
Migrating from a Centralized Data
Warehouse to a Decentralized Data

Platform Architecture

Antti Loukiala1(B), Juha-Pekka Joutsenlahti2, Mikko Raatikainen3 ,
Tommi Mikkonen3,4 , and Timo Lehtonen1

1 Solita Ltd., Tampere, Finland
{antti.loukiala,timo.lehtonen}@solita.com

2 TietoEVRY, Tampere, Finland
juha-pekka.joutsenlahti@tietoevry.com
3 University of Helsinki, Helsinki, Finland

{mikko.raatikainen,tommi.mikkonen}@helsinki.fi
4 University of Jyväskylä, Jyväskylä, Finland

tommi.j.mikkonen@jyu.fi

Abstract. To an increasing degree, data is a driving force for digiti-
zation, and hence also a key asset for numerous companies. In many
businesses, various sources of data exist, which are isolated from one
another in different domains, across a heterogeneous application land-
scape. Well-known centralized solution technologies, such as data ware-
houses and data lakes, exist to integrate data into one system, but they
do not always scale well. Therefore, robust and decentralized ways to
manage data can provide the companies with better value give compa-
nies a competitive edge over a single central repository. In this paper, we
address why and when a monolithic data storage should be decentralized
for improved scalability, and how to perform the decentralization. The
paper is based on industrial experiences and the findings show empiri-
cally the potential of a distributed system as well as pinpoint the core
pieces that are needed for its central management.

Keywords: Data warehousing · Data platform architecture ·
Distributed data management · Data decentralization

1 Introduction

Upon becoming the driving force for digitization, data is regarded as a central
key asset by many companies. Used at an ever-increasing scale in decision making
and applications, there is a constant demand for more data, at better quality
and availability, and from a wider time horizon.

State of the practice technological solutions, such as data warehouse and
data lake, have been introduced as a solution that integrates data from disparate
sources into a central repository for analytic and reporting purposes. Thus, the
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 36–48, 2021.
https://doi.org/10.1007/978-3-030-91452-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_3&domain=pdf
http://orcid.org/0000-0002-2410-0722
http://orcid.org/0000-0002-8540-9918
http://orcid.org/0000-0001-8833-1725
https://doi.org/10.1007/978-3-030-91452-3_3


Migrating from a Centralized Data Warehouse to a Decentralized 37

solution can be considered as a central, monolithic solution that they are typi-
cally hard to scale [5]. Monolithic solutions tend to become hard to scale from
the development point of view as multiple developers are working on the same
code base making it hard to parallelize the work and in the larger systems code
base can become very complex. Monolithic solutions are usually built around
single technology that might not support all the use cases in an optimal way.
There are also other complicating factors. In particular, central data warehouse
teams require several special data management skills [1]. Furthermore, as the
data warehouse is working with business domain-specific data, the team also
requires deep domain knowledge.

The situation can be simplified with modern data engineering practices,
including the use of version control, continuous integration and deployment,
and metadata-driven data warehouse development, which automate many steps
of data modelling, making the data available for consumption faster. Similarly,
today’s technologies typically do not create bottlenecks for data management –
they usually scale well both vertically and horizontally. However, even with these
improvements, integrating enterprise data, which may originate from numerous
source systems, into a single model can lead to complex models that are hard
to build, understand, use, and maintain. Moreover, the process of distilling data
from the source to the final data warehouse model requires many, often time-
consuming steps and wide technical expertise as well as deep domain knowledge.
With this premise, centrally run data solutions even with the latest technology
become easily a bottleneck for data management. A common way to scale is to
bring in more expertise to the central team that is accountable for the solutions.
This is not always feasible because the expertise required to build, improve and
maintain these kinds of systems is very broad and hard to find in the labour
market.

In contrast to data management, scaling centralised, monolithic applications
have been addressed in software development, where sophisticated solutions have
been introduced. For instance, large systems use distributed, service-oriented
architectures, built using technologies, such as microservices, that also intro-
duce other benefits as a side-effect. In addition, new innovations, such as the
cloud, helps in scaling. However, while these technologies have been around for
a while, data management related activities and operations have not seen a sim-
ilar paradigm change.

This paper proposes decentralizing data management architecture, where
different business functions take larger responsibility of exposing their data for
general analytical use. The solution is based on experiences from a centralized
data management architecture in a large Nordic manufacturing company where
Solita1, a Nordic midcap consultancy company, has been consulting on data
related development. The Nordic manufacturing company has recently under-
gone a data decentralizing process, resulting in a decentralized data platform
architecture. Our findings empirically show the potential of such architecture as
well as indicate the core pieces that need central management.

1 http://www.solita.com.

http://www.solita.com


38 A. Loukiala et al.

While we have developed the approach and the data platform architecture
implementation independently, the recently introduced concept called data mesh
is also used to refer to a similar decentralised approach to data management. The
closest concrete data mesh-based approaches to ours, also building on designing
a scalable data architecture, have been suggested by Zhamak Deghani [2] and
ThoughtWorks [13]. However, to the best of our knowledge, neither one has
reported uses in scientific literature. For the sake of simplicity, in this paper, we
have retained our original terminology, as data mesh is such a new concept that
several variations exist in its terminology.

The rest of the paper is structured as follows. In Sect. 2, we present the
necessary background for the paper. In Sect. 3, we introduce the case context and
its setup. In Sect. 4, we provide an insight into the drivers of the modernization
process for the data architecture. In Sect. 5, which forms the core of the paper,
we introduce the new data architecture in the case system. In Sect. 6, we discuss
experiences gained in the process. In Sect. 7, we draw some final conclusions.

2 Background

Next, we introduce the key concepts of the paper. These include data ware-
housing, data lakes, data platform architecture, service-oriented architecture,
and microservices. Each of these concepts is discussed in a dedicated subsection
below.

2.1 Data Warehousing

Data warehousing [7] refers to building data storage used for reporting and ana-
lytics. A resulting data warehouse is a central repository of data extracted from
different source systems. The data is integrated and remodelled to allows easy
usage of data. Separating the analytical database in a data warehouse from
the transactional databases used in daily operations allows one to apply heavy
aggregations without compromising the operational work. Furthermore, a data
warehouse typically stores the history of the operational data. In general, suc-
cessful data warehousing requires an ecosystem of tools and capabilities to make
this possible.

Data is typically published from the data warehouse in a form of a dimen-
sional data model, which is a widely accepted way of modelling data for reporting
and analytical usage. A dimensional data model creates a data presentation layer
that simplifies the data access patterns.

To represent data from multiple sources in a common enterprise-wide format
in a data warehouse, data is remodelled into a canonical data model for better
accommodating the analytical needs. Forming a canonical model in a complex
environment consisting of numerous sources is a complex task, because of con-
textual dependencies between domains. Therefore, in order to integrate data
into a canonical data model requires heavy upfront data modelling, contextual
mapping, and deep domain knowledge of the different data sources.



Migrating from a Centralized Data Warehouse to a Decentralized 39

In order to make data warehouse development more efficient, highly special-
ized teams are formed that can deliver data for analytical applications. This
often creates bottlenecks, as adding new data into the data warehouse as well
as making new data assets available a huge amount of work.

2.2 Data Lakes

A data lake is a central repository of structured and unstructured data that can
be of any format [12] unlike in a data warehouse, where a uniform data model is
used. A data lake can speed up data availability because data is often stored in
a raw format and the schema of data is defined at the read time allowing more
flexible usage of data.

This form of storage is very suitable for data analytics and data science, as
discoveries on the data assets can be made without the requirement of heavy data
modelling upfront. A data lake also allows raw historical data storage at lower
costs, taking off some of the burdens from a data warehouse based approach.

Modern big data tools allow easy usage of the data stored in a data lake,
allowing even running SQL queries on the stored data, making it viable to store
more curated and transformed data sets within it [8]. A data lake is separated
from operational systems and therefore has little or no effect on source systems.

On the downside, even though a data lake allows more flexible access to data,
a data lake is often built in a central manner creating similar bottlenecks as a
data warehouse.

2.3 Data Platform Architecture

Modern usage of data in an organisation usually requires multiple different com-
ponents to match all the needs. We use the term data platform architecture to
refer to the architecture that defines how a data platform connects the different
data sources to a bigger whole, enabling the use of data in a similar fashion one
expects in a centralized approach. This includes fundamental structures, ele-
ments, and their relations to each other that are designed to match the strategic
goals set by the company on data management.

Data platform architecture needs to fit the organisation and its strategic
goals. Even though there is no single way of realizing a data platform architec-
ture, a data platform is typically seen as a central service, maintained by a single
team. Even in modern data platforms that are composed out of multiple func-
tional elements, the platforms are very centrally built. Even though the platform
approach can tackle demanding needs for diverse data analysis needs, a complex
and large realization of centrally managed architecture suffers from an ability to
scale.

The data platform architecture implementation we have composed is based on
design principles from software design. The overall framework follows principles
of service-oriented architecture, and microservices are used as the underlying
implementation technique.



40 A. Loukiala et al.

2.4 Service Oriented Architecture

Scaling large software development is not a new problem. In a service-oriented
architecture (SOA), the software is separated into functions that provide services
to other applications [10]. Every service in SOA is an independent, reusable, and
discrete service that is decoupled from the other services and can be therefore
developed and scaled independently [11]. A service is not tied to any technology
but is a more abstract concept allowing each service to be built with the best
technology available by a dedicated team. Even though the SOA has evolved
and new even more distributed architectures have been introduced, the key to
scaling remains in the distribution.

SOA integrates modular, distributed, and independent services [11]. The
emphasis is on the communication and cooperation taking place usually over
the network. An application programmable interface (API) is a central concept
in SOA, as an API defines the communication interfaces. As with any distributed
system, the definitions of used standards and technologies enable this communi-
cation to take place in the most convenient manner.

2.5 Microservice Architecture

Micro service architecture (MSA) [9] is an implementation technique that fol-
lows the ideals of SOA, but further emphasises the decentralized, distributed, and
independent services. Much like the principles in SOA, modern MSAs are built
using RESTful APIs that formalise the interfaces for communication between
independent services. Such independent services provide scalability, flexibility,
and reliability for agile development of business-centric systems [5]. Further-
more, self-contained systems with loose coupling enable continuous deployment
according to customer’s agile needs.

In MSA, each service is working on its dedicated business function and there-
fore should focus on that function solely [9]. This is somewhat opposite to form-
ing a company-wide canonical data model, requiring heavy upfront investment
and complex integration patterns. Instead, the focus in MSA is on the data and
ontology of one business function alone. This approach is based on one of the core
patterns of domain-driven design, called bounded context [3]: Large models are
separated into explicit, internally consistent bounded contexts usually around a
specific business function. This bounded context creates a place for ubiquitous
language within its boundaries simplifying the data models.

The modularity of services adhering to MSA enables developing services inde-
pendently of each other, thus supporting continuous software engineering [4] to
take place. Modularity also allows each service to be technologically indepen-
dent of each other, and hence the teams building the services can choose the
best tools for the job they are performing. Each service can easily adapt to
changes in demand by scaling human resources and technical resources, decou-
pled from other services. Legacy systems can be re-engineered incrementally by
breaking parts of the legacy system functionality into individual services [6].



Migrating from a Centralized Data Warehouse to a Decentralized 41

Finally, services can be monitored easily, in varying detail, depending on the
needs and critically of the service in question.

Even though MSA has been around for a while in software development and
used successfully as a way to scale applications, the architectural model of MSA
has not been implemented in the field of data management. The data platform
architecture is often designed to be a centralised system owned by a single team
from IT.

3 Case Context and Challenges

We use a large Nordic manufacturing company as the case context in this study.
The company operates in global markets. The company has several organiza-
tional units in different business domains and numerous partner companies in
its business ecosystem. The operations are not limited to manufacturing but
different post-sales services are also important.

Originally, the data management strategy of the company consisted of a
central data warehouse as presented at top of Fig. 1. The data warehouse had
been used for years and was running in a local data centre. An ETL (extract,
transform, and load) tool was used to integrate data from multiple source systems
into the data warehouse as well as re-model the data into dimensional data marts
for reporting purposes. The central integration team provided a data bus, which
was used wherever possible to support defining integration patterns.

The applications landscape based on data in the data warehouse was vast,
including several hundreds of operational systems. The application landscape
was also very heterogeneous in terms of age and technology. The development
and operation models for the applications differed including in-house build appli-
cations, licensed off-the-self applications, and software-as-service applications
from external vendors. Some of the applications were owned and operated by
the company’s partners. Applications were used in different business domains,
linked to different business processes, and some used along with partners.

This legacy architecture had started to introduce several challenges for the
business. With an old and heterogeneous application landscape, data from many
of the operational source systems were not accessible for analytical or reporting
use nor to the data warehouse. This was due to security reasons, performance
issues, or networking limitations. As the data warehouse was in many cases the
only way to access the data stored in the operational systems, the data warehouse
was used for operational purposes as well analytical ones.

This central- and multi-role of the data warehouse kept increasing the num-
ber and complexity of requirements for the data warehouse as new data sets
were requested constantly by different business domains for different purposes.
Years of data warehouse development, when multiple operational systems were
integrated into the central system, made the data model of the data warehouse
very complex. Also the loading logic, as well as business logic, were hard to
maintain. Bringing new data into the data warehouse had become cumbersome
and error-prone delaying or even blocking the development of applications based
on the data warehouse as well as breaking the existing reporting based on it.



42 A. Loukiala et al.

Fig. 1. Top: A high-level architecture of the existing centralized data management
based on the data warehouse. Bottom: High-level architecture of our decentralized
data platform.

Data management in charge of the data warehouse was limited in resources
and had a hard time finding competent people to work with the ever-increasing
complex context of the data warehouse. With the increasing amount of data
loaded and modelled in the data warehouse, from multiple different business
domains, caused a centralized team to become a bottleneck. Simply scaling
around these central services and the central team of the data warehouse was
not truly an option anymore.

4 Drivers of Modernization

The company had a high-level, strategic objective: take better advantage of data
in its business operations that placed extra pressure and demand for the central



Migrating from a Centralized Data Warehouse to a Decentralized 43

data warehouse. The company was constantly looking into digitization and better
usage of data. To guide this development, among the several principles were to
be API and data-driven.

To make the data trapped in legacy applications available for wider analysis,
the company started to modernize the legacy applications by building modern
API facades on top of them about four years ago. The APIs simplified and
even made possible the usage of the data from the legacy applications. In many
cases, business domains, however, needed more data than what APIs provided.
In particular, data from a longer time period was needed for analytics purposes
in order to make better decisions based on the data. The data was used in many
ways, often by data scientists who were able to create machine learning models,
train artificial intelligence features in applications, and solve business-related
analytical questions with data.

The departments of the company in different business domains were indepen-
dent, empowered, and technologically savvy and the departments had account-
ability for their work. The departments were large enough to have their own
developers, business process owners, solution owners, and other competencies
related to the business domain they were working on.

The company had decided to make a technology transition from the in-
house maintained infrastructure to a cloud-based infrastructure. The main cloud
provider was chosen already two years ago, which created a very good foundation
for a new data platform. To fully leverage the cloud, the data management team
needed to reconsider what core functionalities it would provide to the company.

The cloud-transition decision was followed by a project to modernise the data
warehouse infrastructure by moving the data into cloud-based solutions to better
match the demand for scaling with increasing volume, variety, and velocity of
data. To further support more flexible data usage, the design of a cloud-native
data lake was introduced to create more direct access to the data for analytical
purposes, as well as to support the data warehouse.

Since the organization had already elements of distributed application archi-
tecture by the means of MSA as a result of cloud transformation, it was proposed
that the data management would be fitted into this same architectural model
as well. The principle adopted from MSA was that by distributing the data
management to the different departments much alike micro services distribute
functionality, the central data management could focus more on core entities,
connecting different departments, data governance, and providing required core
services. In this data distribution, the departments would be in charge of the data
assets they consume and produce as well as applications they built. This way
the domain expertise would be placed naturally closer to the data assets they
were dealing with. Departments would communicate with each other through
curated data assets that were requested by the other departments.

A careful analysis of the technology offering being used at the time and adap-
tation of cloud services made it clear that also distributing the data platform to
domains was technologically possible. Cloud offering supported the distribution
and it was according to architectural principles.



44 A. Loukiala et al.

5 New Data Architecture

A domain-oriented distributed data platform architecture (Fig. 1, bottom) was
formed to overcome the scaling problems that the centralized data management
was facing earlier with the data warehouse and lake. Using the same patterns that
are fundamental to MSA allowed the data platform architecture to scale better.
The domain oriented distributed data platform was implemented by distribut-
ing the data platform to different business domains and defining standardised
interfaces for each domain to allow interaction between them. Each business
domain was made responsible for the data assets they were in a relationship
with as well as generating curated historised data assets for analytic usage. The
business domains also had the freedom to develop data assets in a fashion most
suitable for them as long as they adhered to defined core principles defined by
the central data management team.

The decentralised approach allowed IT to move from building applications
and data analytics into providing infrastructure, guidelines, standards, and ser-
vices for the domain teams. The domain teams were provided with a cloud
environment where they were able to readily build their applications and ana-
lytics, as well as create standardised data assets for general usage by leveraging
services provided by IT. Distributing the data development was in line with the
company’s core principles. In many cases, the business domains had indepen-
dent tech-savvy developers that made the transition of development to domains
smooth.

Some of the central services were developed in parallel to the business domain
data-intensive projects. A data lake was implemented in a distributed manner,
where each domain team hosted their own analytical data in their own data store
and, thus, formed distributed data storage. The team responsible for the data
lake focused only on providing central data cataloging capabilities, metadata
models, data standards as well as “getting started”-guides. A data warehouse
renewal project was initiated to clean up the complexity of the existing data
warehouse. The new data warehouse was to source the data from the new dis-
tributed data lake in order to form integrated data models for reports that were
used company-wide. Consequently, the data warehouse was transformed from
the central data repository to a single consumer of distributed data assets. Mas-
ter data management was also used to form some data sets that were seen as
key assets for the entire company. These data assets were shared through the
data catalogue similarly to domain-oriented data assets. These traditional data
management tools, data warehouse, data lake, and master data were distributed
and seen as components of the distributed system.

The computing infrastructure was managed by the cloud providers, as they
offered an excellent technological baseline for the distributed data platform archi-
tecture. Guidelines and standards were defined to make the data sets in the
business domains discoverable as well as interoperable forming a base of the
data governance practices. Central services included business domain agnostic
services out of which among the most important was data catalogue. All the



Migrating from a Centralized Data Warehouse to a Decentralized 45

different data sets from business domains were registered to the central data
catalogue with a very detailed data on-boarding process.

Business domains that had very little software development skills, struggled
to get on board with the distributed data platform architecture. To help such
teams getting started, the central data management team focused on bringing
the basic setup for the teams easily available as well as generic infrastructure and
code templates. The central data management team was able to guide different
teams to use specific technologies by offering a set of development tools fast and
easily but not limiting teams’ liberties with the offerings. Templates were built so
that they encouraged security and good development practices, giving a baseline
on top of which the teams were able to build own extensions. Templates were
generalized from different teams building their solutions. Later, a specialised
team was dedicated to helping kick-start different business domains analytical
data development to match the defined interfaces.

6 Experiences

The distributed data platform architecture described above removed many of
the bottlenecks that traditional data management projects had faced from the
central data warehouse and data lake. There were clear indications that hav-
ing a cross-functional development team working in the business domain along
with business stakeholders, allowed the teams to focus more clearly on business
needs being able to respond more effectively and agile fashion. The business
domains were no longer coupled with the central data warehouse or data lake
and, therefore, the business domains were not heavily dependent on these cen-
tralized services and their schedules. With the introduction of the distributed
data platform architecture idea, business domains used their own development
teams to work on the business cases most relevant to them in the prioritised
order.

The autonomous domain-oriented teams were able to work parallel to one
another as the data platform architecture distributed the data. The domain
teams were able to ingest raw data easily as they already had the source system
and data knowledge in their control as well as business-subject matter experts
in the team. Many of the domain teams worked in simple data assets composed
out of source systems most relevant to them. With the data usually combined
within the business domain, data models were kept simple and easy to manage.

Business domain data sets along with associated metadata were published in
the central data catalogue service and in this way made known to the company
internally. As the metadata contained key information about the data and some
contact information, this sparked new interactions between the domains. The
role of the data catalogues was key to making the distributed data platform
work and to govern the publishing process. Data catalogue with well-defined
metadata created the baseline for trust in the system and simplified the usage
of the data. Data catalogue allowed different teams to connect to different data
assets in an agile manner.



46 A. Loukiala et al.

Table 1. Comparison between centralized and distributed data platform architecture.

Dimension Centralized Distributed

Competency location Centralized single team Cross functional domain
teams

Technological choices Single stack Freedom of choice

Data Modeling Top-to-Bottom Bottom-up

Data governance Centered around the team
working on the model

Definition and monitoring
of interface

Business & IT Alignment IT focused Business focused

Data ownership IT owns the data and data
lineage

Business owns the data
and data lineage

Data application development IT owns applications and
the development

Business owns the
applications and
development

In many cases, the data was mainly needed by the business domain owning
the data and there were only few teams that requested data from other business
domains. In such cases, only the metadata was placed into the central data
catalogue. The actual data was only released when requested. This just-in-time
data releasing led to a more efficient and better-prioritised way of working.

Distributing the realization of data platform parts within the common data
platform architecture to the business domains allowed the IT department to
focus on enabling the business domain teams to build their data capabilities
instead of building for them in IT. IT and data management were able to focus
more on defining coherent, understandable, and usable unified data interfaces.
Having the opportunity to review data assets that were to be published, allowed
the data management team to maintain governance and quality of the system.
As many of the teams were deep in digitalization, having their own development
teams, the transition towards the distributed data platform was natural.

The distributed system required cross-functional teams to work on the issues.
It should be noted that the company had adopted an API-driven mindset, which
in turn had pushed the organisational structure towards the autonomous busi-
ness domain-oriented cross-functional teams. This can be seen to have a large
effect on the success of distributing the data management since data manage-
ment knowledge was simply yet another factor that the teams needed to master.
There were few domains that did not have development teams and had to set
a development team up in order to work in a distributed manner. In many of
these cases, the central IT was easily able to provide them with the infrastruc-
ture, templates, training, and even pioneering developers to get started.

7 Conclusions

Many larger companies are struggling to find a way to scale for the increasing
demand for data in a centralized manner. Even though scaling by distribution



Migrating from a Centralized Data Warehouse to a Decentralized 47

has been seen as an effective way of working in many fields, there seems to be
no dominant design at the moment. Rather, various proposals have been made,
but from the industrial rather than the academic perspective.

In this paper, we have presented an industrial case on distributed data plat-
form architecture. The principal contribution of the study is that centralized
data platforms stop scaling at a certain point when organization domains are
large, heterogeneous, and non-flexible by nature.

In the study, it was found out that distributed approach to data manage-
ment provides features that enable complex enterprises’ data platforms to scale
(Table 1). This approach is based on two widely known and acknowledges prin-
ciples – MSA and Domain-driven design. These principles adopted to data man-
agement and combined with agile autonomous cross-functional teams make rapid
concurrent data development possible. On one hand, MSA enables data manage-
ment to move from centralized solutions towards distributed information ecosys-
tems. On the other hand, domain-driven design specifies distribution to domains
and bounded contexts. Together, these two methodologies enable data platform
development in clusters within each business domain without the limitations
and restrictions of centralized data platform teams. Such a distributed approach
to data management facilitates data quality and interoperability by orchestrat-
ing data and information management over domain-oriented teams. This enables
data modelling without a canonical model and enables business domains to work
independently.

Acknowledgement. This work is partly funded by Business Finland under grant
agreement ITEA-2019-18022-IVVES and AIGA project.

References

1. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: Mad skills: new
analysis practices for big data. Proc. VLDB Endow. 2(2), 1481–1492 (2009)

2. Dehghani, Z.: How to move beyond a monolithic data lake to a distributed
data mesh (2019). Martin Fowler’s blog. https://martinfowler.com/articles/data-
monolith-to-mesh.html

3. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2003)

4. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

5. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pp. 243–246. IEEE (2017)

6. Kalske, M., Mäkitalo, N., Mikkonen, T.: Challenges when moving from monolith to
microservice architecture. In: Garrigós, I., Wimmer, M. (eds.) ICWE 2017. LNCS,
vol. 10544, pp. 32–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74433-9 3

7. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley Computer Publishing,
New York (2002)

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://doi.org/10.1007/978-3-319-74433-9_3
https://doi.org/10.1007/978-3-319-74433-9_3


48 A. Loukiala et al.

8. Miloslavskaya, N., Tolstoy, A.: Big data, fast data and data lake concepts. Procedia
Comput. Sci. 88, 300–305 (2016)

9. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architec-
ture: Aligning Principles, Practices, and Culture. O’Reilly Media, Inc., Sebastopol
(2016)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

11. Perrey, R., Lycett, M.: Service-oriented architecture. In: Proceedings of 2003 Sym-
posium on Applications and the Internet Workshops, pp. 116–119. IEEE (2003)

12. Stein, B., Morrison, A.: The enterprise data lake: better integration and deeper
analytics. PwC Technol. Forecast Rethink. Integr. 1(1–9), 18 (2014)

13. ThoughtWorks: Data mesh (2020). https://www.thoughtworks.com/radar/
techniques/data-mesh

https://www.thoughtworks.com/radar/techniques/data-mesh
https://www.thoughtworks.com/radar/techniques/data-mesh

	Migrating from a Centralized Data Warehouse to a Decentralized Data Platform Architecture
	1 Introduction
	2 Background
	2.1 Data Warehousing
	2.2 Data Lakes
	2.3 Data Platform Architecture
	2.4 Service Oriented Architecture
	2.5 Microservice Architecture

	3 Case Context and Challenges
	4 Drivers of Modernization
	5 New Data Architecture
	6 Experiences
	7 Conclusions
	References




