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3.1	 �Introduction

The human skeleton comprises bones, which are 
organs that are connected by joints. These joints 
allow the bones—with the exception of the cra-
nium bones—to move, thanks to the contractions 
of the muscles inserted on them. This muscle 
action is regulated by the peripheral nerves, 
which conduct electrical impulses that originate 
in the spinal cord. This set of elements is called 
the locomotor system. It makes it possible to 
move the lower limbs in order to travel and the 
upper limbs in order to grasp objects. An ade-
quately developed musculature of the lower 
limbs allows for normal standing and walking 
while minimizing falls and the upper limbs also 
play a role in both actions by providing stability.

There are other soft tissues in this system, 
including several varieties of connective tissue as 
well as the skin, which serves as a covering. The 
entirety of the system is supplied with blood by 
the vascular system. In addition to movement, the 
skeleton serves to protect the organs and is also 
involved in cellular regulation of the hematopoi-

etic system, which is contained within it, and 
mineral metabolism.

Bone tissue, the substrate that forms the skel-
eton, is organized into a hierarchical structure 
called building blocks (BB) [1], which consist of 
collagen fibers and other proteins configured in 
intertwined lamellae, osteons, and trabecular as 
well as cortical bone. This structure is intercon-
nected by molecular links that mechanically join 
the BBs. Significant changes in bone quantity 
and quality occur in the structure throughout the 
lifespan, leading to a decrease in both.

The bone, as an organ, is composed of a com-
pact external structure called cortical bone which 
encloses another less compact, spongier structure 
called cancellous bone. The cortical bone is 
responsible for 80% of the organ's weight. Its 
function is fundamentally mechanical and pro-
tective, although it also plays a role in regulating 
mineral metabolism when there is a prolonged 
severe deficiency, as it is affected by the hor-
monal changes that reach it through the blood 
supply. For example, in cases of postmenopausal 
osteoporosis, the cortical bone grows thinner 
with the passing of the years, especially in the 
long bones (Fig. 3.1).

Trabecular bone forms both ends of the organ 
in long bones and is surrounded by cortical bone 
that is thinner than diaphyseal cortical bone. 
While trabecular bone is much more active in 
metabolic processes than cortical bone, it also 
plays a role in mechanical support, though not for 
its hardness but rather for the architectural 
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arrangement of its trabeculae. This is much more 
important in short bones, like the vertebrae. 
However, with age and especially after meno-
pause, bone trabeculae grow fewer and thinner 
(Fig. 3.2) [2, 3]; as such, the trabeculae structure 
is less resistant to mechanical stress. This can lead 
to vertebral fractures due to a low-energy mecha-
nism. These are most common in postmenopausal 
ages, as the vertebral bodies have a very thin corti-
cal layer, and the trabeculae, due to their decreas-
ing number and thinning, are not able to maintain 
the height of the vertebrae (Fig. 3.3).

When on a diagnostic imaging test such as an 
x-ray, it is observed that the cortical bone is thinner 

and the trabeculae are less numerous and thinner, it 
is affirmed that the bone is osteoporotic. Although 
this is a judgment based on anatomical pathology, it 
is the image of the bone which indicates porosis. 
That is to say, the pores in the trabeculae are 
observed to be larger on the diagnostic test. The 
bone tissue whose image is used to diagnose osteo-
porosis would have osteopenia, if its matrix is 
diminished, or osteomalacia, if its matrix is less cal-
cified. If the density analysis is performed via 
x-ray—on which a loss of 15-30% of bone mass is 
necessary for the image to be significantly differ-
ent—osteoporosis will be diagnosed later than if the 
analyses were performed via a biopsy [4].

a b

Fig. 3.1  With menopause, the cortical bone is observed to thin considerably, especially the long bones. (a) X-ray of a 
31-year-old patient. (b) X-ray of an 81-year-old patient
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Therefore, the concept of osteoporosis is 
quantitative and based on an image of osteopenia 
or osteomalacia. Thus, the term osteoporotic 
fracture is erroneous because osteoporosis is a 
variable defined based on the image of an 
osteopenic or osteomalacic bone. Indeed, other 
variables such as age or sarcopenia, which are 
also independent variables and which cause falls, 
do not define a fracture and the use of the terms 
sarcopenic or senile fracture is not common [4–
6]. It would therefore be more correct to use the 
term fracture in an osteopenic or osteomalacic 
bone. A fracture in an osteopenic bone thus 
includes everything from fractures in children 
who have osteogenesis imperfecta to those in the 
elderly who have “osteoporosis.”

However, usage has made it so that the visual 
opinion of the anatomy-pathology is inferred and 
it is understood that osteoporosis is characterized 
by loss of bone mass, changes in trabecular 
microstructure, and, as a consequence, skeletal 
fragility. This leads to a greater risk of fracture as 
a result of low-energy trauma and greater diffi-
culty in achieving stable osteosynthesis (Fig. 3.4). 
Nevertheless, there is a more objective definition 
that differentiates between the concepts of osteo-
porosis and osteopenia based on the bone mineral 
density (BMD) T-score [7]. This definition, how-
ever, is very controversial [8–13].

a b

Fig. 3.2  With age, bone trabeculae are thinner and fewer 
in number, making the trabecular structure less resistant to 
mechanical stress. (a) Image of a bone from a patient with 

coxarthrosis (obtained via 4× optical microscopy). (b) 
Image of a bone from a patient with osteoporosis (obtained 
via 4× optical microscopy)

Fig. 3.3  Vertebral fractures due to a low-energy 
mechanism
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A BMD T-score that is equal to or less than 
2.5 standard deviations (SD), after having ruled 
out other causes of low BMD, is defined as osteo-
porosis. When the T-score is less than 1-2.5 SD, 
it is defined as osteopenia. When it is within 1 SD 
of the value for young adults, BMD is considered 
normal. Although values below 2.5 SDs tend to 
indicate a greater risk of fracture, these are more 
frequent in the 1-2.5 SD range due to the greater 
number of people in this category. This WHO 
categorization [7], which has been adopted by 
patients’ associations, has been called into ques-
tion [9–11, 13] and systematically distorts both 
the evidence and the evidence-based medicine 
and indications [8, 12]. As a result, osteopathies 
that present with fragility are divided into differ-
ent types, including non-osteopenic (normal bone 
mass), simple osteopenia (decreased bone mass), 
or osteopenic disorders that lead to fragility, such 
as osteoporosis. In clinical practice, however, this 
classification is not as categorical.

3.2	 �Bone Cells

Bone tissue is composed of a calcified protein 
matrix and the cells that regulate it: osteoblasts 
synthesize the matrix and osteoclasts digest it. In 
addition, it includes the precursor cells of both as 

well as other cells related to hematopoiesis and 
the immune system that are precursors to osteo-
clasts. When osteoblasts are surrounded by the 
protein matrix, they differentiate into osteocytes 
and their functions shift more toward the regula-
tion of bone metabolism than the synthesis of the 
osteoid matrix.

3.2.1	 �Osteoblasts

Osteoblasts are cells that secrete the bone matrix 
protein that is later mineralized. They arise from 
the differentiation of multipotent mesenchymal 
stem cells (MSCs) [14] located in the bone mar-
row, such as stromal cells or pericytes, which are 
the MSCs adhered to the vascular endothelium 
and are also fundamental to the formation of 
blood vessels [15, 16].

The Runx2 protein, also known as core-
binding factor alpha-1 (CBFA1), a member of the 
runt homology domain transcription factor fam-
ily, is fundamental to the differentiation of MSCs 
into osteoblasts [17]. Runx2 is the earliest differ-
entiation marker of osteogenic lineage and, along 
with Runx3, acts in the maturation of hypertro-
phic chondrocytes [18]. The Sp7 transcription 
factor (Osterix) and a zinc-finger protein act after 
Rnx2 and are responsible for the specialization of 
osteoprogenitor cells into preosteoblasts. The 
nuclear receptor peroxisome proliferator-
activated receptor (PPAR)-gamma also acts, 
spurring the commitment process of multipotent 
osteoprogenitor cells [19, 20]. The differentiated 
osteoblasts express genes for these three proteins 
as well as for others such as osteopontin, or bone 
sialoprotein [21, 22]. Runx2 inhibits osteocalcin, 
halting the cells in differentiation [23]. Osterix 
controls the transcription of specific genes of 
osteoblasts, such as osteocalcin, osteopontin, and 
type I collagen [19].

Wnt proteins are also important. They form 
part of a group of signaling molecules for skeletal 
and bone mass development and are mobilized 
through stimulation of genetic expression of 
Runx2. Activation of the canonical Wnt pathway 
gives rise to the formation of a complex of Wnt 
proteins, low-density lipoprotein receptor-related 
protein 5 (LRP5), or LRP6, which leads to the 

Fig. 3.4  Skeletal fragility leads to greater difficulty in 
achieving stable osteosynthesis. Loss of reduction and 
failure of osteosynthesis in a hip fracture
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phosphorylation and inactivation of glycogen 
synthase kinase (GSK)-3 beta, inhibition of beta-
catenin degradation, and the subsequent accumu-
lation of this metabolite in the osteoblast nucleus 
[24, 25]. Nuclear beta-catenin binds to the family 
of TCF/LEF transcription factors and induces 
expression in the target genes [26]. Therefore, 
beta-catenin is essential for the differentiation of 
precursor cells into osteoblasts, preventing dif-
ferentiation into chondrocytes or adipocytes. The 
action of beta-catenin in later stages can elimi-
nate or activate osteoclastogenesis through regu-
lation of osteoprotegerin as well as abnormalities 
in Wnt signaling, which may lead to defects in 
skeletal homeostasis that can lead to early-onset 
hereditary osteoporosis or osteogenesis imper-
fecta, as also occurs with loss of function or 
mutation in LRP5 [27, 28].

Osteoblasts are arranged lengthwise, increas-
ing their surface area in order to deposit the 
secreted matrix protein (Fig. 3.5).

3.2.2	 �Osteocytes

When osteoblasts are surrounded by osteoid, they 
differentiate into osteocytes, transforming their 
phenotype through the development of long cyto-
plasmic extensions that connect to other osteo-
cytes, surrounded by a gelatinous matrix linked 
through the bone tissue canaliculi (Fig.  3.6). 
Osteocytes are the last step in the cellular differ-
entiation of MSCs into the osteogenic line and, 
therefore, as they are highly differentiated cells, 
they do not multiply [29]. Many osteoblasts do 
not differentiate into osteocytes, but rather die by 
apoptosis [30]. This differentiation is an active 
process in which the cell develops long cytoplas-
mic extensions thanks to the action of a protein 
called podoplanin [31]. Mature osteocytes also 
express high levels of SOST, an inhibitor of the 
canonical Wnt/β-catenin pathway. They also 
intervene in bone regulation through the secre-
tion of sclerostin, a product of the SOST gene, 
which can antagonize LRP5 and LRP6. In fact, 
the absence of the SOST gene leads to a patho-
logical increase in bone mass [27].

Osteocytes express different proteins related 
to mineral metabolism. These proteins include 
fibroblast growth factor (FGF), which regulates 
renal excretion of phosphorus, or matrix extracel-
lular phosphoglycoprotein (MEPE), which inhib-
its mineralization [32].

Osteocytes, through their cytoplasmic exten-
sions, play a very active role in bone mechanics. 
The transport of solutes through the canaliculi 
system that the osteocytic cytoplasmic exten-
sions pass through is regulated by blood pressure 
and diffusion and convection induced by mechan-
ical stress. This physical and chemical process is 
called mechanotransduction, a phenomenon by 
which mechanical stimuli are translated into 
molecular variations that lead to changes in cel-
lular multiplication and differentiation [33, 34]. 
Cytoplasmic extensions bind the osteocytes to 

Fig. 3.5  Image of osteoblasts depositing osteoid sub-
stance (obtained via electron microscope)

Fig. 3.6  Long cytoplasmic elongations that connect 
osteocytes to one another. (a) Osteoblast precursor cells, 
(b) Osteoblasts. (c) Noncalcified extracellular matrix. (d) 
Calcified extracellular matrix. (e) Osteocytes with cyto-
plasmic elongations in the canaliculi
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the collagen, which allows them to note changes 
in fluids, modulating secretion of sclerostin in 
order to stimulate bone formation or absorption 
[35, 36]. This distinctive response of the connec-
tive tissue to mechanical stimuli (mechanotrans-
duction) characterizes Wolff’s law [37]. This is 
the reason why physical exercise is so important 
before and after menopause in order to preserve 
bone and muscle mass.

3.2.3	 �Osteoclasts

Osteoclasts are multinucleated cells formed by 
the fusion of monocytes from the monocyte-
macrophage lineage which dissolves bone and 
produce resorption [38, 39]. The macrophages 
come from the hematopoietic lineage and have a 
function in inflammation, although they are now 
known to also have a role in bone metabolism 
itself.

Osteoclasts are stimulated by two cytokines: 
receptor activator of nuclear factor-kappa B 
ligand (RANKL) and macrophage colony-
stimulating factor (M-CSF). They are differenti-
ated from monocytes by the nuclear factor of 
activated T cells 1 (NAFATc1), the master regu-
lator transcription factor responsible for this dif-
ferentiation [40–43]. Osteoblasts and osteocytes, 
whether apoptotic or alive, are the main source of 
RANKL and osteoprotegerin, the signaling pro-
teins which stimulate bone resorption in osteo-
clasts, although they are also produced by other 
cells, such as T lymphocytes [44–46].

The RANKL protein interacts with an osteo-
clast precursor cell receptor called RANK, which 
is identical to that of the T-cells and dendritic 
cells [42]. NFATc1 is induced by RANKL and 
coactivated by immunoglobulin-like receptors 
[39, 42, 47]. RANKL also binds to osteoprote-
gerin or osteoclastogenesis inhibitory factor [39, 
42, 47]; as such, when osteoprotegerin or a 
RANKL antibody is administered to postmeno-
pausal women, bone turnover markers (BTMs) 
reduce drastically, indicating increasing bone 
mass.

Bone resorption is carried out by osteoclasts, 
which have phosphatase acid in their cellular 

membrane and other hydrolytic enzymes that act 
on the calcified osteoid, releasing collagen frag-
ments and minerals deposited in the reticular 
structure that collagen forms together with pyr-
idinoline and deoxypyridinoline. These mole-
cules are also released, circulating freely in the 
blood until they are excreted in urine [48]. Some 
of these molecules are digested incompletely and 
circulate, such as pyridinoline cross-links bound 
to alpha-1 and alpha-2 chains, which also circu-
late and are excreted in the same manner [49]. 
Some diseases, such as diabetes, can interfere 
with this metabolism [50, 51].

Both acid phosphatase and alkaline phosphate 
activity take place in other locations, but activi-
ties that occur there are fundamentally different 
from what occur in bone cells in regards to insen-
sitivity to tartrate-tartrate-resistant acid phos-
phate (TRAP) inhibition, in the case of 
osteoclastic activity [52], and in regards to 
hepatic and pancreatic antigenic characterization, 
in the case of osteoblastic activity.

Therefore, osteocytes, their precursor osteo-
blasts, osteoclasts, and monocyte-origin cells are 
molecularly connected so that the bone formation-
resorption balance is appropriate [45, 46, 53, 54].

3.3	 �Osteogenesis 
and Mineralization

3.3.1	 �Osteoid Synthesis

Bone formation is initiated by osteoblasts, which 
synthesize the triple-helix type I collagen of the 
bone tissue [55, 56] as well as other proteins—
including osteocalcin—which combine extracel-
lularly to form the osteoid on which mineralization 
occurs [57, 58].

This collagen is deposited in layers and 
strengthened by multiple intra- and intermolecu-
lar cross-links, interconnected with an alpha 2 
polypeptide chain with two alpha 1 chains. This 
structure, known as procollagen, goes through a 
cleavage process in its aminoterminal and car-
boxyterminal peptides in order to form tropocol-
lagen. In addition to a helicoidal structure, it also 
has a nonhelicoidal area in the aforementioned 
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terminal peptides called N-telopeptide (NTX) 
and C-telopeptide (CTX), respectively. [59, 60].

The hydroxylysine side chains of different tro-
pocollagen molecules condense to form a pyri-
dinium ring, thus creating the pyridinoline 
cross-links that connect three different tropocol-
lagen molecules. A deoxypyridinoline (D-PYR) 
cross-link is a variant of a pyridinoline cross-link 
that is formed when two hydroxylysine side 
chains condense with a lysine side chain. 
Pyridinoline cross-links are also present in many 
types of collagen in other tissues, except for in 
the skin [59, 61, 62]. There are three types of pyr-
idinoline cross-links that are characteristic of 
bone collagen: D-PYR, which is only found in 
large amounts in the bone and dentin; 
N-telopeptide, which is the pyridinoline cross-
link in the N-telopeptide region that binds to the 
alpha 1 and alpha 2 chains; and C-telopeptide, 
which is a fragment of alpha 1 peptide with an 
isomerized bond between the aspartate and the 
glycine of the C-telopeptide region [63, 64].

Immature collagen fibers do not have the nec-
essary tensile strength until they are connected by 
these covalent bonds, which are resistant to deg-
radation. Noncollagenous proteins in the bone 
matrix are fundamental in regulating mineraliza-

tion and strengthening the collagen structure, 
forming a protein lattice which calcium and 
phosphate are deposited on in the form of 
hydroxyapatite crystals [60, 65, 66] (Fig. 3.7).

3.3.2	 �Mineralization

Noncollagenous proteins that bind calcium 
include vitamin K-dependent carboxylation/
gamma-carboxyglutamic (Gla) proteins—includ-
ing osteocalcin, which is secreted by osteo-
blasts—which contain gamma-carboxyglutamic 
acid and, like many coagulation factors, are vita-
min K-dependent [67–69]. Some of these 
proteins, such as the calcification-inhibiting 
matrix Gla protein (MGP), can delay mineraliza-
tion and allow for the bone matrix to mature. In 
this manner, secondary bone mineralization in 
humans does not cease suddenly, but rather 
slowly continues until a calcium content of 
around 30% of the bone’s weight is reached [70].

Although osteocalcin is the most specific pro-
tein product of osteoblasts, eliminating the osteo-
calcin gene does not alter growth or skeletal 
mineralization [68, 71] due to the concurrence of 
other proteins. Osteopontin—bone sialopro-

a b

Fig. 3.7  Microscopic images. (a) bone trabeculae of a 
larger size in a patient with coxarthrosis. Picrosirius stain-
ing that allows for identification of fibrillar collagens in 
red on bright-field microscopy. The same staining 

observed via polarized light microscopy in image (b) 
shows zones in which collagen has a parallel structure, 
which is seen with positive birefringence (between green, 
orange, and red). 40×
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tein—binds both to calcium and to collagen and 
can also play a role in the adherence of osteo-
clasts to the bone surface [22, 72].

Phosphorylated osteopontin (OPN) inhibits 
the formation of hydroxyapatite crystals, whereas 
bone alkaline phosphatase (BALP) promotes 
extracellular mineralization through the release 
of inorganic phosphate from inorganic pyrophos-
phate (PPi), which inhibits mineralization. 
Tartrate-resistant acid phosphatase (TRAP) pro-
duced by osteoclasts, osteoblasts, and osteocytes 
exhibits potent phosphate activity toward osteo-
pontin, though its potential effect on mineraliza-
tion regulation is unknown. Therefore, 
osteopontin is important for mineralization inhi-
bition regulated by TRAP, but not by BALP.  In 
conclusion, BALP and TRAP appear to be able to 
improve the effect of osteopontin on mineraliza-
tion, suggesting a potential role of TRAP in skel-
etal mineralization [52, 73].

Crystallized hydroxyapatite that is deposited 
on the aforementioned protein lattice—collagen 
or noncollagenous—represents approximately 
one-fourth of the volume and half of the mass of 
normal adult bones. The Ca and P (inorganic 
phosphate) components of these crystals are pro-
duced from blood plasma and, in turn, from nutri-
tional sources. Amorphous Ca phosphate matures 
through various intermediate stages in order to 
form hydroxyapatite, with the vitamin D metabo-
lites acting as important mediators of Ca regula-
tion. Therefore, vitamin D deficiency will lead to 
the depletion of bone minerals [74–76]. Likewise, 
insufficient intake of Ca and P will lead to miner-
alization defects. Hydroxyapatite crystals may 
also contain carbonate, fluoride, and a variety of 
trace minerals, depending on the environment in 
which the skeleton grows. These crystals are rela-
tively small, which is appropriate for a structure 
which may be subjected to tension, and thus suf-
fer minor microdamage. However, despite the 
plasmatic and nutritional origin of the Ca and P 
that form hydroxyapatite crystals, in a study on 
bone extracted from the metaphysis of the proxi-
mal end of the femur in patients with hip fracture 
treated surgically with arthroplasty, our group 
found lower levels of Ca, P, and vitamin D in the 
blood, but not in bone concentration, when com-

pared to a control group of patients without hip 
fracture, despite the fact that the patients with hip 
fracture were malnourished [3]. All results of the 
samples from both groups were calculated 
according to the weight of Ca and P [77]. The 
differences were not statistically significant for 
Ca, P, or the Ca:P ratio, revealing that bone min-
eral composition, measured by quantitative 
microanalysis of trabecular bone obtained from 
patients with hip fracture, is similar to the bone of 
patients with hip osteoarthrosis. This finding, 
associated with abnormal serum Ca and P con-
centrations (serum/bone levels with a correlation 
coefficient of −0.197 for Ca and −0.274 for P), 
refutes the idea of increasing Ca intake or admin-
istering medications to increase mineralization in 
patients with osteoporosis with the objective of 
preventing hip fractures. Therefore, it is to follow 
that some authors recommend measuring Ca and 
P fractions in BMD measurements in order to 
improve the evaluation of fracture risk and deter-
mine more specific therapies [78].

In the literature, there is little evidence of a 
relationship between bone density and calcium 
intake, but there is evidence of the occurrence of 
adverse effects such as gastrointestinal problems, 
kidney stones, or even cardiovascular problems 
[79]. Therefore, treatment of osteoporosis with 
Ca and vitamin D does not seem to be appropri-
ate if there is no hypovitaminosis or hypocalce-
mia, as many authors have asserted [79–83]. On 
the other hand, extrapolating the results of 
research on vitamin D in animals to humans must 
be done cautiously, given that there are differ-
ences depending on the species. For example, 
whereas vitamin D stimulates mineralization in 
humans, it inhibits it in rodents [76].

3.3.3	 �Distribution of the Mineral 
Phase

In addition to the mineral composition of bone, 
the geographical distribution of mineralization 
within the proximal end of the femur is also 
important. In studies of the nanostructure, com-
position, and microarchitecture of the superolat-
eral area of the femoral neck in elderly patients 
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with hip fracture compared to healthy control 
subjects, it was observed that mineral crystals on 
the external cortical bone surfaces of the fracture 
group were larger and had a greater mineral con-
tent and a more homogeneous mineralization 
profile. Samples from the patients with hip frac-
ture showed cortical porosity values that were 
nearly 35% higher [84]. In general, the Ca:P ratio 
did not appear to differ between the hyperminer-
alized osteocytic lacunae (micropetrosis) and the 
bone matrix in the osteoporosis and osteoarthro-
sis groups, though the micropetrosis was greater 
in the group of patients with hip fractures [84]. 
Although the role of hypermineralized osteocyte 
lacunae in bone remodeling and the biomechani-
cal properties of the bone requires more research, 
these findings are very interesting in regard to the 
relationship between hypermineralization and 
susceptibility to femoral neck fracture [85].

3.4	 �Contribution to Biochemical 
Homeostasis of the Mineral 
Phase

3.4.1	 �Calcium

In addition to its biomechanical function, the 
mineral fraction of the bone also plays an impor-
tant role in the regulation of mineral metabolism 
in the human body. More than 98% of the body’s 
Ca is found in the bone, where in addition to act-
ing as a mechanical support, it serves as an 
endogenous reservoir. One percent of bone Ca is 
exchangeable with extracellular fluid in order to 
maintain a stable Ca equilibrium. The Ca in the 
extracellular fluid, which, in turn, is 1% of total 
Ca, is found in various forms: as free ions (active 
form), ions bound to plasma proteins (predomi-
nantly albumin), and in compounds (phosphate, 
sulfate) [86]. Intestinal absorption of Ca is poor 
(<50%) and decreases in the elderly [87]. It is 
eliminated in urine, sweat, and feces. Kidney 
losses vary little even if the quantity consumed 
varies greatly. In cases of negative Ca balances, 
with greater losses than the Ca absorbed in the 
intestines, calcium levels will remain within nor-
mal ranges as a result of reabsorption of bone Ca. 

Normal total plasma Ca values in healthy adults 
range from 8.8 to 10.4 mg/dl [88]. Serum cal-
cium levels in patients with hip fracture are lower 
with respect to patients with coxarthrosis, 
although this could be an effect of the malnutri-
tion that the majority of these patients present 
with [3].

3.4.2	 �Phosphorus

The most important location of phosphorus is in 
the bone, where 80–85% of phosphorus in the 
human body is found. The remaining phosphorus 
is distributed in extracellular fluid and soft tis-
sues. Phosphorus intervenes in a multitude of 
metabolic processes as an energy store. It acts as 
a cellular intermediary in membrane transport 
and is a component of ribonucleic acid (RNA) 
and deoxyribonucleic acid (DNA) [86]. Normal 
plasma concentration of phosphorus in an adult is 
between 2.5 and 4.5 mg/dl. This range is main-
tained thanks to intestinal absorption, renal tube 
reabsorption, and intracellular and bone 
exchanges [88]. Our group found phosphorus 
levels within normal range in both the group of 
patients with hip fracture and the control group. 
However, in the case of the fracture group, phos-
phorus levels were on the lower limit of normal 
[3].

3.4.3	 �Other Ions

Sodium balance regulation within the human 
body is very complex. Appropriate sodium con-
tent in the body is necessary in order to maintain 
central blood volume and renal perfusion. 
Therefore, it is closely regulated by homeostatic 
defense mechanisms mediated by the renin-
angiotensin-aldosterone (RAAS) system [89]. 
The role of elevated sodium intake in health 
problems has been the subject of controversy [90, 
91]. The World Health Organization recommends 
limiting sodium intake to less than 2 g per day 
[92]. In the United States of America, it is recom-
mended that sodium intake should not exceed 
2300 mg per day or 1500 mg per day or less for 
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certain populations. Sodium increases calcium 
excretion, which is associated with lower BMD 
that, in turn, is a predictor of bone fragility risk 
[89]. Consequently, a hypothesis has been posed 
that high sodium intake may also be a risk factor 
for developing osteoporosis [93, 94]. Our group 
found that the patients with hip fracture presented 
with lower serum sodium levels than the patients 
with coxarthrosis [3]. These low serum sodium 
levels must theoretically be a “protective” mech-
anism against calcium deficit, but serum calcium 
was also lower in this group of patients.

A high intake of potassium increases the 
absorption of calcium, but studies in this regard 
are not unanimous. Therefore, this could mean 
that the relationship between sodium intake and 
osteoporosis may depend on calcium and potas-
sium intake [89, 95]. Our group found that potas-
sium levels in the group of patients with fractures 
were significantly lower than in the coxarthrosis 
group [3].

3.5	 �Age- and Disease-Related 
Changes in Mineralization

There are other interactions in bone mineraliza-
tion that in large part are related to age and dis-
eases [62, 96–98].

Whereas gender and bone mass are not associ-
ated with bone mineralization, age is indeed 
related to the populations’ average increased cal-
cium concentration spikes, the percentage of 
highly mineralized bone areas, and mean bone 
calcium content. Both the bone volume fraction 
and trabecular thickness are inversely correlated 
with mean calcium. Trabecular thickness is asso-
ciated with calcium spikes, high calcium levels, 
and the quantity of poorly mineralized bone. It is 
the only structural parameter which can predict 
bone mineralization independently of age. 
Variables associated with the osteoid correlate 
with mineralization parameters and are the only 
predictor of its heterogeneity. Although elevated 
trabecular mineralization correlates with age and 
bone loss, these associations are attributed to the 
thinning of the bone trabeculae which occurs 
with high mineralization due to the loss of poorly 

mineralized bone surfaces. Therefore, it appears 
that the degree of bone mineral reabsorption is 
primarily associated with the quantity of osteoid 
that is physiologically present and the thickness 
of the mineralized trabecular bone [99].

Menopause is a physiological phenomenon in 
women that begins at varying ages which tend to 
range from 45 to 55 years. In menopause, in addi-
tion to various clinical symptoms due to hor-
mones, some histological changes in bone also 
occur; these changes are generally asymptom-
atic. The mineralized bone matrix appears to be 
preserved during the first year post-menopause; 
its density does not change [100]. In young post-
menopausal women with vitamin D deficiency, 
isolated supplementation with 1000  IU of vita-
min D3 for 9 months is associated with a reduc-
tion in BTMs. However, no differences in BTMs 
were observed between the group that was sup-
plemented with vitamin D and the group that was 
not [101].

Inorganic calcium and phosphate are also 
critically important for many body functions. 
Consequently, regulation of their plasma con-
centration is strictly controlled by renal 
absorption-reabsorption, intestinal absorption, 
and bone exchange, as bone is a reservoir of cal-
cium and phosphate. Parathyroid hormone and 
1,25-dihydroxyvitamin D control calcium homeo-
stasis, whereas these hormones and FGF 23 are 
derived from bone control phosphate homeostasis 
[74, 75, 102–105]. As a result, hypoparathyroidism 
can cause hypocalcemia and hyperphosphatase-
mia, whereas deficient vitamin D action can cause 
osteomalacia in adults and rickets in children. On 
the contrary, hyperparathyroidism can cause 
hypercalcemia and hypophosphatasemia. In order 
to diagnose these abnormalities associated with 
calcium and phosphate metabolism, a laboratory 
diagnostic test for calcium, phosphate, PTH, and 
25-hydroxyvitamin D is very important [74, 75, 
102–105].

On the other hand, the combination of elevated 
mean calcium concentration in the bone and low 
mineralization heterogeneity in adults with type 
2 diabetes can have detrimental effects on the 
biomechanical properties of the bone. These 
microscopic abnormalities in bone mineraliza-
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tion, which may be obstructed by suppression of 
bone remodeling, provoke a higher risk of frac-
ture in adults with type 2 diabetes [50].

3.6	 �Bone Turnover Markers

Continuous bone remodeling is important 
because it allows for a bone to adapt to physical 
requirements, such as load, through the forma-
tion of more bone (mechanotransduction) or as a 
result of chemical stimulants produced by signal-
ing molecules that are released in fractures [33, 
34, 37]. Modulation of sclerotin secretion is 
important in order to stimulate bone formation or 
bone absorption that occurs based on the cyto-
plasmic extensions of osteocytes into the colla-
gen, which capture changes [35, 36].

The nature of this continuous replacement of 
bone tissue can be determined thanks to the mea-
surement of molecules released by osteoblasts 
and osteoclasts in the bone formation and resorp-
tion processes. These BTMs can be measured in 
blood or urine.

The amino acids that form the cross-link 
between collagen molecules are released during 
bone resorption as free forms or as peptides that 
can be measured in serum or urine. Although 
cross-links are not exclusive to the bone, given 
that bone tissue is the largest reservoir of type 1 
collagen in the entire human body and is remod-
eled more quickly than the rest of the connective 
tissues, it is believed that the majority of cross-
links present in the urine of an adult come from 
the bone resorption process. In this process, col-
lagen begins to break down, releasing free forms 
of cross-links (40%) and peptide-bound cross-
links (60%), both of which are excreted in the 
urine. Measurement of BTMs is very useful for 
detecting bone metabolism abnormalities [98].

BMTs are predictive of loss of bone mass and 
in some studies are used as a fracture risk test 
[106–109]. However, they must be measured 
over time because a single measurement is mean-
ingless. Measured over time, progressive bone 
mass loss does seem to correlate to fracture risk. 
Therefore, although BMTs are useful when they 
are measured over time, their variability makes it 

so that they do not form part of the majority of 
osteoporosis diagnostic and treatment guidelines, 
despite their usefulness in detecting lack of 
response to treatment.

For bone formation, serum measurements of 
bone-specific alkaline phosphatase (BSAP)—
which requires normal liver functioning, given 
that on the contrary, they may appear abnor-
mal—, osteocalcin, and aminoterminal propep-
tide of type I procollagen (PINP) are highly 
clinically useful. The serum concentration of 
BSAP and osteocalcin shows osteoblastic activ-
ity [71]. The serum concentration of carboxyter-
minal and aminoterminal propeptides of type I 
collagen (PICP and PINP, respectively) shows 
changes in the synthesis of new collagen; mea-
suring PINP is more specific than measuring 
PICP.  For bone resorption, the N-telopeptide 
(NTX) cross-link in urine and the C-terminal 
telopeptide of type I collagen (ICTX) and the 
pyridinoline cross-link can be measured in blood 
[63, 97].

Urine and serum measurements of collagen 
cross-link concentrations show bone resorption. 
Therefore, these substances are better indicators 
of bone resorption than calcium in urine or excre-
tion of hydroxyproline. What is more, as D-PYR 
and the peptide binding alpha 1 to alpha 2 NTX 
and ICTX are almost exclusively derived from 
bone collagen, measurement of these substances 
specifically shows bone resorption.

The measurement of these metabolites 
(BTMs) can vary depending on the measurement 
method as well as patient variables. The circadian 
rhythm, which peaks at dawn and decreases in 
the afternoon; a high body mass index; tobacco 
use; ovulation; and the first 4–6 months follow-
ing a fracture increase BTMs. Use of contracep-
tion, the postprandial period, and physical 
exercise decrease BTMs. Therefore, urine collec-
tion must always be done at the same time mid-
morning and in the same laboratory. Likewise, 
dietary intake also influences these measure-
ments [110].

The validity of BTM measurements must 
comply with some requirements. Changes in the 
metabolite must correspond to real changes in 
turnover measured by means of histomorphome-
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try and calcium kinematics. Serum and urine 
concentrations of these metabolites must corre-
spond to the appearance of metabolic bone dis-
eases such as those related to the thyroids and 
parathyroids or to the administration of certain 
drugs.

Nevertheless, although these markers are use-
ful for understanding a drug’s mechanism of 
action, their role in each patient is unclear; 
indeed, they are not important for the selection of 
candidates for osteoporosis treatment. In addi-
tion, there is significant variability between indi-
viduals, which in some instances may lead to 
poor clinical interpretation. Furthermore, it is 
important to note that the predictive validity of 
variations in BTM values varies according to 
which BTM is measured. For example, a varia-
tion by a factor of more than 2.8 is considered 
abnormal, whereas for a lower value of NTX to 
be predictive of improvement in mineral density 
and decrease of fracture risk, it must be 50% or 
30% of serum values of ICTX, PINP, or BSAP 
[97, 111–113]. (Table 3.1)

3.7	 �Osteoporosis

Osteoporosis is a generalized skeletal disease 
classified as an osteopenic fragilizing osteopathy 
that predisposes individuals to a greater risk of 
fracture. Therefore, it is called fragilizing because 
fracture can occur with low-energy trauma. One 
of the etiopathogenic problems related to these 
fractures is establishing the limit from which 
trauma is considered of low- or high-energy. 
Though it seems clear that vertebral fractures 
spontaneously appear in patients with osteoporo-
sis, hip fractures require a fall, even if it is from 
standing, for them to be considered significant 
trauma. Even a young individual who is not wear-
ing protective gear whose trochanteric area 
impacts directly on the ground has a high proba-
bility of fracturing the hip [114]. However, unlike 
an elderly person, a young person has reflexes 
and the protection of the upper limbs to avoid this 
impact.

Generally speaking, the literature offers 
diverse classifications of osteoporosis. Five types 

can be distinguished: Type I: primary or due to a 
decrease in estrogen; type 2: due to aging; type 3: 
secondary or due to a genetic or acquired disease 
excluding menopause or aging, most often meta-
bolic or rheumatic diseases; type IV: idiopathic 
juvenile; type V: regional due to immobility.

3.7.1	 �Symptoms and Diagnosis 
of Postmenopausal 
Osteoporosis

The majority of postmenopausal women present 
with osteoporosis due to estrogen deficiency. 
Medical records show the osteoporosis risk-
related medical history, and thus, the indication 
for the imaging and laboratory tests that should 
be performed (Table 3.2). Early diagnosis offers 
the possibility of slowing disease progression, 
especially in cases of osteoporosis secondary to 
endocrinologic or rheumatic disease.

In general, there are no symptoms of osteopo-
rosis unless a fracture occurs which reveals the 
disease. This, among other circumstances, differ-
entiates it from osteomalacia, in which there is 
pain even if a fracture does not occur. Therefore, 
it is very common to incidentally observe verte-
bral fractures as well as a progressive decrease in 
height in osteoporotic women.

A diagnosis of osteoporosis is usually made 
when a fracture occurs. These fractures are 
generally located in the vertebral body, hip, wrist, 
humerus, rib, or pelvis. Many of them, except for 
hip and wrist fractures, occur without clinical 
episodes of pain or trauma. Therefore, the con-
cept of clinical onset of osteoporosis is related to 
the occurrence of a fracture [2, 87, 114, 115].

Nevertheless, it is believed that a more objec-
tive diagnosis of osteoporosis, especially if there 
has not been a fracture due to fragility, would be 
when the T-score is less than or equal to 2.5 SD 
of BMD measured via dual-energy x-ray absorci-
ometry (DXA) and after ruling out other causes 
of low BMD. The T-score is a comparison of a 
patient’s mean bone density with that of a healthy 
30-year-old person of the same sex and ethnicity. 
This value is used in men and postmenopausal 
women older than 50 years of age as it better pre-
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dicts the risk of future fractures. Another mea-
surement, the Z-score, is the number of SD of a 
patient with a mean bone density different from 
the mean bone density that corresponds to a per-
son of their age, sex, and ethnicity. This value is 
used in premenopausal women, men younger 
than 50 years of age, and children. It also serves 
to establish whether a patient has a mean bone 
density that is so low with respect to his/her age 
group that it leads the physician to suspect a sec-
ondary cause [7].

According to the pharmaceutical industry, all 
people who present with these abnormalities 
must have pharmaceutical treatment, even if the 
clinical situation does not indicate illness [7]. 
Moreover, the industry claims that people older 
than an unspecified age should receive pharma-
ceuticals to increase and preserve their bone 
mass. Consequently, to the majority of physi-
cians, the elderly population is in large part 
undertreated. Nevertheless, there is not enough 
evidence to support these assertions, according to 
reports from assessment agencies [5, 10, 11, 
116]. It is also important to highlight that 
although all elderly people present with osteope-
nia, only a small percentage suffer a fall and less 
than half sustain a lesion as a consequence of 
trauma. People older than 65 years of age who 
suffer a fall may have another within 1 year with-
out this necessarily entailing a fracture [117].

Various epidemiological studies have 
attempted to identify osteoporosis early in order 
to prevent complex fracture patterns. However, 
only a better understanding of the molecular 
pathways, gene expression regulators, and gene 
expression profiles related to osteoporosis can 
allow for personalized treatments to be intro-
duced [118–120]. Given that osteoporosis is 
caused by changes in the number or activities of 
osteoblasts and osteoclasts, by monitoring the 
biomarkers of these cells’ activities, trends in 
osteoporosis risk can be identified. However, the 
majority of osteoporotic fractures occur not in 
individuals with osteoporosis, but rather in indi-
viduals with osteopenic BMD. While osteopenic 
patients (T-score of BMD −1 to −2.5 SD accord-
ing to DXA testing) have an individual risk of 
fracture that is lower than osteoporotic patients 
(T-score <−2.5 SD), the larger overall number of 
osteopenic patients means that the majority of 
fractures will occur in this subset of the total pop-
ulation [121].

Therefore, the positive predictive value of 
abnormal BTM levels for accelerated bone loss 
in elderly white women is modest [122]. Due to 
the low efficiency and cost-effectiveness of 
detection programs, use of BTMs as a public 
health measure for identifying patients at 
increased risk of rapid bone loss is not currently 
recommendable [116].

The bone equilibrium index is a creative solu-
tion to this problem. It is based on a regression to 
determine the relative quantities of osteocalcin 
(OC) versus urine NTX observed in a cohort of 
patients with stable bone mass [123]. Patients are 
then evaluated in relation to this regression stan-
dard in order to determine if their quantity of 
NTX in relation to osteocalcin is greater than or 
less than the expected quantity that corresponds 
to stable bone mass.

It is necessary to distinguish between the 
capacity of BTMs to predict bone loss, as dis-
cussed above, and their capacity to predict frac-
ture risk, as patients may have markedly different 
fracture risks but the same general level of bone 
mass due to demographic variations, clinical fac-
tors, and bone microarchitecture.

Table 3.2  Osteoporosis risk factors

Osteoporosis risk factors
 �� –  Age.
 �� –  Female sex.
 �� –  Caucasian or Asian race.
 �� –  Primary or secondary hypogonadism.
 �� –  Primary or secondary amenorrhea.
 �� –  Weight (BMI).
 �� –  Alcohol/tobacco/caffeine consumption.
 �� –  Medical history of fracture due to fragility.
 �� –  Use of glucocorticoids.
 �� –  Type I diabetes.
 �� –  Untreated hyperthyroidism
 �� –  Hyperparathyroidism
 �� –  Chronic liver disease
 �� –  Malnutrition-malabsorption
 �� –  Low dietary calcium intake, or vitamin D 

deficiency
 �� –  Low physical activity, prolonged immobilization
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In general, prospective studies that analyze the 
relationship between bone formation markers and 
posterior fracture risk have not demonstrated a clear 
utility for anabolic BTMs for this purpose [122]. On 
the contrary, many studies have demonstrated that 
an increase in bone resorption markers is predictive 
of fracture due to posterior fragility [124].

Comorbid clinical conditions can alter the 
relationship among BTMs for predicting fracture 
risk. One of the better studied examples is that 
measurements of BMD underestimate fracture 
risk in people with diabetes [125]. ROC analyses 
have not been able to demonstrate that a combi-
nation of low BMD and an increase in BTMs 
detects more women at risk of fracture than low 
BMD alone [126].

In conclusion, though BTMs are powerful 
research tools for epidemiologists who study 
populations’ fracture risks, the current evidence 
is insufficient for recommending their routine use 
for identifying individual patients who would 
optimally benefit from pharmaceutical therapies 
for osteoporosis. However, a distinction must be 
made for patients with “secondary” bone loss for 
reasons such as hyperparathyroidism, hyperthy-
roidism, vitamin D deficiency, and paraprotein-
emia, as BTMs may be useful for these subgroups 
of higher-risk patients.

Furthermore, unlike the limitations of the use 
of BTMs to identify patients at risk for rapid 
bone loss, their use in guiding osteoporosis ther-
apy has a clearer potential utility. The pattern of 
change in BTMs in response to treatment is well-
described. These changes have been used to pre-
dict both increases in bone density and therapeutic 
efficiency for reducing fracture risk.
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