
Increasing Engagement with Interactive
Visualization: Formal Methods as Serious

Games

Eduard Kamburjan1 and Lukas Grätz2(B)

1 University of Oslo, Oslo, Norway
eduard@ifi.uio.no

2 Technische Universität Darmstadt, Darmstadt, Germany
lukas.graetz@tu-darmstadt.de

Abstract. We present a concept to increase the interactivity of formal
methods courses. To do so, we discuss how formal methods can be seen
as special serious games—a set of systems that is applied successfully
in other educational contexts. To close the gap between the presented
theory and its formalization or implementation, we take results from
interactive visualization to develop a tool that empowers the students to
deepen their knowledge about the presented theory in the same terms
that are used in the lecture. The concept is not only based on experiences
of the formal methods community, but also on studies and theories in
the educational sciences. An implementation that is used in the exercise
sessions of a course teaching proof calculi is available under https://kbar.
app.

1 Introduction

Motivation. Teaching methods for formal methods have received renewed atten-
tion in recent years. Several workshops [6,9] and surveys [31,34] have identified
numerous subject-specific challenges. One of the identified challenges is that for-
mal methods tools are not designed to be used for teaching: they have a steep
learning curve and give little feedback [34]. As such, they are at most useful to
teach how to solve a problem using the formal method but give little support
to teach their internal concepts. Two further challenges worsen the situation:
For one, formal methods are dry and many students feel intimidated by math-
ematical expressions to the point of mathematical anxiety [28]. For another,
the presentation of formal methods in lectures, their implementation and their
presentation in textbooks is highly non-uniform.

It is not possible to use the tool to manipulate and explore the presented
material using the concepts as presented in the lectures. This results in low
student engagement in formal method courses, as the gap between tool and
concepts discourages the student.

Overview. In this work, we use the structural similarities between formal meth-
ods and serious games to develop a concept to increase student engagement
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in formal methods courses. Serious games have been shown to have a positive
effect on student engagement [32] and our concept aims to carry over this effect
to formal methods. To see a formal method as a serious game, one needs a visu-
alization with the following characteristics: (i) It is interactive. (ii) It visualizes
the formal methods consistently with the concepts and notations in the theory
part of the course.

The added value of interactive visualization is that it communicates the men-
tal model of the expert more faithfully [18]. In contrast, formal method tools that
focus on applications, need a different mental model, and thus, fail to increase
student engagement. The interactivity here is crucial: non-interactive visualiza-
tions have only a small effect on student performance [19]. Note that in this
concept the formal method itself is the serious game; it is neither an application
of a formal method to games nor a gamification of existing tools.

This work discusses a teaching concept on how the view on formal methods
as serious games can be used to develop and apply an interactive visualization
tool in a formal method course. In our concept, the interactive visualization tool
is used (a) as a self-study help for students and (b) in the exercise session of
a course. In early learning stages, a student internalizes new concepts. Here,
using the tool as a self-study can help students to explore the concepts on their
own terms and on their own speed. As the tool catches mistakes and provides
feedback why certain operations are not applicable, students do not reinforce
misconceptions by reapplying mistakes. In contrast to pen-and-paper exercises,
where they would have to wait several days for the teacher’s feedback.

Proof Calculi. We present our approach to develop a tool for teaching proof
calculi, e.g., different tableaux variants, based on the authors’ experience with
the exercises of a course on automatic theorem proving. Consistently with the
identified challenges, we observe that it is challenging for students to adopt the
taught calculi to prove something on new examples. We conjecture that one of the
reasons, for example in tableaux methods, is that the lecture presents the proof
calculus visualized as a tree, creating a cognitive gap to the formalization (where
the tree is implicit behind mathematical notation) and the implementations.

We present the KalkulierbaR tool, which allows the student to build and
change proofs in several variants of tableaux, resolution, DPLL and sequent
calculi. The tool is a serious game, similar to puzzle games, where the proof
rules are possible steps in the game. The goal is to close the proof.

Contributions. The main contributions of this work are (a) a concept to view
formal methods as serious games to teach formal method theory, and (b) the
KalkulierbaR tool, designed to be part of this concept to teach several proof
calculi. The tool is designed by the authors, the implementation of KalkulierbaR
was done together with two groups of students, which were implementing user
stories given by the authors as part of a mandatory lab. The format is explained
in detail in Sec. 4. It includes several variants of tableau, resolution, DPLL and
the sequent calculus. A live instance runs under https://kbar.app and the source
is available under https://github.com/kalkulierbar/kalkulierbar.

https://kbar.app
https://github.com/kalkulierbar/kalkulierbar
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Structure. In Sect. 2 we present background on serious games and interac-
tive visualization in education, as well as challenges specific to formal meth-
ods and related work. Sect. 3 applies these ideas for formal methods to present
KalkulierbaR. Sect. 4 discusses our experiences and Sect. 5 concludes.

2 Background and Related Work

We discuss the background for serious games, interactive visualizations and stu-
dent engagement from a formal method perspective.

We follow Roggenbach et al. [29] and understand a “formal method” as (a)
a set of syntax with some (b) semantics and (c) a set of rules operating on the
syntax. This includes logics with proof calculi. Under a logic we understand an
abstract logic [14], i.e., a triple of (a) a set of sentences as syntax, (b) a set of
models and a satisfiability relation with certain properties as semantics, and (c)
a proof calculus that consists of operations on the syntax as rules.

Interactive Visualizations. Algorithm and program visualization has a long his-
tory in computer science education and is documented dating back to the begin-
ning of the 1980s1. It seems intuitive that visualizations help to engage the
student and increase the accessibility of taught material, and several theories on
why this is indeed the case have been put forward. For example, the epistemic
fidelity theory of Hundhausen argues that algorithm visualizations “provide a
faithful account (i.e., one with high epistemic fidelity) of an algorithm’s execu-
tion in terms of an algorithm expert’s mental model” [18].

However, a meta-study of Hundhausen et al. [19] recognizes that providing
algorithm visualization tools alone does not increase student performance:

“With few exceptions, we found that studies in which students merely
viewed visualizations did not demonstrate significant learning advantages
over students who used conventional learning materials”.

Instead, increased student performance can be attributed to interactive ele-
ments of the visualization tool, such as constructing own input sets, program-
ming tasks, answering questions and building own visualizations [24]. Hund-
hausen et al. also find that tools designed for active learning and based on
cognitive constructivism have more significant results in increasing student per-
formance. Naps et al. argue that “visualization technology, no matter how well
it is designed, is of little educational value unless it engages learners in an
active learning activity [24]”. They present an engagement taxonomy of pos-
sible involvement: (1) no viewing, (2) viewing, (3) responding, (4) changing,
(5) constructing and (6) presenting. Subsequently, this taxonomy was extended
by Myller et al. [23] to include more fine-grained levels.

We observe that formal methods are easy to adapt to interactive visualization
for multiple forms of involvement in the engagement taxonomy (2), (3) and (4).
1 The most prominent artifact from these early approaches is the short film Sorting

Out Sorting [4]. For a historic overview, we refer to Baecker [5].
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There is a major difference between the algorithms taught in typical algorithm
and data structure courses, which form the basis for the above studies, and for-
mal methods: Many formal methods are non-deterministic (without a strategy
for rule selection) and as such enable even more interaction than algorithm visu-
alization. However, we stress that the reason for increased student performance is
that the visualization is used to provide and manipulate a certain mental model
that is taught in the lecture. As such, application-oriented tools are not suitable
for this task—there is a gap between how a method is explained in its pure form
and how it is implemented. Even systems with a focus on user interactions, such
as the KeY tool [1], work on an extension of the pure method and for novices, it
is not easy to distinguish the parts which stem from the pure method and which
stem from application needs.

Learning with Serious Games. A similar approach to interaction in learning are
(educational) serious games. There is no agreement on the exact definition of a
serious game2, and for the rest of this paper, we commit to using the one put
forward by Wouters et al. [32]: interactive systems based on a set of agreed rules
and constraints, directed toward a goal, which provide feedback to the player to
enable monitoring the progress towards the goal.

Serious games are not necessarily about gamification: Serious games are
game-like programs for education, while gamification is about game-like mechan-
ics in non-game contexts [21], e.g., awards for participation in online discus-
sions. Nonetheless, serious games must be embedded in context: a meta-study of
Wouters et al. [32] concludes that while serious games can lead to better learning
and retention, the students do not feel more motivated by them.

We discuss the exact connection with serious games in Sect. 3.1. For now, it
suffices to remark that we can interpret the set of syntactic rules (of the formal
method) as the goal-directed rules of a serious game. The goal is, for example,
to close a proof. For a formal method to become a serious game, we have to add
visualization, interaction, and feedback.

Related Work in Formal Methods. Cerone et al. [7] discuss specific challenges
for teaching formal methods based on a recent workshop. While most of their
discussion focuses on the role of formal methods in a curriculum for software
engineers, some of the authors also mention the role of games in their teaching.
However, they use games as case studies to introduce formal methods, e.g.,
to have an intuitive set of rules that needs to be modeled using the formal
method. Tools developed on this idea, like the FormalZ tool of Prasetya et al. [27],
are successfully applying gamification to the course, but do not see the formal
methods as the serious game itself.

Another raised point is that the tools are not suitable due to confusing error
messages and interface. This coincides with the epistemic fidelity theory: these
tools do not provide a faithful account of the mental representation of the teacher

2 Defining a game is notoriously challenging. For a recent survey from the view of
electronic games, we refer to Arjoranta [2].
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Table 1. Selected tools for proof calculi and criteria for serious games.

Tool Rules Interactive Visual Feedback

Sequent calculus trainer [10,11] Sequent calculus � � �
Panda [15] Natural deduction � � ?

Easyprove [22] Pen-and-paper math � × �
CalcCheck [20] Pen-and-paper math Partial × �
WinKE [8,12] Tableaux calculus � � ?

KalkulierbaR Multiple calculi � � �

for theoretical concepts, as they are based on the mental representation used
for their application by experts. Farell and Wu discuss in a recent experience
report [13] also the problems of relating tools and theory due to the disconnect
of concepts as taught in the course and concepts as used in the tool. We see their
experiences as representative for several studies reported in the aforementioned
white paper of Cerone et al. [7] as well as other surveys [31,34], which also identify
a lack of tool support and visualization as challenges for formal methods.

There are numerous visual interfaces for single proof calculi (e.g., [8,10,15,
22]). Additionally, we present KalkulierbaR in Sect. 3, a tool that covers mul-
tiple calculi and is explicitly designed following the didactical theories behind
interactive visualization and serious games. Not all of these tools support all fea-
tures of a serious game, see Table 1. For example, CalcCheck and Easyprove were
intentionally designed for text-based math proofs and not for visual proofs. The
Sequent Calculus Trainer is an interactive visualization of the sequent calculus,
following a didactical motivation [11]. Since it also provides interactive feedback,
it fits our perception of a serious game—although not explicitly designed as a
such.

As we will discuss in the next section, interactive provers can be seen as seri-
ous games, but not necessarily as interactive visualizations. This is, for example,
the case for Isabelle and Coq, which have a textual interface. Textual inter-
faces are suitable for different teaching approaches. For example, the CalcCheck
tool [20] aims to give an interface that is as near as possible to the notation (and
language) in the used textbook. Similar ideas are used by Pierce et al. [26] in a
series of books that are executable Coq scripts. The exercises in these books can
be seen as serious games (without interactive visualization), but this connection
is not made explicit.

Note that we focus here on the aspect of teaching concepts – powerful tools
are still necessary in teaching if formal methods are taught in an applied program.
Ölveczky [25] takes a different approach to this and argues that Maude is a
tool that can bridge the gap between theory and application in one tool, as
its formalism, a rewriting logic, is similar to functional programming. As such,
Maude relies on prior knowledge of the student with another similar formalism,
which is not possible for no-programming based formal methods. It is an example
of a formal method where the gap between concepts and tool is small, in this
work we focus on teaching methods for formal methods with a bigger gap.
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3 Proof Calculi as Serious Games

Based on the principles discussed in the previous section, we suggest teaching
methods to assist lectures, exercises and self-study with interactive visualization.
We present KalkulierbaR, an implementation of this concept for proof calculi.

3.1 Formal Methods Are Serious Games

Our key observation is that formal methods are serious games, if an interactive
visualization is provided. We remind that a serious game is an interactive system
with a set of rules and constraints directed towards a certain goal, that provides
feedback to monitor the progress towards the goal.

For formal methods, there is a set of agreed rules and constraints (operat-
ing on syntax) and a clear goal (closing the proof or reaching/avoiding some
state). For example, for proof calculi, the goal of the game is to close the proof
using a fixed set of proof rules. For, say, model checking of liveness properties in
automata, the goal is to find a path to some location. Compared to other games,
they are near to puzzle or tile-matching games.3 Most notably, formal methods
are single-player games and do not have an opponent. While they have a clear
winning condition (reaching the goal) they do not necessarily have a clear losing
condition. Such a condition is not necessary for a system to be a game.

As we see, formal methods merely lack interaction and feedback. This must be
provided by an interactive visualization of the formal method. This means that
even without gamification efforts, formal methods with interactive visualizations
are serious games. As we have seen in the previous section, serious games and
interactive visualization do not automatically increase student engagement or
retention. Instead, they must be integrated into the course in a way that they
are similar to the mental representation of taught concepts. We give a concept
to do so in the rest of this section.

3.2 Teaching Methods

Our concept is to use an interactive visualization tool in a formal method course
as a consistent help for the student. At the core, the tool allows the student
to work with a formal method as it is taught in the lecture and textbooks. In
particular, we aim to use the same syntax and visualizations for rules as already
given in the lecture. Before we introduce our implementation, we describe where
and how the tool is used in the course, with proof calculi as a guiding example.

We assume a tool that (1) visualizes the current state of a formal method
(e.g., a proof tree or program configuration) (2) permits selection of parts of
the state (e.g., a proof node), (3) displays a list of possible rules to apply
and (4) provides detailed feedback if a rule is selected that cannot be applied.

3 For instance, Sudoku, Tetris or Candy Crush. The similarity to such puzzles goes
beyond the definition: Candy Crush and other three-matching games have been
shown to be NP-complete despite their simple rule sets [16].
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While optional, we also assume that the tool (5) permits reverting steps for
backtracking.

Lectures. The tool can be used to increase the interactivity of a lecture by exe-
cuting the taught formal method in the plenum. For example, a teacher performs
a proof but asks the students how to proceed in each step. A student can answer
with a rule and a proof node. In an online live session, the answers can be typed
in a chat. As a variant, for lectures with 20 students and more, anonymous
polling software could be used to find the next step by majority vote.

Advantages of using an interactive proof tool in the lecture:

Flexibility. Contrary to slides, a teacher can react to unforeseen answers of
the students and explore alternative strategies suggested by the students.
Contrary to (digital) blackboards, we do not need to reserve space beforehand:
Scaling and arranging a proof (tree) is done automatically by the software.
Similarly, it is less time-consuming to perform proof steps, further facilitated
by reverting or undoing steps. Student answers also provide valuable feedback
for the teacher to assess the learning progress.

Student Engagement. The tool fosters category 3 in the engagement tax-
onomy (responding), as it can be used to ask the students questions (e.g.,
“what will be the result of this step”). Tool support also helps using category
4 (changing), where the students can influence the next steps of the formal
method.4

Low Threshold for Participation. The method using an interactive proof
tool lowers the participation threshold in multiple ways: Since students also
have access to the tool, they can protect themselves before answering by
performing the steps beforehand. Furthermore, students (otherwise anxious
to participate) are activated, since they only need to follow the rules of a
calculus. The answers are often a few letters only, which could be typed
(depending on the lecture format) in an anonymous chat.

Reproducibility. Students can reproduce proofs using the same tool.

Self-study. After an aspect of a formal method is introduced in the lecture, stu-
dents not only have the possibility to reproduce the examples, but also to explore
different strategies and examples on the students’ own time and terms. In our
proof calculus setting, a student selects a node in the proof and an appropriate
rule. The proof is drawn by the software and feedback is given, whenever the
student tries to apply a rule in a wrong way. To achieve the final goal, a specific
order of rule applications may be necessary: By using backtracking in the form
of undoing proof steps, the student may fix this order.

In particular, the student can (a) stay within the conceptualization intro-
duced in the lecture, (b) get step-wise feedback on erroneous input (e.g., trying
to apply a rule that does not match the situation) in terms of the very same
conceptualization and automatically. It is neither necessary to learn new syntax
4 In terms of AV, changing is mostly used to provide new inputs to the algorithms.

Formal methods have more flexibility in possible input.
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or different visualizations as used by tools aimed for applications, nor neces-
sary to connect error messages from application tools to the basic concepts of
the formal method. Ehle et al. [10] have observed that syntactically wrong rule
instantiations are a major source of errors.

Exercises. Exercises come with a variety of different tasks and are an essential
part in learning formal methods. In exercise/lab sessions, the student is given
multiple tasks to apply the content of the lecture. In the first parts of the course,
this is done on a conceptual level. Some tasks can be solved interactively in a
calculus as described above. For example, when we give students a formula that
needs to be proven using a calculus. The advantages of interactive visualization
in this context are the same as in the lecture setting described above: Both pen-
and-paper solutions and interactive visualization solve the same problem, but
by using the software, the students benefit from step-wise and early feedback.

Interactive visualization is mainly suited for exercises on reasoning within a
formal method (formal proofs in a calculus, algorithmic proof procedures, etc.).
Exercises on meta-level properties of a formal method do not benefit directly
(like soundness of a calculus).

Labs. There is a difference between using and extending a tool. Students ben-
efit from both. On one hand, using allows one to perform steps in the formal
method with step-wise feedback, as described above. On the other hand, extend-
ing engages students even further: Category 5 of the engagement taxonomy is
to construct new visualizations. We suggest the following labs:

Strategies. We assume a formal method to be non-deterministic. However,
it likely has a reasonable strategy for rule selection. Such strategies can be
implemented in the interactive visualization tool. Additionally, it may be
used to visualize auxiliary structures used for the strategies (such as “set of
support” in resolution).

Extensions. An interactive visualization tool could be a basis for the imple-
mentation of additional rules or alternative rule sets. Extensions include the
calculus itself, the syntax, or the graphical view.

Exams. Interactive visualization tools have limited applications in exam sit-
uations. Students are generally expected to perform pen-and-paper proofs by
themselves and need to demonstrate that they understood the system without a
program to guide them. However, students certainly benefit from the interactive
visualization tool when preparing for the exam by self-study, as described above.

There are exam situations when pen-and-paper are difficult to organize, e.g.,
in (open-book) online written exams or online oral exams. In these situations,
students may use the interactive proof tool. It should be carefully monitored that
(1) such exams are still being fair to all students and (2) students’ performance
is independent and not bound to a particular proof assistance tool. Furthermore,
we should respect students’ privacy and the in-homogeneity of environment and
infrastructure on the students side.
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Table 2. Calculi implemented in KalkulierbaR, listed with supported variants and
logics. PL denotes propositional logic, FO denotes first-order logic.

Calculus Variants Logics Model generation

(Clausal) tableaux Regular, (strongly) connected PL, FO ×
Non-clausal tableaux FO, Modal ×
Resolution Hyper resolution PL, FO ×
Sequent calculus PL, FO ×
DPLL PL �

3.3 KalkulierbaR

KalkulierbaR is an interactive formal proof tool designed to support teaching
proof calculi following the concept described above. We refrain to introduce the
calculi in detail and instead illustrate the usage of KalkulierbaR by example.
Table 2 shows the implemented calculi and their variants. KalkulierbaR is imple-
mented as a web application, consisting of a frontend (written in JavaScript) for
the interface and a backend (written in Kotlin) for the state.

KalkulierbaR uses a responsive design and can be used with a touchscreen
(on a smartphone) as well as with a pointer device (desktop or laptop). Thus, we
rely only on standard web technology and no installation is necessary, reducing
the threshold for the student to use the tool. The backend can be installed locally
and includes a build system that downloads all dependencies.

Overview. Initially, the students select a calculus with a suitable logic and set
the parameters, for example, the weakly connected tableaux variant. Addition-
ally, there are some additional settings, such as backtracking: the ability to undo
steps. Then a formula is entered (a clause-set or a sequent, depending on the
chosen logic and calculus). At this point, one can set optional parameters. Some
parameters control details of the calculus, like restricting tableaux to weakly
connected tableaux, while others influence the overall workflow, such as back-
tracking. In the serious game view, this corresponds to adjusting the rule set.

The input is then parsed and sent to the backend server, where logic and
calculi are implemented. If parsing fails, error messages are provided. Before the
proof is started, the backend server might perform some normalization steps.

Once the calculus is selected and a formula is entered, one can start playing
by applying rules of the respective calculus. When a proof is shown for the first
time, a tutorial appears. The tutorial can be reopened using the help button on
the screen. Usually, deduction steps in the calculi consist of selecting one or two
formulas and a rule to apply. The rules are either in the lower right or on the
left. Sometimes, a rule might request additional parameters in a pop-up window.

Once a proof is finished we can use the check button to verify our result.
Properties of the proof are displayed in the message box.

Example. We give an example to demonstrate KalkulierbaR. Our example is
in spirit of Smullyan [30], Chapter XIV, and gives students a more motivating
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exercise then an abstract formula. It also demonstrates the full range of the
exercise, from situation, over logical modeling to the use of calculi for solving.

“Once, a parent went grocery shopping with their child. Most notably, they
bought yogurt and a chocolate egg. The parent says: ‘My dearest child,
you have done so well today. I would like to reward you, only you have to
say the truth in whatever statement. If your statement is true, then I will
reward you with the yogurt, but if the statement is false, I will not give it
to you.’ Now it so happened that the child wanted to have the egg and not
the yogurt! The child is clever and makes the following statement: ‘You
will give me neither the egg nor the yogurt”’.

This statement forces the parent to give the egg to his child, as only this
outcome makes the demanded statement by the child false without breaking the
promise of the parent. We could check that this produces the desired outcome by
examining all possible combinations manually. But by applying formal methods,
we can do this more systematically.

First, we need to formalize the statement in logic. Our formalization is given
in Table 3 and uses two propositional variables e and y.

Table 3. Formalization of Smullyan’s puzzle.

Proposition Meaning

y “The parent gives the yogurt to the child”

e “The parent gives the chocolate egg to the child”

¬(y ∨ e) Statement by the child: “You will not give me
neither the yogurt nor the egg”

¬(y ∨ e) → y First proposition by the parent: “If the statement
is true, then I will give you the yogurt”

¬¬(y ∨ e) → ¬y Second proposition by the parent: “If the
statement is false, then I will not give it to you”

There are two parts in the verification of the puzzle’s solutions. We show that
the desired conclusion follows, assuming the parent keeps to true to their word.
Furthermore, we have to show consistency of the premises, i.e., we check that
it is possible to actually keep the parents’ word. We solve the first part using a
proof calculus and the second part by checking a satisfiable model.

We show that the parent gives the yogurt to the child, whenever both propo-
sitions by the parent are true. To do so, we use the sequent calculus, where
premises are on the left and the conclusion on the right of the turnstile �:

¬(y ∨ e) → y, ¬¬(y ∨ e) → ¬y � e (1)

We may enter the sequent in the respective ASCII-notation, as shown on
the left in Fig. 1. Once we start the proof, the input sequent is displayed in the
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usual notation at the bottom. Now we can try applying rules like “impLeft” on
¬¬(y ∨ e) → ¬y. The proof tree after this step is shown at the top of Fig. 2.
Whenever the student tries to apply a rule on a formula where it is not possible,
the exact cause is displayed. There are multiple ways to finish the sequent proof,
one of them is shown at the bottom of Fig. 2.

Fig. 1. Starting a sequent proof with KalkulierbaR.

Model Generation. For DPLL, KalkulierbaR supports checking whether a
model satisfies the original formula. For the above example, a resulting model
is given by ¬y and e, i.e., the parent gives the egg but not the yogurt. Due to
the course contents (and not due to theoretical reasons), model generations had
been restricted to DPLL.

Variants and Layout. As discussed, KalkulierbaR allows the user to select a
variant of the used calculus. For example, the user may use regular tableaux,
where no literal may occur twice on a branch. If such a restriction is violated,
the user is informed which of the variants is not followed correctly and where.
Once the proof is closed, the user is also informed which variants could have
been activated. For example, the left side of Fig. 3 shows a closed proof with
the corresponding message. Beyond feedback on erroneous rule applications,
KalkulierbaR also has a button that explains all currently available rules and
shows animations to illustrate the rule with an example.

Tableaux is the main focus in the course and multiple more advanced calculi
are implemented to show variants of tableaux beyond the clausal-based system
for standard first-order logic and propositional logic: KalkulierbaR provides
classical non-clausal tableaux and signed modal tableaux [33]. Just to give an
idea of other calculi: On the right of Fig. 3 is a small modal logic proof for the
basic modal axiom K.

The layout of DPLL, sequent calculus and tableaux is fixed. For resolution,
as no specific layout is used in the lecture, we let the user switch between two
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Fig. 2. A sequent proof with KalkulierbaR on a mobile phone display.

possible layouts. One where the clauses are arranged in a circle and one where
the clauses are arranged in a grid. In the circle, whenever a clause is selected,
the clauses are rearranged such that possible resolution partners are near the
selected clause.

Backend. The backend permits to hide calculi and variants from the user through
an admin interface. This is used to synchronize the course and the calculi offered
by the webtool. The backend also automatically translates user input into con-
junctive normal form, if the user selects a clausal calculus. Alternatively, the
user may enter a set of clauses directly.

Additionally, high-score tables can be activated for certain calculi to compare
properties with proofs from other users. After the proof is checked, the high score
table appears and the user can enter a name to save store the result. We stress
that this is not part of the serious game concept. It is a gamification approach
that is orthogonal to the formal-method-as-serious-game view.
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Fig. 3. A clausal tableau proof and a modal tableau proof.

4 Discussion

Application. The original development of KalkulierbaR started in winter 2019,
based on experiences with the course on “Automated Theorem Proving” at TU
Darmstadt. When the course was repeated in summer 2020, we had the oppor-
tunity to use KalkulierbaR in a course with 15 regularly attending students in
the lecture.

As the COVID-19 pandemic forced us to change to a virtual setting, our tool
was used differently as originally planned. Similar to other courses we observed
that the short-term, unplanned switch to a live streaming format of courses
negatively affected student interaction and engagement [17], making it difficult
to compare its effects to previous iterations. There was no evaluation on the
participants of the lecture in connection with the use of KalkulierbaR. Such
an evaluation could give detailed feedback on how the usage of KalkulierbaR
affected the learning process. We plan to make evaluations when the lecture is
held again.

Exercises. KalkulierbaR was mainly used for exercises, where the exercise
sheets could be solved using KalkulierbaR instead of pen-and-paper as
in the previous years. The solution discussion took place in dedicated ses-
sions. Following the structure of previous iterations of this course, the stu-
dents were not required to submit their solutions. 4 out of 7 exercises
were suited KalkulierbaR and the solutions were partially presented using
KalkulierbaR.

Lecture. The course had 7 lectures on the concepts of tableaux, resolution and
DPLL. For the respective calculi, KalkulierbaR was used as described in
Sect. 3.2. As mentioned, the course suffered from the widely observed nega-
tive effect of the pandemic negatively on student engagement. Nevertheless,
students actively participated using the text message function, both when
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asked and on self-initiative by asking questions for comprehension, when
KalkulierbaR was used.

Labs. We offered one additional exercise sheet to modify KalkulierbaR, thus
realizing the construct category of engagement. The task of this lab was to
modify the rule used for first-order hyper resolution, which had a bug.

Further Forms of Involvement. The previous section discussed our concept for
a formal method course focused on an expert teaching a certain method. We
could extend it to further forms of involvement from the engagement taxonomy:
presenting, which is defined as “presenting a visualization to an audience for
feedback and discussion. The visualizations to be presented may or may not have
been created by the learners themselves [24]”. This way, interactive visualization
can also be used in a seminar setting where students read up, implement and
present variants of formal methods.

KalkulierbaR itself was implemented in two mandatory student lab (“Bach-
elor Lab”) which simulates an industrial development environment using agile
practices. The project lead, in our case the authors, has an already designed
application concept, that needs to be implemented and give the students user
studies in regular meetings, which they implement and get approved by the
project lead. We used KalkulierbaR in two consecutive such labs, where the
code from the first lab was extended in the second one. Most of the students had
not taken the ATP course before. These labs were educational tasks in them-
selves, realizing the “constructing” aspect in the engagement taxonomy. The
design of KalkulierbaR was not part of the students’ work.

KalkulierbaR has a modular structure that separates the logical operations
in the backend from their visual representation in the frontend. As such, a possi-
ble lab would be to implement the proof strategies to make the system automatic,
such that the visualization can be used to examine the intermediate state without
modification. Modifying the visualization allows one also to explore the internal
state of the strategy. For example, implementing resolution with set-of-support
(SOS), requires adding the SOS clauses to the visual interface.

Furthermore, KalkulierbaR implements several calculi and can be extended
to support more. It permits a contrasting approach to teach proof multiple calculi
in a uniform interface. Single-calculus tools [8,10,15,22] cannot be used so.

On Generalization. The presented connection of formal methods with interactive
visualizations as serious games is independent of the chosen implementation for
proof calculi and we conjecture that the concept in Sect. 3.2 can be used for
any formal method. While there is an overhead to develop a tool specifically for
teaching one formal method, we deem it acceptable for the following reasons: As
the aim is to provide a serious game form of the method as taught, such tools
are more reusable by other lecturers than tools used for the application. It is
not necessary to have a teaching companion for an advanced tool and keep the
teaching tool up-to-date with the application-oriented tool.

That the teaching tool requires less maintenance is an important practical
point: Lack of maintenance is of the reasons for the growing disconnect between
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KeY and its teaching companion5, KeY-Hoare, which is based on KeY 1.6, while
the current release version of KeY is 2.8 and includes usability improvements that
cannot be used in KeY-Hoare. The development of the tool can be integrated
with student projects to further increase engagement in an applied manner.

The serious games teaching companion described in this work can be comple-
mented by application-oriented tools if the course structure includes such tools.
In our course, we had some case studies using theorem provers as application-
oriented tools. There is no redundancy—the teaching companion may be used to
introduce the concepts and describe them in their pure form, while application-
oriented tools can focus in later parts of the course on bigger case studies.

5 Conclusion

This work establishes a firm connection between formal methods on one side
and interactive visualization and serious games on the other side: The formal
method itself is a serious game, where the rules of the formal method are the
rules of the game. To control the rules and get suitable feedback, the user needs
an interactive visualization tool fitted for the formal method.

Using this connection, and further theory from educational sciences, such
as the engagement taxonomy, we present a teaching concept tailored to the
challenges of formal methods, in particular, the notoriously novice-unfriendly
tools. The main goal is to increase student engagement in the theoretical parts
of a course, by providing a specific teaching tool that helps to learn the concepts
before applying them in the application-oriented tool.

Future Work. We plan to use KalkulierbaR in a more mainstream course to be
able to perform a quantitative study on its effects on student engagement. To our
best knowledge, there are no recent studies on interactive visualization after the
advent of smartphones and their mass use by students. It is worth investigating
whether this has an effect on how students react to interactive visualization.

We plan to integrate additional output formats, such as LATEX, and inte-
gration into a wider tool for online teaching that builds on KalkulierbaR for
grading exercises and interactions with students through quizzes and chats, two
tools that were also shown to increase engagement in an online setting. Finally,
we consider using an additional module to input proof rules, e.g., MUltlog [3], to
use KalkulierbaR in a setting with a more volatile treatment of proof calculi.
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