the VDR is a potent and rapid
modulator of FGF23 expression, thus forming a
“classical” endocrine negative feedback loop
between FGF23 and vitamin D [17]. In addition,
1,25(OH)2D is a potent suppressor of PTH gene
expression [9].

5.2.3 Fibroblast Growth Factor
23 (FGF23)

FGF23, secreted in bone (osteocytes, osteoblasts,
and odontoblasts), is an around 32 kDa glycopro-
tein, which can be converted in its inactive form
through cleavage by a proconvertase-type
enzyme into two smaller fragments: 18 kDa
(amino fragment) and 12 kDa (carboxy
fragment) [32].

FGF23, like PTH, reduces renal phosphate
reabsorption, which leads to a drop-in plasma
phosphate levels [18]. This hormone also
suppresses the secretion of PTH and inhibits the
1α-hydroxylase activity of the kidneys, thus
reducing the synthesis of 1,25(OH)2D
[46, 51]. FGF23 acts by stimulating its receptors,
for the normal function of which a cofactor is
needed, i.e. the Klotho protein, synthesized,
mostly in the kidneys [87]. The transmembrane
Klotho protein is essential for FGF23 to exert its
phosphaturic effects in the kidney [72–74, 89].

A decrease in serum phosphate under the
FGF23 is achieved by inhibiting phosphate reab-
sorption in the renal tubules, as well as by

Fig. 5.3 Possible
regulation of phosphate
homeostasis by vitamin D
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stimulating PTH secretion and suppressing 1,25
(OH)2D synthesis [12, 51, 56, 72, 91]. In contrast,
calcitonin, is another hormone produced by the
thyroid gland, slightly lowers serum calcium due
to inhibition of renal and intestinal calcium reab-
sorption, reducing calcium and phosphate resorp-
tion from bones [36]. Plasma calcium is regulated
by a complex system involving PTH and
1,25(OH)2D on the intestine, bones, and kidneys.
As mentioned, parathyroid gland cells respond to
serum calcium concentration via CaSR. A high
level of calcium in extracellular fluid stimulates
CaSR receptors and activates cellular mecha-
nisms, which ultimately leads to inhibition of
PTH release [6].

Imbalance of calcium and phosphate is
manifested as a shift in the calcium, phosphate
levels in serum and the levels of serum hormones
[PTH and 25(ОН)D], as well as the development
of bone pathology and cardiovascular calcifica-
tion with soft anomalies [76, 88]. The exact etiol-
ogy and pathogenesis of serum phosphate
derangements (hyperphosphatemia and
hypophosphatemia) will need further studies.

5.3 Hyperphosphatemia

Renal failure is the most common cause of
hyperphosphatemia [80]. The decline in
estimated glomerular filtration rate disrupts phos-
phate homeostasis: when it falls below 30 mL/
min/1.73 m2, the reabsorption of phosphate is
maximally suppressed and fractional excretion
markedly reduced. As a result, the serum level
of phosphate increases [16, 21]. A primary
increase in tubular reabsorption of phosphate is
less common and can be observed in hypopara-
thyroidism, acromegaly, and tumoral
calcification [38].

Excessive phosphate can be released from the
intracellular compartment, which is observed in
acute tumor lysis syndrome, rhabdomyolysis,
hemolysis, hyperthermia, profound catabolic
stress, and acute leukemia. Tumor lysis syndrome
is commonly observed in malignant hemato-
logical patients, particularly non-Hodgkin’s
lymphoma and acute leukemia, following chemo-
therapy [4]. Risk factors for developing the

syndrome include impaired renal function,
increased levels of lactate dehydrogenase, and
hyperuricemia [95]. The latter is caused by the
disturbances in FGF23-mediated phosphate regu-
lation in the proximal tubule of the kidney
[10]. Increased intestinal phosphate absorption is
mainly caused either by the use of phosphate-
containing oral laxative, or by vitamin D
overdoses [59].

5.4 Hypophosphatemia

Hypophosphatemia may be a consequence of
the decreased intestinal absorption, internal
redistribution, and increased urinary loss of phos-
phate [31]. The acute shift of phosphate from the
extracellular to the intracellular compartment
is most often caused by respiratory alkalosis and
refeeding syndrome in hospitalized patients
[19, 54]. Respiratory alkalosis causes an increase
in intracellular pH, which stimulates phos-
phofructokinase, leading to severe hypophospha-
temia with plasma phosphate of >0.32 mmol/L
[82]. The intracellular shift of phosphate is also
observed in the treatment of diabetic ketoacidosis
and hungry bone syndrome, which occurs after
parathyroidectomy performed for patients with
long-standing hyperparathyroidism [31]. At the
same time, in the postoperative period, serum
calcium and phosphate concentrations signifi-
cantly decrease.

Low phosphate intake rarely causes
hypophosphatemia, probably because the phos-
phate content in the diet almost always exceeds
the phosphate loss through the gastrointestinal
tract, and the kidneys can reabsorb nearly all of
the filtered phosphate [24]. Excessive urinary loss
of phosphate is observed in both primary and
secondary hyperparathyroidism caused by
impaired vitamin D metabolism, Fanconi syn-
drome, diuretics, and tumor-induced osteomala-
cia (TIO) [31, 48]. TIO is a rare paraneoplastic
syndrome characterized by hypophosphatemia,
phosphaturia, decreased 1,25(OH)2D level, nor-
mal 25(OH)D levels, and osteomalacia [29].
Overproduction of FGF23 caused by TIO reduces
tubular phosphate reabsorption and 1,25(OH)2D
production [58].
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5.5 Genetic Disorders Associated
with Hypophosphatemia

Several inherited abnormalities are characterized
by phosphate-wasting syndromes, commonly
mediated by FGF23. These diseases, resulted by
impaired FGF23 metabolism, include autosomal
dominant hypophosphatemic rickets (ADHR),
X-linked hypophosphatemic rickets (XLHR),
and autosomal recessive hypophosphatemic rick-
ets (ARHR) [94].

ADHR (OMIM 193100) is produced by
FGF23 gain-of-function mutation, which causes
the resistance of the mutant FGF23 to proteolytic
degradation [22]. ADHR manifests as a defect in
renal phosphate transport, associated with
decreased 1,25(OH)2D levels, while the PTH
levels remain normal. ADHR is characterized by
hypophosphatemia, renal phosphate loss, short
stature, and bone disorders [25].

ARHR (OMIM 241520) is caused by
mutations in the DMP1 gene (located on chromo-
some locus 4q21). Patients with ARHR suffer
from decreased renal phosphate reabsorption
and typically display hyperphosphaturia,
hypophosphatemia, reduced 1,25(OH)2D concen-
tration, with PTH values remaining normal
[28, 49].

XLHR (OMIM 307800) appears as a result of
mutations inactivating PHEX (phosphate-
regulating gene with homologies to
endopeptidases located on the X-chromosome).
The PHEX gene encodes a zinc-dependent
metalloproteinase, and is strongly expressed in
osteoblasts, osteocytes, and odontoblasts
[53]. The XLHR symptoms include growth retar-
dation, hypophosphatemia, osteomalacia, and
defective renal phosphate reabsorption. The dis-
eased state is resistant to phosphate and vitamin D
therapy [63].

5.6 Conclusions

Serum phosphate levels are tightly regulated by
hormonal and metabolic factors mainly related to
the triad “vitamin D-PTH-FGF23” as well as

dietary phosphate. Experimental studies have
convincingly shown that disorders and
disturbances in phosphate regulation can lead to
serious systemic complications [45, 61, 62, 64,
65, 75, 77]. Particular attention should be placed
on the central activity of vitamin D in phosphate
metabolism, as 1,25(OH)2D both, directly and
indirectly, impact serum phosphate levels. How-
ever, despite the well-studied pivotal roles of
vitamin D in phosphate homeostasis, many
aspects remain unclear. For instance, what are
the underlying mechanisms by which vitamin D
acts on renal phosphate reabsorption, and how
exactly do calcium and vitamin D modulate
FGF23 production? A better understanding of
these processes and interactions would help to
develop more efficient strategies for the treatment
of phosphate-related disorders.
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Abstract

Fibroblast growth factor 23 (FGF23) is a hor-
mone produced by osteocytes in bone that acts
on the kidneys to regulate phosphate and vita-
min D metabolism.FGF23 levels were shown
to be increased in the early stage of chronic
kidney disease (CKD), with a slight decline in
estimated glomerular filtration rate (eGFR)
even when the range was restricted to above

60 mL/min/1.73 m2, indicating that subtle
phosphate load is a stimulator of FGF23 in
serum. FGF23 is also known to inhibit vitamin
D activation from 25-hydroxyvitamin D
(25-OH-D) to 1,25-dihydroxyvitamin D [1,25
(OH)2D], while it stimulates its degradation
from 25-OH-D to 24,25-dihydroxyvitamin D
[24,25(OH)2D]. Previously, we demonstrated
a significant and negative association of serum
FGF23 with serum 1,25(OH)2D and 1,25
(OH)2D/25-OH-D ratio, a putative parameter
for CYP27B1, and confirmed the physiologi-
cal effects of FGF23 on phosphate and vitamin
D metabolism in non-CKD subjects. Elevated
FGF23 by itself is reported to be associated
with various adverse outcomes, including left
ventricular hypertrophy, endothelial dysfunc-
tion, and activation of the renin-angiotensin-
aldosterone system, leading to increased mor-
tality even in non-CKD individuals. On the
other hand, our previous study showed that
the impaired incremental response of serum
FGF23 in response to oral phosphate load in
diabetic patients can help to significantly
increase serum phosphate (Yoda et al., J Clin
Endocrinol Metab 97:E2036–43, 2012) and
thus may contribute to progression of vascular
calcification in those patients (personal obser-
vation). It is suggested that increased serum
FGF23 might be an important indicator of
adverse outcomes in non-CKD as well as
CKD patients.
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6.1 Physiology of FGF23

Fibroblast growth factor 23 (FGF23) is a hor-
mone produced by osteocytes in bone that acts
on the kidneys to regulate phosphate and vitamin
D metabolism through activation of the FGF
receptor (FGFR)/α-klotho co-receptor complex
[31]. This hormone induces phosphaturia by
decreasing phosphate reabsorption in the proxi-
mal tubule through down-regulation of luminal
sodium-phosphate co-transporters [48, 53].

Furthermore, it inhibits the activation step of vita-
min D from 25-hydroxyvitamin D (25-OH-D) to
1,25-dihydroxyvitamin D [1,25(OH)2D] [6, 52],
while it stimulates the degradation step of 25-OH-
D to 24,25-dihydroxyvitamin D [24,25(OH)2D]
[53, 54, 62], thus inhibiting intestinal phosphate
absorption (Fig. 6.1). Consequently, FGF23 has
been proposed as a major regulator of phosphate
and vitamin D metabolism.

6.2 Direct and Indirect Effects
of FGF23 on Various Factors

Chronic kidney disease (CKD) is known to be
complicated with CKD-mineral and bone disor-
der (CKD-MBD), which is mainly comprised of

Fig. 6.1 Putative mechanisms of the effect of elevated
FGF23 in non-CKD subjects
Even in non-CKD subjects, FGF23 inhibits CYP27B1,
leading to decreased serum 1,25(OH)2D. Elevated
FGF23 and decreased serum 1,25(OH)2D induces activa-
tion of RAAS, while RAAS decreases klotho expression,
causing vascular calcification
On the other hand, FGF23 decreases phosphate reabsorp-
tion in the kidneys and intestines via down-regulation of
the cotransporters NaPi-IIa and NaPi-IIc in the proximal

tubule, and NaPi-IIb in the intestinal brush-border mem-
brane vesicles. This protects against development of
phosphate-induced atherosclerosis and particularly vascu-
lar calcification
ACE angiotensin-converting enzyme, FGF23, fibroblast
growth factor 23, NaPi sodium dependent inorganic phos-
phate, RAAS renin-angiotensin-aldosterone system,
25-OH-D 25-hydroxyvitamin D, 1,25(OH)2D 1,25-
dihydroxyvitamin D, 24,25(OH)2D 24,25-
dihydroxyvitamin D
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renal bone disease and vascular calcification,
leading to increased cardiovascular morbidity
and mortality [29, 34, 39]. Among the various
abnormalities related to CKD-MBD, phosphate
load has been hypothesized as an initial causative
factor [10, 27]. Since FGF23 regulates phosphate
metabolism, it is considered to be a predictor of
cardiovascular outcome in CKD patients
[27]. Findings supportive of that view include
the association of elevated FGF23 level with vas-
cular calcification [28, 57], left ventricular hyper-
trophy (LVH) [11, 16], and increased arterial
stiffness and endothelial dysfunction [21, 37],
leading to increased mortality in patients with
CKD and end-stage kidney disease (ESKD)
[12, 15, 24, 26]. Of importance, even in
non-CKD subjects, elevated FGF23 levels have
been shown to be associated with LVH [51],
endothelial function [37], and increased mortality
[2, 45, 56] (Fig. 6.2).

In addition, animal experiment results suggest
that FGF23 directly stimulates the renin-

angiotensin-aldosterone system (RAAS) by
suppressing angiotensin-converting enzyme
(ACE) expression in the kidneys, independent of
other abnormalities related to mineral and bone
disorders [8] (Fig. 6.1). Activation of RAAS has
been linked with numerous adverse conse-
quences, such as hypertension, endothelial dys-
function, progression of atherosclerosis, and
diabetic nephropathy [46] (Fig. 6.2). Indeed,
FGF23-mediated activation of local RASS in the
heart was reported to promote cardiac hypertro-
phy and fibrosis [3], while activation of RAAS
has also been found to reduce the expression of
klotho in the kidneys [9]. Thus, the effect of
FGF23 on RAAS may be a potential cause of
various adverse outcomes.

Controversy remains regarding whether
FGF23 is a contributor to vascular calcification.
This hormone helps to maintain phosphate levels
within a normal range in response to phosphate
overload, and we previously reported that oral
phosphate loading significantly increases serum

Fig. 6.2 Putative mechanisms of effects of elevated
FGF23 in non-CKD subjects
Elevated FGF23 alone, decreased 1,25(OH)2D, and
activated RAAS are each associated with numerous
adverse outcomes, leading to high mortality

ACE angiotensin-converting enzyme, ADL activities of
daily living, CVD cardiovascular disease, FGF23 fibro-
blast growth factor 23, P phosphate, RAAS renin-
angiotensin-aldosterone system
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FGF23 and parathyroid hormone (PTH) to atten-
uate an increased serum phosphate level [60]. In
patients with type 2 diabetes mellitus (DM),
impaired bone formation resulting from osteo-
blast/osteocyte deficit is the main feature of DM
bone abnormalities. Our prior study found
impaired incremental responses of serum FGF23
and PTH in DM patients, which was in contrast to
their increases in non-DM subjects. As a result, a
significant rise in serum phosphate is observed in
type 2 DM but not non-DM patients, clearly
indicating the protective effect of FGF23 against
the increase of serum phosphate after oral phos-
phate load in non-DM individuals, which protects
against development of phosphate-induced ath-
erosclerosis and particularly vascular calcification
[7] (Fig. 6.1). Furthermore, a cohort study that
included 1501 patients revealed that baseline
plasma FGF23 level was not associated with the
severity of calcium (Ca) content in the coronary
artery [49]. Serum FGF23 level by itself may be a
surrogate marker for vascular calcification in
CKD patients [23], because it reflects phosphate
load. It is therefore considered that increased
serum FGF23 might serve as an important indica-
tor of adverse outcomes in CKD as well as
non-CKD patients.

6.3 Significance of Inhibition
of Vitamin D Activation by
FGF23 in Non-CKD Individuals

Vitamin D, specifically biologically active 1,25
(OH)2D, plays a key role in bone and mineral
metabolism. Vitamin D deficiency, defined by
serum 25-OH-D < 20 ng/mL, is estimated to
occur in 36–57% of the general population [18]
and 50–86% of CKD patients [33]. It is increas-
ingly recognized that vitamin D insufficiency
(25-OH-D:20-29 ng/mL), in addition to vitamin
D deficiency, is a risk factor for various diseases,
such as diabetes, infections, cardiovascular dis-
ease, and cancer [19, 20]. Furthermore, harmful
effects of vitamin D deficiency have recently been
recognized even in the general population, based
on an association with increased risk of all-cause
mortality and reduced activities of daily living

[36, 47, 55, 64] (Fig. 6.2). Together with the
notion that vitamin D might be a primitive
steroid-like hormone, because the nuclear vitamin
D receptor belongs to the steroid receptor super-
family, these observations support the importance
of vitamin D.

6.4 Potential Role of FGF23
in Regulation of Vitamin D
Metabolism in Non-CKD
Individuals

Serum FGF23 level has been reported to be
increased even at an early stage of CKD in
patients with an eGFR �60 mL/min/1.73 m2

[24]. While both FGF23 and PTH have potent
phosphaturic activities, they have opposite effects
in terms of vitamin D metabolism, as FGF23
inhibits [6, 52] and PTH stimulates [5, 14, 17]
vitamin D activation from 25-OH-D to 1,25
(OH)2D. To examine the physiological role of
FGF23 in regulation of vitamin D metabolism
and thus phosphate metabolism in non-CKD
patients (eGFR�60 mL/min/1.73 m2), we
measured serum FGF23 along with three vitamin
D metabolites, 25-OH-D, 1,25(OH)2D, and 24,25
(OH)2D, in subjects with eGFR �60 mL/min/
1.73 m2 [40]. To avoid confounding factors,
subjects with DM as well as those taking
corticosteroids, vitamin D, phosphate-binder,
supplementary Ca, estrogen, or thyroid hormone
were excluded from the study. The results showed
that serum FGF23 was significantly and inversely
correlated with serum 1,25(OH)2D and 1,25
(OH)2D/25-OH-D ratio, putative parameters for
CYP27B1. Additionally, in multiple regression
analysis that included FGF23, PTH, and eGFR
as independent variables, FGF23 emerged as a
significant factor showing an independent nega-
tive association with 1,25(OH)2D and 1,25
(OH)2D/25-OH-D ratio. These results suggested
that FGF23 inhibits CYP27B1, leading to
decreased serum 1,25(OH)2D even in non-CKD
individuals. In addition, FGF23 was found to be
significantly and independently associated in a
positive manner with 24,25(OH)2D /1,25
(OH)2D ratio. Thus, based on the findings
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showing that FGF23 plays an important role in
vitamin D catabolism in non-CKD individuals, it
was speculated that phosphate overload exists
even in non-CKD patients, and that an increase
in serum FGF23 acts directly to attenuate
increased serum phosphate, and indirectly to
stimulate phosphaturia and inhibit activation of
vitamin D, resulting in suppression of intestinal
phosphate absorption, based on the effect of 1,25
(OH)2D to stimulate Na-Pi co-transport in intesti-
nal brush-border membrane vesicles [38, 50, 59].

6.5 Potential Role of FGF23
in Regulation of Phosphate
Metabolism in Non-CKD
Individuals

A recent cohort study found that serum FGF23,
but not phosphate, was negatively correlated with
eGFR in non-CKD postmenopausal female
subjects with eGFR �60 mL/min/1.73 m2

[43]. Serum phosphate levels begin to increase
at a later stage of CKD [24], thus it is probable
that an increase in FGF23 acts to protect against
development of hyperphosphatemia, as noted in
our previous study [60]. Serum FGF23 levels
have been shown to be not correlated with
serum phosphate in subjects with normal kidney
function [35, 40]. Furthermore, we found a sig-
nificant and independent association of serum
FGF23 with urinary albumin-to-creatinine excre-
tion in non-CKD postmenopausal female subjects
with eGFR �60 mL/min/1.73 m2 [43]. In CKD
mice, transcriptome analysis revealed that FGF23
regulates several genes associated with kidney
injuries, including Neutrophil Gelatinase-
Associated Lipocalin (NGAL), and carbonic
anhydrase 14 (Car 14) [8]. Together, these
observations suggest that FGF23 exerts a direct
effect to cause kidney damage. Alternatively,
phosphate overload, as reflected by increased
serum FGF23, might induce kidney injury, as
noted in previous reports [1, 41]. Therefore, it is
considered that FGF23 may play an important

role in regulation of phosphate metabolism,
based on its effect on vitamin D metabolism as
well as the established role of PTH in individuals
with normal kidney function.

6.6 Vitamin D Metabolism
and FGF23-Klotho Axis
in Non-CKD Individuals

Klotho, a 130-kDa transmembrane
β-glucuronidase that catalyzes the hydrolysis of
steroid β-glucuronides [32], is required for
FGF23 to activate FGFRs and their downstream
molecules [58]. Since the klotho/FGFR complex
binds to FGF23 with higher affinity than either
alone, FGF23 exerts its biological effects via acti-
vation of FGFR in a klotho-dependent manner
[58]. Interestingly, it has been demonstrated that
klotho deficiency causes vascular calcification in
CKD patients [22] and that vitamin D deficiency
is associated with RAAS activation [44]. In addi-
tion, angiotensin II has been found to negatively
regulate renal expression of klotho [61, 63]
(Fig. 6.1). Thus, activation of RAAS and klotho
deficiency by the effects of FGF23 on vitamin D
metabolism may lead to vascular calcification in
CKD patients as well as non-CKD individuals.

6.7 Future Prospects

Therapeutic strategies to control serum FGF23
level and improve adverse outcomes in
non-CKD patients remain to be clarified. Clinical
trials will be needed to examine the effects of
therapeutic intervention, such as vitamin D, phos-
phate binders, or dietary phosphate restriction, on
serumFGF23 levels, and also to determine how
such changes impact adverse outcomes in CKD
as well as non-CKD cases. Restriction of dietary
phosphate, particularly phosphate additives, may
be important, because a large amount of rapidly
absorbable inorganic phosphate can be found in
various food additives and preservatives [42]. A
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small-scale short-term pilot study of CKD stage
3–4 patients showed a significant decrease in
FGF23 in those who consumed a diet that
included the combination of lanthanum carbonate
and 900 mg phosphate, though that level was not
significantly decreased in those with a lanthanum
carbonate and ad libitum diet [25]. Another report
summarized the results of several interventional
clinical trials that used phosphate binders and/or a
phosphate restriction diet for examination of
FGF23 levels, though most of those studies had
a relatively short duration [4]. Long-term large-
scale clinical trials focused on phosphate restric-
tion in healthy and non-CKD subjects are needed.
Administration of phosphate binders, such as lan-
thanum carbonate and sevelamer hydrochloride,
has been reported to lower serum FGF23 levels in
patients with CKD stage 3 and ESKD, respec-
tively [13, 30]. Thus, it may be possible to
decrease the FGF23 level in serum and improve
adverse outcomes with phosphate binders in
patients without CKD.

FGF23 has direct and/or indirect effects out-
side of the field of MBD, which suggests addi-
tional possibilities for treatment of adverse
outcomes associated with an elevated level.
Since FGF23 stimulates RAAS, administration
of ACE inhibitors, angiotensin-receptor blockers,
and aldosterone receptor antagonists may be
justified.

6.8 Conclusion

Even in individuals with normal kidney function,
FGF23 plays an important role in regard to vita-
min D metabolism. An elevated FGF23 level and
vitamin D deficiency are associated with various
adverse events. Therefore, it is possible that an
increase in vitamin D and decrease in FGF23
could be instrumental in engendering adverse
outcomes, even in non-CKD individuals.
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Phosphate and Cellular Senescence 7
Ming Chang Hu and Orson W. Moe

Abstract

Cellular senescence is one type of permeant
arrest of cell growth and one of increasingly
recognized contributor to aging and
age-associated disease. High phosphate and
low Klotho individually and synergistically
lead to age-related degeneration in multiple
organs. Substantial evidence supports the cau-
sality of high phosphate in cellular senescence,
and potential contribution to human aging,
cancer, cardiovascular, kidney, neurodegener-
ative, and musculoskeletal diseases. Phosphate
can induce cellular senescence both by direct
phosphotoxicity, and indirectly through
downregulation of Klotho and upregulation
of plasminogen activator inhibitor-1. Restric-
tion of dietary phosphate intake and blockage

of intestinal absorption of phosphate help sup-
press cellular senescence. Supplementation of
Klotho protein, cellular senescence inhibitor,
and removal of senescent cells with senolytic
agents are potential novel strategies to attenu-
ate phosphate-induced cellular senescence,
retard aging, and ameliorate age-associated,
and phosphate-induced disorders.

Keywords

Aging · Age-associated disease · Cellular
senescence · Fibrosis · Klotho · Phosphate ·
Phosphorus · Phosphotoxicity · Plasminogen
activator inhibitor-1 · p16 · p21

7.1 Introduction

Phosphorus, the element of phosphate biologic
moiety, is the sixth most abundant element after
hydrogen, oxygen, carbon, nitrogen, and calcium
in the human body. While the term “phosphorus”
is used in conventional clinical laboratory
reporting, there is no elemental phosphorus in
mammalian biology, the term phosphate (inor-
ganic or organic) will be used despite the
accepted clinical parlance. In the human body,
85% of phosphate is in bone and teeth as
hydroxyapatite, 14% is located intracellularly as
various organic phosphate compounds and some
inorganic phosphate; and only 1% extracellularly
[72, 123, 168]. Of the 1% located in extracellular
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space, 20% is protein bound [72, 123, 168] and
the inorganic phosphate is distributed as pyro-
phosphate (minor) and orthophosphate (major)
in various valences determined by the plasma pH.

Serum phosphate serves as an exchange pool
among various phosphate-containing and
phosphate-regulating organs [72, 123, 168]. Phos-
phate homeostasis is principally maintained by gut
absorption and urine phosphate excretion which is
controlled by a complex but tightly and efficiently
regulated network consisting of several calciopho-
sphotropic hormones including parathyroid hor-
mone, 1,25-(OH)2 vitamin D, fibroblast growth
factor (FGF)-23, and Klotho [65, 72].

The terminology in this field can be confusing
and necessitates some front-end clarification.
Hyperphosphatemia refers to elevated serum or
plasma phosphate level (measured as the mass of
phosphorus constituent per volume) (Fig. 7.1). It
is a “state” and may or may not be associated with
disease. Phosphate loading refers to an amount of
phosphate intake into a system, with overload
being a flux that is higher than what is necessary
for health. This may or may not be associated
with hyperphosphatemia or ill effects. Positive
balance occurs when intake exceed excretion at
the organism level. Phosphotoxicity refers to a
cellular, organ, or whole organism condition

where excess phosphate (extracellular or intracel-
lular) begets an undesirable phenotype- one that
predisposes to or actually constitute disease.

A positive imbalance can result from insuffi-
cient renal phosphate excretion and/or excessive
phosphate intake, and is emerging as a novel detri-
mental contributor to aging and age-associated
disease [25, 94–96, 123, 131, 132]. As stated
above, the ill effects of excessive phosphate is
collectively termed “phosphotoxicity” with no
designation of the cause or specific resultant
phenotypes. Aging is a progressive and inevitable
process with multi-organ deterioration. Aging is
triggered and exacerbated by numerous factors
including genetic, and epigenetic factors. Among
those identified factors such as diabetes, hyperten-
sion and others, the role of phosphate in cellular
senescence is incompletely elucidated [147].

Cellular senescence is a type of permanent
arrest of cell growth, which was initially
identified as a defense mechanism to inhibit
tumorigenesis and metastasis [17, 26, 37, 109,
124, 154]. Similar to autophagy and apoptosis,
an appropriate cellular senescence activity is
therefore required to maintain tissue function
and regeneration after tissue damage [180]. But
chronic and severe cellular senescence also
contributes to aging and age-associated diseases.

Phosphate Load

Phosphatemia

[Phosphate]

Intake

Output

Phosphotoxicity

Ph
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e

Phosphate balance
Intake - Output

Fig. 7.1 Concepts about phosphate metabolism and
balance
Hyperphosphatemia refers to elevated levels of serum or
plasma phosphate, which may or may not be associated
with disease. External phosphate balance is the amount of
phosphate intake minus urinary phosphate excretion. The

increased flux of phosphate through the organism may or
may not be associated with hyperphosphatemia or ill
effects. Phosphotoxicity refers to a state that excess phos-
phate (extracellular or intracellular) causes an undesirable
phenotype at a cellular, organ, or whole organism level
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Aging is triggered, driven, and promoted by mul-
tiple genetic and acquired detrimental factors.

The cellular and molecular mechanisms
whereby phosphate accelerates aging, and
excerbates age-associated diseases are complex
and multifactorial [68, 122, 123, 135]. High phos-
phate can reduce autophagy [147] and Klotho
[68, 176], induce cell apoptosis [36, 101], and
activate cellular senescence [106]. Klotho was
discovered in 1997 by Kuro-o and colleagues.
Klotho was originally identified as an anti-aging
protein and later on was found to directly inhibit
cellular senescence, reduce serum phosphate, and
prevent phosphate-induced cellular senescence in
a tripartite relationship [106]. Therefore, abnor-
mal cellular senescence is attributable in part to
the deleterious actions of Klotho deficiency from
phosphotoxicity [44, 139] and not necessarily
phosphate per se.

In this monograph, we will first update current
understanding of cellular senescence in aging and
age-associated disease, review the effect of phos-
phate on the activation of cellular senescence and
to aging and human disease, and finally discuss
the potential of targeting cellular senescence in
prevention and treatment of phosphotoxicity.

7.2 Cellular Senescence

7.2.1 Cellular Senescence and Its
Signaling Pathways

Cellular senescence was first described by
Hayflick and Moorhead when they established
an immortal cell line [61]. They found that the
cells assume a flattened and enlarged morphol-
ogy, ceased to proliferate without any responses
to growth factors, but were still alive in cultured
dishes. Those cells are called senescent cells
because they have irreversible growth arrest,
which is different from quiescent cells, because
quiescent cells are still able to re-enter the cell
cycle.

Senescent cells have remarkable morphologi-
cal and metabolic changes. Those changes
include reorganizing chromatin, reprogramming
gene expression, and endlessly producing many

pro-inflammatory and pro-fibrotic growth factors
and cytokines, a phenotype called the senescence-
associated secretory phenotype (SASP) [29, 45,
162]. Cellular senescence conferred both protec-
tive and deleterious effects depending on the
physiological and pathophysiologic scenarios.
Although cellular senescence likely functions as
a defense mechanism to inhibit malignant trans-
formation of damaged cells, persistent and
chronic senescence may promote aging and
age-associated pathologies including tissue
degeneration, cell dysfunction, and chronic
inflammation in the tissues [17, 26, 29, 37, 38,
45, 66, 82, 92, 108, 109, 124, 143, 151, 154, 162].

Cellular senescence is activated and
maintained by at least 2 cell signaling pathway:
p53/p21 and p16Ink4a/retinoblastoma-1 (RB-1).
Both are tumor suppressive proteins. These two
pathways are activated by DNA damage, reactive
metabolites, oncogenic mutations, high mitogen
signals, proteotoxic stress, and other yet-to-be-
identified factors [17, 18, 26, 66, 82, 143,
154]. Furthermore, cellular senescence is also
induced by the perturbation of metabolism
including abnormal phosphate metabolism,
which may accelerate age-related phenotypes
[17, 26, 66, 106, 143, 154].

7.2.2 Senescence-Associated
Secretory Phenotype

Senescent cells have a profound phenotype of
endless production and secretion of
proinflammatory and profibrotic growth factors
referred as SASP [29, 45]. The number of
senescent cells is widely variable from <1% to
>15% depending on physiological and patho-
physiologic context, species, and tissue origins,
and cell origins [18]. However, a few senescent
cells are able to initiate a detrimental positive
circle through spreading senescence signal to
neighbor cells [45] and to propagate pathologic
actions in whole tissue and organ through SASP
and even exert systemic effects [125].

Chronic inflammation induced by cellular
senescence is the result of unrestrained SASP in
the tissue and organ [79]. Obesity-induced
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senescent cells can maintain chronic and
low-grade inflammation in the pancreas
[125]. Therefore, the persistence of senescent
cells can promote inflammation and tissue disrup-
tion present in chronic disease [124]. Cellular
senescence occurs in many types of cells includ-
ing endocrine cells, endothelial cells, epithelial
cells, inflammatory cells, and even stem cells in
almost every tissue and organ [18, 26, 66, 154,
157].

7.2.3 Cellular Senescence Effect
on Aging

Aging is a continuous and progressive sequence
of changes in any organisms that leads to
biological dysfunctions and morphological tissue
destruction, and causes degenerative pathology
[17, 26, 38]. Cellular senescence is present
throughout lifetime, occurring in embryogenesis
and activated to protect cells against a variety of
insults throughout life [17]. With time, the num-
ber of senescent cells increases and when coupled
with depletion of stem cells and progenitor cells
in tissue, causes a decline in tissue
regeneration [170].

7.2.4 Cellular Senescence in Human
Disease

Cellular senescence has been implicated in many
age-associated degenerative phenotypes
(Fig. 7.2). In most cases, senescent cells drive
chronic degeneration mainly through the secre-
tion of proinflammatory and profibrotic
cytokines, growth factors, and proteinases via
SASP, inducing inflammation, disrupting tissue
structures, and leading to fibrosis. High cellular
senescence also causes stem cell depletion
[28, 55, 81] and impairs tissue regeneration [13].

7.2.4.1 Tumorigenesis
Cellular senescence was initially proposed to
serve as a tumor suppressive mechanism since
its discovery in the 1960s [45], but it is now

demonstrated that highly active cellular senes-
cence actually drives tumorigenesis.

Cells carrying activated oncogenes such as
p53 [58, 90], p21 [1, 91, 174] and p16
[140, 185, 186] were shown to either die through
apoptosis or enter stable cell cycle arrest that
defines cellular senescence; either way, they
may be prohibited from exerting further harm.
More importantly, the implication of those
oncogenes in activation of cellular senescence
and in tumor development have been confirmed
both in animal models and in human samples
[45, 169]. In addition to tumor initiation, SASP
can induce extracellular matrix remodeling
through release of numerous inflammatory and
growth factors [45] to promote metastasis and
induce resistance to therapy [98]. Therefore, cel-
lular senescence is a novel therapeutic target for
cancer treatment.

7.2.4.2 Chronic Non-neoplastic Diseases
The morbidity and mortality of many chronic
degenerative diseases increases with age, includ-
ing Alzheimer’s disease, Parkinson’s diseases,
Down Syndrome [9], macular degeneration
[104], pulmonary disease [156], cardiovascular
disease [27], kidney disease [154], liver and
digestive disease [6, 12, 46, 50, 87, 88, 164,
193], saropenia [119, 155, 191], osteoporosis
and osteoarthritis [75], metabolic disorders such
as diabetes [87, 88, 125], autoimmune disease
and rheumatic disease [75], and other
age-related pathologies, even infectious disease
[7, 56, 73, 184] (Fig. 7.2).

7.3 Phosphotoxicity in Aging
and Age-Associated Disease

7.3.1 Phosphate Effect on Aging
and Klotho

In patients after myocardial infarction, high base-
line serum phosphate was associated with high
all-cause death after 60 months of follow-up
[166]. Since this paper, there are many studies
describing the link between serum phosphate and
cardiovascular disease in healthy human beings in
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the Framingham Offspring Study [35], the Coro-
nary Artery Risk Development Study [48], as
well as intermediate phenotypes of vascular and
endothelial dysfunction [74, 150], vascular and
valvular calcification [3], and greater left ventric-
ular mass [189]. The serum levels of phosphate
negatively correlate with anticipated lifespan in
animals and human beings [93, 96]. The observa-
tional studies in human populations are very com-
pelling but do not provide proof of causality of
high phosphate and aging.

Direct evidence to support the detrimental
effect of high phosphate on aging comes from
animal experiments. The correction of high
serum phosphate with low phosphate diet or
genetic deletion of sodium-dependent phosphate
co-transporter-2a (NaP-2a) in kidney tubules
leading to urinary phosphate leak effectively
prolongs lifespan and rescues almost all
phenotypes in Klotho deficient mice
[122, 133]. More importantly, feeding high phos-
phate food abolishes that benefit conferred by
NaPi-2a deletion and brings the premature aging
phenotypes back. The longer lifespan associated
with high autophagy in mice is at least in part
mediated by higher urinary phosphate excretion
due to reduced sodium-dependent phosphate
cotransporters type II in the kidney [147]. The

long-term challenge with high dietary phosphate
dramatically abolished the beneficial effects of
high autophagy activity [147], further supporting
the role of high phosphate in promoting aging.

Klotho is also known as an inhibitor of cellular
senescence [16, 20, 102, 105, 106, 126, 129]. High
phosphate significantly decreases kidney and
circulating Klotho [67–69, 71, 106, 117,
147]. However, this finding has not been
reproduced in humans consuming a high phos-
phate diet [114, 141]. It is conceivable that high
phosphate-induced short lifespan is multi-factorial
and results at least in part from the reduction of
Klotho production. Klotho deficiency may be one
of molecular mechanisms behind high phosphate
effect on cellular senescence. Moreover, higher
levels of baseline serum phosphate are also
associated senescence and aging.

7.3.2 Phosphotoxicity and Human
Disease

Although phosphate is essential for body struc-
ture and function, excessive accumulation of
phosphate in the body due to impaired phosphate
homeostasis can cause functional and morpho-
logic changes in almost every organ/tissue and

Organ Cellular
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Phosphotoxicity

CNS � �

Eye �

Lung � �
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Cellular
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Fig. 7.2 Cellular senescence and phosphate toxicity in
human disease
A summary of human acute and chronic diseases which

are confirmed or proposed to be associated with high
cellular senescence and phosphotoxicity
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system (Fig. 7.2). All of the chronic diseases
associated with high phosphate discussed below
are more prominent in the senior population.
Interestingly, these diseases are important
components in aging which are also triggered
and driven by over active cellular senescence.

7.3.2.1 Cancer
Phosphotoxicity has been proposed to promote
tumorigenesis (Fig. 7.2). Epidemiologic findings
show association between high incidence of some
types of cancers and abnormal phosphate metab-
olism [15, 181], and between high levels of serum
phosphate and low survival rate of several types
of cancer [167, 190]. Tumor cells store more
intracellular phosphate through higher activity of
sodium-dependent phosphate transport han in
normal cells [41]. High phosphate can act as a
mitogenic factor to induce tumor cell proliferation
and activate tumor cell growth through induction
of tumorigenic signaling [15]. As cellular senes-
cence is one contributor to tumorigenesis, the
direct effect of high phosphate on induction of
cancer development and metastasis needs to be
explored. Furthermore, Klotho is a tumor sup-
pressor through multiple cellular signaling
pathways [2, 24, 39, 136, 160, 182], and
phosphate-indued reduction in Klotho can also
contribute to tumorigenesis.

7.3.2.2 Cardiovascular Disease
Clinical observational studies showed that high
serum phosphate is identified as an independent
contributor to cardiovascular morbidity and mor-
tality in both chronic kidney disease (CKD)
patients and in non-kidney disease subjects
[40, 47, 80, 86, 95, 115, 135, 142, 152, 166]
(Fig. 7.2) There is also a strong correlation
between high serum phosphate and high morbid-
ity and mortality of cardiovascular events such as
cardiomyopathy, vascular calcification, arterial
stiffness, and hypertension, in dialysis and
non-dialysis CKD and experimental animals as
well [5, 32, 68, 71, 80, 83, 107, 111, 115,
175]. Furthermore, higher serum phosphate at
baseline is related to an increased risk of de
novel onset of heart failure, myocardial infarction,
and other cardiovascular events [166]. Therefore,

high phosphate is an indicator and detrimental
contributor of cardiovascular disease.

7.3.2.3 Kidney Disease
It has been known for long time that high phos-
phate contributes to acute kidney damage after
large acute phosphate loading in short-term, and
leads to kidney fibrosis in normal animals, and
promotes progression of CKD animals after long-
term phosphate loading [68, 69, 86, 106, 115,
137, 144]. High phosphate is closely associated
with complications including cardiovascular dis-
ease and metabolic bone disease in CKD. Phos-
phate binders effectively decrease cellular
senescence in vascular smooth muscle cells
induced by high phosphate and vascular calcifica-
tion in uremic rodentmodel [188]. Phosphotoxicity
in the kidney is attributable to high phosphate-
induced cell apoptosis, decreased autophagy, and
activated cellular senescence [106].

7.3.2.4 Metabolism
High dietary phosphate loading causes abnormal
mineral metabolism [22, 67, 94, 114, 141, 152]
and disturbed fatty acid metabolism [128] in
humans and experimental animals. Disturbed
metabolism can be one of underlying mechanisms
for phosphotoxicity in some tissues and organs.

7.3.2.5 Other Diseases
Hyperphosphatemia is also thought to lead to
damage in other organs and tissues (Fig. 7.2)
including the lung [23, 76, 78], bone [22, 60,
152], skeletal muscle [15, 128], diabetes [14],
liver injury [97], and impaired brain development
[77]. Patients with inflammatory disease and
tumor in central nervous system have signifi-
cantly higher levels of phosphate in cerebrospinal
fluid; and ones with an intracranial hemorrhage
also have elevation of phosphate in cerebrospinal
fluid [63].

It is estimated that nearly 1% of total body
phosphate is stored within cells as well as in
extracellular fluid. Currently, measuring serum
phosphate level only estimates the overall status
of phosphate in the body, but the levels of serum
phosphate may not be a good indicator to always
reflect total amount of phosphate in the body.
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Sometimes, the early or mild phosphate toxicity
might not be associated with detectably high
levels of serum phosphate [123]. In fact, several
clinical observational studies showed that a very
small increase in serum phosphate within normal
range of clinical laboratories (3.4–4.5 mg/dl
or1.12–1.45 mmol/L), is significantly associated
with higher cardiovascular events in non-kidney
disease subjects [35, 48, 166]. Therefore, the
measurement of tissue or intracellular phosphate
may provide more precise and timely status of
phosphate metabolism.

7.4 Stimulation of Cellular
Senescence by Phosphate

Phosphate-induced cellular senescence is well
conserved across species from plants to
vertebrates. This effect is found in plant leaf
[31, 153]; prokaryotes [33], and cells and tissues
in mammals [106, 188]. But the cellular and
molecular mechanisms whereby phosphate
activates cellular senescence are largely incom-
pletely illustrated. The experiments performed in
authors’ laboratories showed both direct and indi-
rect effects of high phosphate on activation of
cellular senescence in the kidney [106, 188].

7.4.1 Direct Stimulation of Cellular
Senescence

After one week of high dietary phosphate treat-
ment (2.0% phosphate w:w), the mice had modest
increase in plasma phosphate and nearly normal
plasma Klotho. However, the mice had higher
p16/p21 expression in the kidneys. Those results
imply that high phosphate induces senescence in
the kidney which is independent of plasma
Klotho (Fig. 7.3). High phosphate (2.0 mM)
media induce cellular senescence in cultured kid-
ney cell line without endogenous Klotho expres-
sion, supporting that in the absence of Klotho,
high phosphate can directly stimulate cellular

senescence through p16/p21 signaling pathway
[106]. However, whether the phosphate effect
on cellular senescence is mediated through an
elevation of intracellular phosphate via
sodium-dependent phosphate co-transport
[100, 112, 173, 177, 187] and/or through other
phosphate transport-independent signaling path-
way [11] needs to be explored.

PAI-1

Pi Klotho

Fibrin deposit 
in vessels

p16/p21

Senescence in 
intrinsic cells

SASP

Cell injury 

Tissue regeneration
Tissue fibrosis

∞

∞

Æ

Æ Æ

Æ
Æ

Fig. 7.3 Potential cellular mechanisms of phosphate-
induced cellular senescence
High phosphate upregulates p16 and p21 and induces
cellular senescence (early phase). High phosphate also
increases PAI-1 expression and reduces Klotho protein
production (late phase). It is unclear whether high phos-
phate upregulates PAI-1 in a dependent or independent
manner of higher p16/p21 and/or lower Klotho (dash line).
Moreover, high PAI-1 activity initiates and accelerates
fibrin deposits in vessels, activates cellular senescence,
and induces tissue injury and fibrosis. High phosphate-
induced Klotho deficiency increases serum phosphate
which further reduces Klotho production. Cellular senes-
cence increases senescent cells through activation of a
vicious cycle of secreted pro-inflammatory and
pro-fibrotic growth factors, and proteases (SASP). Chronic
senescence activation in intrinsic cells and vessels, and
fibrin deposits in vessels initiate and/or promote fibrosis,
hence destructing tissue structure. Senescence in stem cells
and progenitor cells impair tissue regeneration
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7.4.2 Indirect Stimulation of Cellular
Senescence

7.4.2.1 Downregulation of Klotho
It is documented in rodents that high dietary
phosphate loading reduces kidney and circulating
Klotho [51, 67, 68, 117, 122, 130, 147, 148, 179,
192] although the cellular and molecular mecha-
nism of how phosphate inhibits Klotho is still
elusive.

Klotho protein was been shown to suppress
cellular senescence (Fig. 7.3) in the kidney of
several rodent models including CKD, glomeru-
lonephritis [59], genetic Klotho deficiency [43],
and in several cultured cell lines. Cellular senes-
cence induced Klotho deficiency is associated
with high Wnt signaling activity [103]. Wnt is a
potent inducer of cellular senescence [103]. It has
been shown that intracellular, but not extracellu-
lar Klotho protein interplays with retinoic-acid-
inducible gene-I to suppress SASP and conse-
quently inhibit inflammation [102]. But, other
studies confirmed that extracellular domain of
Klotho protein is still able to inhibit cellular
senescence [24, 92, 106], which provides thera-
peutic potential to inhibit phosphate-induced cel-
lular senescence with soluble Klotho protein.

7.4.2.2 Upregulation of Plasminogen
Activator Inhibitor Type-1

Plasminogen activator inhibitor type-1 (PAI-1)
belongs to the superfamily of serine-protease
inhibitors, and inhibits both tissue-type and
urinary-type plasminogen activators whose pri-
mary function is to activate plasminogen. So
PAI-1 participates in control of fibrinolysis
[21, 64]. The in vivo experiments showed that
high PAI-1 expression suppresses fibrinolysis,
and results in the massive fibrin deposition in
the tissue [21, 106]. PAI-1 also regulates endo-
thelial cell replication and angiogenesis
[34, 62]. Emerging evidences showed that PAI-1
also makes major contribution to other pathologic
processes independently from modulation of
fibrinolysis process. PAI-1 is now considered as
an inducer of cellular senescence through unclar-
ified mechanism [43, 44, 159, 172].

High dietary phosphate upregulates PAI-1
expression in the kidney of mice in vivo and
high phosphate media increases PAI-1 in cultured
kidney cells in vitro [106]. In addition, Klotho
deficiency also induces PAI-1 over-expression in
the kidney [44, 159]. Therefore, high phosphate
works synergistically with Klotho and PAI-1 to
amplify cellular senescence.

7.4.2.3 Activation of SASP
High phosphate induces the secretion of
pro-inflammatory growth factors such as TNFα
and TGFβ, and promotes oxidative stress in
experimental animals in vivo and in cultured
cells in vitro [68, 106, 110, 116, 165,
194]. These factors released from damaged
tissues or cells would reduce Klotho expression
in the kidney in a paracrine or endocrine manner.
The experiments conducted in the authors’
laboratories showed that senescence markers are
first elevated, followed by higher levels of oxida-
tion, SASP, and lower Klotho protein expression.
It is conceivable that high phosphate induces
cellular senescence, activates oxidative stress,
stimulates SASP, and decreases Klotho protein
expression [106]. This hypothesis is about to be
confirmed.

Taken together, high phosphate activates cel-
lular senescence through upregulating p16/p21
and/or downregulating Klotho production.
Klotho deficiency may secondarily induce PAI-1
signaling, which induces fibrin deposition in the
vessel, causes tissue fibrosis, and enhances cellu-
lar senescence [43, 89] (Fig. 7.3).

7.5 Cellular Senescence: A Novel
Downstream Target
for the Treatment
of Phosphotoxicity

Conventional prevention or treatment of
phosphotoxicity consists of tilting the balance
between phosphate intake and excretion towards
the negative side. Equipped with the knowledge
that cellular senescence is one downstream effec-
tor of phosphotoxicity, one opens up a novel
array of therapeutic options.
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7.5.1 Control of Dietary Phosphate
Intake and Reduction of Serum
Phosphate

Controlling phosphate absorption is usually pre-
scribed for patients with CKD by restriction of
phosphate intake and administration of phosphate
binders (Fig. 7.4).

Reducing dietary phosphate intake is a simple
and easy strategy to keep normal phosphate
homeostasis. While reduction in total phosphate
ingestion can be challenging, the form of digested
phosphate in food can be modified because bio-
availability of different kinds of ingestible phos-
phate differ tremendously [10, 145]. Inorganic
phosphate, which is rare in nature, is much more
bioavailable than organic phosphate present in
living matter. The most common storage form of
phosphorus in plant is phytate, which is very
poorly absorbed as humans lack phytases to
release the phosphate from the inositol ring
[134, 171, 178]. A plant-based diet is able to
provide enough dietary protein requirement with-
out increasing risk of high phosphate intake for
CKD subjects [53] and lower risk of severity of
CKD-mineral bone disorder compared to animal-
based protein [113]. Most importantly, one needs
to account for the added inorganic phosphate into

food mainly from food processing. Almost all
processed foods contain phosphate additives
[10, 42]. Inorganic phosphate in the preservatives
is very readily absorbed across the digestive tract
to enter into blood circulation.

Phosphate binders reduce bioavailability of
dietary phosphate and minimize phosphate
absorption from the intestine [10, 19, 30, 49,
142]. The inhibition of sodium-dependent phos-
phate co-transporter type 2b, which controls
transcellular phosphate absorption and secondar-
ily reduces paracellular transport from gut [85]
can complement low phosphate diet and phos-
phate binders [30, 57] to enhance the control of
phosphate balance. It has been shown that phos-
phate binder effectively blocks cellular senes-
cence activation by high phosphate in vascular
smooth muscle cells and vascular calcification in
CKD rats [188].

7.5.2 Augmentation of Phosphate
Excretion from the Kidney

Klotho is shown to induce phosphaturia by
inhibiting sodium-dependent phosphate
co-transporters in the kidney tubules through
FGF23 dependent pathway via FGF23-FGFR-

1. Reduce phosphate load Decrease intestinal absorption
• Decrease total dietary phosphate
• Decrease inorganic phosphate in diet
• Phosphate binders
• Inhibition of transcellular phosphate transport
• Inhibition of paracellular phosphate transport

2. Correct Klotho deficiency Increase endogenous production
• Treat kidney disease
• Vitamin D
• Off-label use of approved drugs

- PPAR� agonists
- Antioxidants
- RAAS blockade

Exogenous Klotho
• Recombinant protein
• Various forms of gene therapy

3. Target cellular senescence Suppression of senescence induction
Removal of senescent cells
Interruption of SASP

Phosphate1

Klotho deficiency2

Phosphotoxicity

Other pathwaysSenescence3 Direct

Fig. 7.4 Potential strategies to treat phosphotoxicity
Attenuation of phosphotoxicity can be achieved through
reducing phosphate load to the body (Strategy 1), correc-
tion of Klotho deficiency (Strategy 2), and direct target of
cellular senescence (Strategy 3). Since phosphotoxicity is
induced and mediated through multiple cellular and

molecular mechanisms, direct inhibition of phosphate-
associated intracellular signaling pathways, and modula-
tion of other downstream biologic effectors such as
autophagy, mitochondria, and oxidative stress would also
participate in alleviation of phosphotoxicity
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Klotho complex formation [54] and FGF23-
independent pathway via Klotho’s enzymatic func-
tion [70]. However, clinical utility remains to be
confirmed.

7.5.3 Restoration of Plasma Klotho

Elevation of plasma Klotho (Fig. 7.4) to counter-
act Klotho deficiency that occurs in kidney dis-
ease and after high dietary phosphate loading
represents a feasible strategy to reduce blood
phosphate through induction of phosphaturia,
protect kidney disease from chronic progression,
and also directly suppress cellular senescence
[69, 70, 106, 147].

7.5.3.1 Delivery of Klotho cDNA
One strategy which has been repeatedly approved
to be successful to replete Klotho in the research
animals is the use of virus, plasmid or minicircle-
based vectors to deliver Klotho cDNA. Delivery
of Klotho cDNA in rodent can improve kidney
function, ameliorate endothelial function, and
attenuate uremic cardiomyopathy in acute kidney
injury, CKD, and hypertensive models [138, 149,
183, 195].

7.5.3.2 Administration of Recombinant
Klotho Protein

Exogenous recombinant Klotho protein has been
shown to have at least two effects: direct restora-
tion of serum Klotho levels, and stimulation of
endogenous Klotho production in the kidney
[69, 70, 146, 148]. Administration of Klotho pro-
tein is the only practical and feasible method to
elevate serum Klotho to precise and safe levels to
date. While Klotho replacement therapy is suc-
cessful in correction of Klotho deficiency and
improvement of renal, cardiovascular, and other
diseases in many experimental animals, its clini-
cal application still faces certain hurdles. Obvi-
ously ample animal studies have provided solid
and convincing evident to support the concept

that Klotho protein replacement is far more effec-
tive than virus-based Klotho [120].

7.5.3.3 Disinhibition of Endogenous
Klotho Production

Another potential strategy to increase serum
Klotho is to re-activate or stimulate endogenous
Klotho production in the kidney by reversing
mechanisms which inhibit Klotho production
and/or release of extracellular domain of mem-
brane Klotho protein in diseased kidney or after
exposure to dietary phosphate overloading. In
experimental CKD rodents, vitamin D receptor
agonist augmented serum Klotho levels and
reduced the levels of serum phosphate, but the
origin of increased soluble Klotho in serum and
urine was not identified, indicating that an
increase in shedding membrane Klotho may be
the source [99]. Experimental study showed that
1,25-(OH)2-vitamin D3 increased Klotho expres-
sion in the kidney [118, 158]. Other medications
that can potentially stimulate endogenous Klotho
protein production in the kidney include andro-
gen, angiotensin II receptor antagonists, PPAR-γ
agonists, and statins [120, 127]. Off-label use of
existing medications to pharmacologically acti-
vate or de-suppress endogenous Klotho protein
production is a viable and safe option. However,
to date, there is no clinical trials to test the effi-
cacy of pharmacological interventions in correc-
tion of Klotho deficiency. It is also unknown
whether these FDA-approved medication can
increase endogenous Klotho production or stimu-
late release of extracellular domain of membrane
Klotho in high phosphate-fed animals whose kid-
ney has low Klotho expression is not known.

Another strategy to increase endogenous
Klotho expression is epigenetic approach. It has
been shown that DNA demethylating agents
increase Klotho expression in non-Klotho
expressing cells [8]. While theoretically feasible,
the effect of modulation of methylation and acet-
ylation of the Klotho gene promoter on
upregulation of Klotho in the kidney needs fur-
ther confirmation.
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7.5.4 Direct Suppression
of Senescence Signaling
Pathway and Removal
of Senescent Cells
to Ameliorate Phosphotoxicity

Phosphotoxicity exerts its ill effects along multi-
ple pathways, many of which are still not defined.
However, among which is the promotion of cel-
lular senescence. Because cellular senescence is
characterized by replicative arrest, suppressed
apoptosis, and typical secretory phenotype,
blockage of cellular senescence activation, induc-
tion of apoptosis in senescent cells and interrup-
tion of SASP are three targets for intervention of
cellular senescence to treat phosphate-induced
diseases (Fig. 7.4).

7.5.4.1 Removal of Senescence Stimuli
The inhibition of senescent cells formation needs
to remove any senescence stimuli. The control of
blood phosphate, treatment of chronic inflamma-
tion and use of Klotho protein were shown to
inhibit cellular senescence as we discussed above.

7.5.4.2 Removal of Senescent Cells
Because senescent cells are typically considered
cells with irreversible fates that cannot re-enter
cell cycle, there is increasing interest in targeting
and cleaning senescent cells from diseased organs
and damaged tissues. The most efforts that scien-
tist have made are largely to repurpose
FDA-approved medications or to explore phar-
macological agents that can induce senescent
cell death. These compounds are together called
senolytics [124].

Ideally, selectively stimulating apoptosis with
senolytic drugs which block pro-survival
pathways including Bcl2, p53/21, is able to
remove senescent cells [124]. Quercetin can
block Bcl2 activity and probably also p53 signal-
ing to induce apoptosis and remove senescent
cells. Some compounds (ABT-737, ABT-262
and A1331852) also induce apoptosis through
inhibiting Bcl2 although most of them are only
relatively specific.

Other options to clear senescent cells include:
(1) Potentiate an immune response with monoclo-
nal antibodies such as anti-PD1, anti-DPP4, and
anti-vimentin. These immune-based interventions
are most used in cancer therapy [124]; (2) Use
silica nanoparticles coated with galacto-
oligosaccharides [4]. Cellular uptake and diges-
tion of coated particles are in senescent cells with
expression of senescence-associated
β-galactosidase. Therefore, the content will be
released from the nanoparticle within cells and
apoptosis induced in senescent cells [4]. Senolytic
application based on senescence-associated
β-galactosidase has not been tested in vivo
[124]. Whether the above agents can
ameliorate phosphotoxicity still remains to be
determined.

7.5.4.3 Interruption of SASP
If one cannot remove senescent cells from dis-
eased tissue or organ, prevention of release of
proinflammatory cytokines, pro-fibrotic growth
factors, or matrix-remodeling proteases and/or
blockage of their actions can serve as an alterna-
tive strategy to interrupt SASP, to reduce senes-
cence amplification, and to limit detrimental and
non-cell-autonomous effects of senescent cells
[124]. Rapamycin, a well-known inhibitor of the
mammalian target of rapamycin signaling path-
way [52, 147, 163] and metformin also function-
ing as mTOR inhibitor [84, 121] effectively
suppress inflammation, reduce NF-κB signaling
activity, prolong lifespan, and improve health in
aged animals [124]. In fact, rapamycin also
reduces serum phosphate and increases Klothoex-
pression [147]. Those two events should conse-
quently suppress cellular senescence [161].

Overall, cellular senescence activation is one
of mechanisms mediatin phosphotoxicity.
Thus, targeting cellular senescence is one of
strategies to reduce phosphotoxicity and treat
phosphate-associated diseases, which
complements the current therapy consisting of
restriction of dietary phosphate intake and admin-
istration of phosphate binders to enhance the effi-
cacy (Fig. 7.4).
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7.6 Conclusion

With aging, chronic non-communicable diseases
are strongly associated with shortened lifespan
and diminished life quality in senior population.
The detrimental effect of chronically excessive
phosphate intake (e.g. processed food) and/or
deficiency in phosphate excretion (e.g. CKD) on
aging and age-associated diseases draw more and
more attention of nephrologists, nutritionists, and
basic researchers. Phosphotoxicity has been
shown to induce oxidative stress, DNA damage,
chronic inflammation, disturbed mineral
hormones homeostasis, abnormal autophagy,
and cellular senescence.

Cellular senescence is evolutionarily
conserved across plant to animal kingdom as a
defense mechanism to respond to cellular insults
and to prevent the cells from necrosis. However
persistent and over active cellular senescence can
impair tissue regeneration and amplify tissue
damage through SASP. The discovery of phos-
phate effect on cellular senescence leads to
develop novel strategies to prevent or treat
phosphotoxicity and phosphate-associated
chronic diseases. In addition to the control
of phosphate, the successful development of
senolytics and inhibition of the SASP of
senescent cells called senostatics would render
possible to target senescent cells or senescence-
related downstream signal pathways for the treat-
ment of many age and phosphate-related diseases
that are approximately involved in every organ/
tissue/system in humans (Fig. 7.2).

Because phosphate-induced cellular senes-
cence is a chronic physiologic and pathophysio-
logic process driven by multiple signaling
pathways, better understanding of cellular senes-
cence in phosphotoxicity would open a novel
horizon to treat phosphate-associated diseases
by directly targeting downstream cellular senes-
cence which will be adjoined with effective con-
trol of serum phosphate to optimize the efficacy in
attenuating phosphotoxicity, extending life span
and improving health span (Fig. 7.4). Moreover,
every intervention aimed at improving the quan-
tity and quality of human life through targeting

phosphate-induced cellular senescence should be
thoroughly explored and validated clinically.
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Phosphate Toxicity and Epithelial
to Mesenchymal Transition 8
Eric Lewis, Faith Seltun, Mohammed S. Razzaque, and Ping He

Abstract

The underlying role of inadequate or excess
intake of phosphate is evident in disease states,
including metabolic, skeletal, cardiac, kidney
and various cancers. Elevated phosphate levels
can induce epithelial to mesenchymal transi-
tion (EMT) and cell death. EMT and
associated lethal, metastatic or fibrinogenic
responses are known to be underlying disease
processes in fibrotic diseases and various solid
tumors. Studies have shown EMT is regulated
by induction of different signaling pathways,
including TGF-β, RTK, SRC, Wnt and Notch
signal transduction. However, cross-talk
amongst these signaling pathways is less
understood. We have shown that elevated
phosphate levels enhanced EMT partially
through activating ERK1/2 pathway, resulting
in massive cell death. We thus proposed
excess phosphate-mediated lethal EMT as
one of the underlying mechanisms of
phosphate-induced cytotoxicity, which could
explain high phosphate-associated renal

fibrosis and cancer metastasis in preclinical
and clinical studies. This chapter provides the
overview of EMT with the highlights of its
regulation by various signaling pathways
induced by phosphate toxicity. We further
put lately reported lethal EMT in the context
of phosphate toxicity with the intent to explain
it to excessive phosphate-associated
pathologies.

Keywords
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8.1 Phosphate Toxicity

Phosphate (PO4) is one of the most abundant
nutrients in the body and is undeniably essential
for the survival of all living organisms. In vivo,
inorganic phosphate (Pi), in the formof dihydrogen
phosphate (H2PO4) and monohydrogen phosphate
(HPO4), is synthesized from organic PO4 metabo-
lism. Pi is involved in numerous essential
biological processes, including the synthesis of
DNA and RNA, the storage and transfer of energy
in the form of ATP, regulation of cell metabolism
and cell signaling via protein phosphorylation, and
maintenance of cell membrane integrity as
phospholipids [53]. Pi also plays a crucial role in
skeletogenesis by forming, developing, and
maintaining skeleton and dentin in vertebrates
[9]. In the body, sufficient phosphorus intake is
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essential formaintainingmusculoskeletal functions
and beyond. Insufficient intake of dietary phospho-
rus results in malnutrition, leading to a deficiency
in skeletal mineralization and subsequent develop-
ment of rickets. In contrast, excess Pi may have
harmful consequences by inducing pathological
calcification [25], oxidative stress secondary to
mitochondrial dysfunction [21], and dysregulated
signal transduction [34]. These consequences may
present as various disorders, including gingivitis
[28], dental decay [27], heart disease [10], impaired
fertility [64], diabetes [50], kidney disease [51],
premature aging [61], and cancer [7].

Recent studies have demonstrated the ability
of extracellular Pi to manipulate skeletal and
extraskeletal cells. In skeletal cells, elevated Pi
levels can alter osteoblast [5] and osteoclast [42]
differentiation, as well as vascular calcification
[25]. Extraskeletally, Pi has an essential role in
cell proliferation [66] and growth [11, 16]. Several
studies have provided evidence to suggest that
high levels of Pi may play a role in promoting
tumorigenesis by altering various metabolic
pathways. For instance, high levels of serum
phosphate have been found to positively correlate
with the development of lung, thyroid, pancreas,
and bone cancer in men, and esophageal,
non-melanoma skin, and lung cancer in women
[82]. In animal models, mice fed with high phos-
phate diets showed an increased risk of cancer
growth than those with low-phosphate diets
[7]. A human study found that high phosphate
intake in men resulted in not only an increased
overall risk of prostate cancer, but an increased
risk of advanced-stage or lethal prostate cancer
[81]. A possible explanation for this may be
due to the excessive expression and activity of
phosphate cotransporters on tumor cells and their
ability to store more inorganic phosphate in com-
parison to normal cells [46]. In fact, tumor cells of
cancer patients have been found to store nearly
double the amount of phosphorus seen in normal
cells [6, 23]. This excess intracellular phosphorus
leads to increased metabolic activity in tumor
cells, the induction of growth-promoting cell sig-
naling, chromosome instability, and create a
potential microenvironment for metastasis [7].

Studies have also shown the response of cells
to elevated cytotoxic levels of Pi. Mitochondrial
oxidative stress in endothelial cells resulted in
cell death, possibly by apoptosis and tissue dam-
age [21]. Experimental studies have highlighted
the role of Pi-induced endothelial injury as the
possible initial event in hyperphosphatemia-
associated diseases, including chronic kidney dis-
ease, cardiovascular disease, and various cancers.
Recent studies have convincingly shown excess
Pi-induced ER stress, epithelial-mesenchymal
transition (EMT), and cell death [34]. High
Pi stimulates Transforming growth factor-β
(TGF-β) signaling via the Raf/Mitogen-activated
protein kinase (MEK)/Extracellular signal-
regulated kinases (ERK) pathways by decreasing
E-Cadherin expression in HEK293 cells and
increased phosphorylated Smad2 and Snail in
both HEK293 and HeLa cells; the resulting
effects being EMT to lethal EMT. We believe
that lethal EMT exerts a pathologic role in phos-
phate toxicity-mediated tissue injuries and organ
damages. One of the goals of this chapter is to
explain how elevated Pi may induce different
pathways to initiate EMT and related cellular
pathologies.

8.2 EMT Overview

EMT is defined as the loss of epithelial cell polar-
ity and adhesion, gain of invasive and migratory
properties, and resulting phenotype conversion to
mesenchymal cells. The expression of N-cadherin
and vimentin (mesenchymal markers), and loss of
E-cadherin (epithelial markers) are the hallmarks
of EMT. Classification falls into 3 groups, which
is based upon the biological process it plays a role
in. Type 1 EMT includes embryogenesis and
gastrulation, while type 2 EMT is associated
with wound healing and fibrosis. Type 3 EMT is
involved with cancer cells invasiveness and
metastasis. Figure 8.1 demonstrates a few of the
pathways that induce EMT, including TGF-β,
Wnt/β-catenin, Notch, proto-oncogene c-Src
(Src) and Ras-Mitogen-activated Protein Kinase
(MAPK) [26]. These mechanisms then lead to the

74 E. Lewis et al.



synthesis of transcription factors, including zinc
finger proteins Snail 1 and 2 (Slug), basic helix-
loop-helix factors Zinc finger homeodomain
proteins 1 and 2 (ZEB1/2), and Twist 1, 2 and 3.
While EMT has been indicated as a normal pro-
cess occurring in embryonic differentiation of
cells and wound healing, aberrant stimulation of
EMT has been identified in metastasis of cancer,
as well as tissue fibrosis. The considerable cross-
talk that occurs between the different pathways
remains less explained. Thus, we will firstly
review the pathways involved, downstream
effects and major regulators of these pathways.

8.2.1 TGFb-Induced EMT

TGF-β plays roles in cell proliferation, differenti-
ation and apoptosis [35]. TGF-β has been
identified as one of the master regulators of
the EMT process [45, 73]. The activation of the
TGF-β pathway occurs through several different
proteases and integrins, as well as situational
activators such as reactive oxygen species or
pH-dependent environments. One of the resulting
downstream effects of TGF-β signaling is EMT.

TGF-β-mediated EMT is either a
Smad-dependent or a Smad-independent phenom-
enon [20, 26, 45].

8.2.1.1 Smad-Dependent EMT
Activation of TGF-β and subsequently TGF-β
type I receptor (TBRI) results in Smad2 and
Smad3 activation via the phosphorylation of ser-
ine residues on Smad. The activated Smad2/3
then forms a trimeric complex with Smad4,
which is translocated to the nucleus and binds
transcription factors [41, 85]. The transcription
of Snail1/2, and Twist1 proteins is then
upregulated, leading to the repression of epithelial
markers, such as E-cadherin, claudins and
occludin. Snail and Twist1 are also involved in
the activation of mesenchymal gene expressions
such as fibronectin, vitronectin and N-cadherin.
Activation of ZEB proteins occurs through an
alternative mechanism, resulting from the interac-
tion with Smad-3. However, the downstream
effects of ZEB1 and ZEB2 activation can repress
epithelial markers and the expression of mesen-
chymal markers [83]. TGF-β activated Smad was
also identified as an enhancer of the MAPK path-
way [3, 52] (Fig. 8.1). Specifically, the Smad2/

Fig. 8.1 Regulation of EMT
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3-smad4 complex induced by TGF-β upregulates
transcription of LEF-1, which can form a com-
plex with β-catenin, and allow the gene transcrip-
tion that promotes EMT [52]. The significance of
Smad-dependent, TGF-β induced EMT was
demonstrated in the study performed by Thacker
et al., in which cervical cancer cells were treated
with curcumin and Emodin. The treatment caused
the down regulation of TGF-β signaling via the
decreased expression of TGF-β receptor II,
Smad3 and Smad 4 and also counterbalanced
the tumorigenic effects of TGF- β via the induc-
tion of G2/M phase arrest of cell cycle [75].

8.2.1.2 Smad-Independent EMT
While Smad-dependent TGF-β signaling has
been identified as a central mechanism in EMT,
Smad-independent pathways have also been
shown to play a role in the genesis of EMT.
Studies have identified Smad-independent roles
in TGF-β-induced EMT for MAP kinases and
Phosphoinositide 3- kinase (PI3K)-Protein kinase
B (AKT) pathway, as well as other signaling
pathways [31, 41].

MAP kinases represent a family of proteins that
play a role in different aspects of cell signaling,
including gene expression, cell proliferation and
cell cycle regulation. Within this family, TGF-β
signals ERK, p38 MAPK and c-Jun N-terminal
kinases (JNK). ERK 1/2 proteins have been
identified as a potent activator of EMT. Stimula-
tion of the TBRI leads to the activation of Raf-Ras,
which then activates MEK and is followed by
MEK activation of ERK. The effects of activated
ERK leads to downregulation of E-cadherin,
resulting in a gain of motility and invasiveness.
Studies have shown that the ERK-mediated step is
important in TGF-β induced EMT [86]. Another
study looking at this relationship showed the inhi-
bition of MEK-ERK signaling activities
prevented the induction of TGF-β- mediated
EMT [8]. Together, these findings highlight the
importance of the MAPK-ERK pathways in the
evolvement of EMT.

JNK and p38 are modulated by TGF-β signal-
ing through a common mediator, TRAF 4/6. The
interaction of TRAF with TGF-βR1 leads to
TGF-β activated kinase 1 (TAK1) [79, 84]. The

downstream effects of p38 and JNK activation
signaling were associated with proliferation, dif-
ferentiation, and apoptosis. Thus, multiple studies
have focused on the role of activated p38 and
JNK in EMT. The role of activated JNK is linked
to increased cell invasion and motility of cells,
though its role in apoptosis is not yet conclusive.
Studies have proposed both pro-apoptotic and
pro-survival roles of JNK [79], which can be
determined by the duration of JNK activation.
Persistent JNK stimulation led to apoptosis [13],
while short-term JNK activation by growth
factors promotes cell survival and proliferation
[71]. Activated JNK signaling was also shown
to result in the stabilization of Twist1 and
enhancement of Smad-mediated effects
[20]. The downstream effects of p38 MAPK
have been identified in both downregulation of
E-cadherin and induction of EMT. The phosphor-
ylation of Smad proteins by p38 can
cause downregulation of E-cadherin. Conversely,
p38 repression of Snail1 and upregulation of
Twist1, was also reported. The study claimed
the role of p38 in maintaining the expression of
E-cadherin [48]. TAK1 is a necessary step regard-
ing the activity of the Smad pathway. Activated
JNK and p38, downstream of effects of TAK1,
are required for the activation of c-JUN and
Activating transcription factor 2 (ATF2). The
JNK-c-JUN was identified as a mediator of
TGF-β-induced Smad transcription, while
p38-ATF2 complex cooperates with Smads in
EMT [24]. The interactions of TGF-β1, MAPK,
and Smads promoted EMT in human malignant
keratinocyte cell lines, with ERK and p38
enhancing Smad 2/3 transcription [18]. However,
in a study on the role of Galectin-1 (Gal-1) in
human ovarian cancer cells, it was shown that
Gal-1 enhanced EMT through the activation of
the MAPK JNK/p38 pathway [89]. These
findings show cooperative and isolated signaling
mechanisms involvling TGF-β, Smads, and
MAPKs, and suggest that further studies are
needed to identify the molecular mechanisms of
EMT in various pathological states.

The role of PI3K/AKT has also been identified
as another key regulator of EMT, but the specifics
behind this pathway continue to be further
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investigated. The study showed PI3K-AKT was a
necessary pathway for EMT [3]. Further studies
looked at the specific role AKT plays in the
signaling process. Long-term activation of AKT
resulted in cells with enhanced motility and
decreased adhesion, features typical to EMT.
These features associated with activated Akt
have been linked to the downstream effects of
increased expression of Snail1 and repression of
E-cadherin [30]. It is thought that TGF-β signal-
ing activates the PI3K pathway by its own
receptors or indirectly through Epidermal growth
factor (EGF) and Platelet-derived growth factor
(PDGF) receptors [26]. Qian et al., found that
TGF-β1 stimulation of PI3K/AKT-induced phos-
phorylation of FOXO3a to be an underlying
mechanism of Bleomycin-induced pulmonary
fibrosis and potential therapeutic target [63].

8.2.2 Non-TGFb-Induced EMT
Pathways

While the role of TGF-β in EMT is well defined
and considered a major part, studies have shown
that TGF- β independent mechanisms can also
lead to EMT.

The Src family of proteins (non-receptor tyro-
sine kinase) serve as a regulating point of differ-
ent pathways. Specifically, an increase in Src
kinase activity has been shown to promote EMT
activity. The studies have highlighted such
possibilities by demonstrating that Src regulates
E-cadherin, and by increasing or suppressing Src
activity resulted in a corresponding induction or
suppression of EMT [55].

Wnt signaling is actively involved in
tumorigenesis. With a number of those
Wnt-mediated tumors displaying activated EMT
factors. Wnt acts on GSK-3β, which acts as an
inhibitor of β-catenin destruction complex. This
inhibition prevents degradation of β-catenin,
which accumulates and is translocated to the
nucleus. β-catenin then acts as transcriptional
inducer of EMT, increasing the expression of
Snail/Slug, Twist1/2, and ZEB1/2 [39]. The com-
bined treatment of curcumin and emodin showed
effects on the Wnt/β-catenin in cervical cancer,

HeLa cells; TGF-β activated the Wnt/β-catenin
pathway in HeLa cells but combination therapy
with curcumin and emodin downregulated Wnt
signaling via the inhibition of β-catenin. [75].

Notch signaling has been identified to play a
direct and/or indirect role in EMT signaling.
Notch protein acts as a paracrine substance,
regulating the actions of cells locally. The role
of Notch involves the downstream effects of
Notch Intracellular domain (NICD), which is
released by Notch receptor interaction with
Delta-like 1/3/4 (Dll) or Jagged 1/2 (JAG) inter-
action. NICD then binds C protein binding factor
1/Suppressor of Lag 1(CSL) and acts to regulate
the expression of proteins such as Nuclear factor
kappa-B (NF-kB), p21/27, AKT or the β-catenin
destruction complex [20, 80]. The binding of
JAG2 was also indicated as an indirect inducer
of EMT by inhibiting miRNAs. Of note, Notch
signaling also plays a role in TGF-β induced
EMT. Snail-Notch interaction was identified as a
β-catenin activator and E-cadherin repressor [80].

8.2.3 EMT and Diseases

The knowledge gained to this point has
implicated the pathological role of EMT in differ-
ent disease states. Studies conducted thus far have
looked explicitly at the role EMT plays in cancer
and fibrosis.

8.2.3.1 Cancer Metastasis
As mentioned, EMT has been found to have a
significant role in cancer development and metas-
tasis, which is predominantly driven by TGF-β
induced EMT. During the late stages of tumor
development, cancer cells become resistant to
TGF- β induced cytostasis and TGF- β subse-
quently functions as a tumor promoter by induc-
ing EMT [33]. Activation of EMT can result in
decreased cellular adhesion and tight junctions,
allowing for cancer cell dissemination, which is
pivotal to early metastasis [33]. Mouse models
have demonstrated that activation of EMT
through the TGF- β signaling pathway with
hyperactivity of the Raf/MAPK pathway results
in the invasion of cancer cells to distant organs
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[38]. The TGF- β pathway has been found to
induce metastasis in various cancers, including
breast, gastric, lung, and prostate [58]. Interest-
ingly, new evidence also suggests that EMT may
play a role in resistance against cancer therapy in
a process driven by EMT transcription factors
(EMT-TFs) [77]. In vitro and xenograft mouse
studies have been able to identify increased
expression of EMT-TFs on chemoresistant cells
[77]. For example, a study performed by Zhu
et al. was able to demonstrate a significant posi-
tive correlation between expression of TWIST1
(a helix-loophelix EMT-TF), and poor post-
operative, and post-chemotherapeutic survival in
colorectal cancer patients [88].

8.2.3.2 Fibrosis
One of the main functions of EMT includes
wound healing, or type II EMT. The physiologi-
cal role of EMT was indicated in the
re-epithelialization of cutaneous wounds by
kertinocytes and post-ovulation in ovarian surface
epithelium [1, 2]. Tissue is further repaired
through the generation of scar tissue, mostly via
myofibroblasts. Studies to this point have
identified EMT as one of the driving mechanisms
behind myofibroblastic activities [72]. However,
over activities of myofibroblasts results in patho-
logic tissue scarring or fibrosis through EMT and
subsequent accumulation of collagen proteins.
With that in mind, studies have further looked at
the potential association of EMT and fibrosis of
different organs. Studies have shown that TGF-β
induced loss of epithelial morphology in epicar-
dial cells [15]. EMT is also an important event in
the development of pulmonary fibrosis, as the
alterations of epithelial to mesenchymal pheno-
type in alveolar epithelial cells have been
documented in the genesis of pulmonary fibrosis
[43]. In a study looking at hepatic fibrosis,
TGF-β-dependent activation of Smad 2/3 was
indicated as the mechanism that mediated pheno-
type change in hepatocytes [40]. Numerous other
studies have also highlighted the role of EMT in
cardiac, pulmonary and hepatic fibrosis, as well

as renal fibrosis [12, 29, 32, 49, 70]. A partial-
EMT model was also identified as the driver of
keratinocyte phenotype switch and resulting
fibrotic skin lesions in scleroderma [59].

8.2.3.3 Therapeutics by Targeting EMT
Using the information known on EMT signaling
pathways, studies have been performed to find
potential therapeutic targets for EMT-associated
changes. One such study by Zhou et al. looked at
the effects of Thalidomide (THL) on EMT in
alveolar cells during pulmonary fibrosis. Their
results showed that THL decreased expression
of the mesenchymal phenotype by inhibiting sev-
eral signal transducers in TGF-β signaling
pathways, which included p38, JNK, ERK,
AKT, GSK3β and smads 2/3 [87]. The role of
EMT in cancer was indicated to induce not only
metastasis (as reviewed at Sect. 8.2.3.1), but also
aid in escape of immune response through immu-
nosuppression [44]. The role of Programmed
death-1 (PD-1) on EMT cells in non-small cell
lung cancer (NSCLC) was investigated in regards
to immune evasion, showing the use of AKT
pathway inhibitor (LY294002), ERK pathway
inhibitor (PD98059) and TAK1 pathway inhibitor
(5Z-7) could effectively inhibit the characteristic
phenotype expressed in EMT cells [47]. These
studies highlight the prospects of reducing EMT
by therapeutic manipulation of various signaling
pathways.

8.3 Lethal EMT

Studies have described the overexpression of
Snail/slug, zinc finger E-box-binding homeobox
(Zeb), and Twist1, as well as the decrease in
E-cadherin and regulation of β-catenin as major
factors in EMT. As shown by Padmanaban et al.
E-cadherin loss has been shown to result in
increased apoptosis of cells. Cells displaying
loss of E-cadherin exhibited nuclear localization
of Smad 2/3 [62]. This is consistent with other
findings indicating the importance of both TGF-β
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and E-cadherin in EMT process. Their study fur-
ther defined the relationship by showing
E-cadherin loss triggers TGF-β signaling depen-
dent ROS, that resulted in in apoptosis of the
cells. Recent studies have shown that TGF-β sig-
naling induced fibrosis and cell injury are partly
regulated through lethal EMT [17, 73]. Studies
have demonstrated the role of EMT in tumor
suppression by remodeling the transcription fac-
tor landscape and converting SOX4 into a pro-
moter of EMT-mediated cell death [17]. Another
study found a potential role of RREB1 in TGF-β
induced lethal EMT, by coordinated activation of
RAS and TGF-β signaling cascade [73]. Studies
have also shown KRAS mutation combined with
TGF-β stimulation had a 30-fold increase in
Snail1 and Zeb1 expression, decreased
E-cadherin, and increased organoid dissociation
and apoptosis.

8.4 High Pi-Mediated EMT

Our recent studies showed that abnormally high Pi
could markedly enhance EMT by up-regulating
the expression of Snail and Vimentin, and repres-
sion of E-Cadherin (Fig. 8.2) [34].

Pharmacologically (by the chemical inhibitor
of Pi transporters) or genetically (by siRNA
knockdown of Pi transporters) blocking cellular
Pi transport resulted in prevention of high
Pi-mediated EMT, indicating excess Pi’s primary
effect on the initiation and progression of EMT.
Interestingly, elevated Pi-induced EMT was not
predominantly mediated by TGF-β signaling but
partially regulated by ERK1/2 signaling
(Fig. 8.3). Elevated Pi also triggered massive

cell death via activating extrinsic and intrinsic
apoptotic pathways. Our cell-based studies have
also shown that high Pi-mediated lethal EMT was
partly mediated by reducing Snail mitigated
Pi-triggered apoptosis. This finding is based on
an acute high Pi treatment (24–48 h) model. In a
chronic high-Pi stress model, where cells are
exposed to moderately high levels (above
1–10 mM) of Pi for a longer duration (>3 days),
high Pi-mediated EMT may have differential
effects, such as increased cell mobility and fibro-
sis. This speculation is further echoed by high-Pi-
related cancer metastasis and renal fibrosis in
human and experiment studies.

It is believed that Pi-driven metastases could
be the consequence of an adaptation of cancer
cells to meet their phosphorus needs for rapid
growth [19]. A higher concentration of interstitial
Pi was detected in metastatic tumors compared to
the non-invasive ones [6], suggesting a require-
ment of elevated Pi for the rapid cell growth,
invasion and migration. Alpha-klotho functions
in pair with FGF23 and reduces renal reabsorp-
tion of phosphate [76]. Elevated phosphate levels
have been linked to decreased klotho expression
in mouse genetic studies [56, 65]. Of relevance,
klotho has been considered a tumor suppressor
with universally depressed in breast cancer, pan-
creatic cancer, ovarian cancer, lung cancer, colo-
rectal cancer, and melanoma [67]. In mice,
secreted klotho protein administration could sup-
press renal fibrosis and cancer metastasis by
inhibiting TGF-β, Wnt and IGF-1 signaling and
delaying EMT process [22]. The causal links
between Pi overload, hyperphosphatemia and
the progression of chronic kidney disease
(CKD) have been reported in human [60, 69, 78,

Fig. 8.2 High Pi (24 h
treatment) enhanced EMT
in HEK293 and HeLa cells
by Westen blot analysis
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90] and animal [37, 54, 57, 68] studies. Interstitial
fibrosis is the main morphological alteration that
eventually progresses to CKD. In vitro, elevated
Pi could induce myofibroblast activation, pro-
mote cell proliferation and augment the synthesis
of interstitial matrix protein, such as type I colla-
gen [74] and fibronectin [14]. As mentioned,
EMT is one of the causal events for fibrosis.
Hence, high Pi-related renal fibrosis is partly
mediated by the induction of EMT [90].

8.5 Open Questions and Future
Directions

Excess Pi-mediated lethal EMT is dispensable of
TGF-β signaling. Beyond the MAPK pathway, it
will be clinically rewarding to discover other
Pi-mediated EMT regulators by applying
proteomic or phosphoproteomic analysis.
Pi-mediated EMT may result in differential
effects, such as lethal, metastatic, or fibrogenic.
In vitro assays (such as invasion and migration
assays) and animal models (genetically or dietary-
induced high Pi) are desired to demonstrate these
Pi-related phenotypes of EMT. Finally, it will be
critical to determine the factors involved in
Pi-mediated EMT’s differential effects. High

Pi-induced changes in the microenvironment
may be one of the key driving factors.

8.6 Concluding Remarks

EMT plays essential roles in biological (organo-
genesis and wound healing) and pathological
(tumorigenesis and fibrogenesis) cellar and tissue
events. It can be regulated by canonical TGF-β
signaling and noncanonical pathways (such as
RTK, PI3K/AKT, Wnt, Notch signaling).
Recently, TGF-β induced EMT has shown to
have a higher potential of cell death, indicating a
novel function of EMT as a lethality mediator.
Dietary phosphate overload directly causes severe
cytotoxicity (cell stress and apoptosis), which is
partly linked to elevated Pi-mediated EMT. Fur-
ther insights into the molecular details of
Pi-medicated lethal EMT will assist us to under-
stand the pathology of Pi toxicity, and likely to
offer novel therapeutic targets for the clinical
management of phosphate toxicity-induced tissue
and organ damages.
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Phosphate and Endothelial Function:
How Sensing of Elevated Inorganic
Phosphate Concentration Generates
Signals in Endothelial Cells

9

Nima Abbasian, Alan Bevington, and Dylan Burger

Abstract

Present in all cells, inorganic phosphate (Pi) is
involved in regulating a wide range of funda-
mental cellular processes including energy
homeostasis; nucleotide, nucleic acid and
phospholipid metabolism; and signalling
through protein phosphorylation events. How-
ever, at excess concentrations, Pi is known to
exert adverse effects on cells, particularly on
endothelial cells. This review gives a brief
overview of the functional effects of elevated
extracellular Pi concentration on mammalian
cells and tissues in vitro and in vivo. We then
address the cardiovascular effects of elevated
extracellular Pi concentration in vitro and
in vivo, emphasising that effects have been

reported in vivo even within the top end of
normal range for plasma [Pi]. Cardiovascular
sites of action of Pi are then considered, with a
focus on the role of soluble Pi in endothelial
dysfunction. The regulation of intracellular Pi
concentration by Pi transporter proteins in
mammalian cells is described, followed by
consideration in detail of how changes in Pi
concentration are sensed in mammalian cells
and how these trigger functional effects in
endothelial cells.

Keywords

Phosphate · Microvesicles · Angiogenesis ·
Endothelial-mesenchymal transition ·
Signaling

9.1 Introduction

Comprising about 1% of an individual’s body
weight, phosphorus is one of the most abundant
minerals in the human body. Predominantly
found in conjunction with calcium (hydroxyapa-
tite), or in cells as organic phosphates in
carbohydrates, proteins, nucleic acids and lipids,
only a very small part (~0.1%) of phosphorus
present in extracellular fluids occurs in the form
of inorganic phosphate (Pi). Plasma Pi (compris-
ing dihydrogen orthophosphate H2PO4

� and
monohydrogen orthophosphate HPO4

2� in equi-
librium at a normal physiological pH) ranges
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between 0.8 and 1.5 mM, but this range can be
exceeded transiently following ingestion of a
phosphate enriched diet [1], or chronically under
certain pathological conditions such as chronic
kidney disease (CKD) [2]. It should also be
noted that other pathophysiological disorders,
such as hypoxia/ischemia [3] and chemotherapy
in cancer patients resulting in tumor lysis syn-
drome [4, 5], may lead to a large-scale Pi genera-
tion from cytosolic organophosphorus metabolites,
such as ATP and phosphocreatine, resulting in
localised and systemic hyperphosphatemia. Even
though Pi plays a pivotal role in all cells, in pro-
cesses as disparate as energy homeostasis; nucleo-
tide, nucleic acid and phospholipid biosynthesis
and signalling through protein phosphorylation
events; excess concentrations of extracellular Pi
are known to exert pathological effects on cells
including cells of the vasculature (both the endo-
thelial cells [1, 6–8] and the underlying smooth
muscle cells [9–11]) and can also disturb bone and
mineral metabolism in humans [12].

Commonly in CKD patients, hyperpho-
sphatemia drives soft-tissue calcification [9, 10,
13, 14], through insoluble calcium phosphate
deposition, osteogenic transformation in vascular
smooth muscle [9, 10, 13, 15] and increased
vascular stiffness [16]. This chapter will focus
principally on the endothelial effects of elevated
soluble extracellular Pi in the concentration
range ~1 mM to ~2.5 mM (i.e. from normal
human plasma Pi concentration to the elevated
concentrations that transiently follow ingestion
of a dietary Pi load or that may occur chronically
in disorders such as CKD). Interesting and impor-
tant effects also occur outside this range, but will
not be discussed here as they may be qualitatively
different – for example because of ATP depletion
as a consequence of severe Pi depletion
(<<1 mM Pi) or because of the substantial
complexing of ionised Ca2+ by Pi ions that occurs
at very high Pi concentrations >>2.5 mM [17].

A further reason for focussing here on the
extracellular Pi concentration range 1–2.5 mM is
that, in recent years, serum or plasma Pi
concentrations even within the top end of normal

range have been shown to be associated with poor
cardiovascular outcomes [18–23]. In a population-
based study consisting of 8953 participants with
normal kidney function, high serum Pi levels
greater than 1.3 mM were shown to be associated
with elevated low-grade albuminuria [19] which
per se increases the risk of CV events and mortal-
ity [24]. In another population-based cohort study
consisting of 13,340 subjects, higher serum Pi
levels were shown to be associated with increased
CV risk (i.e. carotid intima-media thickness
(cIMT)) independent of participants’ eGFR,
hypercholesterolemia, diabetes, age, sex, and
hypertension) [21]. Additionally, in a study on
patients with coronary disease but no record of
overt hyperphosphataemia, it has been shown
that higher Pi levels well within the normal range
are associated with greater all-cause mortality and
adverse cardiovascular outcomes [22]. Foley, el
al., 2009, demonstrated that there is a link between
higher serum Pi levels and increased coronary
atherosclerosis in a large population of young
adults with no concomitant kidney disease and
overt hyperphosphataemia [23]. Notably, there
may be sex differences in the relationship between
serum Pi and cardiovascular mortality with clear
associations in men but less consistent associations
in women [25, 26].

Taken together, these data imply that high
Pi levels within the normal range
(e.g. >1.3 < 1.5 mM) may nevertheless accelerate
the onset and development of CV morbidity in the
general population with or without kidney disease.
Indeed in 2012, Ellam and colleagues reviewed Pi
as a “new cholesterol” meaning that (by analogy
with LDL cholesterol), intervention to manage
Pi even at levels not regarded as particularly
high, may benefit the general population and pre-
vent development of atherosclerotic vascular
mortalities [18]. It has therefore been suggested
that modern diets containing large amounts of
canned products and prepared food which are
rich in Pi and/or preservatives containing Pi, may
be a suitable target for intervention to manage
serum Pi levels with possible vascular benefits
even in the general population [18].
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Harmful effects of Pi in vivo have been con-
firmed by specific manipulation of phosphate sta-
tus in experimental animals. Hyperphosphatemic
Klotho knockout mice demonstrated features of
premature aging and a reduced life span. Klotho
and NaPi-IIa double knockout mice (in which
deletion of NaPi-IIa transporters of the SLC34
gene family favoured Pi excretion), reversed
these pathological features. However, feeding
these double-knockout animals with high dietary
Pi supplements restored premature aging features,
indicating that premature aging in these animals is
predominantly a manifestation of Pi toxicity
[27]. Furthermore, Yamada, et al. demonstrated
that on feeding adenine-induced CKD rats with
high (1.2%) dietary Pi for two months (and
manifesting hyperphosphatemia; Table 2 in
[14]), serum and tissue levels of TNF-α were
significantly increased. In this study the apparent
Pi toxicity involved premature aging phenotypes,
vascular calcification, malnutrition, and mortality
without any effect on kidney function [14]. All of
the observed Pi-induced changes were blunted
after feeding CKD rats on the 1.2% phosphorus
diet with 6% lanthanum carbonate as a Pi
binder [14].

These emerging effects on CV risks of
higher serum Pi levels within the normal range
might be attributable to indirect cardiovascular
effects of phosphate-responsive hormones
(i.e. phosphatonins) rather than to direct action
by Pi on the cells of the cardiovascular system.
Such indirect endocrine effects of Pi may include
(but are not restricted to) inhibition of 1,25-
dihydroxyvitamin D synthesis [28] and increased
secretion of PTH [29] and FGF23 both of which
are considered as predictors of cardiovascular
mortality in populations with or without kidney
disease [18]. Nevertheless, there is also mounting
evidence of direct toxic effects of excess soluble
Pi on mammalian cells. These might include
impaired cell signalling, increased cell death,
impaired fertility, renal fibrosis, osteoblastic
transformation of smooth muscle cells, premature
aging, angiogenesis, carcinogenesis, tumour

progression, endothelial–mesenchymal transi-
tion, generation of procoagulant endothelial
microvesicles (MVs) and enhanced systemic
inflammation and malnutrition [6, 7, 10, 11, 16,
27, 30–35]. The implications of such effects for a
direct role of Pi in endothelial dysfunction are
therefore discussed in the next section. (The
more specific question of how a relatively modest
increase in extracellular Pi concentration could
generate a biologically significant intracellular
signal in endothelial cells is discussed later in
Sect. 9.5).

9.2 Pi and Endothelial Function –
What Pi Does to Endothelium
In Vitro and In Vivo

9.2.1 Effects on Vasodilation

Important early evidence of direct endothelial
effects of Pi came from work by Shuto et al.
who showed that ingestion of a high phosphate
diet impaired flow-mediated dilation (FMD) of
the brachial artery at 2 h after a meal [1]. Nishi
et al. also reported that excessive dietary phos-
phate intake can acutely (within 1–4 h) impair
endothelial function in healthy people as deter-
mined by decreased FMD [36]. Levac et al.
showed that an acute oral phosphate load resulted
in impaired FMD even in the absence of measur-
able changes to plasma phosphate levels [37]. A
possible mechanism for this effect was proposed
by Di Marco et al. who demonstrated that in
cultured human coronary artery endothelial
cells, exposure to high phosphate media directly
results in stiffened endothelial cells which could,
in turn, reduce mechanosensing and nitric oxide
generation [16]. Consistent with this, studies on
cultured human umbilical vein endothelial cells
(HUVECs) show inhibition of endothelial nitric
oxide synthase (eNOS) expression/activity in
response to Pi [8]. In addition to effects on
endothelium-dependent vasorelaxation, Six et al.
have also shown that a high phosphate diet
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increases phenylephrine-induced vasoconstric-
tion in mice [38]. Thus effects of Pi on vascular
function likely involve both endothelial cells and
vascular smooth muscle.

9.2.2 Oxidative Stress and Cell
Survival

Oxidative stress is a condition whereby the pro-
duction of reactive oxygen species (ROS)
exceeds antioxidant defenses [39]. A further
potentially important mechanism by which a
Pi-load could induce dysfunction in endothelial
cells is by triggering oxidative stress, resulting in
apoptosis. It has been reported that an extracellu-
lar Pi-load induces apoptosis in HUVECs [8] and
triggers mitochondrial oxidative stress and subse-
quently cellular apoptosis in the human endothe-
lial cell line EA.hy926 in vitro [7]. However,
work elsewhere using the same cell line failed to
detect these effects [6]. It has also been reported
that a high extracellular Pi concentration induces
autophagy in endothelial cells via the inhibition
of Akt/mTOR signalling, a process that the
authors suggested may serve as a protective
mechanism that shields endothelial cells from
high Pi-induced apoptosis [40]. A further distinct
response was reported by Olmos et al. who
demonstrated that a high extracellular Pi concen-
tration induces oxidative stress and cellular senes-
cence in endothelial cells via upregulation of
endothelin-1 (ET-1) [41]. Thus several
Pi-mediated effects have been described in endo-
thelial cells. The reason for discrepant, sometimes
conflicting results from different laboratories is
currently unknown. While some may arise from
differences in the origin of the endothelial cells
studied, this does not explain the difference
reported between [7] and [6], possibly indicating
technical differences. Technical variables that
may merit future investigation include the precise
timing of the addition of the Pi load to the culture
medium, which could affect precipitation of bio-
logically active factors such as calcium phosphate
nanocrystals [42]; and the presence or absence of

trace impurities in the added Pi load, for example
arsenate and arsenite which are structurally and
chemically similar to Pi and may promote oxida-
tive stress in endothelial cells [43]. These suggest
that there is a need in future studies to take such
variables into consideration to avoid results vari-
ation between laboratories.

9.2.3 Microvesicles

Membrane-derived microvesicles (MVs) are
sub-micron (<1 μm diameter) vesicles which are
shed from plasma membrane in response to apo-
ptosis or cellular activation (notably in platelets,
endothelial cells, and leukocytes) [6, 7]
(Reviewed in [44]). It has been demonstrated
in vitro that an extracellular Pi-load consistently
leads to liberation of endothelial MVs in human
coronary artery endothelial cells [16], in human
EA.hy926 cells [6] and in HUVECs (Supplemen-
tal data in [6]). This has also recently been
demonstrated in response to hyperphosphatemia
in the rat partial nephrectomy model of CKD
in vivo [35]. It is worth noting that, once released
from endothelial cells, MVs may exert effects
elsewhere in the vasculature as they are potently
procoagulant [6], and carry miRNA cargo [45],
capable of delivering miRNAs to other cells,
including feedback effects on the endothelium
[46–48]. This Pi-induced release of MVs may
partly explain the high concentration of
pro-coagulant endothelial MVs reported in circu-
lation in hyperphosphatemic CKD patients in vivo
[49]. Similarly this has shown that MVs induce
reactive oxygen species production and cell cycle
arrest in cultured endothelial cells and this may
contribute to Pi-induced effects on oxidative
stress and senescence [50]. Shedding of MVs in
response to Pi may also be sufficient to deplete
the cell-surface expression of biologically impor-
tant endothelial proteins. In this regard, Di Marco
et al. showed in human coronary artery endothe-
lial cells [16] that a higher Pi milieu induces a
decrease in cellular Annexin II protein level
which these authors attributed to shedding of
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Annexin II in endothelial MVs rather than
reduced synthesis or increased degradation of
the Annexin II protein within the cells.

9.2.4 Angiogenesis

New blood vessel development (angiogenesis)
is a complex and highly regulated process
which involves the proliferation, migration, and
re-modelling of endothelial cells from
pre-existing blood vessels. Pro-angiogenic genes
such as forkhead box protein C2 (FOXC2),
osteopontin, and VEGF-α have been shown to be
influenced by an elevated Pi concentration [9, 10,
13, 14]. However, the precise effect of Pi is depen-
dent upon the origin of the endothelial cells that are
being studied. Even though an increase in extra-
cellular Pi concentration has been reported to pro-
mote the angiogenic potential of cancer cells
through a mechanism requiring FOXC2 and
osteopontin (OPN, a secreted cytokine like factor)
[51], hyperphosphataemia has also been reported
to impair endothelial cells’ angiogenic compe-
tence by inducing alteration in the structure and
functionality of endothelial cells and thus
contributing to endothelial dysfunction [16]. It
should be noted that the effect of higher extracel-
lular Pi in promoting the angiogenic potential of
cancer cells reported by Lin and colleagues [51]
differs from the reported Pi-induced impairment of
endothelial cells’ angiogenic potency [16]. In [51]
it was the conditioned medium from Pi-loaded
cancer cells that promoted angiogenic markers
in HUVECs: however in [16] the reported effect
of Pi on impairment of angiogenetic potency
(cell migration and tube formation) was the
consequence of direct effect of Pi-loaded medium
on human coronary artery endothelial cells
(HCAECs) and EA.hy926 human endothelial
cells. It has been suggested that the down-
regulation of Annexin II that occurs under these
conditions (as described in Sect. 9.2.3 above)
is an important contributor to this angiogenic
impairment in view of Annexin II’s angiogenesis-
promoting effects [16].

9.2.5 Endothelial-Mesenchymal
Transition

Endothelial–mesenchymal transition (EndoMT)
[52, 53] is a biological mechanism involving
endothelial cell transformation into mesenchy-
mal cells in which endothelial cells lose their
specific morphology and markers and obtain
myofibroblast-like features [52]. EndoMT is dis-
tinct from epithelial-mesenchymal transition
which is a fundamental part of metazoan embryo-
genesis and characterises the structural develop-
ment of organs [54]. EndoMT has been shown to
be associated with the loss of common endothe-
lial cell antigenic markers such as CD31, CD144,
and von Willebrand factor (vWF) and resulting
instead in acquisition of the expression of mesen-
chymal marker proteins for example smooth mus-
cle actin (α-SMA), vimentin, fibronectin,
calponin and fibroblast-specific protein-1 (FSP1)
[52, 53]. A wide range of signalling pathways
have been associated with the initiation and pro-
gression of EndoMT during both development
and disease conditions. Transforming growth fac-
tor β (TGF-β) signalling is a potent inducer of
EndoMT [55]. The activation of TGF-β signalling
results in EndoMT by inducing accumulation of
nuclear transcription factor complexes (SMADs)
that induce the expression of the mesenchymal
transcription factors (e.g. Snail, Twist, and Slug)
which initiate EndoMT [55, 56]. Whether the
TGF-β-induced EndoMT can be directly affected
by intracellular rises in Pi in endothelial cells
remains unclear. Such interaction between TGF-
β and Pi merits further investigation however in
view of the induction of EndoMT by Pi discussed
below, and reports that TGF-β increases expres-
sion of SLC20A1 (GLVR1) Pi transporters in
chondrogenic ATDC5 cells [57].

A chronic Pi load applied to coronary endothe-
lial cells has been reported to induce EndoMT
even in the absence of added TGF-β [53]. Tan
and colleagues reported that applying an elevated
extracellular Pi concentration results in an
increased Pi influx which results in phosphoryla-
tion and activation of the DNA methyltransferase
(DNMT1), which is recruited to the RAS protein
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activator like 1 (RASAL1) promoter by histone
deacetylase 2 (HDAC2) and hence induces
RASAL1 promoter CpG island hypermethylation
which has been implicated in pathological
EndoMT in cardiac pathologies such as Calcific
Aortic Valve Disease and cardiac fibrosis
[53, 58]. However, such promotion of EndoMT
cannot be assumed to occur in all endothelial
cells. Wang, et al. demonstrated that in retinal
microvascular endothelial cells autophagy can
induce a reduction in Smad3 phosphorylation
and prevent its association with Smad4 to be
translocated to the nucleus and in this way
inhibits the transcription of specific genes such
as snail (the master regulator of EndoMT), slug
and twist [59]. As discussed in Sect. 9.2.2 above,
a higher extracellular Pi concentration can inhibit
Akt/mTOR signalling in endothelial cells and
subsequently induces protective autophagy in
the cells [40]. It remains to be determined whether
the direct effect of Pi on the induction of EndoMT
or the indirect suppressive effect through the
induction of autophagy dominates under these
conditions.

9.3 How Pi Concentration Is
Regulated in Mammalian Cells

Pi is a major intracellular anion in mammalian
cells. The negative resting membrane potential
inside the cells tends to repel this negatively
charged anion from the cytosol into extracellular
fluid. To overcome this tendency, and therefore
maintain a cytosolic Pi concentration of the order
of millimolar inside the cells, mammalian cells
express active Pi transporters in their plasma
membrane which accumulate Pi anions in the
cytosol against the electrical gradient of the mem-
brane potential [60]. In humans, transporter
proteins (solute carriers, SLCs) are encoded by
genes which are classified in 65 SLC gene families
[61]. Of these, three gene families – SLC20,
SLC34 (and possibly SLC17) encode active Pi
transporters (i.e. “pumps”) that are expressed in
the plasma membrane and pump Pi into the cyto-
sol. These Na+-dependent transporters perform
secondary active co-transport of Pi anions and

Na+ into the cell, thus using the electrochemical
gradient of Na+ that exists across the plasmamem-
brane to drive Pi into the cell. Besides these
plasma membrane Na+-dependent Pi transporters,
there are other (non – Na+-dependent) Pi
transporters that are expressed in intracellular
compartments, for instance in mitochondria
(where Pi transport is coupled to H+ and
dicarboxylate ions) and the endoplasmic reticu-
lum (where transport is coupled to Ca2+-ATPase)
[60, 62, 63]. However, the role of these intracellu-
lar Pi transporters in the regulation of intracellular
Pi concentration is less clear.

Even though the influx of Pi through active
Na+-linked Pi transporters into mammalian cells
clearly plays a role in the regulation of the intra-
cellular Pi concentration, it is not obvious at first
sight how changes in the influx of Pi through
these transporters could alter the intracellular Pi
concentration (and hence exert functional effects
on the cell) when the extracellular Pi concentra-
tion is varied in the range 1–2.5 mM as discussed
in Sects. 9.1 and 9.2 above. An apparent problem
is that these transporters, for example the ubiqui-
tously expressed transporters of the SLC20 gene
family (Pit1/SLC20A1 and Pit2/SLC20A2), have
a transport Michaelis constant (KM) for Pi which
is << 1 mM i.e. the transporters are saturated with
Pi at physiological extracellular Pi concentration,
and are operating near their VMAX in the Pi con-
centration range 1–2.5 mM. It might be expected
therefore that the intracellular Pi concentration
would be unaffected by raising the extracellular
concentration from 1 mM to 2.5 mM. However,
mathematical modelling of intracellular Pi con-
centration [63] suggests that, at steady-state, the
response of the intracellular Pi concentration to
the extracellular concentration could in principle
depend upon a combination of influx of Pi
through active Na+-linked symporters balanced
by efflux of Pi through a passive “back-leak”
transporter. This “pump-leak” model is shown
schematically in Fig. 9.1. According to this
model, at concentrations of extracellular Pi
> > the KM of the influx transporter for Pi, the
behaviour of the corresponding steady-state intra-
cellular Pi concentration would depend on the
relative magnitude of the KM for Pi on the influx
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transporter and the KM for Pi on the “back-leak”
transporter. If the KM of the influx transporters
performing Na+-dependent active pumping of Pi
into the cell is significantly less than the KM of the
“leak” transporters, then the intracellular Pi con-
centration should show little change when extra-
cellular Pi is increased. In contrast, if the KM of
the “pump” is similar to that of the “leak”
transporters, an increase in extracellular Pi con-
centration over the range ~1–2.5 mM is predicted
to lead to a commensurate increase in the intra-
cellular concentration [63].

The relatively recent identification of a mem-
ber of the SLC53 gene family (SLC-53A1 or
XPR1), initially identified as the cell surface
receptor for xenotropic and polytropic murine
leukemia retrovirus (X/P-MLV) [64], as an efflux
transporter [65] has now provided a plausible
molecular basis for the “pump-leak” model
(Fig. 9.1). Furthermore, the discovery of the
responsiveness of the efflux transport activity of
XPR1 to ambient Pi concentration sensed via
InsP6 kinase/InsP8 signalling [66] (as described
in Sect. 9.4 below) has revealed a further level of

molecular control over the regulation of intracel-
lular Pi concentration.

9.4 How Changes in Pi
Concentration Are Sensed
in Mammalian Cells

Even though mechanisms for the sensing of Pi by
bacteria [67], yeast [68, 69] and plants [70] have
been described in detail, corresponding
explanations for how changes in Pi availability
are sensed in mammalian cells have only recently
emerged. Bon and colleagues have demonstrated
a direct sensing mechanism for extracellular Pi
concentration by SLC20 transporters through
transport-independent signalling to ERK
[71]. Binding of extracellular Pi to SLC20
transporters in the plasma membrane (i.e. a
heterodimer of PiT-1/SLC20A1 and PiT-2/
SLC20A2) in murine pre-osteoblastic MC3T3-
E1 cells stimulated Pi-dependent ERK1/2 phos-
phorylation and subsequently resulted in
up-regulation of gene expression for the mineral-
ization inhibitors matrix Gla protein and OPN. It
is worth noting that this effect of Pi occurred in
the concentration range 1–10 mM even though
(as pointed out in Sect. 9.3) the transport KM of
these transporters for Pi is <<1 mM. The
transport-independence of this signalling effect
through PiT1/PiT2 hetero-dimers apparently
overcomes this KM problem through binding of
Pi to putative “Pi-sensing” sites in the hetero-
dimer which are distinct from the amino acid
residues responsible for Pi transport.

In a more recent study, Wilson, et al. reported
intracellular sensing of ambient Pi concentration
by inositol hexakisphosphate kinase (IP6K) sig-
nalling to XPR1 [66]. Using HCT116 cells
(a human colon cancer cell line), which expresses
PiT1/SLC20A1 but no other inwardly directed
Pi-transporters, the authors demonstrated that
deletion of IP6K1/2 (proposed to be involved in
regulation of mammalian intracellular Pi concen-
tration) results in an increase in free measurable
intracellular Pi through a regulatory effect on the
plasma membrane Pi exporter (XPR1). It is inter-
esting to note that this novel and important role of

Fig. 9.1 Schematic representation of a “Pump-Leak”
theoretical model for the regulation of intracellular Pi
concentration in cells [63]. At steady state, active Na+-
linked influx of Pi into the cell through transporters (such
as those of the SLC20 and SLC34 families) is balanced by
passive efflux of Pi through a “leak” transporter such
as XPR1
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IP6K1/2 in Pi-sensing in HCT116 cells may be
distinct from the biological role of IP6 kinases in
other cell types. IP6K1 also regulates
polyphosphate (PolyP) levels in eukaryotic cells
[72], and it has recently been shown that high
extracellular Pi concentration in vitro increases
platelet PolyP content in a Pi-transport and IP6K
dependent manner [73]. In contrast the HCT116
cells that show the IP6K1/2-dependent Pi-sensing
and regulatory effect possesses no detectable
PolyP [66].

While the two mechanisms above are clearly
important in sensing Pi in mammalian cells, they
have not yet been investigated in endothelial
cells. A further Pi sensing mechanism has how-
ever been demonstrated in EA.hy926 human
endothelial cells in which it was shown that rais-
ing extracellular Pi concentration can increase the
intracellular Pi concentration by transport through
active Na+-linked PiT1/SLC20A1 transporters,
thus allowing Pi to inhibit intracellular phospho-
protein phosphatases and subsequently induce a
global increase in both protein Tyr and protein
Ser/Thr phosphorylation [6, 74, 75].

9.5 Amplification of Pi Signals
in Endothelial Cells

A number of phosphoprotein phosphatases
expressed in mammalian cells are directly
inhibited by physiological Pi concentrations
[6, 74–78], potentially acting as sensors of intra-
cellular Pi concentration which are directly capa-
ble of affecting intracellular signalling through
protein phosphorylation. There have been no
recent studies of the enzymology of this process.
However, older literature (much of it pre-dating
detailed molecular characterisation of the
enzymes and the genes that encode them),
contains reports of inhibition of protein tyrosine
phosphatases and protein serine/threonine
phosphatases by physiologically relevant Pi
concentrations in vitro [6, 74, 75, 77]. By itself
this is of limited value in explaining effects of Pi
on endothelium, especially the observation (noted
in Sect. 9.1) that even modest increases in plasma
Pi concentration in vivo are associated with

cardiovascular effects. This implies the existence
not just of a Pi sensor but also some form of
amplification. Such a mechanism has now been
described in EA.hy926 human endothelial cells
[74]. The phosphoprotein phosphatase PP2A, that
accounts for the majority of protein Ser/Thr phos-
phatase activity in eukaryotic cells [79], is
directly inhibited by Pi acting on the enzyme
protein [74]. A substrate for PP2A in these cells
is the phosphorylated (activated) form of the reg-
ulatory nonreceptor tyrosine kinase Src [80]
(Fig. 9.2). Dephosphorylation of Src’s carboxy-
terminal Tyr-530 and autophosphorylation on
Tyr-419 activates the Src kinase [81]. Conse-
quently inhibition of PP2A by Pi increases
phosphoactivation of Src. Src can then further
inhibit PP2A by inhibitory phosphorylation of
the PP2A-C catalytic sub-unit of the phosphatase
[74]. Together the mutual effects of PP2A-C and
Src on one another may allow the initial direct
inhibitory effect of Pi ions on PP2A-C to be
amplified (Fig. 9.2).

9.6 How Pi Signals Trigger
Functional Effects
in Endothelial Cells

In principle the Pi/PP2A/Src regulatory cycle
described above has multiple targets in the control
of cell signalling: PP2A is a ubiquitously
expressed phosphatase which is involved in the
regulation of a wide range of signals and
responses, including neural development; Akt,
NF-kB and MAPK signalling; apoptosis, and
cell cycle progression [79], whereas Src plays a
crucial role in cellular processes as diverse as cell
proliferation, cell survival and drug resistance
[80, 82, 83] and angiogenesis [84]. In EA.hy926
human endothelial cells a potentially important
target of this Pi/PP2A/Src cycle is death-
associated protein kinase 1 (DAPK-1) [74]
(Fig. 9.2). Wang, el al. demonstrated that the
activation of Src results in inhibitory phosphory-
lation of DAPK-1 [85]. DAPK-1 is a 160 kDa,
serine/threonine protein kinase that is involved in
a number of cellular processes including tumor
suppressive function, apoptosis and autophagy

92 N. Abbasian et al.



[85, 86]. The kinase activity of this enzyme has
been previously shown to be reduced by phos-
phorylation [85, 87], and subsequent proteasomal
degradation of the phosphorylated DAPK-1 pro-
tein reduces the kinase activity of this enzyme
even further. Houle, et al. reported that DAPK-1
phosphorylates cytoskeletal regulatory protein
Tropomyosin [88], and this phosphorylation
has been shown to protect the integrity of the
cell membrane by inducing actin-stress fibre
formation. Conversely, hypophosphorylation of -
Tropomyosin-3 (TPM-3) (which has been shown
to be triggered by Pi-induced PP2A inhibition
[74]), results in the loss of actin stress fibre for-
mation and an associated increase in membrane
blebbing and MV generation [74] (Fig. 9.2). Thus
in endothelial cells Pi-induced signalling through
PP2A/Src and DAPK-1 culminates in

cytoskeleton disruption and generation of
pro-coagulant microvesicle (MVs) as outlined in
Sect. 9.2.3 above.

9.7 Directions for Future Work

In addition to Pi signalling through the PP2A/Src/
DAPK-1/TPM-3 pathway described above, it will
be of interest in future work to investigate
whether the Pi/PP2A/Src cycle plays any role in
the other functional effects of Pi loading that were
described above in Sect. 9.2, for example the
Pi-induced inhibition of eNOS in Sect. 9.2.1.
Previous work [1] demonstrated that this occurs
as a result of inhibitory phosphorylation at
Thr-497 of eNOS via protein kinase C (PKC)
(Fig. 9.2). PP2A is a key determinant of eNOS

Fig. 9.2 Pi-sensing mechanisms and proposed inter-
play between different pathways which elicit biological
responses to elevated extracellular Pi concentration in
mammalian cells. The involvement of the pathways,

molecules and effector enzymes shown here is based on
data presented in [1, 53, 66, 71, 74]. Abbreviations:
DNMT1, DNA methyltransferase; HDAC2, histone
deacetylase 2; RASAL1, RAS protein activator like 1
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dephosphorylation and enzyme activity [89],
suggesting that a possible contributor to inhibi-
tory phosphorylation of eNOS induced by Pi may
be the inhibition by Pi of PP2A. However, a
possible countervailing effect may arise from the
accompanying Src activation induced by Pi [74]
because (at least in EA.hy926 endothelial cells
and HUVECs [90]) Src activation results in
eNOS activation via PI3K/Akt.

Further work is also needed to clarify whether
Pi affects protein phosphorylation simply by
inhibiting phosphoprotein phosphatases. Firstly,
even for a given phosphatase, this may vary
depending on the phosphoprotein substrate.
Even though the activity of two phosphoprotein
phosphatases (PPP-I and PPP-II, EC 3.1.3.16)
from rabbit liver has been shown to be inhibited
by Pi and by pyrophosphate (PPi) while using
casein as a substrate, Pi was found to activate
these enzymes when a histone was the substrate
[91]. Furthermore, in addition to rapid direct
inhibitory effects of Pi on phosphoprotein
phosphatases, countervailing compensatory
effects may also occur. In EA.hy926 cells
prolonged Pi-loading led to compensatory
upregulation of low molecular weight protein
tyrosine phosphatase (LMW-PTP)) [6].

More generally, as at least three distinct Pi
sensing mechanisms have now been described in
different cell types (i.e. SLC20/PiT heterodimer
signalling to ERK; IP6K signalling to XPR1; and
PP2A/Src signalling (Fig. 9.2), an important pri-
ority for future work is to determine whether all
3 mechanisms are expressed together in endothe-
lial cells and, if so, how these three pathways
interact. For example, in addition to activating
Akt as discussed above, in cerebral ischemia
[92] Src also activates ERK, through decreasing
PP2A activity, suggesting potential interaction
between Pi signalling through the SLC20/PiT
heterodimer and PP2A/Src pathways.

Finally, even though it has been shown that
high serum Pi (or a Pi-dependent hormonal
response derived from it) is sufficient to induce
a marked increase in circulating pro-coagulant
MVs in vivo [35] (indicative of endothelium dys-
function), it must be acknowledged that much of
the knowledge related to Pi-mediated effects on

the endothelium stems from in vitro monoculture
systems. However, we know that monoculture
does not reflect the in vivo condition. In particu-
lar, we know that adjacent vascular smooth mus-
cle cells are also responsive to Pi and could
indirectly influence endothelial cells through
paracrine mechanisms (and vice-versa). In vitro
co-culture systems could aid in better understand-
ing the interplay between smooth muscle cells
and the endothelium in response to Pi.

9.8 Conclusions

The potent biological effects described in this
review underline both the importance of Pi in
normal cell function and in the pathological
responses of endothelial cells to hyperpho-
sphatemia. In particular, because of the almost
universal role of protein phosphorylation signals
in regulating cell function, the recent evidence
that elevation of the intracellular Pi concentration
profoundly affects protein phosphorylation, at
least partly through its direct action on phospho-
protein phosphatases, has far-reaching
implications both in endothelial cells and more
widely throughout human cell biology.
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Abstract

The Recommended Dietary Allowance (RDA)
for phosphate in the U.S. is around 700 mg/
day for adults. The majority of healthy adults
consume almost double the amount of phos-
phate than the RDA. Lack of awareness, and
easy access to phosphate-rich, inexpensive
processed food may lead to dietary phosphate
overload with adverse health effects, including
cardiovascular diseases, kidney diseases and
tumor formation. Nutritional education and
better guidelines for reporting phosphate con-
tent on ingredient labels are necessary, so that
consumers are able to make more informed
choices about their diets and minimize phos-
phate consumption. Without regulatory
measures, dietary phosphate toxicity is rapidly
becoming a global health concern, and likely
to put enormous physical and financial burden
to the society.

Keywords

RDA · Adequate Intake · Processed food ·
CKD · Phosphate additives

10.1 Introduction

Phosphorus is a mineral found almost exclusively
in the phosphorus-containing compound phos-
phate (PO4). Throughout this chapter, the term
phosphate will be used most typically to describe
this element [9]. Chronic kidney disease (CKD)
is increasingly recognized as a serious public
health issue with the incidence rising worldwide
[2, 3, 27]. CKD and declining renal function are
associated with impaired phosphate and calcium
homeostasis, hormonal imbalance and progres-
sive pathology of the cardiovascular and skeletal
systems [10]. Hyperphosphatemia is linked to
vascular calcification in CKD and an independent
risk factor for cardiovascular mortality in hemo-
dialysis patients [18]. Furthermore, serum phos-
phate, even when within the normal range, has
been associated with cardiovascular events and
all-cause mortality, both in healthy subjects and
in patients with CKD [8]. In these contexts,
restriction of dietary phosphate is an important
intervention in the prevention of CKD and car-
diovascular diseases. However, estimation of the
dietary intake of phosphate is complicated by
inaccuracies in nutrient database due to varied
use of phosphate-containing food additives
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[35]. In recent years, the amount of phosphate
intake has increased worldwide, especially in
countries with high consumption of processed
food [9]. Unlike sodium and other food
components, phosphate is usually not listed as
an ingredient, making it difficult for patients to
avoid phosphate-rich food and drinks [7]. This
chapter will focus on common dietary sources of
natural and artificial phosphate in food within the
U.S. and Japan.

10.2 Recommended Dietary
Allowance (RDA) in USA

In the United States, the average person consumes
far more phosphate than the Recommended Die-
tary Allowance (RDA) (700 mg/d for adult),
although very few individuals exceed the tolera-
ble upper limit (4000 mg/d for adults <70 year
old) [34]. Moore et al. evaluated the association
of dietary phosphate intake and mortality by
using a nationally representative sample of
healthy participants in the NHANES III
[20]. The estimates of usual phosphate intake
are based on information from 24-h recall data,
using a validated method, with second-day recalls
from a subset of the surveyed population to assess
intra-individual variation [20]. Twenty-four-hour
recall data from the recently completed NHANES
(2009–2010) were used to show the percentage of
phosphate in various food categories. Milk and
dairy had the highest percentages, followed by
meat and poultry. The average phosphorus intake
from both foods and supplements was 1,301
mg/24 hours for women and 1,744 mg/24 hours
for men, as estimated by analyzing 2013–2014
NHANES data [20]. However, several lines of
evidence suggest greater intakes of phosphate
than those shown in the NHANES [12]. The evi-
dence of underestimation came from comparisons
of direct chemical analyses of foods with the
available estimates from the nutrient database
used in the NHANES [23].

10.3 Adequate Intake (AI) in Japan

In Japan, the Recommended Dietary Allowances
(RDA) was first established in 1970, after which a
revision was made every 5 years. The concept of
Dietary Reference Intakes (DRIs) was introduced
in the sixth revision of RDA (2000–2004). DRIs
were established on a scientific basis, utilizing
domestic and foreign research investigations and
data that are available [32]. The Adequate Intake
(AI) is a quantity that is sufficient to maintain a
satisfactory nutritional status of a particular gen-
der and age group. In general, the AI is deter-
mined based on epidemiological studies that
estimate nutritional intake of healthy individuals.
UL means tolerable upper intake level: AI of
phosphate intake in adult male is 1000 mg/day,
UL is 3000 mg/day. The AI values are higher than
the RDA in the EU and US (~700 mg/day). These
values are based on the report of the National
Nutritional Survey in Japan (NNSJ), which is
initiated to obtain factual information on the
nutritional health, and actual food consumption
and food requirements in Japan [39]. Food intake
survey by weighed food records in three consec-
utive representative days were conducted by spe-
cially trained dietary interviewers. NNSJ showed
that phosphate intake is 1000 ~1100mg /day in
2010 [21]. However, these intake values are not
estimated dietary phosphate intake obtained from
nutrient content database with direct chemical
analyses.

10.4 Common
Phosphate-Containing Food

The American and Japanese diet’s phosphate con-
tent have been increasing due to the greater con-
sumption of food processed with phosphate
additives [4, 37, 38]. Two main sources of dietary
phosphate are organic, which includes animal and
vegetarian proteins, and inorganic, which are
mainly food additives. In general, foods high in
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protein like meats, milk, eggs, and cereals are
naturally high in phosphate and have represented
the main source of dietary phosphate. In natural
foods, phosphate is present both as inorganic ions
and as a constituent of phosphoproteins, and also
as membrane phospholipids, adenosine triphos-
phate, adenosine diphosphate, DNA, and RNA
[14]. Protein-rich foods, such as meat, contain
natural phosphate compounds (nucleotides,
phospholipids, etc), along with naturally occur-
ring orthophosphate. Besides the natural dietary
phosphate present in food, phosphate is contained
in functional food additives. Phosphate-
containing additives work by sequestration of
meat ions and dissociation of the actomyosin
complex, bringing about an increase in water-
holding capacity [1]. The direct identification of
added phosphate in meat products is difficult. It
represents the so-called hidden phosphate.

In contrast, plant phosphate is included in
beans, cereals and nuts in the form of phytic
acid or phytate [19]. In humans, the bioavailabil-
ity of phosphate derived from plant foods is rela-
tively low (less than 50%) [5]. Therefore, if
phosphate content is “apparently” high in plants,
the amount of phosphate actually absorbed from
the intestinal tract may be less in vegetable
proteins compared to animal proteins [19]. In
addition, processing food by cooking, soaking,
or fermenting is known to hydrolyze phytic
acid. Therefore, a large amount of phosphate is
likely to be bioavailable from cooked or
fermented full-grain or legume foods than from
raw or unprocessed foods [5].

Meat and milk products are important sources
of dietary phosphate and protein. The use of
phosphate additives is common both in processed
cheese and meat products. Recently, Karp et al.
reported that measuring in vitro digestible phos-
phate content of foods may reflect the absorbabil-
ity of phosphate [15, 16] Measurements of
in vitro digestible phosphate content of foods
support that there is better phosphate absorbabil-
ity in foods of animal origin than of plant origin
[15, 16]. When healthy people ingested the same
amount of phosphate from plant foods or animal
foods, urinary excretion of phosphate was higher
in the case of ingestion of meat [19]. Moe et al.

demonstrated that meals having equivalent
amounts of phosphate but of different sources
(meats compared with grains) resulted in serum
phosphate differences [19]. These data suggest
the importance of bioaccessible phosphate con-
tent, not just total phosphate content in foods.

10.5 Inorganic Phosphate Additives

Inorganic Phosphate is the main component of
most additives and is usually in the form of phos-
phoric acid, phosphates, or polyphosphates in
processed foods. The food industry uses them in
food processing for a variety of reasons (i.e, to
extend conservation, enhance color, improve fla-
vor, and retain moisture). No limit is given in
regards to the amount of phosphate-containing
preservatives. Currently, only a technological
limit of 5 g/kg of food exists [7]. In the United
States, the dietary phosphate burden from
phosphate-containing preservatives has increased
dramatically from an average of 470 mg/d in the
1990s to more than 1000 mg/d for a typical
American diet in recent years [12]. In general,
foods high in protein like meats, milk, eggs, and
cereals are naturally high in inorganic phosphate
and traditionally have represented the main
source of dietary inorganic phosphate. However,
this is changing as inorganic phosphate is cur-
rently being added to a large and increasing num-
ber of processed foods [36]. Preservatives are
largely used in meat products (eg, chicken
nuggets and hotdogs), processed cheese spreads,
pasta, cooked and frozen dishes, puddings,
sauces, bakery products, partially cooked and fro-
zen foods, and soft drinks. As a result, depending
on the food choices, additives may increase the
inorganic phosphate intake by as much as 1.0 g/
day and up to 100% of inorganic phosphate in
processed foods may be absorbed [5].

The absorbability of phosphate may differ sub-
stantially among different plant foods. Despite
high total phosphate content, legumes and seeds
may be relatively poor phosphate sources, which
could be used in the diets of patients with CKD
[5]. In addition, most beverages contain little to
no protein. Hence, any phosphate content is
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almost entirely from additives. As a consequence,
patients who consumed beverages with a high
phosphate content had serum phosphate levels
that were quite high although their nutritional
status may have been inferior [14]. In soft drinks
and beer, all phosphate were digestible. Total
phosphate content in soft drinks is from phospho-
ric acid, which is likely to degrade efficiently in
the intestine. In beer, phosphate is from the grain
used in preparing beer; in Finland, this is most
often barley. On the basis of the results, it seems
that during malting and other processing of grain
when preparing beer, phosphate is efficiently
released from the grain in a highly digestible
form, resulting in even higher phosphate content
than in soda beverages [16].

In Japan, although the risk of food additives
attracted attention in the 1970s, there has been no
study on phosphate additives [13]. However,
there are many kinds of used food additives.
Therefore, it is extremely difficult to show the
content of food additives from the nation’s
foods precisely. In addition, Japanese eating
habits vary, and even vary by generation. For
example, elderly Japanese may enjoy traditional
Japanese meals (fish and rice) whereas the youn-
ger generation likes Western dietary patterns of
intake common to many Americans. Daily Intake
of Food Additives in Japan was determined from
1976 to 2000 by the Market Basket Method
[13]. For this method, researchers purchased
about 250 foods reflecting the average eating
habits in different parts of Japan and examined
the quantity of additives included in the food. The
study showed that the average phosphate
additives, specifically polyphosphate and pyro-
phosphate, was 259 mg/day in 2013. However,
a large-scale survey for phosphate additives in
Japan has not been published.

10.6 Phosphate Intake
and Bioaccessibility

As mentioned above, dietary phosphate assess-
ment is complicated by inaccuracies in nutrient
database due to the widespread and varied use of
phosphate-containing food additives, as well as
the regional and seasonal variation in naturally

occurring phosphate (organic phosphate) in vari-
ous crops [12]. Oenning et al. showed a signifi-
cant 20–25% underestimation of phosphate
content [23]. In addition, direct chemical analyses
showed that a majority of chicken products (fresh
frozen chicken products in Midwestern grocery
stores) contained one or more phosphate-
containing ingredients, contributing a mean of
84 mg phosphate/100 g serving (range¼ 12–165-
mg/100 g serving). Sherman et al. reported simi-
lar observations in the content of phosphate in
meat, poultry, and fish products [33]. The cumu-
lative impact of added phosphate in many food
categories can significantly raise actual phosphate
intake well beyond food intake estimates with
existing database information [5].

A major barrier to studying the relation
between dietary phosphate and various health
outcomes is the current inaccuracy in estimating
dietary phosphate intake, especially in terms of
bio-accessibility [12]. For the nutrient database, it
is necessary for the values to account for the
bioaccessibility of phosphate, not just total phos-
phate. Of relevance, phosphate is primarily
absorbed from the intestinal tract where about
70% of the intake is believed to be used. The
absorption mechanism of phosphate is in the
intestinal tract, but the mechanism is complicated
by factors that affect absorption, such as vitamin
D [17]. As described above, phosphate
forms (organic and inorganic phosphate) are also
important in understanding the absorption of
phosphate.

10.7 Food Additives and Health

Recent studies have revealed that high phosphate
intake is associated with increased mortality in a
healthy US population [6]. Increased dietary
phosphate intake may be detrimental even in the
absence of high serum phosphate concentrations
[26]. Serum phosphate concentrations are effec-
tively regulated by fibroblast growth factor
23 (FGF23), a hormone that increases urinary
phosphate excretion [28, 29]. Although
individuals with normal kidney function are able
to regulate serum phosphate levels in a physio-
logic range by increasing FGF23 concentrations,
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long term effects may lead to left ventricular
hypertrophy, heart failure, and mortality. More
recently, studies showed that consumption of a
diet rich in phosphate based food additives while
stable for calcium for 1 week increased
circulating FGF23, osteopontin and osteocalcin
concentration relative to baseline values, and
decreased mean sclerostin concentrations in
healthy individuals [11]. Similar results were
observed in animals fed diets with increased
phosphate content; findings showed substantial
decreases in bone mineral density (BMD) and
structural indices. FGF23, osteopontin, and
sclerostin are critically involved in regulation of
bone and mineral metabolism and are associated
with bone and cardiovascular disease [11]. These
results indicate that high phosphate additives
intake may have adverse effects in individuals
with normal kidney function. In addition, Moore
et al. showed that dietary intake from foods that
are sources of inorganic phosphate have a greater
impact on serum phosphate than do foods that are
sources of mainly organic phosphate, which
supports the importance of accounting for phos-
phate bioaccessibility in studies on dietary
phosphate [20].

10.8 Conclusion and Perspective

Phosphate intake is an important issue of phos-
phate balance in CKD patients [22, 30, 31]. Phos-
phate toxicity can cause a wide range of organ
damage, including renal injury, cardiovascular
damage and accelerate aging processes
(Fig. 10.1) [24, 25]. The information of phosphate
content and phosphate type (organic and inor-
ganic) in foods is not exactly observable. Phos-
phate in food additives is almost completely
reabsorbed in the intestine. It is important to con-
sider that inorganic phosphate is not only
contained in natural food, but also inorganic phos-
phate added in processing food. In addition, since
phosphate does not have mandatory labeling,
accurate grasp of the phosphate content, which is
present in many processed foods, is difficult to
obtain. Even if the food is listed as having been
prepared with phosphate salts by the United States
Food and Drug Administration (FDA), the manu-
facturer is not obliged to display the phosphate
content in food. To prevent excess phosphate
intake above nutrient needs of healthy adults, the
labeling of phosphate content and a database with
accurate phosphate availability are required [9].

Fig. 10.1 Partial list of
various pathologies induced
by phosphate toxicity
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Abstract

Phosphate is essential for proper cell function
by providing the fundamentals for DNA, cel-
lular structure, signaling and energy produc-
tion. The homeostasis of phosphate is
regulated by the phosphaturic hormones fibro-
blast growth factor (FGF) 23 and parathyroid
hormone (PTH). Recent studies indicate that
phosphate induces phosphate sensing
mechanisms via binding to surface receptors
and phosphate cotransporters leading to feed-
back loops for additional regulation of serum
phosphate concentrations as well as by phos-
phate itself. An imbalance to either side,
enhances or reduces serum phosphate levels,
respectively. The latter is associated with
increased risk for cardiovascular diseases and
mortality. Hyperphosphatemia is often due to
impaired kidney function and linked to vascu-
lar disease, hypertension and left ventricular
hypertrophy. In contrast, hypophosphatemia
either due to reduced dietary intake or intesti-
nal absorption of phosphate or hereditary or
acquired renal phosphate wasting, may result
in impaired energy metabolism and cardiac

arrhythmias. Here, we review the effects and
its underlying mechanisms of deregulated
serum phosphate concentrations on the cardio-
vascular system. Finally, we summarize the
current therapeutic approaches for both lower-
ing serum phosphate levels and improvement
of cardiovascular disease.

Keywords

Phosphate · Fibroblast growth factor 23 ·
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ventricular hypertrophy · Intervention

11.1 Physiology of Phosphate
Homeostasis

The element phosphorus is essential for normal
cell function and occurs in combination with oxy-
gen by generating phosphate. In the body, phos-
phate is found as structural element in teeth and
bone in the form of hydroxyapatite and as
phospholipids in cell membranes. Furthermore,
DNA is a chain of PO4

3�-containing molecules.
Phosphate is involved in energy production as
energy-carrying molecule adenosine triphosphate
(ATP) and in the activation of enzymes,
hormones and signaling cascades. In red blood
cells, the salt 2,3-diphosphoglycerate controls the
oxygen release to tissue by hemoglobin.

Serum phosphate levels are subject to tightly
regulated homeostasis determined by dietary
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intake, intestinal absorption and renal glomerular
filtration and tubular reabsorption. Active trans-
port of phosphate is facilitated via type II sodium-
dependent phosphate co-transporters NaPi-2b in
the brush border membrane (BBM) of enterocytes
and NaPi-2a and NaPi-2c in the BBM of renal
proximal tubule cells. Type III sodium-coupled
phosphate transporters, PiT1 and PiT2, initially
discovered as retroviral receptors, are ubiqui-
tously expressed in mammalian tissue
[1, 2]. Low dietary phosphate upregulates the
expression of PiT1 in the renal proximal tubule
cell [3]. Both phosphaturic hormones parathyroid
hormone (PTH) and fibroblast growth factor
(FGF) 23 downregulate PiT2 in proximal tubules
of the kidney [4, 5]. For now, the contribution of
PiTs for renal and intestinal phosphate transport is
not fully understood. The tubular reabsorption of
phosphate is regulated by FGF23 and PTH, which
regulate the renal production and secretion of
active vitamin D (1,25(OH)2D3). The latter in
turn enhances intestinal absorption of dietary
phosphate in the jejunum and ileum by
stimulating NaPi-2b-dependent phosphate trans-
port. In the kidney, PTH decreases the abundance
of NaPi-2a and NaPi-2c in the proximal tubule
BBM leading to reduced tubular reabsorption of
phosphate.

Normal serum phosphate levels in healthy
adults are 2.5–4.5 mg/dL [6]. Hyperphosphatemia
is defined as serum phosphate levels more than
4.5 mg/dL. For hypophosphatemia, it is distin-
guished between mild (2–2.5 mg/dL), moderate
(1–2 mg/dL) and severe (<1 mg/dL).

11.1.1 FGF23

The main source of FGF23 is the bone where it is
synthesized by osteocytes and osteoblasts due to
different stimuli, among phosphate is one of
them. However, the mechanisms how exactly
phosphate affects FGF23 expression in bone are
still unknown. FGF23`s main target organ are the
kidneys where it binds to a complex of FGF
receptor 1 (FGFR1) and its specific co-receptor
klotho in renal proximal tubule cells [7]. The
FGF23/FGFR1/klotho complex activates an

intracellular cascade involving signal transduc-
tion via fibroblast growth factor receptor substrate
(FRS) 2a and extracellular signal-regulated
kinases (ERK) 1/2 affecting serum phosphate
levels by two mechanisms. First, FGF23-
mediated ERK1/2 activation inhibits both the
expression of NaPi-2a and NaPi-2c and their
abundance in the renal BBM. The decreased bio-
availability of the transporters reduces renal phos-
phate reabsorption in the proximal tubules and
thereby increases phosphate excretion in urine.
Second, through the activation of the same path-
way, FGF23 downregulates the expression of
CYP27B1, encoding for 1α-hydroxylase, which
converts prohormone 25-hydroxyvitamin D3 into
the active form 1,25(OH)2D3 [8], and upregulates
the expression of CYP24A1, which encodes for
the catabolic enzyme 24-hydroxylase. Reduced
renal synthesis of active vitamin D leads to
decreased serum 1,25(OH)2D3 levels and thus, a
low abundance of NaPi-2b in the gastrointestinal
tract limiting phosphate uptake [9]. Both the sup-
pression of renal phosphate reabsorption and
reduction of intestinal phosphate absorption
mediated by FGF23 lower the phosphate level in
the serum.

11.1.2 PTH

PTH is the second phosphaturic hormone
regulating phosphate homeostasis. High serum
phosphate concentrations stimulate the secretion
of PTH in the parathyroid glands that increases
renal phosphate excretion. Thereby, PTH binds to
the G-protein coupled PTH receptor 1 (PTHR1)
that increases intracellular cyclic adenosine
monophosphate (cAMP) levels and subsequently
activates protein kinase A (PKA), protein kinase
C (PKC) and ERK1/2 [10–12]. Activation of
these signaling cascades leads to the internaliza-
tion of NaPi-2a and NaPi-2c co-transporters from
the BBM, resulting in renal phosphate wasting
[13, 14]. To note, PTHR1 expression is found at
both the apical and the basolateral membranes of
renal proximal tubular cells [15]. In addition to
maintaining phosphate homeostasis, PTH further
interacts with FGF23 in the parathyroid gland.
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Similarly to the kidney, FGF23 also binds to
and activates the FGFR1/klotho complex in the
parathyroid. The subsequently induced ERK1/2
signaling promotes the expression of the tran-
scription factor early growth response 1 (Egr-1),
which in turn decreases the transcription and
secretion of PTH. In vitro and in vivo studies
have shown that PTH induces the FGF23 expres-
sion in bone that initiates a negative feedback
loop [16]. Thereby, FGF23 mRNA expression is
increased via activation of intracellular PKA and
WNT pathways by PTHR1. Furthermore, PTH
affects bone mass by stimulating both bone
resorption and bone formation. During chronic
hyperparathyroidism, the catabolic actions of
PTH reduce the bone mineral density causing an
increased risk for fractures because of a net loss of
bone mass [17]. During increased bone turn over,
the liberation of calcium-phosphate product leads
to an increase of serum phosphate levels and, over
time, possibly to soft tissue calcifications. Inter-
estingly, intermittent, low doses of PTH improve
bone formation via stimulation of osteoanabolic
WNT signaling [18, 19]. Due to the missing
phosphaturic effect of PTH during hypoparathy-
roidism, patients display hyperphosphatemia
[20]. Thus, hypoparathyroidism causes a reduc-
tion in bone remodeling with abnormalities in
bone strength and microarchitecture as well as
increased bone density [21].

11.1.3 Phosphate

Phosphate sensing has been extensively studied
in bacteria and yeast (excellently reviewed in
[22]). Since these unicellular organisms use
types of phosphate transporters for phosphate
sensing, it might be considered to hypothesize
similar mechanisms for mammalian cells. In
vitro data by Bon et al. support this idea. The
authors show that by deleting PiT1 or PiT2, the
phosphate-induced ERK1/2 activation as well as
increase in gene expression of matrix Gla protein
(MGP) and osteopontin were blunted [23]. Fur-
thermore, overexpressing phosphate transport-
deficient PiT mutants rescued the activation of
ERK1/2. Even in the absence of phosphate

transport activity, the heterodimerization of PiT1
and PiT2 was regulated by extracellular phos-
phate. These data suggest that the phosphate sens-
ing function of PiT co-transporters does not
depend on cellular phosphate uptake, but on
phosphate binding. In a follow-up study, the
authors addressed the question if PiT1 and PiT2
contribute to the regulation of FGF23 secretion
from bone. Ex vivo results suggest that PiT1 dele-
tion in long bones does not contribute to the
phosphate-mediated FGF23 secretion [24]. In
contrast, by using ex vivo organ culture of long
bones from PiT2 knockout animals, the authors
showed that PiT2 is involved in the phosphate-
dependent secretion of FGF23. They conclude
that at least in hyperphosphatemic situations
PiT2 plays a role for phosphate-mediated sensing
to induce osseous FGF23.

Recently, it was shown that unliganded FGFR1
serves as phosphate-sensing receptor regulating
the production of FGF23 in bone [25]. In vivo
and in vitro data show that phosphate does not
directly increase the expression of FGF23, but the
expression of the enzyme encoded by the
N-acetylgalactosaminyltransferase (GALNT)
3 gene via induction of the ERK1/2 signaling
pathway. FGF23 is posttranslationally modified
via several steps. GALNT3 initiates the
O-glycosylation of FGF23, which prevents its
cleavage and increases the bioavailability of
active FGF23 in the serum [26, 27]. The authors
show that inhibition and deletion of FGFR1 in
osteoblasts/osteocytes prevented the dietary
phosphate-induced GALNT3 expression in bone
and subsequent elevation of serum FGF23 levels
[28]. Thus, high phosphate load activates ligand-
independent FGFR1-mediated intracellular sig-
naling events in bone cells resulting in increased
serum FGF23 levels to regulate serum phosphate
levels.

The calcium-sensing receptor (CaSR) is the
main controller of PTH secretion [29]. Centeno
et al. identified the CaSR in the parathyroid as
phosphate sensor [30]. Here, the authors show
that extracellular phosphate is a noncompetitive
antagonist of CaSR resulting in phosphate-
stimulated PTH secretion. Phosphate binds to
phosphate-binding sites in the CaSR causing a
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conformational change of the receptor [30]. Phos-
phate-induced CaSR inhibition leads to its open,
inactive form that permits increased PTH secre-
tion. In turn, PTH stimulates renal phosphate
excretion to normalize serum phosphate levels.

Taken together, most likely several molecules
function as phosphate sensing receptors and inter-
fere in the feedback of phosphate regulation.
More studies are needed to clarify the involved
players and signaling events.

11.2 Phosphate-Related
Cardiovascular Disease

Impaired phosphate homeostasis can result in
hyper- or hypophosphatemia causing multiple
phosphate-related disorders, such as cardiovascu-
lar diseases (CVD). Hyperphosphatemia can
develop as a result of increased phosphate intake,
defects in bone mineralization, genetic disorders
in genes of phosphaturic hormones or an impaired
renal phosphate excretion [31]. Most studies,
analyzing the cardiovascular (CV) risk of phos-
phate were obtained from chronic kidney disease
(CKD) patients, because the progressive loss of
kidney function leads to the development of
hyperphosphatemia that is associated with vascu-
lar calcification, left ventricular hypertrophy
(LVH) and increased CV mortality in CKD
patients [32–36]. In the general population,
adverse effects of high phosphate levels gained
attention as the average dietary phosphate intake
of 1200 mg greatly exceeds the recommended
dietary allowance (RDA) of 700 mg in the West-
ern population [37]. Epidemiologic studies show
an association of high serum phosphate levels
with an increased all-cause and CV mortality in
the general population [37–39]. In subjects with
preserved renal function, increased serum phos-
phate levels associate with an increased risk for
vascular calcification even within normal phos-
phate range [40–43]. The higher risk of coronary
artery calcification (CAC) was observed in young
white and African-American adults (mean age:
25.2 years) [40] as well as in Korean participants
with mean age of 40.8 [42] or 53.5 [43] years,
respectively, suggesting an association of high

phosphate with vascular calcification irrespective
of age and ethnic origin. High phosphate levels
enhance the ankle brachial index indicating that
phosphate contributes to peripheral arterial stiff-
ness [41]. In participants without pre-existing
CVD or CKD, high serum phosphate and dietary
phosphate intake correlate with an increased left
ventricular (LV) mass and prevalence of LVH
[44–46]. In a small cohort of 20 healthy young
adults, controlled high dietary phosphate intake
over 11 weeks increased systolic and diastolic
blood pressure (BP) [47]. The underlying
mechanisms of multiple hyperphosphatemia-
related CV events and increased mortality are
not completely understood and therefore focus
of research.

11.2.1 Mechanisms
of Phosphate-Induced Vascular
Calcification

Phosphate-induced vascular calcification occurs
predominantly in form of pathological calcium
phosphate depositions in the medial layer of the
arteries. Medial vascular calcification is a com-
mon health risk in CKD, diabetes and aging but
also high serum phosphate levels in the general
population are associated with CAC. Vascular
smooth muscle cells (VSMCs) play a key role in
the onset and progression of phosphate-induced
vascular calcification. In high phosphate
conditions, VSMCs undergo osteochondrogenic
transdifferentiation promoting calcification by
reducing calcification inhibitors, stimulating
extracellular matrix (ECM) remodeling, apopto-
sis, senescence, and pro-inflammatory responses
[48, 49].

VSMCs incorporate phosphate via PiT1 and
PiT2 [50]. PiT1 also acts as phosphate sensor
and mediates vascular calcification via activation
of ERK1/2 signaling independent of phosphate
uptake. In transport-deficient PiT1 mutants that
cannot incorporate phosphate and wild type
VSMCs, high phosphate levels promote ERK1/2
signaling and osteochondrogenic differentiation,
which is attenuated by knockdown of PiT1
[51, 52]. In contrast, knockdown of PiT2
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increased phosphate-induced calcification by
lowering osteoprotegerin (OPG) in VSMCs
suggesting a protective function of PiT2 in
phosphate-mediated calcification [53]
(Fig. 11.1). It is discussed that Toll-like receptor
4 (TLR4) might be involved in extracellular phos-
phate-sensing as it is upregulated under high
phosphate conditions in vitro in VSCMs. Like-
wise, knockdown of TLR4 by siRNA reduces
calcification and expression of inflammatory
cytokines in VSMC [54].

11.2.1.1 Phosphate-Dependent
Osteochondrogenic
Transdifferentiation of VSMCs

High extracellular phosphate levels activate sev-
eral intracellular pathways stimulating the
transdifferentiation from contractile into
osteochondrogenic VSMCs cells. The nuclear
factor “‘kappa-light-chain-enhancer” of activated
B cells (NF-κB) is a key regulator of phosphate-
induced osteochondrogenic transdifferentiation
and subsequent vascular calcification (Fig. 11.1).
Phosphate activates NF-κB signaling in VSMCs
via serum- and glucocorticoid-inducible kinase
(SGK1) [55], oxidative stress [56] or inflamma-
tory pathways [57]. Activation of NF-κB
promotes the expression of osteochondrogenic
transcription factors, such as msh homeobox
2 (MSX2) and core-binding factor subunit α1
(CBFA1) and concurrently decreases the expres-
sion of the VSMC-specific marker SM22α
[54, 55, 57]. The osteochondrogenic transcription
factors further increase the expression of alkaline
phosphatase (ALP) that promotes mineral deposi-
tion in VSMCs [57, 58]. Inhibition of NF-κB is
sufficient to reduce calcification during high
phosphate conditions in VSMCs in vitro and in
a CKD mouse model in vivo [54, 59].

Furthermore, activation of WNT/β-Catenin
signaling by phosphate contributes to osteochon-
drogenic transdifferentiation and vascular calcifi-
cation (Fig. 11.1). In VSMCs, high phosphate
induces β-Catenin activity and downstream
MSX2, CBFA1 and PiT1 expression
[60, 61]. Besides the induction of transdiffer-
entiation, WNT signaling promotes calcification
by stimulating the expression of the matrix

metalloproteinases MMP2 and MMP9 in
VSMCs [62]. Rodent CKD models fed with a
high phosphate diet show an association of
WNT/β-Catenin activation and aortic calcifica-
tion [61, 63]. The lentiviral knockdown with
short hair pin RNA of β-Catenin attenuates vas-
cular calcification in vivo [61]. Likewise,
inhibitors of WNT/β-Catenin signaling such as
secreted frizzled-related proteins [64], Dickkopf-
related protein 1 [65] or the knockdown of
WNT8b [66] reduces phosphate-induced calcifi-
cation in VSMCs.

Experimental studies suggest that interaction
of WNT/β-Catenin and peroxisome proliferator-
activated receptor gamma (PPARγ) signaling
contribute to calcification during hyperpho-
sphatemia [67]. In the differentiation of mesen-
chymal stem cells PPARγ and WNT act
antagonistically. PPARγ activates adipocyte dif-
ferentiation and suppresses osteoblast differentia-
tion, whereas WNT/β-Catenin signaling promotes
osteogenesis and inhibits PPARγ expression
[68]. Hyperphosphatemia induces calcification
by downregulating the expression of PPARγ and
its downstream target klotho in VSMCs and
rodent CKD. The PPARγ agonist Rosiglitazone
stimulates the expression of klotho and reduces
vascular calcification in vitro and in vivo
[69, 70]. Other PPARγ agonists, Pioglitazone
and Ginsenoside Rb 1, exert anti-calcific effects
by inhibiting WNT/β-Catenin signaling [67, 71].

Phosphate-mediated downregulation of AKT
signaling might as well contribute to vascular
calcification in VSMCs [72, 73]. Upregulation
of AKT signaling by the farnesyl transferase
inhibitor 277 prevents osteochondrogenic differ-
entiation and mineral deposition in VSMCs
[73]. Extracellular acid loading stimulates AKT
phosphorylation and could reduce phosphate-
mediated apoptosis and calcification [72]

11.2.1.2 ECM Remodeling During
Hyperphosphatemia

The ECM is a highly structured network com-
posed of fibrous proteins and proteoglycans
[74]. Remodeling of the ECM by phosphate
creates an environment that fosters the develop-
ment of vascular calcification in which elastin
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degradation via MMPs plays a crucial role.
MMP2 and MMP9-knockout mice are rescued
from calcium chloride induced aortic injury and
neither develop elastin degradation nor calcifica-
tion [75, 76]. Hyperphosphatemia predominantly
triggers ECM remodeling and calcification in the
medial layer of vasculature [77–79]. Phosphate-
induced expression of MMP2, MMP9 and the

cysteine protease cathepsin S promote degrada-
tion of extracellular matrix proteins and thereby
calcification in vitro and in vivo [80–82]. Elastin-
derived peptides only induce calcification under
high phosphate conditions in VSMCs and in ure-
mic mice suggesting that elastin-derived peptides
are necessary but not sufficient to initiate calcifi-
cation [76, 83]. In CKD patients on dialysis,

Fig. 11.1 Hyperphosphatemia-induced mechanisms
in vascular smooth muscle cells contributing to vascu-
lar calcification. High extracellular phosphate (Pi)
stimulates the production of inflammatory cytokines, oxi-
dative stress, apoptosis, senescence and osteochon-
drogenic transdifferentiation in VSMCs, which together
contribute to increased ECM mineralization. The
simplified schematic illustration shows the main pathways
involved in Pi-mediated VSMC dysfunction. Pi sensing
and uptake via PiT1 promotes osteochondrogenic transdif-
ferentiation, whereas PiT2-mediated increase in

osteoprotegerin protects from calcification. Pi, TNFα and
IL-6 promote osteochondrogenic transdifferentiation by
upregulating the expression of osteochondrogenic genes
and downregulating SMC-specific genes via NF-κB and
WNT/β-Catenin signaling. Osteochondrogenic transdiffer-
entiation is also stimulated by Pi-induced TGFβ/NFAT
and NALP3/IL-1β activation. Pi stimulates apoptosis by
downregulating GAS6/Axl and senescence by
downregulating SIRT1 expression. Incorporated in CPPs,
Pi induces oxidative stress and inflammation in VSMCs.
(This figure was created with BioRender.com)
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increased MMP2 expression correlates with elas-
tic fiber disorganization and calcification [84].

High phosphate levels are further associated
with an increased collagen I (Col I) expression in
clinical and experimental studies [85–88]. Col I
promotes matrix vesicle-mediated mineralization
and accelerates vascular calcification in vitro
[88, 89]. Additionally, phosphate mediates colla-
gen cross-linking by upregulating the enzymes
lysyl hydroxylase 1 (PLOD1) and lysyl oxidase
(LOX). Inhibition of collagen synthesis or cross-
linking reduce phosphate-induced calcification in
VSMCs [86, 90].

11.2.1.3 Phosphate-Induced Apoptosis,
Senescence and Autophagy

Another mechanism how phosphate promotes
calcification is apoptosis. In arteries of children
with CKD, dialysis induces VSMCs apoptosis,
followed by osteochondrogenic differentiation
and subsequent severe calcification [91]. Further
studies give evidence that VSMCs apoptosis
occurs before the onset of calcification and
inhibition of apoptosis with a caspase inhibitor
can reduce calcification [92, 93]. In VSMCs,
elevated phosphate levels induce apoptosis by
downregulating the survival pathway mediated
by growth arrest-specific gene 6 (Gas6) and its
receptor Axl (Fig. 11.1). Statins could stabilize
Gas6 mRNA and thereby have anti-apoptotic
and anti-calcific effects in phosphate-induced
calcification [94].

Senescence describes a permanent cell arrest
that occurs in age or due to stress. In VSMCs and
CKD rats, hyperphosphatemia increases the
senescence-associated β-galactosidase activity
that is associated with calcification. Phosphate
mediates senescence via downregulation of
Sirtuin 1 expression and subsequent activation
of p53 and p21 [95–97] (Fig. 11.1).

Autophagy counteracts phosphate-induced
vascular calcification by inhibiting osteochon-
drogenic transdifferentiation and matrix vesicle
release [98–100]. In high phosphate diet fed
mice and VSMCs under high phosphate culture
conditions, autophagy is increased indicating
an endogenous mechanism to protect from

calcification. However, a recent study suggests
that high phosphate inhibits VSMCs autophagy
via upregulation of OGlcNAc transferase and
subsequently the Hippo-YAP pathway promoting
phosphate-induced calcification [101]. Although,
the direct effect of phosphate on autophagy needs
further investigation, induction of autophagy
might be an interesting therapeutic strategy to
reduce phosphate-induced calcification.

11.2.1.4 Regulation of Endogenous
Calcification Inhibitors by
Phosphate

Extracellular fluids are supersaturated with cal-
cium and phosphate and therefore circulating cal-
cification inhibitors are necessary to prevent
spontaneous ectopic precipitation. Pyrophos-
phate, fetuin-A, vitamin K dependent MGP,
osteopontin (OPN) and osteoprotegerin are
endogenous calcification inhibitors [102, 103].

In end-stage kidney disease (ESKD), i.e., in
patients on dialysis, reduced plasma pyrophos-
phate levels are associated with arterial calcifica-
tion [104–106]. Experimental studies show that
high dietary phosphate intake reinforces aortic
calcification in mice lacking ectonucleotide
pyrophosphatase phosphodiesterase, the enzyme
that synthesizes extracellular pyrophosphate
[107]. In vitro, physiological levels of pyrophos-
phate are sufficient to prevent calcium phosphate
deposition in VSMCs under normal phosphate
concentrations but not in hyperphosphatemia
[108]. In vivo, daily injections of pyrophosphate
could prevent aortic calcification in uremic rodent
models [109, 110].

Fetuin-A is a liver-derived circulating glyco-
protein that builds complexes with calcium and
phosphate to prevent ectopic precipitation.
Recently, it was shown that fetuin-A levels
decrease with the progression of CKD
[111]. Experimental studies in uremic rodents
show that low fetuin-A levels promote the precip-
itation of calcium phosphate and high levels pro-
tect from calcification [112, 113]. In fetuin-A
deficient CKD mice, additional challenge with
a high phosphate diet induces more profound
calcification than in wild type CKD mice
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[114]. However, several clinical studies confirm a
correlation of low circulating fetuin-A levels with
increased calcification in dialysis patients
[111, 115–117], whereas others did not find a
correlation of fetuin-A or OPN with
calcification [118].

MGP is another endogenous calcification
inhibitor synthesized by VSMCs and
chondrocytes [119]. High extracellular phosphate
stimulates the expression of MGP by activating
the ERK1/2-Fra-1 pathway in vitro [120–122]
that might counteract phosphate-induced calcifi-
cation. However, the activity of MGP is vitamin
K dependent. It was shown in CKD and ESKD
patients that dephosphorylated uncarboxylated
MGP (dp-ucMGP), the inactive form of MGP, is
associated with vitamin K deficiency and vascular
calcification [123–125], indicating that MGP can-
not exert its anti-calcific function in these patients
due to the lack of vitamin K.

OPN is an inhibitor of hydroxyapatite crystal
formation in vivo and in vitro that is induced by
hyperphosphatemia [126–128]. Physiologically,
OPN is not found in arteries but under pathologi-
cal conditions, such as ESKD, it localizes to areas
of calcification [129]. Several studies demonstrate
that high levels of OPN protect from calcification,
whereas OPN deficiency promotes calcification
[130–132].

OPG, a soluble receptor of the TNF-receptor
family, acts anti-calcific by inhibiting osteoclas-
togenesis. OPG binds to the Receptor Activator of
NF-κB Ligand (RANKL) and thereby prevents its
interaction with the RANK receptor. Inhibition of
the RANK-RANKL interaction downregulates
NF-κB signaling as key regulator of phosphate-
induced osteochondrogenic differentiation and
vascular calcification [133, 134]. Consequently,
knockdown of OPG leads to medial calcification
that is further enhanced by high dietary phosphate
intake in mice [135]. In contrast, clinical studies
show that elevated OPG levels are associated with
increased vascular calcification and mortality in
CKD patients [136–139]. However, increasing
OPG levels might rather be a compensatory
mechanism to inhibit progression of calcification
instead of being the underlying cause for it.

11.2.1.5 Hyperphosphatemia-Associated
Inflammatory Pathways

Pro-inflammatory proteins and cytokines are
associated with vascular calcification in CKD
patients [140–142] and promote vascular calcifi-
cation in VSMCs in vitro [143–145]. In patients
on chronic hemodialysis, increased C-reactive
protein (CRP) levels associated with more severe
vascular calcification [141]. Already in early
CKD stages, medial calcification of the aorta is
accompanied by vascular inflammation and
osteochondrogenic differentiation of VSMCs
[142]. Experimental studies reveal that high phos-
phate levels directly stimulate the expression of
pro-inflammatory cytokines such as tumor necro-
sis factor α (TNFα), interleukin-6 (IL-6), IL-1β,
IL-18 and transforming growth factor β (TGFβ)
[146–151]. High cytokine levels activate several
intracellular pathways that contribute to
osteochondrogenic transdifferentiation and the
development of vascular calcification (Fig. 11.1).

TNFα activates NF-κB signaling in VSMCs
that promotes the osteochondrogenic transdiffer-
entiation by upregulating the osteogenic tran-
scription factor MSX2 and ALP activity [57]. In
a diabetic mouse model, increased TNFα levels
induce vascular calcification via bone morphoge-
netic protein 2 (BMP2), MSX2 and WNT signal-
ing [152, 153]. Besides activating pro-calcific
intracellular pathways, TNFα stimulates the
expression of the pro-inflammatory cytokine
IL-6 [154]. It is under debate whether IL-6 alone
is sufficient to induce vascular calcification or just
in an inflammatory environment. Sun et al. found
that IL-6 induces calcification via BMP2 in
VSMCs under otherwise normal non-calcific cul-
ture conditions [145]. In contrast, in the study of
Deuell et al. TNFα, but not IL-6 alone, was suffi-
cient to induce mineralization of VSMCs in high
phosphate but not control media. However,
co-incubation of TNFα-treated VSMCs with
IL-6 further increased calcification suggesting a
synergistic effect. TNFα and IL-6 also interfere
with RANKL-NF-κB signaling. RANKL
stimulates the expression of TNFα and IL-6 in
macrophages and vice versa, neutralization of
TNFα, IL-6 or both cytokines reduce RANKL-
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mediated calcification in co-cultures of
macrophages and VSMCs [155]. Another study
shows that neutralization of IL-6 further prevents
RANKL-mediated expression of the osteogenic
markers CBFA1 and BMP2 and the calcification
inhibitor OPN [156]. In summary, both, TNFα
and IL-6, interfere with NF-κB and WNT signal-
ing to induce vascular calcification.

Furthermore, high phosphate activates the
NALP3 inflammasome resulting in higher expres-
sion of IL-1β and calcification in VSMCs. Inhibi-
tion of the NALP3 inflammasome mitigates IL-1β
secretion and calcification [144]. Phosphate also
stimulates TGFβ expression in VSMCs
[150, 157] and TGFβ promotes osteochon-
drogenic gene expression via upregulating the
transcription factor NFAT5 and its downstream
target SOX9 [157, 158]. Moreover, TGFβ
contributes to remodeling of the ECM by induc-
tion of Col I, fibronectin, osteocalcin and OPN
[150, 159].

11.2.1.6 The Role of Calciprotein
Particles in Vascular
Calcification

In calcium and phosphate supersaturated fluids,
circulating calcification inhibitors are necessary
to prevent spontaneous ectopic precipitation.
Fetuin-A, MGP and GRP form primary
calciprotein particles (CPP) with calcium and
phosphate to enable efficient clearance of amor-
phous calcium phosphate clusters. The primary
CPPs can undergo ripening into a highly
structured more stable crystalline form called sec-
ondary CPPs [160, 161]. High dietary phosphate
intake increases serum CPP levels in experimen-
tal as well as clinical studies [162, 163]. In serum
of dialysis patients, predominantly primary CPPs
occur, most likely, because the ripening process is
time-consuming and primary CPPs are rapidly
cleared in the liver by sinusoidal endothelial
cells. Secondary CPPs are cleared by liver-
resident Kupffer cells via class A scavenger
receptor-mediated endocytosis [160, 164,
165]. Clinical studies give evidence that increased
CPP levels are associated with aortic stiffness in
pre-dialysis CKD patients and coronary athero-
sclerosis [166, 167].

The predisposition of serum to form crystals
can be assessed by the T50 test in vitro. In this test,
serum is supersaturated with calcium and phos-
phate to determine the necessary time to convert
50% of primary into secondary CPPs. Shorter T50

times represent a higher propensity of the serum
to form crystals. In CKD patients, lower T50 times
are associated with progression of vascular calci-
fication, increased atherosclerotic CV disease
events and CV and all-cause mortality
[166, 168–171].

In vitro studies show that secondary but not
primary CPPs cause calcification of VSMCs by
activating inflammatory pathways and inducing
oxidative stress (Fig. 11.1). Treatment of VSMCs
with secondary CPPs stimulates TNFα and
activates NF-κB signaling promoting osteochon-
drogenic transdifferentiation [148]. In
macrophages, secondary CPPs also stimulate
pro-inflammatory TNFα and IL-1β [172]. In
CKD patients, there is evidence that CPPs
directly induce pro-calcific pathways but at least
the T50 test serves as a marker for the progression
and appearance of CV complications.

11.2.2 Hyperphosphatemia-
Associated Left Ventricular
Hypertrophy

Elevated serum phosphate levels are associated
with an increased LV mass and incidence of LVH
in the general population [44–46]. In a large pro-
spective study with 4005 healthy young adults,
4.5% develop LVH during a 5-year follow-up.
The development of LVH correlates with
increased baseline phosphate levels assessed at
the beginning of the study [46]. Additionally,
Dhingra et al. found a higher prevalence of inci-
dent heart failure and increased LV mass in
subjects with high serum phosphate levels in a
prospective study with 3300 participants
[44]. Besides elevated serum phosphate levels,
high dietary phosphate intake is associated with
an increasing LV mass in a multi-ethnic cohort of
4494 healthy participants [45]. Hyperpho-
sphatemia is also a common CV risk factor in
CKD patients because of the insufficient renal
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phosphate clearance, and correlates with an
increased LV mass [173, 174]. Nevertheless,
these studies have limitations i.e., the serum
FGF23 levels were not measured. FGF23 is a
well-known risk factor and inducer for LVH
[173–178]. Thus, it is not possible to discriminate
whether cardiac hypertrophy is directly mediated
by phosphate or phosphate-induced FGF23 ele-
vation. Furthermore, vascular calcification, espe-
cially medial calcification, not only leads to
vascular stiffness, but also to LVH and systolic
hypertension [179]. The structural changes by

calcium-phosphate deposition in the vasculature
leading to CAC can be diagnosed and quantified
by electron beam computer tomography. Func-
tional changes are measured by pulse wave veloc-
ity indicating vascular stiffness (Fig. 11.2d–e).

So far, experimental studies could also not
clarify whether phosphate directly causes LVH.
In some studies, feeding of a 2% high phosphate
diet to wild type mice for 12 weeks induce LVH
and cardiac fibrosis [180–182], whereas in others
the cardiac function is not altered
[183, 184]. Grabner et al. suggest that a high

Fig. 11.2 Hyperphosphatemia-associated cardiac
diseases. (a) Pi induces LVH via FGF23/FGFR4/
calcineurin/NFAT signaling in cardiomyocytes or an
unknown direct mechanism. (b) High Pi stimulates the
expression of fibrotic genes Ctgf and Col I in cardiac
fibroblasts via unknown mechanisms, (c) Pi promotes car-
diac energy metabolism remodeling by entering
cardiomyocytes via PiT1 and PiT2 to activate IRF1

expression that inhibits PGC1α. Downregulation of
PGC1α reduces FAO and increases glycolysis. (d) Medial
calcification, diagnosed by electron beam computer
tomography and (e) increased pulse wave velocity, leads
to LVH. (f) Pi triggers hypertension via PTH-mediated
activation of the RAAS system and increased sympathetic
nerve system (SNA) activity. (This figure was created with
BioRender.com)
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phosphate diet increases FGF23 and promotes
LVH via FGFR4 [180] (Fig. 11.2a). This supports
the hypothesis that phosphate mediates LVH only
indirectly via FGF23. FGF23 promotes LVH by
activating the PLCγ/calcineurin/NFAT pathway
via FGFR4 [175]. In vitro studies in cardiac
fibroblasts show pro-fibrotic effects of high phos-
phate that stimulates the expression of connective
tissue growth factor and Col I but not Smad2/3
[181]. Thus, the contribution of phosphate for the
development of cardiac fibrosis remains unsolved
(Fig. 11.2b).

In the studies of Amann et al. and Neves et al.,
a 1.2% high phosphate diet for 8 weeks only
promotes the development of LVH and cardiac
fibrosis in uremic but not wild type rats
[185, 186]. In CKD mice, feeding of a 2% high
phosphate diet for 12 weeks further enhance LVH
compared to a normal phosphate diet
[187]. Huang et al. show that phosphate alone
induces the hypertrophic markers ANP, BNP
and β-MHC in the embryonic rat cardiomyocyte
H9c2 cell line and in primary neonatal rat ventric-
ular myocytes in vitro. Additionally, high
phosphate disturbs the myocardial energy metab-
olism in H9c2 cells in vitro and in CKD mice
in vivo. Phosphate enters cardiomyocytes via
PiT1 and PiT2 and increases the expression of
interferon regulatory factor 1 (IRF1) (Fig. 11.2c).
IRF1 inhibits the expression of peroxisome
proliferator-activated receptor gamma
co-activator 1 alpha (PGC1α) and thereby,
induces the switch from fatty acid oxidation to
glucose dependent metabolism [187]. Together,
these studies indicate that phosphate might only
induce LVH under certain metabolic conditions.
The source of phosphate and further composition
of the diet, such as calcium or vitamin D content,
could influence phosphate absorption and related
effects. Inorganic phosphate is absorbed by over
90% in the intestine, organic phosphates only by
40–60% [188]. Therefore, phosphate composition
of the diet plays a crucial role in the actual phos-
phate absorption and could influence phosphate-
mediated effects. Furthermore, experimental
studies give evidence that low vitamin D
concentrations reduce high phosphate diet-
induced LVH, but augment fibrosis. In contrast,

high vitamin D concentrations promote high
phosphate diet-induced cardiac hypertrophy and
attenuate fibrosis [182]. Future studies need to
investigate whether phosphate could cause LVH
directly or indirectly and trigger cardiac
remodeling only under certain metabolic
conditions.

11.2.3 The Role
of Hyperphosphatemia
in Hypertension

Hyperphosphatemia is a potential risk factor for
the development of hypertension [189]. In a large
cohort of more than 9000 hypertensive
participants, higher baseline serum phosphate
levels are associated with increased systolic BP
after 5-year follow-up. However, the poor BP
control in patients with elevated baseline serum
phosphate level does not correlate with the
increased mortality in these patients [190]. A
study in CKD patients reveals that serum phos-
phate levels only associate with higher systolic
and diastolic BP in diabetic but not in
non-diabetic CKD patients [191]. Also in the
general population, high dietary phosphate intake
for 6 weeks increases systolic and diastolic BP in
young healthy adults that is not reversed by a
concomitant vitamin D treatment for another
5 weeks. Reducing the high dietary phosphate
load to a normal diet reverse the phosphate-
induced elevation in BP after 2 months.
Mohammad et al. suggest activation of the sym-
pathetic nerve system as the underling mecha-
nism for phosphate-induced hypertension and
pulse rate elevation [47]. This study is limited
by its small cohort size of 20 subjects, so the
results have to be validated in larger cohorts.

However, experimental animal studies support
the idea that phosphate stimulates the sympathetic
nerve system (Fig. 11.2f). Likewise to the clinical
study of Mohammad et al., feeding of a high
phosphate diet activates the sympathetic nerve
system and increases BP in healthy rats
[192]. Independent of kidney function, a high
phosphate diet also augments phenylephrine-
induced vasoconstriction in aortic rings from
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mice ex vivo [193]. Another mechanism of
phosphate-induced hypertension might be the
activation of the renin angiotensin aldosterone
system. High dietary phosphate intake increases
renin expression via PTH and subsequently
angiotensin II to induce hypertension in healthy
rats [194]. The effect of hyperphosphatemia on
hypertension and its underlying mechanisms has
to be confirmed in larger clinical trials to develop
suitable therapeutic strategies.

11.3 Hypophosphatemia
and CVD Risk

The mechanisms causing the development of
hypophosphatemia are decreased intestinal
absorption, shift of extracellular phosphate into
cells and urinary phosphate loss. A reduced phos-
phate intake can be caused by severe malnutrition
and in patients with symptoms that affect their
food intake, including vitamin D deficiency and
alcohol [6, 195]. Thereby, vitamin D deficiency is
associated with the development of CVD risk
factors, e.g., hypertension [196]. This is
supported by the results found in vitamin D recep-
tor null mice developing high BP, cardiac hyper-
trophy and fibrosis [197, 198]. Furthermore, it is
known for a long time that chronic heavy drink-
ing is a cause for hypertension, arrhythmias and
heart failure, thus, increases the risk for death and
CVD [199]. Hypophosphatemia caused by
redistribution of extracellular phosphate into
cells does not mean a depletion of total body
phosphate. The mechanisms causing internal
redistribution can be respiratory alkalosis,
catecholamines, administration of hormones and
other drugs (e.g., insulin), alcohol and rapid cell
proliferation.

Hereditary causes of hypophosphatemia are
X-linked hypophosphatemia (XLH), autosomal
dominant hypophosphatemic rickets (ADHR)
and autosomal recessive hypophosphatemic rick-
ets (ARDR) [200]. Furthermore, abundant
expression of FGF23 in certain tumors can
cause renal phosphate-wasting, so called tumor-
induced osteomalacia (TIO).

Heart failure patients have an incidence of
about 13% for hypophosphatemia [201]. Data
investigating the association of hypophosphatemia
with cardiomyopathy in regards for mortality are
rare. Rozentryt et al. report that among their cohort
with 722 heart failure patients and a 2-year follow-
up, even the adjusted analysis for mortality was
similar for patients with hypophosphatemia com-
pared with patients having normal values of serum
phosphate [202]. Hypophosphatemia is associated
with an impairment of energy metabolism and the
induction of arrhythmias [203]. Several studies
discuss cardiac arrest as severe symptom of
hypophosphatemia with the possibility leading to
death [204–206]. Interestingly, several studies
indicate a reversibility of cardiac impairments
due to phosphate repletion [207, 208]. O’Connor
et al. were the first showing that repletion of serum
phosphate levels by potassium phosphate solution
in seven patients with severe hypophosphatemia
improvedmyocardial strokework [207]. Returning
serum phosphate levels to normal significantly
increased the mean LV stroke work as determined
by thermodilution technique. Zazzo et al. reported
improved cardiac performance after normalizing
serum phosphate concentrations in patients with
moderate or severe hypophosphatemia by giving
intravenous glucose phosphate during a short
time [208]. By measuring cardiac output via
thermodilution they demonstrate increased cardiac
index, systolic index and LV stroke volume index
after phosphate load. In contrast, several other
cases show no evidence for an association between
phosphate depletion and cardiac dysfunction at all
[209, 210]. Thereby, Rasmussen et al. investigated
the effect of moderate phosphate depletion (mini-
mum serum phosphate levels of 1.46 mg/dL)
induced by glucose infusion after surgery for
myocardial performance [209]. The authors
found no effect on stroke volume and cardiac
output as well as unaltered mean arterial pressure
concluding glucose-induced hypophosphatemia
lacks affecting cardiac performance. Interestingly,
Davis et al. show that only in cases of severe
hypophosphatemia (0.9 � 0.15 mg/dL), but not
in patients with moderate hypophosphatemia
(1.4 � 0.11 mg/dL), the LV performance
improved by corrections of serum phosphate levels
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[210]. Thus, they hypothesized that the conflicting
results are caused by the differences in serum
phosphate levels among the different studies. To
note, none of the hypophosphatemic patients in
this cohort presented with clinical signs of
congestive heart failure.

XLH is caused by inactivating mutations in the
phosphate-regulating gene with homologies to
endopeptidases on the X chromosome (PHEX)
causing high serum FGF23 concentrations
[211, 212]. For patients with XLH, the presence
of CV complications is still under debate and
varies in its characteristics. Alon et al. describe
the presence of hypertension with the need for
treatment in 8 out of 41 pediatric XLH patients
[213]. Echocardiography revealed that two out of
the eight hypertensive patients had LVH. Interest-
ingly, all eight children with hypertension had
hyperparathyroidism. Nehgme et al. investigated
13 patients with XLH, and despite no CV
symptoms and normal heart structure as well as
LV function, determined by cardiac ultrasonogra-
phy, seven children presented LVH [214]. This
was independent of the parathyroid status. During
a maximal exercise stress test, all XLH patients
with LVH had an abnormal diastolic BP
response, but there was no significant correlation
between these two parameters. Furthermore, car-
diac calcification was not observed in these
patients. More recent studies by Nakamura et al.
(22 adult XLH patients) and Hernández-Frías
et al. (24 pediatric patients) support the findings
that characteristic symptoms of XLH patients can
be the development of both hypertension and
LVH [215, 216]. Only Hernández-Frías et al.
reported the serum FGF23 concentrations in
their XLH patient cohort (278.18 � 294.45 pg/
mL) and found no correlation with the observed
echocardiographic parameters in the XLH patient
cohort. Other studies give contradictory results in
regards of CVD development in XLH patients
[25, 217, 218]. Takashi et al. found no presence
of LVH and FGF23 correlation with LVH-related
parameters determined by echocardiography and
electrocardiography in adult patients with
FGF23-related hypophosphatemic rickets/osteo-
malacia [25]. In a cohort of pediatric patient
with X-linked hypophosphatemic rickets, no

evidence for LV dysfunction could be revealed
by Doppler echocardiography [218]. Likewise, a
study in adult patients with clinically significant
hypophosphatemia, Vered Z et al. did observe
normal LV function demonstrated using
M-mode echocardiography and radionuclide
ventriculography [217]. Interestingly, three
patients displayed right ventricular dysfunction
despite normal BP. Again, discrepancies might
be explained by the initial serum phosphate con-
centration in the respective cohorts (Vered I et al.:
lowest was 1.5 mg/dL; Vered Z et al. range
between 1 and 2 mg/dL).

In line with clinical observations,
investigations in the Hyp mouse, the animal
model of XLH, show conflicting results too. In
several studies, no signs of pathological
remodeling were observed determined by histo-
logical analyses, gene expression analyses and
echocardiography [219, 220]. Additionally, Liu
et al. reported that tail cuff measurements did not
reveal changes in systolic BP in male Hyp mice
compared to wild type littermates [220]. In con-
trast, others showed that Hyp mice present LVH
and hypertension [221, 222]. In another mouse
model of XLH, the PhexC733RMhda, bearing an
amino acid substitution that causes mutations in
the coding region for the large extracellular cata-
lytic domain of the PHEX protein, despite high
serum FGF23 levels in 27 weeks old mice, no
LVH or altered cardiac function was present
[223]. Importantly, the BP was not changed
between the genotypes. Hypophosphatemic rick-
ets in ARHR are caused by inactivating mutations
in the gene dentin matrix protein 1 (DMP1) that
encodes for a non-collagenous bone matrix pro-
tein in osteoblasts and osteocytes. This mutation
leads to elevated serum FGF23 levels in patients
and in animal models with DMP1 mutation,
which causes the observed hypophosphatemia
[224–226]. Wacker et al. showed that Dmp1
null mouse did not present an indication of car-
diac hypertrophy, despite the increase of the heart
weight to body weight ratio [200]. The authors
did not observe the induction of classic
pro-hypertrophic genes in cardiac tissue and
they found no difference between wild type
and Dmp1 null mice in ex vivo whole heart
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contractility test. The conflicting results of the
different publications urge for the need of more
studies to have a better understanding for the
relationship between hypophosphatemia and
cardiac complications.

11.4 Therapeutics Interventions
to Prevent
Phosphate-Dependent CVDs

Both, low and high phosphate levels may have
severe effects on cardiac function. Thus, the
detection of phosphate imbalance and its treat-
ment is of high importance. Understanding the
mechanisms of phosphate homeostasis shows
that serum phosphate balance depends on an
interplay between bone, kidneys and intestinal
tract regulated by a tight endocrine system.
Since phosphate, FGF23, PTH, 1,25(OH)2D3

and calcium have a tight relation/interconnection
to each other, changing one parameter influences
all, making a therapeutic intervention rather
complicated.

11.4.1 Treatment
of Hypophosphatemia

Severe symptoms of phosphate depletion, such as
cardiac arrhythmia and muscle weakness, were
seen when serum phosphate levels are below
1 mg/dL [210]. However, most patients with
hypophosphatemia are asymptomatic, but require
the correction of the underlying cause, such as
magnesium deficiency [195], which mostly
normalizes serum phosphate levels. Oral phos-
phate supplementation is favorized for mild and
moderate hypophosphatemia. Hereby, sodium
phosphate tablets, potassium phosphate tablets
or skim/cow milk are available phosphate
sources. Corrections of the phosphate imbalance
led to a reversibility of the myocardial dysfunc-
tion as shown in feeding experiments with dogs
and rats [227, 228]. Phosphate depletion in dogs
caused a decline in stroke volume and peak blood
flow velocity as well as a decrease in maximum

LV time rate change of pressure [227]. The values
returned to control values after dietary phosphate
repletion improving cardiac performance.

Intravenous supplementation of phosphate is
used for patients with severe hypophosphatemia
and in cases when oral supplementation is not
possible. After a successful increase of serum
phosphate concentration to >1 mg/dL, the intra-
venous administration can be switched to oral
supplementation. Repletion of serum phosphate
levels by intravenous administration of potassium
phosphate solution or glucose phosphate in patients
with moderate or severe hypophosphatemia
improves cardiac performance [207, 208].Thereby,
normalizing serum phosphate concentrations
increases mean LV stroke work, cardiac index,
systolic index and LV stroke volume index after
phosphate load. Furthermore, in early stages of
sepsis low serum phosphate concentrations are
associated with a high incidence for cardiac
arrhythmias in patients without previous cardiac
pathological conditions [229]. It has been shown
that intravenous phosphate replacement in adult
septic patients with hypophosphatemia, but with-
out pre-existing cardiac condition, is associated
with a significant reduction of incidence of arrhyth-
mia (38% vs. 64% in non-treated group, p¼ 0.04)
[203]. Hypophosphatemia is also a common prob-
lem after cardiac surgery [230]. Treatment of
hypophosphatemia of a patient, who developed
cardiac failure after cardiac surgery, by giving
intravenous phosphate resulted in an improved car-
diac index, indicating the consideration of preoper-
ative serum phosphate measurements and
postoperative management of hypophosphatemia
[231]. In the case report of Frustaci and colleagues,
the patient’s characteristics were severe
hypophosphatemia and impaired LV function
measured by echocardiography [232]. Correction
of serum phosphate levels by administration of
potassium phosphate improved the myocardial
contractility (ejection fraction increased from 40%
to 72%).

All in all, ATP is essential for cardiac function,
phosphate depletion will decrease cardiomyocyte
function leading to cardiac failure, thus, manage-
ment of hypophosphatemia is crucial for
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improving patient health. Hence, phosphate
supplementation is not predictable, serum
phosphate levels should be tightly controlled to
avoid hyperphosphatemia or other electrolyte
imbalances.

11.4.2 Treatment
of Hyperphosphatemia

Increased serum phosphate levels are associated
with a higher risk for CVD in the general popula-
tion [233, 234]. Even more serious is hyperpho-
sphatemia for patients with impaired kidney
function. Thereby, the prevention and interven-
tion of hyperphosphatemia is essential.

11.4.2.1 Phosphate Restricted Diet
The KDIGO (Kidney disease Improving Global
Outcomes) guidelines suggest restricted dietary
phosphate intake to attenuate hyperphosphatemia
combined with other treatments for CKD patients
[235]. In uremic rats, it has been shown that
low dietary phosphate restriction reduces the
perivascular fibrosis and cardiomyocyte size
compared to rats on high phosphate diet
[236]. Additionally, the mortality was reduced
in rats under phosphate restriction. However,
despite the reduction of serum FGF23 and phos-
phate levels in non-dialysis patients on a very low
phosphate diet [237], more studies are needed to
investigate the association between dietary phos-
phate uptake and improvement for general and
CV outcome in the CKD cohort as well the gen-
eral population.

11.4.2.2 Phosphate Binders Targeting
Intestinal Phosphate Absorption

Phosphate binders prevent the intestinal phos-
phate absorption by binding phosphate, forming
a nonabsorbable complex that is excreted in the
feces. Different types of phosphate binders are
approved to treat hyperphosphatemia in advanced
stages of CKD, including calcium-containing
phosphate binders (calcium acetate, calcium car-
bonate) and non-calcium-containing binders
(sevelamer carbonate, lanthanum carbonate, fer-
ric citrate). KDIGO guidelines suggest oral

phosphate binder administration for patients
with CKD stages 2–4 when serum phosphate
levels are >4.6 mg/dL [238]. Calcium-containing
phosphate binders appear to have pronounced
adverse effects on vascular calcification and can
cause hypercalcemia in patients requiring dialy-
sis. The study of Block et al. compared lanthanum
carbonate, sevelamer carbonate and calcium ace-
tate in a randomized, double blind, placebo-
controlled trial within a cohort of moderate to
advanced CKD patients [239]. The authors show
treatment with phosphate binders resulted in the
progression of CAC and abdominal aortic calcifi-
cation. Interestingly, Russo et al. studied the com-
bined effect of low phosphate diet (<800 mg/d)
with calcium carbonate or sevelamer in
90 pre-dialysis CKD patients with stable serum
phosphate concentration [240]. This treatment
combination reduced the progression of CAC,
even in the calcium carbonate group, suggesting
a relevance for avoiding CAC in patients not
requiring dialysis. Despite beneficial effects of
the phosphate binders sevelamer and ferric citrate
on serum FGF23 levels [238, 241, 242]
observations on cardiac function and performance
were not objective of these studies. In a single-
blinded, placebo-controlled, 3-month-study,
Isakova et al. studied the effect of phosphate
restricted diet and lanthanum in respect to serum
FGF23 and cardiac function [243]. The study
included 39 patients with CKD stages 3 or
4 with normal serum phosphate levels. The
authors report that the combination of 900 mg
phosphate-restricted diet plus lanthanum
decreased serum FGF23 levels. However, echo-
cardiography revealed no changes in ejection
fraction or LV wall thickness between groups.

Ex vivo studies on aortic rings show that
sevelamer treatment improved the CKD-induced
endothelial dysfunction, aortic systolic expansion
rate and pulse wave velocity [193]. In a murine
model of chronic renal failure (CRF), Maizel et al.
investigated the effects of sevelamer on CVD
[244]. This model is characterized by the absence
of hypertension and aortic calcification and by
6 weeks after surgery, CV abnormalities, such
as LVH, diastolic dysfunction and aortic stiffness,
have been developed in these mice. Six weeks

11 Phosphate Is a Cardiovascular Toxin 121



after initiation of renal failure, CRF and sham-
operated mice received regular chow or
supplemented with 3% sevelamer for 14 weeks.
Sevelamer reduced serum phosphate levels and
improved aortic systolic expansion rate, pulse
wave velocity and diastolic function, while LVH
was not altered in CRF mice after 8 weeks of
treatment. However, after 14 weeks of treatment,
sevelamer prevented the progression of LVH in
CRF mice. Furthermore, the multiple regression
analysis revealed that serum phosphate
concentrations, but not serum FGF23 levels, are
associated with the LV diastolic function and
mass in this mouse model. These results indicate
that the phosphate binder sevelamer has benefi-
cial effects on CV complications associated with
renal impairment by lowering serum phosphate
levels.

The iron-based intestinal phosphate binder fer-
ric citrate hydrate further has positive effects on
iron-related parameters, which in turn helps to
normalized serum FGF23 levels [245]. Since
iron deficiency stimulates FGF23 transcription
and occurs frequently in CKD patients, correction
of CKD-related anemia via increased hemoglo-
bin, ferritin and transferrin saturation causes
reduced serum FGF23 levels [246, 247]. Interest-
ingly, an experimental study in Col4a3 knockout
mice, a model for progressive CKD, showed that
early initiation of ferric citrate slowed CKD
progression, improved cardiac function and
overall prolonged the survival of these mice
[248]. Col4a3 knockout mice develop
CKD-related anemia, have elevated serum phos-
phate concentrations and serum FGF23 levels rise
by 6 weeks of age. In this study by Francis and
colleagues, administration of ferric citrate rescued
the iron deficiency and anemia regardless of the
CKD stage. When starting the treatment in early
CKD, but not in late CKD, both serum phosphate
and FGF23 levels could be reduced. Furthermore,
knockout mice on control chow developed hyper-
tension and had significant lower ejection frac-
tion, stroke volume and cardiac output compared
to wild type mice on control diet. Feeding of
ferric citrate mitigated the observed systolic dys-
function and lowered the BP in Col4a3 knockout
mice. Summarizing that the combination of

corrected serum phosphate levels, serum FGF23
levels and parameters of the iron metabolism
might be beneficial for heart and kidney function.

Taken together, phosphate binders are well
tolerated, efficacious, without safety concerns
and commonly used to treat hyperphosphatemia
among renal failure patients requiring dialysis.
However, experimental and clinical studies
about the impact of phosphate binders for CVD
outcome in the CKD and in the general popula-
tion are missing.

11.4.2.3 Drugs Targeting the Phosphate
Transporters in the Intestine

Active intestinal phosphate absorption is
mediated by the transporter sodium/hydrogen
ion-exchange isoform 3 (NHE3) and novel
minimally systemic NHE3 compounds have
been developed. Tenapanor (previously referred
to as RDX5791 or AZD1722) acts locally in the
gut, inhibits NHE3 and therefore intestinal
sodium and phosphate absorption. Spencer et al.
showed that inhibition of intestinal sodium
absorption by tenapanor has protective effects
on sodium-driven cardiac and renal damage in
rodents with CKD [249]. In a follow-up study,
the authors showed that the inhibited sodium
absorption in the intestine is accompanied by
an inhibition of dietary phosphate uptake
[250]. They show that administration of
tenapanor increased fecal phosphate excretion
and reduced urinary phosphate excretion
accompanied by reduced ectopic calcification in
CKD rats. In addition to the reduced hyperpho-
sphatemia, CKD rats treated with tenapanor
displayed reduced serum FGF23 levels and
reduced cardiac hypertrophy. However, clinical
trials investigating the benefits of tenapanor on
cardiac function for patients displaying hyperpho-
sphatemia are not available.

11.4.2.4 Drugs Targeting the Renal
Phosphate Transporters

Studies in NaPi-2a knockout mice demonstrated
that this cotransporter implements for roughly
70% of the renal phosphate reabsorption via the
BBM of the proximal tubule [251]. The develop-
ment of specific inhibitors against NaPi-2a might
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be useful to manage normal phosphate balance. A
compound inhibiting NaPi-2a, named BAY767,
showed in preclinical testing induction of phos-
phaturia and reduction of vascular calcification
[252]. Of course, the value of this promising
approach to treat hyperphosphatemia and
associated CV dysfunctions must be tested in
humans. Here, it should be considered that others
hypothesized that NaPi-2c, not NaPi-2a, has a
greater role for renal phosphate reabsorption in
man [253]. As a second scenario, it is also possi-
ble that NaPi-2c expression increases for compen-
sating the loss of NaPi-2a [254]. Maybe a
combined approach of inhibiting both intestinal
absorption and renal reabsorption could be bene-
ficial to treat hyperphosphatemia and conse-
quently reduce the risk for CV events and
mortality.

11.4.2.5 Magnesium
A promising approach to prevent vascular calcifi-
cation seems to be the administration of magne-
sium supplements, which are either inorganic
(like magnesium chloride, magnesium oxide) or
organic (magnesium citrate or magnesium gluta-
mate) salts. In vitro studies showed that
phosphate-induced calcification in VSMCs was
reduced by treatment with magnesium
[122, 255]. In bovine VSMCs, magnesium
inhibited the beta-glycerophosphate-induced cell
calcification, whereby, magnesium prevented the
formation of secondary CCPs, which is a driving
factor for vascular calcification [256]. In a
register-based cohort with Japanese hemodialysis
patients, increasing serum magnesium levels
attenuate the risk for CV mortality associated
with serum phosphate concentrations [257]. In
rats with adenine diet-induced kidney disease,
low-dose (375 mg/kg) and high-dose (750 mg/
kg) of magnesium citrate significantly decreased
serum phosphate levels compared to the untreated
adenine diet alone [258]. The adenine diet-
induced extensive vascular calcification was
inhibited by magnesium citrate in a dose-
dependent manner suggesting a protective role
of magnesium citrate in calcification. The authors
demonstrate that the underlying protective mech-
anism of magnesium is an increase of alpha

smooth muscle actin and a decrease of
pro-chondrogenic runt-related transcription
factor-2 expression in aortas. This indicates mag-
nesium inhibits the cellular transformation of
VSMCs into osteoblast-like cells. Interestingly,
Diaz-Tocados et al. reported that increasing die-
tary magnesium supplementation from 0.1% to
0.6% reversed established vascular calcification
in 5/6 nephrectomized rats [259]. The serum
phosphate levels in uremic rats were reduced by
dietary magnesium, but the levels were still sig-
nificantly higher compared to sham-operated
animals. In addition, increased dietary magne-
sium reduced the BP in nephrectomized rats com-
pared to controls. Furthermore, the beneficial
action of magnesium was not restricted to oral
application only, because intraperitoneally
administered magnesium decreased vascular cal-
cification too. Kaesler and colleagues reported
reduced vascular calcification in heart aorta and
kidney after treating 5/6 nephrectomized mice
with either magnesium carbonate alone or the
combination of magnesium carbonate plus nico-
tinamide [260]. The treatment significantly
lowered serum FGF23 levels, but had only a
slight effect on serum phosphate concentrations.
Despite these promising results for attenuating
calcification, single treatment of either magne-
sium carbonate or nicotinamide alone induced
renal NaPi-2b expression and increased intestinal
NaPi-2b expression, which in turn might enhance
phosphate absorption and reabsorption. In sum-
mary, a combined strategy of magnesium carbon-
ate and nicotinamide or another therapy reducing
serum phosphate levels might be suitable to treat
vascular calcification and control phosphate
levels.

In an open-label, randomized, controlled trial
in patients with CKD stages 3–4 presenting risk
factors for calcification, orally administered mag-
nesium oxide was effective to slow the progres-
sion of CAC [261]. Over the 2-year trial, the
serum phosphate levels were unchanged by mag-
nesium administration (3.5 mg/dL at baseline and
2 years later). Contrary to the results found for
CAC, progression of thoracic aorta calcification
was not suppressed by magnesium oxide. The
authors speculate that thoracic aorta is resistant
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to uremic-induced calcification, because of the
cellular origin of the VSMCs resulting in a less
likelihood to undergo osteoblastic transdiffer-
entiation. Furthermore, is has been reported that
higher dialysate magnesium prolongs the conver-
sation of primary CCP into secondary CPP in
ESKD patients [262]. The conversation time,
measured by T50 test, indicates the risk for vascu-
lar calcification, whereby a longer time means a
lower risk. Additionally, serum phosphate levels
were reduced by higher dialysate magnesium.

Despite the promising results from experimen-
tal and human studies, more investigations are
need to clarify the role of magnesium for reducing
the risk of CVD development and/ or progression.

11.5 Conclusions

Serum phosphate levels are regulated by FGF23,
PTH and phosphate itself and are linked to the
development of CVD. Hyperphosphatemia is a
risk factor for the initiation of vascular calcifica-
tion, LVH, fibrosis and hypertension. The main
process of phosphate-induced vascular calcifica-
tion is the osteochondrogenic transdifferentiation
of VSMCs resulting in ECM remodeling, apopto-
sis, senescence and pro-inflammatory responses.
In contrast, the mechanisms underlying
phosphate-induced LVH, fibrosis and hyperten-
sion are poorly understood. Hypophosphatemic
patients have a higher risk to develop cardiac
arrhythmias. Keeping serum phosphate levels
within the normal range is crucial for the CV
outcome of patients especially suffering from
renal failure. Despite several therapeutic
approaches to normalize serum phosphate
concentrations, only few studies present data on
the impact of the treatment for associated CVD.
Thereby, calcium free phosphate binders, such as
sevelamer, combined with a second approach to
lower serum levels of phosphate show promising
results. Furthermore, ferric citrate potentially acts
on two routes to prevent CVD. First, it functions
as a phosphate binder reducing serum phosphate,
and second, it helps to overcome iron deficiency
and subsequently reducing serum FGF23 levels, a
risk factor for LVH. Strategies to lower the

intestinal absorption or renal reabsorption of
phosphate via blocking the specific phosphate
cotransporters are another important intervention.
However, it must be demonstrated that this
approach results in prevention or improvement
of CVD. The most promising intervention for
hyperphosphatemia-related CVD for now seems
to be normalizing magnesium concentrations in
the serum. Experimental studies indicate that die-
tary magnesium supplementation is beneficial for
CV calcification. Recent clinical studies do also
point in this direction. However, for all the
discussed interventions to lower serum phosphate
levels, the value for improvements of CVD, such
as reducing the mortality risk, slow down the
progression, prevent disease induction, reverse
the disease outcome, are still not completely
known. Summarizing the current knowledge of
phosphate-induced CVD and therapeutic options
reveals the urgent need for more experimental and
clinical investigations addressing underlying
mechanisms and especially CV outcomes of ther-
apeutic strategies in patients suffering from
out-off range serum phosphate levels.
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Coordination of Phosphate
and Magnesium Metabolism in Bacteria 12
Roberto E. Bruna , Christopher G. Kendra ,
and Mauricio H. Pontes

Abstract

The majority of cellular phosphate (PO4
-3; Pi)

exists as nucleoside triphosphates, mainly
adenosine triphosphate (ATP), and ribosomal
RNA (rRNA). ATP and rRNA are also the
largest cytoplasmic reservoirs of magnesium
(Mg2+), the most abundant divalent cation in
living cells. The co-occurrence of these ionic
species in the cytoplasm is not coincidental.
Decades of work in the Pi and Mg2+ starvation
responses of two model enteric bacteria,
Escherichia coli and Salmonella enterica,
have led to the realization that the metabolisms
of Pi and Mg2+ are interconnected. Bacteria
must acquire these nutrients in a coordinated
manner to achieve balanced growth and avoid
loss of viability. In this chapter, we will review
how bacteria sense and respond to fluctuations
in environmental and intracellular Pi and Mg2+

levels. We will also discuss how these two
compounds are functionally linked, and how
cells elicit physiological responses to maintain
their homeostasis.

Keywords

Phosphorus · Magnesium · Bacteria ·
Cytotoxicity · Transport · Salmonella

12.1 Phosphorus Acquisition
in Bacteria

Phosphorus (P) is an intrinsic component of all
living cells. The importance of this chemical ele-
ment is illustrated by its various structural and
biochemical functions. P is a structural constitu-
ent of lipids and complex carbohydrates, includ-
ing glycolipids, lipopolysaccharides (LPS) and
(lipo)teichoic acids. These molecules are major
structural components of biological membranes
and cell walls, and are required for the formation
of cellular boundaries and membrane-bound
organelles. P in phosphoryl groups enables the
implementation of phosphorelays and the estab-
lishment of signal transduction cascades [41]. P is
also a component of nucleotides. In addition to
their role as biosynthetic precursors for polymers,
nucleotides can act as second messengers, pro-
moting the transfer of information in signaling
networks [14, 46, 53, 136], and store and release
chemical energy to be used in energy-dependent
processes. Finally, the structural role of P as a
component of nucleic acids enables the storage,
expression and transmission of genetic informa-
tion. How do bacterial cells acquire P from their
environment?
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Although bacteria are able to acquire and
metabolize P from organic molecules such as
organophosphates (phosphate esters, C-O-P
bonds) or phosphonates (C-P bonds) [75, 115,
119, 120, 130], these organisms typically prefer
to utilize inorganic orthophosphate (PO4

3�, Pi,
phosphate) as their P source (Fig. 12.1). In this
context, the acquisition of P relies primarily on
inorganic Pi transporters present at the cytoplas-
mic membrane. Three biochemically distinct clas-
ses of Pi transporters have been identified in
bacteria: NptA, Pit, and Pst (Fig. 12.2a). NptA
(Na-dependent phosphate transport) belongs to
the type II sodium/phosphate (Na/Pi)
cotransporters family. Homologs of this transport

family are common in eukaryotic organisms,
where they have been extensively studied [7, 47,
125]. Studies of bacterial NptA homologs are
scarce [57, 61, 137]. Nonetheless, the biochemi-
cal characterization of the NptA homolog from
Vibrio cholerae indicates that like its eukaryotic
counterparts, this transporter has a low affinity for
Pi (Km of �300 μM) and uses a sodium (Na+)
gradient to facilitate the movement of Pi into the
cell at a stoichiometry of 3:1 (Na+:Pi), and a rate
of �9 pmol Pi/min/mg of protein [61].

The Pit (phosphate inorganic transport) family
is widespread among all domains of life [76, 85,
113]. Pit systems use the proton motive force to
transport soluble, neutral divalent metal-
phosphate complexes (Me:Pi) across biological
membranes. Bacterial Pit transporters have low
affinity for Pi (Km � 1.9–25 μM) and can trans-
port Pi at a rate of 19–58 nmol Pi /min/mg of dry
cell [45, 77, 114, 127]. This system can mediate
both the efflux and homologous exchange of Me:
Pi complexes [114], and displays some promiscu-
ity towards non-Pi oxyanions such as arsenate
[128] (Fig. 12.2a). In Escherichia coli, the Pit
transporter PitA is often thought to function as a
constitutive housekeeping Pi transporter. PitA
expression is, nonetheless, regulated: pitA tran-
scription is stimulated by exposure of cells to
zinc-phosphate (Zn3(PO4)2) salt [54]. Further-
more, PitA expression is post-transcriptionally
repressed during Mg2+ starvation [134].

In addition to NptA and Pit, bacteria often
encode inducible, ATP-dependent Pi transporters.
The Pst system is a complex of four proteins
(PstSCAB) that can transport Pi with high affinity
(Km 0.18–0.40 μM Pi) and at a rate of �16 nmol
Pi/min/mg of dry cell [127] (Fig. 12.2a). PstS is
an extracytoplasmic substrate-binding protein.
PstC and PstA are transmembrane components
that comprise the Pi channel, and PstB harbors
the ATP-binding domain needed for coupling
energy hydrolysis with the release of Pi into the
cytoplasm [38, 92]. The Pst system is highly
specific for Pi, efficiently discriminating it from
other inorganic oxyanions such as arsenate and

Fig. 12.1 Schematic representation of bacterial Pi
metabolism. Inorganic Pi is the preferred P-source (1).
Pi is translocated into the cytoplasm by specialized
membrane-bound transporters (2). Alternatively, bacteria
can use organic-P sources, such as organophosphate and
phosphonates (3), which are transported into the cyto-
plasm by a variety of dedicated membrane transporters
(4). Enzymatic Pi extraction from organic molecules can
occur either in the cytoplasm (5) by intracellular enzymes
(E1), or extracytoplasmically (6) by specialized enzymes
(E2). Pi is assimilated by the cell during the synthesis of
ATP (7). Intracellular ATP functions as the P-donor mole-
cule, serving as the source of Pi for the biosynthesis of
inorganic (e.g., pyro-Pi and poly-Pi) and organic (e.g.,
DNA and lipids) molecules, and powering energy depen-
dent processes (7)
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sulfate [6, 77, 94, 127]. Noteworthy, Pst-coding
genes are usually arranged in an operon
(pstSCAB-phoU) along with a regulatory acces-
sory gene phoU, which codes for a peripheral
membrane protein [110]. The pstSCAB-phoU
operon is transcriptionally activated by the
PhoB/PhoR two-component system (see below).

12.2 Sensing and Responding to Pi
Starvation

When Pi is plentiful, bacteria can maintain ade-
quate supplies of cytoplasmic Pi using their
housekeeping, low affinity Pi transporter systems.
However, when Pi is limited and these

Fig. 12.2 (a) Cartoon depicting the known classes of
Pi transport systems found in bacteria: NptA, Pit and
Pst. NptA is a sodium/phosphate symporter. Pit functions
as a metal:phosphate (M:Pi) proton symporter (proton not
shown for simplicity). Pst is a multi-component, high
affinity, ATP-dependent Pi transporter. PstS is the
extracytoplasmic Pi-binding protein, which binds and
delivers Pi to the transmembrane channel comprised of
the PstC and PstA components. PstB is responsible for the
ATP binding, hydrolysis, and release of ADP that powers
Pi transport. (b) Schematics depicting the multicompo-
nent signal complex controlling Pi-responsive PhoB/

PhoR two-component system activity. (Left-hand side
panel) During growth in Pi abundant conditions, the PhoU
regulatory protein interacts with and represses the activity
of the Pst transport system and PhoR kinase activity.
(Right-hand side panel) A decrease in cytoplasmic Pi
levels alters or disrupts the PhoU interaction with Pst and
PhoR. Pst begins to import extracellular Pi while PhoR
phosphorylates its cognate response regulator, PhoB.
PhoB-P activates the transcription of its target genes,
including the pstSCAB-phoU operon, phoBR, and other
genes required for Pi acquisition
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transporters can no longer keep up with cellular
demand, bacteria activate a Pi starvation
response. In E. coli and most bacteria, this
response is governed by the PhoB/PhoR
two-component signal transduction system
[27, 33, 38, 40, 52, 80, 119–121, 129].

PhoR is a membrane-bound homodimeric,
bifunctional histidine kinase/phosphatase. PhoB
is its cognate transcriptional response regulator,
comprised of an N-terminal receiver domain and
a C-terminal DNA-binding domain. Scarce envi-
ronmental Pi promotes the kinase state of PhoR.
PhoR autophosphorylates at a conserved histidine
residue and subsequently transfers this phospho-
ryl group to the receiver domain of PhoB [30, 73,
121]. Phosphorylated PhoB (PhoB-P) binds to
DNA sequences known as Pho boxes [3, 35,
74]. Binding of PhoB-P to Pho boxes located at
the promoter regions of target genes results in
either recruitment of RNA polymerase and tran-
scriptional activation of downstream gene(s), or
interference with RNA polymerase and
downregulation of gene expression [9, 13, 29,
56, 72, 79, 132, 135]. Abundant environmental
Pi promotes the phosphatase state of PhoR, lead-
ing to the dephosphorylation of PhoB-P and inac-
tivation of the Pi starvation response [16, 38, 100,
119–121].

While the phosphorylation events controlling
the activation state of PhoB/PhoR are well under-
stood, how this two-component system senses
environmental Pi is still unclear. Unlike other
prototypical bifunctional histidine kinases/
phosphatases, PhoR does not contain a sizable
extracytoplasmic domain, which is typically
involved in the recognition of extracellular
ligands [97]. Hence, PhoR is unlikely to directly
detect Pi via extracytoplasmic sensory domain(s).
Rather, the ability of PhoB/PhoR to respond to Pi
requires the Pst transport system and the PhoU
protein. PhoU mediates a physical interaction
between PhoR and the PstB component of the
Pst system, creating a multicomponent signaling
complex capable of modulating PhoB/PhoR
activity in response to environmental Pi [37, 38,
107, 110, 120, 121] (Fig. 12.2b). Pi limitation is
presumed to disrupt (or alter) this signaling com-
plex, promoting the kinase activity of PhoR,

phosphorylation of PhoB and activation of Pi
starvation response (Fig. 12.2b).

It is also unclear whether Pi starvation is
sensed by the extracytoplasmic or cytoplasmic
portions of this multicomponent signaling com-
plex. The extracytoplasmic sensing model relies
on two lines of evidence. First, intracellular Pi
levels have been measured by 31P NMR and
shown only a modest decrease under conditions
in which PhoB is activated [91]. However, given
the lack of positive and negative controls in this
study, it is difficult to determine whether the
observed differences are biologically significant
or if larger discrepancies in intracellular Pi
concentrations would be revealed by the experi-
mental set up. Second, certain mutations in the
PstC and PstA components of the Pst system have
been shown to abolish Pi transport activity while
retaining Pi sensing capacity [24, 25]. This argu-
ment makes the assumption that an inactive Pst
system would lead to a decrease in intracellular Pi
levels—that is, it does not consider that cells can
compensate for a decrease in intracellular Pi,
resulting from a defective Pst system, by
upregulating other transporters such as PitA
[15, 49].

The cytoplasmic sensing model has been
evoked to account for several experimental results
that can only be explained if Pi starvation is being
sensed by the cytoplasmic portion of the PhoR-
PhoU-Pst signaling complex. For example, when
metabolic mutants of E. coli are grown in medium
containing high Pi, PhoB/PhoR is activated under
conditions that promote an expansion of cytoplas-
mic pools of ATP [126]. Similarly, a decrease in
cytoplasmic concentrations of Mg2+ activates
PhoB/PhoR in both E. coli and Salmonella
enterica (Salmonella) grown in high Pi media
[15, 87, 90]. Notably, cytoplasmic Mg2+ starva-
tion destabilizes the bacterial ribosomal subunits
[90]. Decreased ATP consumption by function-
ally compromised ribosomes causes a rise in cyto-
plasmic ATP concentrations and, presumably, a
concomitant decrease in levels of free Pi that is
proposed to activate the PhoB/PhoR
two-component system. This model is indepen-
dently supported by the demonstration that
antibiotics that inhibit translation cause a rise in
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intracellular ATP levels, resulting in PhoB/PhoR
activation in both E. coli and Salmonella grown in
high Pi medium. Importantly, activation of PhoB/
PhoR by translation inhibitors is not observed if
the rise in ATP levels is prevented by inducing
the expression of an ATPase prior to antibiotic
treatment [87]. Finally, in Salmonella, inactiva-
tion of the pitA transporter causes an increase in
the basal level of pstSCAB transcription, presum-
ably because this mutation lowers the intracellular
concentration of Pi [15].

Which genes are expressed in response to Pi
starvation? In E. coli, the PhoB regulon contains
at least 38 genes including: phoBR, for the posi-
tive autoregulation of the system; phoA, an
extracytoplasmic alkaline phosphatase; phoE, an
outer membrane porin channel for anions (includ-
ing Pi); pstSCAB-phoU, coding the high affinity
Pst system and the chaperon like inhibitory pro-
tein PhoU (see above);
phnCDEFGHIJKLMNOP, phosphonate uptake
and breakdown genes; ugpBAECQ, genes for
glyceraldehyde-3-phosphate uptake plus a phos-
phodiesterase that hydrolyzes glycerophosphoryl
diesters (deacylated phospholipids) (For reviews
see [38, 92, 119, 120]). Notably, this response
goes beyond the mere acquisition of environmen-
tal Pi and alternative P sources. Some PhoB-
activated genes allow E. coli to scavenge Pi
from its own cellular components. For example,
the PhoB activated waaH gene encodes a
glucuronic acid transferase. WaaH modifies the
core region of the E. coli LPS, replacing a Pi
residue, which can be re-purposed by the cell,
with a glucuronic acid [4, 60]. Pi-starvation
driven changes in cell composition have also
been documented in the distantly related species
Bacillus subtilis, and may be a general strategy
adopted by bacteria to reallocate assimilated Pi
[10, 11, 68, 96].

Importantly, the genes within the PhoB regulon
are neither expressed at the same time, nor at the
same levels. An elegant analysis of the PhoB-
dependent temporal patterns of gene expression
revealed the existence of early genes, encoding
proteins required for PhoBR autofeedback regula-
tion and Pi transport (i.e. phoBR and pstSCAB-
phoU); and late genes, encoding proteins required

for the acquisition and utilization of alternative,
typically organic phosphorus sources (i.e. phoA,
and ugp and phn operons) [35]. This temporal
expression pattern can be explained, in large
part, by variations in the DNA sequence of Pho
boxes, which produce different binding affinities
to PhoB-P. While the promoter regions of genes
needed at the initial stages of starvation usually
have high affinity Pho Boxes, requiring lower
cytoplasmic concentrations of PhoB-P for tran-
scriptional activation, the promoter regions of
genes needed at the later stages of the response
have low affinity Pho Boxes, requiring higher
concentrations of PhoB-P [35].

12.3 Phosphate Cytotoxicity via Pst

While P is essential, excessive transport of Pi into
the cytoplasm is toxic. In some cases, toxicity is
mediated by the co-transported counterions,
rather than Pi itself. For instance, some Pi
transporters import Pi:Me salts (Fig. 12.2a).
Excessive transport of Pi:Me (Pi:Co2+; Pi:
Cu2+; Pi:Mn2+; Pi:Zn2+) salts by the Pho84 trans-
porter of Saccharomyces cerevisiae results in
metal toxicity [55, 81, 95]. An analogous phe-
nomenon occurs in the PitA transporter of E. coli,
which can render cells liable to Zn2+ poisoning
[5]. Toxicity mediated by these transport systems
likely reflect the fact that relatively small
disturbances in the intracellular concentrations
of these metals are sufficient to promote unpro-
ductive mismetallation events that hinder enzy-
matic reactions [34].

In bacteria, Pi toxicity per se has been
observed in cells experiencing uncontrolled
Pst-mediated Pi uptake resulting from either
(1) missense mutations in Pst components that
increase Pi influx [122], (2) null mutations in
phoU that derepresses the PhoB/PhoR regulon
[93, 107], or (3) over-expression of the Pst system
[15]. The PstA and PstC proteins form the Pst Pi
channel that spans through the cytoplasmic mem-
brane [92, 122] (Fig. 12.2a). In E. coli, certain
amino acid substitutions within PstC transmem-
brane helices cause a severe growth defect when
the Pi concentration in the medium is raised to
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levels approaching that of the cytoplasm. These
substitutions are thought to lock the transport
systems into an “open” conformation that allows
unrestricted Pi uptake. In agreement with this
notion, the Pi sensitivity of cells harboring these
PstC variants is suppressed by additional
amino acid substitutions in PstC that abolish Pi
transport, presumably by locking the channel into
a “closed” conformation [122].

The involvement of Pst in potentiating Pi tox-
icity is also inferred from genetic studies of the
phoU regulatory gene (Fig. 12.2b). Pioneer work
in E. coli established that inactivation of phoU
results in a severe growth defect due to increased
Pst expression and transport activity. Specifically,
the growth impairment of phoU mutants is
suppressed by secondary mutations that inactivate
components of the Pst transporter (pstB or
pstSCAB), or prevent its expression (phoB or
phoR) [107], and it is improved by reducing the
concentration of Pi in the medium [93]. Impor-
tantly, this relationship is not restricted to E. coli:
phoU mutations also lead to growth impairment
in species where PhoU participates in the repres-
sion of PhoB/PhoR and Pst transport activity.
These include Pseudomonas aeruginosa [2],
Synechocystis sp. [78], Streptococcus
pneumoniae [137], Staphylococcus epidermidis
[118], Mycobacterium marinum [117],
Sinorhizobium meliloti [28] and Caulobacter
crescentus [69]. In C. crescentus, phoU
inactivating mutations are conditionally lethal.
These genetic lesions can only be introduced in
strains already containing mutations in phoBR or
pstSCAB [69]. Similarly, in Sinorhizobium
meliloti, phoU can only be inactivated if cells
are grown in medium containing low
concentrations of Pi, or if the Pst transporter is
also inactivated [28].

The dysregulation of Pst-mediated Pi uptake
observed in phoU mutants has pleiotropic effects
on cellular physiology, reflecting the pervasive
role of Pi in the cell. In addition to hindering
growth, mutations in phoU are frequently linked
to increased sensitivity to antibiotics and other
environmental stresses [2, 117, 137]. Further-
more, these mutations lead to elevated intracellu-
lar ATP [117, 118] and over accumulation of

polyphosphate (poly-Pi) [2, 28, 48, 69, 78,
117]. Notably, secondary mutations that hinder
poly-Pi synthesis do not suppress the lethality of
phoU mutations in C. crescentus [69], indicating
that toxicity does not originate from poly-Pi
accumulation.

In Salmonella, overexpression of the Pst trans-
porter from an inducible promoter is sufficient to
hinder growth and induce a rise in cytoplasmic
ATP levels [15]. These phenotypes are also
accompanied by a global decrease in translation
and the transcription of the mgtCBRU operon,
encoding genes that respond to cytoplasmic
Mg2+ starvation (see below). Surprisingly, the
effect of pstSCAB overexpression on growth can
be drastically improved by enzymatically
decreasing intracellular ATP concentration
through the controlled expression of soluble
components of the F1Fo ATPase [15]. Excessive
Pi, therefore, becomes toxic following its
incorporation into ATP, and this toxicity can be
remediated by providing cells with Mg2+ [15].

12.4 The Role of Mg2+

on the Utilization
of Assimilated Pi

Pi imported into the cytoplasm is incorporated
into biomass primarily through the synthesis of
ATP. ATP functions as the main P-carrier mole-
cule in the cell, mediating the transfer of Pi in
many biosynthetic reactions, and serving as the
main source of phosphoanhydride bonds used to
power energy-dependent processes (Fig. 12.1)
[70, 120]. In bacteria and other living organisms,
most of the assimilated Pi is found in ATP, and
ribosomal ribonucleic acids (rRNA), the most
abundant RNA species in cells [12, 31, 39, 89].

Following assimilation, the negative charges
from Pi residues in biomolecules often undergo
charge neutralization by cytoplasmic cationic
species. Mg2+ plays a pivotal role in this process
due to its high charge density (the highest among
all biologically relevant cations), and its presence
as the most abundant divalent cation in cells [116]
(Fig. 12.1). The Mg2+ concentrations in bacteria
are estimated to be around 75–100 mM, of which
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two-thirds (50–65 mM) are intracellular and
one-third (25–35 mM) are bound to cell envelop
components such as the LPS of Gram-negative
species [89]. Half of the intracellular Mg2+ is
complexed to nucleoside-triphosphates (NTPs),
mainly ATP [89]. Importantly, it is this ATP:
Mg2+ salt, rather than the ATP anion, which
serve as the substrate for most ATP-dependent
enzymatic reactions [71, 108].

The assembly of rRNAs into functional
ribosomes also requires the association of Mg2+

ions to reduce the electrostatic repulsion among
Pi residues present in the sugar-phosphate back-
bone, enabling the compaction of the rRNA into
stable structures and the association of ribosomal
proteins [59]. A prototypical bacterial ribosome
binds approximately 170 Mg2+ ions [98]. During
rapid exponential growth, ribosomes pools are at
their highest and are estimated to chelate the
equivalent of 25% of the total intracellular Mg2+

[89]. Importantly, Mg2+ associates with
ribosomes in a specific manner [58, 123,
124]. Compared to other common biological
cations such as Na+, K+, Ca2+, or polyamines
[32], Mg2+ has a greater affinity for oxygen
atoms in phosphodiester bonds. Mg2+ binds oxy-
gen atoms with a well-defined geometry, bringing
them into its first hydration shell.
Consequently, rRNA:Mg2+ complexes are also
stabilized by non-electrostatic components of the
binding such as polarization, charge transfer and
exchange interactions [86].

Given the central role of Mg2+ on the function
of assimilated Pi, it is not fortuitous that ATP and
rRNA, the largest cytoplasmic reservoirs of Pi,
are also the largest cytoplasmic repositories of
Mg2+ [89]. How do bacteria maintain adequate
concentrations of Mg2+ in their cytoplasm? Do
they alter their Pi metabolism in response to
insufficient Mg2+?

12.5 Sensing and Responding
to Mg2+ Starvation

Bacterial cells have also evolved means to sense
and respond to decreases in the concentration of
extra- and intracellular Mg2+. In many bacterial
species, theMg2+ starvation response is controlled

by the PhoP/PhoQ two-component signal trans-
duction system. This regulatory system has been
extensively studied in Salmonella, from which
most of our knowledge is derived (for extensive
reviews see [42, 43]. PhoQ is a membrane-
bound, homodimeric, bifunctional histidine
kinase/phosphatase. PhoQ senses
extracytoplasmic Mg2+ through a patch of acidic
amino acid residues located at its
extracytoplasmic domain [18, 20, 36]. Binding
of Mg2+ to this acidic patch forms salt bridges
that reduce electrostatic repulsion against the neg-
atively charged cytoplasmic membrane,
stabilizing PhoQ in a rigid conformation that
favors its phosphatase activity. In this conforma-
tion, PhoQ maintains its cognate DNA-binding
transcriptional regulator PhoP in an inactive,
unphosphorylated state [17, 20, 36, 66, 102]
(Fig. 12.3).

As the concentration of extracellular Mg2+

decreases, the Mg2+ bridges between the acidic
amino acid patch of PhoQ and the outer leaflet of
cytoplasmic membrane are destabilized, promot-
ing conformational changes favoring a kinase
state [20, 36]. PhoQ undergoes
autophosphorylation and, subsequently, transfers
its phosphoryl residue to PhoP. Phosphorylated
PhoP (PhoP-P) binds with high-affinity to target
DNA sites, named PhoP boxes [65, 66, 102,
131]. The majority of PhoP boxes are located at
promoters, where binding of PhoP-P stimulates
the transcription of downstream genes through
physical interactions with RNA polymerase
[22, 84, 102, 138, 139] (Fig. 12.3).

The response to Mg2+ starvation orchestrated
by PhoP/PhoQ occurs in an orderly manner, with
transcription of individual genes being induced at
specific stages of the stress, in a fashion resem-
bling the PhoB/PhoR response to Pi starvation
(see above). However, unlike PhoB [35], the
time and order of transcriptional activation of
genes within the regulon is not dictated solely
by the affinity of PhoP-P to PhoP boxes. In Sal-
monella, the expression order of genes is
influenced by additional regulatory mechanisms,
including the existence of Mg2+ sensing RNAs
and other regulatory elements at the 50-end of
transcripts [26, 50, 62, 63, 82, 99, 106], transcrip-
tional silencing by nucleoid associated proteins
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[23, 140], and modulation of PhoQ activity by
members of the regulon [67, 83]. Nonetheless, the
timely expression of genes in the regulon is linked
to their physiological functions. For instance, dur-
ing the early stages of Mg2+ starvation, PhoP
activates the expression of several enzymes
involved in the remodeling of the cell envelope.
These proteins carry out covalent modifications
that replace negatively charged Pi-containing
residues in the LPS. The result is a reduction in
the net negative charge of the outer membrane,
which facilitates charge neutralization when
Mg2+ is limited, and frees Mg2+ ions bound to
the LPS to be imported into the cytoplasm [8, 19,
44, 51, 101, 105, 112].

The transcription of genes responding to phys-
iological disturbances caused by prolonged Mg2+

starvation is often conditioned by additional
events taking place in the cytoplasm. For
instance, while phosphorylation of PhoP resulting
from low extracytoplasmic Mg2+ sensing by

PhoQ causes transcription to initiate at the
promoters of the mgtA gene and the mgtCBRU
operon, transcription elongation into their
corresponding coding regions takes place only
when cells also experience a decrease in free
cytoplasmic Mg2+ [26, 106]. Therefore, MgtA
and the proteins within the mgtCBRU operon are
expressed following a substantial period of star-
vation, when the housekeeping transporter, CorA,
is no longer able to maintain an adequate supply
of Mg2+ to the cytoplasm. Whereas mgtA and
mgtB encode high affinity, ATP-dependent
Mg2+ transporters [103, 104, 111], mgtC encodes
a protein that reduces ATP levels by inhibiting Pi
uptake via an unidentified Pi transporter [15, 63,
64, 88]. (MgtR and MgtU encode regulatory
proteins that control the degradation of MgtA,
MgtB, and MgtC [1, 21, 133]). Hence, MgtA
and MgtB import extracellular Mg2+ into the
cytoplasm and MgtC prevents the sequestration
of this scarce ion by ATP molecules

Fig. 12.3 Representation of the Mg2+-sensing PhoP/
PhoQ two-component system. (Left-hand side panel)
High extracellular Mg2+ levels stabilize the sensor protein
PhoQ in a rigid conformation. This state promotes PhoQ
phosphatase activity, and maintains its cognate response
regulator, PhoP, in an inactive, unphosphorylated state.

(Right-hand side panel) Low extracytoplasmic Mg2+

activates PhoQ kinase activity, increasing the intracellular
concentration of PhoP-P, which, in turn, promotes tran-
scription initiation at PhoP-dependent promoters, such as
those involved in adaptation to low Mg2+ environments
(e.g., cell envelope remodeling, Mg2+ scavenging, etc.)
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[63, 64]. Notably, the transcription of a subset of
PhoP-activated genes requires the activity of the
MgtA transporter. The importation of extracellu-
lar Mg2+ by this transporter increases the levels of
PhoP-P, presumably by removing inhibitory
Mg2+ from the vicinity of PhoQ [83].

12.6 Coordination of Pi and Mg2+

Homeostasis in Bacteria

Pi toxicity resulting from increased Pst trans-
porter activity explains why this transporter is
not constitutive, being only expressed in low Pi
environments. However, this does not reveal a
biologically relevant context where Pi toxicity
would occur. Do natural populations of bacteria
experience Pi toxicity? If so, under what
circumstances? In Salmonella, prolonged Mg2+

starvation causes a decrease in cytoplasmic
Mg2+. At the initial stages of cytoplasmic Mg2+

starvation, the assembly of ribosomal subunits is
compromised while Mg2+-dependent enzymatic
reactions remain unaffected (Fig. 12.4a). This
phenomenon likely reflects differences between
the Mg2+ requirements of the ribosome and
enzymes. Whereas the ribosome has a high, con-
tinuous requirement for Mg2+ (>170 ions for their
structural stabilization), enzymes have a low and
transient need for this cation (one or a few ions
during each catalytic cycle). Consequently, cells
experience a decrease in translation efficiency,
but can still carry out other biosynthetic reactions
such as ATP synthesis and transcription
[90]. Because translation is the most expensive
anabolic activity in the cell, consuming over 70%
of the ATP that is utilized in biosynthetic pro-
cesses [89, 109], this ribosome assembly defect
leads to a reduction in ATP consumption and a
concomitant rise in cytoplasmic ATP concentra-
tion [15, 87, 90] (Fig. 12.4a). This sets in motion
two chains of events.

First, as a substantial portion of intracellular Pi
comprise phosphoryl residues in ATP, a decrease
in ATP hydrolysis from translation reactions
reduces the intracellular recycling of Pi. This pre-
sumably decreases cytoplasmic Pi concentrations,

which triggers PhoB/PhoR activation [87]. PhoB
promotes Pst expression, causing an increase in Pi
uptake, and ATP synthesis [15]. Increased ATP
concentrations stimulate rRNA synthesis, the
rate-limiting step in ribosome biosynthesis. How-
ever, newly synthesized rRNA cannot assemble
into functional ribosomes due to insufficient
Mg2+ [90] (Fig. 12.4a). Consequently, cells are
subjected to a vicious cycle, whereby the trans-
port of Pi by Pst increases cytoplasmic ATP
levels and rRNA synthesis, promoting additional
chelation of Mg2+ that further destabilizes the
ribosomes and stimulates Pst expression [15, 90].

Second, this reduction in translation efficiency
also triggers the expression of genes responding
to cytoplasmic Mg2+ starvation. Inefficient trans-
lation promotes transcription elongation into the
coding regions of mgtA and mgtCBRU through a
number of regulatory mechanisms acting at their
50-mRNA leaders [62, 63, 82, 99, 106]. MgtA and
MgtB import Mg2+, promoting the stabilization of
ribosomes [90] (Fig. 12.4b). MgtC reduces ATP
levels [63] by hindering the activity of a yet
unidentified Pi transport system [15]
(Fig. 12.4b). By inhibiting Pi uptake, MgtC
hampers all ATP generating reactions in the cell.
On the one hand, a reduction in ATP quenches
rRNA synthesis, preventing further entrapment of
Mg2+ by nascent rRNA (Fig. 12.4b). On the other
hand, as new steady-state levels of ribosomes are
reached, the degradation of excess rRNA and
ribosomes liberates additional Mg2+ ions into
the cytoplasm. Overall, the concerted activities
of MgtA, MgtB and MgtC restore ribosomal
function, effectively silencing PhoB/PhoR and
inhibiting Pst expression [15, 87, 90].

12.7 Concluding Remarks

The utilization of assimilated Pi into ATP and
ribosomes requires Mg2+. Because cytoplasmic
Pi is rapidly assimilated into ATP [15], cells
coordinate Pi uptake with Mg2+ availability. In
Salmonella, the response to insufficient cytoplas-
mic Mg2+ entails the inhibition of Pi uptake as a
general strategy to prevent sequestration of
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Fig. 12.4 (a) Model illustrating the interplay between
Pi and Mg2+ metabolisms in bacteria. (Left-hand side
panel) During homeostasis, Pi is translocated into the
cytoplasm by dedicated membrane-bound transporters.
Cells assimilate imported Pi through the synthesis of
ATP, which is primarily neutralized by Mg2+ cations,
yielding ATP:Mg2+, the main physiological form of
ATP. In enteric bacteria, ATP:Mg2+ stimulates rRNA syn-
thesis, thus promoting ribosome biogenesis. Large
amounts of Mg2+ ions are required to support assembled,
translating ribosomes which consume the majority of
intracellular ATP pools, thereby recycling Pi and Mg2+.
(Right-hand side panel) After exhausting the environmen-
tal Mg2+, cells eventually experience a shortage in cyto-
plasmic Mg2+ levels. Insufficient cytoplasmic Mg2+

impairs ribosomal subunit assembly, lowering translation

efficiency and ATP consumption. Yet, the combined activ-
ity of all Pi-assimilating reactions continues to promote
ATP synthesis, which furthers rRNA transcription. This
results in the futile accumulation of unassembled ribo-
somal subunits, which are now unable to hydrolyze ATP:
Mg2+ to recycle Pi and Mg2+. (b) Cellular response to
cytoplasmic Mg2+ starvation in Salmonella. The
decrease in cytoplasmic Mg2+ levels promotes transcrip-
tion elongation into the coding regions of the PhoP-
dependent mgtA, mgtB, and mgtC genes. MgtA and
MgtB proteins import Mg2+ into the cytoplasm, and the
MgtC protein reduces the uptake of Pi, thus, preventing its
assimilation into Mg2+-chelating ATP. The increase in free
cytoplasmic Mg2+ in combination with a diminished pool
of ribosomes restores translation, normalizing ATP hydro-
lysis and recycling of intracellular Pi and Mg2+
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already scarce Mg2+ by assimilated
Pi. Interestingly, artificially increasing Pi intake
through Pst expression induces the transcription
of genes that respond to cytoplasmic Mg2+ star-
vation (see above). This occurs even when cells
are grown in conditions where Mg2+ is plentiful
[15]. Therefore, excessive cytoplasmic Pi mimics
conditions resulting from insufficient cytoplasmic
Mg2+, and vice-versa. Given that Mg2+, ATP and
rRNA are indispensable constituents of every liv-
ing cell, we anticipate that the inherent interplay
among them hereby described is widespread in
nature.
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Phosphate Dysregulation
and Neurocognitive Sequelae 13
John Acquaviva, Hosam G. Abdelhady,
and Mohammed S. Razzaque

Abstract

The endocrine regulator proteins, fibroblast
growth factor 23 (FGF23) and Klotho have
been well studied as mediators of phosphate
metabolism. FGF23 has been implicated in the
renal excretion of phosphate by limiting the
docking of sodium-dependent phosphate
transporters, Npt2a and Npt2c, into the lumi-
nal side of renal proximal tubular epithelial
cells. By limiting Npt2a/c activity in the renal
tubular epithelial cells, phosphate is
reabsorbed at lower rates and is excreted at
higher rates. The action of Klotho is relatively
less understood but has been implicated as an
FGF23 cofactor in receptor binding. Klotho is
mostly synthesized in the distal tubules of the
nephron relative to FGF23’s activity in proxi-
mal renal tubules. The neurological sequelae
due to alterations in the FGF23-Klotho axis
may be explained by the direct effects of
these phosphate-regulating proteins on neuro-
nal tissues or by the roles of these proteins in
phosphate metabolism. Hyperphosphatemia

has been associated with vascular wall stiff-
ness that may alter blood flow and
weakenvessels in the brain. In contrast,
hypophosphatemia may alter ATP usage and
metabolism in the central nervous system
(CNS), leading to neurological compromise.
Altered levels of FGF23 and Klotho have
both been associated with neurocognitive
decline, clinical dementia, memory loss, and
poor executive function in humans. Further-
more, FGF23 and Klotho dysregulation has
been linked to structural and functional
changes of the cardiovascular system with an
increased risk of stroke. Subsequent research
should focus on characterizing the neuropa-
thology associated with alterations in the
FGF23-Klotho system and dysregulated phos-
phate metabolism.

Keywords

Phosphate · Brain · Cognitive function ·
FGF23 · Klotho

13.1 Introduction

The metabolic regulation of phosphate relies on
an interplay between hydroxypatite deposition
and breakdown, intestinal absorption, and renal
excretion. Within the intestines, phosphate is
reabsorbed by a paracellular route through tight
junctions and an active transport route through
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sodium-dependent phosphate transporters
(Npt2b) [13, 17, 39]. Calcitriol and a low phos-
phate diet induce the expression of Npt2b on the
apical membranes of intestine mucosal cells and
therefore control active transport of phosphate
[13, 40]. How the human body senses extracellu-
lar phosphate status is not completely elucidated,
as a phosphate sensor is not yet identified but a
likely mechanism could be mediated by parathy-
roid hormone (PTH) and its effects on bone and
renal tubules. For example, high extracellular
phosphate levels have been associated with ele-
vated PTH, and in response, PTH suppresses
Npt2a and Npt2c activities in proximal renal
tubules [44]. Decreased Npt2a/c activity in the
proximal renal tubules causes increased urinary
excretion of phosphate. Similarly, the bone-
derived fibroblast growth factor 23 (FGF23) and
the membrane-bound protein, Klotho have aug-
mentative actions with PTH on phosphate excre-
tion within the renal tubules. FGF23 causes the
suppression of proximal renal tubular Npt2a/c
expression through direct inhibition or modula-
tion of the parathyroid axis. This suppression
causes decreased cotransport activity of Npt2a/c,
which leads to decreased reabsorption of phos-
phate from the renal tubules. Murine and
subsequent human genetic studies have linked
hypophosphatemia with overexpression of
FGF23, further characterizing the role of FGF23
in phosphate excretion [3, 7]. The actions of
Klotho are relatively less understood, however,
Klotho has been implicated as an FGF23 obliga-
tory cofactor [47]. Conversely, Klotho is mostly
expressed in the distal tubules while FGF23 is
functional in the proximal tubules [16]. Klotho
expression in the distal tubules may implicate this
protein in an isolated action on phosphate metab-
olism that has yet to be fully explained. Addition-
ally, Klotho knockout mice exhibited similar
features as FGF23 knockout mice, both causing
hyperphosphatemia and manifestations such as
short lifespan, infertility, arteriosclerosis, skin
atrophy, osteoporosis, and emphysema [21, 32–
34, 38]. The similar manifestations of FGF23
knockout and Klotho knockout imply a connec-
tion between the two molecules that control phos-
phate metabolism [28]. This article is shedding

the light on the effects of hyperphosphatemia
versus hypophosphatemia on the neuronal dys-
function and neurovascular complications, and
discuss the effect of FGF23-Klotho axis on the
neuronal functions.

13.2 Hyperphosphatemia
and Neuronal Dysfunction

The effects of hyperphosphatemia on the central
nervous system (CNS) have been documented in
humans, particularly in individuals with chronic
kidney disease (CKD) and/or those on hemodial-
ysis but have also been independently linked to
acute/subacute neurological dysfunction and
chronic cognitive decline. Other common causes
of hyperphosphatemia are tumor lysis syndrome,
increased exogenous phosphate ingestion
(laxatives), vitamin D intoxication, pseudohypo-
parathyroidism, hypoparathyroidism, and genetic
disorders such as Albright hereditary
osteodystrophy [11]. The acute/subacute neuro-
logical symptoms of hyperphosphatemia are
varied but can include paresthesia, seizures, reflex
hyperexcitability, tetany, headaches, dizziness,
delirium, and coma [11]. Elevated levels of phos-
phate in individuals with CKD have also been
associated with cognitive impairment and poor
performance on the Mini-Mental Status Examina-
tion (MMSE) [27]. Furthermore, higher phos-
phate levels have been associated with specific
cognitive dysfunction, such as poor executive
function, in older men when assessed with the
Modified Mini-Mental Status Examination
(3MS) and Trailmaking Test B (Trails B) cogni-
tive function measures [45]. Higher serum phos-
phate levels have also been documented as a risk
factor for incident dementia in those under
60 years old [24]. While cognitive decline is a
frequently documented complication of elevated
phosphate levels, vascular changes that cause
neurological emergencies have also been
documented in individuals with higher serum
phosphate levels. In a study that measured the
phosphate levels of 3437 individuals on hemodi-
alysis, it was the individuals with the highest
phosphate levels who were documented as
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experiencing future hemorrhagic brain infarctions
[52]. Some of the possible effects of neuronal
phosphate burden are outlined in Fig. 13.1.

13.3 Hyperphosphatemia-Induced
Neurovascular Complications

It has been well-documented that chronically ele-
vated levels of phosphate have a deleterious effect
on brain tissue, but possible mechanisms of this
damage have not been fully elucidated. The
majority of the documented cases of
hyperphosphatemia-induced vascular changes
have been described in individuals with CKD as
they are at the highest risk of retaining substantial
levels of phosphate [5, 6, 35]. Systemically,
hyperphosphatemia seems to have a calcific
response in peripheral vasculature that may
extend to the neurovasculature or act as a risk
factor for cerebrovascular damage.

Hyperphosphatemia causes vascular calcification
by inducing vessel wall inflammation and
converting vascular smooth muscle cells
(VSMCs) into osteoblast-like cells [15, 48,
51]. The conversion of VSMCs to osteoblast-
like cells is mediated by the effect of hyperpho-
sphatemia on the sodium-dependent channels,
PiT-1 and PiT-2 [6]. Hyperphosphatemia and
hypercalcemia directly stimulate PiT-1 and
PiT-2, which upregulates gene transformations
that are associated with matrix deposition
[6]. Once the VSMCs develop osteoblast-like
properties, they deposit hydroxyapatite crystals
into the vessel walls [15]. The calcific changes
established by the phenotype conversion of
VSMCs are identical to atherosclerosis and com-
promise the tunica intima and the tunica media
[48]. Furthermore, entry of phosphate through
PiT-1 and PiT-2 into the VSMCs can cause dam-
age to these cells, eventual apoptosis, and com-
promise of vessel functions [51]. The high

Fig. 13.1 Possible neuropathological events, initiated by neuronal phosphate burden, which can eventually contribute to
overall declining brain function and cognitive impairment
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phosphate microenvironment can also induce
endothelial cell damage that further exacerbates
vascular dysfunction.

Vessel wall inflammation may also have a
prominent role in vascular changes associated
with hyperphosphatemia. When rat models with
induced CKD were fed with high-phosphate-
diets, elevated levels of TNF-alpha were detected
in serum and tissue, representing increased
inflammatory responses in these rats relative to
the control rats [51]. Furthermore, rats exposed to
a high phosphate diet also had increased markers
of general stress responses such as decreased
body weight and lower serum albumin levels
[51]. Hyperphosphatemic inflammation within
vasculature may also be mediated by oxidant
formation by mitochondria in VSMCs. When
murine aortas were exposed to even low levels
of phosphate, levels of the NADPH oxidase,
Nox4 were elevated and subsequently stimulated
oxidant formation, inflammation, and fibrosis
in vitro [2]. The increases in inflammatory
markers, oxidants, and stress responses may aug-
ment the atherosclerotic response associated with
hyperphosphatemia. The increased inflammation
associated with hyperphosphatemia may also
directly affect nervous tissue and have a role in
CNS impairment due to neuroinflammatory
responses [26]. The neuroinflammatory responses
associated with phosphate burden may be
mediated by the production of oxidants, such as
superoxide, by the mitochondria in neurons; as
discussed above in the context of vasculature
inflammation [2, 26].

While vessel wall compromise has been
described as the leading cause of vascular damage
due to hyperphosphatemia, endothelial dysfunc-
tion has also been associated with hyperpho-
sphatemia in vitro. When bovine aortic
endothelial cells were exposed to high levels of
extracellular phosphate, there was an induction of
reactive oxygen species (ROS) measured by tet-
razolium blue assay and decreased production of
nitric oxide by these cells [2, 43]. Due to the
reduced levels of nitric oxide by the endothelial
cells, there was also a decreased capacity of
endothelial-dependent aortic rings to
vasodilate [43].

Conclusively, vascular compromise is a well-
documented complication of hyperphosphatemia
and may play a significant role in central nervous
system damage directly and indirectly. When the
hyperphosphatemic-induced atherosclerosis of
vasculature extends to the CNS, it may lead to
vessel stenosis and chronically low oxygenation,
vessel wall weakness, and hemorrhage, or acute
downstream embolic episodes associated with
plaque rupture. It has been established that
individuals with peripheral artery disease and
large-vessel disease have a higher risk of stroke,
and this may also partly apply to artery disease
induced by hyperphosphatemia [18, 49]. Further-
more, hypertension induced by
hyperphosphatemic-induced atherosclerosis may
increase the risk of lacunar infarcts and intracere-
bral hemorrhage. The possible mechanisms of
CNS damage, due to phosphate burden, causing
cognitive dysfunction are outlined in Fig. 13.2.

13.4 Hypophosphatemia
and Neuronal Dysfunction

Hypophosphatemia has also been linked to
changes in the CNS that have acute and chronic
effects on neurological functions.
Hypophosphatemia can occur due to poor dietary
sources of phosphate, malabsorption associated
with diarrhea and medication binding, kidney
damage, primary or secondary hyperparathyroid-
ism, and can occur in settings that cause intracel-
lular shifting of phosphate, such as refeeding
syndrome [10, 42]. While mild-moderate
hypophosphatemia is often asymptomatic, the
acute/subacute neurological symptoms of severe
hypophosphatemia are altered mental status,
numbness, and weak reflexes [42]. In a study
enrolling patients with mild cognitive impairment
and autosomal dominant dementia, the patients
who were identified as having Aβ protein on
PET scan had lower levels of serum phosphate
relative to patients who did not express Aβ pro-
tein [30]. This finding may link low phosphate
levels with the onset of more severe forms of
dementia and cognitive impairment. Furthermore,
low levels of phosphate have been linked with
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increased mortality in patients who have experi-
enced an acute ischemic stroke and therefore may
have a small role in neuronal energy use or vas-
cular oxygen delivery [46].

13.5 Hypophosphatemia-Induced
Neurovascular Complications

The mechanism by which hypophosphatemia
causes neurological damage has not explicitly
been elucidated yet, but it may be linked to
decreased ability of nervous tissue to produce
and use ATP, and thus nutrition of nervous tissue
could be affected. In a study using induced
hypophosphatemic mice, when insulin-stimulated
rates of muscle ATP were measured between
hypophosphatemic mice and controls, the
hypophosphatemic mice had a 50% decrease in
ATP synthesis [31]. Interestingly, resistant lactic
acidosis is documented in multiple human case
studies as a complication of hypophosphatemia

which could represent altered energy metabolism
as well [9]. Furthermore, lack of high-energy
phosphate can decrease erythrocyte 2,3-DPG
[41]. Reduced levels of 2,3-DPG cause a leftward
shift of the hemoglobin dissociation curve that
may lead to chronic decreases in oxygen delivery
to nervous tissue and eventual neurological com-
promise [41]. It is plausible that the neurological
manifestations associated with hypophosphatemia
are the cumulative effects of chronic tissue deox-
ygenation and altered ATP production, although
further research on this topic is necessary to under-
stand the underlying pathology. The possible
mechanisms of hypophosphatemia-induced cogni-
tive impairment are outlined in Fig. 13.3.

13.6 FGF23-Klotho Axis
and Neuronal Functions

While the FGF23-Klotho axis has been
implicated in systemic phosphate metabolism,

Fig. 13.2 Possible events in the brain, induced by phosphate burden, that could contribute to cognitive impairment
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there has not been an explicit function of this axis
uncovered in the CNS of humans. FGF23 was
first found in the murine thalamic nuclei, which
led to further studies addressing other locations
within the CNS in which FGF23 can be found
[53]. More recently, the presence of Klotho and
FGF23 has been detected in the cerebrospinal
fluid (CSF) of human children implicating the
FGF23-Klotho axis in neurological activity out-
side of murine models [19]. Not only were FGF23
and Klotho identified in the CSF of human
ventricles and sinuses, but a production locus for
these proteins was found to be in the CNS as well,
specifically from ependymal cells in the lateral
ventricles [19]. Furthermore, Klotho and FGF23

have been uncovered in synapses of mice and
within the hippocampus, implicating these
proteins in possible neurotransmission and mem-
ory function [22, 23]. The finding of FGF23 and
Klotho in neurotransmission and memory centers
of the brain in murine models provides reason to
study the possibility of the FGF23 and Klotho
interaction further in the human nervous system.

13.7 FGF23 and Neuronal Functions

The possible functions of FGF23 in the CNS can
be implied based on manifestations of the protein
expression or suppression in murine models and
human observations. When FGF23 deficiency
was induced in murine models, mice showed
decreased success in open-field velocity trials,
and decreases in location memory tests after
5 weeks [22]. Furthermore, brain tissue analysis
of the FGF23 deficient mice showed that hippo-
campal differentiation was impaired based on
decreases in progenitor cell density in the dentate
nucleus and subgranular zone [22, 29]. While
FGF23 deficiency causes reduced hippocampal
differentiation in murine models, FGF23 may
also preserve hippocampal neuronal morphology
and synaptic density [12]. When cultures of
murine hippocampi are exposed to FGF23, syn-
aptic density is increased, and enhancement and
lengthening of dendrites occur [12]. The cogni-
tive and neuro-morphological changes associated
with deficiencies in FGF23 may be superimposed
with hyperphosphatemia, as hyperphosphatemia
has been correlated with multiple neurocognitive
changes as mentioned above [24, 29, 45,
52]. However, FGF23 overexpression has been
linked to CNS abnormalities and cognitive
deficits in murine models, possibly due to effects
of hypophosphatemia stimulated by the excretory
actions of FGF23 [25]. Unlike the direct and
beneficial effect of FGF23 on the murine hippo-
campus, FGF23 found in human plasma at ele-
vated levels has been associated with poorer
neurological outcomes. On MRI neuroimaging,
1170 individuals who were less than 40 years
old and who had never been diagnosed with a
stroke were more likely to have white matter

Fig. 13.3 Possible mechanisms of hypophosphatemic
cognitive impairment
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hyperintensity if they had elevated levels of
FGF23 in the plasma [50]. Furthermore, an
increased level of FGF23 in human plasma has
been associated with poorer performance on sev-
eral individual tests primarily focused on short
delay and delayed recall memory in a population
of 263 human participants who were pre-tested
for eventual dialysis [8]. Regarding cerebrovas-
cular emergencies in humans, elevated levels of
FGF23 have been correlated with increased risk
of stroke and intracranial hemorrhage, however,
the population analyzed in this association also
had reduced glomerular filtration rate (GFR),
which may be a moderator or confounder of this
finding [8]. It can be hypothesized that an ele-
vated level of FGF23 is also associated with kid-
ney disease, and the neurological effects of
elevated plasma FGF23 cannot be separated
from the neurological deficits associated with
CKD and related uremia. Phosphate is often ele-
vated in CKD, and since FGF23 is associated
with phosphate excretion, its elevation may be
compensatory. The CNS abnormalities associated
with elevated FGF23 may also be explained by
hypophosphatemia as rescue phosphate ingestion
in mice with elevated FGF23 ameliorates the
cognitive deficits that were previously
expressed [25].

13.8 Klotho and Neuronal Functions

The coreceptor Klotho has been associated with
changes in neuronal architecture and cognitive
function in human and mouse models. Compara-
tively to FGF23 overexpression and the resultant
white matter hyperintensities, deficiency in the
Klotho protein has shown to be a significant risk
factor for diffuse white matter lesions
[20, 50]. Furthermore, elevated levels of Klotho
have been associated with higher MMSE scores,
possibly due to induction of phosphate clearance
[20]. Low levels of Klotho also have a significant
association with vascular dementia onset and pro-
gression of dementia to more severe forms in
humans [4]. The association of low Klotho and
dementia may also be explained by the effects of
Klotho on the hippocampus in murine models. In

Klotho knockout mice, synapses in the hippocam-
pus and synaptophysin levels that represent vesic-
ular transport are both reduced [23]. Furthermore,
Klotho deficient mice showed reduced nerve
terminals within the stratum lucidum in the hip-
pocampus [23]. While Klotho and FGF23 have
been associated with hippocampal structural and
functional changes, it is important to note that
Klotho has been associated with changes in hip-
pocampal proliferation and differentiation, while
FGF23 has only been associated with changes in
proliferation, implying a possible augmentative
effect on the hippocampus between the two
proteins in murine models [22]. Moreover, using
Xenopus oocyte models, injection of Klotho
alone showed no increase in glutamate current
but adding Klotho with EAAT3/4 amino acid
transporters caused a significant increase in
glutaminergic current across neuronal membranes
and the blood-brain-barrier [1]. Therefore, the
protective activity of Klotho may be associated
with excitatory glutamate action only if the nec-
essary proteins are available for the transport of
amino acids. Klotho has also been described as an
“immunological gatekeeper” at the interface
between the immune system and the choroid
plexus in mice [54]. This finding implies that
Klotho depletion with age or genetic Klotho
deficiencies in mice may be caused by immune-
mediated neuropathogenesis beginning in the
choroid plexus. Klotho-deficient mice also
showed increased activation of microglia, further
identifying immune mechanisms of hippocampal
degeneration due to Klotho deficiency [54].

13.9 Summary

While the mechanisms by which FGF23 and
Klotho cause neurological sequelae and morpho-
logical changes are not completely understood, it
appears likely that part of these changes is
superimposed with dysregulation of phosphate
homeostasis. FGF23 has a direct and/or an indi-
rect role on Npt2a/c expression in the kidney
tubules and may work with PTH to cause phos-
phate excretion. Klotho acts as a cofactor for
FGF23 in the proximal tubules and is produced
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in the distal tubules, where it may have an isolated
function in phosphate metabolism. FGF23 and
Klotho have been isolated in brain tissue within
the hippocampus, CSF, ventricles, and the cere-
bral neuron synapses of murine models. The
locations of FGF23 and Klotho in the CNS may
implicate these proteins in memory function, syn-
aptic transmission, and immunoregulatory actions.
Predictably, the cognitive decline and cerebrovas-
cular changes associated with hyperphosphatemia
and hypophosphatemia generally match the
sequelae related to alterations in levels of FGF23
and Klotho. Hyperphosphatemia is associated
with an increased risk of dementia, hemorrhagic
stroke, isolated memory loss, and advancement of
dementia [24, 29, 45, 52]. Hyperphosphatemia
may also be associated with decreased brain
growth, as observed in young mouse models
[14]. Hypophosphatemia is associated with spe-
cific Aβ plaque deposition rates seen in individuals
with Alzheimer disease, along with general
dementia and ischemic stroke [30, 46, 52].

Future research should focus on quantifying
and characterizing the relationships between
FGF23, Klotho, and phosphate to uncover how
altered phosphate concentrations affect neuronal
functions. It is also important to further document
the manifestations of Klotho and FGF23
deficiencies or excesses on the CNS, mainly in
relation to phosphate levels. Finally, determining
phosphate-independent effects of FGF23 and
Klotho on neuronal growth, development, and
maintenance will enhance our understanding of
the pathophysiology of cognitive functions in
general and beyond [36, 37].
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