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Abstract. Click-through rate (CTR) prediction plays a key role in
many domains, such as online advising and recommender system. In
practice, it is necessary to learn feature interactions (i.e., cross fea-
tures) for building an accurate prediction model. Recently, several self-
attention based transformer methods are proposed to learn feature inter-
actions automatically. However, those approaches are hindered by two
drawbacks. First, Learning high-order feature interactions by using self-
attention will generate many repetitive cross features because k -order
cross features are generated by crossing (k–1)-order cross features and (k–
1)-order cross features. Second, introducing useless cross features (e.g.,
repetitive cross features) will degrade model performance. To tackle these
issues but retain the strong ability of the Transformer, we combine the
vanilla attention mechanism with the gated mechanism and propose a
novel model named Gated Attention Transformer. In our method, k -
order cross features are generated by crossing (k–1)-order cross features
and 1 -order features, which uses the vanilla attention mechanism instead
of the self-attention mechanism and is more explainable and efficient. In
addition, as a supplement of the attention mechanism that distinguishes
the importance of feature interactions at the vector-wise level, we further
use the gated mechanism to distill the significant feature interactions at
the bit-wise level. Experiments on two real-world datasets demonstrate
the superiority and efficacy of our proposed method.
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1 Introduction

Click-through rate (CTR) prediction is a critical task in many domains, such as
online advertising and recommender systems, since a small improvement to the
task will bring a lot of revenue [7,21]. Taking online advertising as an example,
when publishers have displayed the advertisements provided by the advertisers,
their revenue depends on whether the users will click on these advertisements.
That is to say, advertisers only pay for ads that users have clicked on. Considering
the large amounts of existing users, a minor improvement to the prediction model
means millions of additional users will click on advertisements, which will bring
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a large amount of revenue. Thus, this field attracts more and more interest from
both academia and industry.

Cross features, especially high-order cross features (i.e., feature interac-
tions), are the critical factors of a successful CTR prediction model. For
example, suppose we have a record including three features {Age = 20, Gen-
der = Male, ProductCategory=Auto advertisement}, the two-order cross fea-
tures 〈Age = 20, Gender= Male〉 is obviously more predictive than the raw fea-
tures 〈Gender = Male〉 for the auto advertisement. Thus, using only raw features
often leads to sub-optimal results [18].

To model high-order cross features, recently several self-attention based
methods are proposed, such as AutoInt [24] and InterHat [16]. Despite the supe-
rior performance of these methods, two drawbacks will hinder model perfor-
mance. First, these methods generate k -order feature interactions by crossing
(k–1)-order feature interactions and (k-1)-order feature interactions, which is
counter-intuitive and will introduce large amount repetitive cross features. Sec-
ond, introducing useless feature interactions will degrade model performance.

To cope with the problems above, we propose a novel method named Gated
Attention Transformer. The key idea is to generate k -order feature interactions
by crossing (k–1)-order feature interactions and 1 -order features, which is more
intuitive and efficient. In addition, since each representation vector represents
multiple cross features when modeling feature interactions automatically, the
attention mechanism that distinguishes the importance of feature interactions
at the vector-wise level loses its efficiency. Thus, the gated mechanism that dis-
tills the significant feature interactions at the bit-wise level is used to comple-
ment the attention mechanism. Specifically, the core of the proposed method
is a transformer-like encoder, which consists of a gated multi-head attention
layer and a gated distillation network. The gated multi-head attention layer
first crosses the (k–1)-order cross features and the 1 -order features by using the
vanilla attention mechanism. Afterwards, it learns an update gate for each head,
which merges different head adaptively. Though cross features can be learned by
the gated multi-head attention layer, each vector represents multiple cross fea-
tures. Thus, the vanilla attention mechanism loses its efficiency for distinguishing
the importance of feature interactions at the vector-wise level. To tackle these
problems, a gated distillation network that alleviates the effects of useless cross
features at the bit-wise level is used. By stacking multiple such encoders, the
method can learn feature interactions of different orders.

To summarize, we make the following contributions:

• We propose a novel method to learn feature interactions efficiently by com-
bining the gated mechanism and the Transformer architecture.

• We design a Transformer-like encoder, which not only retains the Trans-
former’s architecture but tackles the drawbacks of the self-attention mecha-
nism. Besides, we combine the attention mechanism with the gated mecha-
nism for overcoming the limitation of the attention mechanism in the process
of learning feature interactions automatically.
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• We conduct extensive experiments on two real-world datasets to evaluate
our method, and the results demonstrate that our model outperforms several
representative state-of-art methods.

The rest of this paper is organized as follows: Sect. 2 gives a brief review of the
related work in the field of CTR prediction. Section 3 provides some important
concepts and a problem formulation. Section 4 introduces our proposed method.
Section 5 presents the results of extensive experiments on two public datasets.
Section 6 concludes and points out some future research directions.

2 Related Work

In this section, we briefly review the existing approaches in the field of CTR
prediction.

2.1 Traditional Models for CTR Prediction

Linear Regression (LR) is widely used in CTR prediction for its simplicity and
efficiency, which learns a unique weight for each feature. However, human efforts
are needed to generate high-order cross features, which is unacceptable for its
high cost. To model feature interactions automatically, Factorization machine
(FM) [23] and many variants are proposed [11–13]. FM models two-order feature
interactions based on LR, which learns a latent vector for each raw feature and
uses inner product operation to model two-order feature interactions. Field-
aware FM (FFM) [13] considers the field information and learns a field-aware
latent vector for each raw feature. Attentional FM (AFM) [28] considers that
different two-order cross features have different significance. Therefore, it uses
an attention network to acquire a significance score for each cross feature [1].
Though HOFM [3] can extend FM to model high-order feature interactions by
efficient training algorithms, it is hard to apply it to real predictive systems [3].

2.2 Deep Neural Network Based Models for CTR Prediction

With the success of deep neural network (DNN) in various fields [8,19,30], a
lot of methods using DNN to model high-order feature interactions are pro-
posed. For example, Product-based Neural Network (PNN) [22] concatenates
the raw features and the two-order cross features and feeds them into a DNN
to model high-order cross features. Neural FM (NFM) [9] uses a Bi-interaction
pooling layer to model two-order feature interactions and feeds them into a DNN
to model high-order feature interactions. Considering both low-order and high-
order cross features are important for prediction, Wide&Deep [4] uses a linear
part to model low-order feature interactions and a deep part, which is a DNN,
to model high-order feature interactions. DeepFM [7] combines FM with DNN
to model both low- and high-order cross features jointly.

Neural Architecture Search (NAS) is proposed to search the most proper
architecture of a neural network. Inspired by NAS, some methods utilizing
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AutoML to seek useful feature interactions are proposed. For example, Auto-
Group [18] first find multiple subsets of features, where the feature interactions
among each feature subset are effective. Then, it models high-order feature inter-
actions based on these effective feature subsets.

2.3 Self-attention Based Models for CTR Prediction

The Attention mechanism learns a function that measures the importance of
different things. It is originally proposed for neural machine translation (NMT)
[6] and is widely used in different domains, such as recommender system [16,20],
due to its capability to learn the importance of things.

Self-attention is a form of the attention mechanism. Researchers from Google
have designed the Transformer [25], which is entirely based on multi-head self-
attention and achieves state-of-the-art performance on multiple NLP tasks.
Inspired by the success of Transformer in different domains, several self-attention
based methods are proposed to model high-order feature interactions. AutoInt
[24] uses the multi-head self-attention mechanism to learn high-order feature
interactions. By stacking the different number of self-attention layers, it can learn
different orders of feature interactions. InterHat [16] first uses a self-attention
based transformer encoder to model the polysemy of features and then learns
different orders of feature interactions by hierarchical attention. Though self-
attention based methods achieve state-of-the-art performance, some drawbacks
remain to be tackled.

3 Preliminaries

In this section, we briefly introduce some notations and the problem statement.

Definition 1: Field and Feature. In this paper, the term field refers to the
name of attributes, such as gender,city. The term feature refers to values of the
corresponding field, such as the feature male for the field gender and the feature
Washington for the field city.

Definition 2: P-order Cross Features. Given an input vector x ∈ R
m that xi

is the feature of field i, a p-order cross feature is defined as g(xi1, . . . , xip), where
xik is an arbitrary feature of x, p is the number of distinct features involved, and
g(·) is a non-additive interaction function, such as inner product [16,21,23] and
outer product [17]. A p-order cross feature models the p-order feature interaction
among the corresponding features.

Problem Statement. We assume that the training dataset composes of m
categorical fields (i.e., user id, item id, etc.) and N records. Therefore, each
record of the dataset is consisted of m categorical features and an associated
label y ∈ {0, 1}. We suppose that all fields involved here are categorical because



Gated Attention Transformer 7

most fields in this problem are either categorical or can be made categorical
through discretization. Let x ∈ R

m denotes the concatenation of categorical
features of a record, where xi is the feature of field i. Our goal is to predict a
ŷ ∈ (0, 1) for the record based on the input vector x.

4 Method

In this section, we first give an overview of our proposed model depicted in Fig. 1.
Afterward, we present a comprehensive description of each component.

4.1 Overview

We design a novel model to learn feature interactions efficiently with the fol-
lowing considerations: (1) Though Transformer is successfully applied to various
domains, the self-attention mechanism fails to learn feature interactions effi-
ciently in CTR prediction. (2) Useless feature interactions will degrade model
performance. The attention mechanism loses its efficiency when learning feature
interactions automatically.

Figure 1 shows an overview of our method. The sparse input features are first
mapped into a low-dimensional vector space by an embedding layer. Thus, each
feature is represented with a dense vector. Afterward, we feed these embedding
vectors into several encoders to model feature interactions of different orders.
The details of this encoder are introduced in Sect. 4.4. Finally, we employ an
aggregation layer to aggregate all cross features of different orders and predict
the result based on it. Next, we introduce the details of each component.

Fig. 1. The overview of our proposed method. By stacking multiple encoders, multi-
order feature interactions can be modeled.
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4.2 Input Layer

Suppose each record contains m fields, then the input is the concatenation of all
fields. Specifically,

x = [x1, x2, . . . , xm]T , (1)

where xi is the feature of the i -th field. xi is a one-hot vector if the i -th field is
categorical. Otherwise, xi is a scalar value if the i -th field is numerical.

4.3 Embedding Layer

Since the one-hot representation of features is sparse and high-dimensional, it
is necessary to represent each feature as a dense and low-dimensional vector.
Taking the record {UserId=95, Gender=male, ItemId=27} as an example, the
record becomes sparse and high-dimensional after one-hot encoding:

[0, 0, · · · , 1, · · · , 0, 0
︸ ︷︷ ︸

UserId

, 1, 0
︸︷︷︸

Gender

, 0, 0, · · · , 1, · · · , 0, 0
︸ ︷︷ ︸

ItemId

], (2)

which is hard to train. Thus, we apply an embedding layer to represent each
feature as a dense and low-dimensional vector. Specifically,

ei = Vi × xi, (3)

where Vi is the embedding lookup table of the i -th field, and xi the one-hot
representation of the feature of the i -th field. If the field is multivalent, we take
the average of the corresponding feature representations as the result. Take the
field Genre as an example, a movie having multiple genres (e.g., Comedy and
Romance) corresponds to a multi-hot representation. We consider the Comedy
and Romance as a new feature of the filed Genre, and represent it as

eCR =
1
2
Vgenre × xCR, (4)

where Vgenre is the embedding lookup table of the field Genre, and xCR is the
multi-hot representation of the feature Comedy and Romance. In this way, the
result of the embedding layer is an matrix:

H(1) = [e1, e2, . . . , em]T , (5)

where H(1) ∈ R
m×d, ei ∈ R

d denotes the embedding vector of the feature of the
i -th field, and d denotes the dimension of feature embedding.

4.4 Encoder

The k-th encoder models (k+1)-order feature interactions. It takes H(1) ∈ R
m×d

and H(k) ∈ R
m×d as inputs, and output H(k+1) ∈ R

m×d, where H(1) denotes the
embedding vectors of raw features, H(k) denotes the representations of k-order
cross features, and H(k+1) denotes the representations of (k + 1)-order cross
features. As shown in Fig. 1, each encoder is composed of two different layers.
Next, we introduce each layer in detail.
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Gated Multi-head Attention Layer. The multi-head self-attention mecha-
nism is first proposed by Google [25] and proved effective in different domains,
such as machine translation [6] and recommender systems [20,27]. Considering
the drawbacks of the self-attention mechanism, the vanilla attention mechanism
is more efficient here. In addition, inspired by GaAN [29] that learns a impor-
tance score for each head since heads are not equally important, we combine the
attention mechanism with the gated mechanism and propose a novel gated multi-
head attention layer. Different from the GaAN, the gated multi-head attention
layer learns a gated vector for each head and weighted each head at the bit-wise
level, since each head models multiple feature interactions in each subspace.

Specifically, for the gated multi-head attention layer of the k -th encoder,
the inputs are the representations of k-order cross features and the embedding
vectors of raw features, which are denoted as H(k) ∈ R

m×d and H(1) ∈ R
m×d

respectively. In contrast to the vanilla multi-head attention network, we integrate
a neural gating structure:

gi = sigmoid(GateNet1([H(k)||H(1)])), (6)

where || denotes the concatenation operation, GateNet1 is a feed-forward neural
network, and gi is the gate learned for head i. Then, we distinguish the impor-
tance of feature interactions by using both the attention mechanism and the
gating mechanism:

αi = softmax(
QiK

T
i√

dK

), (7)

Qi = W
(Q)
i H(k),Ki = W

(K)
i H(1), (8)

where W
(Q)
i ∈ R

dK×d,W
(K)
i ∈ R

dK×d are parameters to learn for head i, dK

denotes the dimension of each head, and αi is the final importance score of cross
features. Finally, we obtain the representations by concatenating the outputs of
all heads:

H
(k)∗
i = gi � αiVi, (9)

H(k)∗ = Norm([H(k)∗
1 ||H(k)∗

2 || . . . ||H(k)∗
h ] + H(1)), (10)

Vi = W
(V )
i H(k), (11)

where W
(V )
i ∈ R

dK×d is the parameter of head i, h is the number of heads, and
Norm represents the normalization.

Gated Distillation Layer. Insignificant features may lead to suboptimal
results [18]. Thus, how to minimize the influence of those useless features becomes
valuable. The attention mechanism can distinguish the importance of features
and give an importance score at the vector-wise level. However, in the process
of the high-order cross features modeling, each representation vector represents
multiple cross features. Take the representation matrix H(k) ∈ R

m×d as an exam-
ple, H

(k)
i represents all the k -order cross features related to the feature of the
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i -th field. Thus, the importance score at the vector level fails to distinguish those
mixed cross features.

The gating mechanism is widely used in LSTM [10] and GRU [5] to control
the information transmission. The core idea of it is to learn an update gate for
the input at the bit-wise level, which controls how much the information can be
transmitted. In this paper, we adopt the gating mechanism to alleviate the effect
of useless cross features. Specifically, we learn a gate for each cross feature by a
feed-forward neural network and employ the gate to control the transmission of
information.

For the gated distillation layer of the k -th encoder, we take the output of the
corresponding feed-forward neural network and the embedding vectors of raw
features as inputs. Then, the output of the gated distillation layer is obtained
by:

gate = sigmoid(GateNet2(WghH
(k)�
f + WgoH

(1)), (12)

H(k+1) = gate � H
(k)�
f , (13)

where Wgh ∈ R
d×d,Wgo ∈ R

d×d are trainable parameters of the gated distilla-
tion layer, GateNet2 is a feed-forward neural network, and � is the Hadamard
Product. The matrix H(k+1) ∈ R

m×d is also the output of the k-th encoder.

4.5 Aggregation Layer and Prediction Layer

Aggregation Layer. Each encoder generates a representation matrix H(t) ∈
R

m×d, where t ranges from 2 to M , M is the number of encoders, and the
matrix H(t) denotes the representations of t-order cross features. We regard the
raw features as the one-order cross features. Thus, we aggregate these matrices
by an aggregation layer:

H =
M
∑

t=1

WtH
(t), (14)

where Wt ∈ R are trainable parameters, H(1) ∈ R
m×d is the embedding matrix

of raw features, and H ∈ R
m×d.

Prediction Layer. The output of the aggregation layer is the matrix H ∈
R

m×d, in which Hi ∈ R
d represents all cross features related to the raw feature

of field i. For each Hi, we obtain the attention score by an attention network:

αi =
exp(AttentionNet(Hi))

∑m
s exp(AttentionNet(Hs))

, (15)

where AttentionNet is a single hidden layer feed-forward neural network. Then,
we obtain the final prediction by:

ŷ = sigmoid(
m

∑

i

αiPredictionNet(Hi)), (16)

where PredictionNet is also a single hidden layer feed-forward neural network.
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Table 1. Statistics of evaluation datasets

Datasets #Samples #Fields #Features

Frappe 288,609 10 5,382

Avazu 40,428,967 22 1,544,488

4.6 Training

We adopt Logloss to optimize the model parameters. Formally, the objective
function of our method is defined as follows:

Logloss = − 1
N

N
∑

j=1

(yj log(ŷj) + (1 − yj)log(1 − ŷj)) +
λ

2
(||Θ||2F ), (17)

where yj and ŷj are ground truth of the j-th sample and the estimated CTR
respectively, j is the index of samples, N is the number of samples, and Θ denotes
all the parameters of our method.

5 Experiments

In this section, we aim to answer the following questions:

• RQ1: Can our proposed method perform better than the baselines?
• RQ2: Are the critical components (e.g., gated multi-head attention layer)

really effective for improving the model performance?
• RQ3: Is our proposed method more efficient than the self-attention based

method?
• RQ4: How do the critical hyper-parameters (e.g., the number of encoders)

affect the model performance?

5.1 Experiment Setup

Datasets. To answer the three questions, we conduct extensive experiments
on two public real-world datasets: Frappe1 and Avazu2. The Frappe [2] dataset
contains records about users’ app usage behaviors that whether a app is used
by a user. The Avazu dataset contains records about users’ ads click behaviors
that whether a displayed mobile ad is clicked by a user. All the fields involved
in both datasets are categorical. For the two datasets, we randomly select 80%
of all samples for training, 10% for validating and 10% for testing. The statistics
of Frappe and Avazu are shown in Table 1.

1 http://baltrunas.info/research-menu/frappe.
2 https://www.kaggle.com/c/avazu-ctr-prediction.

http://baltrunas.info/research-menu/frappe
https://www.kaggle.com/c/avazu-ctr-prediction
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Table 2. Hyper-parameters of each model.

Model Frappe Avazu

emb lr L2 emb lr L2

FM 32 1e–3 0 32 1e–3 1e–4

PNN 32 1e–3 0 32 1e–3 1e–4

DeepFM 32 1e–3 0 32 1e–3 1e–4

xDeepFM 32 1e–3 1e–4 32 1e–3 1e–4

AutoInt 32 1e–3 1e–4 16 1e–3 1e–5

InterHat 32 5e–3 1e–4 32 1e–3 5e–5

Our model 32 5e–3 1e–4 16 1e–3 1e–4

Note: emb=dimension of the embedding vectors,
lr=learning rate, L2 = l2 regularization.

Evaluation Metrics. We use AUC (Area Under the ROC Curve) and Logloss
(cross entropy) to evaluate the performance of all methods. AUC measures the
probability that a randomly selected positive record will be ranked higher than
a randomly selected negative record. Higher AUC indicates better performance.
Logloss measures how much the difference between the predicted score and the
ground truth. Lower Logloss indicates better performance. It is noticeable that
a improvement of AUC at 0.001-level is regarded as significant for CTR pre-
diction [4,7,15,24,26].

Baselines. As described in Sect. 2, we categorize the existing approaches into
three types: (A) Tradional models; (B) Deep learning-based models; (C) Self-
attention based models. We select the following representative models of the
three types to compare with ours.
FM [23] learns a latent vector of each raw feature and models two-order cross
features by inner product operation.
PNN [22] uses DNN to model high-order cross features.
DeepFM [7] combines FM with DNN to model low-order cross features and
high-order cross features jointly.
xDeepFM [17] utilizes multiple Compressed Interaction Networks to model
high-order cross features in an explicit fashion.
AutoInt [24] utilizes multi-head attention mechanism to explicitly model high-
order cross features.
InterHat [16] utilizes the hierarchical attention mechanism to explain cross fea-
tures, which aggregates cross features first and then takes inner product opera-
tion to model higher-order cross features at each step.

Implementation Details. All methods are implemented by Pytorch. We adopt
early-stopping to avoid overfitting and implement FM, PNN, DeepFM, and
xDeepFM following [24]. We use Adam [14] to optimize all methods, and the
batch size is 1024 for both Frappe and Avazu. For our method, the GateNet1
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Table 3. Results of model comparision, the best results are highlighted.

Model type Model Frappe Avazu

AUC Logloss AUC Logloss

Traditional FM 0.9719 0.1889 0.7356 0.4041

DNN-based PNN 0.9827 0.1447 0.7440 0.3969

DeepFM 0.9772 0.1787 0.7414 0.3983

xDeepFM 0.9808 0.1631 0.7443 0.3980

Self-attention based AutoInt 0.9810 0.1862 0.7441 0.3974

InterHat 0.9805 0.1638 0.7417 0.3990

Our model 0.9848 0.1506 0.7468 0.3957

and GateNet2 are two single hidden layer feed-forward neural networks. Besides,
the number of heads is 8 for the gated multi-head attention layer. The other
hyper-parameters are summarized in Table 2, which are tuned on the validation
dataset to obtain the best result of each model.

5.2 Performance Comparison(RQ1)

In this section, we compare our method with six representative baselines. The
results on the Frappe and the Avazu datasets are summarized in Table 3, from
which we have the following observations:

• All methods of modeling high-order feature interaction are superior to FM
that only models second-order cross features, which indicates that high-order
cross features are essential for a successful CTR prediction model.

• An interesting observation is that some self-attention based models are infe-
rior to some DNN-based models on the Frappe and Avazu datasets. It indi-
cates that there is no significant performance difference between the DNN-
based models and the self-attention based models.

• Our method achieves the best performance on both Frappe and Avazu
datasets, which indicates that combining the attention mechanism with the
gated mechanism can boost the model performance.

5.3 Ablation Study(RQ2)

In this section, we aim to explore whether the critical components of our method
are effective for improving the model performance. Thus, we conduct an ablation
study.

• ours(-g/a): on the one hand, the encoder uses a vanilla multi-head key-value
attention layer that removes the gate neural network from the gated multi-
head attention layer. On the other hand, the encoder removes the gated dis-
tillation layer.
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• ours(-g): the encoder removes the gated distillation layer but retains the gated
multi-head attention layer.

• ours(-a): the encoder uses a vanilla multi-head attention layer and retains the
gated distillation layer.

The results of each variant of our method and the baseline are shown in Fig. 2,
from which we can obtain the following observations: (1) ours(-g/a) performs bet-
ter than AutoInt, which indicates that the vanilla attention mechanism is proper
than the self-attention mechanism in CTR prediction. (2) ours(-g) outperform
ours(-g/a), which indicates that the gated multi-head attention mechanism is
more effective than vanilla multi-head attention mechanism. (3) ours(-a) out-
perform ours(-g/a), which indicates that the gated distillation layer is effective
for boosting model performance.

(a) Frappe (b) Avazu

Fig. 2. Results of the ablation study.

5.4 Efficiency Comparison(RQ3)

In real-world scenarios, efficiency is an important factor that affects whether a
model could be used. Thus, we record the training cost (running time per epoch)
as the criterion of measuring the efficiency of methods.

For a fair comparison, all the models are trained in the same machine with a
TITAN Xp GPU. Table 4 shows the training cost of attention-based methods. As
can be seen, our method is significantly more efficient than self-attention based
methods, which proves that self-attention mechanism may be the bottleneck of
the method.

5.5 Hyper-Parameter Study(RQ4)

In this section, we study the impact of hyper-parameters on our proposed
method, including the number of encoders and the dimension of embedding
vectors.
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Table 4. Efficiency comparison on two datasets.

Method Dataset Training cost(s)

AutoInt Frappe 70.69

Avazu 5985.26

InterHat Frappe 60.89

Avazu 5564.63

Ours Frappe 44.51

Avazu 4918.48

(a) Avazu (b) Frappe

Fig. 3. The impact of number of encoders on our method with respect to AUC and
Logloss.

Number of Modules. Figure 3 shows the impact of the number of encoders.
We observe that the model performance shows an increasing trend, followed by
a decreasing trend when the number of encoders is larger than 3. Because the
number of encoders determines the maximal order of feature interactions that
our method can learn, it indicates that 4-order feature interactions are good
enough to predict the final result. Besides, an interesting observation is that for
both the Frappe dataset and the Avazu dataset, our method thinks that 4-order
feature interactions are enough to obtain a good prediction.

Dimension of Embedding Vectors. As shown in Fig. 4, the performance
of our method first grows with the dimension of embedding vectors, which is
attributed to the better learning ability of our method. The performance starts
to degrade when the dimension is larger than 32 for the Frappe dataset and 16
for the Avazu dataset, which is caused by the overfitting.
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(a) Avazu (b) Frappe

Fig. 4. Performance of our method affected by the dimension of embedding vectors.

6 Conclusions

In this paper, we point out that the self-attention mechanism is less efficient
to learn feature interactions and propose a novel Transformer-like method. The
method combines the key-value attention mechanism with the gated mechanism,
which makes it more efficient and effective to learn feature interactions.

For future works, we are interested in proposing new technologies to alleviate
the effect of irrelevant cross features. For example, a hot direction is automatic
feature selection.
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