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Abstract. The novel coronavirus disease 2019 (COVID-19) has been
spreading rapidly around theworld and caused a significant impact on pub-
lic health and economy. However, there is still lack of studies on effectively
quantifying the different lung infection areas caused by COVID-19. As a
basic but challenging task of the diagnostic framework, distinguish infec-
tion areas in computed tomography (CT) images and help radiologists to
determine the severity of the infection rapidly. To this end, we proposed
a novel deep learning algorithm for automated infection diagnosis of mul-
tiple COVID-19 Pneumonia. Specifically, we use the aggregated residual
network to learn a robust and expressive feature representation and apply
the soft attention mechanism to improve the capability of the model to
distinguish a variety of symptoms of the COVID-19. With a public CT
image dataset, the proposed method achieves 0.91 DSC which is 14.6%
higher than selected baselines. Experimental results demonstrate the out-
standing performance of our proposed model for the automated segmen-
tation of COVID-19 Chest CT images. Our study provides a promising
deep learning-based segmentation tool to lay a foundation to facilitate the
quantitative diagnosis of COVID-19 lung infection in CT images.

Keywords: Automated segmentation · COVID-19 · Computed
tomography · Deep learning

1 Introduction

The novel coronavirus disease 2019, also known as COVID-19 outbreak first
noted in Wuhan at the end of 2019, has been spreading rapidly worldwide [32]. As
an infectious disease, COVID-19 is caused by severe acute respiratory syndrome
coronavirus and presents with symptoms including fever, dry cough, shortness
of breath, tiredness and so on. As the Jan 7th, over 87 million people around
the world have been confirmed as COVID-19 infection with a case fatality rate
of about 5.7% according to the statistic of World Health Organization1.
1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-

reports.
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So far, no specific treatment has proven effective for COVID-19. Therefore,
accurate and rapid testing is extremely crucial for timely prevention of COVID-
19 spread. Real-time reverse transcriptase polymerase chain reaction (RT-PCR)
has been referred as the standard approach for testing COVID-19. However,
RT-PCR testing is time-consuming and limited by the lack of supply test kits
[17,22]. Moreover, RT-PCR has been reported to suffer from low sensitivity and
repeated checking is typically required for accurate confirmation of a COVID-
19 case. This indicates that many patients will not be confirmed timely [1,15],
thereby resulting in a high risk of infecting a larger population.

In recent years, imaging technology has emerged as a promising tool for
automatic quantification and diagnosis of various diseases. As a routine diag-
nostic tool for pneumonia, chest computed tomography (CT) imaging has been
strongly recommended in suspected COVID-19 cases for both initial evaluation
and follow-up. Chest CT scans play an indispensable role in detecting typical
COVID-19 infections [11,13,19]. A systematic review [21] concluded that CT
imaging of the chest was found to be sensitive when checking for COVID-19
cases even before some clinical symptoms were observed. Specifically, the typi-
cal radiographic features indicating ground class opacification, consolidation and
pleural effusion have been frequently observed in the chest CT images scanned
from COVID-19 patients [9,24,28].

Accurate segmentation of these important radiographic features is crucial
for reliable quantification of COVID-19 infection in chest CT images. Segmenta-
tion of medical imaging needs to be manually annotated by well-trained expert
radiologists. The rapidly increasing number of infected patients has caused a
tremendous burden for radiologists and slowed down the labelling of ground-
truth mask. Thus, there is an urgent need for automated segmentation of infec-
tion regions, which is a basic but arduous task in the pipeline of computer-aided
disease diagnosis [6]. However, automatically delineating the infection regions
from the chest CT scans is considerably challenging because of the large varia-
tion in both position and shape across different patients and low contrast of the
infection regions in CT images [22].

Machine learning-based artificial intelligence provides a powerful technique
for the design of data-driven methods in medical imaging analysis [24]. Develop-
ing advanced deep learning models would bring unique benefits to the rapid
and automated segmentation of medical images [23]. So far, fully convolu-
tional networks have proven superiority over other widely used registration-
based approaches for segmentation [6]. In particular, U-Net models work decently
well for most segmentation tasks in medical images [2,3,20,22]. However, sev-
eral potential limitations of U-Net have not been effectively addressed yet. For
example, it is difficult for the U-net model to capture complex features such as
multi-class image segmentation and recover the complex features into the seg-
mentation image [18]. There are also a few successful applications that adopt
U-Net or its variants to implement the CT image segmentation, including heart
segmentation [30], liver segmentation [14], or multi-organ segmentation [5]. How-
ever, segmentation of COVID-19 infection regions with deep learning remains
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underexplored. The COVID-19 is a new disease but very similar to common
pneumonia in the medical imaging side, which makes its accurate quantifica-
tion considerably challenging. Recent advancement of the deep learning method
provides heaps of insightful ideas about improving the U-Net architecture. The
most popular one is the deep residual network (ResNet) [8]. ResNet provided an
elegant way to stack CNN layers and demonstrate the strength when combined
with U-Net [10]. On the other hand, attention was also applied to improve the
U-Net and other deep learning models to boost the performance [18].

Accordingly, we propose a novel deep learning model for rapid and accurate
segmentation of COVID-19 infection regions in chest CT scans. Our developed
model is based on the U-Net architecture, inspired with recent advancement
in the deep learning field. We exploit both the residual network and attention
mechanism to improve the efficacy of the U-Net. Experimental analysis is con-
ducted with a public CT image dataset collected from patients infected with
COVID-19 to assess the efficacy of the developed model. The outstanding per-
formance demonstrates that our study provides a promising segmentation tool
for the timely and reliable quantification of lung infection, toward developing an
effective pipeline for precious COVID-19 diagnosis.

Our aim is to develop a plausible segmentation model for automatically iden-
tifying the typical COVID-19 infection areas of lungs from chest CT images in
order to facilitate COVID-19 diagnosis as the following: (i) our model provides a
proper tool for determining the salient regions of CT images, and thus speed up
the COVID-19 screening and diagnosis; (ii) comparing with existing approaches,
our model is capable of producing fine-grained region of interest relating to
COVID-19 infections. It would be useful to identify the different progression
stages and therefore offer the groundings for further treatment plan.

The rest of the paper is summarized as follows. Our proposed new deep learn-
ing model is detailedly described in Sect. 2 Methodology, including the U-Net
structure, the methods used to improve the encoder and decoder. The experi-
mental study and performance assessment are described in Sect. 3, followed by
a discussion and summary of our study.

2 Methodology

This section will introduce our proposed Residual Attention U-Net for the lung
CT image segmentation in detail. We start by describing the overall structure
of the developed deep learning model followed by explaining the two improved
components including aggregated residual block and locality sensitive hashing
attention as well as the training strategy. The overall flowchart is illustrated in
Fig. 1.

2.1 Overview

U-Net was first proposed by Ronneberger et al. [20], which was basically a vari-
ant of fully convolutional networks (FCN) [16]. The traditional U-Net is a type
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Fig. 1. Illustration of our developed residual attention U-Net model. The aggregated
ResNeXt blocks are used to capture the complex feature from the original images.
The left side of the U-Shape serves as encoder and the right side as decoder. Each
block of the decoder receives the feature representation learned from the encoder, and
concatenates them with the output of deconvolutional layer followed by LSH atten-
tion mechanism. The filtered feature representation after the attention mechanism is
propagated through the skip connection.

of artificial neural network (ANN) containing a set of convolutional layers and
deconvolutional layers to perform the task of biomedical image segmentation.
The structure of U-Net is symmetric with two parts: encoder and decoder. The
encoder is designed to extract the spatial features from the original medical
image. The decoder is to construct the segmentation map from the extracted
spatial features. The encoder follows a similar style like FCN with the combi-
nation of several convolutional layers. To be specific, the encoder consists of a
sequence of blocks for down-sampling operations, with each block including two
3 × 3 convolution layers followed by a 2 × 2 max-pooling layers with stride of
2. The number of filters in the convolutional layers is doubled after each down-
sampling operation. In the end, the encoder adopts two 3×3 convolutional layers
as the bridge to connect with the decoder.

Differently, the decoder is designed for up-sampling and constructing the
segmentation image. The decoder first utilizes a 2 × 2 deconvolutional layer
to up-sample the feature map generated by the encoder. The deconvolutional
layer contains the transposed convolution operation and will half the number of
filters in the output. It is followed by a sequence of up-sampling blocks which
consists of two 3 × 3 convolution layers and a deconvolutional layer. Then, a
1 × 1 convolutional layer is used as the final layer to generate the segmentation
result. The final layer adopted Sigmoid function as the activation function while
all other layers used ReLU function. In addition, the U-Net concatenates part of
the encoder features with the decoder. For each block in encoder, the result of the
convolution before the max-pooling is transferred to decoder symmetrically. In
decoder, each block receives the feature representation learned from encoder, and
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concatenates them with the output of deconvolutional layer. The concatenated
result is then forwardly propagated to the consecutive block. This concatenation
operation is useful for the decoder to capture the possible lost features by the
max-pooling.

2.2 Aggregated Residual Block

As mentioned in the previous section, the U-Net only have four blocks of con-
volution layers to conduct the feature extraction. The conventional structure
may not be sufficient for the complex medical image analysis such as multi-class
image segmentation in the lung, which is the goal of this study. Although U-Net
can easily separate the lung in a CT image, it may have limited ability to distin-
guish the difference infection regions of the lung which infected by COVID-19.
Based on this case, the deeper network is needed with more layers, especially for
the encoding process. However, when deeper network converges, a problem will
be exposed: with increasing of the network depth, accuracy gets very high and
then decreases rapidly. This problem is defined as the degradation problem [7].
He et al. proposed the ResNet [8] to mitigate the effect of network degradation
on model learning. ResNet utilizes a skip connection with residual learning to
overcome the degradation and avoid estimating a large number of parameters
generated by the convolutional layer. The typical ResNet block can be defined
as F (i) =

∑D
j=1 wjij where i = [i1, i2, · · · , iD] and W = [w1, w2, · · · , wD] is the

trainable weight for the weight layer. Different from the U-Net that concate-
nates the features map into the decoding process, ResNet adopts the shortcut
to add the identity into the output of each block. The stacked residual block
can better learn the latent representation of the input CT image. However, the
ResNet normally have millions of parameters and may lead to under-fitting or
over-fitting due to the model’s complexity. Regarding this, Xie et al. proposed
the Aggregated Residual Network(ResNeXt) and showed that increasing the car-
dinality was more useful than increasing the depth or width [29]. The cardinality
is defined as the set of the Aggregated Residual transformations with the formu-
lation as F (i) =

∑C
j=1 Tj(i) where C is the number of residual transformation

to be aggregated and Tj(i) can be any function. Considering a simple neuron,
Tj should be a transformation which projects i into a low-dimensional embed-
ding ideally and then transforming it. Accordingly, we can extend it into the
residual function y =

∑C
j=1 Tj(i) + i where the y is the output. The ResNeXt

block is visualized in Fig. 2. The weight layer’s size is smaller than ResNet as
ResNeXt uses the cardinality to reduce the number of layers but keep the per-
formance. One thing is worth to mention that the three small blocks inside the
ResNeXt block need to have the same topology, in other words, they should be
topologically equivalent.

Similar to the ResNet, after a sequence of blocks, the learned features are fed
into a global averaging pooling layer to generate the final feature map. Different
from the convolutional layers and normal pooling layers, the global averaging
pooling layers take the average of feature maps derived by all blocks. It can sum
up all the spatial information captured by each step and is generally more robust
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Fig. 2. An example ResNeXt Block. The variable i is the 256-dimension representation
of the input image or features map. C represents the cardinality, which indicates that
number of blocks inside. 256, 1 × 1, 4 represents the size of input image, filter and
output’s channel. The dimension is determined by the input.

than directly making the spatial transformation to the input. Mathematically,
we can treat the global averaging pooling layer as a structural regularizer that
is helpful for driving the desired feature maps [31].

Importantly, instead of using the encoder in the U-Net, our proposed deep
learning model adopts the ResNeXt block (see Fig. 2) to conduct the features
extraction. The ResNeXt provides a solution which can prevent the network
from going very deeper but remain the performance. In addition, the training
cost of ResNeXt is better than ResNet.

2.3 Locality Sensitive Hashing Attention

The decoder in U-Net is used to up-sampling the extracted feature map to gener-
ate the segmentation image. However, due to the capability of the convolutional
neural network, it may not able to capture the complex features if the network
structure is not deep enough. In recent years, transformers [26] have gained
increasingly interest. The key to success is the attention mechanism [27]. Atten-
tion includes two different mechanisms: soft attention and hard attention. We
adopt soft attention to improve model learning. Different from hard attention,
soft attention can let model focus on each pixel’s relative position, but hard
attention only can focus on the absolute position. There are two different types
of soft attention: Scaled Dot-Product Attention and Multi-Head Attention as
shown in Fig. 3. The scaled dot-product attention takes the inputs including a
query Q, a key Kn of the n-dimension and value Vm of the m-dimension. The
dot-product attention is defined as follows:

Attention(Q,Kn, Vm) = softmax(
QKT

n√
n

)Vm (1)
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Fig. 3. Attention Mechanism. The left figure shows the simple scaled dot-prodct atten-
tion. The right figure depicts the multi-hand attention with the h head.

where KT
n represents to the transpose of the matrix Kn and

√
n is a scaling

factor. The softmax function σ(z) with z = [z1, · · · , zn] ∈ R
n is given by:

σ(z)i =
exp(zi)∑n
j=1 exp(zj)

for i = 1, · · · , n (2)

Vaswani et al. [27] mentioned that, performing the different linear project of the
queries Q, keys K and values V in parallel h layers will benefit the attention
score calculation. We can assume that Q,K and V have been linearly projected to
dk, dk, dv dimensions, respectively. It is worth noting that these linear projections
are different and learnable. On each projection p, we have a pair of the query,
key and value Qp,Kp, Vp to conduct the attention calculation in parallel, which
results in a dv-dimensional output. The calculation can be formulated as:

MultiHead(Q,K, V ) = Concatenate(head1, · · · ,headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

where the the projections WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk , WV
i ∈

R
dmodel×dvare parameter matrices and WO ∈ R

dmodel×hdv is the weight matrix
used to balance the results of h layers.

However, the multi-head attention is memory inefficient due to the size of
Q,K and V . Assume that the Q,K, V have the shape [|batch|, length, dmodel]
where | · | represents the size of the variable. The term QKT will produce a
tensor in shape [length, length, dmodel]. Given the standard image size, the length
× length will take most of the memory. Kitaev et al. [12] proposed a Locality
Sensitive Hashing(LSH) based Attention to address this issue. Firstly, we rewire
the basic attention formula into each query position i, j in the partition form:

ai =
∑

j∈Pi

exp(qi · kj − z(i, Pi))vj√
dk

where Pi = {j : i ≥ j} (3)
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where the function z is the partition function, Pi is the set which query position i
attends to and k, q, v are elements of the matrix K,Q, V . During model training,
we normally conduct the batching and assume that there is a larger set PL

i =
{0, 1, · · · , l} ⊇ Pi without considering elements not in Pi:

ai =
∑

j∈PL
i

exp(qi · kj − N(j, Pi) − z(i, Pi))vj√
dk

(4)

where N(j, Pi) =

{
0 j ∈ Pi

∞ j /∈ Pi

(5)

Then, with a hash function h(·): h(qi) = h(kj), we can get Pi as:

Pi = {j : h(qi) = h(kj)} (6)

In order to guarantee that the number of keys can uniquely match with the
number of quires, we need to ensure that h(qi) = h(ki) where ki = qi

‖qi‖ . During
the hashing process, some similar items may fall in different buckets because of
the hashing. The multi-round hashing provides an effective way to overcome this
issue. Suppose there is nr round, and each round has different hash functions
{h1, · · · , hnr

}, so we have:

Pi =
nr⋃

g=1

P g
i where P g

i = {j : hg(qi) = hg(qj)} (7)

Considering the batching case, we need to get the PL
i for each round g:

P̂L
i =

{

j : � i

m
� − 1 ≤ � j

m
� ≤ � i

m
�
}

(8)

where m = 2l
nr

. The last step is to calculate the LSH attention score in parallel.
With the above formula , we can derive:

ai =
nr∑

g=1

exp(z(i, P g
i ) − z(i, Pi))a

g
i√

dk
(9)

where ag
i =

∑

j∈̂PL
i

exp(qi · kj − mg
i,j − z(i, P g

i ))vj√
dk

(10)

with mg
i,j =

⎧
⎪⎨

⎪⎩

∞ j /∈ P g
i

105 i = j

log |{g′ : j ∈ P g′
i }| otherwise

(11)

2.4 Training Strategy

The task of the lung CT image segmentation is to predict if each pixel of the
given image belongs to a predefined class or the background. Therefore, the
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traditional medical image segmentation problem comes to a binary pixel-wise
classification problem. However, in this study, we are focusing on the multi-
class image segmentation, which can be concluded as a multi-classes pixel-wise
classification. Hence, we choose the multi-class cross-entropy as the loss function:

L = −
M∑

c=1

yo,c log(po,c) (12)

where yo,c is a binary value which is used to compare the correct class c and
observation class o, po,c is a probability of the observation o to correct class c
and M is the number of classes.

3 Experiment and Evolution Results

3.1 Data Description

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Visualization of segmentation results. The images (a) and (e) show the pre-
processed chest CT images of two scans. The images (b) and (f) are the ground-truth
masks for these two scans, where the yellow represents the consolidation, blue rep-
resents pleural effusion and green corresponds to ground-glass opacities. The images
(c) and (g) are the segmentation results generated by our model where the blue rep-
resents the consolidation and brown represents the pleural effusion and sky-blue for
the ground-glass opacities. The images (d) and (h) are the outputs of the U-Net. In
order to make the visualization clear, we choose the light grey as the colour for the
background segment. (Color figure online)
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We used COVID-19 CT images collected by the Italian Society of Medical
and Interventional Radiology (SIRM)2 for our experimental study. The dataset
included 110 axial CT images collected from 43 patients. These images were
reversely intensity-normalized by taking RGB-values from the JPG-images from
areas of air (either externally from the patient or in the trachea) and fat (sub-
cutaneous fat from the chest wall or pericardial fat) and used to establish the
unified Houndsfield Unit-scale (the air was normalized to –1000, fat to –100).
The ground-truth segmentation was done by a trained radiologist using Med-
Seg3 with three labels: 1 = ground class opacification, 2 = consolidations, and
3 = pleural effusions. We split the dataset in both patient level and CT image
levels to demonstrate the superior of our method. These data are publicly avail-
able4.

3.2 Data Preprocessing and Augmentation

The original CT images have a size of 512 × 512 in matrix form. We use the
opencv25 to transfer the matrix into gray-scale image to remove some random
noises.

As our model is based on deep learning, the number of samples will affect the
performance significantly. Consider the size of the dataset, data augmentation
is necessary for training the neural network to achieve high generalizability. Our
study implements parameterized transformations to realize data augmentation
in the training set in this study. We rotate the existing images 90◦, 180◦ and 270◦

to generate another sets of examples. We can easily generate the corresponding
mask by rotating with the same degrees. Scaling has some property with the
rotation, so we just scale the image to 0.5 and 1.5 separately to generate another
sets of images and its corresponding masks.

3.3 Experiments Setting and Measure Metrics

For the model training, we use the Adma as the optimizer. For a fair comparison,
we trained our model and the U-Net with the default parameter in 100 epochs,
with learning rate 0.0001 and 3 as the kernel size. Both models are trained under
data augmentation and non-augmentation cases. We conducted the experimental
analyses on our server consisting of two 12-core/ 24-thread Intel(R) Xeon(R)
CPU E5-2697 v2 CPUs, 6 NVIDIA TITAN X Pascal GPUs, 2 NVIDIA TITAN
RTX, a total 768 GiB memory. In a segmentation task, especially for the multi-
class image segmentation, the target area of interest may take a trivial part
of the whole image. Thus, we adopt the Dice Score, accuracy, precision, recall,
F1 score and hausdorff distance(HD) as the measure metrics. The dice score is
defined as:

2 https://www.sirm.org/category/senza-categoria/covid-19/.
3 http://medicalsegmentation.com/.
4 http://medicalsegmentation.com/covid19/.
5 https://opencv.org/opencv-2-4-8/.

https://www.sirm.org/category/senza-categoria/covid-19/
http://medicalsegmentation.com/
http://medicalsegmentation.com/covid19/
https://opencv.org/opencv-2-4-8/
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DSC(X,Y ) =
2|X ∩ Y |
|X| + |Y | (13)

where X, Y are two sets, and | · | calculates the number of elements in a set.
Assume Y is the correct result of the test and X is the predicted result. We
conduct the experimental comparison based on 10-fold cross-validation for per-
formance assessment in patient level and image level. And the measure metric
for multi-class classification can be calculated by averaging several binary clas-
sifications in the same task.

3.4 Results

The Fig. 4 provides two examples about the result images which have data aug-
mentation. The Table 1 shows the measure metric for our proposed model and the
U-Net in with data augmentation case and no data augmentation case. Based on
this table, we can easily find that our proposed method is out-performed than U-
Net that the improvement is at least 10% in all three measure metrics. As shown
in Fig. 4(h), we find that the original U-Net almost failed to do the segmenta-
tion. The most possible reason is that the range of interest is very small, and the
U-Net does not have enough capability to distinguish those trivial difference.

Table 1. Comparison of segmentation performance between our proposed model and
U-Net on patient level. All the values are the average value based on the 10-fold cross-
validation.

Model With augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours 0.91 0.85 0.90 0.83 0.86 5.11

U-Net 0.80 0.77 0.81 0.72 0.76 37.27

Improvement 13.8% 10.4% 11.1% 12.2% 13.2% –

Model No augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours 0.82 0.77 0.80 0.74 0.78 16.24

U-Net 0.73 0.69 0.71 0.69 0.65 54.22

Improvement 12.3% 11.6% 12.7% 13.2% 20.0% –

3.5 Ablation Study

In addition to the above-mentioned results, we are also interested in the effec-
tiveness of each component in the proposed model. Accordingly, we conduct the
ablation study about the ResNeXt and Attention separately to investigate how
these components would affect the segmentation performance. To ensure a fair
experimental comparison, we conduct the ablation study in the same experiment
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Table 2. Comparison of segmentation performance between our proposed model and
U-Net on image level. All the values are the average value based on the 10-fold cross-
validation.

Model With augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours 0.94 0.89 0.95 0.85 0.90 4.85

U-Net 0.82 0.79 0.83 0.74 0.78 34.23

Improvement 14.6% 12.7% 14.5% 14.9% 15.4% –

Model No augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours 0.83 0.79 0.82 0.76 0.79 13.82

U-Net 0.75 0.70 0.72 0.62 0.67 44.23

Improvement 10.7% 12.9% 13.9% 22.6% 17.9% –

environment with our main experiments presented in Sect. 3.3. We implement
the ablation study on two variants of our model: Model without Attention and
Model without ResNeXt. Our model without ResNeXt is similar with litera-
ture [18]. We just use the M-R to represent it. The results are summarized in
Table 3, where M-A represents the model without attention and M-R represents
the model without ResNeXt block. We can observe that both the attention
and ResNeXt blocks play important roles in our model and contribute to derive
improved segmentation performance in comparison with U-Net (Tables 3 and 4).

Table 3. Comparison result of ablation study. All the values are the average value
based on the 10-fold cross-validation on patient level.

Model With augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours(M) 0.91 0.85 0.90 0.83 0.86 5.11

M - A 0.84 0.80 0.83 0.77 0.80 15.22

M - R 0.82 0.79 0.81 0.75 0.78 20.42

M-A-R 0.80 0.77 0.81 0.72 0.76 37.27

Model No augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours(M) 0.82 0.77 0.80 0.74 0.78 16.24

M - A 0.77 0.74 0.73 0.67 0.70 27.51

M - R 0.76 0.73 0.73 0.63 0.68 40.51

M-A-R 0.73 0.69 0.71 0.60 0.65 54.22



134 X. Chen et al.

Table 4. Comparison result of ablation study. All the values are the average value
based on the 10-fold cross-validation on image level.

Model With augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours(M) 0.94 0.89 0.95 0.85 0.90 4.85

M - A 0.85 0.82 0.84 0.79 0.81 13.66

M - R 0.84 0.81 0.83 0.76 0.79 19.41

M-A-R 0.82 0.79 0.83 0.74 0.78 34.23

Model No augmentation

DSC Acc Precision Recall F1 HD(mm)

Ours(M) 0.83 0.79 0.82 0.76 0.79 13.82

M - A 0.79 0.74 0.77 0.70 0.73 24.24

M - R 0.77 0.76 0.77 0.67 0.72 32.42

M-A-R 0.75 0.70 0.72 0.62 0.67 44.23

4 Discussion and Conclusions

Up to now, the most common screening tool for COVID-19 is CT imaging. It
can help the community to accelerate the speed of diagnosing and accurately
evaluate the severity of COVID-19 [22]. In this paper, we presented a novel deep
learning-based algorithm for automated segmentation of COVID-19 CT images,
and its proved that such algorithm is plausible and superior comparing to a series
of baselines. We proposed a modified U-Net model by exploiting the residual
network to enhance the feature extraction. An efficient attention mechanism
was further embedded in the decoding process to generate high-quality multi-
class segmentation results. Our method gained more than 10% improvement in
multi-class segmentation when comparing against U-Net and a set of baselines.

A recent study shows that the early detection of COVID-19 is very impor-
tant [4]. If the infection in chest CT image can be detected at an early stage,
the patients would have a higher chance to survive [25]. Our study provides an
effective tool for the radiologist to precisely determine the lung’s infection per-
centage and diagnose the progression of COVID-19. It also shed some light on
how deep learning can revolutionize the diagnosis and treatment in the midst of
COVID-19.

Our future work would be generalizing the proposed model into a wider
range of practical scenarios, such as facilitating with diagnosing more types of
diseases from CT images. In particular, in the case of a new disease, such as
the coronavirus, the amount of ground truth data is usually limited given the
difficulty of data acquisition and annotation. The model is capable of generalizing
and adapting itself using only a few available ground-truth samples. Another
line of future work lies in the interpretability, which is especially critical for the
medical domain applications. Although deep learning is widely accepted to its
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limitation in interpretability, the attention mechanism we proposed in this work
can produce the interpretation of internal decision process at some levels. To
gain deeper scientific insights, we will keep working along with this direction
and explore the hybrid attention model for generating meaningfully semantic
explanations.
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