l‘)

Check for
updates

Online Teaching of Verification of C
Programs in Applied Computer Science

Matthias Giidemann(®)

University of Applied Sciences (UAS) Munich, Munich, Germany
matthias.guedemann@hm.edu

Abstract. This is a report on teaching formal methods in the form of
program verification for Master students in an applied computer science
setting. The course was taught fully online, using recorded videos, syn-
chronous sessions, the learning management system Moodle (https://
moodle.org/), a distributed version control system and mostly biweekly
graded practical assignments.

The first objective was to use the C language. It is a very relevant lan-
guage in the sectors where verification is used in industry. The students
already know the language, it also has interesting properties which can
make verification challenging and shows the importance of edge cases
in verification. The second objective was to teach the use of mature,
industrial-strength tools in order to make the skills transferable to the
later work situation of the students. This required tools that are actu-
ally used in industry to analyze C programs. The third objective was
to introduce different verification approaches and to show the strengths
and potential limitations of each. The selected approaches were deduc-
tive verification, abstract interpretation and model checking.

To achieve these goals, Frama-C with its WP and EVA plugin, the
model checker CBMC and the Z3 SMT solver were selected. Because of
the applied setting it was desired to use examples which did not require
the use of interactive theorem proving for deductive verification.

1 Introduction

Teaching formal methods and program verification is an important part of com-
puter science education. Just writing specifications of programs is often hard for
the students and having to do so is a very valuable experience in its own. Being
able to prove properties of programs gets more and more widespread in many
domains, in particular as program security gets ever more important.

At the same time, formal methods are often considered to be a theoretic or
academic topic without clear application in practice. In particular in an applied
computer science setting where the focus is less on research and theoretical foun-
dations and more on applicable topics. Often it is also functional programming
languages and dependent types which are used in program verification. This has
the advantage of having the Curry-Howard isomorphism as a clear correspon-
dence between programs and proofs. The downside is that while functional pro-
gramming aspects are used more and more in modern programming languages,

© Springer Nature Switzerland AG 2021
J. F. Ferreira et al. (Eds.): FMTea 2021, LNCS 13122, pp. 18-34, 2021.
https://doi.org/10.1007/978-3-030-91550-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91550-6_2&domain=pdf
http://orcid.org/0000-0002-1002-6023
https://moodle.org/
https://moodle.org/
https://doi.org/10.1007/978-3-030-91550-6_2

Online Teaching of Verification of C Programs 19

programming purely in functional languages is still limited to very few niches.
Therefore, it is unlikely that many of the students will do this later in their jobs.

Choosing C as a language for program verification has some extra challenges
but also benefits. C has a lot of rather special and difficult aspects. At the same
time it is widely used in domains where program verification is mandatory. Also,
there exist different industrial strength verification tools for C which allows for
hands on experiments in verification on real programs.

The rest of the paper is structured as follows: Sect. 2 gives some background
on the university, C verification and the lecturer. Section 3 introduces the verifi-
cation tools that were selected for the course. Section 4 gives some detail on the
online teaching setting and Sect. 5 gives an overview of the exercise assignments
the students had to complete. Section 6 reports on the challenges the students
faced and the evaluation of the course by the students. Section 7 concludes the
paper with some outlook on the changes for the next iteration of the course.

2 Background

2.1 University of Applied Sciences

The German University of Applied Science (UAS) is traditionally a type of
university with a principal focus on teaching applied topics. For the professors
at UAS it is a requirement to have worked at least 3 years outside academia and
most have at least 5 years of industrial experience. Teaching is generally focused
on current topics and with applicability in industry in mind.

In recent years the image of UAS is changing and the focus changes in
the direction of research, in particular applied research, i.e., topics which show
promise of commercial use in a short time-period. This shift to research has also
changed the topics that are taught in computer science curricula. In Munich this
has led to the introduction of formal methods teaching in the form of program
verification and model-checking. Such a focus is still rather uncommon at UAS
but the experience shows that the students do see the merits of formal methods
if taught in a way that shows real applicability.

2.2 C Program Verification

Choosing C as the target language for program verification was a compromise
between the complexity of the properties to show and the applicability of the
topic in a later industrial setting. C is still a widely used language in embedded
systems and safety critical domains which is an important domain for program
verification.

The complexity of the properties is limited due to C not being designed with
verification in mind. On the contrary, C has aspects like undefined or implemen-
tation defined behavior which makes verification tricky. At the same time this
offers interesting topics for discussion in the classroom when implicit assump-
tions the students have turn out to be false.

20 M. Giidemann

Using C for verification can be applicable in an industrial context because C
is still widely used. This is because compilers exist for almost every architecture
and also because it allows very fine-grained control which can be essential in
embedded systems or low level development like operating systems. This impor-
tant position of C also means that there exist industrial grade verification tools.
Learning these tools is also a potential source of readily applicable knowledge
for the students.

3 Verification Approaches and Tools

The choice of verification approaches and of tools is closely connected. It was
important to select modern tools that are capable of reading real C programs
and not just subsets of C or abstracted languages which lack some of the really
challenging aspects. We chose verification approaches, deductive verification,
abstract interpretation and software bounded model-checking. This was done
to show their respective strengths and weaknesses of these approaches.

Because of the curriculum of the UAS there was no real background in math-
ematical logic, therefore it was important have more or less full automation
support even for deductive verification. Introducing interactive theorem proving
would have taken too much time for the course.

The Frama-C framework [3,10] offers support for expressing properties in the
Ansi C specification language (ACSL) [2]. This provides a good integration into C
programs as annotations of functions or definitions of logic functions. At the time
of the course the current version of Frama-C was 21.0. C programs with ACSL
annotations can be compiled and executed just as normal C programs without
these annotations. All ACSL annotations are expressed in specially formatted
comments.

3.1 Deductive Verification

For deductive verification the Frama-C/WP plugin was chosen. It uses ACSL
specifications of functions and uses preconditions and loop annotations to create
proof obligations to prove the properties. The proof obligations can be discharged
by different external tools. Frama-C uses the Why3 platform [9] which supports
different SMT solvers, first order logic theorem provers or external interactive
theorem provers. There is an extensive work on formalization and verification of
standard algorithms in C available [6].

The following code illustrates an ACSL annotation in the form of a two part
loop invariant and a loop variant.

/*@
loop invartant 0 <= % <= n;
loop assigns <;
loop variant n - %;

*/

for(int i = 0; i < mn; i++) { ... }

Online Teaching of Verification of C Programs 21

The following code illustrates an ACSL annotation of a function contract. It
specifies that the postcondition of the function is that b points to the original
pointer of a and that a points to the original pointer of b, i.e. the values at the
pointers have been exchanged when the function returns. The original pointer
is marked as old, one can specify own labels in addition to standard labels that
are available.

/*@
ensures *b == \old(*a);
ensures *a == \old(*b);
*/

void swap (int *a, int *b) {
int tmp = *a;
*a = xb;
*b = tmp;

3.2 Abstract Interpretation

For abstract interpretation the Frama-C extended value analysis (EVA) [4] plu-
gin was chosen. It allows for fully automatic verification of ACSL specifications
using abstract interpretation and related techniques. It uses internal abstract
domains and different options that control the analysis, e.g., the number of
internal states to analyze.

The advantage of this kind of analysis is that if no error is reported, then no
runtime error is possible in the program. If an error is reported, this means that
in the abstraction a runtime error can occur, so then there may be a problem in
the concrete program.

int f(int a) {
int x, y, sum, result;

if(a == 0) {
x=0;y=25;
} else {
x=5;y=0;
¥

sum = X + V;
result = 10 / sum;
return result;

Given the above code the plugin manages to prove the absence of a runtime
error in the form of division by zero. This is shown in the below output of Frama-
C. While in the resulting value sets the variables x and y can have either value 0
or 5, the value of sum = z + y cannot have the value 0 because = and y cannot
have value 0 at the same time.

22 M. Giidemann

[eva] done for function f

[eva] ====== VALUES COMPUTED ======
[eva:final-states] Values at end of function f:
x in {0; 5%}
y in {0; 5}

sum in {5}
result in {2}
[eva:summary] ====== ANALYSIS SUMMARY ======
1 function analyzed (out of 1): 1007% coverage.
In this function, 8 statements reached (out of 8): 100% coverage.

No errors or warnings raised during the analysis.

0 alarms generated by the analysis.

No logical properties have been reached by the analysis.

3.3 Software Bounded Model-Checking

For software bounded model-checking the CBMC [11] tool was chosen. It allows
for specification of assertions directly in C code and uses bit-precise model-
checking using SAT and SMT solving to verify or disprove the properties. From a
teaching point of view, the possibility to get counterexamples for false properties
is a very interesting feature of model-checking.

In addition to CBMC, pure SMTLIB2 SMT solving in the form of Z3 [§]
and CVC4 [1] was used to illustrate the formalization of lemmas in the form
of satisfiability of constraint problems. Frama-C/WP also uses SMT solvers for
deductive verification, but the proof obligations and encoding of these problems
were not detailed in the lecture.

CBMC allows for textual generation of verification conditions in different
formats. This is a useful feature to illustrate how the C programs are transformed
into single static assignment (SSA) and then translated into constraint problems
for SMT solving.

In the following code the assertion specifies that the sum of parameter z and
y cannot be zero.

int f(int n, int x, int y) {
int divisor = 0x12345678 - x + (y << 1);
assert (divisor !'= 0);
return n / divisor;

CBMC translates this into the following constraint problem. This is direct
output of CBMC, slightly shortened to reduce it to the essential part.

Online Teaching of Verification of C Programs 23

{-22} f::n!001#1 = nondet_symbol
{-23} f::x!0@1#1 = nondet_symbol
{-24} £f::y'!'0@1#1 = nondet_symbol
{-25} f::1::divisor!0Q@1#2
= 305419896 + shl (f::y!0@1#1, 1) + -f::x!001#1

{1} —(f::1::divisor!001#2 = 0)

The first 3 lines of the constraint problem state that the three parameters
of the function f are equivalent to a nondeterministic value, i.e., the constraints
22, 23 and 24 are always fulfilled. The constraint 25 then defines that the local
variable divisor of the function f is equal to the right side which corresponds
to 305419896 + (y < 1) — z. These constraints describe the program in single
static assignment (SSA) in the form of equivalences that relate the variables and
parameters.

From these constraints CBMC then tries to deduce the property in the form of
the assertion —(divisor = 0). This is done by negating the property, i.e., adding
the additional constraint divisor = 0. An SMT solver then checks satisfiability of
the conjunction of the constraints and the negated property. If this is satisfiable
then there exist parameter n, x and y such that divisor = 0. A satisfying
assignment comprises a counterexample to the property.

For this program and property it is of course possible to choose the function
parameters in such a way that a division by zero is possible. The following shows
the counterexample as generated by CBMC. This means that with z equal to
—1841559528 and y equal to 1073993936 the calculated value of divisor is 0,
the value of n is not important. The possibility to get counterexamples is very
useful: “It is impossible to overestimate the importance of the counterexample
feature” [7].

State 33 file div.c function __CPROVER__start line 5 thread O

n=0 (00000000 00000000 00000000 00000000)

State 34 file div.c function __CPROVER__start line 5 thread O

x=-1841559528 (10010010 00111100 00001000 00011000)

State 35 file div.c function __CPROVER__start line 5 thread O

y=1073993936 (01000000 00000011 11011000 11010000)

State 36 file div.c function f line 6 thread O

divisor=0 (00000000 00000000 00000000 00000000)

24 M. Giidemann

Violated property:
file div.c function f line 7 thread O
assertion divisor != 0
divisor != 0

4 Online Teaching

Due to the restrictions because of the COVID-19 pandemic, the course was
taught fully online. In addition, because of the restrictions concerning in-person
exams, grading was done on practical exercises. Each exercise was for around 2
weeks and could be completed in teams of two students or alone.

Online teaching worked quite well. The exercises were organized via github
classroom! which allows for easy creation of repositories from templates for the
students.

The course was held in the following way: each week there was an asyn-
chronous part where new material was distributed as recorded videos and slides.
At the normal lecture date there was a synchronous session where the mate-
rial was presented in more detail. In the synchronous part the students were
also asked to complete several small multiple-choice quizzes per session. Most
sessions also included live-demos of the relevant aspects of the currently used
tools.

We also employed Rocket.Chat? which proved to be very helpful to exchange
code snippets to discuss problems or questions for the practical exercises. It also
integrates Jitsi® to support video calls and live screen sharing.

To prevent most kinds of compatibility problems we decided to use a stan-
dardized virtual machine as the software platform. The VM was based on a
standard Ubuntu Linux with the different tools preinstalled. Frama-C can eas-
ily be installed via the opam package manager for OCaml. CBMC and Z3 are
directly available as packages in Ubuntu.

5 Exercise Selection

Due to the fact that a basic course in mathematical logic was not compulsory
in the students’ curriculum it was necessary to start with basics of specifica-
tion using first order logic. From these foundations we then switched to formal
specification and Hoare logic.

For each exercise we give a short paragraph on the preceding preparation
lectures, the task itself and the goal of the exercise. Tools like Frama-C, SMT
solvers and CBMC were presented in live-demo sessions in the synchronous ses-
sions.

! https://classroom.github.com.
2 https://rocket.chat /.
3 https://jitsi.org/.

https://classroom.github.com
https://rocket.chat/
https://jitsi.org/

Online Teaching of Verification of C Programs 25
5.1 Exercise 1—Informal Specification

graded no/time 1 week

Preparation. In the lecture before this exercise the students got an introduction
to propositional logic.

Task. The first exercise was to clone a repository which contained a single C file
and to analyze informally what the function in the C file would do. The students
were asked to compile the file, execute it and to validate their guess what the
function f computes.

int f(int n) {
int s = 0;
int 1 = 1;
while (i <= n) {
s =8 + i;
i++;
}

return s;

}

The next step was to write down a specification of what the function com-
putes. This specification was intended to be informal and it also was the first
time the students had to write a specification on their own.

Finally, the students were asked to think about edge cases for which the
function might not fulfill the specification.

Goal. The intention of this exercise was to familiarize the students with C
programs, to get an idea about the difficulties to express precisely what a function
is intended to do and also with the fact that machine integers do not always
behave like unbounded integers.

5.2 Exercise 2—First Order Logic

graded no/time 1 week
Preparation. In the lecture before this exercise the students got an introduction
to first order logic with many different examples of formalized properties.

Task. The next exercise was to express the specification of exercise 1 as a first
order logic formula. Still, in free-form, not yet in a standardized way like ACSL.

Goal. The intent here was to familiarize the students with the challenge to use
logic to correctly specify a property.

26 M. Giidemann
5.3 Exercise 3—Hoare Logic

graded yes/time 1 week

Preparation. In the lecture before this exercise the students got an introduction
to different approaches to program testing and coverage criteria, proof trees
and Hoare logic. For Hoare logic reasoning a simple imperative language was
introduced to explain the separate rules for the different language constructs.

Task. This exercise was the first graded exercise in the course. It included simple
properties which had to be proven using Hoare logic and manually writing down
the proof tree of the Hoare rule applications.

This included the calculation of the weakest precondition of the following
programs.

// which precondition is required for postcondition y > 12
y :=x + 1;

// which precondition is required for postcondition z > 0?
y 1=x + 1;
y+ 1

X 2

// which precondition is required for postcondition z > 0?
Z 1= X * y;

The next part was to specify a loop invariant such that with the precondition
n > 0 the postcondition acc = 2 % n holds. It was also asked to give the loop
variant which guarantees termination.

acc := 0;

i := 0;

while (i < n)
acc := acc + 2;
i:=1+ 1;

The last part then asked to generalize the while rule to a rule for for loops,
i.e. to specify how a Hoare-style rule for for loops would have to look like in
order to prove correctness of the Hoare triple.

Goal. The intent of this exercise was to familiarize the students with Hoare
logic reasoning which is at the base of deductive verification. Loop invariants
(and variants) generally have to be specified manually. Understanding how the
Hoare logic rules for loops work is a very important concept in verification of
imperative programs.

Online Teaching of Verification of C Programs 27
5.4 Exercise 4—Deductive Verification Using Frama-C

graded yes/time 1 week

Preparation. In the lecture before this exercise the students got an introduction
to the ACSL specification language for C and to Frama-C. This consisted mainly
of the ACSL operators for first order logic and the specific keywords to express
function preconditions, properties, assertions and loop invariants.

For Frama-C this included running the command line version of the tool on
an annotated C file and the interpretation of the resulting output messages.

Task. The next exercise was based directly on exercise 3. For this exercise,
the programs were given as C programs, the pre- and postconditions and the
loop invariants had to be expressed as ACSL annotation before and after each
statement, corresponding to the Hoare triple. The goal was to prove the post-
conditions from the specifications and loop invariants using Frama-C/WP in a
fully automatic way. The exercise also included the formalization of a lemma for
multiplication and to check which of the SMT solvers was capable to verify the
lemma automatically.

Goal. The intent of this exercise was to familiarize the students with ACSL
specifications and with using Frama-C. We limited the use to the command line
interface which is more than adequate for tasks like these. The exercise did not
yet use fixed-width machine integers, any runtime warnings were to be ignored.

5.5 Exercise 5—Arrays

graded yes/time 2 weeks

Preparation. In the lectures before the students got a reminder on peculiarities
of the C language, in particular pointers, as well as an introduction on control
flow graphs (CFG) as program representations.

Task. The next exercise dealt with more complex specifications. There were
three parts. The first part was to specify the return value of a function that
computes the minimum of two integers.

int min(int x, int y) {
int z=x<y ?x:y;
return z;

3

The second part was the first task to include arrays. For a given array of
integers and its length, the index of the minimal element was to be returned. If
no such element exists, then a special value had to be returned.

28 M. Giidemann

int min_array(int* arr, int len) {
if (len == 0)
return -1;

int min = 0;

int 1i;
for (i = 0; 1 < len; i++) {
if (arr[i] < arr([min])
min = i;
}

return min;

The third part consisted of finding the smallest non-negative value in a sorted
array. The specification here included specifying that the values in the array are
sorted in a non-decreasing order.

int min_pos_array(int* arr, int len) {
if (len == 0)
return -1;

for (dnt i = 0; 1 < len; i ++) {
if (arr[i] >= 0)
return i;
}

return -1;

}

Goal. The intent of this exercise was to familiarize the students with function
contracts in ACSL in addition to the statement annotations. Already the specifi-
cation of minimum is non-trivial, several solutions only specified that the return
value should be less than or equal to both input parameters.

For the sorted array, several of the students specified a pairwise predicate,
comparing only direct successor elements. This led to problems with the auto-
matic provers. The SMT solvers required a global specification of a sorted array
in order to provide fully automated proofs. This illustrated the difference between
a specification which is good for verification and a specification which would be
easy to translate into an efficient implementation.

5.6 Exercise 6—Runtime Errors

graded yes/time 2 weeks

Preparation. In the lecture before this exercise the students got an introduction
into the possible runtime errors of C programs. This also included the different

Online Teaching of Verification of C Programs 29

warnings that Frama-C/WP produces to prevent runtime errors from appearing.
This includes mainly integer overflow /underflow, pointer validity and aliasing.

Task. The next exercise was split into two parts. The first part was to add pre-
conditions to most of the former exercises in such a way that any runtime errors
were excluded. Frama-C/WP provides an option to generate proof-obligations
for showing the absence of runtime errors.

The second part was the implementation and specification of a variant of the
famous fizz-buzz program. In this form it incorporated 3 arrays of same length.
At each index divisible by 3 and 5 the first of the arrays should have a value
1 and the two others a value 0. At each index divisible by 3 the second should
have value 1 and at each index divisible by 5 only the third array should hold
the value 1.

Goal. The intent of this exercise was to familiarize the students with all different
kinds of possible runtime errors in a language like C. This does not only include
potential integer overflow or illegal memory access, but also aliasing in form of
overlapping arrays.

A fully complete and correct specification of the fizz-buzz function proved
to be tricky. The main implementation variant was first to zero all arrays and
then fill the arrays with values 1 where appropriate. Unfortunately this solution
requires a more complex loop invariant than using a single loop and filling each
array at each index with the correct value 0 or 1. It also illustrated well that
specifying what a program does exactly can be more difficult than implementing
this functionality.

5.7 Exercise T—Abstract Interpretation

graded yes/time 1 week

Preparation. In the lectures before the students got an introduction to abstract
interpretation. This includes a simple sign domain as example and an overview
of different properties that can be verified by abstract interpretation.

Task. The next exercise dealt with abstract interpretation (Al). Frama-C pro-
vides the EVA plugin which does a form of AI. Unfortunately, from a didactic
perspective, this plugin is quite advanced and it is not possible to reduce the
domains to simple ones like the sign domain only. While it is possible to deacti-
vate the normal C-domain, this is discouraged by the authors of Frama-C because
it is unlikely to work as expected. There seems to be a gap in the set of analysis
tools for C which are based on abstract interpretation which are well adapted
for teaching.

Therefore, the exercise itself was divided in a theoretical and a practical part.
In the theoretical part, the students were asked to define an abstract domain
using first unbounded integer intervals and to define abstract addition and mul-
tiplication for this domain. Then the domain changed to fixed bit-width integer
intervals with the same task and to note the differences.

30 M. Giidemann

The practical part consisted of working through the Frama-C/EVA tuto-
rial [5]. This provides some insight into how such a tool can be used to analyze
C code and how to understand the functioning of an unknown program, but it
allows for less learning how AI works for real programs.

5.8 Exercise 8—Bounded Model Checking

graded yes/time 2 weeks

Preparation. In the lectures before this exercise the students got an introduc-
tion to SMT solving and bounded model checking. Specifically the SMTLIB2
format was presented as a standard interchange format for modern SMT solvers.

For bounded model checking, the single static assignment (SSA) form was
introduced and it was shown how a program in this form can be expressed in
SMTLIB2 using different underlying logics.

Finally, the CBMC tool was presented with the required options like loop
unwinding. It was also shown how assumptions can be used to formalize specific
properties and how standard coverage properties can be generated based on CFG
representations.

Task. The last exercise dealt with bit-precise model-checking of C programs
in the form of CBMC and formalizing a problem directly as SMT constraint
problem. The first part of the exercise was to analyze the famous fast inverse
square root program used in a popular 3D-shooter game in 1999%. The students
were asked to formalize the property that the relative error of this routine was
below a threshold for an interval of possible input parameters. The following
code® is available under a GPL license, the comments have been removed.

float Q_rsqrt(float number)

{
long 1i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i =% (long *) &y;
i = 0xb5£f3759df - (1 >> 1);
y = * (float *) &i;
y =7y * (threehalfs - (x2 * y xy));
return y;
}

* https://en.wikipedia.org/wiki/Fast_inverse_square_root.
5 https://github.com/id-Software/Quake-III- Arena/blob/master/code/game/
g-math.c.

https://en.wikipedia.org/wiki/Fast_inverse_square_root
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c
https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c

Online Teaching of Verification of C Programs 31

In the second part of the exercise the students were asked to specify an
invariant and to verify using CBMC that the following C program computes the
absolute value of a given input float.

float myabs(float v) {
if(v < 0)
return -v;
else
return v;

The last part of the exercise was to formalize and prove the following lemma
as an SMT problem in QF_FP logic, where float is the set of 32-bit IEEE 754
floating-point values.

Va,y € float iz xy<0— (x<0Vy<0)

Goal. The intent of this exercise was to familiarize the students with the way
how invariants (in the form of assertions) can be formalized to prove non-trivial
properties of C programs. The formalization of a lemma in the form of a satis-
fiability problem was intended to familiarize the students with the approach to
prove a property by showing that the negation is unsatisfiable.

6 Evaluation

Overall the course worked quite well. There were almost no technical problems,
mainly due to the fact that a pre-installed virtual machine was provided. The
performance of the VM was more than enough, in particular with hardware-
accelerated virtualization.

6.1 Challenges for Students

A big challenge for the students was to understand the reason why deductive
proofs did not work. There are mainly two reasons for this: i) the property might
not be fulfilled or ii) the pre-conditions or loop invariants are not strong enough
to prove the post-condition.

Frama-C lists the proof-obligations which cannot be discharged. The chal-
lenge is that these are reported in the form of first order logic which is non-trivial
to map back to the original C source code. The main options to alleviate that
problem is to use named annotations which allows for more fine-grained report-
ing. It is also possible to use the Frama-C GUI which shows the annotations at
the source code. Still, in both options the proof obligation is provided encoded
in first order logic which is non-trivial to understand.

Overall it is clear that deductive verification is very powerful and at that same
time also quite challenging to do. In particular for loop invariants the automated

32 M. Giidemann

tool support is limited. In the end it is necessary to fully understand the program
and also to understand the peculiarities of the C language. Therefore, we consider
this more a feature than a problem, verification requires understanding of both
the problem and the programming language in order for someone to be able to
formalize and solve a problem and then to prove the correctness thereof.

6.2 Results

The overall results of the course were quite good. All students that participated
in doing the exercises passed the course. The grades start at 1.0 (best) and go
down to 4.0 (worst), 5.0 represents a failure to pass the course. The average
grade was 1.52 with the worst grade being 2.3.

The traditional format is to have a written or oral test at the end of the
semester. Due to the pandemic this was changed to grade the exercises directly
and do a short interview to check whether the students did the work themselves.
In these interviews it often became obvious for the students why certain proper-
ties would not be proven or what was lacking to have a fully correct specification.

Runtime errors due to overflow seem to be a common knowledge, understand-
ing those did not pose any difficulty to the students. The main challenges were
correctly specifying properties and understanding aliasing in C.

For correctness of specifications it might make sense to stress more to check
that wrong results are actually not validated. An example would be to show
that a specification does not validate an incorrect input to fizz-buzz where the
respective entries hold a value of 1 but the others are not necessarily 0 (a rather
common error in the specifications).

6.3 Student Evaluation of the Course

At the UAS Munich, every course is evaluated by the participating students. The
evaluation is done close to the end of the semester, but before the final test and
therefore before the grades are known. Overall 11 of the 17 students in total in
the course did respond to the survey. The full results are available in German®,
a summary is shown in Table 1 and Table 2, numbers represent the percentage

of the students.

Table 1. Summary of student responses for the course

Too small | Small | Good | Much | Too much

The amount of learning matter is | 0 9.1 81.8 |9.1 0
The pace of the course is 0 0 100 |0 0
For me the requirements are 0 9.1 81.8 |9.1 0
The share of self-learning is 0 0 90.9 |9.1 0

5 https://guedemann.org/downloads/Evaluierung_Programmverifikation.pdf.

https://guedemann.org/downloads/Evaluierung_Programmverifikation.pdf

Online Teaching of Verification of C Programs 33

Table 2. Summary of student responses for their experience

Very negative | Negative | Neutral | Positive | Very positive
I find the topic is more |0 0 0 45.5 54.5
interesting than I did
before
I learned a lot in the 0 0 0 36.4 63.8
course
I enjoy participating in |0 0 9.1 36.4 54.5
the course
I would recommend the | 0 0 9.1 0 90.9
course
Rating I would give to |0 0 0 20 80
the course

Having the standardized virtual machine and software installation allowed
for live demos and parallel participation of the students. Exchanging code via
Rocket.Chat proved to be very efficient in comparison with screen sharing. Most
code used in program verification is rather short, so exchange via text is feasible.
Working mostly with command line tools (Frama-C has a GUI but use was
mostly text oriented) proved well suited to this mode of online teaching.

This view was shared by the students, one of the free text evaluations said:

“The communication via Rocket.Chat works very well, better than
expected. I like the polls during the synchronous lecture as this invites
active participation.”

7 Conclusion and Outlook

Overall the course and its content was well-received by the students. Using C as
language for verification made the course interesting because of the applicability
to real world programs. Choosing Frama-C and CBMC as the main tools for the
analysis and verification proved to be beneficial as these are mature, industrial
strength tools. Using a virtual machine greatly reduced the technical problems
with installation and compatibility.

The choice of exercises was for the most part rather conventional and prob-
ably more on the easy side. A next iteration should probably include one or two
more challenging tasks than this first time. Unfortunately it is not easy to choose
good exercise problems for deductive verification, in particular if fully automatic
verification is desired. Since the last iteration there is a new version of Frama-
C which might have more options for interactive proofs than just resorting to
the Coq interactive theorem prover. We feel that interactive theorem proving
is a separate topic which would require using a different language than C for
verification. This would reduce the applicability of the learning matter for our
use-case.

34 M. Giidemann

Another challenge is finding a tool for abstract interpretation of C programs
which works well with very simple domains. It would be possible to add such
features to CBMC. There is an implementation of interval domains based on
CBMC called intervalAI”. Unfortunately it is limited to the interval domain
only, and also does not compile on current versions of gcc as is based on an
older version of CBMC.

For a next iteration of this course this will likely change the sequence of topics
and also shift the focus of the practical exercises from abstract interpretation
to model-checking. Model-checking has the feature that a property that cannot
be proven results in a counterexample which can be analyzed. This provided
excellent direct feedback which allows for teaching about special and edge cases
of fixed width vector based arithmetic of integers and IEEE 754 floating-point.
Abstract interpretation will likely become a more theoretical topic, to be used
on a whiteboard. It is a powerful technique in practice but without proper tool
support it is difficult to teach in an applied setting.

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

2. Baudin, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI C specification language. CEA-LIST, Saclay, France, Technical report v1 2
(2008)

3. Blanchard, A.: Introduction to C program proof with Frama-C and its WP plug-in.
https://allan-blanchard.fr/frama-c-wp-tutorial.html

4. Biihler, D.: EVA, an evolved value analysis for Frama-C: structuring an abstract
interpreter through value and state abstractions. Ph.D. thesis, Rennes 1 (2017)

5. Biihler, D., et al.: Eva-the evolved value analysis plug-in. https://frama-c.com/
download /frama-c-eva-manual.pdf

6. Burghardt, J., Gerlach, J., Hartig, K., Pohl, H., Soto, J.: ACSL by example.
DEVICE-SOFT project publication. Fraunhofer FIRST Institute (2010)

7. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1-26. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0_1

8. de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

9. Filliatre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems, pp. 125-128.
Springer, Heidelberg (2013)

10. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573-609 (2015)

11. Kroening, D., Tautschnig, M.: CBMC — C bounded model checker. In: Abrahdm,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389-391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

" https://github.com /sukrutrao/Interval AL

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://allan-blanchard.fr/frama-c-wp-tutorial.html
https://frama-c.com/download/frama-c-eva-manual.pdf
https://frama-c.com/download/frama-c-eva-manual.pdf
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-54862-8_26
https://github.com/sukrutrao/IntervalAI

	Online Teaching of Verification of C Programs in Applied Computer Science
	1 Introduction
	2 Background
	2.1 University of Applied Sciences
	2.2 C Program Verification

	3 Verification Approaches and Tools
	3.1 Deductive Verification
	3.2 Abstract Interpretation
	3.3 Software Bounded Model-Checking

	4 Online Teaching
	5 Exercise Selection
	5.1 Exercise 1—Informal Specification
	5.2 Exercise 2—First Order Logic
	5.3 Exercise 3—Hoare Logic
	5.4 Exercise 4—Deductive Verification Using Frama-C
	5.5 Exercise 5—Arrays
	5.6 Exercise 6—Runtime Errors
	5.7 Exercise 7—Abstract Interpretation
	5.8 Exercise 8—Bounded Model Checking

	6 Evaluation
	6.1 Challenges for Students
	6.2 Results
	6.3 Student Evaluation of the Course

	7 Conclusion and Outlook
	References

