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Abstract. The size of collected data is increasing and the number of rules gener-
ated on those datasets is getting bigger. Producing compact and accurate models
is being the most important task of data mining.

In this research work, we develop a new associative classifier – ACHC, that
utilizes agglomerative hierarchical clustering as a post-processing step to reduce
the number of rules and a new method is proposed in the rule-selection step to
increase classification accuracy.

Experimental evaluations show that the ACHC method achieves significantly
better results than classical rule learning algorithms in terms of rules on bigger
datasets while maintaining classification accuracy on those datasets. More pre-
cisely, ACHC achieved the highest (43) result on the average number of rules and
the third-highest (84.8%) result in terms of average classification accuracy among
10 classification algorithms.

Keywords: Frequent itemsets · Class association rules · Associative
classification · Agglomerative hierarchical clustering · Cluster center

1 Introduction

Since information technologies are developing very rapidly and the amount of collected
data is growing, analyzing such big data is an important task of data mining.

The number of rules generated from “real-life” datasets can easily grow very large,
which may cause a combinatorial explosion. Therefore, mining association rules from
these data and reducing their number to produce compact models for end-users is
becoming a crucial data mining task [17].

To overcome this problem and achieve more compact as well as understandable
models, rules have to be pruned and/or clustered.

Association [1] and classification rule mining [2, 7, 26] are two important fields
of data mining. Classification rule mining aims at building accurate models to forecast
the class value of a future object by selecting small subsets of rules, while association
rule mining algorithms find all existing rules in a dataset based on some user-specified
constraints by exploring the entire search space.
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Associative Classification (AC) [5, 12, 14, 18, 21, 22] is another data mining tech-
nique that combines classification and association rule mining. The main goal of AC
methods is to produce compact, accurate and descriptive models based on association
rules. Thus, the performance of AC methods can sometimes be better than some of
the traditional classification methods on accuracy, in spite of worse efficiency, because
AC methods are sensitive to user-defined parameters such as minimum support and
confidence.

Another area in data mining is clustering [13, 25, 29]. Clustering methods can be
usually grouped in two groups: partitional clustering [24, 30] that aims at grouping
similar objects together by using partitioning techniques, and hierarchical clustering
[28], which is a nested sequence of partitions.

In this research work, we present a novel cluster-based associative classification
method. Firstly, we describe a new normalized combined distance metric to find the
similarity of two class association rules (CARs). Secondly, we cluster the CARs by
using a bottom-up approach of hierarchical agglomerative clustering. In this step, we
automatically identify the optimal number of clusters. Thirdly, after CARs are clustered,
we present a novel method of extracting the “representative” CAR for each cluster.
Finally, we develop a compact and accurate associative classificationmodel by including
just the representative CARs from each cluster.

The performance of our method (ACHC) is evaluated on 12 selected datasets taken
from theUCIMLRepository [6] and comparedwith 9 popular (associative) classification
approaches, such as Decision Table and Naïve Bayes (DTNB) [10], Decision Table (DT)
[15], PART (PT) [7], C4.5 [26], CBA [18], Simple Associative Classifier (SA) [20],
FURIA (FR) [11], Ripple Down rules (RDR) [27], and J&B [19].

2 Related Work

The first related approach [3] is clustering of association rules based on the k-means
clustering algorithm. Similarly to our approach, this approach utilizes the “APRIORI”
algorithm [1] to generate the association rules. The key differences between ACHC and
this method are (1) it uses a different algorithm in the clustering step, that is, it clusters
the rules based on interestingness measures by using the k-means clustering method and
(2) a novel distance metric is used to cluster the rules in our method.

The fuzzy clustering algorithm on association rules (FCAR) [4] is proposed based on
rule simulation. In this method, researchers aimed to develop a fuzzy clustering method
which partitions n objects into k subsets. FCAR uses the “APRIORI” algorithm in the
rule-generation part as in our method, but they use a different technique (partitional)
in the clustering phase. Another key difference is that they cluster the association rules
while we intend to cluster class association rules.

Another related approach [8] is distance-based clustering of association rules. In this
method, an “indirect” distance metric (based on CARs support and coverage) is used to
group the association rules, while we develop a novel “combined” distancemetric (based
on direct and indirect measures) and an agglomerative clustering method to cluster the
rules.

In [16], authors mine the clusters with association rules. The APRIORI algorithm
is used to find strong CARs in the first step and then, it clusters these CARs by using a
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hierarchical clustering method as in our method. However, they used a different distance
metric based on an “indirect” distance metric (based on coverage probabilities) in the
clustering step.

The algorithm, described in this paper extends our previous work from [21] and [22].
In [21], the CMAC algorithm used a direct distance metric in the clustering phase of
CARs and the cluster centroid approach to select the representative CAR for each cluster,
while in [22] CMAC is compared to two similar algorithms, one using the direct distance
metric and covering approach in the representative CAR selection phase and the other
using combined (direct and indirect) distance metric with the same covering approach to
select the representative CAR. This paper presents the only remaining combination, i.e.,
using a combined distance metric in the CAR clustering phase and the cluster centroid
approach to select the representative CAR for each cluster.

3 Our Proposed Method – ACHC

It is assumed thatwe have given a relational table consisting of S examples (transactions).
Each example is defined by A different attributes and classified into one of the C known
classes.

Our main goals and contributions within this research are listed below:

• Developing a novel distancemetric tomeasure the similarity of class association rules;
• Clustering of class association rules by utilizing the hierarchical clustering algorithm
and finding the optimal number of clusters for each class value;

• Defining a new method of selecting a representative class association rule for each
cluster to represent the compact and accurate classifier;

• Performing an experimental evaluation to show the advantages and disadvantages of
the developed algorithm.

3.1 Class Association Rules

This section describes how to produce the strong class association rules. We first need
to discover the frequent itemsets and we then generate the class association rules from
these frequent itemsets. To generate the frequent itemsets, we apply the minimum sup-
port threshold, that is, frequent itemsets satisfied by minimum support constraint are
generated in the first step. After generating the frequent itemsets, it is a straightforward
approach to discover the class association rules from frequent itemsets. In this step, we
apply the minimum confidence threshold to produce strong CARs.

We utilize the APRIORI algorithm to generate the frequent itemsets, because
APRIORI is a well-known and frequently used algorithm for association rule mining.

Once we generate the frequent itemsets, our next goal is to produce the strong
class association rules which satisfy the minimum confidence constraint. We check the
confidence of each rule, if it satisfies the required threshold, then we generate that rule.
Confidence of the rule: A → B is computed as follows:

confidence(rule) = support_count(A ∪ B)

support_count(A)
(1)
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Equation (1) describes the confidence of a rule based on the support count of a frequent
itemset, where A represents the antecedent (left-hand side of the rule) and B the conse-
quence (class value in the case of CARs) of a rule. Moreover, support_count (A ∪ B) is
the number of examples in the dataset that match the itemset A ∪ B, and support_count
(A) is the number of examples that match the itemset A. We generate the strong class
association rules that satisfy the minimum confidence constraint based on Eq. (1), as
follows:

1. All nonempty subsets S of frequent itemset L belonging to class C are generated;
2. For every nonempty subset S of L, output the strong rule R in the form of “S→C” if,

confidence(R) ≥ min_conf , where min_conf is the minimum confidence threshold.

3.2 The New “combined” Distance Metric

In our previous research [21], we proposed a novel “direct” distance metric and defined
its advantages and disadvantages. In this research, we use the previously developed
“direct” distance metric and also focus on the “indirect” distance metric based on the
Conditional Market-basket Probability (CMBP) [8]. Using a probability estimate for
distance computation has many advantages. Probabilities are well understood, are intu-
itive, and a good measure for further processing, and it is appropriate for rules only
with the same consequent. The distance dCMBP between two rules rule1 and rule2 is the
(estimated) probability that one rule does not hold for a basket, given at least one rule
holds for the same baskets. This distance is defined as follows:

dCMBP
rule1,rule2 = 1 − |m(BSrule1 ∪ BSrule2)|

|m(BSrule1)| + |m(BSrule2)| − |m(BSrule1 ∪ BSrule2)| , (2)

where BS is both sides of the rule, that is, the itemset for the association rule.
m(BS)and m(BSrule1 ∪ BSrule2) denotes the set of transactions (baskets) matched by BS
and (BSrule1 ∪ BSrule2) respectively. |m(BS)| and |m(BSrule1 ∪ BSrule2)| is the number
of such transactions.

With this metric, rules having no common market baskets are at a distance of 1, and
rules valid for an identical set of baskets are at a distance of 0.

In this research, we combine the “direct” and “indirect” distance metric to produce a
newWeighted and Combined Distance Metric (WCDM).WCDM combines direct mea-
sure (rule items) and indirect measure (rule coverage). The weighted distance dWCDM

between two rules, rule1 and rule2 is defined in Eq. (3).

dWCDM
rule1,rule2 = α × ddirect

rule1,rule2 + (1 − α) × dindirect
rule1,rule2, (3)

whereα is aweighbalancing parametr in (3).We setα =0.5parameter in the distance
metric developing part, that is, the contribution of direct and indirect is considered equal
tomake aweighted and balanced distancemetric. The resulting distancemetric is defined
in Eq. (4).

dWCB
rule1,rule2 = 0.5 × ddirect

rule1,rule2 + 0.5 × dindirect
rule1,rule2. (4)
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3.3 Clustering

Clustering algorithms are usually split into two groups: partitional and agglomera-
tive hierarchical clustering. In our research, we apply the complete linkage method of
agglomerative hierarchical clustering (in the bottom-up fashion) because it is frequently
used and more consistent than other algorithms.

In the algorithms based on the bottom-up fashion, every example is considered as
a unique cluster at the beginning and the two the nearest clusters are merged in each
iteration until all clusters have been merged into a unique cluster.

In the complete linkage (farthest neighbor) method of agglomerative hierarchical
clustering, the similarity between two clusters is computed based on the similarity of
their most dissimilar examples, that is, the farthest groups are taken as an intra-cluster
distance.

To cluster the class association rules, we first identify the optimal number of clusters.
In this step, we utilize the most-common technique (described in Algorithm 1), where
the dendrogram is cut from the point which represents the maximum difference of two
consecutive cluster heights.

Algorithm 1 gets cluster heights (distance between two clusters) which are computed
during the dendrogram construction process as an input, and it outputs the optimal
number of clusters.

N stores the total number of clusters in line 3. For each two consecutive cluster
heights (lines 4–9), we compute the differences and store the maximum difference to
Opt_number_of_cls parameter.

3.4 Selecting the “Representative” CAR

After clustering the CARs, we define an algorithm (presented in Algorithm 2) to select
a “representative” CAR for each cluster. Only representative CARs are included in the
final classifier.
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Algorithm 2 describes the method of extracting the representative CAR. Firstly, the
distances between the selected CAR and all other CARs are calculated for each CAR.
Secondly, we find the CAR which obtains the minimum distance and returns that class
association rules as a representative.

Algorithm3 summarizes all the above-mentioned steps and describes the finalACHC
classifier. It gets the training dataset, minimum support as well as confidence thresholds,
as input parameters and outputs the compact and accurate associative classification
model – ACHC.

The first three lines generate the strong CARs defined in Sect. 3.1 and sort them by
confidence and support descending order due to the following criterion:

If Rule1 and Rule2 represent two CARs, Rule1 is said to have higher rank than Rule2
(Rule1 > Rule2):
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• if and only if, conf (Rule1) > conf (Rule2) or
• if conf (Rule1) = conf (Rule2), but supp(Rule1) > supp(Rule2) or
• if conf (Rule1) = conf (Rule2) and supp(Rule1) = supp(Rule2), but Rule1 has fewer

items in its left-hand side than Rule2.

Once the CARs are sorted, we group them according to class value (line 4) and then
we build the distance matrix (line 6) for each group of CARs (defined in Sect. 3.2) to
apply the hierarchical clustering algorithm with complete linkage (For example: if we
have 3 class value, we build the model for three group of CARS and merge them at
the end). Line 7 finds the cluster heights (distances between clusters) and the natural
number of clusters is identified by using the cluster heights (line 8). After determining
the optimal number of clusters, the hierarchical clustering algorithm is again utilized to
find the cluster of CARs (Cluster array stores the list of clustered CARs) in line 9. In
the last step (lines 10–12), we select the representative class association rule for every
cluster (described in Subsect. 3.4) to produce the final compact and accurate model.

4 Experimental Setting and Results

Our developed algorithm is compared against 9 rule learners in terms of classification
accuracy and rules. All associative classifiers were run with default parameters set up
by WEKA [9] software. Some parameters (minimum support and confidence) were
modified on “imbalanced” datasets to achieve the intended number of rules (at least 10
rules for each class value) for AC methods.

Statistical significance testing is performed based on the paired t-test (significance
difference threshold was set to 95%) method. The description of the datasets and input
parameters are shown in Table 1.

Moreover, a 10-fold cross-validation assessment technique was employed to repre-
sent all experimental results. Table 2 shows the experimental results for classification
accuracies (with standard deviations).

Table 2 shows that our proposed associative classifier (ACHC) achieved comparable
average accuracies (84.8%) to other classification models on selected datasets. More
precisely, ACHC gained the third-highest average accuracy among 10 classification and
association rule mining algorithms.

Our developed classifier obtained the best accuracy on “Balance” (except DTNB),
“Breast.Can”, “Spect.H”, “Hayes.R” and “Connect4” datasets among all algorithms,
while on “Car.Evn” and “Nursery” datasets, ACHC is beaten by all “classical”
classification models.

Unexpectedly, standard deviation of all rule-learners was high (this situation happens
mainly with imbalanced datasets which affect the rule-generation part of “APRIORI”
algorithm) on the “Hayes.R”, “Lymp” and “Connect4” datasets.

It can be seen from Fig. 1 that all classification algorithms achieved almost similar
result on average accuracy except DTNB, DT and SA.

Table 3 represents the statistical significance testing (wins/losses counts) on accuracy
between ACHC and other classification models. W: winning count (our approach was
significantly better than the compared algorithm); L: losing count (our approach was
significantly worse than the selected algorithm);N: no statistically significant difference
has been detected in the comparison.
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Table.1 Description of datasets and AC algorithm parameters

Dataset # of
attributes

# of
classes

# of
records

Min
support

Min
confidence

# of analyzed
rules

Breast.Can 10 2 286 1% 60% 1000

Balance 5 3 625 1% 50% 218

Car.Evn 7 4 1728 1% 50% 1000

Vote 17 2 435 1% 60% 500

Tic-Tac 10 2 958 1% 60% 3000

Nursery 9 5 12960 0.5% 50% 3000

Hayes.R 6 3 160 0.1% 50% 1000

Lymp 19 4 148 1% 60% 1500

Spect.H 23 2 267 0.5% 50% 3000

Adult 15 2 45221 0.5% 60% 5000

Chess 37 2 3196 0.5% 60% 3000

Connect4 43 3 67557 1% 60% 5000

Table.2 Overall accuracies with standard deviations:

Dataset DTNB DT C4.5 PT FR RDR CBA SA J&B ACHC

Breast.Can 70.4 ±4.1 69.2 ±6.7 75.0 ±6.9 74.0 ±4.0 75.1 ±5.3 71.8 ±5.7 71.9 ±9.8 79.3 ±4.4 80.5 ±4.7 80.6 ±5.1

Balance 81.4 ±8.1 66.7 ±5.0 64.4±4.3 76.2±5.6 76.3±7.6 68.5±4.3 73.2±3.8 74.0±4.1 74.1±2.6 76.5 ± 2.1

Car.Evn 95.4±0.8 91.3±1.7 92.1±1.7 94.3±1.0 91.8±1.1 91.0±1.8 91.2±3.9 86.2±2.1 89.4±1.4 86.9 ± 1.9

Vote 94.7±3.4 94.9±3.7 94.7±4.4 94.8±4.2 94.4±2.8 95.6±4.1 94.4±2.6 94.7±2.3 94.1±1.8 91.8 ± 1.9

Tic-Tac 69.9±2.7 74.4±4.4 85.2±2.7 94.3±3.3 94.1±3.1 94.3±2.9 100.0±0.0 91.7±1.5 95.8±2.0 91.0±1.4

Nursery 94.0±1.5 93.6±1.2 95.4±1.4 96.7±1.7 91.0±1.4 92.5±1.5 92.1±2.4 91.6±1.2 89.6±1.1 89.7 ± 0.7

Hayes.R 75.0±7.2 53.4±8.3 78.7±8.4 73.1±9.7 77.7±8.7 74.3±7.1 75.6±10.9 73.1±6.0 79.3±5.9 80.7 ± 6.0

Lymp 72.9±9.0 72.2±8.3 76.2±8.7 81.7±9.0 80.0±8.2 78.3±7.3 79.0±9.7 73.7±5.1 80.6±5.7 81.5 ± 7.1

Spect.H 79.3±2.7 79.3±1.6 80.0±9.0 80.4±5.6 80.4±2.2 80.4±2.2 79.0±1.6 79.1±2.1 79.7±3.1 80.6 ± 1.1

Adult 73.0±4.1 82.0±2.3 82.4±4.7 82.1±4.7 75.2±3.2 80.8±2.7 81.8±3.4 80.8±2.6 80.8±2.9 81.3 ± 2.4

Chess 93.7±3.0 97.3±3.1 98.9±3.6 98.9±3.1 96.4±2.1 95.8±3.3 95.4±2.9 92.2±3.8 94.6±2.7 97.0 ± 1.6

Connect4 78.8±5.9 76.7±7.7 80.0±6.8 81.0±7.9 80.6±7.1 80.0±6.4 80.9±8.1 78.7±6.0 81.0±5.2 81.0 ± 6.9

Avg(%): 81.5 ± 4.4 79.3 ± 4.5 83.6±5.2 85.6±4.9 84.4±4.4 83.6 ± 4.1 84.5±4.9 82.3±3.4 84.9±3.3 84.8 ± 3.2
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Fig. 1. Comparison between our method and other methods on average accuracy

Table.3 Statistically significant wins/loss counts of ACHC method on accuracy

DTNB DT C4.5 PT FR RDR CBA SA J&B

W 7 6 5 2 3 4 4 5 2

L 4 3 4 5 2 4 4 1 3

N 1 3 3 5 7 4 4 6 7

Table 3 illustrates that the performance of the ACHC method on accuracy is better
than DTNB, DT and SA methods while this performance is similar or the same to C4.5,
FR, J&B, RDR and CBA according to win/losses counts. Table 4 illustrates the size of
all classification methods.

Experimental evaluations on the number of rules (Table 4) show thatACHCproduced
the best result in terms of the average number of rules among 10 rule-learners. Our
approach produced a statistically smaller classifier on “Car.Evn” and “Nursery” datasets,
although not achieving the best classification accuracies on those datasets.

On “Hayes-root” and “Balance” datasets, ACHC obtained an unexpectedly larger
number of rules (due to imbalanced datasets) but it produced accurate classifiers for
those datasets.

Figure 2 illustrates that associative classifiers achieved better result than “classical”
classification models on the average number of rules. The main reason is that “classical”
classification models are sensitive to the size of the dataset.

Table 5 shows that ACHC produced smaller classifiers than DTNB, DT, C4.5, PT,
FR, SA, and J&B algorithms on more than 8 datasets out of 12 (by win/losses count).

5 Conclusion and Future Work

Overall, our developed method achieved the highest result on the average number of
rules by exhaustively searching the entire example space using constraints and cluster-
ing while maintaining a classification accuracy that was comparable to state-of-the-art
rule-learning classification algorithms. Experimental evaluations showed that ACHC
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Table.4 Number of CARs

Dataset DTNB DT C4.5 PT FR RDR CBA SA J&B ACHC

Breast.Can 122 22 10 20 13 13 63 20 47 9

Balance 31 35 35 27 44 22 77 45 79 79

Car.Evn 144 432 123 62 100 119 72 160 41 32

Vote 270 24 11 8 17 7 22 30 13 6

Tic-Tac 258 121 88 37 21 13 23 60 14 17

Nursery 1240 804 301 172 288 141 141 175 109 80

Hayes.R 5 8 22 14 11 10 34 45 34 80

Lymp 129 19 20 10 17 11 23 60 29 7

Spect.H 145 2 9 13 17 12 4 50 11 5

Adult 737 1571 279 571 150 175 126 130 97 88

Chess 507 101 31 29 29 30 12 120 24 17

Connect4 3826 4952 3973 3973 403 341 349 600 273 102

Avg(%): 618 674 409 411 93 75 79 125 64 43

Fig. 2. Comparison between our method and other methods on average number of rules

Table.5 Statistically significant wins/loss counts of ACHC method on rules

DTNB DT C4.5 PT FR RDR CBA SA J&B

W 10 9 9 8 10 6 7 10 9

L 2 3 2 2 2 4 2 2 2

N 0 0 1 2 0 2 3 0 1
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produced an accurate and compact classifier that was able to reduce the number of
classification rules in the classifier by 2–4 times on average compared to the other “clas-
sical” rule-learners, while this ratio is even bigger on datasets with a higher number of
examples.

The main drawback of our proposed method (ACHC) is its time efficiency. In future
work we plan to optimize ACHC to bring its time complexity at least a bit closer to
state-of-the-art “divide-and-conquer” rule-learning algorithms.

We plan to develop new methods by setting up different values for α parameter and
perform experiments to show the advantages and disadvantages of those methods.
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