
Using Isabelle in Two Courses on Logic
and Automated Reasoning

Jørgen Villadsen(B) and Frederik Krogsdal Jacobsen

Technical University of Denmark, Kongens Lyngby, Denmark
jovi@dtu.dk

Abstract. We present our experiences teaching two courses on formal
methods and detail the contents of the courses and their positioning in
the curriculum. The first course is a bachelor course on logical systems
and logic programming, with a focus on classical first-order logic and
automatic theorem proving. The second course is a master course on
automated reasoning, with a focus on classical higher-order logic and
interactive theorem proving. The proof assistant Isabelle is used in both
courses, using Isabelle/Pure as well as Isabelle/HOL. We describe our
online tools to be used with Isabelle/HOL, in particular the Sequent Cal-
culus Verifier (SeCaV) and the Natural Deduction Assistant (NaDeA).
We also describe our innovative Students’ Proof Assistant which is for-
mally verified in Isabelle/HOL and integrated in Isabelle/jEdit using
Isabelle/ML.

Keywords: Logic · Automated reasoning · Proof assistant Isabelle

1 Introduction

We present our experiences teaching two courses on formal methods at the Tech-
nical University of Denmark (DTU):

– BSc Course: DTU Course 02156 Logical Systems and Logic Programming
https://kurser.dtu.dk/course/02156

– MSc Course: DTU Course 02256 Automated Reasoning
https://kurser.dtu.dk/course/02256

Both courses are taught in English. Figure 1 shows the objectives and content
of the two courses. The objectives need to be approved by the study board and
are not expected to change much from year to year. The above links also include
some official statistics like evaluations and grades but mostly in Danish. Both
courses count for 5 ECTS points, which corresponds to approximately 2 h of
lectures and 2 h of group exercise sessions per week, plus individual study and
assignment work (expected around 9 h per week in total), for 13 weeks (summing
up to 140 h with exam preparations).
c© Springer Nature Switzerland AG 2021
J. F. Ferreira et al. (Eds.): FMTea 2021, LNCS 13122, pp. 117–132, 2021.
https://doi.org/10.1007/978-3-030-91550-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91550-6_9&domain=pdf
http://orcid.org/0000-0003-3624-1159
http://orcid.org/0000-0003-3651-8314
https://kurser.dtu.dk/course/02156
https://kurser.dtu.dk/course/02256
https://doi.org/10.1007/978-3-030-91550-6_9


118 J. Villadsen and F. K. Jacobsen

(a) Objectives and content of the course
Logical Systems and Logic Programming.

General course objectives
The aim of the course is to give the stu-
dents an introduction to some of the basic
declarative formalisms from formal com-
puter science and logic that can be used
for describing, analysing and construct-
ing IT systems. It will cover theoretical
insight as well as practical skills in rele-
vant high-level programming languages.

Learning objectives
A student who has met the objectives of
the course will be able to:

– relate different kinds of proof systems
– construct formal proofs in elemen-

tary logics
– exploit selected classical and non-

classical logics
– use the backtracking algorithm for

simple problem solving
– analyze the effect of a declarative

program
– establish a functional design for a

given problem, so that the main con-
cepts of the problem are directly
traceable in the design

– master logical approaches to pro-
gramming in terms of defining recur-
sive predicates

– communicate solutions to problems
in a clear and precise manner

Content
The course covers logic programming (in
particular Prolog as a rapid prototyping
tool), elementary logics (including propo-
sitional and first-order logic), proof sys-
tems (deductive systems and/or refuta-
tion systems), and problem solving tech-
niques (for instance the backtracking al-
gorithm).

(b) Objectives and content of the course
Automated Reasoning.

General course objectives
Reasoning is the ability to make logical
inferences. The aim of the course is to give
the students an introduction to automatic
and interactive computer systems for rea-
soning about mathematical theorems as
well as properties of IT systems. It will
cover theoretical insight as well as prac-
tical skills in relevant proof assistants.

Learning objectives
A student who has met the objectives of
the course will be able to:

– explain the basic concepts introduced
in the course

– express mathematical theorems and
properties of IT systems formally

– master the natural deduction proof
system

– relate first-order logic, higher-order
logic and type theory

– construct formal proofs in the pro-
cedural style and in the declarative
style

– use automatic and interactive com-
puter systems for automated reason-
ing

– evaluate the trustworthiness of proof
assistants and related tools

– communicate solutions to problems
in a clear and precise manner

Content
The natural deduction proof system, first-
order logic, higher-order logic and type
theory. Formal proofs in the procedural
style and in the declarative style using
automatic and interactive provers. The
Isabelle proof assistant in artificial intel-
ligence and computer science.

Fig. 1. Objectives and course content of the two courses.



Using Isabelle in Two Courses on Logic and Automated Reasoning 119

The first course is on logical systems and logical programming, and is
intended for final-year BSc students (over the years interested students have
successfully taken it already at the start of the second year of their bachelor).
The course has been given more or less in the same format since 2006 with an
increasing number of students, currently around 80 students per year.

The second course is on automated reasoning, and is intended for MSc stu-
dents (interested students have successfully taken it already during the final year
of their bachelor). The course was given for the first time in 2020 and has around
40 students per year.

The main changes due to COVID-19 were online lessons using Zoom and
online home exams instead of physical at DTU. We did not make any other
changes to the courses and we will not elaborate on the COVID-19 situation in
the present paper.

Both of the courses use the proof assistant Isabelle [30] to showcase verified
proof systems and provers, which we have implemented in Isabelle. This allows
us to discuss common proof methods for e.g. soundness and completeness and
allows students to experiment with larger proofs without losing track of what is
going on. We also use Isabelle for assignments and exam questions concerning
these proof systems. This allows students to get immediate feedback from the
proof assistant, and allows us to easily check if the submitted proofs are correct.
Recent research indicates that quick formative evaluation has a large impact
on learning when teaching introductory computer science [16]. We use Isabelle
since it is the proof assistant that we know best and because Isabelle is a generic
proof assistant which allows us to use both Isabelle/HOL and Isabelle/Pure as
detailed in later sections.

The BSc course additionally revolves heavily around the Prolog program-
ming language, on which we spend around half of the time. Students thus learn
to couple logical programming with logic, and we showcase many interesting
programs related to the rest of the course content. The MSc course focuses more
on functional programming within the Isabelle proof assistant, and how this can
be coupled to formal methods and proofs about programs.

To enable this use of Isabelle and Prolog, we need students to hit the ground
running so they can use the implementations of the logical concepts from the
beginning. We recall the following quote from Donald Knuth:

When certain concepts of TEX are introduced informally, general rules will
be stated; afterwards you will find that the rules aren’t strictly true. In
general, the later chapters contain more reliable information than the ear-
lier ones do. The author feels that this technique of deliberate lying will
actually make it easier for you to learn the ideas. Once you understand a
simple but false rule, it will not be hard to supplement that rule with its
exceptions.

For Isabelle and Prolog, we throw the students into the deep end and return
later to explain how everything actually fits together. Unification, for example,
is treated informally until late in the course where students have the logical



120 J. Villadsen and F. K. Jacobsen

background to understand how it works and need the details of it in order to
master the resolution calculus for first-order logic [3].

On the other hand, we never cut corners about logic itself. With the proof
assistant Isabelle/HOL we can create canonical reference documents for logics
and their metatheory. The formal language of Isabelle/HOL, namely higher-order
logic, is precise and unambiguous. This means every proof can be mechanically
checked, and that it is impossible to cheat and omit any details.

We summarize our main points:

1. We use Isabelle in both courses, including the editor Isabelle/jEdit and the
Isabelle/ML facilities.

2. By exploring formally verified proof systems and provers, we use formal meth-
ods on the field of formal methods itself.

3. In the advanced course we in addition use Isabelle/Pure, showing the generic
Isabelle logical framework and forcing students to manage without the
automation of Isabelle/HOL.

4. We rely on group exercise sessions with competent teaching assistants and
peer assistance in combination with the Isabelle proof assistant and our own
tools.

5. We have individual assignments, as often and as early as possible, with a
quick feedback loop from the teaching assistants.

In the next section, we discuss related work. In Sect. 3 we detail the position
of our courses within the context of the rest of our computer science and soft-
ware engineering program. Next we describe the BSc course in Sect. 4, followed
by a description of the MSc course in Sect. 5. Finally we describe our overall
experiences and ideas for future work in Sect. 6 and conclude in Sect. 7.

2 Related Work

Our two courses are based on a number of tools for teaching logic developed in
recent years [10–15,21,36–40]. In the present paper we elaborate, for the first
time, on the courses and detail our experiences.

We are not aware of any textbooks for teaching logic using the Isabelle proof
assistant, but textbooks on formalizing a number of other computer science top-
ics exist, like the book on programming language semantics [24,29] or functional
algorithms [26–28]. These books show that the proof assistant Isabelle/HOL can
be used for teaching semantics, algorithms and data structures. There are also
impressive books for the proof assistant Coq [33] and the proof assistant Lean
[1] but we are not aware of approaches to teaching logic and automated reason-
ing where the proof systems and provers are formalized in a proof assistant. We
envision a textbook around our tools, but are currently relying on a number of
unpublished smaller notes and tutorials to teach students how to use them.

Bella [2] presents a teaching methodology for the so-called Inductive Method
to verified security protocols and notes the following step:



Using Isabelle in Two Courses on Logic and Automated Reasoning 121

But the first and foremost step is to convince the learners that they already
somewhat used formal methods, although for other applications, for exam-
ple in the domains of Physics and Mathematics. The argument will convey
as few technicalities as possible, in an attempt to promote the general mes-
sage that formal methods are not extraterrestrial even for students who are
not theorists.

We attempt to promote a similar message to the students following our courses.
Harrison [19], Blanchette [5] and Reis [34] discuss aspects of formalizing the

metatheory of proof systems and provers. In contrast to our work they do not
consider the use of such formalizations as central components and tools in logic
and automated reasoning courses.

3 Curricular Overview

The first of our courses is the BSc course meant for final-year students, while our
second course is the MSc course. We would like to briefly explain the positioning
of our courses within the overall computer science and engineering curriculum
at the Technical University of Denmark (DTU). The curriculum at DTU is
organized in a half-year semester structure, but after the first year students are
free to organize their own study plan and have many electives which can be used
for any course offered at the institution.

While the MSc course is intended to be followed after our BSc course, our
students have very varied backgrounds because many MSc students have BSc
degrees from other institutions. The backgrounds of the students following the
BSc course are also varied because the course is followed by many exchange
students, BEng students, and General Engineering students. Figure 2 shows the
context of our courses in the overall computer science and software engineering
program.

Course numbers and ECTS points are as follows for the BSc courses:

– 01017 Discrete Mathematics (5 ECTS)
– 02101 Introductory Programming (5 ECTS)
– 02105 Algorithms and Data Structures 1 (5 ECTS)
– 02110 Algorithms and Data Structures 2 (5 ECTS)
– 02141 Computer Science Modelling (10 ECTS)
– 02156 Logical Systems and Logic Programming (5 ECTS)
– 02157 Functional Programming (5 ECTS)
– 02180 Introduction to Artificial Intelligence (5 ECTS)
– 02450 Introduction to Machine Learning and Data Mining (5 ECTS)

We have here omitted the traditional BSc courses in Computer Engineering and
Software Engineering as they play only a minor role in this context.

The MSc courses are organized in study lines which are optional to follow, but
nevertheless guide the study planning for the students. Except for a single Inno-
vation in Engineering course we do not have any mandatory MSc courses, though



122 J. Villadsen and F. K. Jacobsen

Year

1 2 3 4 . . .

BSc MSc

Discrete
Mathematics
(mandatory)

Introductory
Programming
(mandatory)

Algorithms and
Data Structures 1

(mandatory)

Algorithms and
Data Structures 2

Computer Science
Modelling

(mandatory)

Functional
Programming
(mandatory)

Introduction to
Artificial

Intelligence

Introduction to
Machine Learning
and Data Mining

Logical Systems
and Logic

Programming

Automated
Reasoning

Logic for
Security

Applied
Functional

Programming

Formal Aspects
of Software
Engineering

Logical Theories
for Uncertainty
and Learning

Fig. 2. Suggested course progression surrounding our courses.

students must of course primarily take courses related to computer science. The
selected MSc courses to be taken after our courses on logic and automated rea-
soning are on the following study lines (we also have study lines in Computer
Security and Digital Systems, but the former is more practically oriented com-
pared to Safe and Secure by Design and the latter is more Electrical Engineering
oriented):

– Study Line: Artificial Intelligence and Algorithms
02256 Automated Reasoning (5 ECTS)
02287 Logical Theories for Uncertainty and Learning (5 ECTS)

– Study Line: Embedded and Distributed Systems
02257 Applied Functional Programming (5 ECTS)

– Study Line: Safe and Secure by Design
02244 Logic for Security (7.5 ECTS)

– Study Line: Software Engineering
02263 Formal Aspects of Software Engineering (5 ECTS)

For the BSc course, we recommend that students have previous programming
experience as well as knowledge of discrete mathematics and at least basic knowl-
edge of algorithms and data structures. Functional programming is an advantage
due to our use of systems implemented in Isabelle/HOL. These prerequisites are
obtained in mandatory first and second year courses by most of the students
following our BSc course.

However, a significant number of the students following our BSc course are
either exchange students, come from the General Engineering program at DTU,
or are BEng students. For exchange students, the structure of the curriculum of



Using Isabelle in Two Courses on Logic and Automated Reasoning 123

their home institution may diverge from ours, which means that they sometimes
have quite different backgrounds. Students from the General Engineering pro-
gram have an interdisciplinary study plan, which means that they may not have
all of the recommended prerequisites. Finally, BEng students have a curriculum
which differs significantly from that of the BSc students, and are generally more
focused on practical applications.

For the MSc course, we recommend that students have followed our BSc
course and have experience with functional programming and basic algorithms
in artificial intelligence. Students coming from the BSc program at DTU will
mostly have these prerequisites, but a large amount of students on our MSc
programmes come from other institutions. This means that we generally need
to assume that students will not have all of the recommended prerequisites, and
especially that they have not followed our BSc course.

Our courses provide skills that are useful in a number of MSc courses at
DTU. A firm grasp of logic is of course useful for courses such as Logic for
Security and Logical Theories for Uncertainty and Learning. Familiarity with
formal methods and logic is useful for a course on Formal Aspects of Software
Engineering. Several topics covered in our courses can provide interesting project
ideas to implement for a course on Applied Functional Programming or for a
BSc or MSc thesis. At DTU, it is also quite common to organize special elective
courses based on student interest in a specific topic, and we have done so based
on advanced topics related to our courses several times.

Both of our courses consist of a mix of lectures, live demonstrations of pro-
grams and proofs in Isabelle, and exercise sessions. During exercise sessions,
students are free to discuss the problems within groups, and teaching assistants
are available to provide help and formative evaluation during the sessions. Since
many exercise sessions concern systems implemented in Isabelle, students can get
immediate feedback on their proofs, and may ask teaching assistants for more
detailed feedback and help if this is not sufficient. To aid student independence,
we have for some of our systems developed tools which can provide more detailed
formative evaluation of student work than Isabelle. Solutions are provided after
all exercise sessions so students can compare their own proofs with ours. This is
in contrast to the assignments where only feedback is provided.

Both courses additionally have several individual assignments, which we
grade and provide feedback on quickly. These assignments count for part of
the overall grade of the courses, with the rest of the grade coming from the
exam.

4 BSc Course: Logical Systems and Logic Programming

The first of our courses is the BSc course on Logical Systems and Logic Program-
ming. The course is essentially split in two concurrently running parts. One part
of the course covers logic programming in Prolog, while the other part concerns
formal logic. The course is based primarily on the textbook Mathematical Logic
for Computer Science by Ben-Ari [3], and we cover most of the book in the course.



124 J. Villadsen and F. K. Jacobsen

The course learning objectives can be seen in Fig. 1a and the week-by-week plan
of the course can be seen in Table 1.

Table 1. Course plan for the course on Logical Systems and Logic Programming.

Week Main topics Assignment

1 Tutorial on Logic Programming

2 Introduction (Prolog Note)

3 Propositional Logic: Formulas, Models, Tableaux

4 Propositional Logic: Deductive Systems X

5 Propositional Logic: Sequent Calculus Verifier—Isabelle

6 Propositional Logic: Resolution X

7 First-Order Logic: Formulas, Models, Tableaux

8 First-Order Logic: Deductive Systems X

9 First-Order Logic: Sequent Calculus Verifier—Isabelle

10 First-Order Logic: Terms and Normal Forms X

11 First-Order Logic: Resolution

12 First-Order Logic: Logic Programming

13 First-Order Logic: Undecidability and Model Theory X

We start by introducing the basic features of Prolog through a number of
examples and exercises. We continue to introduce more Prolog features through-
out the course, and use Prolog to show how to implement many of the concepts
in logical systems.

After the short introduction to Prolog, we begin covering propositional logic.
Following Ben-Ari’s book, we cover formulas, semantics, models, and semantic
tableaux. This also allows us to discuss the issues of soundness and completeness.
Next, we cover deductive systems in the styles of Hilbert and Gentzen, and show
how to prove completeness by relating systems to existing systems that are
known to be complete.

Having done this, we take an excursion into formal methods by introducing
the Isabelle proof assistant. We use our Sequent Calculus Verifier (SeCaV) [11,
12,15], which is implemented in Isabelle/HOL, to teach students how to write
and formally verify proofs. This allows students to experiment with their proofs
while getting immediate feedback on their correctness. For this first introduction,
we use a version of SeCaV which is restricted to propositional logic. Since SeCaV
is implemented within Isabelle/HOL, this also exposes students to the basics of
proofs in the Isar proof language of Isabelle.

To conclude the sessions on propositional logic we introduce resolution,
including Prolog programs that implement each step of a proof by resolution.
This allows students to experiment with resolution proofs while also exposing
them to non-trivial Prolog programs.



Using Isabelle in Two Courses on Logic and Automated Reasoning 125

Next, we go through essentially the same topics as before, but now for first-
order logic. We again use Prolog programs to explain concepts such as Skolem-
ization and include a Prolog program for resolution in first-order logic.

At this point, we again digress to explore the full version of our Sequent
Calculus Verifier, which is a deductive system for first-order logic. The system
allows us to explain concepts such as de Bruijn indices and substitution of bound
variables with simple implementations. Additionally, we showcase the formal
proofs of soundness and completeness for the system. This allows us to explain
these proofs in much detail while exposing students to more advanced usage of
Isabelle. The implementation of SeCaV in Isabelle/HOL is also a good example
for students, since it includes fully elaborated and concrete implementations of
e.g., syntax, semantics, and proof rules.

Having done this, we include a number of exercises on implementing logical
concepts in Prolog, including the implementation of a SAT solver. We briefly
introduce concepts such as higher-order programming and constraint program-
ming in Prolog. We also “close the loop” by finally explaining the relation
between logic programming in Prolog and first-order logic. At this point the
students have been sufficiently exposed to both to understand this quite quickly.

The final lecture is spent discussing some simple results in model theory and
the concept of undecidability.

Throughout the course, students must hand in assignments concerning the
various topics of the course. The first assignment is a mix of pen-and-paper
formal proofs and Prolog programming exercises, while later assignments also
include formal proof exercises in the Sequent Calculus Verifier. These assign-
ments contribute to the final grade of the course. The rest of the grade is deter-
mined by a written final exam, which also includes a mix of pen-and-paper formal
proofs and Prolog programming exercises.

5 MSc Course: Automated Reasoning

The second of our courses is the MSc course on Automated Reasoning. The
course is essentially split in two concurrently running parts. One part of the
course covers proving and programming in Isabelle [22,25], while the other part
concerns formal logic [10–15,21,36–40]. The course learning objectives can be
seen in Fig. 1b and the week-by-week plan of the course can be seen in Table 2.

We start by exploring our formally verified micro provers for propositional
logic [37,38], which allow us to explain how provers can be implemented in e.g.,
Haskell, Isabelle/ML and Standard ML and how to prove correctness in Isabelle.

The Natural Deduction Assistant (NaDeA) [39] is a browser application for
classical first-order logic with constants and functions. The syntax, the seman-
tics and the inductive definition of the natural deduction proof system along
with the soundness and completeness proofs are verified in Isabelle/HOL. Fin-
ished NaDeA proofs are automatically translated into the corresponding Isabelle-
embedded proofs.

We have developed teaching materials about Isabelle/Pure [41], showing the
generic Isabelle logical framework in order to ensure that students understand



126 J. Villadsen and F. K. Jacobsen

Table 2. Course plan for the course on Automated Reasoning.

Week Main topics Assignment

1–2 Prerequisites, micro provers, getting started with Isabelle X

3–4 Natural Deduction Assistant (NaDeA) X

5–6 Isabelle/Pure for Intuitionistic and Classical First-Order Logic X

7–8 Isabelle/Pure for Intuitionistic and Classical Higher-Order Logic X

9–10 Axiomatic Propositional, First-Order and Higher-Order Logic X

11–12 Students’ Proof Assistant (SPA)

13 Reserve/buffer lecture X

what is going on at a lower level when they use the automation of Isabelle/HOL,
and the learning outcome is tested in assignments using Isabelle/Pure.

We briefly describe our route from axiomatic propositional logic [7] to first-
order logic with equality in our Students’ Proof Assistant (SPA) [36] running
inside Isabelle/HOL with a formally verified LCF-style prover kernel [31] and
declarative proofs [41,42].

The students can experiment in Isabelle/HOL with our formalized soundness
and completeness theorems for several axiomatic systems [10], including the
following well-known axioms in addition to the rule modus ponens:

Wajsberg 1937 p ⇒ (q ⇒ p)
(p ⇒ q) ⇒ ((q ⇒ r) ⇒ (p ⇒ r))
((p ⇒ q) ⇒ p) ⇒ p

⊥ ⇒ p

Wajsberg 1939 p ⇒ (q ⇒ p)
(p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r))
((p ⇒ ⊥) ⇒ ⊥) ⇒ p

�Lukasiewicz 1948 ((p ⇒ q) ⇒ r) ⇒ ((r ⇒ p) ⇒ (s ⇒ p))
⊥ ⇒ p

We extend the Wajsberg 1939 axiomatic system for propositional logic to
first-order logic with equality [20]:

� q if � p ⇒ q and � p (modus ponens rule)
� ∀x.p if � p (generalization rule)

� p ⇒ (q ⇒ p)
� (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒ r))
� ((p ⇒ ⊥) ⇒ ⊥) ⇒ p

� (∀x.p ⇒ q) ⇒ (∀x.p) ⇒ (∀x.q)
� p ⇒ (∀x.p) provided x /∈ FV(p)



Using Isabelle in Two Courses on Logic and Automated Reasoning 127

� (∃x.x = t) provided x /∈ FVT(t)
� t = t

� s1 = t1 ⇒ · · · ⇒ (sn = tn ⇒ f(s1, . . . , sn) = f(t1, . . . , tn))
� s1 = t1 ⇒ · · · ⇒ (sn = tn ⇒ P (s1, . . . , sn) = P (t1, . . . , tn))

� (p ⇔ q) ⇒ (p ⇒ q)
� (p ⇔ q) ⇒ (q ⇒ p)
� (p ⇒ q) ⇒ ((q ⇒ p) ⇒ (p ⇔ q))
� 	 ⇔ (⊥ ⇒ ⊥)
� ¬p ⇔ (p ⇒ ⊥)
� (p ∧ q) ⇔ ((p ⇒ (q ⇒ ⊥)) ⇒ ⊥)
� (p ∨ q) ⇔ ¬(¬p ∧ ¬q)
� (∃x.p) ⇔ ¬(∀x.¬p)

Here FV is the set of free variables in a formula and FVT is the set of free
variables in a term. Note that the axiomatic system is substitutionless as it uses
equality in a clever way to avoid the complications of substitution [20,36].

Amongst Pelletier’s problems [32] for automated reasoning is problem 34,
which is also known as Andrews’s Challenge. The proof is not obvious at first
glance since it relies on the fact that bi-implication is both commutative and
associative [36]:

((∃x.∀y.P (x) ⇔ P (y)) ⇔ ((∃x.Q(x)) ⇔ (∀y.Q(y)))) ⇔
((∃x.∀y.Q(x) ⇔ Q(y)) ⇔ ((∃x.P (x)) ⇔ (∀y.P (y))))

Comparing the declarative proofs in Isabelle/HOL and SPA is a good exercise
for the students.

In addition to our tools for teaching logic we cover the following online papers:

1. M. Ben-Ari (2020): A Short Introduction to Set Theory [4]
2. W. M. Farmer (2008): The Seven Virtues of Simple Type Theory [6]
3. T. C. Hales (2008): Formal Proof [17]
4. T. Nipkow (2021): Programming and Proving in Isabelle/HOL [25]
5. L. C. Paulson (2018): Computational Logic: Its Origins and Applications[31]

The paper by Farmer provides a concise definition of higher-order logic and
the tutorial by Nipkow provides a substantial set of exercises which the students
must solve.

6 Discussion and Future Work

As mentioned, our BSc course uses our Sequent Calculus Verifier (SeCaV), which
is embedded in Isabelle/HOL, for several exercise sessions and assignments.
While the system is designed to be quite simple to use and understand, we have
experienced that some students have a hard time writing proofs in the system.
Additionally, the embedding in Isabelle/HOL is not able to give very helpful



128 J. Villadsen and F. K. Jacobsen

error messages if a proof is wrong. To alleviate these issues, we have recently
developed an online tool called the SeCaV Unshortener [11], which allows users
to write proofs in a simpler syntax, which is then automatically translated into
the embedding in Isabelle. Additionally, the tool is able to warn users about
mistakes in their proofs by explicitly telling users why e.g. a proof rule cannot
be applied. Recent research indicates that this kind of feedback impacts learn-
ing in computer science significantly, and is sufficient to allow students to move
forward in most cases [18].

We also use SeCaV in our MSc course but only as self-study concerning the
course prerequisites and selected parts of the papers [11,12,15] in the first weeks
of the course.

We would like to integrate even more algorithms and proofs into Isabelle.
Work is currently ongoing on an Isabelle implementation and proof of correctness
of a tool for converting formulas to conjunctive normal form.

Michaelis and Nipkow [23] formalized a number of proof systems for proposi-
tional logic in Isabelle/HOL: resolution, natural deduction, sequent calculus and
an axiomatic system. We would like to extend this line of work to first-order
logic and higher-order logic.

We find that one of the main issues in both our 2020 and 2021 course on
automated reasoning and formally verified functional programming is the course
prerequisites. Functional programming is a prerequisite but we do not require a
specific language and it is not possible to exclude any students. This is a real
problem and in general we need to use the first part of the course to teach some of
the prerequisites. Another prerequisite is mathematical logic—syntax, semantics
and proof systems—and we use the micro provers to teach logic, functional pro-
gramming and the basics of a proof assistant, in particular Isabelle, in a way that
is challenging to almost all students. It is not for beginners and some students
will most likely quit the course in the first month. In 2021, after the first month,
37 students were active and almost everyone submitted the first assignment. We
have no clear solution to the issues concerning the course prerequisites but for
2022 we plan to offer a series of online sessions for self-study in mathematical
logic and functional programming.

7 Conclusion

We have presented our detailed experiences teaching two courses on formal
methods. The first course is the bachelor course on logical systems and logic
programming, which has a focus on classical first-order logic and automatic the-
orem proving. We have additionally described how we use Prolog and Isabelle
to introduce students to logic and formal methods.

The second course is the master course on automated reasoning, which has a
focus on classical higher-order logic and interactive theorem proving. The proof
assistant Isabelle is used more heavily in this course, and we use Isabelle/Pure
as well as Isabelle/HOL. We have also described our online tools to be used
with Isabelle/HOL, in particular the Sequent Calculus Verifier (SeCaV) and



Using Isabelle in Two Courses on Logic and Automated Reasoning 129

the Natural Deduction Assistant (NaDeA). In addition, we have described our
innovative Students’ Proof Assistant which is formally verified in Isabelle/HOL
and integrated in Isabelle/jEdit using Isabelle/ML.

We have described how our courses fit into the overall computer science
and engineering curriculum, and what issues and challenges we experience that
students often face. We have suggested some future work on the courses by which
we hope to improve student learning outcomes.

Our teaching philosophy is related to the IsaFoL (Isabelle Formalization of
Logic) project [5] which aims at developing formalizations in Isabelle/HOL of log-
ics, proof systems, and automatic/interactive provers. Notable work in the same
line includes the soundness and completeness of epistemic [8] and hybrid [9] logic
and an ordered resolution prover for first-order logic [35]. These formalizations
can serve as starting point for a student project to formalize the soundness and
completeness of various other proof systems and provers.

We would like to formalize even more topics within basic logic such that
students can explore concrete and executable definitions of various topics such
as Skolemization while also seeing formal proofs of their correctness. Our overall
conclusion is that using formal methods, in particular the proof assistant Isabelle,
as a central tool for teaching logic and formal methods is possible as we have
demonstrated since our first use of the Natural Deduction Assistant (NaDeA)
and the Sequent Calculus Verifier (SeCaV) in 2014 and 2019, respectively.

Acknowledgements. We thank Asta Halkjær From for comments on drafts. We
thank the three anonymous reviewers whose comments and suggestions helped improve
the paper.

References

1. Baanen, A., Bentkamp, A., Blanchette, J., Limperg, J., Hölzl, J.: The Hitch-
hiker’s Guide to Logical Verification (2020). https://github.com/blanchette/
logical verification 2020

2. Bella, G.: You already used formal methods but did not know it. In: Dongol, B.,
Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 228–243. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 15

3. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, London (2012)
4. Ben-Ari, M.: A Short Introduction to Set Theory (2020). https://www.weizmann.

ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/books/set.pdf
5. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic

provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, Cascais, Portugal, 14–15 January 2019, pp. 1–13.
ACM (2019)

6. Farmer, W.M.: The seven virtues of simple type theory. J. Appl. Log. 6(3), 267–286
(2008). https://doi.org/10.1016/j.jal.2007.11.001

7. From, A.H.: Formalizing Henkin-style completeness of an axiomatic system for
propositional logic. In: Proceedings of the Web Summer School in Logic, Language
and Information (WeSSLLI) and the European Summer School in Logic, Language

https://github.com/blanchette/logical_verification_2020
https://github.com/blanchette/logical_verification_2020
https://doi.org/10.1007/978-3-030-32441-4_15
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/books/set.pdf
https://www.weizmann.ac.il/sci-tea/benari/sites/sci-tea.benari/files/uploads/books/set.pdf
https://doi.org/10.1016/j.jal.2007.11.001


130 J. Villadsen and F. K. Jacobsen

and Information (ESSLLI) Virtual Student Session, pp. 1–12 (2020). Preliminary
paper, accepted for Springer post-proceedings

8. From, A.H.: Epistemic logic: completeness of modal logics. Archive of Formal
Proofs, October 2018. https://devel.isa-afp.org/entries/Epistemic Logic.html, For-
mal proof development

9. From, A.H.: Formalizing a Seligman-style tableau system for hybrid logic. Archive
of Formal Proofs, December 2019. https://isa-afp.org/entries/Hybrid Logic.html,
Formal proof development

10. From, A.H., Eschen, A.M., Villadsen, J.: Formalizing axiomatic systems for propo-
sitional logic in Isabelle/HOL. In: Kamareddine, F., Sacerdoti Coen, C. (eds.)
CICM 2021. LNCS (LNAI), vol. 12833, pp. 32–46. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81097-9 3

11. From, A.H., Jacobsen, F.K., Villadsen, J.: SeCaV: a sequent calculus verifier in
Isabelle/HOL. In: 16th International Workshop on Logical and Semantic Frame-
works with Applications (LSFA 2021) – Presentation Only/Online Papers, pp. 1–
16 (2021). https://mat.unb.br/lsfa2021/pages/lsfa2021 proceedings/LSFA 2021
paper 5.pdf

12. From, A.H., Jensen, A.B., Schlichtkrull, A., Villadsen, J.: Teaching a formalized
logical calculus. Electron. Proc. Theor. Comput. Sci. 313, 73–92 (2020). https://
doi.org/10.4204/EPTCS.313.5

13. From, A.H., Lund, S.T., Villadsen, J.: A case study in computer-assisted meta-
reasoning. In: González, S.R., Machado, J.M., González-Briones, A., Wikarek, J.,
Loukanova, R., Katranas, G., Casado-Vara, R. (eds.) DCAI 2021. LNNS, vol. 332,
pp. 53–63. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-86887-1 5

14. From, A.H., Villadsen, J.: Teaching automated reasoning and formally verified
functional programming in Agda and Isabelle/HOL. In: 10th International Work-
shop on Trends in Functional Programming in Education (TFPIE 2021) – Pre-
sentation Only/Online Papers, pp. 1–20 (2021). https://wiki.tfpie.science.ru.nl/
TFPIE2021

15. From, A.H., Villadsen, J., Blackburn, P.: Isabelle/HOL as a meta-language for
teaching logic. Electron. Proc. Theor. Comput. Sci. 328, 18–34 (2020). https://
doi.org/10.4204/eptcs.328.2

16. Grover, S.: Toward a framework for formative assessment of conceptual learning
in K-12 computer science classrooms. In: Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education, SIGCSE 2021, pp. 31–37 (2021).
https://doi.org/10.1145/3408877.3432460

17. Hales, T.C.: Formal proof. Not. Am. Math. Soc. 55, 1370–1380 (2008)
18. Hao, Q., et al.: Towards understanding the effective design of automated formative

feedback for programming assignments. Comput. Sci. Educ. 1–23 (2021). https://
doi.org/10.1080/08993408.2020.1860408

19. Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey, M.
(eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055135

20. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, Cambridge (2009)

21. Jensen, A.B., Larsen, J.B., Schlichtkrull, A., Villadsen, J.: Programming and veri-
fying a declarative first-order prover in Isabelle/HOL. AI Commun. 31(3), 281–299
(2018)

22. Krauss, A.: Defining Recursive Functions in Isabelle/HOL (2021). https://isabelle.
in.tum.de/doc/functions.pdf

https://devel.isa-afp.org/entries/Epistemic_Logic.html
https://isa-afp.org/entries/Hybrid_Logic.html
https://doi.org/10.1007/978-3-030-81097-9_3
https://doi.org/10.1007/978-3-030-81097-9_3
https://mat.unb.br/lsfa2021/pages/lsfa2021_proceedings/LSFA_2021_paper_5.pdf
https://mat.unb.br/lsfa2021/pages/lsfa2021_proceedings/LSFA_2021_paper_5.pdf
https://doi.org/10.4204/EPTCS.313.5
https://doi.org/10.4204/EPTCS.313.5
https://doi.org/10.1007/978-3-030-86887-1_5
https://wiki.tfpie.science.ru.nl/TFPIE2021
https://wiki.tfpie.science.ru.nl/TFPIE2021
https://doi.org/10.4204/eptcs.328.2
https://doi.org/10.4204/eptcs.328.2
https://doi.org/10.1145/3408877.3432460
https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.1080/08993408.2020.1860408
https://doi.org/10.1007/BFb0055135
https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf


Using Isabelle in Two Courses on Logic and Automated Reasoning 131

23. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In:
Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd International Conference on Types
for Proofs and Programs, TYPES 2017, Budapest, Hungary, 29 May–1 June 2017.
LIPIcs, vol. 104, pp. 5:1–5:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2017)

24. Nipkow, T.: Teaching semantics with a proof assistant: no more LSD trip proofs.
In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 24–38.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27940-9 3

25. Nipkow, T.: Programming and Proving in Isabelle/HOL (Tutorial) (2021). https://
isabelle.in.tum.de/doc/prog-prove.pdf

26. Nipkow, T.: Teaching algorithms and data structures with a proof assistant (invited
talk). In: Hritcu, C., Popescu, A. (eds.) 10th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, Virtual Event, CPP 2021, Denmark, 17–19
January 2021, pp. 1–3. ACM (2021). https://doi.org/10.1145/3437992.3439910

27. Nipkow, T., et al.: Functional Algorithms, Verified! (2021). https://functional-
algorithms-verified.org/

28. Nipkow, T., Eberl, M., Haslbeck, M.P.L.: Verified textbook algorithms. In: Hung,
D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 25–53. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59152-6 2

29. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Heidel-
berg (2014)

30. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

31. Paulson, L.C.: Computational logic: its origins and applications. Proc. R. Soc. A.
474(2210), 20170872 (2018). https://doi.org/10.1098/rspa.2017.0872

32. Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs,
September 2016. http://isa-afp.org/entries/SuperCalc.shtml, Formal proof devel-
opment

33. Pierce, B.C., et al.: Software Foundations – 6 Online Textbooks (2021). https://
softwarefoundations.cis.upenn.edu/

34. Reis, G.: Facilitating meta-theory reasoning (invited paper). In: Pimentel, E.,
Tassi, E. (eds.) Proceedings Sixteenth Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice, Pittsburgh, USA, 16th July 2021. Electronic
Proceedings in Theoretical Computer Science, vol. 337, pp. 1–12. Open Publishing
Association (2021). https://doi.org/10.4204/EPTCS.337.1

35. Schlichtkrull, A., Blanchette, J., Traytel, D., Waldmann, U.: Formalizing Bachmair
and Ganzinger’s ordered resolution prover. J. Autom. Reason. 64(7), 1169–1195
(2020)

36. Schlichtkrull, A., Villadsen, J., From, A.H.: Students’ Proof Assistant (SPA). In:
Quaresma, P., Neuper, W. (eds.) Proceedings 7th International Workshop on The-
orem Proving Components for Educational Software, ThEdu@FLoC 2018, Oxford,
United Kingdom, 18 July 2018. Electronic Proceedings in Theoretical Computer
Science, vol. 290, pp. 1–13. Open Publishing Association (2018). https://doi.org/
10.4204/EPTCS.290.1

37. Villadsen, J.: A micro prover for teaching automated reasoning. In: Seventh Work-
shop on Practical Aspects of Automated Reasoning (PAAR 2020) – Presentation
Only/Online Papers, pp. 1–12 (2020). https://www.eprover.org/EVENTS/PAAR-
2020.html

https://doi.org/10.1007/978-3-642-27940-9_3
https://isabelle.in.tum.de/doc/prog-prove.pdf
https://isabelle.in.tum.de/doc/prog-prove.pdf
https://doi.org/10.1145/3437992.3439910
https://functional-algorithms-verified.org/
https://functional-algorithms-verified.org/
https://doi.org/10.1007/978-3-030-59152-6_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1098/rspa.2017.0872
http://isa-afp.org/entries/SuperCalc.shtml
https://softwarefoundations.cis.upenn.edu/
https://softwarefoundations.cis.upenn.edu/
https://doi.org/10.4204/EPTCS.337.1
https://doi.org/10.4204/EPTCS.290.1
https://doi.org/10.4204/EPTCS.290.1
https://www.eprover.org/EVENTS/PAAR-2020.html
https://www.eprover.org/EVENTS/PAAR-2020.html


132 J. Villadsen and F. K. Jacobsen

38. Villadsen, J.: Tautology checkers in Isabelle and Haskell. In: Calimeri, F., Perri,
S., Zumpano, E. (eds.) Proceedings of the 35th Edition of the Italian Conference
on Computational Logic (CILC 2020), Rende, Italy, 13–15 October 2020. CEUR
Workshop Proceedings, vol. 2710, pp. 327–341. CEUR-WS.org (2020). http://ceur-
ws.org/Vol-2710/paper-21.pdf

39. Villadsen, J., From, A.H., Schlichtkrull, A.: Natural Deduction Assistant (NaDeA).
In: Quaresma, P., Neuper, W. (eds.) Proceedings 7th International Workshop
on Theorem Proving Components for Educational Software, THedu@FLoC 2018,
Oxford, United Kingdom, 18 July 2018. EPTCS, vol. 290, pp. 14–29 (2018).
https://doi.org/10.4204/EPTCS.290.2

40. Villadsen, J., Schlichtkrull, A., From, A.H.: A verified simple prover for first-order
logic. In: Konev, B., Urban, J., Rümmer, P. (eds.) Proceedings of the 6th Work-
shop on Practical Aspects of Automated Reasoning (PAAR 2018) co-located with
Federated Logic Conference 2018 (FLoC 2018), Oxford, UK, 19 July 2018. CEUR
Workshop Proceedings, vol. 2162, pp. 88–104. CEUR-WS.org (2018). http://ceur-
ws.org/Vol-2162/paper-08.pdf

41. Wenzel, M.: The Isabelle/Isar Reference Manual (2021). https://isabelle.in.tum.
de/doc/isar-ref.pdf

42. Wenzel, M.: Isar—a generic interpretative approach to readable formal proof doc-
uments. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48256-3 12

http://ceur-ws.org/Vol-2710/paper-21.pdf
http://ceur-ws.org/Vol-2710/paper-21.pdf
https://doi.org/10.4204/EPTCS.290.2
http://ceur-ws.org/Vol-2162/paper-08.pdf
http://ceur-ws.org/Vol-2162/paper-08.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://isabelle.in.tum.de/doc/isar-ref.pdf
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12

	Using Isabelle in Two Courses on Logic and Automated Reasoning
	1 Introduction
	2 Related Work
	3 Curricular Overview
	4 BSc Course: Logical Systems and Logic Programming
	5 MSc Course: Automated Reasoning
	6 Discussion and Future Work
	7 Conclusion
	References




