
Mixture-Based Probabilistic Graphical
Models for the Partial Label Ranking

Problem

Juan C. Alfaro1,3(B) , Juan A. Aledo2,3 , and José A. Gámez1,3
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Abstract. The Label Ranking problem consists in learning preference
models from training datasets labeled with a ranking of class labels, and
the goal is to predict a ranking for a given unlabeled instance. In this
work, we focus on the particular case where both, the training dataset
and the prediction given as output allow tied labels (i.e., there is no
particular preference among them), known as the Partial Label Rank-
ing problem. In particular, we propose probabilistic graphical models to
solve this problem. As far as we know, there is no probability distri-
bution to model rankings with ties, so we transform the rankings into
discrete variables to represent the precedence relations (precedes, ties and
succeeds) among pair of class labels (multinomial distribution). In this
proposal, we use a Bayesian network with Naive Bayes structure and
a hidden variable as root to collect the interactions among the different
variables (predictive and target). The inference works as follows. First, we
obtain the posterior-probability for each pair of class labels, and then we
input these probabilities to the pair order matrix used to solve the corre-
sponding rank aggregation problem. The experimental evaluation shows
that our proposals are competitive (in accuracy) with the state-of-the-
art Instance Based Partial Label Ranking (nearest neighbors paradigm)
and Partial Label Ranking Trees (decision tree induction) algorithms.

Keywords: Mixture-based models · Bayesian networks · Naive bayes ·
(Partial) Label ranking

1 Introduction

In recent years, the non-standard supervised classification problems have grown
significantly. In particular, the Label Ranking (LR) problem [9] consists in learn-
ing preference models able to predict rankings (a.k.a. total orders or permuta-
tions) defined over a finite set of class labels. An important difference between
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this problem and other non-standard supervised classification problems (e.g.,
ordinal classification) is that the instances of the training dataset are labeled
with rankings, and these rankings are used during model learning.

In this paper, we focus on the Partial Label Ranking problem [6]. In this
problem, the rankings associated with the instances of the training dataset and
the predictions given as output are partial rankings (a.k.a. total orders with ties
or bucket orders), that is, rankings with (possibly) tied class labels.

Based on [22], we rely on the use of a hybrid Bayesian network [14] where the
root is a hidden discrete variable to jointly model the probability distributions
for the discrete (multinomial) and continuous (Gaussian) attributes, and for
the rankings. Although permutations (complete rankings without ties) may be
modeled with the Mallows distribution [20], as far as we know, there is no proba-
bility distribution for bucket orders (complete rankings with ties). Therefore, we
transform the ranking global preferences into a set of pairwise local preferences
(precedes, ties and succeeds). By doing that, these variables can be modeled by
a multinomial distribution (discrete variables), and so they can be easily inte-
grated in the hybrid Bayesian network. The prediction for these variables are
used to solve the associated rank aggregation problem [12], so outputting a partial
ranking for a given unlabeled instance.

The paper is structured as follows. In Sect. 2, we review some basic notions
concerning rankings. In Sect. 3, we formally describe the proposed model. In
Sect. 4, we extend this model to allow interactions between the (continuous)
attributes by means of a multivariate Gaussian distribution. In Sect. 5, we set out
the experimental evaluation conducted to assess the proposed models. Finally,
in Sect. 6, we provide the conclusions and future research lines.

2 Rank Aggregation Problem

Given a set of items [[n]] = {1, . . . , n}, a ranking π represents a precedence
relation among them. In particular, rankings may be without ties (a.k.a. total
orders or permutations) or with ties (a.k.a. partial rankings, total orders with
ties or bucket orders) if there is no preference among some of the ranked items.

The rank aggregation problem (RAP) [1] consists in obtaining a consensus
order from a set of rankings. In particular, the Kemeny Ranking Problem (KRP)
[19] is probably the most well-known, whose goal is to obtain the consensus
permutation (a.k.a. central permutation) that minimizes a particular distance
measure (e.g., the Kendall distance) with respect to a set of permutations. The
KRP is usually solved with the Borda count algorithm because of its good trade-
off between accuracy and efficiency.

In addition to the KRP, another well-known RAP is the Optimal Bucket
Order Problem (OBOP) [12]. The goal of the OBOP is to obtain the bucket
matrix B (associated with a bucket order π) that minimizes the distance D

D(B,P ) =
∑

u,v∈[[n]]

|B(u, v) − P (u, v)|
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where P is the pair order matrix associated with a set of bucket orders (see [12]
for the details).

Although there are several heuristic methods to solve the OBOP [2–4,17],
we use a particular instance of the Bucket Pivot Algorithm with least indecision
assumption [2] named LIAMP2

G , because of the good trade-off it achieves between
accuracy and efficiency.

3 Hidden Naive Bayes

Given that the goal is to output a partial ranking for an unlabeled instance,
we have to obtain the pair order matrix C for solving the corresponding RAP.
In our proposal, we use a Bayesian network to get the entries for this matrix,
which codifies the preferences of a class label cu over cv, with u < v. Since
P (u, v) = 1 − P (v, u), we model both entries with a variable Zu,v, and also the
probability that cu is tied with cv. Thus, for each pair of class labels, we create
the discrete variable

Zu,v =

⎧
⎨

⎩

z1, if cu � cv
z2, if cu ∼ cv
z3, if cu ≺ cv

The advantage of this approach is that we only manage discrete variables.
However, the complexity of the model grows quadratically with the number of
labels according with nL = (n · (n − 1))/2.

We propose a Bayesian network with Naive Bayes structure and a hidden
variable to capture the interactions between the predictive variables and the
target variable, and so obtain the a-posteriori probabilities for an unlabeled
instance.

3.1 Model Definition

Figure 1 shows the Plateau representation of the proposed model. Note that
the (hybrid) Bayesian network contains the discrete and continuous predictive
variables, the discrete target variables and the discrete hidden variable H. In
particular:

– Discrete predictive variables, denoted by Xj , j = 1, . . . , nJ with dom(Xj) =
{xj1 , . . . , xjrj

}. They are observed both in the learning and inference stages.
– Continuous predictive variables, denoted by Yk, k = 1, . . . , nK . They are

observed both in the learning and inference stages.
– Target variables, denoted by Zu,v, u = 1, . . . , n− 1 and v = u+1, . . . , n, with

domain dom(Zu,v) = {z1, z2, z3}, being z1 = cu � cv, z2 = cu ∼ cv and
z3 = cu ≺ cv. They are observed in the learning stage.

– Hidden variable, denoted by H with dom(H) = {h1, . . . , hrH
}, where rH is

the number of mixtures. This variable is never observed.



280 J. C. Alfaro et al.

H

X Y Z

nJ nK nL

n

Fig. 1. Proposed HNB model

The discrete attributes, the target variables and the hidden variable follow
a (conditional) multinomial distribution, and the continuous attributes follow a
(conditional) Gaussian distribution. The joint probability distribution is given
by

P (H,X1, . . . , XnJ
, Y1, . . . , YnK

, Z1,2, . . . , Zn−1,n) = p(hw) ·
nJ∏
j=1

P (Xj |H) ·
nK∏
k=1

P (Yk|H) ·
u=n−1,v=n∏
u=1,v=u+1

P (Zu,v|H)

3.2 Parameter Estimation

We assume complete and i.i.d. data in both, the attributes and in the ranking
variable. Therefore, we only deal with the hidden variable H, and we use the
Expectation-Maximization (EM ) to estimate jointly the parameters of both, the
observed and hidden variables:

– E step: Under the assumption that the parameters of the discrete attributes
p(xhw

ji
), continuous attributes μhw

k , σhw

k , ranking variable p(zhw
u,v) and hidden

variable p(hw), j = 1, . . . , nJ , i = 1, . . . , rj , k = 1, . . . , nK , l = 1, . . . , nL,
u = 1, . . . , n − 1, v = u + 1, . . . , n, w = 1, . . . , rH are known, the probability
of an instance et = (x1,t, . . . , xnJ ,t, y1,t, . . . , ynK ,t, πt) being in a mixture is

P (hw|x1,t, . . . , xnJ ,t, y1,t, . . . , ynK ,t, πt) =
1
C

· p(hw) ·
nK∏

k=1

1
σhw

k,t

√
2π

·e
− 1

2

(
yk,t−μ

hw
k,t

σ

)2

·
nJ∏

j=1

p(xhw
j,t ) ·

u=n−1,v=n∏

u=1,v=u+1

p(zhw
u,v,t)

(1)

where C is a normalization constant.
– M step: Under the assumption that the probabilities of belonging to each

mixture for all examples are known, the parameters of the model can be
estimated as follows:

• Multinomial parameters for the discrete attributes and the target vari-
ables. Each multinomial parameter is estimated by means of maxi-
mum likelihood estimation (MLE ), where the count for each instance is
weighted by the probability of H = hw given the instance.
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• Gaussian parameters for the continuous attributes. The Gaussian param-
eters μhw

k y σhw

k are estimated by means of MLE for each H = hw,
weighting each instance by the probability of it being in the mixture.

Stopping Condition: We use the log-likelihood of the model given the data
with α = 0.001 as convergence value. Moreover, we fix a maximum of β = 100
iterations.

3.3 Model Learning and Selection

We use the following procedure to compute the number of mixtures of the hidden
variable H:

1. The dataset is divided in training Tr (0.8) and validation Tv (0.2), and the
τX rank correlation coefficient is used to evaluate the models goodness in the
search procedure.

2. The search for the number of mixtures is carried out greedily. First, we evalu-
ate the model with rH = {2i}10i=1, and we select the best number of mixtures
r′
H according with τTv

X . Second, we apply a binary search in [ r
′
H

2 , r′
H ], and

we use the best number of mixtures r∗
H to train the model with the whole

dataset.

Each time a new value for rH is tried, the process starts from scratch, that is,
all the parameters of the components are initialized (probabilities and weights)
using the k-means clustering algorithm [23] with k = rH and γ = 10 different
centroid seeds. Then, the EM algorithm is executed.

3.4 Inference

In the inference process, the method needs to compute the partial ranking πt

of the values in dom(C) associated with an unlabeled instance et. Although
the standard approach would select the (partial) ranking that maximizes the
a-posteriori probability given the instance et, the cardinality of the search space
n!/2 · ln 2n+1, is too high, so we need to use an approximate method:

1. We compute the a-posteriori probability P (Zu,v|et) for each target variable
using the Bayesian network.

2. We use these probabilities to populate the pair order matrix Pt associated
with the instance et

Pt(u, v) = P (Zu,v = z1|et) + 1
2 · P (Zu,v = z2|et)

Pt(v, u) = P (Zu,v = z3|et) + 1
2 · P (Zu,v = z2|et) = 1 − Pt(u, v)

with u < v and Pt(u, v) = 0.5 if u = v, and we solve the OBOP using Pt to
obtain the (partial) ranking πt for the instance et.
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4 Gaussian Mixture Semi Naive Bayes

In this section, we assume that all the attributes are continuous, and we allow
interactions among them.

4.1 Definition

We propose a Semi-Naive Bayes (SNB) [8,15] structure to model the continuous
attributes using a multivariate normal distribution, while the rest of interactions
are still managed by the hidden variable H.

We assume two variants of the Gaussian mixture model (GMM ) [21]: full,
where each component has its own general covariance matrix, and tied, where
all components share the same general covariance matrix.

4.2 Estimation

The differences of the GMSNB model with respect to the HNB model are:

– E step: Similarly to the HNB model, we use Eq. 1, but, instead of the prod-
uct of the conditional Gaussian distributions, we use the probability density
function of the multivariate normal distribution MN (yt|µhw , Σhw), where
yt is the configuration of values for the continuous attributes in et, µhw is
the vector of means and Σhw is the covariance matrix.

– M step: In the same way that the parameters of the HNB model, the means
and empirical covariances of the continuous attributes are weighted by whw

t =
P (hw|yt, πt).

4.3 Learning and Inference

The learning and inference stages of the HNB model and the GMSNB model are
the same, but we model the continuous attributes with the multivariate normal
distribution.

5 Experimental Evaluation

In this section, we detail the datasets used, the algorithms tested, the method-
ology adopted and the results obtained in the evaluation of our proposal.

5.1 Datasets

Table 1 shows the main characteristics of the 15 (semi-synthetic) datasets used
as benchmark for the PLR problem [6]. The columns #rankings y #buckets
stand for the mean number of different (partial) rankings in the dataset and
the mean number of buckets per ranking, respectively. The datasets (and their
description) are provided at: https://www.openml.org/u/25829.

https://www.openml.org/u/25829
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Table 1. Description of the datasets

Datasets #Instances #Attributes #Labels #Rankings #Buckets

Authorship 841 70 4 47 3.063

Blocks 5472 10 5 116 2.337

Breast 109 9 6 62 3.925

Ecoli 336 7 8 179 4.140

Glass 214 9 6 105 4.089

Iris 150 4 3 7 2.380

Letter 20000 16 26 15014 7.033

Libras 360 90 15 356 6.889

Pendigits 10992 16 10 3327 3.397

Satimage 6435 36 6 504 3.356

Segment 2310 18 7 271 3.031

Vehicle 846 18 4 47 3.117

Vowel 528 10 11 504 5.739

Wine 178 13 3 11 2.680

Yeast 1484 8 10 1006 5.929

5.2 Algorithms

We tested the following algorithms:

– Instance Based Partial Label Ranking (IBPLR) [6]. The Euclidean distance
was used to identify the k nearest neighbors, and the (partial) rankings asso-
ciated with these neighbors were weighted according to the (inverse) distance.
The number of nearest neighbors was adjusted with a five-fold cross validation
(5-cv) over the training dataset (see [6] for details).

– Partial Label Ranking Trees (PLRT ) using the four criteria described in [6].
– HNB-PLR (Sect. 3). We considered four alternatives: Gaussian distribution

(HNB-PLR-G) for the continuous attributes and multinomial distribution for
the equal-width (HNB-PLR-W), equal-frequency (HNB-PLR-F) and entropy-
based [13] (HNB-PLR-E) discretized versions. The number of bins for the
equal-width and equal-frequency binning was fixed to 5.

– GMSNB-PLR (Sect. 4). We used a different covariance matrix for each mix-
ture (full, GMSNB-PLR-F) and the same covariance matrix for all the mix-
tures (tied, GMSNB-PLR-T).

5.3 Methodology

We decided to apply the following design decisions:

– A 5 × 10 cross validation method was used (standard in the PLR problem).
– The accuracy was measured with the τX rank correlation coefficient [11].
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– We used the standard statistical analysis procedure [10,16] by using the tool
exreport [7] to analyze the results:
1. First, a Friedman test is carried out with a significance level of α = 0.05.

If the obtained p-value is less than or equal to α = 0.05, we reject the
null hypothesis H0, and so at least one algorithm is not equal to the rest.

2. Second, a post-hoc test using the Holm procedure [18] is applied to dis-
cover the outstanding methods. This method compares all the algorithms
with respect to the one ranked first by the Friedman test (control algo-
rithm).

5.4 Reproducibility

The source code is provided at: https://github.com/alfaro96/scikit-lr. The
experiments were executed in computers running the CentOS Linux 7 operating
system, with CPU Intel(R) Xeon(R) E5–2630 a 2.40 GHz, and 16 GB of RAM
memory.

5.5 Results

In this section, we provide and analyze the accuracy and CPU time results.

Accuracy. Table 2 shows the accuracy of the mixture-based models. Each cell
contains the average and standard deviation over the test datasets of the 5 × 10
cv for the τX rank correlation coefficient between the real and predicted (partial)
rankings. The boldfaced values correspond to the algorithms leading to the best
accuracy for each dataset.

Table 2. Accuracy for the HNB-PLR and GMSNB-PLR algorithms

Dataset HNB-PLR-G HNB-PLR-F HNB-PLR-W HNB-PLR-E GMSNB-PLR-F GMSNB-PLR-T

Authorship 0.814 ± 0.020 0.797 ± 0.023 0.793 ± 0.023 0.797 ± 0.027 0.724 ± 0.022 0.806 ± 0.023

Blocks 0.931 ± 0.005 0.926 ± 0.005 0.899 ± 0.008 0.942 ± 0.005 0.922 ± 0.007 0.926 ± 0.006

Breast 0.736 ± 0.057 0.760 ± 0.055 0.648 ± 0.088 0.729 ± 0.058 0.641 ± 0.109 0.717 ± 0.076

Ecoli 0.758 ± 0.035 0.728 ± 0.033 0.727 ± 0.032 0.740 ± 0.034 0.714 ± 0.035 0.757 ± 0.028

Glass 0.692 ± 0.061 0.757 ± 0.045 0.707 ± 0.055 0.759 ± 0.049 0.662 ± 0.062 0.761 ± 0.043

Iris 0.874 ± 0.058 0.860 ± 0.076 0.887 ± 0.043 0.802 ± 0.105 0.871 ± 0.046 0.897 ± 0.041

Letter

Libras 0.579 ± 0.031 0.545 ± 0.027 0.558 ± 0.034 0.613 ± 0.034 0.289 ± 0.030 0.578 ± 0.039

Pendigits 0.807 ± 0.005 0.804 ± 0.006 0.806 ± 0.005 0.805 ± 0.005 0.793 ± 0.007 0.809 ± 0.006

Satimage 0.870 ± 0.006 0.857 ± 0.007 0.843 ± 0.007 0.857 ± 0.007 0.813 ± 0.009 0.875 ± 0.006

Segment 0.866 ± 0.013 0.867 ± 0.009 0.870 ± 0.011 0.883 ± 0.009 0.846 ± 0.013 0.871 ± 0.012

Vehicle 0.731 ± 0.030 0.727 ± 0.028 0.709 ± 0.029 0.697 ± 0.028 0.606 ± 0.043 0.781 ± 0.021

Vowel 0.707 ± 0.032 0.728 ± 0.021 0.725 ± 0.024 0.562 ± 0.063 0.596 ± 0.027 0.756 ± 0.014

Wine 0.835 ± 0.042 0.822 ± 0.051 0.821 ± 0.055 0.826 ± 0.047 0.824 ± 0.055 0.850 ± 0.047

Yeast 0.747 ± 0.017 0.740 ± 0.014 0.715 ± 0.014 0.707 ± 0.027 0.731 ± 0.017 0.775 ± 0.011

https://github.com/alfaro96/scikit-lr
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We used the standard statistical analysis procedure described in Sect. 5.3:

1. The p-value obtained in the Friedman test was 4.124e−6, so we rejected the
null hypothesis (H0), and, at least, one algorithm was different.

2. Table 3 shows the results of the post-hoc test, taking as control the GMSNB-
PLR-T algorithm. The columns ranking and p-valor represent the ranking
obtained by the Friedman test and the p-value adjusted by the Holm pro-
cedure, respectively. The columns win, tie, loss contain the number of times
that the control algorithm win, tie and losses with respect to the row-wise
one. The boldfaced p-values are non-rejected null hypotheses (H0).

Table 3. Results of the post-hoc test for the mean accuracy of the HNB-PLR and
GMSNB-PLR algorithms

Method Ranking p-value Win Tie Loss

GMSNB-PLR-T 1.90 – – – –

HNB-PLR-G 2.47 4.068e−1 9 0 6

HNB-PLR-E 3.27 9.087e−2 10 0 5

HNB-PLR-F 3.70 2.525e−2 13 1 1

HNB-PLR-W 4.40 1.010e−3 15 0 0

GMSNB-PLR-F 5.27 4.148e−6 14 0 1

In the statistical analysis, we can observe that the GMSNB-PLR-T algorithm
is ranked first by the Friedman test, and it is statistically different from HNB-PLR-
F, HNB-PLR-W and GMSNB-PLR-F algorithms. However, there is no statistical
difference with respect to the HNB-PLR-G and HNB-PLR-E algorithms.

Let us compare the best algorithms with respect to the IBPLR and PLRT
algorithms. Table 4 shows the results of this comparison.

Table 4. Mean accuracy for the IBPLR and PLRT algorithms

Conjunto de datos IBPLR PLRT-A PLRT-D PLRT-E PLRT-G

Authorship 0.829 ± 0.018 0.757 ± 0.025 0.763 ± 0.019 0.780 ± 0.023 0.776 ± 0.023

Blocks 0.937 ± 0.005 0.940 ± 0.004 0.941 ± 0.005 0.944 ± 0.004 0.946 ± 0.004

Breast 0.751 ± 0.058 0.770 ± 0.075 0.777 ± 0.067 0.766 ± 0.058 0.763 ± 0.064

Ecoli 0.759 ± 0.027 0.758 ± 0.027 0.765 ± 0.026 0.763 ± 0.033 0.755 ± 0.031

Glass 0.756 ± 0.045 0.764 ± 0.048 0.761 ± 0.048 0.761 ± 0.037 0.758 ± 0.034

Iris 0.900 ± 0.051 0.912 ± 0.046 0.909 ± 0.044 0.916 ± 0.045 0.905 ± 0.040

Letter 0.689 ± 0.005 0.667 ± 0.004 0.667 ± 0.004 0.669 ± 0.005 0.670 ± 0.005

Libras 0.648 ± 0.029 0.584 ± 0.029 0.588 ± 0.030 0.575 ± 0.026 0.583 ± 0.029

Pendigits 0.819 ± 0.006 0.799 ± 0.006 0.801 ± 0.006 0.813 ± 0.006 0.811 ± 0.005

Satimage 0.881 ± 0.005 0.834 ± 0.006 0.839 ± 0.006 0.846 ± 0.006 0.848 ± 0.005

Segment 0.890 ± 0.008 0.886 ± 0.010 0.889 ± 0.009 0.894 ± 0.009 0.896 ± 0.009

Vehicle 0.739 ± 0.020 0.747 ± 0.031 0.757 ± 0.027 0.793 ± 0.021 0.778 ± 0.021

Vowel 0.745 ± 0.017 0.673 ± 0.031 0.680 ± 0.028 0.679 ± 0.023 0.682 ± 0.023

Wine 0.845 ± 0.036 0.841 ± 0.050 0.837 ± 0.046 0.824 ± 0.046 0.825 ± 0.060

Yeast 0.790 ± 0.010 0.769 ± 0.010 0.774 ± 0.009 0.775 ± 0.010 0.774 ± 0.009
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For these set of algorithms, the p-value obtained by the Friedman test was
1.5e−2, so we rejected the null hypothesis H0 and at least one algorithm is
different to the rest. Table 5 shows the results of the post-hoc test adjusted with
the Holm procedure, taking as control the IBPLR algorithm (ranked first by the
Friedman test).

Table 5. Results of the post-hoc test for the mean accuracy of the compared algorithms

Method Ranking p-value Win Tie Loss

IBPLR 3.07 – – – –

PLRT-E 3.70 5.763e−1 8 0 7

PLRT-D 4.13 5.763e−1 9 0 6

PLRT-G 4.23 5.763e−1 9 0 6

PLRT-A 4.40 5.442e−1 9 0 6

GMSNB-PLR-T 4.63 3.992e−1 11 0 4

HNB-PLR-G 5.77 1.523e−2 15 0 0

HNB-PLR-E 6.07 5.574e−1 13 0 2

According with these results, we can conclude that:

– The IBPLR algorithm is ranked first by the Friedman test, without statistical
difference with respect to the PLRT and GMSNB-PLR-T algorithms. These
results show that the model-based methods are competitive with respect to
the instance-based in the PLR problem, which is not the case for the LR
problem [5,9].

– The main disadvantage of the HNB-PLR and GMSNB-PLR algorithms is the
memory requirements, as they are not able to deal with datasets generating
a high number of target variables. For instance, there are no results for the
letter dataset (325 target variables and 20000 instances).

Time. Our proposals are slower than the instance-based (IBPLR) and tree-
based methods (PLRT) because of the high number of mixtures (see Table 6)
and so EM iterations required to properly model the joint probability distribu-
tion. Furthermore, since we have a high number of target variables (due to the
ranking transformation), the EM algorithm takes too much time to converge.
For instance, taking the pendigits dataset (10992 instances and 10 class labels,
that is, 45 target variables), the GMSNB-PLR-T is 120 times slower than the
IBPLR algorithm and 850 slower than the PLRT-G.
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Table 6. Mean number of mixtures for each PGM

Dataset HNB-PLR-G HNB-PLR-F HNB-PLR-W HNB-PLR-E GMSNB-PLR-F GMSNB-PLR-T

Authorship 36.340 ± 36.988 24.58 ± 18.377 31.380 ± 21.813 40.840 ± 52.281 3.020 ± 0.141 35.420 ± 41.952

Blocks 167.440 ± 76.169 238.400 ± 168.220 81.300 ± 33.121 341.660 ± 147.979 68.520 ± 23.693 213.200 ± 97.692

Breast 15.960 ± 7.284 29.120 ± 19.157 19.800 ± 19.078 17.720 ± 12.795 4.520 ± 2.288 20.320 ± 8.110

Ecoli 31.000 ± 14.321 25.820 ± 21.930 31.140 ± 26.869 39.900 ± 20.928 12.920 ± 6.552 47.040 ± 27.871

Glass 17.220 ± 9.951 66.020 ± 32.922 27.920 ± 23.357 45.520 ± 23.603 5.180 ± 2.164 39.760 ± 16.577

Iris 17.020 ± 15.946 34.820 ± 20.457 24.180 ± 17.253 9.560 ± 4.739 7.960 ± 4.000 32.320 ± 22.709

Letter

Libras 47.660 ± 12.967 40.940 ± 14.621 43.960 ± 13.425 121.760 ± 38.154 218.080 ± 39.608 56.200 ± 10.900

Pendigits 388.800 ± 108.298 204.680 ± 67.601 266.480 ± 95.088 261.520 ± 98.865 93.800 ± 27.355 405.840 ± 102.542

Satimage 326.660 ± 101.758 283.660 ± 96.820 198.720 ± 108.040 272.060 ± 108.377 29.620 ± 14.246 392.460 ± 110.909

Segment 140.400 ± 56.351 202.580 ± 158.267 196.300 ± 154.706 230.320 ± 141.072 42.680 ± 21.920 337.380 ± 121.548

Vehicle 73.320 ± 35.361 292.600 ± 151.414 346.300 ± 144.204 172.420 ± 126.264 12.260 ± 2.448 66.480 ± 60.716

Vowel 75.320 ± 26.250 169.260 ± 55.564 186.260 ± 49.278 95.640 ± 42.740 7.640 ± 2.884 174.580 ± 52.597

Wine 6.700 ± 9.033 11.980 ± 15.213 17.120 ± 19.256 24.960 ± 23.206 3.800 ± 1.030 14.480 ± 17.117

Yeast 103.500 ± 56.536 46.000 ± 18.553 127.660 ± 97.812 159.040 ± 113.482 30.300 ± 16.656 219.880 ± 93.535

6 Conclusions and Future Work

In this paper, we have proposed an algorithm based on Bayesian networks and
rank aggregation to solve the PLR problem. In particular, we have transformed
the ranking variable into several target variables to model the preferences among
pair of class labels with a multinomial distribution. Our proposal is based on a
SNB structure with a hidden variable as root to model the interaction between
the predictive and target variables. Thus, we only need to estimate the parame-
ters with the EM algorithm. Given an unlabeled instance, the a-posteriori prob-
abilities for the target variables are computed and input to the pair order matrix
used to solve the OBOP, and so obtain the output (partial) ranking.

From the experimental evaluation, we have concluded that the GMSNB-
PLR-T algorithm is competitive with the IBPLR and PLRT algorithms. Note
that, although the GMSNB-PLR-T requires more computational resources dur-
ing the learning phase than the IBPLR algorithm, this is not the case during
the inference phase.

As future research, we plan to reduce the problem using clustering techniques
to solve the memory problems, which we expect that also reduces the CPU time
required in the learning phase.

Acknowledgement. This work has been funded by the Government of Castilla-
La Mancha and “ERDF A way of making Europe” through the project
SBPLY/17/180501/000493. It is also part of the projects PID2019–106758GB–C33
and FPU18/00181 funded by MCIN/AEI/ 10.13039/501100011033 and “ESF Invest-
ing your future”.

References
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4. Aledo, J.A., Gámez, J.A., Rosete, A.: A highly scalable algorithm for weak rankings
aggregation. Inf. Sci. 570, 144–171 (2021)
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