
Introducing Formal Methods
to First-Year Students in Three

Intensive Weeks

Luca Aceto1,2(B) and Anna Ingólfsdóttir1

1 ICE-TCS, Department of Computer Science, Reykjavik University,
Reykjavik, Iceland

{luca,annai}@ru.is
2 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. This paper presents a crash course whose goal is to introduce
modelling and verification using model-checking technology to mostly
first- and second-year bachelor students at the Department of Computer
Science at Reykjavik University. The course is student driven, project
based and fosters independent learning in the student body. During the
course, students tackle a number of non-trivial modelling and verifica-
tion tasks using the model checker Uppaal, while also practising ‘soft
skills’ such as their communication skills, as well as their ability to work
independently and as members of a team.

Keywords: Formal methods education · Modelling and verification ·
Timed automata · Uppaal

1 Introduction

This article describes the Real-Time Models course (henceforth abbreviated to
REMO), its context and its structure. REMO is a three-week, intensive, intro-
ductory course on ‘applied formal methods’ we designed and have taught, indi-
vidually or together, at Reykjavik University every year since the spring semester
2013.

The main goal of the REMO course is to give bachelor students at the Depart-
ment of Computer Science at Reykjavik University a hands-on introduction to
modelling and verification in a student-driven, project-based setting. During the
course, students tackle a number of non-trivial modelling and verification tasks
using the model checker Uppaal, an integrated tool environment for modelling,
validation and verification of real-time systems modelled as networks of timed
automata, extended with data types. As part and parcel of the course, students
also hone their presentation and writing skills, as well as their ability to work

This work has been partly funded by the projects “Open Problems in the Equational
Logic of Processes (OPEL)” (grant no. 196050) and “MoVeMnt: Mode(l)s of Verifica-
tion and Monitorability” (grant no. 217987) of the Icelandic Research Fund.

c© Springer Nature Switzerland AG 2021
J. F. Ferreira et al. (Eds.): FMTea 2021, LNCS 13122, pp. 1–17, 2021.
https://doi.org/10.1007/978-3-030-91550-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91550-6_1&domain=pdf
http://orcid.org/0000-0002-2197-3018
http://orcid.org/0000-0001-8362-3075
https://uppaal.org/
https://doi.org/10.1007/978-3-030-91550-6_1


2 L. Aceto and A. Ingólfsdóttir

independently and as members of a team. A number of students must follow
the course in the first year of their studies, while others take it in their sec-
ond or third year as an elective. This means that the course cannot assume any
previous knowledge on the part of the students apart from programming and
discrete mathematics. For many of the students following the course, including
those in our Software Engineering BSc programme, the REMO course will pro-
vide the only opportunity to become acquainted with formal methods during
their studies. In our, admittedly biased, opinion, this state of affairs is undesir-
able because we believe that every student graduating with a bachelor degree
in a Computer-Science-related subject should have some working knowledge of
‘applied formal methods’1. Indeed, our graduates will be the next generation
of designers and developers of computing systems that will permeate the daily
operations of our future society even more than they do today. This population
of devices is already embedded in the fabric of our homes, shops, vehicles, farms
and some even in our bodies. They help us command, control, communicate, do
business, travel and entertain ourselves.

In light of the increasing complexity of computing systems, and of the fact
that they control important, when not altogether safety critical, operations, we
think that our students should realise that it is important to adopt high stan-
dards of quality in their development and validation, and that a key scientific
challenge in computer science is to design and develop computing systems that
do what they were designed to do, and do so reliably.

Our goal in the REMO course is to expose early-career bachelor students to
the use of model-based approaches in the design and validation of computing
systems. As discussed in Sects. 2 and 3 of this article, we do so in an intensive
three-week course, during which the students use the model checker Uppaal and
its underlying modelling formalism to model and analyse algorithms, games,
scheduling problems and other fun scenarios with relevance to Computer Sci-
ence. During the course, we focus on the use of Uppaal and introduce only
the bare minimum of the underlying theoretical foundations the students really
need in order to make a principled use of the tool in addressing the challenges
we pose them. Moreover, we limit ourselves to presenting the features of the
modelling formalism and of the tool that are relevant for the modelling and veri-
fication tasks tackled by the students. Our hope is that, after having followed this
course, students will realise that the use of formal methods can have impact on
the practice of the development of computing systems in a world that increas-
ingly depends on the quality of software-controlled devices. Moreover, in our
experience, students who take the course then go on to follow our master-level
Modelling and Verification course or are well-equipped to take similar courses
at other institutions. In addition, they serve as ambassadors for model check-
ing technology, and formal methods in general, by enticing other students to

1 We note, in passing, that in Iceland many of our students find well-paid jobs even
before graduating with a bachelor degree and do not pursue master-level studies.
To our mind, this phenomenon increases the importance of exposing them to formal
methods during their bachelor studies.



Formal Methods in Three Weeks 3

follow the REMO course and by informing their co-workers of the usefulness of
modelling and verification.

The rest of the paper describes the REMO course in more detail by present-
ing the context for course (Sect. 2), its goals and underlying pedagogical philos-
ophy (Sect. 3), and its structure (Sect. 4). We also introduce the two ‘pandemic
editions’ of the course and how we adapted a course designed for supervised,
intensive work in class to an online setting (Sect. 5). We conclude the paper with
a brief evaluation of the course based on the opinions we have received from
the roughly 300 students who have followed the course since 2013, and with a
discussion of some possible future steps that might increase its impact (Sect. 6).

2 Context for the Course

In each semester, teaching at Reykjavik University is divided into two distinct
periods, each followed immediately by exams. The first part of the semester
lasts for 12 weeks, during which students typically follow four six-ECTS courses
concurrently2. The second part of the semester spans three weeks, which are
devoted to one six-ECTS course that is taught in ‘full-immersion mode’. During
those three weeks, students are expected to engage in activities related to the
single course they are following every working day for about eight hours per day.

Even though we have occasionally taught courses involving a substantial
theoretical component during the three-week period ourselves, courses held at
that time mostly have a project-based and practical component, including a
focus on group work. To our mind, and based on our experience in teaching it
since the spring of 2013, the REMO course fits the three-week period very well.

The course was originally designed for students in the three-year bache-
lor programme in Discrete Mathematics and Computer Science (DIMACS) at
Reykjavik University, where it is a compulsory second-semester course. How-
ever, it is also available as an elective for students in the bachelor programmes in
Computer Science and in Software Engineering. To put the students’ knowledge
in context, we remark that all students who enrol in the course have followed two
courses in programming (Programming, Data Structures), one Computer Archi-
tecture course as well as one or two courses in Discrete Mathematics (which
briefly introduce propositional logic, elementary graph theory, finite automata,
grammars and regular expressions amongst many other topics). In addition, stu-
dents in the DIMACS programme have taken two Calculus courses and a Linear
Algebra course. Apart from testing their programs in the programming courses,

2 The European Credit Transfer and Accumulation System (ECTS) is used within the
European Higher Education Area to make studies and courses transparent and to
allow students to transfer study credits between institutions, possibly located in dif-
ferent countries, in a seamless fashion. Depending on the country, one ECTS credit
point corresponds to an average between 25 and 30 actual study hours. A bachelor-
level degree course is equivalent to 180 ECTS. See https://ec.europa.eu/education/
resources-and-tools/european-credit-transfer-and-accumulation-system-ects en for
more information.

https://en.ru.is/st/dcs/undergraduate-study/bsc-discrete-mathematics-and-computer-science/
https://en.ru.is/st/dcs/undergraduate-study/bsc-computer-science/
https://en.ru.is/st/dcs/undergraduate-study/bsc-software-engineering/
https://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en
https://ec.europa.eu/education/resources-and-tools/european-credit-transfer-and-accumulation-system-ects_en


4 L. Aceto and A. Ingólfsdóttir

none of the students taking the REMO course has any familiarity with the theory
and software tools underlying modelling and verification of computing systems,
the field of program correctness, and topics such as concurrency, model checking,
temporal logics and real-time systems. Therefore, when ‘teaching’ the course, we
can only rely on the students’ programming experience and on their willingness
to engage actively with novel and, to many of them, alien material.

3 Goals and Overall Philosophy of the Course

The main knowledge-related aims of the REMO course are

– to introduce students early in their bachelor studies to the basic ideas under-
lying modelling and verification of computing systems,

– to help them to develop an appreciation of the importance of those activities
in the development of computing systems, and

– to make them aware of the fact that there is powerful and eminently usable
tool support they can employ in their modelling and verification tasks.

Moreover, as part of the course, students develop an appreciation of the key role
that models play in Computer Science, of quality criteria good models should
possess, and of how models and model checkers can be used to synthesise control
programs, plans and schedules satisfying a number of correctness and optimality
criteria at the press of a button. In our experience, this last point is important,
since students learn that, at times, it is best to describe computational tasks
in a ‘declarative’ fashion and let our computational engines develop correct and
‘optimal’ algorithms for solving them on our behalf.

Since the course runs over three weeks and we want the students to be in
a position to apply modelling and verification techniques already on the second
day of the course, there is really room for presenting only one modelling formal-
ism and one model checker based on it. Moreover, the course focuses solely on
the application of model checking to a variety of problems and we eschew any
mention of the underlying mathematical theory and algorithmics, apart from
hinting at why the computational problems solved by the model checker are
computationally hard. Our underlying philosophy in this course is that less is
more; rather than drowning students in theoretical developments and tool fea-
tures that they do not need in their modelling and verification challenges, we
focus on introducing the bare necessities exactly when the students need them
in a timely fashion. We trust that, having followed our introductory course, at
a later stage in their studies, some of the students will be enticed to enrol in the
master-level Modelling and Verification course we offer3—see [2] for a description
of that course, which is based on the textbook [1].
3 According to the data we have available, to date 26% of the student who followed

the REMO course in the period 2013–2019 then went on to take the Modelling and
Verification course. However, several of our students pursued master-level studies
abroad. We expect that many of them took advanced courses on formal methods at
foreign universities, but have no hard data to support this expectation.



Formal Methods in Three Weeks 5

The REMO course is centred on the seminal model of (networks of) timed
automata, a graphical formalism for the description of real-time computing sys-
tems due to Rajeev Alur and David Dill [3]. During the course, students use
the model to describe a variety of scenarios with relevance to Computer Science,
and to analyse the behaviour of the systems they have modelled using the auto-
matic verification tool Uppaal [5,6]. Uppaal is an integrated tool environment
for the description, validation and verification of real-time systems modelled as
networks of communicating timed automata, extended with data types.

In our course, we use the model checker Uppaal for a number of reasons. First,
in our experience, students learn to use the basic features of the tool in a few
hours and, after reading Frits Vaandrager’s excellent introduction to the tool [17]
and playing with the models accompanying that article, are ready to make and
analyse their first models already by the start of the second day of the course.
This opinion of ours is confirmed by Roelof Hamberg and Frits Vaandrager,
amongst others, who have used the Uppaal model checker in an introductory
course on operating systems for first-year Computer Science students at the
Radboud University Nijmegen [13]. We think that the graphical nature of Uppaal
models and the ease of use of the tool are crucial in an intensive course for
students at the early stage of their bachelor studies, as these characteristics
allow them to experience the usefulness of formal methods without having to
understand modelling formalisms and tools with a steep learning curve. (For
what it is worth, this opinion of ours is confirmed by the reports we have received
from our students since the first edition of the course ran in 2013.) A second
reason for using Uppaal in the course is that it is the model checking tool with
which we have most familiarity, which ensures that our teaching assistants and
we can provide timely answers to questions from the students. Moreover, having
worked at Aalborg University with the people responsible for developing and
maintaining the tool for many years, we can ask for their assistance regarding
technical issues that may arise during the students’ work. To our mind, prompt
feedback on a variety of issues is crucial in a course that proceeds at a fast pace
and lasts only three weeks.

Apart from the aforementioned goals related to the teaching of selected topics
in formal methods, the REMO course also has the following pedagogical aims.
During the course, students are made responsible for their own learning, and
develop independence and peer-learning skills. One of the decisions we made in
designing the course is that, during it, we do very little conventional lecturing.
Moreover, the little lecturing we do is confined to the first morning of the course
and to short sessions, during which we introduce increasingly sophisticated fea-
tures in Uppaal when they may be of help for the students while they work in
groups on a variety of modelling tasks.

The course is project based and student driven. One of our pedagogical tenets
is that students should be prime movers in their own learning and that they can,
and indeed do, challenge themselves when given the power to shape their own
learning tasks. In order to entice them to do so, our course emphasises the
playful aspects of modelling and verification activities, introducing important

http://www.uppaal.org/


6 L. Aceto and A. Ingólfsdóttir

Computer Science topics in fun and recreational settings. (See Sect. 4 for more
details on the course structure.) Each student group reads the suggested material
independently and solves the given modelling challenges at its own speed. Our
role is to act as facilitators and to give students (hopefully helpful) hints when
they have problems in their modelling work or face the state-explosion problem
while verifying their models. A second important soft skill the students hone
in the course is an ability to work both independently and as members of a
group of four–five students. Last, but by no means least, students develop their
technical-communication skills since they have to present their work both orally,
as part of two conference sessions and at a final oral exam, and in writing, in
the form of two project reports.

4 Structure of the Course

As mentioned above, the REMO course runs over a period of three weeks in the
spring semester at Reykjavik University. (Interested readers may found some
information on the 2021 edition of the course at http://www.icetcs.ru.is/remo-
course/.) Each course day lasts roughly from 8:30 till 17:00. The mornings are
mostly devoted to supervised independent work by the student groups. Students
work independently in the afternoons, but we are available to answer their ques-
tions and to assist them in resolving issues they might encounter.

4.1 Week One: Warming up

The first week of the course serves as a warm-up period in which the students
become acquainted with the context for the course, the Uppaal tool and the
model of networks of timed automata it supports, and start working on a variety
of modelling challenges. Nearly all the actual lecturing we do in the course is con-
centrated on the first morning of the first day of the course. During that course
session, we introduce students to the context for the REMO course, presenting
the correctness problem for computing systems as one of the key scientific chal-
lenges in Computer Science from its early days to today, and highlight various
approaches to modelling and verification of computing systems, pointing to their
applications in industry and to the development of trustworthy real-life applica-
tions with which students are familiar4. We also briefly introduce the model of
networks of timed automata and the basic aspects of the query language sup-
ported by Uppaal, initially ignoring timing-related features. We typically do so
in two steps. First, we discuss a version of the ‘small university’ system described
in [1]. The goal of that very simple example is to highlight how a system can
be described using automata running in parallel and communicating via syn-
chronous handshakes. We present a deadlock-free version of that system and a
variation that can exhibit a deadlock, analysing their behaviour by hand with

4 The slides we used for this introduction in the 2021 edition of the course are available
at http://www.icetcs.ru.is/remo-course/remo-intro.pdf.

http://www.icetcs.ru.is/remo-course/
http://www.icetcs.ru.is/remo-course/
http://www.icetcs.ru.is/remo-course/remo-intro.pdf


Formal Methods in Three Weeks 7

the students’ help. Next, we discuss the actual Uppaal model of the classic Gos-
siping problem (see, for instance, [14]) presented by Vaandrager in [17]. The
Gossiping model serves a number of purposes at this very early stage in the
course. In particular, it allows us to present some of the data types supported
by Uppaal and some of the key features students will employ in their models
(such as the concepts of nondeterministic selection of values for variables, and
the use of guards and updates on transitions), as well as the use of the Uppaal
verifier and its diagnostic-trace option to find an optimal sequence of phone calls
the agents can use to share all their secrets.

The model of the Gossiping problem also highlights early on in the course
one of the messages that we want students to take home, namely that the model
focuses on describing what each agent can do at any given time given its cur-
rent ‘state’ rather than on how the agents can optimally achieve their goal.
Once a faithful model has been built and the goal the system should achieve
has been expressed as a suitable reachability query in the Uppaal specification
language, finding the optimal scheduling of phone calls is best left to the com-
putational engine of the tool. In our experience, even for students in the age of
machine learning, moving from an algorithmic and procedural way of thinking
to a declarative one feels like a Copernican revolution for many students, and is
best stressed right away and repeatedly in the course. Moreover, the analysis of
the Gossiping model using Uppaal gives students their first introduction to the
state-explosion problem. We show them how the processing time used by the
tool increases substantially with the number of agents in the system. We think
that this fact of Computer Science life is also worth highlighting early on in the
course, since students are used to getting fast response from their devices to just
about any computational task they have faced so far. As the course develops,
they will see that the choices they make in their modelling tasks can crucially
affect the time it takes for their verification efforts to complete, and that they
might have to show some patience in waiting for an answer to their queries.

At the end of the morning session on the first day of the course, students
form groups, which typically consist of four or five students, and we encourage
them to spend the afternoon reading Vaandrager’s Uppaal tutorial [17], to watch
a video describing the Uppaal tool produced by one of our PhD students and
to familiarise themselves with Uppaal by examining the models accompanying
Vaandrager’s introductory article.

By the start of the second day of the course, most student groups are typically
ready to start working on modelling and verification challenges. We suggest that
they begin by analysing the How much can you lose? 5 and How much can we
reach? 6 puzzles and a number of classic mutual-exclusion algorithms. These
warm-up challenges show students how they can turn pseudo-code descriptions
of algorithms into Uppaal models, and introduce them to some of the conceptual
challenges and classic pitfalls in concurrent programming. In order to make it
easier for them to build models efficiently, we devote some time to showing

5 See Exercise 23 at http://people.cs.aau.dk/∼kgl/ESV04/exercises/index.html.
6 See Exercise 24 at http://people.cs.aau.dk/∼kgl/ESV04/exercises/index.html.

http://people.cs.aau.dk/~kgl/ESV04/exercises/index.html
http://people.cs.aau.dk/~kgl/ESV04/exercises/index.html


8 L. Aceto and A. Ingólfsdóttir

students how to express programming constructs such as loops and conditionals
in Uppaal and how, using state transitions in Uppaal models, they can describe
easily which operations are atomic and which are not, which is a key issue in
concurrent programming. Moreover, using the Uppaal simulator and verifier,
students can explore the effect that different atomicity assumptions have on the
behaviour of apparently simple concurrent programs, leading to results that, at
least at first sight, appear counter-intuitive.

A key (and fun) modelling challenge we pose the students early on during
the first week of the course is to model the one- and two-dimensional solitaire
games described in [4, Chap. 6]7 using Uppaal, and to employ the Uppaal verifier
to check that the games can indeed be solved and to find solutions for them
involving the least number of moves. This modelling exercise sets the stage for
the two group projects on which the students work in the last two weeks of the
course, and further reinforces the usefulness of declarative models.

As the first week of the course evolves, we introduce students to some of
the timing-related features in Uppaal, always striving to focus on providing the
least amount of information students need to use them properly in their mod-
els. In particular, we present the use of clocks in Uppaal models to express
time-dependent system behaviour (with focus on guards and invariants), the
peculiarities of variables of data type clock, the way in which time elapses in
a network of timed automata and advanced features such as urgent channels as
well as committed and urgent locations. Students employ these features right
away in synthesising the control program for a coffee machine in the problem
described at

http://people.cs.aau.dk/∼kgl/ESV04/exercises/index.html#coffee.

The work done by the students during the first week of the course does not
contribute to their final grade. We do so to allow them to explore the mate-
rial independently and at their own speed, giving them enough time to become
familiar with Uppaal, its underlying model and query language and to hone
their modelling skills. We think that this decision of ours contributes to creating
a positive atmosphere in the course in which students feel that they can learn
by making mistakes, without affecting their final grades.

We devote the start of the course session on the last day of the first week
of the course to a ‘conference-like session’, which we chair. During that session,
each group of students delivers a short talk presenting their solution to one of
the problems they tackled during the week to everyone involved in the course.
Each presentation is followed by questions and comments from the audience,
both on the quality of the modelling work and of the presentation. We stress
to the students that giving good presentations based on their work is a skill
they will need in their future careers, but one whose importance is not widely
appreciated and that is, unfortunately, not practised sufficiently in many degree
courses in Computer Science.
7 See http://www.ru.is/faculty/luca/MV2011/solitaire.pdf for a scan of the relevant

pages.

http://people.cs.aau.dk/~kgl/ESV04/exercises/index.html#coffee
http://www.ru.is/faculty/luca/MV2011/solitaire.pdf


Formal Methods in Three Weeks 9

We close the first week of the course by presenting the first project for the
course, so that students who want to start working on it can do so right away.

4.2 Week Two: First Project

The last two weeks in the course are mainly devoted to two group projects, which
together account for 70% of the final grade for the course and form the basis for
the final oral exam. In keeping with the ‘recreational’ atmosphere of the course,
both projects entice students to explore challenging topics in formal methods in
a ‘serious-game setting’8. The projects we set our students change regularly, but
the ones we describe in this section and in the subsequent one are two of our
favourite ones and we have used them for the last three editions of the REMO
course.

The project we have recently used for week two of the course is inspired by
Vaandrager and Verbeek’s article on designing vacuum-cleaning trajectories [18].
Working on it, apart from honing their modelling and verification skills, and
learning about the connection between winning strategies in games and control
software for a simple robotic-inspired application, students realise that auto-
mated support is needed to avoid (or at least reduce the number of) errors that
human programmers make in developing even relatively simple systems.

Briefly, in their first project, students work with a vacuum-cleaning-robot
problem from the book [19]. On pages 67–69 of that book9, Wooldridge describes
an example of a small robotic agent that will vacuum clean a room. In our version
of the example, the room is a 3-by-3 grid and at any point the robot can move
forward one step or turn clockwise 90◦. The problem is to find a deterministic,
memoryless strategy for the robot in which

1. its next action only depends on its current square and orientation (one of
north, west, south, east), and

2. all squares are visited infinitely often.

Wooldridge gives a partial specification of such a strategy using a number of
rules. Ignoring the actions of the robot having to do with sucking dirt and
focussing only on the actions related to movement, the rules given by Wooldridge
are:

– If In(0, 0) and Facing(north) then Do(forward).
– If In(0, 1) and Facing(north) then Do(forward).
– If In(0, 2) and Facing(north) then Do(turn).
– If In(0 , 2 ) and Facing(east) then Do(forward).
8 Other courses in formal methods employ recreational problems to engage students

to good effect. By way of example, we limit ourselves to mentioning that Rozier has
used magic-square, chess and Rubik’s cube puzzles in an applied formal methods
course offered to undergraduate and graduate students in Aerospace Engineering,
Computer Science and Computer Engineering at Iowa State University [15].

9 The relevant pages are available at http://icetcs.ru.is/fm-at-work/IntroductiontoM
ultiAgentSystemsWooldridgepp67-69.pdf.

http://icetcs.ru.is/fm-at-work/IntroductiontoMultiAgentSystemsWooldridgepp67-69.pdf
http://icetcs.ru.is/fm-at-work/IntroductiontoMultiAgentSystemsWooldridgepp67-69.pdf


10 L. Aceto and A. Ingólfsdóttir

According to Wooldridge, ‘similar rules can easily be generated that will get the
agent to (2, 2), and once at (2, 2) back to (0, 0).’

In their project work, we ask the students to model the above scenario using
Uppaal and to check whether Wooldridge’s aforementioned claim is correct. Hav-
ing realised that there is actually no deterministic, memoryless strategy for the
vacuum cleaner that extends Wooldridge’s four rules, the students then find out
that one has to remove all but the first rule in order to find a suitable strategy
for the robotic agent that meets the stated criteria. Next, we ask the students
to consider a number of timing-based scenarios, asking them to find the fastest
strategy for the robot to vacuum clean the grid. Having examined a number
of specific settings of the time f it takes the robot to move forward and the
time r that the robot needs to rotate, and after having mapped all the possible
combinations of forward moves and rotations in a strategy, the students quickly
realise that a shortest strategy is also a fastest one unless 2r < f and that, in
that case, a strategy with 16 rotations and 10 forward moves is faster than a
shortest one, which involves 12 turns and 12 forward moves.

In order to entice our students to develop scalable models and to reflect
on the qualities of their models as a whole, we also ask them to consider the
vacuum-cleaning scenario in a 4-by-4 grid and to assess their models vis-a-vis
the seven criteria listed by Vaandrager in [17, Sect. 1.10].

Each student group delivers a project report describing their work on the
vacuum-cleaning project, together with all their Uppaal models and query files.
Again, we devote the start of the course session on the last day of the second
week of the course to a ‘conference-like session’, during which each group of
students delivers a short talk presenting their work on the project.

4.3 Week Three: Second Project and Final Exam

The last week of the course is devoted to the second group project and ends with
a final, oral exam contributing 30% of the final grade.

The second project we have used most often over the years is based on the
solitaire game Rush Hour, which is today produced by Thinkfun. Students are
expected to model the game using Uppaal and to use the tool to solve the puz-
zle for a variety of starting configurations. (See http://www.icetcs.ru.is/remo-
course/project2.html for the latest version of the project description.) Apart
from being fun, Rush Hour is an example of a challenging solitaire game, which
lends itself to a number of variations that can be used to exercise the students’
modelling abilities.

First of all, Rush Hour is hard, for humans and machines alike! Indeed, its
generalised version is PSPACE-complete [10] and, as recently shown in [7], this
hardness result holds true even with only 1× 1 cars and fixed blocks. Moreover,
the hardest solvable configurations for the game’s six-by-six board found by
Collette, Raskin and Servais in [8] are fiendishly difficult for humans, involving
as many as 93 moves to solve optimally10. Second, the game can be modelled in
10 See http://www.icetcs.ru.is/remo-course/RushHourHardestConfigurations1.pdf for

a list of the six hardest game configurations.

https://www.thinkfun.com/products/rush-hour/
https://www.thinkfun.com/
http://www.icetcs.ru.is/remo-course/project2.html
http://www.icetcs.ru.is/remo-course/project2.html
http://www.icetcs.ru.is/remo-course/RushHourHardestConfigurations1.pdf


Formal Methods in Three Weeks 11

a number of natural ways and we encourage our students to explore at least two
modelling approaches, comparing the ease with which they can be analysed using
the Uppaal verifier. We think that this experience is particularly instructive for
students, since it helps them realise that apparently innocuous modelling choices
can have a huge effect on processing time during their verification and makes
them realise the exponential growth in the number of possible interleavings in the
executions of concurrent systems in a playful setting. To make state-explosion
come to the fore even more, we ask students to model the Rush Hour game in
which a step in the game allows one to move a vehicle more than one position
at a time.

In order to make students evaluate the extensibility and reusability of their
models, we ask them to model the version of Rush Hour with walls and use
the Uppaal verifier to solve the hardest such puzzles given at https://www.
michaelfogleman.com/rush/.

Finally, we use the game to introduce students to issues related to mutual
exclusion in concurrent programming, some of which they will meet in their
future courses on Operating Systems and Concurrent Programming. Concretely,
we ask them to assume that a two-handed player can move two vehicles (one
position) simultaneously. The player is left-handed and takes 3 s to move a
vehicle one position with the left hand, but 5 s to move a vehicle one position
with the right hand. The keenest students are expected to model this scenario
using Uppaal and to find the fastest way of solving the puzzle from some of the
starting configurations we provide. This task is optional and open ended; we
stress to the students that we are mainly interested in seeing how they approach
the modelling task, and in the type of possible pitfalls they identify. Having said
so, most student groups over the years have attempted to solve this problem
and we even had one group of students that considered a scenario in which the
player is an octopus!

The last week of the course ends with a final, oral exam. Even though the
course is very much project based and students do report to us when some group
members are not contributing to the project work, we still need to check whether
some students are free riding. To this end, we examine one student group at the
time as follows. The exam session starts with a presentation in which the group
being examined presents its work on the second project. We then ask questions
to the group based on their work during the three weeks. Initially, questions are
addressed to the group as a whole and we give everyone who wants to answer
the chance to do so. If we realise that some students do not attempt to answer
any of our questions, we direct some questions specifically to them to gauge how
much they know about the work their group has done during the course. Each
student receives an individual grade for the final exam, whereas work on the
projects is graded at the group level.

https://www.michaelfogleman.com/rush/
https://www.michaelfogleman.com/rush/


12 L. Aceto and A. Ingólfsdóttir

5 The Two Pandemic Editions

The REMO course was largely held in a ‘Renaissance-workshop style’11 in the
period 2013–2019. All student groups worked independently in the university
building in a suitably-sized lecture room and in the surrounding areas, as needed.
As mentioned above, our role is largely a supporting one. We are there to assist
students in their independent learning and work. In those editions of the course,
we were available to answer questions from each group during their supervised
working sessions in the mornings, and regularly visited each group at that time to
check how their work progressed and whether they had any specific issues that
were stifling their progress. Whenever problems of general interest arose, we
would call all groups for a brief plenary presentation addressing those problems
and how they might be tackled using Uppaal, as well as providing pointers to
the literature. Student course evaluations over the years indicate that students
like this workshop-like setting, and feel empowered by the trust we show in them
and the level of independence we expect in their work. To wit, we limit ourselves
to mentioning a comment we received from one student, who later asked for a
letter of references from one of us:

I enjoyed taking your course and loved how the barrier between teacher
and student was broken during the course. (I have been and will continue
to recommend the course to any student at Reykjavik University that I
know).

During the pandemic, we had to hold the 2020 and 2021 editions of the course
fully online, which were followed by 19 and 24 students, respectively. However,
despite the online setting, we strove to maintain the workshop-style structure of
the course and to uphold its key pedagogical tenets mentioned in Sect. 2. To this
end, we ran the course trying to mimic the in-person sessions in an online setting
as faithfully as possible. The course was held on Jitsi and we were available to
answer questions from the student groups at the same Jitsi link throughout the
course from 8:30 till 17:00, taking shifts with one of our PhD students. We also
had a Discord channel for the course and most student groups used Discord to
coordinate their project work.

We started the day each morning with a scrum meeting, during which each
group would report on the progress they made and on what they planned to
do during the day12. We alternated between public scrum meetings, in which
all groups were virtually present at the same time, and group-specific scrum
11 By this, we mean that our course sessions tried to replicate the creative atmosphere

of the busy workshops in which many of the great Renaissance works of art were
produced. Those workshops were run by experienced artists, who trained young ones
in their crafts and also learnt from the new ideas produced by their trainees.

12 We also held impromptu scrum sessions at the start of each day in all the in-person
editions of the course. However, due to the lack of face-to-face contact with the
students and in order to help students structure their remote working day, we felt
that we needed to be much more systematic in doing so during the two pandemic
editions.

https://jitsi.org/jitsi-meet/


Formal Methods in Three Weeks 13

meetings. All conference sessions and the final exams were held online, following
the same structure we adopted for the in-presence editions of the course.

Based on the feedback we received from the students who took the pandemic
editions of the course, this set-up worked rather well and the students felt that
they were making progress independently, while receiving a good level of sup-
port from us. They were pleased with the willingness we showed to answer their
questions and with our short response time. The following excerpt from a par-
ticularly eloquent course evaluation we received from a second-year student in
Software Engineering is representative of the students’ opinions:

‘The course was conducted entirely online, using various platforms to inter-
act with the professors and other students. It was interesting inviting peo-
ple you just met into your room, virtually, and presenting your work. It
takes some time getting used to, but if this past year has taught us any-
thing, it’s that working from home is very much possible. Inevitably, some
people had minor technical issues but overall, I believe that this aspect of
the course, as well as all other aspects, was a success and think that we
all learned something new in these three weeks. Even the professor took
on a new communication tool he had never used before which was popular
among the students. It’s all about patience and willingness to adapt to a
new environment’.

Based on that circumstantial evidence, it seems that we did manage to meet our
goals to hold an engaging, student-driven course that makes them responsible
for their own learning. However, the price we had to pay to do so was to devote
more time and energy to the course than we typically do in an in-person setting.
Even though it may seem counter-intuitive, empowering students in an online
setting required more involvement from us during the afternoon course sessions
than it did in an in-person setting, where students work in the university build-
ing with little or no assistance from us. Based on discussions with our colleagues
both at our institution and elsewhere, as well as on the literature on teaching
during a pandemic we have read over the last year (see, for instance, [9,11,12]),
it is fair to say that we are not alone in feeling that way. To wit, even though
such figures have to be taken with a grain of salt, it is estimated that teaching
online can roughly triple the preparation time for a one-hour lecture [12]. More-
over, according to a survey mentioned in [9], university lecturers overwhelmingly
thought that the pandemic has made their job more difficult than it was before,
with 87% of the respondents either strongly agreeing or agreeing. Some of the
possible reasons for the increased workload on teachers during the pandemic
are mentioned in [11, Sect. 4.3.2]; these include the need to record lectures in
advance and edit them thereafter to clarify and/or correct some of the material,
the interaction with learning management systems that sometimes needed to be
adjusted to support teaching taking place fully online, the use of more time for
grading assignments since students ended up working alone on tasks that could
be carried out in groups, and answering the same questions repeatedly and on a
variety of tools used to communicate with the students taking a course.



14 L. Aceto and A. Ingólfsdóttir

6 Evaluation and Conclusions

The REMO course has run at Reykjavik University in the three-week part of
the spring semester every year since 2013. It has been followed by roughly 300
students overall and has consistently received high grades from the students in
their course evaluations. To wit, the average evaluation of the students’ satis-
faction with the course lecturers since 2013 is 4.9 out of 5. The average score of
the course in the period 2013–2021 in the other evaluation criteria adopted by
Reykjavik University is as follows:

– Course satisfaction: 4.79 out of 5.
– Assessment of the outcome of the course: 4.61 out of 5. (This metric refers, for

example, to factors such as overall understanding of course content, increased
interest in the academic field and study materials, and personal learning suc-
cess).

– Course organisation: 4.84 out of 5. (This metric refers, for example, to factors
such as the teaching plan, learning objectives, course assessment, planning of
classes, and organisation of assignments).

– Evaluation of how the course assignments helped in increasing student under-
standing of the study material: 4.79 out of 5.

(Of course, pleasing as they may be, the results of these student course eval-
uations should be considered merely as a measure of student satisfaction with
the course. As indicated in, for instance, the meta-analysis of faculty’s ‘teaching
effectiveness’ reported in [16], that metric is not related to student learning).

Most importantly, we believe that the course has made the students taking it
aware of the existence of mature and usable modelling and verification technology
developed by the research community working on formal methods over many
years. Those students now have a basic understanding of what formal methods
can (and cannot) do, know that they are routinely employed within the high-
technology companies whose products they use daily, and have repeatedly told us
that they will consider using model checkers in their future studies and careers as
appropriate. Moreover, they serve as ambassadors for the course, and hopefully
also for formal methods, within the rest of the student population and in their
future workplaces. By way of example, we limit ourselves to citing two comments
we received from students in their course evaluations:

‘Very interesting course, introducing techniques and tools that I think it
is likely that I will use in the future. I chose the course blindly, having
no idea of what formal methods and model checking are. I was positively
surprised by what I learnt. I will recommend this course to my colleagues.
(A second-year student in Computer Science)’

‘At the start of the course, I had absolutely no knowledge on the sub-
ject.. . . The main takeaway was that using human ingenuity only takes
you so far when optimizing complex systems and it can be difficult to
prove that you have the most efficient design without using the proper



Formal Methods in Three Weeks 15

tools and methods we learned about in the course.. . . The work I did in
this course is some of my proudest work during my studies. (A second-year
student in Software Engineering)’

We think that ‘spreading the formal-methods gospel’ is important at a depart-
ment like ours, since far too many of our students graduate without taking a
single course that exposes them to formal modelling and verification. One of
the roles of the REMO course is to try and change this state of affairs, but it
is fair to say that we still have work to do, despite our efforts since 2013. For
instance, the number of students taking the course is still fairly small (ranging
from 18 in 2013 to 36 in 2016) and increasing it will be non-trivial in the light
of some compulsory three-week courses that students in Computer Science and
Software Engineering take in the spring semester. So far, first-year students for
which REMO is compulsory account for 46% of all the students who have taken
the course, 19% have been second-year students and 29% have been third-year
or exchange students. Since the Discrete Mathematics and Computer Science
degree course is a niche study programme, it is unlikely that the percentage of
first-year students taking the course will increase noticeably. Therefore, we will
target third-year students, even though some of them might be finalising their
final bachelor projects in the spring semester.

We might also consider turning REMO into a typical twelve-week course,
while maintaining its philosophy. We believe that this is doable by identifying a
suitable number of modelling and verification problems that student groups can
solve in two-to-four-hour, supervised study sessions. However, doing so would
dilute the students’ study experience somewhat, the course would lose its high-
intensity flavour and we would have to compete for the students’ brain cycles
with the other courses running in parallel with that version of the REMO course.

Moreover, since the course has run since 2013, we should carry out a data-
driven analysis of how well it achieves its learning outcomes and high-level goals.
For instance, it would be interesting to collect and analyse data to try and
understand whether students taking our course find that the introduction to
formal methods they received has had an impact on their practice. Furthermore,
we should collect student feedback on whether our ‘warm-up week’ does play a
role in creating a nurturing and positive learning environment at the start of the
course.

In conclusion, based on our experience, one can introduce formal methods
to early-career bachelor students in high-intensity-training mode in as little as
three weeks. Our REMO course provides a possible blueprint for doing so, while
empowering students to learn and work independently, and challenging them
to step out of their intellectual comfort zone and to take charge of their own
development. We hope that our experience can be useful to others.

Acknowledgements. We are grateful to the anonymous reviewers and the PC chairs,
who offered some detailed and insightful comments and suggestions that led to several
improvements in our original manuscript. We thank Elli Anastasiadi for her excellent
work as student mentor during the last three editions of the REMO course. In par-



16 L. Aceto and A. Ingólfsdóttir

ticular, Elli’s assistance has been invaluable during the two pandemic installments in
the spring of 2020 and 2021. We are most grateful to Kim G. Larsen for the Uppaal-
related course material he has generously shared with us over the years and to Marius
Mikucionis for the sterling support he has offered our students and us on Uppaal-
related matters. Catia Trubiani provided useful feedback on a draft of this paper. Our
colleagues Nidia Guadalupe López Flores and Maŕıa Óskarsdóttir pointed out some
interesting papers on teaching during the pandemic. Last, but not least, we thank
Hildur Dav́ı sdóttir for eloquently sharing her opinions on the 2021 edition of the
REMO course with us. Any remaining infelicity is solely our responsibility.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

2. Aceto, L., Ingolfsdottir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory
in practice. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
158–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 11

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. Arnold, A., Bégay, D., Crubillé, P.: Construction and Analysis of Transition Sys-
tems with MEC. AMAST Series in Computing, vol. 3. World Scientific (1994).
https://doi.org/10.1142/2505

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

6. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing
UPPAAL over 15 years. Softw. Pract. Exp. 41(2), 133–142 (2011). https://doi.
org/10.1002/spe.1006

7. Brunner, J., et al.: 1 × 1 rush hour with fixed blocks is PSPACE-complete. In:
Farach-Colton, M., Prencipe, G., Uehara, R. (eds.) 10th International Conference
on Fun with Algorithms, FUN 2021, 30 May–1 June 2021, Favignana Island, Sicily,
Italy. LIPIcs, vol. 157, pp. 7:1–7:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2021). https://doi.org/10.4230/LIPIcs.FUN.2021.7

8. Collette, S., Raskin, J.-F., Servais, F.: On the symbolic computation of the hardest
configurations of the RUSH HOUR game. In: van den Herik, H.J., Ciancarini, P.,
Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 220–233. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8 20

9. Flaherty, C.: Faculty pandemic stress is now chronic. Inside Higher Ed, Novem-
ber 2020. https://www.insidehighered.com/news/2020/11/19/faculty-pandemic-
stress-now-chronic

10. Flake, G.W., Baum, E.B.: Rush hour is PSPACE-complete, or “why you should
generously tip parking lot attendants”. Theor. Comput. Sci. 270(1–2), 895–911
(2002). https://doi.org/10.1016/S0304-3975(01)00173-6

11. Flores, N.G.L., Islind, A.S., Óskarsdóttir, M.: Effects of the COVID-19 pandemic on
learning and teaching: a case study from higher education. CoRR abs/2105.01432
(2021). https://arxiv.org/abs/2105.01432

12. Gewin, V.: Pandemic burnout is rampant in academia. Nature 591, 489–491 (2021).
https://doi.org/10.1038/d41586-021-00663-2

https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1142/2505
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1002/spe.1006
https://doi.org/10.1002/spe.1006
https://doi.org/10.4230/LIPIcs.FUN.2021.7
https://doi.org/10.1007/978-3-540-75538-8_20
https://www.insidehighered.com/news/2020/11/19/faculty-pandemic-stress-now-chronic
https://www.insidehighered.com/news/2020/11/19/faculty-pandemic-stress-now-chronic
https://doi.org/10.1016/S0304-3975(01)00173-6
https://arxiv.org/abs/2105.01432
https://doi.org/10.1038/d41586-021-00663-2


Formal Methods in Three Weeks 17

13. Hamberg, R., Vaandrager, F.W.: Using model checkers in an introductory course
on operating systems. ACM SIGOPS Oper. Syst. Rev. 42(6), 101–111 (2008).
https://doi.org/10.1145/1453775.1453793

14. Hurkens, C.: Spreading gossip efficiently. Nieuw Arch. voor Wiskunde 5/1(2), 208–
210 (2000). http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-2-208.pdf

15. Rozier, K.Y.: On teaching applied formal methods in aerospace engineering. In:
Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 111–
131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 8

16. Uttl, B., White, C.A., Gonzalez, D.W.: Meta-analysis of faculty’s teaching effective-
ness: student evaluation of teaching ratings and student learning are not related.
Stud. Educ. Eval. 54, 22–42 (2017). https://doi.org/10.1016/j.stueduc.2016.08.007

17. Vaandrager, F.W.: A First Introduction to Uppaal. https://www.mbsd.cs.ru.nl/
publications/papers/fvaan/handbookuppaal/. to appear in Quasimodo Handbook,
J. Tretmans editor

18. Vaandrager, F.W., Verbeek, F.: Recreational formal methods: designing vacuum
cleaning trajectories. Bull. EATCS 113 (2014). http://eatcs.org/beatcs/index.
php/beatcs/article/view/269

19. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hobo-
ken (2009)

https://doi.org/10.1145/1453775.1453793
http://www.nieuwarchief.nl/serie5/pdf/naw5-2000-01-2-208.pdf
https://doi.org/10.1007/978-3-030-32441-4_8
https://doi.org/10.1016/j.stueduc.2016.08.007
https://www.mbsd.cs.ru.nl/publications/papers/fvaan/handbookuppaal/
https://www.mbsd.cs.ru.nl/publications/papers/fvaan/handbookuppaal/
http://eatcs.org/beatcs/index.php/beatcs/article/view/269
http://eatcs.org/beatcs/index.php/beatcs/article/view/269

	Introducing Formal Methods to First-Year Students in Three Intensive Weeks
	1 Introduction
	2 Context for the Course
	3 Goals and Overall Philosophy of the Course
	4 Structure of the Course
	4.1 Week One: Warming up
	4.2 Week Two: First Project
	4.3 Week Three: Second Project and Final Exam

	5 The Two Pandemic Editions
	6 Evaluation and Conclusions
	References




