
Introducing Traceability in GitHub
for Medical Software Development

Vlad Stirbu1(B) and Tommi Mikkonen2,3

1 CompliancePal, Tampere, Finland
vlad.stirbu@compliancepal.eu

2 University of Helsinki, Helsinki, Finland
3 University of Jyväskylä, Jyväskylä, Finland

tommi.mikkonen@helsinki.fi,tommi.j.mikkonen@jyu.fi

Abstract. Assuring traceability from requirements to implementation
is a key element when developing safety critical software systems. Tra-
ditionally, this traceability is ensured by a waterfall-like process, where
phases follow each other, and tracing between different phases can be
managed. However, new software development paradigms, such as contin-
uous software engineering and DevOps, which encourage a steady stream
of new features, committed by developers in a seemingly uncontrolled
fashion in terms of former phasing, challenge this view. In this paper,
we introduce our approach that adds traceability capabilities to GitHub,
so that the developers can act like they normally do in GitHub context
but produce the documentation needed by the regulatory purposes in
the process.

Keywords: Traceability · Regulated software · Continuous software
engineering · DevOps · GitHub

1 Introduction

Assuring traceability from requirements to implementation is a key element
when developing safety critical software systems. Traditionally, this traceabil-
ity is ensured by a waterfall-like process, where phases follow each other, and
tracing between different phases can be managed with relative ease. To support
this tracing, sophisticated software systems have been implemented, which take
advantage of this phasing and help developers to focus on issues at hand in the
current phase.

However, new software development paradigms, such as continuous software
engineering [2] and DevOps [9], which encourage a steady stream of new features,
committed by developers in a seemingly uncontrolled fashion in terms of former
phasing, challenge this view. Instead of advancing in phases from specification to
design to development in the same pace with all features, developers can select
items from specification to work on, and eventually they commit new code back
to the main codebase. This code is then automatically deployed to use, leaving
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 152–164, 2021.
https://doi.org/10.1007/978-3-030-91452-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_10

Introducing Traceability in GitHub for Medical Software Development 153

virtually no trace between specification and the code, unless special actions are
taken by the developers.

In this paper, we propose introducing traceability features to GitHub, the
most popular site used by software developers. With these features, the develop-
ers can act like they normally do while developing software in GitHub context,
but also produce the documentation needed by the regulators in the process.
A prototype implementation has been built, following the ideas proposed in
[11] as future work. The work has been carried out in medical context, but we
trust that the same approach can be applied in other safety critical application
domains covered by regulations. However, in the rest of this paper, we focus on
the medical domain, as regulatory restrictions may vary across the domains.

The rest of this paper is structured as follows. In Sect. 2, we present the
background and motivation of this work. In Sect. 3, we address the concept of
design control, which is an essential part of designing software intensive medical
products. In Sect. 4, we introduce the proposed approach, relying largely on
GitHub concepts. In Sect. 5, we discuss our key observations and propose some
directions for future work in connection with the proposed approach. Finally, we
draw the conclusions in Sect. 6.

2 Background and Motivation

Medical device software development has unique needs. Its design, development,
and manufacturing processes are strictly regulated. To comply with these regula-
tions, there must be proper control mechanisms in place to ensure the end prod-
uct’s safety, reliability, and ability to meet user needs. These control mechanisms
originate from the regulations’ requirements, corresponding guidance documents,
international standards, and national legislation. However, their plentiful exis-
tence is one of the reasons medical software is often considered a complex domain
by developers.

In more detail, for every phase within the product lifecycle – design, devel-
opment, manufacturing, risk management, maintenance, and post-market pro-
cesses – certain standards must be followed for regulatory compliance. The set
of applicable standards for software include general requirements for health soft-
ware product safety (IEC 82304-1) [5], software life cycle process (IEC 62304 [3]),
risk management process (ISO 14971 [7]), and usability engineering (IEC 62366-1
[4]). Furthermore, the manufacturers are expected to have a quality management
system that must comply with further associated regulations – requirements of
the Medical Device Quality Systems standard ISO 13485 [6] or its US coun-
terpart, US FDA 21 CFR part 820. These standards form a minimum yet an
overwhelming set of regulations to consider when developing medical devices
with software.

To ensure compliance to the above standards, plan-driven methodologies have
been the preferred way to develop products in regulated industries. Their cultural
affinity with the language and format used by standards referred to above have
made them the natural choice. However, the long feedback loops that character-
ize these methodologies are even longer in the high ceremony process required to

154 V. Stirbu and T. Mikkonen

comply with regulations. Furthermore, these practices are often somewhat dis-
tant from development activities that are used in non-regulated software devel-
opment. Sometimes Application Lifecycle Management (ALM) tools, commonly
used in regulated development, amplify this distance rather than helping to
overcome it.

The situation becomes particularly complex when working with medical sys-
tems that consist of software only. The developers may have no experience at all
in regulated activities, and, once the development activities are initiated, they
should have adequate knowledge in regulation-related tasks as a part of the devel-
opment. Although, the legally binding legislation texts and international stan-
dards describe the expected results, they do not describe how to achieve those
results. Therefore, practical expertise is required to define the steps required to
achieve the objectives [8]. To complicate matters further, many of the available
ALM tools require that the developers invest time and effort to keep them in
sync instead of relying on automation.

To deal with the situation, software developers – who are professionals in soft-
ware development, not regulation – often resort to compliance over-engineering
or adding extra effort to compliance-related activities to play it safe. This some-
times results in a view that compliance as the necessary evil that must be consid-
ered but has little practical relevance. Consequently, the compliance activities
are often put aside while creating software and resurrected only when a new
feature development task is completed. This resurrection often needs support
from dedicated compliance personnel, which might not be fluent with the latest
development methodologies.

The developers are not all wrong. The benefits of agile methods and contin-
uous software engineering also apply to medical software. Still, using them in
medical software development introduces the same concerns as with any tech-
nology – how to deal with legal and regulatory bindings in a new context [12].
This culminates in the context of continuous software development, where new
releases can be made several times a day, but this is not leveraged because of reg-
ulatory constraints. Instead, the developers are stopped from deploying things
until all the compliance and regulatory related processes are complete, breaking
the natural flow of the development team.

To complicate matters further, regulatory affairs professionals have often
practiced in environments where the medical devices always include hardware,
and where they typically follow linear development model. Hence they might
not have the skills and experience to operate in an agile software development
environment, in particular when medical devices that only include software are
considered.

3 Design Control in Software Intensive Medical Products

The concept of design control is a key element of a quality management system,
which ensures that the manufacturer is able to deliver products that fulfill the
user needs. The manufacturer is able to ensure, via systematic reviews, that

Introducing Traceability in GitHub for Medical Software Development 155

Review
User Needs

Review
Design Input

Review
Design Process

Verification
Review

Design Output

Validation Medical Device

Fig. 1. Application of design controls to waterfall design process [1]

the identified user needs are transformed into actionable design inputs that can
be used in a design process to obtain the design output, which serves as the
medical device. Besides the reviews, the manufacturer needs to perform specific
activities that ensures that the design output verifies the design input, and that
the resulting medical device validates the user needs, as illustrated in Fig. 1.

For software intensive medical products the design control activities can be
split into two layers, depicted in Fig. 2: the product and system development
activities (IEC 82304 [5]), and the software development activities (IEC 62304
[3]). At the product level, the identified user needs are converted to system
requirements that serve as design inputs for the software development process.
During software development, the system requirements are transformed into high
level software requirements that cover the software system and architectural
concerns. Later on, the high level software requirements are further distilled into
low level software requirements that serve as design input for implementation.

The resulting code, test cases and various other artifacts, such as architecture
and detailed module design documentation, created during the software develop-
ment activities, serve as the design outputs. The review of the artifacts and the
automated test result provide an effective verification procedure at unit, inte-
gration and system level. Automated acceptance tests together with the result
reports of clinical trials serve as the validation procedure. All these procedures
ensure that the proper design controls have been applied during development,
resulting in a medical product that meets the user needs.

The design control activities mentioned in IEC 82304 and IEC 62304 are
intended to describe only the required activities and desired outcomes, but not
the practical ways to achieve them. This approach gives the medical device man-
ufacturers the leeway that allows them to customise their quality management
system and software development methodology to reach the intended results.
However, it is up to the manufacturers to ensure that the defined quality man-
agement system and methodology are compliant to the regulatory requirements.

156 V. Stirbu and T. Mikkonen

High level SW
requirements/

Architectural design

Low level SW
requirements/

Detailed design
Unit test

Integration test

System test

Acceptance test

System requirements

Use requirements

User needs User needs met

System development activities

Software development activities

Implementation

IEC 82304

IEC 62304

Verification

Verification

Verification

Validation

Fig. 2. System and software development design control activities

4 Proposed Approach

In the following, we describe our approach for implementing effective design
controls and collect traceability artifacts using the GitHub native capabilities.
First, we describe the information model used for implementing the traceability.
We continue with an overview of the GitHub capabilities that serve as enablers
of traceability infrastructure. Then, based on a prototype implementation, we
describe how we mapped the information model into the GitHub context, and
how we automated the traceability process using GitHub actions.

4.1 Traceability Information Model

To be effective for a software intensive product, the design controls and the
traceability audit trail have to be applied to the concepts and tools that are
used by the development team during their daily activities. In this context, a
team developing medical product using an agile software development method-
ology and DevOps practices would be familiar with concepts like requirements
that cover high level concepts such as user stories, or fine grained details of an
implementation. They would be refining the user stories into implementation
specifications during the iteration planning, would implement the requirements,
and would integrate the product increment after the successful iteration review.

Our approach leverages this situation and builds an information model
around user needs. The user needs are refined into system requirements, that are
further decomposed into high level and low level software requirements. Each user
need can validated by one or more acceptance test case. Similarly, a requirement
can be verified using a relevant test suite at unit, integration or system level,

Introducing Traceability in GitHub for Medical Software Development 157

User needs

Requirement

Change request

Test case

refines

resolves

verifies

validates

part of

1

1

1

1..n

1..n

0..n

1..n

1

1

1

Fig. 3. Traceability information model

matching the corresponding requirement scope. The user needs, requirements
and test cases serve as design inputs. The implementation of a requirement is
modeled as a single change request. The change request bundles the code changes,
configurations needed to build and run the iteration in scope, automated and
manual test results, as well as design artifacts that describe the architecture
and detailed implementation of a module. Together, the contents of the change
request represents the design output. The change request becomes part of the
product after it is verified in a formal review. The entities and the links between
them convey in an effective manner the design control and the evidence in the
form of an audit trail. The resulting traceability information model is depicted
in Fig. 3.

4.2 Native GitHub Enablers

Over the years, GitHub has expanded their offerings with features beyond git. In
the following, we provide a brief overview of the capabilities leveraged for design
control and traceability in our prototype implementation.

Issues. Every GitHub hosted repository has an Issue section that enables teams
to document and track the progress of requirements, specifications of work items,
software bugs, feedback from users relevant for the scope of the software devel-
oped in the respective repository. An issue has a short title and a body that
contains the detailed description using markdown1. The body can include ref-
erences to other issues in the same or in a different repository. The references
build semantic links between various issues, that can be traversed using the web
user interface. Besides the title and the body that contains the description, the
issue has associated metadata like labels, which allows categorization of issues,
and assignees, which allows tracking who is performing the work.

1 https://github.github.com/gfm/.

https://github.github.com/gfm/

158 V. Stirbu and T. Mikkonen

Pull Requests. GitHub flow is a lightweight branching model that allows teams
to work on several work items simultaneous. With this model, the workflow
starts with a branch that is created from the code main branch. As the feature
is developed the changes are committed to the branch. When the feature imple-
mentation is considered complete, the pull request is opened signaling the intent
to merge into the main branch. Opening the pull request marks the beginning
of the review phase, during which the assigned members of the team discuss the
changes created by the implementation, and fix any problems that are identified.
To facilitate the review process, GitHub runs automated test and include the
results in the pull request metadata. When the review is complete the feature
is merged and becomes part of the product. Linking a pull request with the
corresponding issues that describes the feature is achieved by using keywords
followed by the reference in the pull request description, e.g. resolves #10.

Actions. GitHub makes easy to automate the software development workflows
with actions. Although the actions are typically used for automating the build-
ing, testing and deploying steps of a software development process, they can be
used for other purposes due to their ability to run custom jobs in response to any
GitHub event, or even third party events. As such, actions are an effective way
to extend the functionality of GitHub and enforce custom workflows, relieving
team members from doing repetitive compliance related jobs that can be done
better with automation.

4.3 Prototype Implementation

The prototype implementation relies on the GitHub native capabilities described
above. The key features of the prototype are introduced below.

Mapping to GitHub Native Capabilities. As a first step in implementing
the design controls and traceability audit trail, we need to map the informa-
tion model to the capabilities available in GitHub. The use needs, the system
and software requirements are implemented as issues labelled with the following
labels: need, system requirement and software requirement. The issue creation
in the correct format is facilitated by issue templates, which relieves the creator
from the chores of ensuring that the issue structure (e.g. sections) and labels
are fulfilled. The change requests are implemented with pull requests, while the
structure of the pull request is enforced using the pull request template. The
relations between issues are implemented using references. Finally, the test cases
are described using Gherkin syntax2 or Robot Framework3. The mapping is
summarised in Table 1.

2 https://cucumber.io/docs/gherkin/reference/.
3 https://robotframework.org.

https://cucumber.io/docs/gherkin/reference/
https://robotframework.org

Introducing Traceability in GitHub for Medical Software Development 159

Table 1. Mapping traceability to GitHub native capabilities

Traceability GitHub capability Implementation

User need Issue User need template

System requirement Issue System requirement template

Software requirement Issue Software requirement template

Change request Pull request Pull request template

Relations References Reference to related concepts in
issues and pull requests body

Test case - Gherkin or robot framework

Issue section

Section description

partOf: #6

Listing 1: Issue body source with requirement relationship metadata

Conveying Parent Requirement Relationships. While GitHub is capable
of encoding relationships between the issues, it lacks the ability to add semantics
to the relationship. In our implementation, we decided to add the semantic
information using the frontmatter, a YAML4 formatted object that encodes issue

Fig. 4. GitHub rendering of an issue containing requirement relationship metadata

4 https://yaml.org/spec/1.2/spec.html.

https://yaml.org/spec/1.2/spec.html

160 V. Stirbu and T. Mikkonen

Description

Issue description

Traceability

Related issues

- [] Subtask Issue (#7)

Listing 2: Issue body source with sub-requirements encoded as a checklist

metadata, typically located at the beginning or the end of the issue’s description.
The parent issue is indicated using partOf metadata. In the issue body presented
in Listing 1, the parent of the issue is the issue #6 in the same repository. The
issue is rendered by GitHub as seen in Fig. 4.

Visualizing Related Sub-requirements. To better visualize the issues that
have been refined in sub-requirements, we are using the ability of GitHub to
render markdown checklists. In Listing 2, we can see that the issue #7 defined
earlier is listed as a related issue in its parent issue #6. We can also encode
the status (e.g. open or closed), depending on the state of the corresponding
checklist item. The GitHub rendering of this issue is depicted in Fig. 5.

Fig. 5. GitHub rendering of an issue containing sub-requirements

Introducing Traceability in GitHub for Medical Software Development 161

@issue-7

Scenario: New test case

Given initial state

When the trigger

Then resulting state

Listing 3: Test case described using Gherkin syntax

Linking Change Request with Requirements and Test Cases. GitHub
has a built-in ability to link pull requests with issues using keywords such as
Resolves followed by a reference to the corresponding issue. The capability
goes further, as when an pull request is merged the linked issue is automati-
cally closed. Our prototype implementation leverages this capability for build-
ing the traceability audit trail between the change request with the requirement
resolved by it. In addition we construct relationships between the new test cases
introduced by the pull request and the requirement. For example, the test case
described in Listing 3, indicates that the new scenario tagged with @issue-7
corresponds to requirement #7. The information is included an the Traceability
section of the issue and rendered by GitHub as seen in Fig. 6.

Fig. 6. GitHub rendering of an issue resolved by a change request and the associated
test cases

162 V. Stirbu and T. Mikkonen

Automation with GitHub Actions. GitHub user interface is able to render
the descriptions of the issues, enabling the users to see the traceability informa-
tion and traverse the link relations. However, crafting by hand the markdown
according to the conventions used in this prototype implementation is laborious
and prone to errors.

To overcome this obstacle, we have automated the process using GitHub
actions. Our custom action reacts to issue and pull request events as follows.
When an issue event is triggered, the action inspects the body of the issue
looking for parent relationship. If found, the action updates the parent issue
with information about sub-requirements. Similarly, when the pull request event
is received, the action detects which issue the change resolves and updates the
corresponding information about the test cases. When an issue is merged the
status change is reflected in the issue by GitHub and out action updates the
status in the parent requirement. As a result, the process of crafting the issue
descriptions is performed mostly automated, leaving only two steps in which the
user input is needed to indicate the parent relationship and the new issue.

5 Discussion

Based on the experiences with the prototype, we next consider two key goals of
this work. These address the effectiveness of audit trail traceability in practice,
and tooling issues of software development and regulatory activities.

Traceability Audit Trail Effectiveness. Our approach enables compliance
officers to perform their activities using the same tool used by the development
team. They are able to track the decomposition of the design inputs in form
of labelled GitHub issues, starting with the system requirements, going through
the high level software requirements, and ending with the low level or detailed
software requirements. The change management is performed at every level dur-
ing the pull request review phase, which serves also as a design control. During
the pull request review, the regulatory activities are performed and the evidence
trail is collected by building relationships between requirements, test cases and
artifacts contained in the pull request, according to the traceability information
model. The highly automated process, with human input limited to very specific
procedures, enables rapid and continuous software certification without the need
of special tools (e.g. Sherlock [10]).

Lightweight formats familiar to developers like markdown, serve as effec-
tive means to document design inputs (e.g. issues), and design outputs (e.g.
software architecture and design augmented with PlantUML5 or Mermaid6 dia-
grams). Being text-based, these design documents can be properly version either
directly into GitHub, as is the case of issues, or in the git repository for all other
documents. Additionally, keeping the design documents close to the code and

5 https://plantuml.com.
6 https://mermaid-js.github.io/mermaid/.

https://plantuml.com
https://mermaid-js.github.io/mermaid/

Introducing Traceability in GitHub for Medical Software Development 163

performing the change management activities in a single step (e.g. pull request
review) ensures that the documentation is properly maintained, following the
software development pace.

Common Tooling for Software Development and Regulatory Activ-
ities. Traditionally, ALM tools address product lifecycle management, cov-
ering governance, development, and maintenance. These include management,
software architecture, programming, testing, maintenance, change management,
integration, project management, and release management. However, as already
mentioned, these often require manual interventions from developers, and a
waterfall-like approach favored by compliance officers is often prescribed in them
as the advocated process. Hence, a divide between software developers and com-
pliance officers emerges.

Distributed teams, sophisticated version management systems, and increas-
ing use of real-time collaboration have given rise to the practice of integrated
application lifecycle management, or integrated ALM, where all the tools and
tools’ users are synchronized with each other throughout the application devel-
opment stages. The proposed tool falls to this category, building on these capa-
bilities that are immediately available in GitHub and on an extensions that
support tracing the artifacts needed for compliance reasons. This in essence
integrates regulatory activities in the continuous software engineering pipeline.
This in particular concerns pull requests, which are the way to introduce changes
to software, but which can also be used as means to manage compliance with
respect to changes in code.

The proposed implementation is at present only at prototype stage. However,
although the approach looks rough comparing with the much more polished
ALM tools, it has several benefits that can be associated with the use of state-
of-the-art software engineering tools and associated ecosystems. These include (i)
leveraging a large 3rd party DevOps tools ecosystem, which includes numerous
beneficial tools and subsystems that are available either in open source or as
hosted services; (ii) the solid GitHub APIs, which are used in numerous GitHub
projects; and (iii) close integration with popular development environments such
as Visual Studio Code7.

Limitations and Future Work. The effective use of the proposed approach
requires a level of familiarity with GitHub and related the DevOps ecosystem.
Although this should be the case for experienced software-intensive organiza-
tions, traditional medical device manufacturers and compliance professionals
may find it difficult to switch from an integrated document oriented compliance
process to one where the documentation is managed as code and the authoring
tools are not word processors or spreadsheet applications. Better authoring tools
and simpler ways of navigating the GitHub user interface for non-programmers
would simplify the adoption process and make this way of working more
accessible.
7 https://code.visualstudio.com.

https://code.visualstudio.com

164 V. Stirbu and T. Mikkonen

6 Conclusions

Developing regulated software is often considered as an activity that is com-
plicated by compliance related aspects, such as traceability and risk manage-
ment. For many organizations, this has meant using waterfall-like development
approaches, where the sequential phases help in managing traceability. However,
such approach in essence eliminates the opportunity to use agile or continuous
software engineering methods.

To improve the situation, in this paper we have described our approach
that expands the GitHub functionality with traceability from requirements to
implementation, a key element when developing safety critical software systems.
Our prototype implementation demonstrates that GitHub serves as an effective
design control mechanism, allowing regulatory professionals to conduct their
regulatory activities alongside software developers.

Acknowledgements. The authors would like to thank Business Finland and the
members of the AHMED (Agile and Holistic MEdical software Development) consor-
tium for their contribution in preparing this paper.

References

1. FDA - Center for Devices and Radiological Health: Design Control Guidance for
Medical Device Manufacturers (1997)

2. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

3. International Electrotechnical Commission: IEC 62304:2006/A1:2015. Medical
device software - Software life-cycle processes (2015)

4. International Electrotechnical Commission: IEC 62366-1:2015. Medical devices -
Part 1: Application of usability engineering to medical devices (2015)

5. International Electrotechnical Commission: IEC 82304-1:2016. Health software -
Part 1: General requirements for product safety (2016)

6. International Organization for Standardization: ISO 13485:2016. Medical devices
- Quality management systems - Requirements for regulatory purposes (2016)

7. International Organization for Standardization: ISO 14971:2019. Medical devices
- Application of risk management to medical devices (2019)

8. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: DevOps in regulated software devel-
opment: case medical devices. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results Track
(ICSE-NIER), pp. 15–18. IEEE (2017)

9. Lwakatare, L.E., et al.: DevOps in practice: a multiple case study of five companies.
Inf. Softw. Technol. 114, 217–230 (2019)

10. Santos, J.C.S., Shokri, A., Mirakhorli, M.: Towards automated evidence generation
for rapid and continuous software certification. In: 2020 IEEE International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW), pp. 287–294 (2020)

11. Stirbu, V., Mikkonen, T.: CompliancePal: a tool for supporting practical agile and
regulatory-compliant development of medical software. In: 2020 IEEE International
ConferenceonSoftwareArchitectureCompanion(ICSA-C),pp.151–158.IEEE(2020)

12. Wagner, D.R.: The keepers of the gates: intellectual property, antitrust, and the
regulatory implications of systems technology. Hastings LJ 51, 1073 (1999)

	Introducing Traceability in GitHub for Medical Software Development
	1 Introduction
	2 Background and Motivation
	3 Design Control in Software Intensive Medical Products
	4 Proposed Approach
	4.1 Traceability Information Model
	4.2 Native GitHub Enablers
	4.3 Prototype Implementation

	5 Discussion
	6 Conclusions
	References

