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�Introduction

The transportation sector is a large energy consumer and one of the largest contribu-
tors to the US greenhouse gas (GHG) emissions. Energy use for transportation was 
about 26% of the total US energy consumption in 2020 [1]. In addition, transporta-
tion accounted for the largest portion (29%) of the total US GHG emissions in 2019 
[2]. To reduce the energy consumption and emissions of the transportation sector, 
the market for electric vehicles (EVs) and hybrid electric vehicles (HEVs) is grow-
ing at an unprecedented pace. The electrified transportation presents two areas of 
research trends: (1) building efficient EVs/HEVs and EV charging infrastructure to 
form an EV ecosystem for all-electric future; (2) exploring advanced technologies 
using vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications 
to further reduce energy consumption of connected and automated vehicles (CAV). 
My recent research in automotive controls aligns with these two emerging areas.

Prior to joining Michigan Tech in 2007, I was a postdoctoral associate in the 
department of Mechanical and Aerospace Engineering at the University of 
California, Davis. My postdoctoral research primarily lies in intelligent agent sys-
tems. An intelligent agent is an autonomous computational entity that is able to 
perceive, reason, and initiate activities in its environment. It is intelligent and adap-
tive, usually programmed with artificial intelligence approaches. It can communi-
cate with other agents, work cooperatively, and take autonomous actions in order to 
achieve its design goals. I developed a mobile agent system called Mobile-C [3]. 
Mobile-C supports mobile agents by integrating an embeddable C/C++ interpreter 
into an agent system platform as a mobile agent execution engine. Mobile agents are 
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intelligent agents that can move from one computer to another in a network, while 
being executed in multiple computers. Mobile-C provides communication services 
to support agent communication and migration through message passing. With 
mobile agent systems, a control network is able to adopt newly developed control 
algorithms and make adjustments in response to operational or task changes. To 
apply Mobile-C in intelligent transportation systems, a comprehensive literature 
review has been conducted and resulted in a survey paper [4] (Best Survey Paper 
Award) that has been cited over 680 times. Mobile-C has been applied for distrib-
uted traffic detection and management to enhance the flexibility and reduce raw data 
transmission [5]. After joining Michigan Tech, I received research funding from the 
National Science Foundation to explore fundamental scientific issues that could 
potentially lead to adaptive sensing and monitoring based on agent technology and 
immune-inspired pattern recognition methods. My research group established a 
mobile agent–based monitoring paradigm to overcome the major limitations of a 
wireless monitoring network, such as the adaptability and communication band-
width. A mobile agent–based monitoring network was developed by integrating 
Mobile-C with high-computational power-sensing hardware [6]. The mobile agent–
based monitoring network moves detection algorithms instead of raw sensor data, 
which significantly reduces the amount of data transferred. Multi-objective optimi-
zation algorithms were developed to optimally control the generation and distribu-
tion of mobile monitoring agents [7]. The agent distribution was controlled to 
increase the detection probability and extend the network lifetime. The immune-
based pattern recognition algorithms for damage detection, classification, and emer-
gent pattern recognition have also been developed [8, 9]. The developed pattern 
recognition algorithms mimic immune recognition mechanisms that possess adap-
tation, evolution, and immune learning capabilities. The damage patterns are repre-
sented by feature vectors that are extracted from structure’s dynamic measurements. 
The training process is designed based on the clonal selection principle of the 
immune system, which allows the classifier to improve the quality of representative 
feature vectors based on input data. One paper based on this research work received 
a Best Paper Award at 2010 IEEE/ASME International Conference on Mechatronic 
and Embedded Systems and Applications.

Shortly after joining Michigan Tech, I realized that it is important to expand my 
research areas so I can submit proposals to more funding agencies. I also noticed 
that research collaboration is common in large research projects. To write collabora-
tive research proposals, I actively searched the potential collaborators who have 
synergy with my research expertise. An opportunity arose in a project in which I 
collaborated with colleagues at Michigan Tech to develop engine controllers for 
Nostrum Energy LLC. The research area is very different from my prior research in 
intelligent agent systems. Through the collaboration, I not only learned required 
knowledge in internal combustion engines, but also gained research experience in 
conducting industrial research projects. This collaboration also helped me to build 
long-lasting research collaborations, which has resulted in multiple large research 
projects funded by the Department of Energy and industrial partners. These projects 
include an Interdisciplinary Program for Education and Outreach in Transportation 
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Electrification; MTU subcontract for Ford DOE Project: Advanced Gasoline 
Turbocharged Direct Injection Engine Development; NEXTCAR: Connected and 
Automated Control for Vehicle Dynamics and Powertrain Operation on a Light-
Duty Multi-Mode Hybrid Electric Vehicle; Energy Optimization of Light and 
Heavy-Duty Vehicle Cohorts of Mixed Connectivity, Automation and Propulsion 
System Capabilities via Meshed V2V–V2I and Expanded Data Sharing; and 
ARPA-E NEXTCAR Phase II – L4/L5 CAV Enabled Energy Reduction, where L4/
L5 stands for level 4/level 5 of vehicle autonomy. My experience has shown that 
research collaboration is important for junior faculty members to gain research 
skills necessary to conduct large research projects, expand professional network, 
and build long-lasting research collaborators. Through these research projects, my 
research in automotive control has also expanded from small-scale to large-scale 
automotive control systems, such as the development of engine controller, HEV 
powertrain supervisory controller, predictive vehicle dynamics and powertrain con-
trol, and connected vehicle control for intelligent transportation systems.

In addition to collaboration with colleagues at MTU, I also seek external 
research collaborations to build long-term partnerships. During my sabbatical 
leave from 2014 to 2015, I worked with the EV–Smart Grid Interoperability 
Center at DOE Argonne National Laboratory (ANL) in Chicago. The ANL EV 
Smart Grid Interoperability Center supports global harmonization of standards 
and technology for the EV–grid interface, as well as charging interoperability to 
ensure future electric vehicles and charging stations worldwide work together 
seamlessly. The work experience at ANL expanded my research area into EV–
smart grid integration and provided me opportunities to work with other national 
laboratories and international organizations, such as the Joint Research Centre of 
the European Commission.

In the past 14 years, my research group has developed various control algorithms 
for internal combustion (IC) engines, energy management strategies of hybrid elec-
tric vehicles, predictive control systems for connected and automated vehicles, and 
advanced control strategies for EV grid integration. My research projects have been 
supported by grants and contracts totaling over ten million dollars from government 
funding agencies, Argonne National Laboratory, and industry. The research has 
resulted in over 100 refereed publications in premier archival journals and conference 
papers and a number of Best Paper Awards/Best Student Paper Awards. My research 
and educational achievements have been recognized by the American Society of 
Mechanical Engineers (ASME). I have been elected a Fellow of ASME in 2020.

This chapter introduces my research and educational efforts in the automo-
tive control area to reduce vehicle energy consumption and greenhouse gas 
emissions. The rest of the chapter is organized as follows. Section “Research on 
developing intelligent control systems for advancing vehicle electrification” 
introduces my research work on control development for HEVs, connected and 
automated vehicles, and electric vehicle–grid integration. Section “Educational 
effort to prepare students for transportation electrification” presents my educa-
tional effort for transportation electrification. Section “Conclusions” concludes 
the chapter.

Intelligent Control to Reduce Vehicle Energy Consumption and Greenhouse Gas…



212

�Research on Developing Intelligent Control Systems 
for Advancing Vehicle Electrification

This section introduces two of my research areas: vehicle control and electric vehi-
cle–grid integration. The scope of vehicle control ranges from powertrain compo-
nent control such as IC engine control, HEV control, connected and automated 
vehicle control, and energy optimization of vehicle cohorts. The electric vehicle–
grid integration research studies the impact of EV charging on grid and develops 
optimal control strategies to mitigate this impact.

�Advanced Vehicle/Powertrain Control and Predictive Control 
of Connected and Automated Vehicles

Over the past decade, my research group has been collaborating with Ford Motor 
Company and Nostrum Energy LLC to develop advanced control strategies for IC 
engines. The group has developed stochastic knock detection and control strategies 
for a Ford EcoBoost engine. The developed algorithms have been integrated with a 
production engine controller for the real-time knock detection and control on an 
engine test cell [10]. A recent work in combustion engine control is a model-based 
control system for cycle-by-cycle control of a gasoline turbocharged direct injection 
spark-ignition engine using an economic nonlinear model predictive controller 
(E-NMPC) [11, 12]. The E-NMPC engine control system is designed to meet driver-
requested torque output, minimize fuel consumption, and reduce NOx emissions. 
These control objectives are achieved by controlling throttle position, spark timing, 
intake and exhaust valve phasing, and wastegate position with the consideration of 
engine operating constraints, including both physical limitations of actuators and 
thresholds of abnormal combustion metrics comprising high variation of indicated 
mean effective pressure and combustion knock.

With the experience gained from engine control projects, I have learned working 
principles of engines and vehicles, which enables me to expand my research scope 
to HEV control. In the hybrid electric vehicle control area, my group has studied 
various optimal control strategies for HEV energy management, such as Equivalent 
Consumption Management Strategy (ECMS), adaptive ECMS, dynamic program-
ming, and model predictive control. The group has received three Best Student 
Paper Awards for HEV modeling and control. One example of this area of work is 
the development of a predicative HEV energy management strategy with the con-
sideration of both fuel economy and quantified lithium-ion battery aging [13]. In 
this work, the battery aging rate is quantified based on an electrochemical lithium-
ion battery model, which is able to provide quantified aging characteristics for the 
increase of internal resistance and decrease of battery capacity. The battery aging 
factor is quantified by changing factors of the battery, including state of charge 
(SOC), charging rate and internal temperature of the cell. The energy management 
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system is developed using a nonlinear model predictive control (NMPC) method to 
find an optimized control sequence over the prediction horizon, which minimizes 
engine fuel consumption and improves battery aging. The NMPC energy manage-
ment considering battery aging is compared to an NMPC that does not consider the 
battery aging. It is found that with the optimized weighting factor selection, the 
NMPC with the consideration of battery aging has better battery aging performance 
and similar fuel economy performance compared to the NMPC without the consid-
eration of battery aging. In addition to HEV powertrain energy management, my 
group has also studied the driving pattern recognition using features such as average 
cycle speed, acceleration, percentage time of low/medium/high speed, etc. to iden-
tify driving scenarios such as urban driving or highway driving [14]. The impact of 
aggressive driving on HEVs has also been investigated with a focus of powertrain 
energy flows, the energy consumption of individual powertrain components, their 
operating regions, and the energy losses of these components.

My recent research on vehicle control has shifted from isolated and reactive con-
trol to connected and predictive control. Vehicles on road currently operate in isola-
tion and rely on a human driver to provide high-level dynamic control of the vehicle. 
The vehicle controllers lack the ability of prediction and automatic adaptation to the 
changes of traffic and road conditions. With the advancement of V2V and V2I tech-
nologies, more and more real-time information regarding traffic and transportation 
systems will be available to vehicles. As the control thrust leader of the MTU 
NEXTCAR project funded by DOE ARPA-E, my group has developed a model 
predictive control system to reduce energy consumption of a multimode plug-in 
hybrid electric vehicle (PHEV) by leveraging future traffic and road information 
obtained through V2V and V2I communications. This information is incorporated 
with vehicle dynamics and constraints for making the control decisions on vehicle-
operating mode and powertrain energy management. The model predictive control 
system is also designed to enable connected and automated vehicle applications 
such as eco-approach and departure at signalized intersections, platooning, and 
cooperative adaptive cruise control.

The predictive control system is a multilevel control system as shown in Fig. 1. 
The predictive control system receives velocity bounds and road grade for a predic-
tion horizon from a cloud computing center. The velocity bounds define a range of 
velocities within which a connected vehicle can operate. These bounds are gener-
ated by a traffic simulator considering real-time traffic condition and safety. The 
control system outputs can be displayed on a human–machine interface (HMI) to 
provide real-time feedback to the driver. The top level of the predictive control sys-
tem is a novel algorithm that uses velocity bounds and powertrain information to 
generate an optimal velocity trajectory over the prediction horizon [15, 16]. The 
objectives of the velocity trajectory generation algorithm are to reduce dynamic 
losses, required tractive force, and to complete trip distance with a given travel time. 
When applied to a GM Volt-2, the generated velocity trajectory saves fuel compared 
to baseline energy consumption for a real-world drive cycle for both charge sustain-
ing and charge depleting operations. The charge sustaining mode of a PHEV utilizes 
a combination of engine and motor power to maintain the SOC at a specified level, 
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while the charge-depleting mode operates the vehicle solely on the battery energy. 
The simulation results show the energy savings ranging from 1.36% to 9.16% for 
charge sustaining case and 6.91% to 9.63% for charge depleting case. The baseline 
energy consumption is obtained using logged vehicle velocity profiles for the same 
drive cycle. The middle level of the predictive control system is the optimal mode 
selection for the drive unit using a discrete optimal mode path planning (OMPP) 
algorithm [17]. GM Volt-2 has five models: 1-EV mode, 2-EV mode, low extended 
range mode, fixed ratio extended range mode, and high extended range mode. The 
optimal mode at each time instant within a given prediction horizon is selected to 
minimize the engine fuel consumption, the deviation of the actual SOC from the 
reference SOC, and the energy required for mode shifts. The bottom-level of the 
control system is an NMPC power-split controller [18]. With the vehicle velocity 
trajectory and the drive unit mode selected by the upper levels of the control system, 
the NMPC power-split controller makes torque-split decisions among two electric 
motors and one combustion engine such that fuel consumption is minimized while 
battery SOC and vehicle velocity targets are met. The OMPP algorithm is integrated 
with NMPC power-split controller in order to create an integrated predictive pow-
ertrain controller (IPPC). The IPPC has been extensively tested in simulation across 
multiple real-world driving cycles where energy savings have been demonstrated. 
Simulation testing reveals that the IPPC can provide a 4–10% energy savings in 
standard drive cycles and a 3–7% energy savings over nonstandard, real-world drive 
cycles. The IPPC has also been deployed and tested in real time on test vehicles 
equipped with rapid prototyping embedded controllers. Real-time in-vehicle testing 
shows that the IPPC provides an energy savings of 4–6% over baseline vehicle con-
trol while achieving computational turnaround times suitable for real-time control. 
This work has demonstrated the feasibility of utilizing CAV technologies and pre-
dictive controls to reduce the energy consumption of connected vehicles.

Fig. 1  Overview of MTU NEXTCAR predictive control system for connected vehicles
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My research in vehicle electrification to reduce energy consumption and GHG 
emissions continues. Currently, I am participating in two recently funded research 
projects by the Department of Energy. One project, “Energy Optimization of Light 
and Heavy-Duty Vehicle Cohorts of Mixed Connectivity, Automation and Propulsion 
System Capabilities via Meshed V2V–V2I and Expanded Data Sharing” aims to 
reduce energy consumption through expanded V2V–V2I communication and the 
use of cloud computing and multi-agent optimization. Energy optimization for con-
nected and automated vehicles has been focused for a single vehicle or a fleet of 
identical vehicles. This MTU project, in partnership with AVL Powertrain 
Engineering Inc., Borg Warner Inc., Traffic Technology Services Inc., American 
Center for Mobility and Navistar, will investigate the energy optimization for mixed 
vehicle cohorts consisting of light and heavy-duty vehicles with various levels of 
connectivity, driving automation, and propulsion systems.

The second project is MTU NEXTCAR Phase II. The shift to fully autonomous 
transport is moving forward fast. Based on NEXTCAR Phase I technologies, MTU 
NEXTCAR Phase II is developing connected and automated vehicle technologies to 
demonstrate energy saving on level 4/level 5 autonomous vehicles. Partnership with 
GM and FCA, technologies for level 4 automated vehicles will be added to Chevrolet 
Bolt EV, 48  V mild HEV RAM1500, and Chrysler Pacifica PHEV. The level 4 
vehicle test fleet of the project provides representative propulsion systems: EV to 
HEV and compact to full-sized truck. The diversity of vehicle and propulsion sys-
tems will provide an understanding of the energy reduction potential for level 4 
autonomous vehicles with respect to mass, size, and propulsion system.

�Electric Vehicle and Smart Grid Integration

Accelerating EV adoption requires more public charging stations nationwide in 
addition to charging capability at home and at work. The evolution of electrified 
transportation represents a potentially large growth in electrical load that may 
impact electrical power grids by contributing to peak loads and changing the load-
ing patterns of electricity distribution equipment if vehicle charging is not properly 
coordinated and integrated as part of a larger electricity system. I started to do 
research in this area when I was on sabbatical leave at Argonne National Laboratory 
from 2014 to 2015. Since the sabbatical leave, my group has been working with 
ANL EV–Smart Grid Interoperability Center to develop advanced control strategies 
for effective EV and grid integration. A Hardware-in-the-Loop (HIL) framework, 
which consists of a real-time power grid simulator Opal-RT, various types of EV 
charging stations (AC/DC/extreme fast charger), solar panels, and building loads, is 
developed to validate vehicle-to-grid integration (VGI) communication and control 
algorithms at different power levels and scales. The HIL system is able to read real-
time power generation/consumption measurements, simulate charging impact on 
power grid, and communicate with charging controllers via cloud communication 
for the coordination of EV charging with renewable energy generation and building 
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loads to mitigate charging impact. Currently, the work is focused on translating 
charging behavior of ANL Smart Energy Building to a distributed network model, 
integrating utility grid, and testing the impact of EV charging on grid stability with 
EVs at scale.

In the EV–grid integration area, my group has investigated various aspects as 
shown in Fig. 2, including the estimation of EV charging load, the impact of EV 
charging on distribution grid, optimal EV charging control strategies to mitigate this 
impact, and using EV battery to provide grid services such as frequency regulation 
and voltage regulation [19]. The optimal EV charging control strategies have been 
developed for different levels and scales, including bidirectional power flow control 
of an onboard charger [20], plug-in electric vehicle (PEV) charging control in 
microgrids with renewable energy sources [21] (Best Student Paper Award in 2017), 
integrating utility demand response control signals for charging control, game the-
ory approach for the management of PEV-charging activities in a distribution net-
work [22], and transactive energy–based charging control [23] (Student Paper 
Award in 2019), which enables the integration of a market in charging control to 
achieve a socially optimal solution. Paper [24] studies the impact of aggregated resi-
dential and PEV charging load to several aspects of a grid, including load surge, 
voltage deviation, and the aging of distribution transformers. An optimal charging 
control method is proposed with the consideration of utility demand response con-
trol signals (time-of-use and direct load control) to mitigate the impact. Paper [25] 
presents a distributed control strategy to solve the power management problem for 
large-scale PEVs. Paper [26] further considers the use of EV batteries to put the 
energy back to the grid for regulating grid frequency. This grid service is called 
vehicle-to-grid (V2G) integration. Unlike stationary energy storage systems, using 
EVs to provide grid service is difficult because the EVs are movable and the 

Fig. 2  EV–grid integration research in the Laboratory of Intelligent Mechatronics and Embedded 
Systems at Michigan Tech
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available battery energy (the state of charge of the batteries) depends on individual 
travel plans. A distributed control scheme is developed that is able to make real-time 
charging/discharging control decisions based on the current grid frequency devia-
tion, real-time electricity price, and individual EV charging requirements. The con-
trol algorithm is able to handle the dynamics of available EVs, the location of EVs, 
and the grid conditions.

The successful research collaboration with National Laboratories has made me 
an expert in EV–grid integration. I have contributed to a DOE EV–Smart Grid 
Integration Requirements Study conducted by multiple National Laboratories to 
define the engineering requirements for smart grid operations to enable vehicle-to-
grid integration in the US.  I identified key VGI factors and suggested research 
opportunities in various aspects of VGI, including system architecture, communica-
tion standards, sensing, control, grid management, and cyber security. I have also 
been invited to attend technical meetings on the cybersecurity of electric vehicle–
charging infrastructure organized by several offices at DOE and NIST to identify 
the gaps and vulnerabilities in this threat space. I have also participated in a series 
of DOE-organized conversation topic calls on forecasting approaches that address 
the growing adoption of electric vehicles.

�Educational Effort to Prepare Students 
for Transportation Electrification

I have actively participated in curriculum development and contributed to an 
Interdisciplinary Program for Education and Outreach in Transportation 
Electrification funded by DOE. The primary objective of this project is the develop-
ment of an interdisciplinary curriculum that can lead to a Master of Engineering 
degree, and graduate and undergraduate certificates in Advanced Electric-Drive 
Vehicles. I developed a graduate-level course, “Distributed Embedded Control 
Systems,” for this project. The course is co-listed in both Mechanical Engineering–
Engineering Mechanics (ME–EM) and Electrical and Computer Engineering (ECE) 
departments. The course aims at developing an understanding of the model-based 
embedded control systems design and provides students with hands-on experience 
that is critical for the control development for hybrid electric vehicles. Several 
teaching labs and a final project have also been designed allowing students to 
develop control strategies, using an industrial standard rapid control prototype sys-
tem. The course has been very well received by graduate students in both ME–EM 
and ECE departments at Michigan Technological University. This course has been 
selected as one of the courses of a graduate certificate in Advanced Electric-Drive 
Vehicles and a graduate certificate in Automotive Systems and Controls.

Requested by graduate students both from ME–EM and ECE departments, I 
have developed 20 project-based courses related to Vehicle Electrification, includ-
ing Modeling and Hardware-in-the-Loop Test of Hybrid Vehicle Powertrain 
Systems, Model Predictive Control for Hybrid Electric Vehicle Powertrain Systems, 
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CAN Communication for dSPACE HEV HIL Simulation System, Optimization and 
Scheduling of PEV Charging/Discharging, and Path Planning and Tracking Control 
for Automatic Parking Assist Systems. Project-based courses offer opportunities for 
graduate students to learn by actively engaging in real-world engineering projects 
that they are interested in. Through project-based courses, students develop critical 
thinking, creativity, and communication skills. Feedback from students reflects that 
this learning experience is very helpful and valued by the companies that they have 
interviewed with.

I advise graduate students in both ME–EM and ECE departments. Most of my 
graduated students work in the automotive industry after graduation. These students 
are well prepared for the control development for electrified vehicles. They have 
very good academic records which are evidenced by multiple awards received by 
them, including four Best Student Paper Awards, one Best Paper Award, one Student 
Paper Award, one SAE Oral Presentation Award, four Michigan Tech Outstanding 
Graduate Student Teaching Awards, one Michigan Tech Finishing Fellowship 
Award, and four Outstanding Scholarship Awards in the Mechanical Engineering 
Department.

I have contributed to education outreach for undergraduate students. My NSF 
project “REU Site: Research in Advanced Propulsion and Fuel Technology for 
Sustainable Transportation,” provided the opportunity for 30 highly talented under-
graduate students from the US universities to participate in interdisciplinary research 
projects related to advanced propulsion control and sustainable transportation. REU 
students spent 40 h per week on research activities over a 10-week period in the 
summer. REU students also attended professional meetings, seminars, and in-depth 
information sessions related to applying to graduate school and obtaining funding. 
These opportunities increased students’ interest in conducting research, problem-
solving skills, ability to effectively collaborate as part of a team, and improved com-
munication skills. I also mentored several undergraduate students in research 
projects and summer undergraduate research fellowship programs.

�Conclusions

In this chapter, I have presented the research trends of transportation electrification 
and my professional journey at Michigan Tech. Several emerging research areas in 
electrified transportation and smart mobility have been discussed, including vehicle 
electrification, connected and automated vehicles enabled by V2V and V2I com-
munications, EV-charging infrastructure, and EV–grid integration. For smart mobil-
ity, vehicle control has shifted from isolated and reactive control to connected and 
predictive control to allow vehicles automatically adapting to the changes of traffic 
and road conditions.

My professional career at Michigan Tech spans more than a decade from an 
Assistant Professor to a Full Professor. I feel that establishing an externally funded 
research program is important, however, this may be challenging for junior faculty 
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members. From my experience, research collaboration helps to expand research 
areas, gain research skills for conducting large research projects, learn graduate 
student mentoring, expand professional networks, and build long-lasting research 
collaborators.
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