
A Proposal for a Framework
to Accompany Formal Methods

Learning Tools
(Short Paper)

Norbert Hundeshagen(B) and Martin Lange

Theoretical Computer Science/Formal Methods, University of Kassel,
Wilhelmshöher Allee 71, 34121 Kassel, Germany
{hundeshagen,martin.lange}@uni-kassel.de

Abstract. We propose a simple concept framework to accompany learn-
ing tools in theoretical computer science/formal methods in order to
ease their integration into existing courses, balancing out technical issues
against light-weight didactical questions.

Keywords: Theoretical computer science · Didactics of informatics ·
Software learning tools

1 Learning Tools in Theoretical Computer Science

Theoretical computer science (TCS) courses are usually quite formal and math-
ematical, and therefore often perceived to belong to the hardest subjects that
students face. Failure and drop-out rates have always been high [12] with little
indication that these rates would go down without active intervention [10]. Solu-
tions to this problem range from the deployment of classic didactical methods
(e.g. [10,15,16]), the use of adapted generalised tools, for instance using theorem
provers for teaching logic [9], and the design, implementation and evaluation of
specialised learning tools for particular subjects or tasks, e.g. [2,7,11].

This paper is concerned with development in the last of these categories,
specifically seen from the perspective of theoretical computer scientists with
rather little expertise in the field of didactics. We observe a growing interest
and activity in the development of learning tools, as witnessed for instance by
multiple venues like FMTea, ThEdu, FOMEO, and growing acceptance rates
of papers on learning tools at non-educational conferences, c.f. [1,2,8,14]. Yet,
in order to maximise learning effects, the development of such software tools
needs to be embedded into a larger framework which is guided not only by
technical but equally by didactical considerations, specialised to situations and
issues commonly found in learning.

Modern learning tools generally make use of advanced technology to produce
content and interactive user feedback, so that they can be – up to a certain
degree – described under the term intelligent tutoring systems [6]. Intelligence is
c© Springer Nature Switzerland AG 2021
J. F. Ferreira et al. (Eds.): FMTea 2021, LNCS 13122, pp. 35–42, 2021.
https://doi.org/10.1007/978-3-030-91550-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91550-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-91550-6_3


36 N. Hundeshagen and M. Lange

often achieved using sophisticated formal methods (FM) like equivalence checks,
SAT/SMT solving, theorem proving, model checking, semi-decision procedures,
machine learning. These impact on didactical consideration which are rather
specific to the area of TCS/FM. It is reasonable to assume that they have been
implemented with a clear didactical purpose in mind, but this is often done by
experts in TCS/FM, not necessarily in didactics, as the development of precise
and efficient feedback technology for learning tools naturally requires expertise
in the underlying technology.

We propose to accompany TCS/FM learning tools with a simple, yet clearly
spelled-out didactical concept broken down to a collection of basic questions.
It balances technical considerations with didactical aspects including addressed
competence levels and feedback systems, thus encompassing the typical learning
cycle. Such a framework would make the tools’ developers provide a key element
for the integration of such learning tools into an existing course and would help to
bridge the gap between expertise in FM and comprehensive didactical theories.
Moreover, it aids the comparability amongst learning tools, not necessarily to
single out a best one but mainly to be able to quickly judge which tool is most
suitable for which teaching situation. This would also enhance the effectiveness of
the FM Courses Database1 for instance by providing lecturers with information
on typical didactic considerations, as prerequisites needed to deploy such tools,
didactic limitations in using them, how learning outcomes are foreseen to be
achieved, etc.

We give two examples of learning tool descriptions according to this frame-
work. We conclude with remarks on continuing conceptual work accompanying
the development of learning tools.

2 The Proposed Didactic Framework

Information that is rather obvious and normally given, like what subarea of
TCS/FM the tool belongs to, what implementation technology has been used
etc., should be complemented in such a framework with didactical considerations
in order to facilitate a smooth integration into a course. For this to work, the
concept description should particularly address the following issues.

What are the technical requirements for using the tool? This may restrict the
answers to several other questions posed here, as it sets some key parameters for
the use of the tool. Requirements may refer to the need to create user accounts,
the availability of webserver, a database, the runtime environment of a program-
ming language, other software, or the need to be run on a particular operating
systems or within an educational platform etc.

What are the technical capabilities of the tool? The answer should be specific
to the field of TCS as certain technical capabilities may show negative learn-
ing effects in particular fields. For instance, generating automated feedback on
1 https://fme-teaching.github.io/#fm-courses.

https://fme-teaching.github.io/#fm-courses


A Framework to Accompany Learning Tools 37

an undecidable problem may impede students’ understanding of the concept of
decidability. For teachers it is vital to know the characteristics of the underlying
technology (testing, bounded search, etc.) in order to be able to put the feedback
system into context in students’ eyes.

Furthermore, knowing the limits of the implemented technology to create
learning effects also helps to judge their limits in creating such effects. For
instance, when feedback is given in the form of counterexamples, it is useful
to know the characteristics of methods used to produce them, i.e. taken from
a fixed set, minimality, generated intelligently to address the student’s individ-
ual learning problem, etc. Answers give key insight into didactical considerations
such as: does the feedback system support the acquisition of certain competences,
can feedback be misinterpreted, is it possible to mould an incorrect solution that
passes all tests, etc.

The same considerations in didactical impacts also apply to tools that gener-
ate questions or exercises automatically. Technical capabilities that make content
persistent or movable like the ability to save solution attempts to disc, to send
or submit them, etc. can also influence didactical considerations likewise.

What does the course need to provide in order for the tool to be used? Specifically,
what competences are the students assumed to already have acquired before they
can start using the tool, for instance familiarity with a particular formal concept
or the ability to carry out particular formal tasks. Larger tools which accompany
an entire course rather than just target a specific competence may presuppose
nothing in this respect.

Where in a course is the tool intended to be used? The standard learning model
for courses in TCS still builds on the presentation of material in lectures, a
short period of self-study to deepen and review understanding, plus set exer-
cises/tutorial sessions. A clear recommendation on where to place the use of this
tool in the line of activities making up a course is helpful, whether it is merely to
be used in a lecture to visualise certain concepts, whether students are supposed
to work on it autonomously perhaps after receiving a certain amount of tuition,
or in a guided way during tutorials, whether the homework exercises can be run
through this tool, etc. Multi-purpose in this sense is of course imaginable.

What competences at what level does the tool address? The answer has to be
specific; it is not enough to know that tool X “helps students to learn logic.”
Instead the answer needs to name specific levels of competence, perhaps linking
to standard syllabi in the respective area.

Even when there is no established formulation to name such levels yet it
should be possible to sketch such levels. Often the analysis and categorisation of
typical students’ mistakes in exercises gives rise to a hierarchy of competence lev-
els in a particular area, one that is quickly understood by fellow teachers. Listing
standard exercises which students are supposed to be able to master after suc-
cessfully learning with the underlying tool also provides valueable information
here. Moreover, it can be useful to consider formulations of general competence



38 N. Hundeshagen and M. Lange

Fig. 1. The feedback system in the Sequent Calculus Trainer.

hierarchies for entire study programmes, e.g. [3] as well as heavy-handed didac-
tical considerations on how to build competence models for theoretical computer
science [13].

What learning model does the tool follow? An answer would typically refer
to standard behaviouristic, constructivistic, and cognitivistic learning models.
Users of those tools, i.e. teachers integrating them into their courses, may not
be familiar with such complete theories. It is therefore helpful to refer to spe-
cific methods advocated in such theories. Especially present feedback systems
should be linked to detailed explanations on how learning is initiated, e.g. in
an error-driven way, by immediate feedback on every user interaction, through
simple questionnaires on the content, through feedback-loops, etc.

3 Two Exemplary Instances of the Proposed Framework

We exemplify the proposal of an accompanying framework using two specific
tools: the Sequent Calculus Trainer [5] and DiMo [8]. The first one is – as the



A Framework to Accompany Learning Tools 39

Fig. 2. Main view of the DiMo web frontend with highlighted feedback system.

Table 1. Didactical concept description for the Sequent Calculus Trainer.

The Sequent Calculus Trainer

target area – logic in computer science
– formal proof systems (sequent calculus)
– not useful for other proof systems like resolution etc.

availability,
technical
requirements

– free software (BSD-3 license)
– written in Java, needs JRE 8.1 or higher
– download: https://www.uni-kassel.de/eecs/fmv/

software/sequent-calculus-trainer

key technical
capabilities

– presentation of formulas in mathematical notation
– syntax highlighting
– zoom-/scrollable proof display in tree shape
– saving/loading/checking of proofs
– validity checks for propositional and first-order logic (incomplete,

uses SMT solver Z3)
– limitations: feedback works best on shallow formulas and terms

provisions by the
course

– introduction of the sequent calculus for first-order or propositional
logic: proofs, rules, validity

– not needed: soundness, completeness of the calculus

intended use – (by teacher) presentation of proof construction, e.g. during lec-
tures

– (by student) (guided) solving of exercises on proving validity of
formulas in sequent calculus during Tutorials and/or homework

learning model
aspects

– immediate feedback for wrong use of concepts, see Fig. 1
– provision of hints to help students construct correct proofs
– SMT solver checks possible next proof steps for feedback on

successful use (traffic light system, see Fig. 1)

required
competences

– familiarity with the syntax of first-order or prop. logic
– helpful: ability to understand the meaning of formulas

addressed
competences

– syntactically correct proving in a formal proof system
– finding proofs for valid formulas
– to a smaller degree: understanding the logical reason for

invalidity/existence of counterexamples

https://www.uni-kassel.de/eecs/fmv/software/sequent-calculus-trainer
https://www.uni-kassel.de/eecs/fmv/software/sequent-calculus-trainer


40 N. Hundeshagen and M. Lange

Table 2. Didactical concept description for the DiMo tool.

DiMo

target area – logic in computer science, discrete modelling

availability,
technical
requirements

– web application hosted by the University of Kassel under
https://dumbarton.fm.cs.uni-kassel.de

– no registration required
– no collection of user data

key technical
capabilities

– IDE with syntax highlighting and auto-completion
– presentation of formulas in mathematical notation, see Fig. 2
– saving and loading DiMo programs
– satisfiability, validity, equivalence, model enumeration (uses
SAT solver)

– limitations: only integer parameter, computation timeout
depending on formula size and/or instances of the
parameters

provisions by the
course

– syntax and semantics of propositional logic
– definition of generalized logical operators

∧
,
∨

– short introduction of the core concepts of the
DiMo-language (given in the manual)

intended use – (by teacher) to exemplify semantical concepts and discrete
modelling; for use as SAT solver interface

– (by student) solving exercises on discrete modelling in
tutorials and/or homeworks

learning model
aspects

– immediate feedback on wrong syntax by syntax highlighting
(see Fig. 2) and compiler messages

– support of learning the connection between semantics and
the modelled problem by output of formula models, see
Fig. 2

required
competences

– familiarity with the syntax of propositional logic

addressed
competences

– understanding semantics of propositional logic
– familiarity with satisfiability, validity, equivalence
– using the above to solve “real-world”-problems
– ability to form reduction to SAT

name suggests – a learning tool for formal proofs in First-Order Logic using
Gentzen’s sequent calculus which is, besides resolution and natural deduction,
one of the proof calculi that is commonly taught in undergraduate courses on
logic in computer science or presented in standard textbooks thereof, cf. [4].

The second one supports learning the competence of discrete modelling in
propositional logic, which is essential in undergraduate studies in computer sci-
ence.

The choice for these two tools to exemplify instances of the proposed frame-
work is not made for any specific reason other than the fact that they are being

https://dumbarton.fm.cs.uni-kassel.de


A Framework to Accompany Learning Tools 41

developed by the Theoretical Computer Science/Formal Methods group at the
University of Kassel. We would clearly be less competent to present the possibly
unformulated didactical concepts underlining tools developed elsewhere.

We do not propose to use a specific format for such a framework at this
point. Tool developers should of course have the freedom to choose how best to
convey the information about the key didactical aspects of their tool. It is also
not clear – certainly not at this point – whether there could be some format that
is best suited for all purposes. Here we choose a semi-formal description in order
to concisely present the key aspects in textual form.

Table 1 concisely lists information regarding the Sequent Calculus Trainer
w.r.t. to the set of framework questions listed above. Similarly, this kind of
information on the didactic use of DiMo is given in Table 2.

4 Conclusion

We propose to accompany the development of learning tools in formal meth-
ods by instances of a simple didactical framework that gives answers to some
key questions about comparability, usability, usefulness and effectiveness of such
tools to facilitate an easier integration into existing courses. The elements of this
framework are given by key questions to be answered by the tools’ developers.

We believe that the most effective learning tools will be created when
knowledge and expertise from both formal methods and didactics is combined
effectively in the design processes, and it seems like there is still potential to
strengthen this kind of combination.

The framework proposed here should be simple enough so that theoretical
computer scientists, in particular non-experts in didactics, are able to formulate
basic properties pertaining to the didactic aspects surrounding their tools. In this
way, didactics provides the means for transferability of formal methods learning
tools between educational situations.

The idea that learning tools may be more transferable when shipped with
spelled out didactical concepts is of course not restricted to the field of formal
methods or theoretical computer science. Here we contained the field of interest
in order to work on the basis of a clear and defined picture of recent developments
and particular needs (like typical problems students face in this area) etc. This
is not to say that other fields may not undergo similar considerations.

At last, the framework here is not considered to be completed. It should be
discussed and engineered further under consideration of significant developments
in the areas of didactics and formal methods. It also remains to be seen whether
formalisation into a more stringent format would be beneficial.

References

1. Andersen, J.R., et al.: CAAL: concurrency workbench, Aalborg edition. In:
Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp.
573–582. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9 33

https://doi.org/10.1007/978-3-319-25150-9_33


42 N. Hundeshagen and M. Lange

2. D’Antoni, L., Helfrich, M., Kretinsky, J., Ramneantu, E., Weininger, M.: Automata
tutor v3. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 3–14.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 1

3. Desel, J., et al.: Empfehlungen für Bachelor- und Masterprogramme im Studienfach
Informatik an Hochschulen. GI-Empfehlungen (2016)

4. Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate
Texts in Mathematics, 2nd edn. Springer, Berlin (1994). https://doi.org/10.1007/
978-1-4757-2355-7

5. Ehle, A., Hundeshagen, N., Lange, M.: The sequent calculus trainer with auto-
mated reasoning - helping students to find proofs. In: Proceedings of 6th Inter-
national Workshop on Theorem Proving Components for Educational Software,
ThEdu 2017. EPTCS, vol. 267, pp. 19–37 (2017)

6. Freedman, R.: What is an intelligent tutoring system? Intelligence 11(3), 15–16
(2000)

7. Geck, G., Ljulin, A., Peter, S., Schmidt, J., Vehlken, F., Zeume, T.: Introduction
to ILTIS: an interactive, web-based system for teaching logic. In: Proceedings of
23rd Annual ACM Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2018, pp. 141–146. ACM (2018)

8. Hundeshagen, N., Lange, M., Siebert, G.: DiMo – discrete modelling using propo-
sitional logic. In: Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp.
242–250. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80223-3 17

9. Knobelsdorf, M., Frede, C., Böhne, S., Kreitz, C.: Theorem provers as a learning
tool in theory of computation. In: Proceedings of 2017 ACM Conference on Inter-
national Computing Education Research, ICER 2017, pp. 83–92. ACM (2017)

10. Knobelsdorf, M., Kreitz, C., Böhne, S.: Teaching theoretical computer science using
a cognitive apprenticeship approach. In: Proceedings of 45th ACM Technical Sym-
posium on Computer Science Education, SIGCSE 2014. ACM (2014)

11. Rodger, S.H.: JFLAP: An Interactive Formal Languages and Automata Package.
Jones and Bartlett (2006)

12. Ross, R., Grinder, M., Kim, S., Lutey, T.: Loving to learn theory: active learning
modules for the theory of computing. SIGCSE Bull. 34(1), 371–375 (2002)

13. Schlüter, K., Brinda, T.: Characteristics and dimensions of a competence model
of theoretical computer science in secondary education. In: Proceedings of 13th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education, ITiCSE 2008, p. 367. ACM (2008)

14. Schwarzentruber, F.: Hintikka’s world: agents with higher-order knowledge. In:
Proceedings of 27th International Joint Conference on A.I., IJCAI 2018, pp. 5859–
5861 (2018)

15. Sigman, S.: Engaging students in formal language theory and theory of computa-
tion. In: Proceedings of 38th SIGCSE Technical Symposium on Computer Science
Education, SIGCSE 2007, pp. 450–453. ACM (2007)

16. Verma, R.M.: A visual and interactive automata theory course emphasizing
breadth of automata. In: Proceedings of 10th Annual SIGCSE Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE 2005, pp. 325–329.
ACM (2005)

https://doi.org/10.1007/978-3-030-53291-8_1
https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.1007/978-1-4757-2355-7
https://doi.org/10.1007/978-3-030-80223-3_17

	A Proposal for a Framework to Accompany Formal Methods Learning Tools
	1 Learning Tools in Theoretical Computer Science
	2 The Proposed Didactic Framework
	3 Two Exemplary Instances of the Proposed Framework
	4 Conclusion
	References




