
Lessons of Formal Program Design
in Dafny

Ran Ettinger(B)

Ben-Gurion University of the Negev, Beer Sheva, Israel
ranger@cs.bgu.ac.il

Abstract. Building on the long tradition of program derivation,
whereby starting from a formal specification and progressing in small
steps of refinement we end-up with correct executable code, this paper
presents an approach for teaching that craft using the language and ver-
ifier Dafny. Some lessons from the first six years of teaching this mate-
rial to final-year CS and SE undergraduate students are reported, with
emphasis on the merits (and challenges) of using Dafny during live inter-
active sessions in the classroom.

Keywords: Refinement laws · Specification statement · Auto-active
verification · Insertion sort

1 Introduction: About the Course

The textbook “Programming from Specifications” (PfS) by Carroll Morgan [8]
introduces a student into the world of program derivation in a smooth and formal
way. Equipping the novice formal programmer with motivation, some logical
background on the predicate calculus, and elementary means known as laws of
refinement for developing correct imperative programs (using a programming
notation based on Dijkstra’s guarded commands [2]), the book dedicates its
tenth chapter to presenting a case study for developing a first program with
nested loops: insertion sort.

The insertion sort case study is reformulated, in this paper, using the lan-
guage and verifier Dafny [5]. This acts as a basis for reporting on some experi-
ences from the first six years of teaching a substantial subset of the PfS material
in a course entitled “correct-by-construction programming” (ccpr1). This is an
elective course given to final-year CS and SE undergraduate students at Ben-
Gurion University. Following PfS, the course teaches how to design algorithms
and programs that are guaranteed to meet their specification. Starting with a
mathematical description of the program’s requirements, the course presents a
formal method for turning such specifications into actual code, in a stepwise app-
roach known as refinement. Techniques of algorithm refinement are presented,
for the derivation of loops from invariants, as well as recursive procedures.
1 Course website: https://www.cs.bgu.ac.il/∼ccpr191.
c© Springer Nature Switzerland AG 2021
J. F. Ferreira et al. (Eds.): FMTea 2021, LNCS 13122, pp. 84–100, 2021.
https://doi.org/10.1007/978-3-030-91550-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91550-6_7&domain=pdf
https://www.cs.bgu.ac.il/~ccpr191
https://doi.org/10.1007/978-3-030-91550-6_7

Lessons of Formal Program Design in Dafny 85

The developed algorithms are typically very short, but challenging, as we aim
to construct correct and efficient code. The programming throughout this course
is done in the language Dafny, using its integration into Microsoft Visual Studio
[7]. This environment enables the annotation of programs with their specifica-
tions. Moreover, it includes an automatic verifier, such that a program can be
executed only after its functional correctness has been established (with some
potential exceptions to be discussed later in the paper). A switch to Visual
Studio Code is currently scheduled for the next iteration of the course, along
with some other changes, including the adoption of SPARK/Ada (that has com-
menced in the 2020 iteration of the course) with its GNATprove verifier and
GNAT Programming Studio (GPS) IDE.

The main textbook of this course is “Programming from Specifications” by
Carroll Morgan [8] and related material can be found in further sources, including
[1–4,6]. A subset of Morgan’s laws of refinement is being introduced gradually
in the first third of the course2, through live sessions of program derivation in
class. Most programs are taken from Morgan’s book. For example, in the first few
weeks, we learn how to develop a loop, correctly, by deriving iterative programs
for computing a Fibonacci number, the factorial of a natural number, the non-
negative floor of the square root of a given natural number (through linear and
then binary search). This is followed by the development algorithms to search
for an element in a read-only array. Equipped with a basic familiarity of how to
design and implement iterative algorithms, using loop invariants, in small and
provably-correct steps of refinement, we are ready for the first bigger case study.
This will be our first program to update the contents of a given array, and our
first derivation of a nested loop.

2 Lessons 10–12: Insertion Sort

The ccpr course has been given at BGU in each Fall semester since October 2013.
It is made of two sessions a week, of two hours each, over a period of 13 weeks.
Approaching the middle of the semester we typically dedicate three sessions to
the PfS case study of insertion sort [8, Chapter 10]. In the 2019 iteration of the
course, reported here, these three sessions commenced on the 10th lecture of the
semester. The complete derivation comprising 11 steps of refinement, is given in
detail in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. The eventual code is shown in Fig. 9. (As I
make frequent references to line numbers of program elements, in what follows,
it may be helpful, if possible, to have two copies of the paper in front of you.
This is how I evaluate homework submissions: reading the call to a method or
lemma in one part of the program, and quickly browsing in the other copy to
study its specification, comparing it to the expected specification according to
the presently exercised law of refinement).

2.1 Specification for a Sorting Algorithm

A possible specification for sorting an array of integers in a non-decreasing order
is shown on lines 1–10 of the program in Fig. 1. Referring to the predicate
2 https://www.cs.bgu.ac.il/∼ccpr191/Laws Of Refinement.

https://www.cs.bgu.ac.il/~ccpr191/Laws_Of_Refinement

86 R. Ettinger

1 predicate Sorted (q : seq<int>)
2 {
3 ∀ i , j • 0 ≤ i ≤ j < | q | =⇒ q [i] ≤ q [j]
4 }
5

6 method I n s e r t i o nS o r t (a : array<int>, ghost A: multiset<int>)
7 requires multiset (a [. .]) = A
8 ensures Sorted (a [. .])
9 ensures multiset (a [. .]) = A

10 modifies a
11 {
12 // Step 1 : introduce l o ca l var iab l e + strengthen postcondit ion
13 var i := I n s e r t i o n S o r t 1 (a , A) ;
14 StrongerPostcond i t ion1 (a , i ,A) ;
15 }
16

17 predicate Inv1 (a : array<int>, i : nat , A: multiset<int>) reads a
18 {
19 i ≤ a . Length ∧
20 Sorted (a [. . i]) ∧
21 multiset (a [. .]) = A
22 }
23

24 lemma StrongerPostcond i t ion1 (a : array<int>, i : nat , A: multiset<int>)
25 requires Inv1 (a , i ,A) ∧ i = a . Length
26 ensures Sorted (a [. .]) ∧ multiset (a [. .]) = A
27 {}
28

29 method I n s e r t i o nS o r t1 (a : array<int>, ghost A: multiset<int>)
30 returns (i : nat)
31 requires A = multiset (a [. .])
32 ensures Inv1 (a , i ,A) ∧ i = a . Length
33 modifies a

Fig. 1. A specification for sorting along with a first step of refinement, reflecting a
design for the anticipated outer loop.

Sorted from lines 1–4, the postcondition on line 8 expresses the expectation
that when exiting InsertionSort, the sequence of elements stored in the given
array (denoted a[..] in Dafny) will be in a non-decreasing order. The fact that
this sequence is a permutation of the original contents of the array is expressed
here as a combination of the precondition and postcondition on lines 7 and 9
respectively, using the additional parameter A. Being a ghost parameter, A acts
here as a logical constant, storing the bag of values in the given array; in Dafny
we achieve this through the type multiset (line 6) and the operator with the
same name (lines 7 and 9) that collects the bag of values from the sequence
of numbers stored in the array. Following Morgan’s presentation, we typically
start the session by considering how to specify the requirements of sorting, high-
lighting the need to express the fact that the eventual array contents must be
a permutation of the original: in the absence of the postcondition on line 9, a
“correct” implementation could possibly set all elements of the array with the
value 7. As this session provides a first example of an algorithm that updates
the contents of a heap object, we see here for the first time the modifies clause,
on line 10. In class, I typically start without it, showing how Dafny complains
correctly about an assignment to the array, saying it “may update an array ele-
ment not in the enclosing context’s modifies clause”. In Morgan’s terminology

Lessons of Formal Program Design in Dafny 87

of a specification statement, the key ingredients here (aside from the definitions
of the variables and the predicate) are the frame (line 10), the precondition (line
7), and the postcondition (lines 8–9). Morgan’s original specification is slightly
cleaner in that it expresses the multiset property of lines 7 and 9 as an invariant
of the program (with respect to the contents of the array a and the constant A);
to the best of my knowledge, this is not currently supported by Dafny.

Some students feel inclined to add a precondition stating that the array is not
empty or that it has at least two elements. They are correct in their observation
that below two elements there is no need to do anything. But I try to make it
clear that it is against the rules of our game to change the specification. This
specification should be seen as a binding contract, between the programmer
(them and me, in the classroom) and our invisible client. Should it indeed be
helpful to assume the array has at least two elements, they could always start
the implementation with an alternation, asking if it has at least two elements
in an if-statement; the then part will call a method whose precondition can
explicitly state that the array has at least two elements. I also teach them never
to leave an if-statement with no else part. Instead, we show that the else
is redundant using the skip command refinement law. Morgan’s approach to
alternation is more general, explicitly requiring that the precondition will entail
the disjunction of all guards of a guarded command.

In contrast to the common practice of (a-posteriori) verification of existing
code, we shall develop the code through a process of stepwise refinement. In
class, as an exercise, we sometimes agree in advance to aim at the development
of specific code. Still it is important to keep in mind the spirit of correct-by-
construction programming, with the code and proof being developed side by
side. At the end of the process, we will have two versions of the code: the inlined
version as shown later in this paper (Fig. 9), and the complete version, comprising
11 methods (Figs. 1, 2, 3, 4, 5, 6, 7 and 8). One advantage of the complete ver-
sion, in spite of its length, lies in its persistent documentation of the refinement
process. A student who missed that class or was unable to follow the interac-
tive development, would ideally be able to reconstruct the full process from the
published final version3.

2.2 Refinement Steps 1–5: The Outer Loop

In the first five steps of refinement we develop a loop for successive insertion of
elements into their sorted location in the prefix of the array. This process acts
as a derivation of a precise specification for the anticipated Insert operation,
to move the next element into its correct (sorted) location in the prefix to its
left. As in PfS, this example is the first in the course in which we end-up with a
nested loop. The code for the nested loop itself will be developed subsequently,
in refinement steps 6–11 below, starting from the derived specification for the
Insert operation.
3 Final version of the insertion sort algorithm from the 2019 iteration of the ccpr
course (including detailed proofs for the human reader): https://www.cs.bgu.ac.il/
∼ccpr191/wiki.files/CCPR191-InsertionSort-complete-10Dec18.dfy.

https://www.cs.bgu.ac.il/~ccpr191/wiki.files/CCPR191-InsertionSort-complete-10Dec18.dfy
https://www.cs.bgu.ac.il/~ccpr191/wiki.files/CCPR191-InsertionSort-complete-10Dec18.dfy

88 R. Ettinger

The first step of refinement, shown in Fig. 1, takes the original specification
of InsertionSort (lines 6–10) and implements it by providing a method body
(lines 11–15). This is our course’s form of expressing refinement in Dafny. When-
ever the refined program involves yet-to-be-implemented specification state-
ments, additional methods are being specified (here InsertionSort1 on lines
29–33), and can already be invoked (line 13), leaving their implementation for
later refinement steps. This first step introduces the local variable i, to act as a
loop index, and strengthens the postcondition in anticipation for the loop. For
this step to be correct, we have an obligation to prove that the new postcondi-
tion (line 32) is indeed stronger than the original postcondition (lines 8–9). A
convenient way to document such proof obligations in Dafny is through the spec-
ification of a lemma (lines 24–26). The generation of this specification is taught
as a mechanical process of copying-and-pasting: the new postcondition (line 32)
acts as the lemma’s precondition (line 25); the older postcondition (lines 8–9)
acts as the lemma’s postcondition (line 26); and all relevant variables are sent
as parameters.

In technical terms, the lemma acts as a ghost method, with no side effect,
and in this case with value parameters only. Seeing an invocation of the lemma
(line 14), Dafny takes the responsibility to verify that the lemma’s precondi-
tion holds; in this case Dafny trusts that it does hold, as the call immediately
follows the invocation of InsertionSort1 (line 13) whose postcondition is, by
design, the lemma’s precondition. And then Dafny assumes that on return from
the lemma, its postcondition holds, which is again by design the original post-
condition of InsertionSort. And hence Dafny has no reason to complain that
the postcondition of InsertionSort might not hold. In this sense, Dafny trusts
its user to prove at some point in the development that the lemma is correct.
In class we sometimes leave the lemma unproved at first, just as we do with
specifications of further methods, leaving their development for a later step. In
this case, however, Dafny gets convinced of the correctness of this lemma with
no need for proof. This is the meaning of the lemma’s empty body (line 27). Had
Dafny been unable to prove correctness of the lemma, it would have complained
that a postcondition of the lemma might not hold.

What is it that makes the lemma correct in this case? Following PfS, the
designed loop invariant Inv1 expresses the expectation that the index i does
not exceed the size of the array (line 19), and that the first i elements are sorted
(line 20). The fact the loop invariant and the negation of its guard hold (line
25), ensures that the first a.Length elements (hence the entire array) are sorted.
And the second conjunct of the lemma’s postcondition directly follows from the
third conjunct of the loop invariant (line 21), stating that the multiset of values
in the array is indeed the expected multiset, as stored in A.

In logical terms, such a lemma, formulated with input parameters only,
expresses what Morgan refers to as entailment [8]: the expectation that for all
values of the input parameters, according to their types, the result of the lemma’s
precondition implies the result of the postcondition. In other words, for all val-
ues on which the precondition holds, the postcondition must hold too. (Output

Lessons of Formal Program Design in Dafny 89

parameters from a lemma add an existential portion to the formula, that there
exist values of these parameters, for which the implication holds).

At the end of this first step of refinement, as said, we are left to continue
the development by implementing method InsertionSort1. Its specification has
been derived by that of InsertionSort with two differences: the postcondition
has been strengthened, as discussed above, and the frame has been extended
(line 30) to accommodate modifications to the value of the loop index, i. Using
output parameters from methods through the returns construct (line 30), along
with the modifies clause (line 33) is our way of expressing Morgan’s frame in
Dafny. And adding i to the frame here is a direct effect of Morgan’s refinement
law called introduce local variable.

29 method I n s e r t i o n S o r t1 (a : array<int>, ghost A: multiset<int>)
30 returns (i : nat)
31 requires A = multiset (a [. .])
32 ensures Inv1 (a , i ,A) ∧ i = a . Length
33 modifies a
34 {
35 // Step 2 : se quent ia l composition + contrac t frame
36 i := In se r t i onSor t2a (a ,A) ;
37 i := In se r t i onSor t2b (a , i ,A) ;
38 }

40 method In se r t i onSor t2a (a : array<int>, ghost A: multiset<int>)
41 returns (i : nat)
42 requires A = multiset (a [. .])
43 ensures Inv1 (a , i ,A)

55 method In se r t i onSor t2b (a : array<int>, i 0 : nat , ghost A: multiset<int>)
56 returns (i : nat)
57 requires Inv1 (a , i0 ,A)
58 ensures Inv1 (a , i ,A) ∧ i = a . Length
59 modifies a

Fig. 2. Sequential composition: establish the invariant first and only then get to the
loop.

In a second step of refinement, as further preparation for the loop, we decom-
pose the implementation (of method InsertionSort1) into a sequence of two
operations, as can be seen on lines 36–37 of Fig. 2. The first operation will estab-
lish the loop invariant (as can be witnessed in its specification on line 43), and
the second operation will be the loop itself. The postcondition of the first opera-
tion in a sequential composition, according to the simplest version of this law of
refinement, may act as the precondition to the second operation. Whenever we
aim for a loop, as we do here, we choose the loop invariant to be this property
(lines 43 and 57). Note however that in the precondition of InsertionSort2b
we refer to i0 rather than i. This is our way of implementing parameter passing
to variables in the frame: according to the common convention, we append the
digit 0 to the name of a variable whose initial value is required and whose value
may be modified in the method. In contrast to Morgan, each refinement may
introduce new scopes for variables, and accordingly, the initial variable (such as

90 R. Ettinger

i0 here) is a genuine parameter, not merely a (ghost) logical constant. While
these variables and assignment statements could be seen to have negative impact
on the performance of the derived implementation, it is good to recall that by
collecting the code at the end of the refinement process, inlining all method
bodies, such variables can be removed.

As we anticipate that modifications to the array’s contents will be performed
only in the loop body, we express this decision explicitly by removing a from the
frame of the initialization method, leaving only the loop index in its frame (line
41). This is a refinement step known as contract frame.

40 method In se r t i onSor t2a (a : array<int>, ghost A: multiset<int>)
41 returns (i : nat)
42 requires A = multiset (a [. .])
43 ensures Inv1 (a , i ,A)
44 {
45 // Step 3 : assignment
46 LemmaInsertionSort2a(a ,A) ;
47 i := 0 ;
48 }
49

50 lemma LemmaInsert ionSort2a(a : array<int>, A: multiset<int>)
51 requires A = multiset (a [. .])
52 ensures Inv1 (a , 0 ,A)
53 {}

Fig. 3. A first example of assignment: the proof obligation resembles the original spec-
ification, with substitution (of the assignment’s LHS by its RHS) performed on the
postcondition.

In a third step of refinement, shown in Fig. 3, we choose to implement
InsertionSort2a, presenting a first assignment statement, to initialize the outer
loop index. The proof obligation of an assignment statement is expressed as
a lemma specification (lines 50–52). The lemma states that the precondition
entails a modified version of the postcondition, obtained by substituting the
assignment’s left-hand side with the corresponding right-hand side. Here, start-
ing with a copy of the postcondition of InsertionSort2a, the loop index i has
been substituted by 0 in the lemma’s postcondition (line 52, compared to line
43). The lemma’s precondition (line 51) in such cases remains unchanged (as in
line 42). As the correctness of this lemma is proved by Dafny with no difficulties,
we implement it immediately with an empty body (line 53). This is the first step
that introduces no further specifications: the refined version is executable code.

Lessons of Formal Program Design in Dafny 91

Shown in Fig. 4, the fourth step of our refinement session introduces the outer
loop. As the first refinement of a specification with initial variables, we see here
for the first time a convention of copying the initial value to the output variable
(line 61). As in some of the previously demonstrated laws, iteration requires
no proof obligation. Instead, we must be sure to start with a specification that
expresses the loop invariant in its precondition (line 57, using the initial variable
i0) and its postcondition must be phrased as a conjunction of the loop invariant
and the negation of the loop guard (line 58). Following Morgan’s iteration law,
the specification of the loop body should express the loop invariant and the
loop guard in its precondition (line 73, again with initial variables), and the
postcondition (line 74) must involve both the loop invariant and an indication
that the loop variant is strictly decreasing, yet not below some lower bound
(typically chosen to be 0); the frame of the loop body remains unchanged (lines
72 and 75).

In class, it is helpful to see how commenting out the first conjunct of the
loop body’s postcondition on line 74 leads to an error reported on line 64: “This
loop invariant might not be maintained by the loop”. Alternatively, commenting
out the second conjunct on line 74 (involving termination of the loop) leads to
an error reported on line 63, stating that the “decreases expression might not
decrease”. In contrast to that, I sometimes forget to include the guard in the loop
body’s precondition (line 73), and we get no error; only later in the development
we come to notice its absence and learn to appreciate its significance: such a
specification would be infeasible as the result of the precondition not being
strong enough here is that there exists no value for the output parameter i that
satisfies the postcondition.

55 method In se r t i onSor t2b (a : array<int>, i 0 : nat , ghost A: multiset<int>)
56 returns (i : nat)
57 requires Inv1 (a , i0 ,A)
58 ensures Inv1 (a , i ,A) ∧ i = a . Length
59 modifies a
60 {
61 i := i 0 ;
62 // Step 4 : i t e r a t i on
63 while i = a . Length
64 invariant Inv1 (a , i ,A)
65 decreases a . Length i
66 {
67 i := I n s e r t i o n S o r t 3 (a , i , A) ;
68 }
69 }
70

71 method I n s e r t i o n S o r t3 (a : array<int>, i 0 : nat , ghost A: multiset<int>)
72 returns (i : nat)
73 requires Inv1 (a , i0 ,A) ∧ i 0 = a . Length
74 ensures Inv1 (a , i ,A) ∧ 0 ≤ a . Length i < a . Length i 0
75 modifies a

Fig. 4. The outer loop: the specification of the loop body is mechanically derived with
copies of the invariant (twice), the guard, and the variant function.

92 R. Ettinger

The loop body is expected to make two changes: it should increment the
loop index and it must insert the next element into its sorted location in the
growing prefix of the array. Focusing on the loop index first, our fifth step of
refinement, shown in Fig. 5, reflects a decision to increment i at the end of the
loop body. This step, known as following assignment, is quite simple to perform.
The specification of method Insert (lines 83–86) reflects the expectations from
the remaining part of the loop body (line 79, to be followed both in the program
text and execution time by the assignment to i on line 80) is nearly identical to
the specification of the loop body (lines 71–75), with only a few differences.

The single update due to the following assignment law causes each refer-
ence of i in the postcondition to be substituted by i+1 (line 85). Since we
anticipate no further changes to i, we remove it from the frame, causing one
subsequent change, replacing i0 by i. It is important to note the order here:
first substitution (of i only, not of i0) then rename of i0 back to i. At the
end of this modification, the variant-related part of the postcondition becomes
trivially true: the a.Length-i < a.Length-i0 is now the obviously correct con-
dition a.Length-(i+1) < a.Length-i and the 0 <= a.Length-i is now 0 <=
a.Length-(i+1), which is equivalent to the first conjunct of the loop invariant
(line 19 on Fig. 1), applied here in line 85 to i+1. So we do not repeat this
(by-now-redundant) part in the postcondition of Insert (line 85). Indeed, it is
frequently the case that this combination of following assignment and contract
frame makes the variant portion of the loop body’s postcondition trivially true.

71 method I n s e r t i o nS o r t3 (a : array<int>, i 0 : nat , ghost A: multiset<int>)
72 returns (i : nat)
73 requires Inv1 (a , i0 ,A) ∧ i 0 = a . Length
74 ensures Inv1 (a , i ,A) ∧ 0 ≤ a . Length i < a . Length i 0
75 modifies a
76 {
77 i := i 0 ;
78 // Step 5 : f o l l ow ing assignment + contrac t frame
79 I n s e r t (a , i ,A) ;
80 i := i +1;
81 }
82

83 method I n s e r t (a : array<int>, i : nat , ghost A: multiset<int>)
84 requires Inv1 (a , i ,A) ∧ i = a . Length
85 ensures Inv1 (a , i +1,A)
86 modifies a

Fig. 5. Updating the loop index and deriving a specification for the remaining compu-
tation (the insert operation).

2.3 Refinement Steps 6–10: The Inner Loop

In the second session dedicated to insertion sort, we get to the development of
the inner loop. This is more challenging, compared to the derivation of the outer
loop, mostly due to the need to change the contents of the array. Accordingly,
the loop invariant, the proof obligations, and the proof itself might all be more
complicated. The first step in the development of this inner loop is shown in

Lessons of Formal Program Design in Dafny 93

83 method I n s e r t (a : array<int>, i : nat , ghost A: multiset<int>)
84 requires Inv1 (a , i ,A) ∧ i = a . Length
85 ensures Inv1 (a , i +1,A)
86 modifies a
87 {
88 // Step 6 : introduce l o ca l var iab l e + strengthen postcondit ion
89 var j := I n s e r t 1 (a , i ,A) ;
90 StrongerPostcond i t ion2 (a , i , j ,A) ;
91 }
92

93 predicate SortedExceptAt (q : seq<int>, k : nat)
94 {
95 ∀ i , j • 0 ≤ i ≤ j < | q | ∧ i = k ∧ j = k =⇒ q [i] ≤ q [j]
96 }
97

98 predicate Inv2 (q : seq<int>, i : nat , j : nat , A: multiset<int>)
99 {

100 j ≤ i < | q | ∧
101 SortedExceptAt (q [. . i +1] , j) ∧
102 (∀ k • j < k ≤ i =⇒ q [j] < q [k]) ∧
103 multiset (q) = A
104 }
105

106 predicate method Inse r t ionGuard (a : array<int>, i : nat , j : nat ,
107 ghost A: multiset<int>)
108 requires Inv2 (a [. .] , i , j ,A)
109 reads a
110 {
111 1 ≤ j ∧ a [j 1] > a [j]
112 }
113

114 lemma StrongerPostcond i t ion2 (a : array<int>, i : nat , j : nat , A: multiset<int>)
115 requires Inv2 (a [. .] , i , j ,A) ∧ ¬Inse r t ionGuard (a , i , j ,A)
116 ensures Inv1 (a , i +1,A)
117 {}
118

119 method I n s e r t 1 (a : array<int>, i : nat , ghost A: multiset<int>)
120 returns (j : nat)
121 requires Inv1 (a , i ,A) ∧ i = a . Length
122 ensures Inv2 (a [. .] , i , j ,A) ∧ ¬Inse r t ionGuard (a , i , j ,A)
123 modifies a

Fig. 6. Preparation for the insertion loop, defining a loop invariant and a guard, this
time in its own predicate method, aiming for enhanced clarity of annotations.

Fig. 6. Recalling the definition of the outer loop invariant (Inv1 on lines 17–22
of Fig. 1), the specification of Insert (lines 83–86) could be interpreted as saying
that given a state in which the first i elements in an array are sorted and there
is at least one more element to sort, namely a[i], we wish to insert it into its
correct location such that the first i+1 elements will be sorted. (The specification
also says that we must maintain the existing elements in the array; confining
array modifications to swapping pairs of elements will satisfy this requirement.)

To explore the definition of the inner loop invariant (Inv2 on lines 98–104,
using an additional predicate on lines 93–96) and the definition of the loop
guard, expressed in its own predicate method (lines 106–112) such that it can
be used both in executable code and in annotations, it is helpful to consider
the specification of lemma StrongerPostcondition2 (lines 114–116, invoked on
line 90). Fortunately again, this lemma is proved by Dafny, hence the empty
curly braces (line 117) for its proof. In words, following Morgan’s design, this
is indeed true since when the loop invariant holds and the loop guard does not
(line 115), the state is such that the first i+1 elements are sorted except at index
j (line 101) and a[j] is sorted (among the first i+1 elements) too; the latter is

94 R. Ettinger

true thanks to a healthy combination of the loop invariant and the negation of
the guard: the inserted element, at location j, is guaranteed to be sorted to its
right thanks to the loop invariant (line 102) and it is guaranteed to be sorted to
its left thanks to the negation of the guard (from line 111), since at that state
either it is the leftmost element, or it is not smaller than the element to its left,
which along with the loop invariant (line 101 again, taken together with line
100) means that the inserted element (at index j) is indeed greater-or-equal all
elements to its left.

As can be guessed by reading the loop guard, we are aiming for a loop body
that repeatedly swaps the inserted element with the element to its left, until
it reaches its expected location (either when there are no more elements on its
left, in case it is the smallest, or when the element to its left is not larger). It
is instructive to see here how the loop invariant records key properties from the
history of the computation. Failing to record in the loop invariant (line 102) the
fact that at each iteration, and most importantly at the end of the last (line 122),
all the previously considered elements which are currently placed to the right
of the inserted element are greater than the inserted element. Commenting out
this property, removing it from the loop invariant (line 102), immediately leads
to failure in the proof attempt of lemma StrongerPostcondition2 (line 117).
In homework assignment submissions, it is not uncommon to find a comment
attached to such an unproved lemma, waving hands about what is expected
to be true at the point of lemma invocation (line 90 in this case, after the
loop). My response in such cases is that the separation of concerns in our proof
method is such, that the lemma reflects a logical property that stands by itself;
if proven correct (along with separate proofs for all the other obligations), it
guarantees that the program satisfies its specification; yet when the lemma by
itself is logically incorrect, I simply try to provide a counterexample, in this case
with a smaller element to the right of the inserted one; students might argue
that my counterexample does not make sense, and that at the end of the loop
we will never find such smaller elements to the right of the inserted element;
and indeed the fact that we are unable to prove correctness does not necessarily
imply that our code is incorrect; it simply means we need to try harder, for
example by strengthening the loop invariant, recording there more information
from the history of the computation. To such students, it may be helpful to see
here on Fig. 6 that the question of whether the loop invariant and the negation
of its guard imply for all states that the postcondition of the loop holds can be
addressed even before we have implemented the loop.

The development of the inner loop itself is documented in the steps 7–10 of
our refinement scenario, as shown in Fig. 7, culminating in a specification for the
final operation, of swapping two adjacent elements of the array (lines 173–176).
It follows the same line as steps 2–5 of the outer loop: sequential composition
with contract frame, assignment, iteration, and then following assignment with
contract frame. With Morgan’s rich repertoire of refinement laws there is a vari-
ety of paths for deriving the same eventual code. Indeed, in class we cover some

Lessons of Formal Program Design in Dafny 95

119 method I n s e r t 1 (a : array<int>, i : nat , ghost A: multiset<int>)
120 returns (j : nat)
121 requires Inv1 (a , i ,A) ∧ i = a . Length
122 ensures Inv2 (a [. .] , i , j ,A) ∧ ¬Inse r t ionGuard (a , i , j ,A)
123 modifies a
124 {
125 // Step 7 : se quent ia l composition + contrac t frame
126 j := In se r t 2a (a , i ,A) ;
127 j := In se r t 2b (a , i , j ,A) ;
128 }
129

130 method In se r t 2a (a : array<int>, i : nat , ghost A: multiset<int>)
131 returns (j : nat)
132 requires Inv1 (a , i ,A) ∧ i = a . Length
133 ensures Inv2 (a [. .] , i , j ,A)
134 {
135 // Step 8 : assignment
136 LemmaInsert2a (a , i ,A) ;
137 j := i ;
138 }
139

140 lemma LemmaInsert2a (a : array<int>, i : nat , A: multiset<int>)
141 requires Inv1 (a , i ,A) ∧ i = a . Length
142 ensures Inv2 (a [. .] , i , i ,A)
143 {}
144

145 method In se r t 2b (a : array<int>, i : nat , j 0 : nat , ghost A: multiset<int>)
146 returns (j : nat)
147 requires Inv2 (a [. .] , i , j0 ,A)
148 ensures Inv2 (a [. .] , i , j ,A) ∧ ¬Inse r t ionGuard (a , i , j ,A)
149 modifies a
150 {
151 j := j 0 ;
152 // Step 9 : i t e r a t i on
153 while Inse r t ionGuard (a , i , j ,A)
154 invariant Inv2 (a [. .] , i , j ,A)
155 decreases j
156 {
157 j := I n s e r t 3 (a , i , j ,A) ;
158 }
159 }
160

161 method I n s e r t 3 (a : array<int>, i : nat , j 0 : nat , ghost A: multiset<int>)
162 returns (j : nat)
163 requires Inv2 (a [. .] , i , j0 ,A) ∧ Inse r t ionGuard (a , i , j0 ,A)
164 ensures Inv2 (a [. .] , i , j ,A) ∧ j < j 0
165 modifies a
166 {
167 j := j 0 ;
168 // Step 10 : fo l l ow ing assignment + contrac t frame
169 Swap(a , i , j ,A) ;
170 j := j 1;
171 }
172

173 method Swap(a : array<int>, i : nat , j : nat , ghost A: multiset<int>)
174 requires Inv2 (a [. .] , i , j ,A) ∧ Inse r t ionGuard (a , i , j ,A)
175 ensures Inv2 (a [. .] , i , j 1 ,A)
176 modifies a

Fig. 7. Four steps of refinement in the development of the inner loop, deriving a spec-
ification for the swap operation. Note the similarity to steps 2–5.

96 R. Ettinger

more laws, but still quite a small subset of the original catalog. (The additional
laws we do cover include alternation, skip command, leading assignment and
weaken precondition.)

173 method Swap(a : array<int>, i : nat , j : nat , ghost A: multiset<int>)
174 requires Inv2 (a [. .] , i , j ,A) ∧ Inse r t ionGuard (a , i , j ,A)
175 ensures Inv2 (a [. .] , i , j 1 ,A)
176 modifies a
177 {
178 // Step 11 : assignment
179 LemmaSwap(a , i , j ,A) ;
180 a [j 1] , a [j] := a [j] , a [j 1] ;
181 }
182

183 lemma LemmaSwap(a : array<int>, i : nat , j : nat , A: multiset<int>)
184 requires Inv2 (a [. .] , i , j ,A) ∧ Inse r t ionGuard (a , i , j ,A)
185 ensures Inv2 (a [. .] [j 1 := a [j]] [j := a [j 1]] , i , j 1 ,A)
186 {}

Fig. 8. One last step of refinement, swapping the inserted element with the (larger)
array item on its left. Note the “sequence assignment” in the proof obligation.

2.4 A Final Step of Refinement: Swapping Adjacent Array
Elements

Our last step of refinement, performed in the third and final session dedicated to
insertion sort, is shown in Fig. 8. This final step is particularly interesting in the
way its proof obligation uses sequence assignment in the lemma specification. It
is for the purpose of this substitution that we expressed the inner loop invariant
as a predicate that expects a sequence rather than an array of integers, as one
of its parameters (line 98 on Fig. 6). According to the proof obligation for the
assignment law of refinement, note how the specification of LemmaSwap is similar
to that of Swap, except that the frame is empty, and in the postcondition (line
185), only the a[..] has been substituted at two locations, based on the LHS of
the multiple assignment, with values from its RHS. Magically, as was the case
with all prior lemma specifications in this derivation of insertion sort, this lemma
too is proved by Dafny (line 186). Indeed, when the first i+1 elements are sorted
except at j, and a[j] is greater-or-equal all elements to its right, yet it is smaller
than a[j-1], swapping them (a[j] and a[j-1]) generates a sequence in which
the first i+1 elements are sorted except at j-1 and a[j] in its new location is
indeed smaller-or-equal all elements to its (new) right, as these are the elements
right of j as well as j-1, now at location j.

In class, it is actually only in this third session that we transform the inner
loop invariant to take a sequence, rather than the array, as a parameter. This
enables the expression of the proof obligation for the swap assignment using
sequence assignments. In retrospect, sending a sequence rather than the array
could be a more appropriate choice for the outer loop invariant too. This way,

Lessons of Formal Program Design in Dafny 97

there would be no need to explain Dafny’s reads frame (line 17 in Fig. 1), which
is not present in Morgan’s approach.

One more transformation we typically perform on the third session is of the
guard of the inner loop. Following Morgan, we initially express this guard using
an existential quantifier (that at least one of the first j elements of the array is
larger than the inserted value), and at this stage we replace it with the more
efficient guard as shown here in the paper. We use a lemma to demonstrate that
when the loop invariant holds, these two formulations of the guard are equivalent.

In conclusion of this session, we observe that 11 steps of refinement were
performed, developing executable code that is now scattered in 11 methods and
one predicate method. Inlining these methods, in order to collect the code, would
yield the version shown in Fig. 9.

method { : v e r i f y f a l s e } Inse r t ionSort TheCode (a : array<int>,
ghost A: multiset<int>)

requires multiset (a [. .]) = A
ensures Sorted (a [. .])
ensures multiset (a [. .]) = A
modifies a

{
var i := 0 ;
while i = a . Length
{

var j := i ;
while 1 ≤ j ∧ a [j 1] > a [j]
{

a [j 1] , a [j] := a [j] , a [j 1] ;
j := j 1;

}
i := i +1;

}
}

Fig. 9. Collecting the correct-by-construction code at the end of the refinement process.

In the version of insertion sort we have just completed developing, as it turns
out, we were somewhat lucky that each lemma was proved with no need for
manual intervention. To appreciate this, suppose we were to define the predicate
SortedExceptAt not as we did (on lines 93–96, Fig. 6), but rather in the following
equivalent way: k < |q| && Sorted(q[..k]+q[k+1..]). As a result, we would
get errors both in lemma StrongerPostcondition2 and in LemmaSwap, stating
that “A postcondition might not hold”. In such cases I encourage my students
to spend some time in trying to prove correctness, yet not too much time. The
official order is not to fight Dafny, as we do not learn how Dafny works. We return
to discuss this challenge in the next section, reporting on the final homework
assignment for this course.

3 Assessment

The final grade in the 2019 iteration of the ccpr course was determined by one
homework assignment (20%), a must-pass midterm examination (20%), and a

98 R. Ettinger

final assignment (60%). The assignments were performed by teams of at most
three members. The first assignment4 involved two exercises: (1) binary search,
and (2) search for two elements in a sorted sequence of integers whose sum is
a given number. The midterm examination was (for the third year running) a
multiple-choice quiz5. The final assignment6 involved three exercises: (1) merge
sort; (2) inserting an element to a maximum-heap data structure; and (3) insert-
ing an element into a binary-search tree. Of those, the HeapInsert seemed to
be the trickiest. Here is the specification for this exercise:
predicate AncestorIndex (i : nat , j : nat) decreases j−i
{

i = j ∨ (j > 2∗ i ∧
((AncestorIndex (2∗ i +1, j) ∨ AncestorIndex (2∗ i +2, j))))

}

predicate hp(q: seq<int>, l ength : nat)
requires l ength ≤ | q |

{
∀ i , j • 0 ≤ i < l ength ∧
0 ≤ j < l ength ∧ AncestorIndex (i , j) =⇒ q [i] ≥ q [j]

}

method HeapInsert (a: array<int>, h eaps i z e : nat , x: int)
requires heaps i z e < a . Length
requires hp(a [. .] , h eaps i z e)
ensures hp(a [. .] , h eaps i z e+1)
ensures multiset (a [. . heaps i z e +1]) = multiset (old (a [. . heaps i z e])+ [x])
modifies a

The HeapInsert challenge was not given in isolation. The most involved
program we develop during the semester is based on one more case study from
PfS, for Heap Sort [8, Chapter 12]. Our complete solution to Heap Sort7 con-
tains nearly 500 lines of non-blank-non-comment executable code and annota-
tions. Most of the ingredients for deriving a correct heap-insert algorithm were
available in the heapsort solution; the goal of this exercise was to encourage
the students to read the complete solution more closely; yet the development of
fully verified solutions was beyond my expectations. Accordingly, the assignment
description included the following text: “The submitted programs are expected
to compile and verify with no errors (except perhaps for lemma specifications
annotated with a {:verify false}, whose body is left empty) in Dafny 2.2.0.
The correctness of all your non-proved ({:verify false}) lemma specifications
should be made clear by a verbal comment, explaining why for all values of its
parameters (according to their types), if the lemma’s precondition holds then
its postcondition must clearly hold too. Recall that for the lemma to be correct,
this form of logical implication MUST hold by itself, independently of proper-
ties known to the reader from any other part of the program. Please note that
4 https://www.cs.bgu.ac.il/∼ccpr191/Assignments/Assignment 1.
5 https://www.cs.bgu.ac.il/∼ccpr191/Previous Exams.
6 https://www.cs.bgu.ac.il/∼ccpr191/Assignments/Final Assignment.
7 https://www.cs.bgu.ac.il/∼ccpr191/wiki.files/CCPR191-HeapSort-complete-
30Dec18.dfy.

https://www.cs.bgu.ac.il/~ccpr191/Assignments/Assignment_1
https://www.cs.bgu.ac.il/~ccpr191/Previous_Exams
https://www.cs.bgu.ac.il/~ccpr191/Assignments/Final_Assignment
https://www.cs.bgu.ac.il/~ccpr191/wiki.files/CCPR191-HeapSort-complete-30Dec18.dfy
https://www.cs.bgu.ac.il/~ccpr191/wiki.files/CCPR191-HeapSort-complete-30Dec18.dfy

Lessons of Formal Program Design in Dafny 99

some of the properties required for completion of the development might be very
difficult to prove in a formal way (as can be witnessed for example in the pub-
lished HeapSort solution). In each such case you are indeed highly encouraged
to formulate an appropriate lemma, explain to the human reader the reason for
its correctness, and then leave the lemma unverified in the form stated above.”

Table 1. Levels of success: an algorithm to insert an element into a maximum-heap.

Success level of correctness proof SGs

Fully verified 8

Fully verified inconsistently: on occasion, the proof of one lemma fails 1

Perfectly convincing {:verify false} lemma specifications 0

Mostly well-argued {:verify false} lemma specifications 6

Badly-argued (probably correct) {:verify false} lemma specifications 3

Logically-incorrect {:verify false} lemma specifications 9

Seemingly correct code with {:verify false} methods 2

Incorrect implementation 3

Did not submit a solution to this portion of the final assignment 2

Table 1 provides a summary of the level of correctness and proof achieved by
the 78 course participants, who teamed-up as 34 Submission Groups (SGs). I
was encouraged and impressed by the fact that 8 submissions were fully verified.
The 9 submissions with logically-incorrect lemma specifications show that there
is certainly room for improvement, in my teaching. And perhaps more impor-
tantly, I would hope to improve the approach—possibly adopting ideas from
Leino’s ”Program Proofs” (draft) book [6]—in a way that will help upgrade the
6 submissions on the fourth line to the empty third line. I believe that the simpler
it would become, for the students, to provide proofs in which the only unproved
properties will be easy to explain, to the human reader, some of the students in
the 8 teams of the top row would settle for that third row. This will have saved
them the time and energy of “fighting” with a theorem prover.

Performance of students on the heap-insert exercise, as reported above, may
hopefully raise some optimism: perhaps it is not too late to introduce students
to formal methods on the final year of their undergraduate studies (even though
it is definitely advisable to start much earlier [9]), and hopefully new generations
of practitioners (and of teachers) with skill and experience in formal program
design could be raised this way.

100 R. Ettinger

References

1. Backhouse, R.: Program Construction: Calculating Implementations from Specifi-
cations. Wiley, New York (2003)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Hoboken (1976)
3. Gries, D.: The Science of Programming. Springer, Heidelberg (1987)
4. Kaldewaij, A.: Programming: The Derivation of Algorithms. Prentice-Hall Inc.,

Upper Saddle River (1990)
5. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:

Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 348–
370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4 20

6. Leino, K.R.M.: Program Proofs. Lulu (2020)
7. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:

F-IDE. EPTCS, vol. 149, pp. 3–15 (2014)
8. Morgan, C.: Programming from Specifications, 2nd edn. Prentice Hall International

(UK) Ltd., Hertfordshire (1994)
9. Morgan, C.: (In-)formal methods: the lost art - a users’ manual. In: Liu, Z., Zhang,

Z. (eds.) SETSS 2014. LNCS, vol. 9506, pp. 1–79. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29628-9 1

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-29628-9_1
https://doi.org/10.1007/978-3-319-29628-9_1

	Lessons of Formal Program Design in Dafny
	1 Introduction: About the Course
	2 Lessons 10–12: Insertion Sort
	2.1 Specification for a Sorting Algorithm
	2.2 Refinement Steps 1–5: The Outer Loop
	2.3 Refinement Steps 6–10: The Inner Loop
	2.4 A Final Step of Refinement: Swapping Adjacent Array Elements

	3 Assessment
	References

