
Luca Ardito
Andreas Jedlitschka
Maurizio Morisio
Marco Torchiano (Eds.)

LN
CS

 1
31

26

Product-Focused 
Software Process Improvement
22nd International Conference, PROFES 2021
Turin, Italy, November 26, 2021
Proceedings



Lecture Notes in Computer Science 13126

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873


More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408


Luca Ardito • Andreas Jedlitschka •

Maurizio Morisio • Marco Torchiano (Eds.)

Product-Focused
Software Process Improvement
22nd International Conference, PROFES 2021
Turin, Italy, November 26, 2021
Proceedings

123



Editors
Luca Ardito
Politecnico di Torino
Torino, Italy

Andreas Jedlitschka
Fraunhofer Institute for Experimental
Software Engineering
Kaiserslautern, Rheinland-Pfalz, Germany

Maurizio Morisio
Politecnico di Torino
Torino, Italy

Marco Torchiano
Politecnico di Torino
Torino, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-91451-6 ISBN 978-3-030-91452-3 (eBook)
https://doi.org/10.1007/978-3-030-91452-3

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0501-7886
https://orcid.org/0000-0003-3590-6331
https://orcid.org/0000-0001-7362-906X
https://orcid.org/0000-0001-5328-368X
https://doi.org/10.1007/978-3-030-91452-3


Preface

On behalf of the PROFES Organizing Committee, we are proud to present the pro-
ceedings of the 22nd International Conference on Product-Focused Software Process
Improvement (PROFES 2021). Due to the COVID-19 outbreak, the conference was
held in a hybrid format on November 26, 2021.

Since 1999, PROFES has established itself as one of the top recognized interna-
tional process improvement conferences. In the spirit of the PROFES conference series,
the main theme of PROFES 2021 was professional software process improvement
(SPI) motivated by product, process, and service quality needs.

PROFES 2021 is a premier forum for practitioners, researchers, and educators to
present and discuss experiences, ideas, innovations, as well as concerns related to
professional software development and process improvement driven by product and
service quality needs. PROFES especially welcomes contributions emerging from
applied research to foster industry-academia collaborations of leading industries and
research institutions.

The technical program of PROFES 2021 was selected by a committee of leading
experts in software process improvement, software process modelling and empirical
software engineering. Two Program Committees were formed from qualified profes-
sionals: one for the full and short tracks and one for the industrial track. This year, 36
full research papers were submitted. After a thorough evaluation that involved at least
three independent experts per paper, 14 full technical papers were finally selected (39%
acceptance rate). In addition, we had 5 industry paper submissions, 3 of which we
accepted for the final program. Furthermore, we received 7 short paper submissions, of
which 3 were accepted.

Each submission was reviewed by at least three members from the PROFES
Program Committees. Based on the reviews and overall assessments, the program
chairs took the final decision on acceptance.

The technical program consisted of the following sessions: Agile and Migration,
Requirements, Human Factors, and Software Quality.

Continuing the open science policy adopted since PROFES 2017, we encouraged
and supported all authors of accepted submissions to make their papers and research
publicly available.

We are thankful for the opportunity to have served as chairs for this conference. The
Program Committee members and reviewers provided excellent support in the papers.
We are also grateful to all authors of submitted manuscripts, presenters, keynote



speakers and session chairs, for their time and effort in making PROFES 2021 a
success. We would also like to thank the PROFES Steering Committee members for
their guidance and support in the organization process.

October 2021 Luca Ardito
Andreas Jedlitschka
Maurizio Morisio
Marco Torchiano

vi Preface



Organization

General Chair

Maurizio Morisio Politecnico di Torino, Italy

Program Co-chairs

Andreas Jedlitschka Fraunhofer IESE, Germany
Marco Torchiano Politecnico di Torino, Italy

Industry Papers Co-chairs

Alessandra Bagnato Softeam, France
Michael Klaes Fraunhofer IESE, Germany

Short Paper Co-chairs

Riccardo Coppola Politecnico di Torino, Italy
Barbara Russo Free University of Bozen Bolzano, Italy

Journal First Chair

Antonio Vetrò Politecnico di Torino, Italy

Proceedings Chair

Luca Ardito Politecnico di Torino, Italy

Local Arrangement Chair

Mariachiara Mecati Politecnico di Torino, Italy

Web Co-chairs

Simone Leonardi Politecnico di Torino, Italy
Diego Monti Politecnico di Torino, Italy

Program Committee Members (Full Research Papers, and Short
Papers)

Andreas Jedlitschka Fraunhofer IESE, Germany
Marco Torchiano Politecnico di Torino, Italy



Sousuke Amasaki Okayama Prefectural University, Japan
Maria Teresa Baldassarre University of Bari, Italy
Andreas Birk SWPM, Germany
Luigi Buglione ETS, Canada
Danilo Caivano University of Bari, Italy
Marcus Ciolkowski QAware GmbH, Germany
Bruno da Silva California Polytechnic State University, USA
Maya Daneva University of Twente, The Netherlands
Michal Dolezel Prague University of Economics and Business,

Czech Republic
Christof Ebert Vector Consulting Services GmbH, Germany
Davide Falessi University of Rome Tor Vergata, Italy
Michael Felderer University of Innsbruck, Austria
Xavier Franch Universitat Politècnica de Catalunya, Spain
Ilenia Fronza Free University of Bozen-Bolzano, Italy
Lina Garcés UNIFEI, Brazil
Carmine Gravino University of Salerno, Italy
Noriko Hanakawa Hannan University, Japan
Jens Heidrich Fraunhofer IESE, Germany
Helena Holmström Olsson University of Malmö, Sweden
Martin Höst Lund University, Sweden
Frank Houdek Daimler AG, Germany
Letizia Jaccheri Norwegian University of Science and Technology,

Norway
Andrea Janes Free University of Bozen-Bolzano, Italy
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro, Brazil
Petri Kettunen University of Helsinki, Finland
Jil Klünder Leibniz Universitӓt Hannover, Germany
Marco Kuhrmann University of Passau, Germany
Filippo Lanubile University of Bari, Italy
Jingyue Li Norwegian University of Science and Technology,

Norway
Tomi Mӓnnistö University of Helsinki, Finland
Kenichi Matsumoto Nara Institute of Science and Technology, Japan
Sandro Morasca Università degli Studi dell’Insubria, Italy
Silverio

Martínez-Fernández
Universitat Politècnica de Catalunya, Spain

Juergen Muench Reutlingen University, Germany
Anh Nguyen Duc University College of Southeast Norway
Edson Oliveirajr State University of Maringá, Brazil
Paolo Panaroni INTECS, Italy
Oscar Pastor Lopez Universitat Politècnica de València, Spain
Dietmar Pfahl University of Tartu, Estoi
Rudolf Ramler Software Competence Center Hagenberg, Austria
Daniel Rodriguez University of Alcalá, Spain
Bruno Rossi Masaryk University, Czech Republic

viii Organization



Gleison Santos Federal University of the State of Rio de Janeiro, Brazil
Giuseppe Scanniello University of Basilicata, Italy
Kurt Schneider Leibniz Universitӓt Hannover, Germany
Ezequiel Scott University of Tartu, Estonia
Outi Sievi-Korte Tampere University, Finland
Martin Solari Universidad ORT Uruguay, Uruguay
Viktoria Stray University of Oslo, Norway
Michael Stupperich Daimler AG, Germany
Burak Turhan University of Oulu, Finland
Rini Van Solingen Delft University of Technology, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Hironori Washizaki Waseda University, Japan
Dietmar Winkler Vienna University of Technology, Austria

Program Committee Members (Industry Papers)

Alessandra Bagnato Softeam, France
Michael Klaes Fraunhofer IESE, Germany
Monalessa Barcellos UFES, Brazil
Rafael de Mello CEFET-RJ, Brazil
Maurizio Morisio Politecnico di Torino, Italy
Jari Partanen Bittium Wireless Ltd, Finland
Federico Tomassetti Strumenta, Italy
Edoardo Vacchi Red Hat, Italy
Rini Van Solingen Delft University of Technology, The Netherlands

Organization ix



Contents

Agile and Migration

Implications on the Migration from Ionic to Android . . . . . . . . . . . . . . . . . . 3
Maria Caulo, Rita Francese, Giuseppe Scanniello,
and Genoveffa Tortora

The Migration Journey Towards Microservices . . . . . . . . . . . . . . . . . . . . . . 20
Hamdy Michael Ayas, Philipp Leitner, and Regina Hebig

Migrating from a Centralized Data Warehouse to a Decentralized Data
Platform Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Antti Loukiala, Juha-Pekka Joutsenlahti, Mikko Raatikainen,
Tommi Mikkonen, and Timo Lehtonen

How Do Agile Teams Manage Impediments? . . . . . . . . . . . . . . . . . . . . . . . 49
Sven Theobald and Pascal Guckenbiehl

Keeping the Momentum: Driving Continuous Improvement After
the Large-Scale Agile Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Josefine Bowring and Maria Paasivaara

Requirements

How Do Practitioners Interpret Conditionals in Requirements? . . . . . . . . . . . 85
Jannik Fischbach, Julian Frattini, Daniel Mendez,
Michael Unterkalmsteiner, Henning Femmer, and Andreas Vogelsang

Situation- and Domain-Specific Composition and Enactment of Business
Model Development Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Sebastian Gottschalk, Enes Yigitbas, Alexander Nowosad,
and Gregor Engels

Using a Data-Driven Context Model to Support the Elicitation
of Context-Aware Functionalities – A Controlled Experiment . . . . . . . . . . . . 119

Rodrigo Falcão, Marcus Trapp, Vaninha Vieira,
and Alberto Vianna Dias da Silva

A Transformation Model for Excelling in Product Roadmapping
in Dynamic and Uncertain Market Environments . . . . . . . . . . . . . . . . . . . . 136

Stefan Trieflinger, Jürgen Münch, Stefan Wagner, Dominic Lang,
and Bastian Roling



Introducing Traceability in GitHub for Medical Software Development . . . . . 152
Vlad Stirbu and Tommi Mikkonen

Human Factors

A Preliminary Investigation on the Relationships Between Personality
Traits and Team Climate in a Smart-Working Development Context . . . . . . . 167

Rita Francese, Vincent Milione, Giuseppe Scanniello,
and Genoveffa Tortora

Searching for Bellwether Developers for Cross-Personalized Defect
Prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Sousuke Amasaki, Hirohisa Aman, and Tomoyuki Yokogawa

Using Machine Learning to Recognise Novice and Expert Programmers . . . . 199
Chi Hong Lee and Tracy Hall

Is Knowledge the Key? An Experiment on Debiasing Architectural
Decision-Making - a Pilot Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Klara Borowa, Robert Dwornik, and Andrzej Zalewski

Communicating Cybersecurity Vulnerability Information:
A Producer-Acquirer Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Martin Hell and Martin Höst

Software Quality

Analyzing SAFe Practices with Respect to Quality Requirements: Findings
from a Qualitative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Wasim Alsaqaf, Maya Daneva, Preethu Rose Anish, and Roel Wieringa

Capitalizing on Developer-Tester Communication – A Case Study . . . . . . . . 249
Prabhat Ram, Pilar Rodríguez, Antonin Abherve, Alessandra Bagnato,
and Markku Oivo

Toward a Technical Debt Relationship with the Pivoting of Growth Phase
Startups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Orges Cico, Terese Besker, Antonio Martini, Anh Nguyen Duc,
Renata Souza, and Jan Bosch

Towards a Common Testing Terminology for Software Engineering
and Data Science Experts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Lisa Jöckel, Thomas Bauer, Michael Kläs, Marc P. Hauer,
and Janek Groß

xii Contents



Towards RegOps: A DevOps Pipeline for Medical Device Software . . . . . . . 290
Henrik Toivakka, Tuomas Granlund, Timo Poranen, and Zheying Zhang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Contents xiii



Agile and Migration



Implications on the Migration from Ionic
to Android

Maria Caulo1, Rita Francese2, Giuseppe Scanniello3(B) ,
and Genoveffa Tortora2

1 Potenza, Italy
2 University of Salerno, Fisciano, Italy

{francese,tortora}@unisa.it
3 University of Basilicata, Potenza, Italy

giuseppe.scanniello@unibas.it

Abstract. In our past research, we presented an approach to migrate
apps implemented by a cross-platform technology (i.e., Ionic-Cordova-
Angular) toward a native platform (i.e., Android). We also conducted a
study to assess if there was a difference in the user experience and in the
affective reactions of end-users when they used the original version of
an app and its migrated version. Since we were also interested to study
the perspective of developers, we successively conducted a controlled
experiment to study possible differences, e.g., in terms of source code
comprehension and affective reactions, when developers dealt with the
original and migrated versions of a given app. In this paper, we present
and discuss implications from both these studies and discuss them from
both researchers’ and practitioners’ perspectives. For example, one of the
most important takeaway results from the practitioners’ perspective is:
it is worthy to develop an app by using a cross-platform technology (e.g.,
for time-to-market reasons) and then to assess if this app is ready for the
market; if this happens, its migration to a native technology is a good
option so letting the app penetrate more the market.

Keywords: Android · Ionic · Migration · User experience

1 Introduction

Migration means transferring an application to a new target environment hold-
ing the same features as the original application [6]. Migrating applications is
relevant to consolidate past knowledge and to preserve past investments [12].
We can conjecture that the use of a migrated application should not affect how
the end-user perceives it as compared with its original version, in terms of per-
formances and User Interface (UI) interaction. This is to say that one of the
success factors in the migration is that the end-user does not perceive any dif-
ference when using the original and migrated apps.

M. Caulo—Independent Researcher.

c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 3–19, 2021.
https://doi.org/10.1007/978-3-030-91452-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_1&domain=pdf
http://orcid.org/0000-0003-0024-7508
https://doi.org/10.1007/978-3-030-91452-3_1


4 M. Caulo et al.

To reduce the development cost and time-to-market many mobile-cross-
platform development technologies have been proposed [14]. Their main advan-
tage is that apps are developed once and delivered for a number of hardware/-
software platforms. Cross-platform development can be also adopted for rapid
prototyping. For example, start-uppers often have to release their mobile app in
a very short time on many platforms (e.g., iOS, Android) and they have neither
time nor money and so cross-platform development represents the only possible
solution. The results from an industrial survey [15] indicated that cross-platform
development is largely adopted because it is less risky than native development.
Respondents in this survey also thought that a cross-platform app should be
preferred when not much money can be invested in native development. Once
the value of cross-platform apps has been assessed with real users (e.g., through
beta-testing), these apps could be re-implemented or migrated towards native
platforms (e.g., Android or iOS). As an example, a Stack Overflow user asks
some suggestions on how to substitute an Ionic app with a native Android one
in the Google Play store, because he is “planning to start a startup and currently
not in a position to afford individual development for various platforms.”[2].
Further motivations for migrating to a native platform are represented by cross-
platform development downsides [26,33], such as: (i) cross-platform frameworks
often provide a worse user experience, (ii) they provide only limited access to
native APIs, and (iii) developers must rely on the continuous development of
the cross-platform frameworks to adapt changes of the changing native APIs.

In [9], we presented an approach to migrate apps implemented by cross-
platform technology (i.e., Ionic-Cordova-Angular) toward a native platform (i.e.,
Android). We conducted a user study to investigate if there was a difference in
the user experience1 (UX) when using the cross-platform app version and the
migrated one. We also took into account users’ affective reactions2. Since we were
also interested to study the perspective of developers, we successively conducted
a controlled experiment to study possible differences when developers dealt with
the source code of the original and migrated apps. The participants were novice
developers (i.e., graduate students), who were asked to comprehend, identify,
and fix faults in the source code of the original and migrated apps. The results
of such an experiment were presented in [8].

To summarize, we present a combined discussion of the results of our research
previously presented in [8] and [9]. This allowed us to derive new results—from
both the end-user’s and developer’s perspectives—that improved our body of
knowledge on the relevance of approaches to migrate cross-platform apps toward
a native platform considering researchers’ and practitioners’ perspectives.

1 In the ISO 9241-210 [18], the user experience is defined as “a person’s perceptions and
responses that result from the use or anticipated use of a product, system or service”.
One of the most important components (i.e., Usability, Adaptability, Desirability,
and Value) of the user experience is usability.

2 Affect is a concept used in psychology to describe the experience of feeling or emotion.



Implications on the Migration from Ionic to Android 5

2 Related Work

Our study concerns the comparison between cross-platform and native apps.
Comparing our study with those focused on performances (i.e., [4,11]), we differ
from them on: (i) specific technologies considered (i.e., design); (ii) aim of the
study; and (iii) method applied. When considering those studies which compare
cross-platform and native apps by means of user tests (i.e., [3,28,30]), we dif-
fer from the studies of Malvolta et al. [28] and Noei et al. [30] for the design
(e.g., metrics and attributes to evaluate apps), the method used (e.g., we do
not mine opinions on the Google Play Store), and, also, the aims (i.e., we do
not only compare two versions of a given app but also evaluate our migration
approach when applied on a real case). The research of Angulo and Ferre [3]
might seem the most similar to that conducted in our user study: they also com-
pared native and cross-platform tools used to deploy the same app by means
of user tests. But our study differs from theirs in substantial ways. First, the
aim: we do not only investigate end-users’ opinions on the two versions of the
app (i.e., UX), but also measure their affective states (i.e., Pleasure, Arousal,
Dominance, and Liking). Second, the design: we have one experimental object
in two versions: an Android app developed with Ionic-Cordova-Angular tech-
nologies and the same app implemented in native Android, while they have one
experimental object in four versions: the native ones (Android and iOS) and the
cross-platform ones (Titanium Android, and Titanium iOS). Then, the involved
participants used their own smartphone, while we made the participants use the
same smartphone; moreover, we did not make the participants execute specific
tasks, while they did. The GUI of the native and the Titanium version (in both
the cases of iOS and Android) significantly differ from one another, while in our
case the GUIs are very similar, in a way that it was hard for the participants
to distinguish one version from the other. Finally, the cross-platform technology
they adopted was Titanium, while we use Ionic-Cordova-Angular technologies.
As a consequence of all these differences, their conclusions involve several com-
parisons among Android and iOS (both native and Titanium), while in our case
we focus on the differences between the native Android version and the Ionic-
Cordova-Angular Android version. Concerning the developers’ perspective, we
do not focus on the selection of the most convenient cross-platform technology
to suggest to developers, as made in [13,14,16,17,33], as well as we do not inves-
tigate the challenges concerning the developing phase, but we compare affective
reactions that developers feel while executing three tasks on existing source code
of the two aforementioned versions of the same app and also measure differences
on the correctness of the results of their tasks. The work by Que et al. [32] might
seem the most similar to that conducted in our controlled experiment but the
most important differences concern the method used to conduct their research.
Indeed, they did not execute an experiment with practitioners to make compar-
isons between cross-platform and native technologies in terms of ease of coding,
debug/test, and distribution stage, but they make comparisons in theory.



6 M. Caulo et al.

3 Overall Assessment

The main RQ we investigated in our integrated study follows:

How does the migration of mobile applications from the Ionic Framework to
Native code impact the end-user’s and developer’s experience/satisfaction?

The rationale behind this RQ is that: when migrating a cross-platform app
towards a native platform, it is advisable that the UX and affective reactions
improve when end-users deal with the migrated version of the app, and the
maintenance and the evolution are easier for the migrated version of the app (or
at least comparable). To this end, we conducted two empirical investigations:
(i) a user study and (ii) a controlled experiment. The former aimed at comparing
the affective reactions of end-users and their UX when using a cross-platform
app and its migrated version. The latter aimed at studying if there is a difference
when comprehending source code and performing fault fixing tasks on a cross-
platform app and its migrated version.

To conduct both the investigations, we followed the guidelines by Wohlin et
al. [40] and Juristo and Moreno [20]. We reported these studies on the basis of the
guidelines suggested by Jedlitschka et al. [19]. In this paper, we limited ourselves
to the presentation of the main aspects of both studies. The interested reader
can find more details in our technical report (TR), available at bit.ly/3xIjjSJ.

3.1 User Study

In this section, we present the design and the results of our user study. The goal
of this study was to evaluate the difference (if any) between apps developed by
using cross-platform and native technologies from the perspective of the end-
users. We compared the original version of an app, namely Movies-app [1], with
that migrated to Android (see TR for details) in terms of affective reactions
(i.e., Pleasure, Arousal, Dominance, and Liking) of end-users, as well as the UX
that they reached. If we observe a difference in favor of the Android migrated
version of Movies-app with respect to these two aspects, we can speculate that
the migration from Ionic-Cordova-Angular to Android impacts the end-user’s
experience.

Experimental Units. Initially, 19 people accepted to take part in the study,
while 18 actually participated. The background of the participants can be sum-
marized as follows: 12 people had a Bachelor Degree (ten in Computer Science
and two in Mathematics); four people had a Master’s Degree (three in Computer
Engineering and one in Mathematics); one had a Ph.D. in Computer Science and
one had a Scientific High School Diploma. Except for the latter participant, all
the others were graduate students at the University of Basilicata.

Experimental Material and Tasks. The experimental objects (as already
mentioned) consisted of the two versions of Movies-app: the original one and

http://bit.ly/3xIjjSJ


Implications on the Migration from Ionic to Android 7

the migrated one. The experiment referred to a version of Movies-App which
was available on GitHub. It is worth mentioning that the official Ionic website
has recently adopted Movies-App as a demo app.3 We asked the participants to
freely use both versions of Movies-app.

We collected affective reactions by requiring participants to filling in the
SAM [5] questionnaire. It considered the following dimensions evaluated on a
nine-point scale for Pleasure, Arousal, and Dominance. As Koelstra et al. [25]
did, we included the Liking dimension.

As for UX, we relied on the 26 statements by Laugwitz et al. [27]. These
authors defined these statements to evaluate the quality of interactive prod-
ucts (e.g., software). Each statement is made of two adjectives that describe
some opposite qualities of products (e.g., annoying and enjoyable). According to
their objectives, these statements are grouped into the following six categories:
Attractiveness, Perspicuity, Efficiency, Dependability, Stimulation, and Novelty.

Experiment Design. We opted for a factorial crossover [38] design. The num-
ber of periods (i.e., Order) and treatments (i.e., Technology) is the same and
the treatment is applied only once [38]. We randomly assigned the participants
into two groups, G1 and G2, both made of nine members. Each participant used
both versions of the app. Participants in G1 firstly used the Android version and
then the Ionic-Cordova-Angular one, while vice-versa for G2.

Hypotheses and Variables. We considered two independent variables: Tech-
nology and Order. The first indicates the technology used to implement the app.
Therefore, Technology is a categorical variable with two values: Android and
Ionic (abbreviating Ionic-Cordova-Angular). The Order variable indicates the
order in which a participant used the version of the app (also known as sequence
in the literature).

To measure affective reactions, we used four dependent variables (one for
each dimension of SAM plus Liking). To measure UX, we used six dependent
variables, one for each of the six categories of UEQ (User Experience Ques-
tionnaire), e.g., Attractiveness. To obtain a single value for each category we
summed the scores of each statement in that category. This practice to aggre-
gate scores from single statements is widespread [39]. We formulated and tested
the following parameterized null hypothesis.

– H0X : There is no statistically significant difference between the Android and
Ionic Apps with respect to X.

Where X is one of the dependent variables (e.g., Liking).

Procedure. We performed the following sequential steps.

1. We invited Ph.D. and Master’s students in Computer Science and Mathe-
matics at the University of Basilicata and students enrolled in the course of

3 https://ionicacademy.com/ionic-4-app-api-calls/.

https://ionicacademy.com/ionic-4-app-api-calls/


8 M. Caulo et al.

Advanced Software Engineering of the Master’s Degree in Computer Engi-
neering from the same University. We also invited people working in the
Software Engineering Laboratory at the University of Basilicata. They had
to fill in a pre-questionnaire to gather demographic information. This design
choice allowed us to have participants with heterogeneous backgrounds.

2. We randomly split the participants into two groups: G1 and G2.
3. The study session took place under controlled conditions in a research labo-

ratory.
4. Depending on the group, each participant freely used a version of the Movies-

app and then filled in the SAM+Liking questionnaire (first) and UEQ (later).
5. Each participant freely used the other version of the Movies-app and then

filled in the SAM+Liking questionnaire (first) and UEQ (later).

All the participants used the same smartphone4 when using both the versions
of Movies-app.

Analysis Procedure. To test the null hypothesis, we used the ANOVA Type
Statistic (ATS) [7]. It is used (e.g., in Medicine) to analyze data from rating
scales in factorial designs [22]. We built ATS models as follows:

X ∼ Technology + Order + Technology : Order. (1)

Where the dependent variable is X and Technology and Order are the manip-
ulated ones. Technology:Order indicates the interaction between Technology
and Order. This model allows determining if Technology, Order, and Technol-
ogy:Order had statistically significant effects on a given dependent variable X.
In the case of a statistically significant effect of a factor, we planned to use Cliff’s
δ effect size. It is conceived to be used with ordinal variables [10] and assumes
the following values: negligible if |δ| < 0.147, small if 0.147 ≤ |δ| < 0.33, medium
if 0.33 ≤ |δ| < 0.474, or large if |δ| ≥ 0.474 [34].

To verify if an effect is statistically significant, we fixed (as customary) α to
0.05. That is, we admit 5% chance of a Type-I-error occurring [40]. If a p-value
is less than 0.05, we deemed the effect as statistically significant.

3.2 User Study Results

Android vs. Ionic with Respect to Affective Reactions of End-Users.
Median values seem to suggest that the participants in both G1 and G2 obtained
more positive affective reactions when dealing with the migrated version of
Movies-app. The smallest difference between Ionic and Android is for the Plea-
sure dimension. The median values are seven and 6.5, without considering
the participants’ distributions between the groups, respectively. As for G1 the
median values are the same, i.e., 7, whatever is the Technology. As for Liking,

4 Umidigi A3, a Dual-Sim smartphone equipped with Android 8.1.0, 5.5′′ screen with
720 × 1440 resolution points, 3300mAh capacity battery, 2 GB RAM, 16 GB of
expandable memory, MediaTek MT6739 processor.



Implications on the Migration from Ionic to Android 9

Table 1. Median values for Attractiveness, Perspicuity, Efficiency, Dependability, Stim-
ulation, and Novelty.

Android Ionic

Attract. Perspicuity Efficiency Depend. Stimulation Novelty Attract. Perspicuity Efficiency Depend. Stimulation Novelty

G1 33 27 23 23 19 18 28 24 17 18 18 16

G2 23 25 23 21 18 14 28 26 18 22 18 12

Total 32.5 26.5 23 22.5 19 17 28 24.5 17.5 19 18 14

the difference between the two versions of Movies-app (without considering the
participants’ distributions between the groups) is very clear: eight for Android
and six for Ionic. The median values for G1 are eight for Android and seven for
Ionic, while the median values for G2 are six for Android and five for Ionic.

The results of our statistic inference suggest a statistically significant dif-
ference with respect to Liking. Therefore, we can reject H0Liking (p − value =
0.0494) with a medium effect size (0.383), and then we can postulate that the
participants liked more the migrated version of Movies-app than its original
version. As for Liking, we also observed a significant interaction between the
two independent variables. This interaction is significant also for Pleasure. This
means that there is a combined positive effect of Technology and Order for these
two dependent variables.

We observed that there is a slight preference for the app migrated to the Android
platform, although this is statistically significant only for the Liking dimension with
a medium effect size.

Android vs. Ionic with Respect to the UX. In Table 1, we report the
median values for the dependent variables measuring the UX grouped by G1

and G2. The median values by grouping observations only considering Technol-
ogy are also shown (i.e., Total row). The median values seem to suggest that
the participants, in general, expressed more positive UX when dealing with the
migrated version of Movies-app. The smallest difference between the two versions
of this app can be observed for the category Stimulation. Descriptive statistics
also show the following pattern: the participants in G1 (those administered first
with the Android version of Movies-app) were more positive with respect to the
migrated version of the app as compared with the participants in G2 (those
administered first with the Ionic-Cordova-Angular version). The only exception
is Efficiency since the values are 23 for both groups.

The results our statistic inference indicate a statistical significant difference
with respect to Efficiency (p − value = 0.0004) with a large effect size (0.67).
Therefore, we can assert that the participant found the Android version of the
app to be more efficient than its original version since we were able to reject the
null hypothesis H0Efficiency. We also observed a significant interaction between
Technology and Order for Novelty. This means that there is a combined positive
effect of these two independent variables.

The UX is better for the app migrated to the Android platform although the effect
of Technology is significant only for Efficiency, where the size of the effect is large.



10 M. Caulo et al.

3.3 Controlled Experiment

If through the controlled experiment we observe a difference in the source code
comprehensibility and fault identification and fixing when dealing with the two
versions of Movies-app, we can speculate that the migration from Ionic to that
platform impacts the developers’ experience. We were also interested in assessing
how developers perceive source code comprehension tasks and fault identification
and fixing tasks. Therefore, we also focused on both affective reactions. A positive
(or negative) effect of a technology (Ionic-Cordova-Angular vs Android) with
respect to affective reactions might imply that a developer is more (or less)
effective when performing these kinds of tasks.

Experimental Units. The participants were 39 students of the “Enterprise
Mobile Applications Development” course at the University of Salerno (Italy).
This course focused on the study of Ionic-Cordova-Angular technologies. The
average age of participants was 24. At the time of the experiment, participants
were 39 months (on average) experienced with programming and ten months (on
average) experienced with mobile programming, in particular. They passed the
programming exams with a rating of 27.4/30 on average. The participants before
the “Enterprise Mobile Applications Development” course passed the “Mobile
Development” course, which was focused on Android.

Experimental Material. We used the source code of two versions of Movies-
app. Its code is not very complex and it is small enough to allow good control over
participants. The problem domain of this app can be considered familiar to the
participants. The reader can find further details in our TR. We used the SAM [5]
questionnaire to gather affective reactions of participants when accomplishing
comprehension and fault identification and fixing tasks. We also included the
Liking dimension in addition to those considered in the SAM questionnaire.

Tasks. We asked the participants to perform three tasks in the following order:

1. Comprehension Task. We defined a comprehension questionnaire composed of
six questions that admitted open answers. The questions of this questionnaire
were the same for both the groups of participants; those administered with
the source code of the Ionic-Cordova-Angular version of Movies-app and those
administered with the source code of its migrated version.

2. Fault Identification. Similar to Scanniello et al. [35], we seeded (four) faults in
the source code of the two versions of the app. We asked the participants to fix
these faults providing them with a fault report for each seeded one. The bug
report was the same independently from the app version. We seeded faults by
applying mutation operators (i.e., predefined program modification rules) by
Kim et al. [23]. We asked the participants to document where they believed
each fault was in the source code. It is worth mentioning that we seeded faults
in the source code which the participants did not have to analyze to answer the



Implications on the Migration from Ionic to Android 11

questions of the comprehension questionnaire. However, we could not prevent
that the participants could have analyzed the faulty source code during the
comprehension tasks. This threat to conclusion validity equally affects fault
identification (and fixing) results for both the versions of Movies-app.

3. Fault Fixing. Participants had to fix the faults they identified. We asked them
to work with a fault at a time. Faults do not interfere with one another.

4. Post questionnaire. It included a SAM+Liking questionnaire for each task
the participants accomplished.

Hypotheses and Variables. As made for the user study, we considered Tech-
nology as the independent variable (or manipulated factor). This variable indi-
cates the technology with which the app was implemented. As for the source-code
comprehension task, we used Comprehension as the dependent variable. It mea-
sures the correctness of understanding of a participant given a version of Movies-
app by analyzing the answers provided to the comprehension questionnaire. We
used an approach based on that by Kamsties et al. [21] that computes the num-
ber of correct responses to the questions of that questionnaire. The dependent
variable Comprehension assumes values between zero and six (i.e., the number
of questions in the comprehension questionnaire). A value close to six indicates
that a participant comprehended the source code very well. A fault is success-
fully identified if the participant correctly marked the source code where the
fault was seeded. We named the variable counting the faults correctly identified
as Correctness of Fault Identification. This variable assumes values between zero
and four (i.e., the number of faults). The higher the value the better it is. As
for the fault fixing task, we defined the variable: Correctness of Fault Fixing. It
counts the number of seeded faults the participants correctly fixed in the source
code of the experimental object. Also, Correctness of Fault Fixing assumes val-
ues between zero and four (i.e., the number of faults). The higher the value the
better it is.

As for affective reactions, we considered four dependent variables (one for
each dimension of SAM plus the Liking one) for each kind of task the participants
performed: comprehension, fault identification, and fault fixing.

We tested the following parametrized null hypothesis.

– H1X : There is no statistically significant difference between the participants
who were administered with the cross-platform and the native versions of
Movies-app with respect to X ( i.e., one of the considered dependent variables).

Experiment Design. We used the one factor with two treatments design [40].
We randomly divided the participants into two groups: Ionic (i.e., control group)
and Android (i.e., treatment group). The participants in the first group were
asked to accomplish only the experiment tasks on the version of Movies-app
implemented by using Ionic-Cordova-Angular technology. The participants in
the second group were asked to accomplish the tasks only on the version of such
app migrated to Android. The participants in the Ionic group were 20, while
those in the Android one were 19.



12 M. Caulo et al.

Procedure. The experimental procedure included the following sequential
steps.

1. We invited all the students and asked them to fill in the pre-questionnaire to
gather their demographic information.

2. We randomly split the participants into two groups: Ionic and Android.
3. The experiment session took place under controlled conditions in a laboratory

at the University of Salerno. All the used PCs had the same (Hardware/Soft-
ware) configuration.

4. The participant performed the comprehension task by answering the ques-
tions of the comprehension questionnaire.

5. We asked the participants to deal with each fault at a time. The participants
could pass to the next fault only when they either fixed the previous fault or
were aware that they could not identify/fix it.

6. Participants filled in the post-questionnaire by rating affective reactions.
7. Participants compressed and archived their version of the app with the source

code they modified. We then collected all those versions.

Analysis Procedure. We carried out the following steps:

– We undertook the descriptive statistics.
– To test the null hypotheses, we planned to use either an unpaired t-test or the

Mann-Whitney U test [29]. Unlike the t-test, the Mann-Whitney U test does
not require the assumption of normal distributions. To study the normality of
data, we use the Shapiro-Wilk W test [36]. Regarding this test, a p-value lower
than a fixed α indicates that data are not normally distributed. In the case of
a statistically significant effect of Technology, we planned to compute effect
size (Cohen’s d or Cliff’s δ) to measure the magnitude of such a difference.
We applied a non-parametric statistical analysis (Mann-Whitney U test [29])
when considering affective reaction. If any statistically significant difference
is found, we measure its extent through Cliff’s δ.

As we did for the data analysis of the user study, we fixed α to 0.05 to verify
if an effect is statistically significant.

3.4 Controlled Experiment Results

In Table 2, we report the descriptive statistics and the results of the statistical
tests performed (i.e., p-values).

Android vs. Ionic with Respect to Source-Code Comprehension. As
for Comprehension, descriptive statistics (Table 2) do not show a huge difference
in the source-code comprehension the participants achieved in the Ionic and
Android groups. Descriptive statistics indicate that the participants in the Ionic
group answered the questions of the comprehension questionnaire better: the
mean and median values are 0.625 and 0.667, respectively; while the mean and



Implications on the Migration from Ionic to Android 13

Table 2. Descriptive Statistics of Comprehension and Correctness of Fault Identifica-
tion and Fixing.

Technology Comprehension Correctness of fault identification Correctness of fault fixing

Mean Std. Dev Median p-value Mean Std. Dev Median p-value Mean Std. Dev Median p-value

Android 0.5 0.266 0.5 0.109 0.882 0.255 1 0.971 0.829 0.289 1 0.935

Ionic 0.625 0.152 0.667 0.9 0.189 1 0.850 0.235 1

median values for the Android group are both 0.5. The results of the Shapiro-
Wilk W test suggest that data were not normally distributed in the Ionic group
(p-value = 0.007). For such a reason, we performed the Mann-Whitney U test.
The returned p-value is 0.109, i.e., there is no statistically significant difference
between the comprehension that the participants in the two groups achieved.

The results of the Mann-Whitney U test do not allow us to reject the null hypoth-
esis, thus we could not observe a statistically significant difference in the compre-
hensibility of the source code written in either Android or Ionic-Cordova-Angular
technologies.

Android vs. Ionic with Respect to Fault Identification. Descriptive statis-
tics (Table 2) suggest that all the participants achieved high correctness in the
identification of the faults. The mean values for the Correctness of Fault Iden-
tification are 0.882 and 0.9 for Android and Ionic, respectively. The results of
the Shapiro-Wilk W test show that data did not follow a normal distribution:
the p-values are 1.294e−06 for Android and 1.422e−06 for Ionic. The results of
the Mann-Whitney U test do not indicate any statistically significant difference
between the data in the two groups since the p-value is 0.971.

The results of the statistical inference do not allow us to reject the null hypothesis,
thus, also in this case, we could not observe a statistically significant difference in
the identification of faults in the source code written in either Android or Ionic-
Cordova-Angular technologies.

Android vs. Ionic with Respect to Fault Fixing. As we could suppose, for
Correctness of Fault Fixing we observed a pattern similar to Correctness of Fault
Identification. The participants in the groups achieved high correctness in the
fixing of the faults in both the versions of Movies-app (see Table 2). Data were
not normally distributed since the Shapiro-Wilk W test returned 2.04e-05 and
2.656e-05 as the p-values for the Android and Ionic groups, respectively. Then,
we applied the Mann-Whitney U test and we obtained 0.935 as the p-value.

We did not observe a statistically significant difference in the fixing of faults in the
source code written in either Android or Ionic-Cordova-Angular technologies.

Android vs. Ionic with Respect to the Affective Reactions of Devel-
opers. As Sullivan and Artino [37] suggest, we used median values and frequen-
cies as descriptive statistics of the dependent variables PLSK , ARSK , DOMK ,
and LIKK (where K is the kind of task, i.e., source code comprehension and
fault identification and fixing). In Table 3, we report the median values and



14 M. Caulo et al.

Table 3. Median values and statistical test results for the affective reactions of the
participants in the study.

Technology PLSComp ARSComp DOMComp LIKComp PLSIdent ARSIdent DOMIdent LIKIdent PLSFix ARSFix DOMFix LIKFix

Android 7 7 8 7 8 7 8 8 8 7 8 8

Ionic 7.5 6.5 9 8 8 7.5 9 8 8 7.5 8 8.5

p-value 0.988 0.503 0.106 0.326 0.352 0.626 0.206 0.912 0.538 0.966 0.768 0.59

the p-values of the statistical test performed. As for the Comprehension task,
there is not a huge difference between the dependent variables (i.e., PLSComp,
ARSComp, DOMComp, and LIKComp) in the two groups. However, the medians
for the Ionic group were always higher than the Android group ones, except for
ARSComp. The Mann-Whitney U test returned p-values higher than 0.05 for
all the dependent variables, hence there is no statistically significant difference
between the affective reactions of the two groups.

Also for the Fault Identification task, there is not a huge difference between
the two groups. Medians of dependent variables of the Ionic group were always
greater or equal to the Android group ones. The Mann-Whitney U test returned
p-values higher than 0.05 for all the dependent variables signifying that there is
no statistically significant difference between the affective reactions of both the
groups. The analysis of the data from the Fault Fixing task allowed identifying
the same pattern as we identified for the Fault Identification task.

The affective reactions of developers in the two groups do not show a statistically
significant difference when dealing with a cross-platform app and its migrated ver-
sion to comprehend source code and identify and fix faults in that code.

4 Overall Discussion

In this section, we discuss implications and future extensions related to the
results of both our studies. We conclude this section by discussing the threats
that could have affected the validity of the obtained results.

4.1 Implications and Future Extensions

We delineate a number of practical implications from the researcher and the
practitioner perspectives. We also suggest possible future directions for research.
We believe that one of the values of our paper concerns the body of knowledge
on the relevance of approaches to migrate cross-platform apps toward a native
platform and how to use this body of knowledge for future research.

– End-users’ opinions are in favor of the Android (migrated) version of Movies-
app in terms of Liking and Efficiency. However, UEQ statements measuring
how generally appealing the two apps are (i.e., Attractiveness, Perspicuity,
Stimulation, and Novelty) seem not to highlight any preference for either tech-
nology. Thus, we conjecture that the Liking dimension might be influenced by
the performance of the apps perceived by end-users. This point has implica-
tions for the practitioner, who could invest initial efforts in the development



Implications on the Migration from Ionic to Android 15

of apps through a cross-platform technology (e.g., for time-to-market or pro-
totyping reasons) and then she could decide to migrate such apps towards a
native technology to have a better UX and let the app affirm in the market.

– Overall results of the controlled experiment suggest that novice developers
did not find a huge difference between the two studied technologies (Ionic-
Cordova-Angular and Android) in terms of the source-code comprehension
and the correctness of fault identification and fixing (although a slight dif-
ference in the size of the two versions of the app). Furthermore, the affective
reactions of developers seem not to be affected when performing tasks as well
as the difficulty perceived to accomplish them (see TR). This outcome might
be relevant to the practitioner. In particular, our study seems to support one
of the main results by Francese et al. [15]; i.e., cross-platform development is
valuable when an app has to be run in different hardware/software platforms.
That is, native technology should be preferred in all the other cases.

– Outcomes of the controlled experiment also suggest future research on the
design and the implementation of native and cross-platform apps. However,
our experiment is based on tasks concerning existing source code, but there
could be found a difference in the use of these technologies when conducting
implementation tasks. This point is of interest to the researcher.

– The researcher could be interested to study if the shown outcomes hold also
for apps developed by cross-platform technologies different from those con-
sidered in our research (i.e., Ionic-Cordova-Angular) when migrating them
towards a native platform (e.g., Android as we did, but also iOS or others).
An experimental approach similar to that used (user study and a controlled
experiment) could be adopted.

– The adoption of a migration approach should also consider the cost for its
application. This aspect, not considered in this paper, is of particular interest
for the practitioner. In fact, it could be crucial knowing whether it is less
costly to migrate an apps developed by cross-platform technology to a native
platform rather than to re-engineer it. Obviously, this aspect is also relevant
for the researcher because she could define predictive models to quantify
costs and benefits to migrate or re-engineer cross-platform app. Our research
contributes to justify further work on this subject.

– The experiment object is of a specific kind of apps, i.e., the entertainment
universe. The researcher and the practitioner could be interested in studying
whether our results also hold for different kinds of apps. It could be also of
interest for the researcher to study whether our outcomes scale to applications
more complex and larger than that studied.

– The diffusion of a new technology/method is made easier when empirical eval-
uations are performed and their results show that such a technology/method
solves actual issues [31]. The results of our investigations suggest that migrat-
ing cross-platform apps towards a native platform matters from the practi-
tioner perspective. This outcome could increase the diffusion of such a kind of
migration approach and the definition of new ones. These points are clearly
relevant for both the practitioner and the researcher.



16 M. Caulo et al.

4.2 Threats to Validity

Internal Validity. A possible threat to Internal Validity is voluntary partici-
pation (selection threat). We embedded the experiment in a University course
and did not consider experiment scores to grade participants in that course.

To deal with threat of diffusion or treatment imitations, we monitored partic-
ipants and asked back material to prevent them from exchanging information in
the controlled experiment. We also prevented the diffusion of the experimental
material by gathering it at the end of the tasks from all participants.

Another threat might be resentful demoralization—participants assigned to
a less desirable treatment might not perform as well as they normally would.
This kind of task is present only in the controlled experiment.

Construct Validity. A possible threat is concerned to the threat of hypotheses
guessing could be present. Although the participants were not informed about
our goals, they might guess them and change their behavior accordingly. To deal
with this kind of threat we did not disclose the goals to the participants.

To mitigate evaluation apprehension threat, we reassured participants in the
controlled experiments that their data were treated anonymously. We also asked
the participants to sign a consent form to use their data.

Conclusion Validity. We involved participants with a different background in
the user study and then the threat of random heterogeneity of participants could
be present. In the controlled experiment, participants followed the same course,
underwent the same training, and had a similar background.

Reliability of measures is another threat to conclusion validity. We used well-
known and widely used measures in both studies.

Low statistical power refers to the ability of the test to reveal a true pattern
in the data. If the power is low, there is a risk that an erroneous conclusion is
drawn from data. To partially deal with this kind of threat we used robust and
sensitive statistical tests [24].

External Validity. The participants in the controlled experiment were graduate
students. This could pose some threats to the generalizability of the results to
the population of professionals developers (threat of interaction of selection and
treatment). The studied technology is relatively novel and then we can speculate
that participants are more experienced than many professionals.

The experimental object might affect external validity (threat of the interac-
tion of setting and treatment). In particular, Movies-app could be not represen-
tative of the universe of real-world apps.

5 Conclusion

Results suggest that migrating cross-platform apps developed by Ionic-Cordova-
Angular towards Android matters from both the developers’ and end-users’ per-
spectives. This main outcome allows formulating the most important practical
takeaway message from our research: it is worthy to develop an app by using a



Implications on the Migration from Ionic to Android 17

cross-platform technology (e.g., for time-to-market reasons) and then to assess
if this app is ready for the market; if this happens its migration to a native
technology is a good option to provide better support to the UX so letting the
app penetrate more the app market.

References

1. Movies-App. https://github.com/okode/movies-app
2. The Stackoverflow comment. https://stackoverflow.com/questions/34986098/

migrating-from-hybrid-app-to-native-app-at-later-point-of-time
3. Angulo, E., Ferre, X.: A case study on cross-platform development frameworks for

mobile applications and UX. In: Proceedings of HCI (2014)
4. Biørn-Hansen, A., Rieger, C., Grønli, T.-M., Majchrzak, T.A., Ghinea, G.: An

empirical investigation of performance overhead in cross-platform mobile develop-
ment frameworks. Empir. Softw. Eng. 25(4), 2997–3040 (2020). https://doi.org/
10.1007/s10664-020-09827-6

5. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and
the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

6. Brodie, M.L., Stonebraker, M.: Legacy Information Systems Migration: Gateways,
Interfaces, and the Incremental Approach (1995)

7. Brunner, E., Dette, H., Munk, A.: Box-type approximations in nonparametric fac-
torial designs. J. Am. Stat. Assoc. 92(440), 1494–1502 (1997)

8. Caulo, M., Francese, R., Scanniello, G., Spera, A.: Dealing with comprehension and
bugs in native and cross-platform apps: a controlled experiment. In: Franch, X.,
Männistö, T., Mart́ınez-Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp.
677–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35333-9 53

9. Caulo, M., Francese, R., Scanniello, G., Spera, A.: Does the migration of cross-
platform apps towards the android platform matter? An approach and a user
study. In: Franch, X., Männistö, T., Mart́ınez-Fernández, S. (eds.) PROFES 2019.
LNCS, vol. 11915, pp. 120–136. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35333-9 9

10. Cliff, N.: Ordinal methods for behavioral data analysis (1996). https://books.
google.it/books?id=bIJFvgAACAAJ

11. Corral, L., Sillitti, A., Succi, G.: Mobile multiplatform development: an experiment
for performance analysis. Proc. Comput. Sci. 10, 736–743 (2012)

12. De Lucia, A., Francese, R., Scanniello, G., Tortora, G.: Developing legacy system
migration methods and tools for technology transfer. Softw. Pract. Exp. 38, 1333–
1364 (2008)

13. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.: ICPMD: integrated
cross-platform mobile development solution. In: International Conference on Com-
puter Engineering and Systems, pp. 307–317 (2014)

14. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of cross-
platform mobile applications development approaches. Ain Shams Eng. J. 8(2),
163–190 (2017)

15. Francese, R., Gravino, C., Risi, M., Scanniello, G., Tortora, G.: Mobile app devel-
opment and management: results from a qualitative investigation. In: Proceedings
of International Conference on Mobile Software Engineering and Systems, pp. 133–
143 (2017)

https://github.com/okode/movies-app
https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-native-app-at-later-point-of-time
https://stackoverflow.com/questions/34986098/migrating-from-hybrid-app-to-native-app-at-later-point-of-time
https://doi.org/10.1007/s10664-020-09827-6
https://doi.org/10.1007/s10664-020-09827-6
https://doi.org/10.1007/978-3-030-35333-9_53
https://doi.org/10.1007/978-3-030-35333-9_9
https://doi.org/10.1007/978-3-030-35333-9_9
https://books.google.it/books?id=bIJFvgAACAAJ
https://books.google.it/books?id=bIJFvgAACAAJ


18 M. Caulo et al.

16. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-
ment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H. (eds.)
WEBIST 2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36608-6 8

17. Heitkötter, H., Kuchen, H., Majchrzak, T.A.: Extending a model-driven cross-
platform development approach for business apps. Sci. Comput. Program. 97, 31–
36 (2015)

18. Ergonomics of human system interaction - Part 210: Human-centered design
for interactive systems. Standard, International Organization for Standardization
(2009)

19. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engi-
neering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empir-
ical Software Engineering, pp. 201–228. Springer, London (2008). https://doi.org/
10.1007/978-1-84800-044-5 8

20. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Springer,
Heidelberg (2001). https://doi.org/10.1007/978-1-4757-3304-4

21. Kamsties, E., von Knethen, A., Reussner, R.: A controlled experiment to evaluate
how styles affect the understandability of requirements specifications. Inf. Soft.
Technol. 45(14), 955–965 (2003)

22. Kaptein, M., Nass, C., Markopoulos, P.: Powerful and consistent analysis of likert-
type ratingscales, vol. 4, pp. 2391–2394 (2010)

23. Kim, S., Clark, J.A., McDermid, J.A.: The rigorous generation of java mutation
operators using hazop technical report (1999)

24. Kitchenham, B., et al.: Robust statistical methods for empirical software engineer-
ing. Empir. Softw. Eng. 22(2), 579–630 (2016)

25. Koelstra, S., et al.: DEAP: a database for emotion analysis using physiological
signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

26. Latif, M., Lakhrissi, Y., Nfaoui, E.H., Es-Sbai, N.: Cross platform approach for
mobile application development: A survey. In: Proceedings of International Con-
ference on Information Technology for Organizations Development, pp. 1–5 (2016)

27. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experi-
ence questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9 6

28. Malavolta, I., Ruberto, S., Soru, T., Terragni, V.: End users’ perception of hybrid
mobile apps in the google play store. In: Proceedings of International Conference
on Mobile Services, pp. 25–32 (2015)

29. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Statist. 18(1), 50–60 (1947)

30. Noei, E., Syer, M.D., Zou, Y., Hassan, A.E., Keivanloo, I.: A study of the rela-
tion of mobile device attributes with the user-perceived quality of android apps. In:
Proceedings International Conference on Software Analysis, Evolution and Reengi-
neering, p. 469 (2018)

31. Pfleeger, S.L., Menezes, W.: Marketing technology to software practitioners. IEEE
Softw. 17(1), 27–33 (2000)

32. Que, P., Guo, X., Zhu, M.: A comprehensive comparison between hybrid and native
app paradigms. In: Proceedings of International Conference on Computational
Intelligence and Communication Networks, pp. 611–614 (2016)

33. Rieger, C., Majchrzak, T.A.: Towards the definitive evaluation framework for cross-
platform app development approaches. J. Syst. Softw. 153, 175–199 (2019)

https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-4757-3304-4
https://doi.org/10.1007/978-3-540-89350-9_6


Implications on the Migration from Ionic to Android 19

34. Romano, J., Kromrey, J.: Appropriate statistics for ordinal level data: should we
really be using t-test and Cohen’s d for evaluating group differences on the NSSE
and other surveys? (2006)

35. Scanniello, G., Risi, M., Tramontana, P., Romano, S.: Fixing faults in C and java
source code: abbreviated vs. full-word identifier names. ACM Trans. Softw. Eng.
Methodol. 26(2), 6:1–6:43 (2017)

36. Shapiro, S., Wilk, M.: An analysis of variance test for normality. Biometrika 52(3–
4), 591–611 (1965)

37. Sullivan, G., Artino, A.: Analyzing and interpreting data from Likert-type scales.
J. Grad. Med. Educ. 5, 541–2 (2013)

38. Vegas, S., Apa, C., Juristo, N.: Crossover designs in software engineering experi-
ments: benefits and perils. IEEE Trans. Softw. Eng. 42(2), 120–135 (2016)

39. Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief mea-
sures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol.
54(6), 1063 (1988)

40. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2


The Migration Journey Towards
Microservices

Hamdy Michael Ayas(B), Philipp Leitner, and Regina Hebig

Chalmers | University of Gothenburg, Gothenburg, Sweden
{ayas,philipp.leitner,hebig}@chalmers.se

Abstract. Organizations initiate migration projects in order to change
their software architecture towards microservices and ripe the many ben-
efits that microservices have to offer. However, migrations often take
place in unstructured, non-systemic, and trial-and-error manners, result-
ing in unclarity and uncertainty in such projects. In this study, we
investigate 16 software development organizations that migrated towards
microservices and we chart their detailed migration journey. We do so by
conducting an interview survey using some of the tools from Grounded
Theory in 19 interviews from 16 organizations. Our results showcase
the evolutionary and iterative nature of the migration journey at an
architectural-level and system-implementation level. Also, we identify 18
detailed activities that take place in these levels, categorized in the four
phases of 1) designing the architecture, 2) altering the system, 3) set-
ting up supporting artifacts, and 4) implementing additional technical
artifacts.

Keywords: Microservices · Migrations · Grounded theory · Process

1 Introduction

Microservices is a type of service-oriented architecture, that many organizations
developing software adopt, resulting to the appearance of many microservices
migration projects. A Microservices Based Architecture (MSA) provides benefits
like scalability, maintainability, time to market [9] and sometimes it is a way to
help transitioning to the cloud [15]. Unavoidably, there are many practices that
direct organizations on how to develop or migrate towards such MSAs and it is
important to investigate them in detail. Empirical evidence on migration projects
can bring light to such practices as well as prepare practitioners for the expected
migration journey and what activities such a journey entails [23]. Hence, studying
and understanding how companies make their transitions towards MSAs can
also provide a detailed theoretical basis to researchers on the different aspects
of migrations [13]. Also, there is a need in empirically investigating the details
of migrations comprehensively from different points of view [5].

Migration projects are not simple, since migrating a system towards microser-
vices (from a monolithic architecture) is a long endeavour with many things to
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 20–35, 2021.
https://doi.org/10.1007/978-3-030-91452-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_2


The Migration Journey Towards Microservices 21

consider and an inherent complexity [19]. This is mainly due to the distributed
nature of designing and developing MSAs [18,27]. Also, current approaches often
need exhaustive specifications of the migrating system, which limits the practical
applicability of different decomposition approaches, making migration processes
unstructured and non-systemic [6]. Research and best practices stemming from
industry provide some approaches on migrations, covering many aspects [1,19].

However, it is not always clear how aspects of migrations connect to each
other and how migration activities take place in relation to one another. On the
one hand, microservices migrations are characterized by overarching patterns
like decomposing the old system or introducing new technologies [2]. On the
other hand, microservices migrations have practical activities that are more spe-
cific and narrow in scope, operationalizing these overarching patterns [9,14]. For
example, migrations entail technical activities that actually take place in the
code (e.g. actually splitting the code-base into small services) [11]. Therefore,
there is an observed shortage of approaches that are pragmatic in describing
accurately different migration activities, on different levels of abstraction and
their relations [9]. Also there are not many studies organizing rigorously and
systematically aspects that describe precedent migrations [6].

We address this by aggregating the migration journey that 16 migrating
software development organizations went through and separating the activities
they do in different levels of abstraction. We do so by conducting an interview
survey using some of the techniques from Grounded Theory in 19 interviews
with engineers from companies of different size, industries, and geographical
regions. All interviewed developers have been part of their companies’ migration
journeys towards microservices. Our analysis is re-using qualitative interview
data gathered as part of a different study, that focuses on the decision-making
taking place in microservices migrations [16]. We address the following research
question:

RQ1: What is the migration journey that companies go through when transi-
tioning towards microservices?

RQ1.1: On what different levels can the migration journey take place on?
RQ1.2: What do those different levels of the migration journey entail?

Our results showcase that changes in microservices migrations take place in
two modes of change. These are: 1) the architectural-level and 2) the system-level.
In addition, we describe the iterative nature of the migration journey in differ-
ent modes of pace in each level. These modes of pace are longer-term changes
on the architectural-level and shorter-term changes on the other level. We pro-
vided details on the different levels of the journey in 4 reoccurring, thematic
phases that are 1) Make design decisions, 2) Alter the system, 3) Setup support-
ing artifacts, and 4) Implement additional technical artifacts. This structure and
understanding of migrations can be used to identify solutions for accelerating the
required change. The resulting journey can help researchers distinguish between
the different modes of change happening during migrations. Similarly, practi-
tioners can use these different modes to maintain their scope to the appropriate
mode when migrating.



22 H. Michael Ayas et al.

2 Related Work

Microservices are a way of structuring systems into loosely coupled pieces that
are developed and operated independently, each with its own individual resources
[26]. These individual pieces communicate with each other to compose a complete
system [27]. Usually there is a large leap between a monolith and a microservice
architecture [18]. A migration/transition is the crucial project that takes the
software development organization through the leap [12,23]. Therefore, there
are many fundamental differences between a software application based on a
monolithic architecture and a system based on microservices [19]. However, we
still need to understand more in detail these differences and how the transition
between the two architectures can possibly take place.

Migrating to a microservice-based architecture can be very rewarding for
organizations because microservices promise to enable many benefits [19,21].
The migration journey is often very helpful to improve the developed system
[1]. Hence, organizations are very often extremely motivated to migrate towards
microservice-based architectures and there are many potential ways to do so [19].
Microservices promise improvements in many aspects like scalability, maintain-
ability and continuous development [5]. Specifically, resource-demanding parts
of a software application can be scaled independently and unburden the rest of
the system. Also, the modular organization of the system with minimal depen-
dencies allows improved maintainability [7]. In addition, the flexibility in service
design that can be achieved enables a lot of potential in continuous delivery of
new business value [8]. All these benefits are promised for the completion of the
migration. However, it is not clear how they can be achieved in intermediary
stages and have tangible benefits during the migration.

Microservices are increasingly getting widely adopted by different organiza-
tions and therefore, research on microservice migration projects gains popular-
ity [12]. Previous research investigated the area surrounding the architectural
characteristics of microservices migrations [2,9], as well as how it relates to the
overall development process [23]. In addition, existing research provides several
solutions on how to technically enact a migration. These solutions include split-
ting a system, transforming the code of an application or identifying services
in a monolith [10]. In addition, such solutions often provide tools on how to
identify and decompose services, assuming a technical and deterministic view-
point on the migration [11]. This is not always ideal, as migrations are more
often than not complex endeavours with many things to consider [19]. So many,
that it seems virtually impossible to perform a migration in a one-off project.
Such intricate approaches that see migrations as complex endeavours are not
sufficiently investigated.

Every migration contains aspects that are not considered but in hindsight
seem that they should have been better thought through, leading to Microser-
vices Bad Smells [24]. Balalaie et al. (2018), provide a valuable set of patterns
that can guide a microservices migration initiative [2] and even though the pat-
terns are very strong recommendations, some of them are not as trivial as they
would be needed for practitioners to utilize them for a smooth migration. In



The Migration Journey Towards Microservices 23

addition, existing research presents practices with negative impact (aka anti-
patterns) that are often used and undermine migration initiatives [25]. Many
studies provide sufficient arguments on how to tackle problems that arise and
how to technically perform a migration. However, all those lead to work for engi-
neers that needs to be done and more often than not, the tasks to implement
them are unknown to be planned accordingly. Also there is a gap of work that
organizes rigorously and systematically aspects that describe precedent migra-
tions [6].

The technologies and tools that implement microservices have grown over the
years and got extensively applied [12]. Also, techniques to evaluate decomposi-
tion approaches are often not founded/evaluated on applications from industry,
making problems appear in later stages of the development lifecycle, i.e. in pro-
duction, when applied [6]. However, the focus is mainly on what stakeholders
and developers could do differently and not what stakeholders and developers
face during a migration. For example, migrating towards microservices entails
challenges and activities that are not always in line with current best practices
and these can be identified and investigated [5]. Hence, learning from organiza-
tions that migrated to microservices, can also help us understand the elements
of a migration journey and raise awareness for them over to future migrations.

3 Methodology

Our research method is an interview study, based on techniques from grounded
theory, with practitioners who have recently participated in a microservices
migration project. We adopt such an inductive approach in order to better under-
stand what developers go through during a migration and derive our theory from
a comprehensive set of situational factors that migrations might entail. We con-
ducted semi-structured interviews and the interview guide can be found in our
replication package [17]. We omit interview transcripts from the replication pack-
age to preserve interviewee privacy and protect potential commercial interests
of our interviewee’s employers.

The interview analysis step of the study relies on techniques found in
Grounded Theory (GT) [4], namely coding, memoing, sorting and constant com-
parison. Based on guidelines for GT in software engineering research, we cannot
claim to use the classic GT method. Instead, we used an adaptation of con-
structivist GT as we had significant previous exposure to literature prior to the
study [22], such that some of our themes align with both, previous research [2,12]
as well as commonly identified processes [19]. When conducting the interviews,
we used a semi-structured interview guide, which we constructed based on our
research questions. However, we gave participants significant freedom to describe
their own migration journeys in their own words.

In accordance to constructivist GT, we started with an initial research ques-
tion that evolved throughout the study [22]. The initial research question was
inspired both from practical experience and literature on the subject. At start,
we targeted to address more generally the underlying elements of a microservices



24 H. Michael Ayas et al.

migration, but early on we needed to narrow the scope and focus specifically on
the migration process. Then we further broke down the research question into
multiple ones that could be addressed based on the analysis of the data. It is
worth noting that this study is based on the re-analysis of data collected in
a different MSA related study. Specifically, the other study does not focus on
specifying the migration process, but on decision-making during microservices
migrations [16]. Even though both studies rely on the same data, we conducted
a new analysis for this work, based on a different portion of the data. The main
methodological difference in this study is that saturation is observed retrospec-
tively with the available data, rather than driving the termination of inviting
more participants.

3.1 Participants

We relied on purposive sampling [3] and our personal network (e.g., through
current and previous projects, colleagues, or students) to recruit interview par-
ticipants that have a rich repertoire of experiences with microservice migrations.
Furthermore, we used a snowballing approach, where we asked each intervie-
wee to refer us further to other potential participants from their networks. This
way we tackled the well-known challenge of recruiting a sufficient number of
engineers for interview studies. The selection criteria for participants during the
study were adjusted in order to include more experienced engineers along the
way. We used an adapted saturation approach [4] in which we judged during
data analysis that no new insights were appearing and therefore, there was no
need to continue inviting more participants. For the selection of interviewees and
case organizations, we used a set of acceptance criteria. Specifically, our inter-
viewees are (a) software engineering professionals (not students) who (b) have
participated (or were close observers) in a microservice migration project within
their professional work. An overview of the participants is found in Table 1.

We have interviewed 19 professionals from 6 different countries (Cyprus,
UAE, Germany, Romania, Sweden, The Netherlands), of which 18 were male
and one female. Interviewers had on average 7.5 years of experience (ranging
from 2 to 21) and they have worked at medium to large companies in twelve
business domains. In addition, the migration cases are about systems delivered
to external customers (e.g. Enterprise SaaS), in-house enterprise solutions for
internal users and also Software Applications sold as a service (e.g. mobile app).
Each interviewee worked in (at least) one case of microservices migration and
we consider migrations from 16 different companies, as shown in Table 1.

3.2 Protocol

We conducted our interviews over a period of six months. Each interview took
between 30 and 60 min. Due to the ongoing COVID-19 pandemic as well as geo-
graphical distance, interviews had to be carried out through video conferencing.
Prior to each interview, participants were asked to sign a consent form, and
consent to recording the interview. Further, participants were made aware that



The Migration Journey Towards Microservices 25

Table 1. Interview participants and case organizations. Organizations size is reported
in approximate numbers of full time employees. Experience is in years and values in
brackets are on experience with microservices.

Organization Org. size Industry Interview Role Experience

(MSA)

Org1 50 Enterprise SaaS I1 Full stack developer 2 (1)

Org2 4,000 Gaming I2 Software Engineer 2 (2)

Org1 50 Enterprise Software I3 Senior Team Leader 12 (2)

Org3 36,000 Banking Systems I4 Software Engineer 2 (1)

Org4 9,000 Banking Software I5 Software Engineer 19 (2)

Org1 50 Enterprise Software I6 Software Engineer 2 (1)

Org5 3,000 Aviation Software I7 Software Engineer 7 (2)

Org6 30,000 Telecommunications I8 Software Developer 3 (3)

Org7 27,000 Enterprise Software I9 Computer Scientist 5 (5)

Org8 200,000 Cloud Computing I10 Principal Software Engineer 7 (4)

Org9 33,000 Marketing Analytics I11 Software Engineer 6 (3)

Org10 150 Healthcare Software I12 Data Engineer 6 (2)

Org11 83,000 Cloud Computing I13 Senior Cloud Architect 10 (5)

Org12 50 Energy Software I14 Software Engineer 4 (1.5)

Org12 50 Energy Software I15 Software Architect 4 (4)

Org13 30 Logistics/Planning I17 Co-founder 8 (5)

Org14 62,000 Logistics/Planning I16 Software Architecture

Consultant

13 (4)

Org15 25 Manufacturing I18 CTO 10 (6)

Org16 1m Manufacturing I19 Enterprise Architect 21 (5)

they can drop out of the study at any point, which no interviewee made use of.
We did not offer financial rewards to study participants.

3.3 Analysis

The analysis of the interviews is based on the constructivist variant of Grounded
Theory and therefore, we applied initial, focused and theoretical coding on the
transcribed interviews [4,22]. After conducting every interview, it was tran-
scribed and analyzed with initial coding. In initial coding we analyzed horizon-
tally the data by fracturing them to find relevant statements. In focused coding,
we aggregated and connected those excerpts into categories and themes, analyz-
ing them vertically until achieving saturation. In theoretical coding we specified
the relationships of the connected categories and integrated them into a cohe-
sive theory, by conducting both horizontal and vertical analysis. Initial coding
was conducted by the first author. All three authors collaborated in focused
coding in three card sorting and memoing sessions lasting three to four hours
each. All resulting findings are supported by statements from multiple partic-
ipants. Finally, it is worth mentioning that literature played a supporting role
to our analysis in order to enhance the validity of our findings. Existing litera-
ture helped us to understand more comprehensively the statements of software



26 H. Michael Ayas et al.

developers during the interviews in combination with the authors experiences
and previous exposure to the topic. Also, in this analysis we took into account
existing research guidelines on creating processes and taxonomies in Software
Engineering [20].

4 Results

Our analysis of the 19 interviewees from 16 organizations that migrated towards
microservices showcase that the migration journey takes place in an iterative pro-
cess of change, until the 2 identified modes of change reach a final, stable state.
These identified modes of change are, as presented in Fig. 1, 1) the long-term
journey, architectural level of a migration and 2) the short-term journey, on a
system level. The first mode is about the structural transition taking place in a
migration. The second mode of change is on the evolution of the software sys-
tem, as its artifacts change during a migration. In the identified modes of change,
we identify 4 reoccurring thematic phases of activities, also shown in Fig. 1. The
phase of making design decisions is about the design activities that take place at
the start of a migration sprint (architectural or system-level). This phase is not
to be confused with the architectural mode of a migration, since it only entails
design activities on a narrow scope rather than architectural implementation.
Then, the phase of altering the system is about the implementation activities
that actively modify the software application, on the different modes of change.
The phase of setting up supporting artifacts is a stage in the migration that the
development and operations are configured in order to support effectively the
new paradigm that microservices bring. Finally, the phase of implementing addi-
tional technical artifacts is about the development or modification of software
or other artifacts that are needed along with microservices.

4.1 Architectural-Level Migration Journey

This level of the migration is comprised of the activities for the structural or
architectural transition that take place in a migration, as shown in Fig. 2. These
activities have a longer life-cycle, that takes a relatively large amount of time,
and requires multiple things to be in place.

Make Design Decisions. The first identified activity in the studied migrations is
to clarify the business and technical drivers. Clarifying the business and technical
drivers is a step, usually used to align with all stakeholders. In all architectural
migrations investigated, there was a large process of deliberation in which dif-
ferent stakeholders, with different concerns and interests had to exchange their
views and align with each other. According to some highly experienced inter-
viewees (I10, I13 and I17) this is the ideal phase to obtain a critical stance on
microservices and consider if it is really a good fit for the overall objectives at
hand. In fact, I17 described how missing this discussion at this stage made it
costly later on to cancel the migration and revert towards a monolith once again.
Also, I2 clarifies how MSA is not suitable for all types of systems.



The Migration Journey Towards Microservices 27

Fig. 1. The iterative nature of the migration journey along the different levels that
constitute it.

Fig. 2. The migration journey on an Architectural level, with its 9 activities

“it depends on the type of the product, the audience, time constraints. If you’re saying

to me that I should build now a system for a small company, I would build something

monolithic. There’s no serious reason to start building in microservices for that

company.” - I2

Once alignment among some stakeholders is achieved comes the activity of
defining the criteria for decomposition. This step uses the input from stake-



28 H. Michael Ayas et al.

holders to define different goals. For example, both I5 and I8 mention how the
microservice migration is driven from management that tries to market the com-
pany’s technology as modern but it is also driven from the software development
teams that try to eliminate dependencies and bottlenecks in development.

“It’s a very loosely coupled structure and a new technology. So, we are trying to be

updated and that’s why we use microservices.” - I8

Alter the System Once the requirements are clear and the criteria are defined,
most interviewees mentioned the need to managing the old system and the com-
munication with it. For example, by investigating how microservices communi-
cate with the legacy system. A way in which this takes place is by building a
shell API around the old system or the data layer (for the systems that migrate
by building an entirely new system from scratch - Org1 with I1, I3, I6). In this
way, the first split or extraction of a microservice takes place. This enables the
usage of data from the old system. For example, I11 (among others) built a mid-
dleware that acted as an internal API around the legacy system, and did not
use any data coming from any other place. However, this was only possible with
dedicating development time in maintaining and evolving this middleware.

“the first step was to take the back-end as a whole, as one piece [...] connect it with a

linked library that is imported in the UI, and then we built an API around it.” - I11

The first decomposition takes place by extracting one service or perform-
ing a first split, sometimes in combination with developing a new microservice.
This can result in a hybrid architecture with a small monolith within the MSA,
according to I2 and I11. It is worth noting that a hybrid architecture does not
necessarily appear when a new architecture is developed in parallel to the mono-
lith. Then, engineering teams use their newly acquired knowledge and typically
define the granularity of the services and repeat the extraction/development.

“is a continuous problem defining how big the area of concern is [...] I have some

functionalities and are these one service, multiple services or something to be added

in an existing service?” - I15

Set up Supporting Artifacts. Increasing the number of microservices results in
a need for setting up supporting artifacts for new development, integration and
deployment issues that are surfacing with the adoption of microservices. Con-
sequently, software development organizations design and implement the infras-
tructure for integrating microservices, that are either extracted from the mono-
lith, or newly developed. This predisposes setting up CI and CD pipelines and
writing scripts that will make the integration happen in a systemic way. Once
the appropriate infrastructure is set, organizations are able to systematically
extract existing or develop new microservices and re-define the granularity if
needed. Consequently, this leads organizations to facilitating independent and
dynamic testing and deployment for rolling-out new versions of the application.
This includes setting up staging environments and processes, dynamic testing



The Migration Journey Towards Microservices 29

and delivery processes. Such processes include both automated structures but
also more manual activities such as setting the communication among services.

“we have some automated testing [...], when everything is OK, the service is deployed

on a staging Kubernetes cluster to be tested, and if everything is OK, it is promoted

to production.” - I3

Implement Additional Technical Artifacts. At this stage our interviewees men-
tion how they need to facilitate logging and monitoring mechanisms. Logging is
perceived to be more crucial than for other architectures, as a lack of it leads
to non-observable system behaviours. For example, both I1 and I2 described
how their systems behaved unpredictably and had unknown bugs surfacing fre-
quently, in initial migration attempts. In these attempts, a proportion of the
code was reused without adding any logging. Hence, the systems became non-
transparent making them hard to maintain. Finally, once the mechanisms are
set for developing, testing and maintaining, the migration needs to be scaled and
propagated to the rest of the system. Hence, the process is repeated in multiple
places of the system and in lower levels of abstraction, until it reaches a mature
stage of independent and decoupled services.

4.2 System-Level Migration Journey

On this level, we dive into how the system itself changes in time, as shown in
the journey of Fig. 3 and based on the descriptions of the interview participants.
This journey repeats multiple times in one complete iteration of the architectural
journey. Our analysis reveals that activities in the architectural journey are on
a too high level of abstraction and thus, they need to be complemented. The
activities on the system-level are for operationalizing those of the architectural
migration. The journey on a system-level is also separated in the four overarching
phases.

Make Design Decisions and Alter the System. First, development teams start
from understanding the Business Logic, which is the contextual information of
the application and its purpose. Then, teams need to prepare the Back-end for
decomposition. Due to the nature of the back-end and middleware, it is nor-
mally the starting point in building a shell API for example. This is often fol-
lowed or takes place at parallel with splitting the Data, which is a central part
in decomposing the monolith and migrating to microservices, according to the
migrations investigated. Since relational databases are fundamentally structured
around coupling, interviewees (e.g. I1, I2, I11) described how it comes in conflict
with the fundamental principles of microservices and thus, a balance or trade-off
was needed to be found there. Once the back-end and data layer are split, at
least partially, organizations can start working with the front-end. The front-
end comes later, due to its particularities with used frameworks and because
its decomposition depends on the other parts of the application. Hence, the



30 H. Michael Ayas et al.

Fig. 3. The migration journey on a System-level with its 9 activities

front-end is often detached first from the rest of the application and at a later
stage (potentially) decomposed.

“The front-end didn’t get split (yet). It’s doing one thing and there is high

customization without it being overwhelming” - I11

Set Up Supporting Artifacts. Many organizations indicated that when there are
some microservices, the system grows and needs to be managed, considering all
the new attributes of the introduced architecture. Hence, there is typically an
alteration in DevOps practices. For example, this includes a difference in devel-
opment in which engineers are no longer required to have a local version of the
entire application on which they develop. Instead, small parts of the software
- microservices - can be developed separately and then get deployed in a stag-
ing server, following a predefined process. This introduces some new practices,
including the development and management of APIs and independent services.
Furthermore, the Testing mechanisms are altered to support the distributed
nature of the new architecture. Testing now takes place on different levels, start-
ing from simple unit tests, to integration tests and to deployment tests.

“testing specific combinations of microservices is super hard to achieve [...] I know

that we are doing a lot of manual work, individual tricky solutions and hacks to make

our test frameworks do what we want to test this complexity.” - I18

Implement Additional Technical Artifacts. Moreover, there are additional tech-
nical artifacts that introduce an overhead in development, that are needed to
support the new architecture. Once the application is decomposed, teams come
across the need of developing Communication and orchestration between ser-
vices. Many teams mention how a microservice-based architecture propagates the
complexity of different pieces of software to the communication layer. Therefore,
the way that microservices communicate with each other is in the end carefully



The Migration Journey Towards Microservices 31

designed. Also, as the amount of microservices grows, is typically required to
develop a way of finding them in an inventory and orchestrating their execu-
tion. Furthermore, these additional technical artifacts include the development
of different Monitoring and Logging mechanisms. Monitoring and Logging has a
different nature in microservice-based Architectures, which needs to be designed
accordingly. For example, interviewee I2 mentioned that putting proper excep-
tion handling to propagate errors correctly was not essential and entirely in place
before. However, in microservices these practices are vital for being able to locate
issues and bugs inside a complex network of microservices. Finally, more often
than not, there are artifacts being reused from the old version of the system /
architecture. Hence, there is a need to design the ways for handling any reused
artifacts. This happens for example, using libraries and APIs around smaller
monolithic parts within the microservices.

5 Discussion

Our results indicate the strong relationship and connection between the different
modes of change and the phases of migration. The first mode is about the struc-
tural transition taking place in a migration. The second mode of change is on
the evolution of the software system, as its artifacts change during a migration.
Finally, all modes refers to the engineers’ experiences in the transition to the new
architecture. A common denominator across most investigated migration cases
is that the migration project is more of an on-going and re-occurring project
rather than a one-off execution of steps. For example, we showcase how before
implementing change, there is a need of organizing the migration and designing
how the system will change. Hence, architectural transition is important but
only by itself it is a theoretical vision and not a practical change. Therefore,
migrating the software architecture of the system is essentially taking place in
the code and technical artifacts of the system. Thus, the system-level migration
is the core element of change that continuously takes place across the journey.
System-level migration is achieved by engineers that have to make it happen and
their perspective is crucial, since it is not always easy to learn new technologies
or changing their process.

Current research does not account for how the aforementioned levels of
abstraction connect to each other and the long transformational journey that
companies go through when migrating. Also, practitioners face practical diffi-
culties when following existing approaches that are not always reported. On
the one hand, the repetition is taking place in different parts of the system
simultaneously on different teams. On the other hand, the repetition happens in
increments or sprints from the same team, when evolving the same part of the
system. For example, large organizations with predominantly monolith architec-
tures have some teams with a relatively mature microservice-based architecture
locally, on their part of the system. However, a central question on this level in
most migrations is where the change should start from.



32 H. Michael Ayas et al.

5.1 Changing Modes and the Reoccurring Phases of Migrations

Migration projects as continuous improvement initiatives: This study indicates
the importance of the iterative and continuous nature of migrations. Specifically,
we see that it is not a one-off project but a continuous endeavour that takes place
in iterations. Many of the investigated software development teams that migrate
do not consider the change of the system as a main value-adding project. Rather,
they view the migration project as a necessary sideline activity and they focus
on developing new features and value adding artifacts. Therefore, migrations are
rather transformational and take place in parallel with other activities and thus,
there is sometimes a pause and revisiting to the project. Furthermore, since it
is such a complex and multidimensional endeavour, engineers need to keep in
mind designing and developing for future updates and extensions.

Understanding the Progress of Migration Projects: One finding from our result
is the importance of having visibility on the four phases of the migration and
the different modes of migration. This helps the engineers migrating to have a
positional awareness of the progress. As many changes take place in organizations
during migrations, there are different modes of change. We see how for different
levels of the migration we have a different pace. It is challenging to know if
sufficient progress is made and to demonstrate it and placing the migration in one
of the phases makes it possible. Also this can be used to anticipate work ahead
and avoid repetition of work or taking wrong directions that would generate the
need for a lot of work later on. For example, completely neglecting logging and
exception handling might not be a good idea if it is anticipated to be an activity
later on. Furthermore, this can bring awareness that using microservices is not
a silver bullet and has some flaws that is good to plan for. The categorization
on four different phases can help developers anticipate challenges timely and
address them when they are relevant.

5.2 Implications for Engineering Teams

Diverse Skills Required: Based on our findings, engineers that started migrations
had to educate themselves on the new technologies that microservices bring. This
typically is taking place through the studying of Best Practices and available
material regarding the technologies. Of course their goal was always to have a
mature architecture that works in the ways that it is supposed to do. In addi-
tion, with microservices, concepts of individual service ownership are introduced
to the engineering teams. Consequently, teams need to have more “T”-shaped
abilities which means that more comprehensive and diverse skills are needed for
each microservice. Such skills include developing different parts of the system,
but also analysing business-wise the service, configuring tools and setting up the
development or orchestration environments. Teams get in a position of design-
ing the business and the software at the same time with development. Therefore,
business-savvy programmers or programming-savvy Business Analysts and Sys-
tem Designers are needed in teams. This is often resolved by recruiting system
architects or consulting services.



The Migration Journey Towards Microservices 33

Shift of Complexity from Implementation to Configuration: However, one of
the most important realizations of teams is the shift from traditional develop-
ment/programming to workflow design and configuration. This entails the shift
of complexity from implementation-level to a level of communication amongst
services. Sometimes, the lack of being up to speed with the right skills, but
also the growth of the microservices, lead to a discrepancy between the design
or intended development processes and activities from the actual ones that the
engineers do in reality. For example, even though there is the perception that
there is strong decoupling in microservices, in reality there is sometimes a chain
of microservices that leads to dependencies and coupling, but on a different
level of abstraction. Hence, there is a difference between the intended and actual
structures and processes.

5.3 Threats to Validity

We designed our research as a grounded theory study to empirically understand
the phenomena taking place in migrations towards microservices. Our theory
stems from empirical evidence and therefore, has a weight in its validity. However,
some threats that are inherent to our chosen study methodology remain, which
readers should take into consideration.

External Validity. Specifically, we cannot claim representativeness of our study
demographics for the software industry in general, as the sampled population was
mainly through our personal network and using a voluntary, opt-in procedure.
To address and mitigate this threat, we selected interview participants that
cover different sizes of companies, in different industries, and across different
geographical regions.

Internal Validity. Furthermore, in terms of internal validity, an identified threat
is that we are somewhat pre-exposed to existing research through our previous
interest in the field. In addition, we also have practical experience and exposure
to the extensive practitioner-focused guidance on how to conduct microservice
migrations. This may have biased our interview design, and may have led that
some parts of the migration journey and some challenges may have been given
less prominence or judged as unimportant during analysis. For example, those
not discussed in earlier work. Finally, a limitation of our study design is that
we cannot claim that the identified journeys are the only way to successfully
migrate towards microservices, but they are an aggregation of activities from
many successful migrations.

6 Conclusion

Microservices migrations can be large projects, with many dimensions to consider
and many challenges to overcome. The migration journey can be long and in this
study we identify empirically what it entails. For example, there are many levels



34 H. Michael Ayas et al.

of abstraction that a migration takes place on. However, changes in all those
levels of abstraction take place simultaneously during migrations. Hence, in this
paper we aggregate the migration journey and challenges that typically arise in
organizations that transitioned towards microservices. In this way, we provide a
comprehensive guide of how to navigate between the migration journeys, based
on the precedents of our interviewees’ organizations. This journey entails both
a large-scale process of change and a small-scale process of change. In addition,
we address the gap of bridging high-level with comprehensive approaches that
are on an abstraction level closer to the operational choices that organizations
make during migrations.

The migration journey that companies go through when transitioning
towards microservices is iterative in nature and takes place at 2 different modes of
change. Each of the modes of change, namely on 1) architectural and 2) system-
level has its own sub-journey. Very importantly, these journeys are nested to
each other. Each iteration in the architectural-level contains many iterations
of the system-level. These modes of change entail activities, derived from the
interviews, about the re-occurring phases of 1) Make design decisions, 2) Alter
the system, 3) Set up supporting artifacts and 4) Implement additional technical
artifacts.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P., Tamburri, D.A., Lynn, T.: Microser-
vices migration patterns. Softw. Pract. Exp. 48(11), 2019–2042 (2018)

3. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review
and guidelines. CoRR abs/2002.07764 (2020). https://arxiv.org/abs/2002.07764

4. Charmaz, K.: Constructing Grounded Theory. Sage (2014)
5. Di Francesco, P., Lago, P., Malavolta, I.: Migrating towards microservice architec-

tures: an industrial survey. In: 2018 IEEE International Conference on Software
Architecture (ICSA), pp. 29–2909 (2018)

6. Di Francesco, P., Lago, P., Malavolta, I.: Architecting with microservices: a sys-
tematic mapping study. J. Syst. Softw. 150, 77–97 (2019)

7. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M.,
Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 12

8. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

9. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A.: Microservices migration
in industry: intentions, strategies, and challenges. In: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 481–490 (2019)

10. Fritzsch, J., Bogner, J., Zimmermann, A., Wagner, S.: From monolith to microser-
vices: a classification of refactoring approaches. In: Bruel, J.-M., Mazzara, M.,
Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 128–141. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-06019-0 10

https://arxiv.org/abs/2002.07764
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-030-06019-0_10


The Migration Journey Towards Microservices 35

11. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

12. Hassan, S., Bahsoon, R., Kazman, R.: Microservice transition and its granularity
problem: a systematic mapping study. Softw. - Pract. Exp. 50(9), 1651–1681 (2020)

13. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

14. Knoche, H., Hasselbring, W.: Using microservices for legacy software moderniza-
tion. IEEE Softw. 35(3), 44–49 (2018)

15. Lin, J., Lin, L.C., Huang, S.: Migrating web applications to clouds with microser-
vice architectures. In: 2016 International Conference on Applied System Innova-
tion, IEEE ICASI 2016. Institute of Electrical and Electronics Engineers Inc.,
August 2016

16. Michael Ayas, H., Leitner, P., Hebig, R.: Facing the giant: a grounded theory study
of decision-making in microservices migrations (2021)

17. Michael Ayas, H., Leitner, P., Hebig, R.: Grounded theory on the microservices
migration journey, April 2021. https://doi.org/10.5281/zenodo.4729781

18. Newman, S.: Building Microservices: Designing Fine-grained Systems. O’Reilly
Media, Inc. (2015)

19. Newman, S.: Monolith to Microservices: Evolutionary Patterns to Transform Your
Monolith. O’Reilly Media (2019)

20. Ralph, P.: Toward methodological guidelines for process theories and taxonomies
in software engineering. IEEE Trans. Softw. Eng. 45(7), 712–735 (2019)

21. Singleton, A.: The economics of microservices. IEEE Cloud Comput. 3(5), 16–20
(2016)

22. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering
research: a critical review and guidelines. In: Proceedings - International Confer-
ence on Software Engineering, 14–22 May 2016, August 2015, pp. 120–131 (2016)

23. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2017)

24. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

25. Taibi, D., Lenarduzzi, V., Pahl, C., et al.: Microservices anti-patterns: a taxon-
omy. In: Bucchiarone, A. (ed.) Microservices, pp. 111–128. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-31646-4 5

26. Thönes, J.: Microservices. IEEE Softw. 32(1), 116 (2015)
27. Zimmermann, O.: Microservices tenets: agile approach to service development and

deployment. Comput. Sci. - Res. Dev. 32(3–4), 301–310 (2017)

https://doi.org/10.1007/978-3-319-44482-6_12
https://doi.org/10.5281/zenodo.4729781
https://doi.org/10.1007/978-3-030-31646-4_5


Migrating from a Centralized Data
Warehouse to a Decentralized Data

Platform Architecture

Antti Loukiala1(B), Juha-Pekka Joutsenlahti2, Mikko Raatikainen3 ,
Tommi Mikkonen3,4 , and Timo Lehtonen1

1 Solita Ltd., Tampere, Finland
{antti.loukiala,timo.lehtonen}@solita.com

2 TietoEVRY, Tampere, Finland
juha-pekka.joutsenlahti@tietoevry.com
3 University of Helsinki, Helsinki, Finland

{mikko.raatikainen,tommi.mikkonen}@helsinki.fi
4 University of Jyväskylä, Jyväskylä, Finland

tommi.j.mikkonen@jyu.fi

Abstract. To an increasing degree, data is a driving force for digiti-
zation, and hence also a key asset for numerous companies. In many
businesses, various sources of data exist, which are isolated from one
another in different domains, across a heterogeneous application land-
scape. Well-known centralized solution technologies, such as data ware-
houses and data lakes, exist to integrate data into one system, but they
do not always scale well. Therefore, robust and decentralized ways to
manage data can provide the companies with better value give compa-
nies a competitive edge over a single central repository. In this paper, we
address why and when a monolithic data storage should be decentralized
for improved scalability, and how to perform the decentralization. The
paper is based on industrial experiences and the findings show empiri-
cally the potential of a distributed system as well as pinpoint the core
pieces that are needed for its central management.

Keywords: Data warehousing · Data platform architecture ·
Distributed data management · Data decentralization

1 Introduction

Upon becoming the driving force for digitization, data is regarded as a central
key asset by many companies. Used at an ever-increasing scale in decision making
and applications, there is a constant demand for more data, at better quality
and availability, and from a wider time horizon.

State of the practice technological solutions, such as data warehouse and
data lake, have been introduced as a solution that integrates data from disparate
sources into a central repository for analytic and reporting purposes. Thus, the
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 36–48, 2021.
https://doi.org/10.1007/978-3-030-91452-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_3&domain=pdf
http://orcid.org/0000-0002-2410-0722
http://orcid.org/0000-0002-8540-9918
http://orcid.org/0000-0001-8833-1725
https://doi.org/10.1007/978-3-030-91452-3_3


Migrating from a Centralized Data Warehouse to a Decentralized 37

solution can be considered as a central, monolithic solution that they are typi-
cally hard to scale [5]. Monolithic solutions tend to become hard to scale from
the development point of view as multiple developers are working on the same
code base making it hard to parallelize the work and in the larger systems code
base can become very complex. Monolithic solutions are usually built around
single technology that might not support all the use cases in an optimal way.
There are also other complicating factors. In particular, central data warehouse
teams require several special data management skills [1]. Furthermore, as the
data warehouse is working with business domain-specific data, the team also
requires deep domain knowledge.

The situation can be simplified with modern data engineering practices,
including the use of version control, continuous integration and deployment,
and metadata-driven data warehouse development, which automate many steps
of data modelling, making the data available for consumption faster. Similarly,
today’s technologies typically do not create bottlenecks for data management –
they usually scale well both vertically and horizontally. However, even with these
improvements, integrating enterprise data, which may originate from numerous
source systems, into a single model can lead to complex models that are hard
to build, understand, use, and maintain. Moreover, the process of distilling data
from the source to the final data warehouse model requires many, often time-
consuming steps and wide technical expertise as well as deep domain knowledge.
With this premise, centrally run data solutions even with the latest technology
become easily a bottleneck for data management. A common way to scale is to
bring in more expertise to the central team that is accountable for the solutions.
This is not always feasible because the expertise required to build, improve and
maintain these kinds of systems is very broad and hard to find in the labour
market.

In contrast to data management, scaling centralised, monolithic applications
have been addressed in software development, where sophisticated solutions have
been introduced. For instance, large systems use distributed, service-oriented
architectures, built using technologies, such as microservices, that also intro-
duce other benefits as a side-effect. In addition, new innovations, such as the
cloud, helps in scaling. However, while these technologies have been around for
a while, data management related activities and operations have not seen a sim-
ilar paradigm change.

This paper proposes decentralizing data management architecture, where
different business functions take larger responsibility of exposing their data for
general analytical use. The solution is based on experiences from a centralized
data management architecture in a large Nordic manufacturing company where
Solita1, a Nordic midcap consultancy company, has been consulting on data
related development. The Nordic manufacturing company has recently under-
gone a data decentralizing process, resulting in a decentralized data platform
architecture. Our findings empirically show the potential of such architecture as
well as indicate the core pieces that need central management.

1 http://www.solita.com.

http://www.solita.com


38 A. Loukiala et al.

While we have developed the approach and the data platform architecture
implementation independently, the recently introduced concept called data mesh
is also used to refer to a similar decentralised approach to data management. The
closest concrete data mesh-based approaches to ours, also building on designing
a scalable data architecture, have been suggested by Zhamak Deghani [2] and
ThoughtWorks [13]. However, to the best of our knowledge, neither one has
reported uses in scientific literature. For the sake of simplicity, in this paper, we
have retained our original terminology, as data mesh is such a new concept that
several variations exist in its terminology.

The rest of the paper is structured as follows. In Sect. 2, we present the
necessary background for the paper. In Sect. 3, we introduce the case context and
its setup. In Sect. 4, we provide an insight into the drivers of the modernization
process for the data architecture. In Sect. 5, which forms the core of the paper,
we introduce the new data architecture in the case system. In Sect. 6, we discuss
experiences gained in the process. In Sect. 7, we draw some final conclusions.

2 Background

Next, we introduce the key concepts of the paper. These include data ware-
housing, data lakes, data platform architecture, service-oriented architecture,
and microservices. Each of these concepts is discussed in a dedicated subsection
below.

2.1 Data Warehousing

Data warehousing [7] refers to building data storage used for reporting and ana-
lytics. A resulting data warehouse is a central repository of data extracted from
different source systems. The data is integrated and remodelled to allows easy
usage of data. Separating the analytical database in a data warehouse from
the transactional databases used in daily operations allows one to apply heavy
aggregations without compromising the operational work. Furthermore, a data
warehouse typically stores the history of the operational data. In general, suc-
cessful data warehousing requires an ecosystem of tools and capabilities to make
this possible.

Data is typically published from the data warehouse in a form of a dimen-
sional data model, which is a widely accepted way of modelling data for reporting
and analytical usage. A dimensional data model creates a data presentation layer
that simplifies the data access patterns.

To represent data from multiple sources in a common enterprise-wide format
in a data warehouse, data is remodelled into a canonical data model for better
accommodating the analytical needs. Forming a canonical model in a complex
environment consisting of numerous sources is a complex task, because of con-
textual dependencies between domains. Therefore, in order to integrate data
into a canonical data model requires heavy upfront data modelling, contextual
mapping, and deep domain knowledge of the different data sources.



Migrating from a Centralized Data Warehouse to a Decentralized 39

In order to make data warehouse development more efficient, highly special-
ized teams are formed that can deliver data for analytical applications. This
often creates bottlenecks, as adding new data into the data warehouse as well
as making new data assets available a huge amount of work.

2.2 Data Lakes

A data lake is a central repository of structured and unstructured data that can
be of any format [12] unlike in a data warehouse, where a uniform data model is
used. A data lake can speed up data availability because data is often stored in
a raw format and the schema of data is defined at the read time allowing more
flexible usage of data.

This form of storage is very suitable for data analytics and data science, as
discoveries on the data assets can be made without the requirement of heavy data
modelling upfront. A data lake also allows raw historical data storage at lower
costs, taking off some of the burdens from a data warehouse based approach.

Modern big data tools allow easy usage of the data stored in a data lake,
allowing even running SQL queries on the stored data, making it viable to store
more curated and transformed data sets within it [8]. A data lake is separated
from operational systems and therefore has little or no effect on source systems.

On the downside, even though a data lake allows more flexible access to data,
a data lake is often built in a central manner creating similar bottlenecks as a
data warehouse.

2.3 Data Platform Architecture

Modern usage of data in an organisation usually requires multiple different com-
ponents to match all the needs. We use the term data platform architecture to
refer to the architecture that defines how a data platform connects the different
data sources to a bigger whole, enabling the use of data in a similar fashion one
expects in a centralized approach. This includes fundamental structures, ele-
ments, and their relations to each other that are designed to match the strategic
goals set by the company on data management.

Data platform architecture needs to fit the organisation and its strategic
goals. Even though there is no single way of realizing a data platform architec-
ture, a data platform is typically seen as a central service, maintained by a single
team. Even in modern data platforms that are composed out of multiple func-
tional elements, the platforms are very centrally built. Even though the platform
approach can tackle demanding needs for diverse data analysis needs, a complex
and large realization of centrally managed architecture suffers from an ability to
scale.

The data platform architecture implementation we have composed is based on
design principles from software design. The overall framework follows principles
of service-oriented architecture, and microservices are used as the underlying
implementation technique.



40 A. Loukiala et al.

2.4 Service Oriented Architecture

Scaling large software development is not a new problem. In a service-oriented
architecture (SOA), the software is separated into functions that provide services
to other applications [10]. Every service in SOA is an independent, reusable, and
discrete service that is decoupled from the other services and can be therefore
developed and scaled independently [11]. A service is not tied to any technology
but is a more abstract concept allowing each service to be built with the best
technology available by a dedicated team. Even though the SOA has evolved
and new even more distributed architectures have been introduced, the key to
scaling remains in the distribution.

SOA integrates modular, distributed, and independent services [11]. The
emphasis is on the communication and cooperation taking place usually over
the network. An application programmable interface (API) is a central concept
in SOA, as an API defines the communication interfaces. As with any distributed
system, the definitions of used standards and technologies enable this communi-
cation to take place in the most convenient manner.

2.5 Microservice Architecture

Micro service architecture (MSA) [9] is an implementation technique that fol-
lows the ideals of SOA, but further emphasises the decentralized, distributed, and
independent services. Much like the principles in SOA, modern MSAs are built
using RESTful APIs that formalise the interfaces for communication between
independent services. Such independent services provide scalability, flexibility,
and reliability for agile development of business-centric systems [5]. Further-
more, self-contained systems with loose coupling enable continuous deployment
according to customer’s agile needs.

In MSA, each service is working on its dedicated business function and there-
fore should focus on that function solely [9]. This is somewhat opposite to form-
ing a company-wide canonical data model, requiring heavy upfront investment
and complex integration patterns. Instead, the focus in MSA is on the data and
ontology of one business function alone. This approach is based on one of the core
patterns of domain-driven design, called bounded context [3]: Large models are
separated into explicit, internally consistent bounded contexts usually around a
specific business function. This bounded context creates a place for ubiquitous
language within its boundaries simplifying the data models.

The modularity of services adhering to MSA enables developing services inde-
pendently of each other, thus supporting continuous software engineering [4] to
take place. Modularity also allows each service to be technologically indepen-
dent of each other, and hence the teams building the services can choose the
best tools for the job they are performing. Each service can easily adapt to
changes in demand by scaling human resources and technical resources, decou-
pled from other services. Legacy systems can be re-engineered incrementally by
breaking parts of the legacy system functionality into individual services [6].



Migrating from a Centralized Data Warehouse to a Decentralized 41

Finally, services can be monitored easily, in varying detail, depending on the
needs and critically of the service in question.

Even though MSA has been around for a while in software development and
used successfully as a way to scale applications, the architectural model of MSA
has not been implemented in the field of data management. The data platform
architecture is often designed to be a centralised system owned by a single team
from IT.

3 Case Context and Challenges

We use a large Nordic manufacturing company as the case context in this study.
The company operates in global markets. The company has several organiza-
tional units in different business domains and numerous partner companies in
its business ecosystem. The operations are not limited to manufacturing but
different post-sales services are also important.

Originally, the data management strategy of the company consisted of a
central data warehouse as presented at top of Fig. 1. The data warehouse had
been used for years and was running in a local data centre. An ETL (extract,
transform, and load) tool was used to integrate data from multiple source systems
into the data warehouse as well as re-model the data into dimensional data marts
for reporting purposes. The central integration team provided a data bus, which
was used wherever possible to support defining integration patterns.

The applications landscape based on data in the data warehouse was vast,
including several hundreds of operational systems. The application landscape
was also very heterogeneous in terms of age and technology. The development
and operation models for the applications differed including in-house build appli-
cations, licensed off-the-self applications, and software-as-service applications
from external vendors. Some of the applications were owned and operated by
the company’s partners. Applications were used in different business domains,
linked to different business processes, and some used along with partners.

This legacy architecture had started to introduce several challenges for the
business. With an old and heterogeneous application landscape, data from many
of the operational source systems were not accessible for analytical or reporting
use nor to the data warehouse. This was due to security reasons, performance
issues, or networking limitations. As the data warehouse was in many cases the
only way to access the data stored in the operational systems, the data warehouse
was used for operational purposes as well analytical ones.

This central- and multi-role of the data warehouse kept increasing the num-
ber and complexity of requirements for the data warehouse as new data sets
were requested constantly by different business domains for different purposes.
Years of data warehouse development, when multiple operational systems were
integrated into the central system, made the data model of the data warehouse
very complex. Also the loading logic, as well as business logic, were hard to
maintain. Bringing new data into the data warehouse had become cumbersome
and error-prone delaying or even blocking the development of applications based
on the data warehouse as well as breaking the existing reporting based on it.



42 A. Loukiala et al.

Fig. 1. Top: A high-level architecture of the existing centralized data management
based on the data warehouse. Bottom: High-level architecture of our decentralized
data platform.

Data management in charge of the data warehouse was limited in resources
and had a hard time finding competent people to work with the ever-increasing
complex context of the data warehouse. With the increasing amount of data
loaded and modelled in the data warehouse, from multiple different business
domains, caused a centralized team to become a bottleneck. Simply scaling
around these central services and the central team of the data warehouse was
not truly an option anymore.

4 Drivers of Modernization

The company had a high-level, strategic objective: take better advantage of data
in its business operations that placed extra pressure and demand for the central



Migrating from a Centralized Data Warehouse to a Decentralized 43

data warehouse. The company was constantly looking into digitization and better
usage of data. To guide this development, among the several principles were to
be API and data-driven.

To make the data trapped in legacy applications available for wider analysis,
the company started to modernize the legacy applications by building modern
API facades on top of them about four years ago. The APIs simplified and
even made possible the usage of the data from the legacy applications. In many
cases, business domains, however, needed more data than what APIs provided.
In particular, data from a longer time period was needed for analytics purposes
in order to make better decisions based on the data. The data was used in many
ways, often by data scientists who were able to create machine learning models,
train artificial intelligence features in applications, and solve business-related
analytical questions with data.

The departments of the company in different business domains were indepen-
dent, empowered, and technologically savvy and the departments had account-
ability for their work. The departments were large enough to have their own
developers, business process owners, solution owners, and other competencies
related to the business domain they were working on.

The company had decided to make a technology transition from the in-
house maintained infrastructure to a cloud-based infrastructure. The main cloud
provider was chosen already two years ago, which created a very good foundation
for a new data platform. To fully leverage the cloud, the data management team
needed to reconsider what core functionalities it would provide to the company.

The cloud-transition decision was followed by a project to modernise the data
warehouse infrastructure by moving the data into cloud-based solutions to better
match the demand for scaling with increasing volume, variety, and velocity of
data. To further support more flexible data usage, the design of a cloud-native
data lake was introduced to create more direct access to the data for analytical
purposes, as well as to support the data warehouse.

Since the organization had already elements of distributed application archi-
tecture by the means of MSA as a result of cloud transformation, it was proposed
that the data management would be fitted into this same architectural model
as well. The principle adopted from MSA was that by distributing the data
management to the different departments much alike micro services distribute
functionality, the central data management could focus more on core entities,
connecting different departments, data governance, and providing required core
services. In this data distribution, the departments would be in charge of the data
assets they consume and produce as well as applications they built. This way
the domain expertise would be placed naturally closer to the data assets they
were dealing with. Departments would communicate with each other through
curated data assets that were requested by the other departments.

A careful analysis of the technology offering being used at the time and adap-
tation of cloud services made it clear that also distributing the data platform to
domains was technologically possible. Cloud offering supported the distribution
and it was according to architectural principles.



44 A. Loukiala et al.

5 New Data Architecture

A domain-oriented distributed data platform architecture (Fig. 1, bottom) was
formed to overcome the scaling problems that the centralized data management
was facing earlier with the data warehouse and lake. Using the same patterns that
are fundamental to MSA allowed the data platform architecture to scale better.
The domain oriented distributed data platform was implemented by distribut-
ing the data platform to different business domains and defining standardised
interfaces for each domain to allow interaction between them. Each business
domain was made responsible for the data assets they were in a relationship
with as well as generating curated historised data assets for analytic usage. The
business domains also had the freedom to develop data assets in a fashion most
suitable for them as long as they adhered to defined core principles defined by
the central data management team.

The decentralised approach allowed IT to move from building applications
and data analytics into providing infrastructure, guidelines, standards, and ser-
vices for the domain teams. The domain teams were provided with a cloud
environment where they were able to readily build their applications and ana-
lytics, as well as create standardised data assets for general usage by leveraging
services provided by IT. Distributing the data development was in line with the
company’s core principles. In many cases, the business domains had indepen-
dent tech-savvy developers that made the transition of development to domains
smooth.

Some of the central services were developed in parallel to the business domain
data-intensive projects. A data lake was implemented in a distributed manner,
where each domain team hosted their own analytical data in their own data store
and, thus, formed distributed data storage. The team responsible for the data
lake focused only on providing central data cataloging capabilities, metadata
models, data standards as well as “getting started”-guides. A data warehouse
renewal project was initiated to clean up the complexity of the existing data
warehouse. The new data warehouse was to source the data from the new dis-
tributed data lake in order to form integrated data models for reports that were
used company-wide. Consequently, the data warehouse was transformed from
the central data repository to a single consumer of distributed data assets. Mas-
ter data management was also used to form some data sets that were seen as
key assets for the entire company. These data assets were shared through the
data catalogue similarly to domain-oriented data assets. These traditional data
management tools, data warehouse, data lake, and master data were distributed
and seen as components of the distributed system.

The computing infrastructure was managed by the cloud providers, as they
offered an excellent technological baseline for the distributed data platform archi-
tecture. Guidelines and standards were defined to make the data sets in the
business domains discoverable as well as interoperable forming a base of the
data governance practices. Central services included business domain agnostic
services out of which among the most important was data catalogue. All the



Migrating from a Centralized Data Warehouse to a Decentralized 45

different data sets from business domains were registered to the central data
catalogue with a very detailed data on-boarding process.

Business domains that had very little software development skills, struggled
to get on board with the distributed data platform architecture. To help such
teams getting started, the central data management team focused on bringing
the basic setup for the teams easily available as well as generic infrastructure and
code templates. The central data management team was able to guide different
teams to use specific technologies by offering a set of development tools fast and
easily but not limiting teams’ liberties with the offerings. Templates were built so
that they encouraged security and good development practices, giving a baseline
on top of which the teams were able to build own extensions. Templates were
generalized from different teams building their solutions. Later, a specialised
team was dedicated to helping kick-start different business domains analytical
data development to match the defined interfaces.

6 Experiences

The distributed data platform architecture described above removed many of
the bottlenecks that traditional data management projects had faced from the
central data warehouse and data lake. There were clear indications that hav-
ing a cross-functional development team working in the business domain along
with business stakeholders, allowed the teams to focus more clearly on business
needs being able to respond more effectively and agile fashion. The business
domains were no longer coupled with the central data warehouse or data lake
and, therefore, the business domains were not heavily dependent on these cen-
tralized services and their schedules. With the introduction of the distributed
data platform architecture idea, business domains used their own development
teams to work on the business cases most relevant to them in the prioritised
order.

The autonomous domain-oriented teams were able to work parallel to one
another as the data platform architecture distributed the data. The domain
teams were able to ingest raw data easily as they already had the source system
and data knowledge in their control as well as business-subject matter experts
in the team. Many of the domain teams worked in simple data assets composed
out of source systems most relevant to them. With the data usually combined
within the business domain, data models were kept simple and easy to manage.

Business domain data sets along with associated metadata were published in
the central data catalogue service and in this way made known to the company
internally. As the metadata contained key information about the data and some
contact information, this sparked new interactions between the domains. The
role of the data catalogues was key to making the distributed data platform
work and to govern the publishing process. Data catalogue with well-defined
metadata created the baseline for trust in the system and simplified the usage
of the data. Data catalogue allowed different teams to connect to different data
assets in an agile manner.



46 A. Loukiala et al.

Table 1. Comparison between centralized and distributed data platform architecture.

Dimension Centralized Distributed

Competency location Centralized single team Cross functional domain
teams

Technological choices Single stack Freedom of choice

Data Modeling Top-to-Bottom Bottom-up

Data governance Centered around the team
working on the model

Definition and monitoring
of interface

Business & IT Alignment IT focused Business focused

Data ownership IT owns the data and data
lineage

Business owns the data
and data lineage

Data application development IT owns applications and
the development

Business owns the
applications and
development

In many cases, the data was mainly needed by the business domain owning
the data and there were only few teams that requested data from other business
domains. In such cases, only the metadata was placed into the central data
catalogue. The actual data was only released when requested. This just-in-time
data releasing led to a more efficient and better-prioritised way of working.

Distributing the realization of data platform parts within the common data
platform architecture to the business domains allowed the IT department to
focus on enabling the business domain teams to build their data capabilities
instead of building for them in IT. IT and data management were able to focus
more on defining coherent, understandable, and usable unified data interfaces.
Having the opportunity to review data assets that were to be published, allowed
the data management team to maintain governance and quality of the system.
As many of the teams were deep in digitalization, having their own development
teams, the transition towards the distributed data platform was natural.

The distributed system required cross-functional teams to work on the issues.
It should be noted that the company had adopted an API-driven mindset, which
in turn had pushed the organisational structure towards the autonomous busi-
ness domain-oriented cross-functional teams. This can be seen to have a large
effect on the success of distributing the data management since data manage-
ment knowledge was simply yet another factor that the teams needed to master.
There were few domains that did not have development teams and had to set
a development team up in order to work in a distributed manner. In many of
these cases, the central IT was easily able to provide them with the infrastruc-
ture, templates, training, and even pioneering developers to get started.

7 Conclusions

Many larger companies are struggling to find a way to scale for the increasing
demand for data in a centralized manner. Even though scaling by distribution



Migrating from a Centralized Data Warehouse to a Decentralized 47

has been seen as an effective way of working in many fields, there seems to be
no dominant design at the moment. Rather, various proposals have been made,
but from the industrial rather than the academic perspective.

In this paper, we have presented an industrial case on distributed data plat-
form architecture. The principal contribution of the study is that centralized
data platforms stop scaling at a certain point when organization domains are
large, heterogeneous, and non-flexible by nature.

In the study, it was found out that distributed approach to data manage-
ment provides features that enable complex enterprises’ data platforms to scale
(Table 1). This approach is based on two widely known and acknowledges prin-
ciples – MSA and Domain-driven design. These principles adopted to data man-
agement and combined with agile autonomous cross-functional teams make rapid
concurrent data development possible. On one hand, MSA enables data manage-
ment to move from centralized solutions towards distributed information ecosys-
tems. On the other hand, domain-driven design specifies distribution to domains
and bounded contexts. Together, these two methodologies enable data platform
development in clusters within each business domain without the limitations
and restrictions of centralized data platform teams. Such a distributed approach
to data management facilitates data quality and interoperability by orchestrat-
ing data and information management over domain-oriented teams. This enables
data modelling without a canonical model and enables business domains to work
independently.

Acknowledgement. This work is partly funded by Business Finland under grant
agreement ITEA-2019-18022-IVVES and AIGA project.

References

1. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: Mad skills: new
analysis practices for big data. Proc. VLDB Endow. 2(2), 1481–1492 (2009)

2. Dehghani, Z.: How to move beyond a monolithic data lake to a distributed
data mesh (2019). Martin Fowler’s blog. https://martinfowler.com/articles/data-
monolith-to-mesh.html

3. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Boston (2003)

4. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

5. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pp. 243–246. IEEE (2017)

6. Kalske, M., Mäkitalo, N., Mikkonen, T.: Challenges when moving from monolith to
microservice architecture. In: Garrigós, I., Wimmer, M. (eds.) ICWE 2017. LNCS,
vol. 10544, pp. 32–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
74433-9 3

7. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley Computer Publishing,
New York (2002)

https://martinfowler.com/articles/data-monolith-to-mesh.html
https://martinfowler.com/articles/data-monolith-to-mesh.html
https://doi.org/10.1007/978-3-319-74433-9_3
https://doi.org/10.1007/978-3-319-74433-9_3


48 A. Loukiala et al.

8. Miloslavskaya, N., Tolstoy, A.: Big data, fast data and data lake concepts. Procedia
Comput. Sci. 88, 300–305 (2016)

9. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice Architec-
ture: Aligning Principles, Practices, and Culture. O’Reilly Media, Inc., Sebastopol
(2016)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

11. Perrey, R., Lycett, M.: Service-oriented architecture. In: Proceedings of 2003 Sym-
posium on Applications and the Internet Workshops, pp. 116–119. IEEE (2003)

12. Stein, B., Morrison, A.: The enterprise data lake: better integration and deeper
analytics. PwC Technol. Forecast Rethink. Integr. 1(1–9), 18 (2014)

13. ThoughtWorks: Data mesh (2020). https://www.thoughtworks.com/radar/
techniques/data-mesh

https://www.thoughtworks.com/radar/techniques/data-mesh
https://www.thoughtworks.com/radar/techniques/data-mesh


How Do Agile Teams Manage Impediments?

Sven Theobald(B) and Pascal Guckenbiehl

Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{sven.theobald,pascal.guckenbiehl}@iese.fraunhofer.de

Abstract. Context: Impediments are blockers that prevent teams from working
efficiently and achieving their goals. They are central to the continuous improve-
ment of agile teams. However, common agile methods like Scrum only provide
limited guidance on how to handle impediments. Hence, agile teams develop
individual ways of impediment management and would benefit from understand-
ing overall aspects that need to be considered as well as from insights into the
approaches of other practitioners. Objective: This study seeks to solidify and
enhance the understanding of how agile teams identify, document, and resolve
impediments in practice. Method: Based on an earlier interview study, an online
survey was conducted that collected the experiences of 26 participants from the
agile community.Results:The results provide a quantitative overviewof the differ-
ent ways teams identify, document, and finally track/resolve impediments. Based
on this, the underlying impediment management process has been enriched and
additional insights were gathered. Conclusions: The process and survey results
are expected to aid practitioners in defining their own approaches for handling
impediments and provide an overview of the various options found in practice.

Keywords: Agile · Impediment management · Impediment identification ·
Impediment documentation · Impediment resolution · Survey

1 Introduction

Agile development approaches are widely adopted in the software engineering com-
munity [1]. Improvement happens continuously, by inspecting and adapting the current
process and making problems transparent along the way. The Agile Manifesto [2] states
that “at regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly”. Scrum for example, as the most commonly used
agile method [1], is based on transparency, inspection and adaptation [3]. The concept of
impediments greatly supports such continuous process improvements. It be understood
as a problem or blocker that slows down and sometimes even stops the progress of the
team, therefore “impeding” the overall efficiency and productivity. In general, impedi-
ments may originate from within the team (e.g. through bad communication) or can be
caused by dependencies on the external environment (e.g. other organizational parts).

Although managing impediments is essential for continuous improvement, there is
not much (official) guidance for practitioners of agile methods. For instance, the well-
known ScrumGuide [3] onlymentions that the ScrumMaster serves the team by causing

© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 49–65, 2021.
https://doi.org/10.1007/978-3-030-91452-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_4


50 S. Theobald and P. Guckenbiehl

the removal of impediments and that the Daily Scrum is used to identify them. Since
Scrum only defines an essential framework, the details of how to handle impediments
are intentionally left open. It might be due to such a lack of detailed information, that
agile teams often use with varying implementations of frameworks [4] and especially
individual approaches to impediment management.

Further, there is only little scientific research that explicitly tries to understand how
agile teams manage impediments [6]. Such work could serve as valuable guidance on
how to deal with impediments, especially when providing hands-on information embed-
ded in a structured process. A better understanding of impediment management would
aid Scrum practitioners as well as teams working with other methods such as Kanban
and Extreme Programming or even scaled frameworks like SAFe and LeSS [5]. Agile
Coaches, Scrum Masters and team members alike could benefit from best practices of
the agile community, when dealing with impediments.

Thus, the goal of this paper is to further investigate impediment management in
practice in order to outline important aspects that need to be considered, while also
providing additional details on the varying implementations. The research is based on
an interview study [6] and used the adapted interview guideline as survey questionnaire.
With the help of 26 respondents in an online survey, the initial impediment management
process was enriched with qualitative data. Users of agile approaches are encouraged to
use the results to set up an impediment management process or evaluate and improve
their existing one.

The remainder of this paper is structured as follows:Relatedwork andbackground are
presented in Sect. 2. The study design is described in Sect. 3, comprising research goals
and questions, data collection and analysis, as well as the actual survey questionnaire.
The structured results and possible threats to validity are presented in Sect. 4. Finally, a
conclusion and ideas for future work are given in Sect. 5.

2 Related Work and Background

This section discusses the related work based on a short literature review, supple-
mented by an overview of non-scientific contributions regarding impediment manage-
ment. Moreover, the background of this research is introduced through the results of a
previous study on impediment management.

2.1 Related Work

Scientific Literature. For this short overview of the current state of research, recent
papers dealing with impediments, especially in agile software development, were sum-
marized. This may include the concept of waste in lean software development, since it
can be quite similar to impediments, as the literature below suggests. It doesn’t, however,
extend to rather generic terms like “problem”. For the time being, mainly sources revolv-
ing around software development have been considered because impediments originate
and are therefore prevalent in this specific context. Further, work that focuses on obsta-
cles to the agile transition has been excluded, as impediments (in the original referred
to in this study) are first and foremost problems that occur within the daily business of



How Do Agile Teams Manage Impediments? 51

teams. Sources already aggregated by the selected authors below (literature reviews) are
not explicitly included either.

In general, impediment management seems to be a more recent research topic. The
majority of related work has been written since the 2010s. Wiklund et al. [7] conducted
a case study to understand which activities of the development process are responsible
for most impediments. Power & Conboy [8] combined the already similar concepts of
impediments and waste in agile software development and reinterpreted them as “im-
pediments to flow”. In addition, Power [9] further explained some techniques that may
help to deal with impediments in a meaningful way. Larusdottir, Cajander & Simader
[10] thematized a constant improvement process by conducting interviews that focused
on whether activities generate value or do not. Later Carroll, O’Connor & Edison [11]
aggregated essential related work and thus further enhanced the classification of imped-
iments according to Power & Conboy. Alahyari, Gorscheck & Svensson [12] dealt in
detail with waste, examining how the topic is generally perceived, including relevant
types and ways to handle them in practice. Finally, Power [13] describes further studies
that aim to validate existing types of impediments in his dissertation and derives a rather
comprehensive framework for impediment management. For a more in-depth overview
of the papers above, please see the preceding study [6].

Non-Scientific Literature. While the actual impediment management process was dis-
cussed rather marginally in the scientific context, it was given greater consideration by
authors outside the research community. Perry [14] for instance explains what impedi-
ments are and provides information on how to discover, manage, and remove them. In
addition, a catalog of supporting tools and techniques is given, as well as some insight
into the use of gamification when dealing with impediments. Schenkel [15] also gives a
definition and some examples of impediments and offers guidance regarding the respon-
sibilities of Scrum Masters. He further discusses possibilities for documentation and
provides recommendations for coping with challenges that may occur when dealing
with impediments. Linders [16] describes what impediments are and why they should
be handled at all. He further discusses impediments on the team level and beyond as
well as some ideas on how to manage them effectively.

Summary & Contribution. Overall, the related work appears to be quite diverse. Sci-
entific papers investigate impediments essentially through practical studies and literature
reviews. They mostly agree on the similarity and relationship between the concepts of
impediments and waste. However, the predominant focus lies on their categorization.
Non-scientific literature on the other hand appears to be more interested in the way
impediments are handled and managed, while still contributing to the understanding of
the overall concept. Summing up, the various studies and guides all drive the exploration
of possible manifestations of impediments, including promoting factors, general causes,
and resulting effects of such issues. The related work seems to deal less with the actual
management of impediments though. In particular, there is still only little (scientific)
research on a comprehensive process for impediment management. This paper (together
with the preceding study [6]) therefore aims to further fill this gap and provide insights
for researchers and practitioners alike.



52 S. Theobald and P. Guckenbiehl

2.2 Background

As already mentioned, this research is based on and expands a previous qualitative study
[6] that aimed to suggest a general impediment management process. It is broken down
into three parts that build on one another and which, in principle, form a process for
dealing with impediments from their first appearance to their resolution. Though, this
primarily aims to provide an overview and raise awareness, so not every part and aspect
is always mandatory and needs to be addressed. To facilitate understanding of the survey
presented in this study, this process is shown in Fig. 1 and is briefly described below.

Fig. 1. Impediment management process (proposed by [6])

Identification. The first part focuses on the initial appearance of impediments and how
they are recognized and addressed by the team afterwards. In detail, this refers to the
overall opportunity, e.g., meetings in which problems can be identified, time intervals
for doing so, and the people involved in the process.

Documentation. The second part is about recording identified impediments, more
specifically about how this is done, if at all. This documentation of issues may hap-
pen via a dedicated impediment backlog or together with the product or sprint backlog
items. It is also important whether the impediment itself is recorded or the measures to
be taken to resolve it. The question then arises as to whether problems and especially
measures are estimated and included in the sprint or handled independently. Finally, the
possibility and form of prioritizing matters.

Resolution. The third and final part deals with resolving impediments. Initially, a dis-
tinction is to be made between taking responsibility for their administration (tracking
the progress) and actually executing the measures for resolution. This also involves the
process of escalation in case the team cannot find a solution to the problem on their
own. Finally, this part also investigates the matter of transparency regarding the overall
impediment management.



How Do Agile Teams Manage Impediments? 53

3 Study Design

This section provides an overview of the study design, starting with the research goals
and respective research questions. In addition, some details regarding the data collection
and analysis procedure are given and the central part of the survey questionnaire that
was used is presented.

3.1 Research Goal and Questions

The goal of this research is to better understand the impediment management process of
teams from the point of view of practitioners. The survey extends a former (qualitative)
interview study on how agile teams manage impediments [6]. As part of this preceding
research, an initial model of the impediment management process was proposed, which
is briefly explained above. This survey aimed at validating and backing up said process
through gathering quantitative data. The research questions therefore remain basically
the same as before:

RQ1: How do teams identify impediments?
RQ2: How do teams document impediments?
RQ3: How do teams resolve impediments?

3.2 Data Collection and Analysis

Collection. The study was designed as a survey and executed via an online tool1. There-
fore, data was collected through an online questionnaire (details on its structure follow
below) that could be answered anonymously. The overall target group were practitioners
who could report experiences regarding their team’s impediment management. Com-
pared to the previous interview study [6], which primarily focused on agile software
development teams, the participants of this study may have any background. They also
did not necessarily need to be in a purely agile team, e.g. through following Scrum or
Extreme Programming with all its practices, as long as they were able to talk about the
way their team deals with and manages impediments.

The study used a convenience sample. As the survey was designed in the context
of the onsite research track of the XP 2020 conference, it was first distributed among
conference participants. The survey link, together with a short summary and a video
motivating the research endeavor, was made available via the conference website to all
participants. Furthermore, the authors used the communication channels of the virtual
conference to advertise the study. The survey was opened on June 7, 2020 and was
then available to all participants during the time of the conference. It was then left open
until July 22, 2020, although the last participant accessed the questionnaire on June 22,
2020. Additionally, a copy of the questionnaire was distributed via selected groups in the
business networks LinkedIn and Xing. Those groups dealt with lean and agile software
development, Scrum and even SAFe. The questionnaire was accessible between June

1 www.limesurvey.org

http://www.limesurvey.org


54 S. Theobald and P. Guckenbiehl

29, 2020 and July 22, 2020. Table 1 shows the networks and the related groups to which
an invitation was sent. In addition, the date of invitation as well as the number of group
members at the date of invitation are shown.

Table 1. Distribution of the second survey

Network Group name # Group members Invitation date

LinkedIn Scrum Practitioners 121,295 06-29-2020

Agile and Lean Software Development 168,173 06-29-2020

Agile 67,646 06-29-2020

Scaled Agile Framework 40,884 06-29-2020

SCRUMstudy - #1 Group for Scrum and Agile 118,405 07-07-2020

Xing SCRUM 13,957 07-01-2020

Lean and Agile Software Development 2,928 07-01-2020

Agile Talks 3,442 07-01-2020

Analysis. The data was automatically recorded in the survey tool and downloaded as
an Excel file. Excel was used because it provides sufficient capabilities for analyzing
the responses and creating diagrams. The analysis of aggregated data (from all sources)
was conducted by one of the authors and reviewed by the other. During this process,
incomplete responses that did not exceed the introductory questions (and therefore did
not contribute to the research questions) were excluded. 17 out of 44 responses from the
onsite research studywere usable, aswell as 9 out of 28 responses from the second survey.
The remaining 26 datasets were evaluated by counting how many times the respective
answer options were chosen and summarizing input of the open text fields. Particularly
expressive results, as chosen by the authors, were visualized for better understanding.
Finally, the results were described along the research questions.

3.3 Survey Questionnaire

As mentioned above, an online questionnaire was used to collect data. Since this study
aims to expand the previous one, it was constructed based on the interview guideline used
before (for detail information, please see preceding study [6]). These semi-structured
used primarily open questions to gather qualitative information. This survey on the other
hand comprises mostly closed questions and predefined answers, with the exception of
free text fields for additional information and feedback. The questions revolve around
the different phases and aspects of the underlying impediment management process. The
resulting questionnaire can be seen in Table 2, divided into categories, questions and
answers, as presented to the participants.



How Do Agile Teams Manage Impediments? 55

Table 2. Survey questionnaire

Category Question Answers

Intro & Context What is your role? < Scrum Master; Developer;
Product Owner; Agile
Coach/Consultant; Other: free text
>

How many years have you been
working in your current role?

< number >

How many employees work in
your company?

< number >

How many years is your team
already working together?

< number >

What type of product is your
team working on?

< Software; Hardware; Other:
free text >

What agile practices is your team
using?

< Scrum Master; Product Owner;
Sprint Planning; Daily Standup;
Sprint Review; Sprint
Retrospective; Taskboard; Product
Backlog; Other: free text >

What dependencies or interfaces
to other project/organizational
parts exist? Please name some
examples

<We have dependencies with
other teams: free text; We depend
on certain organizational functions
(e.g. marketing, IT, operations,
etc.): free text; We depend on
customer input or input from other
external stakeholders: free text;
We have no dependencies: free
text; Other: free text >

Identification (RQ1) What do you understand as an
impediment?

< Blockers that prevent progress
towards the sprint goal;
Improvement goals; Small
problems that can be removed
rather easily in short time; Larger
problems that need a long time to
be resolved; Other: free text >

Which roles identify
impediments?

< Scrum Master; Development
Team; Product owner; Other: free
text >

What techniques do you use to
identify impediments?

< free text >

(continued)



56 S. Theobald and P. Guckenbiehl

Table 2. (continued)

Category Question Answers

In which situations do you
identify impediments?

< Sprint Planning; Daily Standup;
Continuously, e.g. conversation
with Scrum Master; Sprint
Review; Retrospective;
Cross-team meetings; Other: free
text >

Do you have any other
information regarding the
identification of impediments?

< free text >

Documentation (RQ2) Where do you document
impediments? If possible, please
specify why

< Impediments are documented in
a separate backlog/list: free text;
Impediments are documented in
the taskboard or product backlog:
free text; Impediments are
documented in meeting protocols:
free text; Impediments are not
documented at all: free text;
Other: free text >

Which roles document
impediments?

< Scrum Master: free text;
Development Team: free text;
Other: free text >

How do you document
impediments? If possible, please
specify why

<We only document problems:
free text; We only document
possible solutions (action points):
free text; We document both: free
text; Other: free text >

Are impediments estimated and
considered in planning? If
possible, please specify why

< Impediments are estimated: free
text; Impediments are not
estimated: free text; Impediments
are considered in planning: free
text; Impediments are not
considered in planning: free text;
Other: free text >

Do you prioritize impediments? < All existing impediments are
prioritized: free text; Impediments
are not prioritized: free text;
Other: free text >

Do you have any other
information regarding the
documentation of impediments?

< free text >

(continued)



How Do Agile Teams Manage Impediments? 57

Table 2. (continued)

Category Question Answers

Resolution (RQ3) Which roles are responsible for
tracking the progress of
resolution?

< Scrum Master: free text; The
whole development team: free
text; the development team and
the Scrum Master: free text;
Individual developers: free text;
Other: free text >

Which roles are responsible for
the actual resolution of
impediments/implementation of
measures?

< Scrum Master: free text; The
whole development team: free
text; the development team and
the Scrum Master: free text;
Individual developers: free text;
Other: free text >

How do you track impediments? < free text >

Are impediments escalated in
case they cannot be solved? To
where?

< free text >

Do you have any other
information regarding the
tracking/resolution of
impediments?

< free text >

4 Study Results

This chapter provides an overview of the demographics, followed by the results of the
survey, presented along the research questions and thus following the phases of the
impediment management process (identification, documentation, resolution).

4.1 Participant Demographics

This section is about context data and describes information regarding the participants
themselves and their respective teams and companies.

Roles of Participants. Most of the study’s participants reported occupying the role of
either Agile Coach (n = 15) and/or Scrum Master (n = 11). Only a few claimed to be
software developers (n = 2), while no one reported working as Product Owner (n =
0). Some of the respondents claimed to fulfill other roles than those suggested in the
questionnaire (n = 6), such as change catalyst, business analyst, product manager, or a
combination of different roles.

Years within this Role. The participants reported working in their respective roles for
time spans ranging from 1–30 years, resulting in an average of about 7 years. However,
the majority had spent between 1–10 years in the given role (n = 20), with an average
of almost 5 years. Only few respondents claimed to have had their roles for 15, 20, or
even 30 years (n = 3).



58 S. Theobald and P. Guckenbiehl

Number of Employees. The participants of this study came from companies of very
different sizes, ranging fromsmaller businesses of up to 85 employees (n=8) tomedium-
sized/large companies of 120–5,000 employees (n = 8) to very large corporations of
10,000–150,000 employees (n = 5). The average size of the respondents’ companies
was around 15,000 employees.

Number of Team Members. The size of most of the teams with (or in which) the
participants were working was between 1–30 members (n= 18), with an average size of
9 team members. There were two exceptions though, with respondents reporting team
sizes of 300 and 500 members.

Years of Team’s Existence. Themajority of the participants’ teams had existed (in their
current constellation) for about 2 months to 8 years (n = 19), resulting in an average of
roughly 2.5 years. The exception was one respondent claiming that his team had already
existed for 30 years.

Type of Product to Develop. Most participants reportedworking on software (n= 19),
while only very few claimed to be working on hardware (n = 2). Furthermore, some
described a different kind of product (n = 5), such as development tools, services, or
games.

Agile Practices in Use. In general, the respondents were using different agile practices
in various combinations. The most popular answers suggested in the questionnaire were
Daily Standup (n = 21), Retrospective (n = 20), Product Backlog (n = 20), Sprint
Planning (n = 19), Sprint Review (n = 17), Scrum Master (n = 16), Product Owner (n
= 16), and Taskboard (n= 16). Some participants reported using other agile practices (n
= 8), such as Backlog Refinement, Impediment Backlog, Dependency Board, Increment
Planning, or Kanban.

Dependencies and Interfaces. All respondents described having dependencies in some
form; no one reported having no dependencies at all. Participants reported dependencies
on other teams (n = 15), dependencies on customer input or external stakeholders (n =
15), or dependencies on organizational functions (n = 12).

4.2 RQ1: Identification

Understanding of Impediments (Fig. 2). For the most part, the respondents under-
stood impediments as blockers that prevent progress towards the sprint goal (n = 19),
rather than overall improvement goals (n= 3). Furthermore, impediments were primar-
ily seen as large problems that need a long time to be resolved (n= 15) and slightly less
as small issues that can be removed rather easily (n = 11). Some of the participants (n
= 6) understood impediments as all the above or generally as factors that slow down the
team and prevent it from learning and providing value.



How Do Agile Teams Manage Impediments? 59

Fig. 2. Understanding of impediments

Roles that Identify Impediments. The respondents’ answers regarding the act of iden-
tifying impediments resulted in an even distribution between Scrum Master (n = 19),
development team (n = 19), and Product Owner (n = 16). In addition, some (n = 10)
described all the above choices as well as other stakeholders and teams or, generally
speaking, anyone involved.

Techniques for Identifying Impediments. The answers regarding certain techniques
were quite extensive, although the participants did not necessarily specify concrete tech-
niques. They described first and foremost basic agile meetings such as daily standups
or retrospectives and possible facilitation techniques that come with them. However,
the most important factors that lead to the identification of impediments seem to be the
willingness for continuous improvement and reflection as well as effective communi-
cation at any given time. In addition, the guiding principle of “Inspect & Adapt” was
mentioned.

Situations for Identifying Impediments (Fig. 3). In accordance with the previous
question, the most relevant situations reported for impediment identification were con-
tinuous communication (n = 17), the daily standup (n = 17), and the retrospective (n
= 7). Some also reported cross-team meetings (n = 10), sprint planning (n = 10), and
reviews (n= 8) as relevant opportunities. A few participants (n= 5) explicitlymentioned
that impediments can be identified basically anytime.

Further Information on Identification. Finally, some respondents reported that the
identification of impediments relies on transparency, consensus, and trust within the
team as well as efforts in cross-team communication, e.g., with clients. The inclusion of
waste types may further aid in the process.



60 S. Theobald and P. Guckenbiehl

Fig. 3. Situations for identifying impediments

4.3 RQ2: Documentation

Artifacts for Documenting Impediments. The participants reported documenting
impediments primarily in either the taskboard/product backlog (n = 11) or in a sep-
arate backlog (n = 10). The former can make sense in terms of linking impediments
directly to the respective story they are blocking, while the latter seems useful to avoid
unnecessary clutter and confusion. In both cases, JIRA was mentioned as the preferred
tool. Also, a few respondents reported documenting impediments in meeting protocols
(n = 2) or not documenting at all (n = 1), but rather addressing and fixing them right
away or bringing them up again later otherwise.

Roles for Documenting Impediments. Based on the responses of the participants, the
most important roles involved in the documentation of impediments are theScrumMaster
(n = 14) as well as the development team (n = 11).

Ways for Documenting Impediments (Fig. 4). Most respondents claimed to docu-
ment impediments in terms of underlying problems as well as possible solutions or
action points (n = 10). This way, a root-cause analysis may be possible and together
with a documentation of what worked and what did not, this can provide a jumpstart
when dealing with similar impediments in the future. Some participants reported docu-
menting problems only (n = 5), while none did so regarding solutions/action points (n
= 0).

Estimation and Planning (Fig. 5). While the majority reported not estimating imped-
iments (n = 13), a few respondents claimed to do so (n = 4). Reasons for avoiding
estimation could be the difficulty of assessing the complexity/extent of an impediment;
adding some extra points to the estimation of an affected story may be one way to do it
despite this. Furthermore, this decision may be a matter of responsibility, e.g., a formal
estimation does not seem useful when the development team does not take part in remov-
ing impediments anyway. Though the participants reported not estimating impediments
for the most part, many did consider them in the Sprint Planning in some way (n= 10).



How Do Agile Teams Manage Impediments? 61

Fig. 4. Ways for documenting impediments

Only a few stated that they do not take them into account (n = 4). Considering imped-
iments in the Sprint Planning without an actual estimation may be done by dedicating
some buffer to impediments in general. Again, not including them here could be justified
by the distribution of responsibility (see above).

Prioritization of Impediments. The responses regarding prioritization were quite bal-
anced. Some participants reported prioritizing impediments at least roughly (n = 8),
e.g., depending on factors like the extent of blocking, how they impact teammorale, and
how likely the situation is to change. Others claimed not to prioritize impediments (n
= 7), e.g., as their small number makes it unnecessary. One respondent further claimed
that this decision is a matter of definition. Impediments may be either fixed immedi-
ately or deferred; however, the latter would mean it is not a real impediment in the first
place. Another respondent mentioned that this happens rather implicitly, by considering
possible impediments in the prioritization of stories they are associated with (risk/value).

Further Information on Documentation. Some participants provided extra informa-
tion regarding the way they document impediments. This includes the recommendation
to revise documented issues regularly and maintain communication about them to push
the resolution process forward. It was further mentioned that the long-term documenta-
tion and categorization of (similar) impediments and solutions may improve the overall
process and therefore save time in the future.

4.4 RQ3: Resolution

Roles Responsible for Tracking Progress (Fig. 6). Most respondents reported that
theScrumMaster and the development teamshare responsibility for tracking the progress
of active impediments (n = 9). With this approach, it may also make sense to divide
the responsibility between the team and the Scrum Master, depending on the nature
of an impediment (technical vs. non-technical). Other participants described a clearer
differentiation, with mainly the Scrum Master (n = 6) or sometimes the development
team (n= 3) being fully responsible. In some cases, the tracking may more specifically
be handled by individual developers (n= 2). Again, it was mentioned that this can vary
depending on the given impediment.



62 S. Theobald and P. Guckenbiehl

Fig. 5. Estimation and planning

Roles Responsible for Resolution (Fig. 6). The responsibility for the actual resolution
was reported to be quite similar compared to the tracking of progress. Again, for the
most part impediments are resolved in a joint effort of Scrum Master and development
team (n = 9). Others described that either the development team (n = 4) or individual
developers (n= 2) are responsible. The ScrumMaster (n= 3) seems to be comparatively
less involved and may further delegate responsibility to the developers while only acting
as a guide and facilitator. In addition, the responsibility may generally fall on whoever
is most suited to finding a solution and therefore depends on the impediment itself.

How to Track Impediments. Obviously, there are different approaches to tracking
impediments, similar to the documentation. According to the respondents, these include
the use of tools such as Jira and generally the use of some form of board or backlog for
visibility, either digital or analog. Another important factor seems to be the regular (up
to daily) inspection of progress.

Fig. 6. Roles responsible for tracking progress and resolution



How Do Agile Teams Manage Impediments? 63

Escalation of Impediments. Almost all participants reported escalating impediments
in case they cannot be solved within the team. This happens mostly vertically along
a company’s hierarchy and includes management positions from project to executive
level. In some cases, it may also make sense to first escalate rather horizontally to other
stakeholders who are involved and affected and may therefore provide help in resolving
the issue at hand.

Further Information on Resolution. The respondents again highlighted the signif-
icance of visibility, regular inspection, and clarified responsibilities throughout the
resolution process.

4.5 Threats to Validity

Similar to other surveys in the field of software engineering, the response rate was
comparatively low. The distribution of the survey probably reached thousands of agile
practitioners that potentially deal with impediments. However, it can’t be said for sure
due to the unclarity of response rate when dealing with business networks. It should
therefore be mentioned that the rather small sample in this study most likely cannot
represent the agile community as a whole. Further, the respondents were gathered from
a broad international audience. Since this happened through sharing the survey and not
by selecting certain individuals methodically, the origin of respondents remains mostly
unknown. To ensure qualified answers nonetheless, the chosen conference and business
networks had a strong thematic proximity to the topic at hand.

Another potential threat lies in the fact thatmost participants of the previous interview
study were using Scrum, which led to an impediment management process (and finally
an online questionnaire) that is strongly influenced by the Scrum terminology. However,
the participants of this survey had the chance to give feedback in a free text field for
every question, in case the set of predefined answers did not fit their own understanding
or naming conventions. To make sure the questions were clear, understandable and
thematically appropriate, the survey was reviewed and piloted by other researchers who
are experienced with agile and empirical studies.

Finally, this research is based on a survey, as described above. Therefore, the answers
given by the respondents can be subjective and a matter of understanding. What they
really do may not necessarily coincide with what they claim to do. This should be kept
in mind when interpreting the results.

5 Conclusion and Future Work

Conclusion. Many Agile teams use impediments for continuous process improvement.
These blockers or obstacles to the team’s productivity are commonly used to iteratively
improve one’s way of working. Agile methods like Scrum claim that the Scrum Master
serves the team by causing the removal of impediments and that the Daily Scrum is used
to identify. However, they do not provide (detailed) guidance regarding the systematical
management of said impediments.



64 S. Theobald and P. Guckenbiehl

This study therefore investigated how agile teams manage impediments in practice.
During an online surveywith 26 participants, experienceswere collected about how agile
teams identify, document, and finally track/resolve impediments. The results described
above enriched the underlying impediment management process proposed in the preced-
ing study and backed it up with quantitative data. Summing up, this paper investigated
the topic of impediments from the little-researched process perspective and offers fur-
ther insights that can support and guide practitioners in reflecting and improving their
current impediment management approach.

Future Work. Future research might address the benefits and drawbacks of certain
approaches mentioned in previous work and by the participants of this survey. For
instance, interviews could be conducted in order to better understand why one option
might be more useful than another. For example, one team may choose to document
only measures to resolve impediments, since they favor a very proactive approach with a
short-term scope and their issues are rather easy to resolve. Another team however could
decide to document primarily the problem itself, in order to comprehend the underlying
root causes over time or because they are bound by dependencies lead to immediate
solutions not always being apparent. A third team might then combine both approaches
and therefore document both problems and measures, with the intention of examining
the success of the latter by tracking back and checking the problems that made them nec-
essary in the first. Thus, most practices used during impediment management can have
benefits and drawbacks that make them more suitable in certain scenarios and contexts.
Such an investigation of the rationale for using certain approaches would be of great
importance for a comprehensive guide to impediment management that goes beyond the
mere mentioning of possibilities, instead providing recommendations based on defined
criteria. This could even be enhanced by gathering practical guidance on how to enact
the different aspects of the impediment management by analyzing suitable templates,
techniques or tools.

Acknowledgments. This research is funded by the German Ministry of Education and Research
(BMBF) as part of a Software Campus project (01IS17047).Wewould like to thank all participants
of our study, and Sonnhild Namingha for proofreading parts of this paper.

References

1. VersionOne, & Collabnet: 14th State of Agile Report (2020). https://explore.digital.ai/state-
of-agile/14th-annual-state-of-agile-report. Accessed 10 July 2020

2. Manifesto for Agile Software Development (2020). www.agilemanifesto.org. Accessed 10
July 2020

3. Sutherland, J., Schwaber, K.: The Scrum Guide. The definitive guide to scrum: The rules of
the game. Scrum.org (2013)

4. Diebold, P., Ostberg, J.P., Wagner, S., Zendler, U.: What do practitioners vary in using scrum?
In: Lassenius, C., Dingsøyr, T., Paasivaara,M. (eds.) Agile Processes in Software Engineering
and Extreme Programming. XP 2015. Lecture Notes in Business Information Processing, vol.
212, pp. 40–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2_4

https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
http://www.agilemanifesto.org
https://doi.org/10.1007/978-3-319-18612-2_4


How Do Agile Teams Manage Impediments? 65

5. Theobald, S., Schmitt, A., Diebold, P.: Comparing scaling agile frameworks based on under-
lying practices. In: Hoda, R. (eds.) Agile Processes in Software Engineering and Extreme
Programming – Workshops. XP 2019. Lecture Notes in Business Information Processing,
vol. 364, pp. 88–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_11

6. Guckenbiehl, P., Theobald, S.: Impedimentmanagement of agile software development teams.
In: Morisio, M., Torchiano, M., Jedlitschka, A. (eds.) PROFES 2020. LNCS, vol. 12562,
pp. 53–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64148-1_4

7. Wiklund, K., et al.: Impediments in agile software development – an empirical investigation.
In: Proceedings PROFES 2013, pp. 35–49. Paphos (2013)

8. Power, K., Conboy, K.: Impediments to flow – rethinking the lean concept of ‘waste’ in
modern software development. In: LNBIP 179, pp. 203–207. Rome (2014)

9. Power, K.: Impediment impact diagrams – understanding the impact of impediments in agile
teams and organizations. In: Proceedings Agile Conference 2014, pp. 41–51. Kissimmee
(2014)

10. Lárusdóttir, M.K., Cajander, Å., Simader, M.: Continuous improvement in agile development
practice. In: Sauer, S., Bogdan, C., Forbrig, P., Bernhaupt, R.,Winckler,M. (eds.) HCSE 2014.
LNCS, vol. 8742, pp. 57–72. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44811-3_4

11. Carroll, N., O’Connor, M., Edison, H.: The identification and classification of impediments
in software flow. In: Proceedings AMCIS 2018, pp. 1–10. New Orleans (2018)

12. Alahyari, H., Gorschek, T., Svensson, R.: An exploratory study of waste in software develop-
ment organizations using agile or lean approaches – a multiple case study at 14 organizations.
Inf. Softw. Technol. 105, 78–94 (2018)

13. Power, K.: Improving Flow in Large Software Product Development Organizations – A
Sensemaking and Complex Adaptive Systems Perspective. NUI Galway, Galway (2019)

14. Perry, T.L.: The Little Book of Impediments (2016). http://leanpub.com/ImpedimentsBook
15. Schenkel, M.: t2informatik GmbH: Impediment Guide (2018). https://t2informatik.de/dow

nloads/impediment-guide/
16. Linders, B.: Problem? What Problem? Dealing Effectively with Impediments using Agile

Thinking and Practices (2020). http://leanpub.com/agileimpediments

https://doi.org/10.1007/978-3-030-30126-2_11
https://doi.org/10.1007/978-3-030-64148-1_4
https://doi.org/10.1007/978-3-662-44811-3_4
http://leanpub.com/ImpedimentsBook
https://t2informatik.de/downloads/impediment-guide/
http://leanpub.com/agileimpediments


Keeping the Momentum: Driving
Continuous Improvement After

the Large-Scale Agile Transformation

Josefine Bowring1,2(B) and Maria Paasivaara2,3

1 IT University of Copenhagen, Copenhagen, Denmark
2 LUT University, Lahti, Finland

{josefine.bowring,maria.paasivaara}@lut.fi
3 Aalto University, Helsinki, Finland

Abstract. The Scaled Agile Framework (SAFe) is currently the most
popular framework to scale agile development to large projects and
organisations. An organisational transformation to SAFe is usually
driven by a Lean-Agile Centre of Excellence (LACE). What happens to
the LACE after the initial transformation is over? How does the organ-
isation keep improving? In this single-case study we investigated how
the volunteer-driven LACE in a Nordic bank, Nordea, drives continuous
improvement long after the organisation’s transition to SAFe. We col-
lected data by 10 semi-structured interviews and several observations.
We found that the LACE at Nordea drives continuous improvements
by working in a Scrum-like fashion: it uses Product Owners, maintains
a backlog of improvement features, works in sub-teams to identify and
solve issues, and meets once a week to coordinate and share between the
sub-teams. The LACE consists of volunteers, which is an advantage as
changes are identified and implemented by the same practitioners who
experience the need for them. However, this volunteering model is not
without challenges: the LACE lacks the formal mandate to implement
the needed changes and other work takes priority for the participants.

Keywords: Scaled Agile Framework · Continuous improvement ·
Lean-Agile Centre of Excellence · LACE · Large scale agile

1 Introduction

Agile development is rising in popularity. With many companies adopting dig-
ital solutions to meet the rapidly changing needs of customers [10], even large
organisations are shifting to agile methods to deliver value quickly and cost-
efficiently [24]. The reported benefits of agile software development methods
include increased flexibility, quality, and faster delivery speed [16]. Adopting
agile in a large organisation is not an easy feat, and requires a significant change

Supported by Nordea.

c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 66–82, 2021.
https://doi.org/10.1007/978-3-030-91452-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_5


Driving Continuous Improvement 67

in the culture of the organisation, which takes time, commitment, and customi-
sation [5,7]. Several frameworks for scaling agile exist [27], the most popular of
which is currently the Scaled Agile Framework (SAFe) [24]. In the 2020 annual
State Of Agile Report [24], 35% of respondents reported using SAFe. The SAFe
framework is extensive: it describes the required roles, processes, values and
an implementation strategy for transitioning to using SAFe [22]. At the heart
of this transition is the Lean-Agile Centre of Excellence (LACE), responsible
for starting the behavioural and cultural transition across the organisation, and
removing impediments for achieving these goals [22]. However, what happens
to LACE after the initial transformation is over? How does the organisation
keep improving? Continuous improvement is essential to agile, and one of the
principles of the agile manifesto [1]. The agile transformation is often called
a journey that does not end after the initial transformation is over, but will
continue in the form of continuous improvement through self-inspection and
reflection. The SAFe framework does not specify how the continuous improve-
ments should be driven, who should be driving them, nor what exactly the role
of LACE should be. The SAFe lists the typical responsibilities of LACE, which
include also “helping to establish relentless improvement” [22]. In this study, we
investigate how such a continuous improvement journey is driven by a LACE in
an international Nordic bank, Nordea1. Their transformation to SAFe started
in 2015, and the first LACE was installed as a part of the second wave. After
reaching its transformation goals it dissolved, leaving an open gap for a central
change-driving organ. In 2019, this space was taken up by a growing grassroots
movement in the development organisation, reinstating the LACE and start-
ing new improvement initiatives necessary to drive the organisation to a higher
degree of organisational agility. Thus, the new LACE was formed as a relentless
group of volunteers within the organisation insisting on a continuous change in
the late state of transition. Without any given mandate, this volunteer-driven
LACE is attracting change-hungry people, and raising new questions and oppor-
tunities surrounding the role and the boundaries of the LACE. In this paper,
this nontraditional take on a LACE will be examined, described, and compared
to its traditional LACE counterpart, change management theory, and empirical
evidence in an attempt to describe this case-specific phenomenon and identify
areas of improvement. The current research on large-scale agile has focused on
the adoption of agile, the challenges faced and the benefits gained [5,19]. How-
ever, little research can be found on how “fully” transitioned agile companies
keep continuously improving after the initial transition is over. With this paper
we start filling in this research gap.

2 Background

2.1 Scaled Agile Framework (SAFe)

The Scaled Agile Framework (SAFe) is an extensive framework to scale agile
practices to large organisations by expanding on existing team-focused method-
1 https://www.nordea.com/en.

https://www.nordea.com/en


68 J. Bowring and M. Paasivaara

ologies and adding program- and portfolio layers to provide means to manage
larger delivery organisations consisting of multiple agile teams. The framework
provides definitions for various roles and details mechanisms to align and coor-
dinate teams’ efforts to develop solutions and maximise business value. On the
team level, SAFe agile teams blend agile practices as they wish, typically using
elements of Scrum, Kanban, and Extreme Programming [13]. In SAFe, teams
use the roles, events, and artefacts of Scrum as defined in the Scrum Guide [23]
to deliver working software in incremental, iterative cycles. Teams working on
the same solution are organised in Agile Release Trains (ARTs), long-lived col-
laboration groups between teams and stakeholders [13]. Each ART coordinates
development efforts through Product Increment (PI) Planning events.

When transitioning to SAFe, one element of the recommended SAFe Imple-
mentation road map is the LACE [22]. A LACE consists of a small team of
dedicated, full-time change agents working to implement the SAFe Lean-Agile
working methods. The LACE serves as a focal point for activities that power the
organisation through the changes [13]. The responsibilities of a LACE according
to Knaster and Leffingwell [13] include: 1) communicating the business need,
urgency, and vision for change, 2) developing the implementation plan and man-
aging the transformation backlog, 3) establishing the metrics, 4) conducting or
sourcing training for all, 5) identifying value streams and helping define and
launch ARTs, and 6) providing coaching and training. Knaster and Leffingwell
[13] point out that a LACE is one of the key differentiators to look for when
determining whether companies are fully committed to practising Lean-Agile.
According to Knaster and Leffingwell a LACE often evolves into a long-term
center for continuous improvement after the initial transition, as becoming a
Lean-Agile enterprise is an ongoing journey rather than a destination. For smaller
enterprises, a single LACE may be sufficient to support the development organ-
isation, whereas larger organisations may consider either multiple, decentralised
LACEs or a hub-and spoke model where multiple LACEs are organised by a
central hub [13].

2.2 Related Research

In their literature review on agile methodologies, Dingsøyr et al. [6] found that
since the introduction of the Agile Manifesto [1] in 2001, significant amount
of research has been done in the area of agile software development, while a
clear rise in the number of studies took place after 2005. The majority of the
studies concentrate on agile practices and methods [11], or attempt to further
understand the agile concepts (e.g. [4,9]). While some progress has been made
in these areas, agile software development is yet to find a common standard for
the central challenge of combining research rigour with industrial relevance [11],
as many important topics have not yet been fully explored. One topic requiring
further research is large-scale agile and the different scaling frameworks [27] as
their popularity in the industry keeps rising, but research is lacking behind [5].

Recently, several studies have pointed to organisational culture change as a
challenge when scaling agile practices to large organisations [5,15,18,19]. Inspi-



Driving Continuous Improvement 69

ration to solve this challenge may be found in change management and organisa-
tion theory. Chia [3] introduces the notion that organisations are constantly in a
state of “becoming”, to describe the continuous process of defining and redefin-
ing organisations as living and constantly changing entities. In this view, change
is not an exception but a rule, and thus the approach to change in this view is
more concerned with the large impact of small changes over time than changing
quickly to a new state. Tsoukas and Chia [26] describe how microscopic change
should have theoretical priority for organisational scientists: “Such change occurs
naturally, incrementally, and inexorably through “creep, “slippage” and “drift”,
as well as natural “spread”” [26]. Feldman [8] similarly argues that routines can
be instrumental to continuous change in any organisation as long as humans are
doing them because the embodied knowledge from routines is a process of organ-
isational learning. In this view, change, as a constant and never-ending process,
bears a resemblance to the continuous inspection and adaptation mechanisms
agile methods emphasise as means to improve incrementally.

SAFe recommends a transition based on the 7-step process introduced by
Kotter [14], a strategy for realising a stated vision by implementing deliberate
changes by changing systems and structures supported by a powerful guiding
coalition. If we compare the approaches to change of Kotter [14] and Chia and
Tsoukas [3] to the change process ideal types introduced by Huy [12], the Kotter-
inspired SAFe approach resembles what Huy describes as a commanding inter-
vention: a direct, abrupt and rapid change strategy, with little attention to the
organisation’s internal capabilities or individual issues, driven by a small group
of people typically from the top of the hierarchy, aided by external consultants
[12]. The remaining intervention ideal types by Huy [12] are engineering, teach-
ing, and socializing. Each type is compared in 3 temporal, and 8 non-temporal
categories, identifying the underlying theories, change agents, and diagnostic
models. The SAFe framework has turned out to be popular especially in the
finance industry [21]. Experience reports on transformations to SAFe can be
found from the SAFe website [22], while academic literature includes, e.g., case
studies on transformations [20] and challenges faced [25] in the finance industry.
However, to our knowledge no research exists specifically on one of the central
elements of SAFe, the LACE. With this single-case study we start exploring the
role and implementation of LACE in practice.

3 Research Method

3.1 Research Goals and Questions

As no other studies describing experiences on using LACE have been identified,
this single, exploratory case-study [28] aims to investigate how LACE drives con-
tinuous improvement in a case organisation by answering the research questions:

1. How has the LACE changed over time?
2. How does the LACE work?
3. How does the LACE influence the organisation?
4. How can the LACE improve to inspire and facilitate change?



70 J. Bowring and M. Paasivaara

3.2 Case Organisation

Nordea is an international bank servicing household- and corporate customers
with nearly 200 years of history. Nordea offers personal and corporate banking
services such as transaction services, investment services, loans, mortgages, and
asset management to customers via online and offline platforms in 20 countries,
employing 28.000 people [17]. Nordea started the using agile around 2010 and
their SAFe adoption journey started in 2015. Currently2, the software devel-
opment organisation operates over 100 ARTs with sites in several countries.
Nordea’s transformation to agile cascaded from country to country, supported
by agile coaches and facilitated by external consultants.

3.3 Data Collection

Interviews: We chose semi-structured interviews as the main data collection
method as we wanted to dive deep and explore a new topic [28]. Answering
questions of how is a known strength of qualitative interviewing [2].

Table 1. Interviewees

LACE role Role outside of LACE Years in Nordea Interview

Product Owner Line-Manager 35 85min

Product Owner Line-Manager 7–8 60min

Product Owner Expert in Continuous Improvement 3 80min

Active LACE Attendee Scrum Master N/A 60min

Active LACE Attendee Release Train Engineer 4 60min

Active LACE Attendee Agile Coach 5 60min

Active LACE Attendee Release Train Engineer 7 60min

Active LACE Attendee Release Train Engineer 9,5 60min

Non-LACE Member Product Manager 6,5 60min

Non-LACE Member Business Area Tech Lead 2,5 60min

We interviewed ten persons as listed in Table 1. As the first interviewees we
chose all LACE Product Owners due to their central role. The LACE attendees
were invited to volunteer for the interviews to share their experiences of working
in the LACE. To provide an outside perspective on how the LACE work impacts
and is seen by other Nordea employees, we asked our Nordea contact persons
to identify a few non-LACE members having some knowledge of LACE, but
not participating in LACE work. Five volunteered LACE attendees and two
non-LACE members were interviewed. We created interview guides for all three
“roles”. The questions common to all interviewees are listed in Table 2. The
guides were kept flexible, using preliminary results of the previous interviews to

2 in July 2021.



Driving Continuous Improvement 71

determine areas of interest worth adding to the following guides. The Product
Owner interviews sparked more questions for the later groups, e.g., a Product
Owner indicated LACE being empowering, which was added as a question for
all attendees. In addition to the general questions, Product Owners were asked
about the origins, the goals and the development of LACE, the backlog, and the
LACE Product Owner role. The LACE attendees were asked about the LACE
features they had been working on and the experienced challenges and successes.
Additional interview questions can be found on Figshare3. All interviews were
conducted online using Microsoft Teams or phone due to Covid-19 restrictions.

Table 2. General interview guide.

Theme Question RQ

Background Work experience, education, previous roles

Background Role outside of LACE 1

Background When did you join LACE, and what were you hoping to
achieve?

1,2

Current work How do you go about implementing this particular change? 3

Current work Are there any backlog items you have had for a long time or
cannot seem to solve?

2,3

History What did you think about LACE before you joined? 3

History Tell me about the achievements LACE has positively
impacted the organisation in the past?

2,3

History Have there been any transformation efforts you have had to
give up on because it could not be done?

1,3,4

History How has the backlog evolved over time? 2

History How has the way you work in the LACE evolved over time? 2

Improvements What is the biggest challenge the LACE is facing right now? 1,3,4

Improvements Do you think you have the right resources to drive the
transformation backlog?

3,4

Improvements If you could change anything about the LACE for the better,
what would it be?

4

Observations: As Brinkmann [2] notes, other data sources apart from inter-
views, such as observations, documents, and objects, are essential when research-
ing social and cultural phenomena to get a complete picture of the object of
interest. To understand how the LACE works is a partially observable process in
the meetings between LACE attendees. Therefore, nine weekly LACE meetings
of 30 min with 7–9 participants were observed during a period of two months.
Additionally, three other meetings were observed: a one-hour feature sub-team

3 https://doi.org/10.6084/m9.figshare.16729000.

https://doi.org/10.6084/m9.figshare.16729000


72 J. Bowring and M. Paasivaara

weekly meeting, a one-hour LACE PI planning meeting that established the
focus areas and OKRs for the next 3-month iteration, and a 40-min sub-team
feature planning meeting during which 15 participants identified root causes of
the observed challenge, planned feature scope and coordinated practical work.
All observed meetings were conducted online in Microsoft Teams. The observer
took detailed notes, e.g., regarding the current status of each discussed feature,
and the challenges discussed.

3.4 Data Analysis and Validation

All interviews were transcribed and coded by the first author after reaching
agreement of the coding labels with the second author. The relevance of interview
segments and notes were marked to each research question, while RQ2 was split
into multiple categories (goals, tools, and resources). To validate our findings, a
Nordea representative, active in LACE, reviewed the article and gave a written
consent for publication.4

4 Results

4.1 RQ1: How Has the LACE Changed over Time?

The First Nordea LACE: Nordea did not create a LACE in the early stages
of the transition to SAFe, as suggested by the SAFe road map [22]. Instead,
the LACE was established sometime after the initial SAFe transformation, as a
part of the move to take the next step, referred to by one interviewee as part of
the next wave - Agile 2.0. Another interviewee notes that the need to standard-
ise work and run the same cadence across the entire development organisation
gave rise to the first instance of the LACE. A third recalls that the LACE was
known by a different name in the beginning, consisting of line managers especially
from Agile Execution, Architecture, Product Ownership, and the Transforma-
tion Office. The improvement backlog, which agile coaches helped to carry out,
was kept in this closed forum. Following a re-organisation, the first LACE group
dissolved.

The New LACE: A new, less-centralised LACE rose around 2019, initiated by
one of the current Product Owners. It was intended to be a community of practi-
tioners consisting of volunteers who would contribute their experience, time, and
knowledge to identify areas of improvement and remove systemic impediments.
The LACE relies on goodwill to collaborate across teams and ARTs to improve
the ways of working and promote organisational agility. Without official man-
date or dedicated resources, the practitioners facing day-to-day struggles of agile
development band together to gain support to solve them for the good of all.
According to a LACE Product Owner the volunteer-based model was a delib-
erate choice to avoid resistance from the cost-conscious management team with
4 Due to an active Non-Disclosure Agreement between the researchers and Nordea, all

data used for this research project is protected from sharing.



Driving Continuous Improvement 73

an intention to prove the value of the LACE with results. However, this choice
has its advantages and disadvantages. According the Product Owner, one such
advantage is avoiding the closed group or ivory tower that the first instance of
the LACE appeared to be, and that everyone wanting to improve the system has
a chance to do so. However, a disadvantage is not having dedicated resources,
such as a coach or coaches, to help implement the changes needed.

“We were in a position at that point in time where we were cutting costs - cost-
conscious. [. . . ] And the plan was to show that the LACE can drive things, that it
will, it can implement systemic changes. And then, from there, see if we could get
an allocation to drive more. [. . . ] And also, personally, I like the model where you
engage people, and where everybody has a chance to be part of it, and it’s not just
the ones who are appointed to be part of the LACE.” — LACE Product Owner

Now that everyone was invited and encouraged to raise their issues, 20–30
people showing up with each their own agenda resulted in a scattered collec-
tion of small things with no sense of direction. According to a Product Owner,
addressing them all was impossible with the limited capacity of the volunteers
and no mandate to impose changes. With plenty of ideas for improvements but
little concrete results, this “circle of friends” shrank. All three Product Owners
find this time as a significant turning point for the newly re-instated LACE with
much to prove. The third PO joined the LACE, leading to the realisation that
the backlog of improvements lacked clear direction and was full of disorganised or
abandoned ideas. The POs visualised every backlog item as a post-it, grouped
them on a large office wall, and were overwhelmed by the amount of work it
would take the LACE group to change everything described on the wall. Thus,
the Product Owners concluded that a severe clean-up of the backlog was needed
and a much more directed approach was essential to achieve a sense of focus for
the upcoming work. Surprisingly, the backlog clean-up did not result in angry
and overlooked LACE participants, as many had left the LACE behind.

4.2 RQ2: How Does the LACE Work?

Overall Goals: The Product Owners have defined the overall goals of the LACE
to be: 1) relentless improvement, 2) cross-organisational scope, and 3) increased
customer focus. At the heart of the LACE work lies continuous improvement
for the organisation. The LACE seeks to attract people looking for a positive
change for themselves and their colleagues and provides a place to find support
and help each other to achieve the changes they want to see. This overarching
theme came up repeatedly during the interview process, highlighting its impor-
tance. A Product Owner sees the LACE as an opportunity to experiment and
solve complex problems in innovative ways, and expresses that other people may
have felt compelled to join the LACE after being inspired by the passion the
people in the LACE show for wanting to change and improve. A LACE attendee
emphasises that it is the practitioners who are enabled to help themselves and
implement their own solutions to the problems they face. Currently, there is no
other way for the sub-units, such as a team or an ART, to take systemic issues



74 J. Bowring and M. Paasivaara

forward. Thus, an explicit goal of the LACE is making visible and attempting
to implement cross-organisational improvement efforts at Nordea, which no sub-
unit alone can easily solve. All three LACE Product Owners highlight this over-
arching goal emphasising that these changes should be achieved in collaboration
across all units.

“We are not interested in sub-optimising problems in some specific area only. And
typically, there’s not many problems, which are specific to some area only. [...] If
there’s no vehicle, these problems stay inside those silos, because there’s no way
to raise them up. So that’s, of course, the way to provide this vehicle where you
can raise and then what this vehicle tries to do is exactly, we talk about systemic
issues.” — LACE Product Owner

Another focus point is a more customer-centred approach to development. A
strong domain-focus combined with an extensive organisational structure that is
still somewhat hierarchical and bureaucratic poses a significant barrier for a few
members of the LACE working deliberately to increase the focus on one thing
everyone in the organisation have in common: their customers. The interviewees
that touch upon this subject recognise that this re-focusing from an inside-out to
and outside-in perspective requires a significant change in the mind-set of their
colleagues. An attendee speculates that the perceived product may not be the
same for the IT development organisation, product development organisation,
and the customer, while a Product Owner admits that attempting to change
this mindset is bold, but something they are experimenting with and experience
a great appetite for in the organisation, albeit not very broadly.

Improvement Features: When planning for the following PI, usually two large
improvement items, features, and a number of smaller, more specific items are
included. The number of features being worked on simultaneously is limited
to the capacity of people working in the LACE at the given time, and as one
Product Owner notes, the rest of the organisation also has a limited capacity to
accept and adapt to the changes the LACE is working to implement. Currently,
the most important features as identified by the Product Owners are: “Clear
Line of Sight”, aiming to display the relations between smaller features and
strategic projects, and “Feature Lead Time”, targeting shorter delivery times of
development features by implementing a metrics dashboard. Additional ongoing
LACE features include “Lean Business Cases”, a tool to clarify the expected
value of features, and a “Team Role-Card”, describing the responsibilities of an
agile development team to align expectations across the organisation.

Process: The interviewees report that the work process of the LACE resem-
bles the process of an ART in SAFe. All LACE attendees share this common
reference in their primary roles, making the overall process in the LACE incre-
mental and easy to follow. The three LACE Product Owners from different
line-organisations maintain a backlog of improvement features in collaboration
with the LACE volunteers. The backlog items match the LACE Objective Key
Results (OKR), quantitative metrics set by the Product Owners representing
the vision for the LACE to move towards and measure their progress to stay on



Driving Continuous Improvement 75

track moving in the same direction. New features should match these goals that
are redefined and shared anew for each PI cycle. Using a 3-month increment
for each PI, features are planned in a PI planning meeting, where a number of
features are pulled into the PI according to the expected capacity of the LACE
team. Since every LACE member is volunteering to work on LACE features on
top of their regular role at Nordea, the expected capacity of LACE fluctuates,
as some members may have a lot of work outside the LACE for some periods of
time, and may be highly available for others. Due to this, the features pulled into
the PI depend on the availability of the “driver”, the LACE member committed
to drive the feature work. When a feature is moved from the backlog and the
LACE work starts, the first step has been observed to be identifying possible root
causes for the observed challenges. While the LACE participants may have some
ideas for what is causing the challenge, it may be deemed necessary to contact
more coworkers to grasp the extent and root of the issue and gain allies for the
subsequent phases of the change work. The complex issues brought up in the
LACE can be difficult to pinpoint and may have multiple causes and thus mul-
tiple ways to solve them. When the LACE sub-team working on the feature has
examined all possibilities, a hypothesis is formed, and an experiment is set up to
try to solve the problem. Rather than implementing the targeted improvement
across the whole organisation, the LACE sub-team typically opts to experiment
on a single team or an ART. If the results from the experiment show a positive
impact and the hypothesis is validated, communicating the effective method of
solving a challenging situation is recommended to a broader audience. The work
to progress features happens in smaller feature-specific sub-teams that a specific
person drives. The participants of these sub-teams are invited both from the
inside and outside of LACE based on their expected input or interest in the spe-
cific feature. The LACE participants use their organisational network to invite
persons of interest to work on features that impact them or who are otherwise
instrumental to identify the root causes and get the change implemented. One
Product Owner reflects that the LACE facilitates the process, but people having
the hands-on experience find the best solutions, and thus collaboration is vital.
Attendees report that working in small sub-teams is preferable, as too many
people and too many opinions may prevent the team from finding consensus
and taking action, and that the teams they had worked in were open, willing to
collaborate and to do the work needed. The sub-teams meet on a regular basis,
usually for one hour per week, to work on their feature, to set goals, to plan a
course of action and to evaluate the results. The LACE meets once per week for
a 30-min online status meeting, where an acting Scrum Master shares the LACE
team’s Jira Kanban board for the current PI and asks drivers for updates on fea-
tures in progress. This role rotates among the LACE members. The drivers give
short status updates about the progress since the last meeting and the planned
actions for each feature. Attendance at these meetings is open to all and not
mandatory. Drivers are asked to send a representative to provide an update if
they cannot attend the meeting. According to one Product Owner, several differ-
ent meeting types and lengths have been tried out, and this format has received



76 J. Bowring and M. Paasivaara

the best response. According to several interviewees, the Kanban system helps
the LACE group stay informed even though their availability to attend these
status meetings varies over time. It provides an easy overview since the board
is always accessible and Jira is used throughout the development organisation.
During our observation period 7–9 persons participated in each weekly status
meeting.

Volunteering: The LACE currently runs on an open, part-time, volunteer-
based model, unlike the full-time LACE team described in SAFe [22]. Reflecting
on the advantages and disadvantages of the volunteer model, one Product Owner
points out that the LACE work can only continue as long as management allows
LACE members to spend time working in it. If other initiatives are pushed the
traditional power structures, requiring the organisation to respond quickly, the
LACE will no longer be a priority. Several interviewees expressed a need for
a full-time coordinating role within the LACE. All interviewees expressed that
having “practitioners”, i.e. persons working in other roles in the field, involved
in the LACE as positive, and that every volunteer brings value to the LACE, no
matter what their primary role or department is.

“I know how to drive and facilitate, but I need to bring in the needed people in order
to get the right and the best solution out. So having this collaboration between the
three different PO’s I think we have managed to prove, that I mean, joining forces
makes us even stronger.” — LACE Product Owner

4.3 RQ3: How Does the LACE Influence the Organisation?

The LACE influences the rest of the organisation by including them in identifying
and experimenting with solving systemic issues. As the LACE has no official
mandate to impose changes to anyone in the organisation unwillingly, it relies
on more subtle ways of influencing the peers to reach the goals.

Advisory Role: The bottom-up origins of the Nordea LACE and the official
lack of mandate to make the high-level decisions is a well-known contradiction
compared to the traditional SAFe-based LACE among the interviewees. Thus,
currently the LACE’s role is advisory. A LACE Product Owner comments that
the LACE is empowering people to influence strategic decisions regardless of
their role. However, only one LACE participant fully agrees when asked if the
LACE is empowering. Instead, one says that empowerment comes from manage-
ment and from business results. Another explains that in order to start making
an impact, a broader audience is needed in LACE. Three of the interviewed
LACE participants would like the LACE being given more support by higher
management in order to have a more significant influence.

“We are missing some kind of mandate from the top, I’m talking about C-level
management, to have such a LACE, which will provide the standards for all the
business areas, because right now you can either follow the recommendations, [...],
or you can do it in your own way, and no one will stop you [. . . ] However, not
having this mandate, it doesn’t stop us to still implement Scrum, agile, Scaled
SAFe, whatever we’ll call that. Because the motivation, the beliefs, I think, it was
proved through recent years that it’s working.” — LACE Attendee



Driving Continuous Improvement 77

Communicating the Achievements: One Product Owner and several LACE
attendees bring attention to the challenge of broadly communicating the LACE
results. The Product Owner’s experience is that communicating the value of
the changes is easier when the message comes from the same people that have
experienced the results firsthand. A tool the LACE uses to raise awareness of the
value being generated and the issues they are working with are pilots. Instead
of deciding on the right path for a change straight away and putting a lot of
work into implementing the changes broadly, many LACE projects start by
experimenting on a smaller scale, in a team or a train. The purpose of the
pilot is to get preliminary results and use those to gain traction and get people
interested in the experiments and their results. For the purpose of inspiration and
collectively sharing learning experiences, the LACE hosts a monthly business-line
staff meeting, a Huddle, which is an opportunity to communicate the experiment
results to a broad audience. One Product Owner sees the 15-minute time-slot
available at the Huddle as a way to showcase the value of the features the
LACE is working on. As this storytelling approach has yielded good results
according to one Product Owner, piloting is a tool that is often used in the
LACE not only to experiment to find the right solutions, but also as a way
to communicate and accelerate the change to the rest of the organisation. One
interviewee suggests marketing the LACE involvement in these pilots clearly to
strengthen the presence of LACE in the minds of the larger organisation and to
give momentum to the increasing influence of the LACE going forward.

“You need to have some sort of a track record that you did something that you
say, “Well, this is what we did, this is what we’re good at and this is how you can
benefit from that”. And then you need to turn that into something that people want
to carry on or get curious about. [. . . ] And I think that’s really something that you
could advertise and have people ask questions about: “Okay, so how did this happen
then?” and “What have you learned and where did the idea come from?”. “Well,
the idea came from, we have this group of people called LACE and we’re actually
developing more and more of those sorts of ideas”.” — LACE Attendee

4.4 RQ4: How Can the LACE Improve to Inspire and Facilitate
Change?

Communicating the Achievements & Broader and Earlier Volunteer-
ing: Though the majority of interviewees agree that there is enough representa-
tion in the LACE currently to support a solid foundation to facilitate changes,
expanding the LACE group by recruiting more colleagues is an ongoing improve-
ment item on its own, that one sub-team has been working on. A LACE attendee
comments that the network of LACE is extensive, which is an advantage, and
that input comes from many different parts of Nordea. We observed that cur-
rently, the first three steps of transformation described by Kotter [14] 1: Estab-
lishing a Sense of Urgency, 2: Forming a Powerful Guiding Coalition, 3: Creating
a Vision are being done in a small group within the LACE. Establishing a sense
of urgency can be seen as identifying features for the LACE backlog and relating
them to the overall OKRs. A guiding coalition is formed based on interest within



78 J. Bowring and M. Paasivaara

the LACE and the contacts in the network. The vision for change is created in
a sub-team by forming hypotheses for how the situation could be improved. In
the step four of the Kotter’s model the rest of the organisation gets involved.
Interviewees noted that communicating the vision for change and getting people
outside of the LACE group on board with the changes is difficult at this point.
For this reason, a LACE attendee suggested including the broader organisation
earlier (e.g. at step one) and recruiting new colleagues based on interest and
identification of a specific change feature. This LACE attendee suggested that
the Nordea Intranet could be used to reach a broader audience, to both inform
and include. The attendee emphasised the importance of people joining being
aware that some work would be required to reach a solution, instead of simply
complaining about the faced issue. This could make LACE more visible to the
rest of the organisation. Another LACE attendee noted that to take the LACE
to the next level, it would have to be so well-known that people in the organisa-
tion facing systemic issues would reach out to LACE, instead of the other way
around, as they have previously heard about the work the LACE did.

“We believe that we are doing this for people, so we would like to change in order
to make it a better place to work, easier to communicate and collaborate. [...] those
people who are volunteering to be a part of this group, they have this drive, right, so
they believe that it’s not just about, you know, giving advice it’s sometimes about,
you know, getting your hands dirty and simply doing some activities.”

— LACE Attendee

Introducing Retrospectives: The internal process of the LACE is a copy of
that of an ART in the SAFe framework, that LACE repeats every three months.
However, a participant pointed out the lack of retrospectives that aim to reflect
on the current processes of an ART or a team to improve. While it is unclear why
retrospectives are not currently organised in the LACE, it would be a familiar
way to improve the ways of working in the LACE.

Splitting the Feature Size: LACE bases its process on the 3-month PI Plan-
ning cadence. Despite this, many features stay in progress for an extended
period without much visible progress. At the weekly status meetings, it has
been observed how many of the features stay in the same column in Jira for
long periods, while the driver of the feature reports progresses nonetheless. One
Product Owner explained that while LACE tries to break large features down
into medium- and short-term targets, it is not always possible. Some items on
the LACE’s agenda are very large, ambitious transformations of culture and
mindset such as reducing lead-time, thus, it is not surprising that the overall
focus on reducing lead-time has been on the backlog for over a year, according
to a LACE attendee. However, it is surprising is that this particular item has
such a broad and unreachable goal. This feature seems to serve as a reminder of
the transformational marathon the LACE is running. A LACE attendee points
to this as the LACE’s biggest challenge: usually, the large features the LACE
is working on are difficult problems to solve, and suggests breaking the large
efforts into smaller parts that are easier to tackle and progress is more visible.



Driving Continuous Improvement 79

“I think if that would be a much more bite-sized piece that we could actually imme-
diately start working on and tackle, because we have a clear idea of what we’re
going to do, a clear idea of how to measure it, be actually Lean, then we can do
it and move on to the next item. Right now, they kind of hang there in progress
a little bit because they’re too big and too ambiguous to really do something about
them.” — LACE Attendee

5 Discussion and Conclusions

The first Nordea LACE resembled what is described in the SAFe literature. It was
dissolved after the initial transition goals were reached, but was re-invented by
volunteers within the organisation as a way to facilitate continuous improvement
efforts that were still relevant long after the transition. We found that the goals,
resources and ways of working of this second installment were vastly different
from the LACE described in the SAFe literature. With the long-term focus on
continuous improvement within the agile space of Nordea, cross-collaboration
and communication between units is highly valued and achieved by engaging
volunteers in making change and compelling their peers in an advisory role.
This way of working has the advantage that the practitioners engaged in the
LACE work uses their network and experience to identify and implement wanted
changes more easily, but a disadvantage of this is that their partial commitment
may hinder progress and a lack of mandate to enforce change. We suggested
the following improvements for the LACE internal processes and to increase
influence to further their work: Working more closely with the traditional power
structures in line-management, increasing the visibility of the LACE features by
marketing them as such, involving more colleagues in change efforts by calling
for help on specific changes, and conducting LACE-specific retrospectives.

While SAFe suggests a strategy resembling the Commanding intervention
type identified by Huy [12], the Nordea LACE resembles the Socializing inter-
vention type [12] in its democratic approach to change, empirical normative
tactic, and participatory and experimental approach conducted in continuous
work groups, relying more on organic and incremental spread of change simi-
lar to the views of Tsoukas and Chia [26] than the top-down implementation
of Kotter [14], on which SAFe bases its recommendation. This is likely due to
the goal of the post-transition Nordea LACE differentiating significantly from
the SAFe documentation LACE; As Huy notes, the Commanding type is likely
effective at changing formal structures with fast improvements in the short-term
[12], but for the purpose of long-term continuous improvement, the Socializing
type appears to be working well for the Nordea LACE. However, this approach
has been observed by the LACE Product Owners to have had some of the same
limitations Huy foresaw: a splintered, anarchic organisation [12], a challenge
which occurred when the LACE was highly popularised and lacked direction,
and seemingly mitigated by an increased focus in the direction led by the three
POs. Recognising that the results of this study may only be relevant for this
particular context and not generalisable, this first study of one instance of a
LACE documenting the experiences of participants may serve as an inspiration



80 J. Bowring and M. Paasivaara

for other companies looking for ways to implement or improve a community-
run organisation driving continuous improvements efforts from the bottom up.
Currently, there is little research covering the continuous improvement elements
that are at the heart of agile. The results of this case study open up the area of
studying how continuous change can be institutionalised, organised, and work
incrementally even long after a large-scale agile transition. Studying more cases
in the future will enable researchers to compare different contexts and determine
if there are common systemic issues present in mature large-scale agile set-ups.
A limitation of this study is the small number of interviewees. Due to the lim-
ited resources, we were not able to interview as many non-LACE members nor
former LACE members as we would have liked. This poses a potential threat
to the validity of this study, as more views from the rest of the organisation,
that the LACE is trying to influence, would have been a great addition to the
empirical data.

We hope the positive experiences relayed in this paper of this alternative
approach to a post-transition LACE may inspire other mature agile organisations
to experiment with similar, volunteer-driven LACEs, as a means of facilitating
continuous improvement efforts on an organisational level. It may also serve as
grounds for more case-studies and comparison of the experiences from other post-
transition LACEs attempting to keep the agile continuous improvement process
going. We argue that the current body of organisation and change management
theory present useful devices for doing so.

References

1. Beck, K., et al.: Agile Manifesto (2001). https://agilemanifesto.org/
2. Brinkmann, S.: Qualitative Interviewing: Understanding Qualitative Research.

Oxford University Press, Oxford (2013)
3. Chia, R.: A ‘Rhizomic’ model of organizational change and transformation: per-

spective from a metaphysics of change. Br. J. Manag. 10(3 SPEC. ISS.), 209–227
(1999). https://doi.org/10.1111/1467-8551.00128

4. Cohen, D., Lindvall, M., Costa, P.: An introduction to agile methods. In: Advances
in Computers, vol. 62, pp. 1–66. Elsevier (2004). https://doi.org/10.1016/S0065-24
58(03)62001-2, https://linkinghub.elsevier.com/retrieve/pii/S0065245803620012

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016). https://doi.org/10.1016/j.jss.2016.06.013

6. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012). https://doi.org/10.1016/j.jss.2012.02.033

7. Ebert, C., Paasivaara, M.: Scaling agile. IEEE Softw. 34(6), 98–103 (2017).
https://doi.org/10.1109/MS.2017.4121226

8. Feldman, M.S.: Organizational routines as a source of continuous change. Organ.
Sci. 11(6), 611–629 (2000). https://doi.org/10.1287/orsc.11.6.611.12529

9. Fernandes, J.M., Almeida, M.: Classification and comparison of agile methods.
In: Proceedings - 7th International Conference on the Quality of Information and
Communications Technology, QUATIC 2010, pp. 391–396 (2010). https://doi.org/
10.1109/QUATIC.2010.71

https://agilemanifesto.org/
https://doi.org/10.1111/1467-8551.00128
https://doi.org/10.1016/S0065-2458(03)62001-2
https://doi.org/10.1016/S0065-2458(03)62001-2
https://linkinghub.elsevier.com/retrieve/pii/S0065245803620012
https://doi.org/10.1016/j.jss.2016.06.013
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1109/MS.2017.4121226
https://doi.org/10.1287/orsc.11.6.611.12529
https://doi.org/10.1109/QUATIC.2010.71
https://doi.org/10.1109/QUATIC.2010.71


Driving Continuous Improvement 81

10. Highsmith, J., Cockburn, A.: Agile software development: the business of innova-
tion (2001). https://doi.org/10.1109/2.947100

11. Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in context. In: Proceed-
ings of the ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications - OOPSLA 2010, p. 74. ACM Press, New York
(2010). https://doi.org/10.1145/1869459.1869467, http://portal.acm.org/citation.
cfm?doid=1869459.1869467

12. Huy, Q.N.: Time, temporal capability, and planned change. Acad. Manag. Rev.
26(4), 601–623 (2001)

13. Knaster, R., Leffingwell, D.: SAFe 5.0 Distilled, 1st edn. Addison-Wesley Profes-
sional (2020). https://www.scaledagileframework.com/

14. Kotter, J.P.: Leading change: why transformation efforts fail. Harv. Bus. Rev.
(1995). https://doi.org/10.4324/9780203964194-10

15. Laanti, M., Kettunen, P.: SAFe adoptions in Finland: a survey research. In: Hoda,
R. (ed.) XP 2019. LNBIP, vol. 364, pp. 81–87. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30126-2 10

16. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises.
Addison-Wesley Professional, Boston (2007)

17. Nordea.com: Nordea homepage: Nordea at a glance. https://www.nordea.com/en/
about-nordea/who-we-are/nordea-at-a-glance/

18. Pernst̊al, J., Feldt, R., Gorschek, T.: The lean gap: a review of lean approaches
to large-scale software systems development. J. Syst. Softw. 86(11), 2797–2821
(2013). https://doi.org/10.1016/j.jss.2013.06.035

19. Putta, A., Paasivaara, M., Lassenius, C., et al.: Benefits and challenges of adopting
the scaled agile framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M. (ed.) PROFES 2018. LNCS, vol. 11271, pp. 334–351.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

20. Putta, A., Paasivaara, M., Lassenius, C.: How are agile release trains formed in
practice? A case study in a large financial corporation. In: Kruchten, P., Fraser, S.,
Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 154–170. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19034-7 10

21. Putta, A., Uludağ, Ö., Paasivaara, M., Hong, S.-L.: Benefits and challenges of
adopting SAFe - an empirical survey. In: Gregory, P., Lassenius, C., Wang, X.,
Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 172–187. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-78098-2 11

22. Scaled Agile Inc.: Homepage: Scaled Agile Framework (2021). https://www.
scaledagileframework.com/

23. Schwaber, K., Sutherland, J.: The Scrum Guide: The Definitive Guide to Scrum:
The Rules of the Game (2020)

24. StateOfAgile: 14th annual State Of Agile Report. Annual Report for the STATE
OF AGILE 14 (2020). https://explore.digital.ai/state-of-agile/14th-annual-state-
of-agile-report

25. Nilsson Tengstrand, S., Tomaszewski, P., Borg, M., Jabangwe, R.: Challenges of
adopting SAFe in the banking industry – a study two years after its introduction.
In: Gregory, P., Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021. LNBIP,
vol. 419, pp. 157–171. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
78098-2 10

26. Tsoukas, H., Chia, R.: On organizational becoming: rethinking organizational
change. Organ. Sci. 13(5), 567–582 (2002). https://doi.org/10.1287/orsc.13.5.567.
7810

https://doi.org/10.1109/2.947100
https://doi.org/10.1145/1869459.1869467
http://portal.acm.org/citation.cfm?doid=1869459.1869467
http://portal.acm.org/citation.cfm?doid=1869459.1869467
https://www.scaledagileframework.com/
https://doi.org/10.4324/9780203964194-10
https://doi.org/10.1007/978-3-030-30126-2_10
https://doi.org/10.1007/978-3-030-30126-2_10
https://www.nordea.com/en/about-nordea/who-we-are/nordea-at-a-glance/
https://www.nordea.com/en/about-nordea/who-we-are/nordea-at-a-glance/
https://doi.org/10.1016/j.jss.2013.06.035
https://doi.org/10.1007/978-3-030-03673-7_24
https://doi.org/10.1007/978-3-030-19034-7_10
https://doi.org/10.1007/978-3-030-78098-2_11
https://www.scaledagileframework.com/
https://www.scaledagileframework.com/
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://explore.digital.ai/state-of-agile/14th-annual-state-of-agile-report
https://doi.org/10.1007/978-3-030-78098-2_10
https://doi.org/10.1007/978-3-030-78098-2_10
https://doi.org/10.1287/orsc.13.5.567.7810
https://doi.org/10.1287/orsc.13.5.567.7810


82 J. Bowring and M. Paasivaara

27. Uludağ, Ö., Putta, A., Paasivaara, M., Matthes, F.: Evolution of the agile scaling
frameworks. In: Gregory, P., Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021.
LNBIP, vol. 419, pp. 123–139. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78098-2 8

28. Yin, R.K.: Case Study Research and Applications: Design and Methods, 6th edn.
SAGE Publications, Los Angeles (2018)

https://doi.org/10.1007/978-3-030-78098-2_8
https://doi.org/10.1007/978-3-030-78098-2_8


Requirements



How Do Practitioners Interpret
Conditionals in Requirements?

Jannik Fischbach1(B), Julian Frattini2, Daniel Mendez2,3,
Michael Unterkalmsteiner2, Henning Femmer1, and Andreas Vogelsang4

1 Qualicen GmbH, Garching, Germany
{jannik.fischbach,henning.femmer}@qualicen.de

2 Blekinge Institute of Technology, Karlskrona, Sweden
{julian.frattini,daniel.mendez,michael.unterkalmsteiner}@bth.se

3 fortiss GmbH, Munich, Germany
mendez@fortiss.org

4 University of Cologne, Cologne, Germany
vogelsang@cs.uni-koeln.de

Abstract. Context : Conditional statements like “If A and B then C”
are core elements for describing software requirements. However, there
are many ways to express such conditionals in natural language and also
many ways how they can be interpreted. We hypothesize that condi-
tional statements in requirements are a source of ambiguity, potentially
affecting downstream activities such as test case generation negatively.
Objective: Our goal is to understand how specific conditionals are inter-
preted by readers who work with requirements. Method : We conduct a
descriptive survey with 104 RE practitioners and ask how they inter-
pret 12 different conditional clauses. We map their interpretations to
logical formulas written in Propositional (Temporal) Logic and discuss
the implications. Results: The conditionals in our tested requirements
were interpreted ambiguously. We found that practitioners disagree on
whether an antecedent is only sufficient or also necessary for the con-
sequent. Interestingly, the disagreement persists even when the system
behavior is known to the practitioners. We also found that certain cue
phrases are associated with specific interpretations. Conclusion: Condi-
tionals in requirements are a source of ambiguity and there is not just one
way to interpret them formally. This affects any analysis that builds upon
formalized requirements (e.g., inconsistency checking, test-case genera-
tion). Our results may also influence guidelines for writing requirements.

Keywords: Logical interpretation · Requirements engineering ·
Descriptive survey · Formalization

1 Introduction

Context. Functional requirements often describe external system behavior by
relating events to each other, e.g. “If the system detects an error (e1), an error
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 85–102, 2021.
https://doi.org/10.1007/978-3-030-91452-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_6


86 J. Fischbach et al.

message shall be shown (e2)” (REQ 1). Such conditional statements are preva-
lent in both traditional requirement documents [15] and agile requirement arti-
facts [14] alike. The interpretation of the semantics of conditionals affects all
activities carried out on the basis of documented requirements such as manual
reviews, implementation, or test case generations. Even more, a correct inter-
pretation is absolutely essential for all automatic analyses of requirements that
consider the semantics of sentences; for instance, automatic quality analysis like
smell detection [11], test case derivation [14,17], and dependency detection [13].
In consequence, conditionals should always be associated with a formal meaning
to automatically process them. However, determining a suitable formal interpre-
tation is challenging because conditional statements in natural language tend
to be ambiguous. Literally, REQ 1 from above may be interpreted as a logical
implication (e1⇒ e2), in which e1 is a sufficient precondition for e2. However, it
is equally reasonable to assume that the error message shall not be shown if the
error has not been detected (i.e., e1 is a sufficient and also necessary condition for
e2). Furthermore, it is reasonable to assume that e1 must occur before e2. Both
assumptions are not covered by an implication as it neglects temporal order-
ing. In contrast, the assumptions need to be expressed by temporal logic (e.g.,
LTL [21]). Existing guidelines for expressing requirements have different ways
of interpreting conditionals; for instance, Mavin et al. [23] propose to interpret
conditionals as a logical equivalence (e1⇔e2) to avoid ambiguity. We argue that
the “correct” way of interpretation should not just be defined by the authors of a
method, but rather from the view of practitioners. This requires an understand-
ing how these interpret such conditionals. Otherwise, we choose a formalization
that does not reflect how practitioners interpret conditional sentences, rendering
downstream activities error-prone. That is, we would likely derive incomplete
test cases or interpret dependencies between the requirements incorrectly.

Problem. We lack knowledge on how practitioners interpret conditional state-
ments in requirements and how these interpretations should be formalized
accordingly. Moreover, we are not aware of the factors that influence the logical
interpretation of conditional clauses in requirements.

Contribution. In this paper, we report on a survey we conducted with 104 RE
practitioners and determine how they interpret conditional clauses in require-
ments. The goal of our research is to provide empirical evidence for whether
a common formal interpretation of conditionals in requirements exists. Key
insights include, but are not limited to:

1. Conditionals in requirements are ambiguous. Practitioners disagreed on
whether an antecedent is only sufficient or also necessary for a consequent.

2. We observed a statistically significant relation between the interpretation
and certain context factors of practitioners (e.g., experience in RE, the way
how a practitioner interacts with requirements, and the presence of domain
knowledge). Interestingly, domain knowledge does not promote a consistent
interpretation of conditionals.



How Do Practitioners Interpret Conditionals in Requirements? 87

3. The choice of certain cue phrase has an impact on the degree of ambigu-
ity (e.g., “while” was less ambiguous than “if” or “when” w.r.t. temporal
relationship).

Finally, we disclose all of our data as well as the survey protocol via a replication
package at https://doi.org/10.5281/zenodo.5070235.

Related Work. Transforming NL requirements into verifiable LTL patterns [9]
has received notable attention, as this formalization respects the temporal aspect
of requirements and allows for an automatic assessment of requirements quality
like ambiguity, consistency, or completeness [24]. However, most approaches are
based on restricted natural language [20,27,31] and assume that a unanimously
agreed upon formalization of NL requirements exist. We challenge this assump-
tion by considering ambiguity in respect to conditional statements. Ambiguity
in NL requirements itself has been explored in several studies so far. A general
overview of the nature of ambiguity and its impact on the development process
is provided by Gervasi and Zowghi [19]. De Bruijn et al. [4] investigates the
effects of ambiguity on project success or failure. Berry and Kamsties [2] show
that indefinite quantifiers can lead to misunderstandings. Winter et al. [29] show
that negative phrasing of quantifiers is more ambiguous than affirmative phras-
ing. Femmer et al. [12] reveals that the use of passive voice leads to ambiguity in
requirements. To the best of our knowledge, however, we are the first to study
ambiguity induced by conditionals in requirements.

2 Fundamentals

To determine how to appropriately formalize interpretations by RE practition-
ers, we first need to understand how conditionals can be specified logically. We
investigate the logical interpretations with respect to two dimensions: Necessity
and Temporality. In this section, we demarcate both dimensions, and introduce
suitable formal languages to the extent necessary in context of this paper.

Necessity. A conditional statement consists of two parts: the antecedent (in case
of REQ 1: e1) and the consequent (e2). The relationship between an antecedent
and consequent can be interpreted logically in two different ways. First, by means
of an implication as e1 ⇒ e2, in which e1 is a sufficient condition for e2. Inter-
preting REQ 1 as an implication requires the system to display an error message
if e1 is true. However, it is not specified what the system should do if e1 is false.
The implication allows both the occurrence of e2 and its absence if e1 is false. In
contrast, the relationship of antecedent and consequent can also be understood
as a logical equivalence, where e1 is both a sufficient and necessary condition
for e2. Interpreting REQ 1 as an equivalence requires the system to display an
error message if and only if it detects an error. Consequently, if e1 is false, then
e2 should also be false. The interpretation of conditionals as an implication or
equivalence significantly influences further development activities. For example,
a test designer who interprets conditionals rather as implication than equivalence

https://doi.org/10.5281/zenodo.5070235


88 J. Fischbach et al.

might only add positive test cases to a test suite. This may lead to a misalign-
ment of tests and requirements in case the business analyst actually intended to
express an equivalence.

Temporality. The temporal relation between an antecedent and consequent can
be interpreted in three different ways: (1) the consequent occurs simultaneous
with the antecedent, (2) the consequent occurs immediately after the antecedent,
and (3) the consequent occurs at some indefinite point after the antecedent.
Propositional logic does not consider temporal ordering of events and is therefore
not expressive enough to model temporal relationships. In contrast, we require
linear temporal logic (LTL), which considers temporal ordering by defining the
behavior σ of a system as an infinite sequence of states ⟨s0, · · · ⟩, where sn is a
state of the system at “time” n [21]. Accordingly, requirements are understood
as constraints on σ. The desired system behavior is defined as an LTL formula F ,
where next to the usual PL operators also temporal operators like ◻ (always),
◊ (eventually), and ◯ (next state) are used. Since we will use these temporal
operators in the course of the paper, we will present them here in more detail.
To understand the LTL formulas, we assign a semantic meaning [[F ]] to each
syntactic object F . Formally, [[F ]] is a boolean-valued function on σ. According
to Lamport [21], σ[[F ]] denotes the boolean value that formula F assigns to
behavior σ, and that σ satisfies F if and only if σ[[F ]] equals true (i.e., the
system satisfies requirement F ). We define [[◻F ]], [[◊F ]] and [[◯F ]] in terms of
[[F ]] (see equations below). The expression ⟨s0, · · · ⟩ [[F ]] asserts that F is true at
“time” 0 of the behavior, while ⟨sn, · · · ⟩ [[F ]] asserts that F is true at “time” n.

∀n ∈ N ∶ ⟨sn, · · · ⟩ [[◻F ]]⇒∀m ∈ N,m ≥ n, ⟨sm, · · · ⟩ [[F ]] (1)

∀n ∈ N ∶ ⟨sn, · · · ⟩ [[◊F ]]⇒ ∃m ∈ N,m > n, ⟨sm, · · · ⟩ [[F ]] (2)

∀n ∈ N ∶ ⟨sn, · · · ⟩ [[◯F ]]⇒ ⟨sn+1, · · · ⟩ [[F ]] (3)

Equation 1 asserts that F is true in all states of behavior σ. More specifically,
◻F asserts that F is always true. The temporal operator ◊ can be interpreted
as “it is not the case that F is always false” [21]. According to Eq. 2, a behavior
σ satisfies ◊F if and only if F is true at some state of σ. In other words, ◊F
asserts that F is eventually true. According to Eq. 3, ◯F asserts that F is true
at the next state of behavior σ. In contrast to ◊F , ◯F requires that this state
is not an arbitrary state of behavior σ, but rather the direct successor of state
n. In conclusion, LTL can be used to incorporate temporal ordering into an
implication (F ⇒G) in three ways:

1. G occurs simultaneous with F :
◻(F ⇒G), which can be interpreted as “any time F is true, G is also true”.

2. G occurs immediately after F :
◻(F ⇒◯G), which can be interpreted as “G occurs after F terminated”.

3. G occurs at some indefinite point after F :
◻(F ⇒◊G), which can be interpreted as “any time F is true, G is also true
or at a later state”.



How Do Practitioners Interpret Conditionals in Requirements? 89

Formalization Matrix. To distinguish the logical interpretations and their
formalization, we constructed a formalization matrix (see Fig. 1). It defines a
conditional statement of F and G along the two dimensions (Necessity, and
Temporality), each divided on a nominal scale (see Table 1). Each 2-tuple of
characteristics can be mapped to an entry in the formalization matrix. For exam-
ple, the LTL formula ◻(F ⇒◯G) formalizes a conditional statement, in which
F is only sufficient and G occurs in the next state. Conditional statements that
define F as both sufficient and necessary must be formalized with a further LTL
formula: ◻(¬F⇒¬(◊G)). This formula can be literally interpreted as “If F does
not occur, then G does not occur either (not even eventually)”.

Necessity

Temporality

Temporal Ordering Relevant
Temporal Ordering 

Not Relevant
G is caused 

during F is true
G will be caused
in the next state

G will be
caused eventually

F is 
only sufficient

F is
 also necessary

REQ: While the button is in manual movement down position, the window is moved down.

1. The button is not in manual movement down position. What happens consequently?

a) The window is moved down.

b) The window is not moved down.

c) Not defined in the statement.

2. When is the window is moved down?

a) Simultaneous with the button being in manual movement down position.

b) Immediately after the button is in manual movement down position.

c) At some indefinite point after the button is in manual movement down position. 

d) Temporal ordering is irrelevant in the statement.

Formalization Matrix Questionnaire
covers dimension

Key:

III.

I.

IV. V.

II.

VI.

□ (F ⟹ G) □ (F ⟹ ◯G) □ (F ⟹ ◊G)

□ ((¬F ⟹ ¬(◊G))

F ⟹ G

F ⟺ G
∧ (F ⟹ ◊G))∧ (F ⟹ ◯G))∧ (F ⟹ G))

□ ((¬F ⟹ ¬(◊G))□ ((¬F ⟹ ¬(◊G))

logical interpretation by survey participant formula matches logical interpretation

Fig. 1. Mapping between Questionnaire (right) and Formalization Matrix (left).

3 Study Design

To understand how practitioners interpret conditionals in requirements and how
their interpretations should be formalized accordingly, we conducted a survey
following the guidelines by Ciolkowski et al. [5].

3.1 Survey Definition

We aim to understand and (logically) formalize the interpretation of condition-
als in requirements by RE practitioners in software development projects. The
expected outcome of our survey is a better understanding of how practitioners
logically interpret conditional clauses in requirements and which of the elements
in our formalization matrix match their logical interpretations (see Fig. 1). We
derived three research questions (RQ) from our survey goal.

– RQ1: How do practitioners logically interpret conditional clauses in require-
ments?

– RQ2: Which factors influence the logical interpretation of conditional clauses
in requirements?

– RQ3: Which (if any) cue phrases promote (un)ambiguous interpretation?



90 J. Fischbach et al.

RQ1 investigates how conditionals are interpreted by practitioners and how
their interpretations should be formalized accordingly. RQ2 studies whether the
logical interpretation of practitioners depends on certain factors. We focus on:
1) the role of the participant (e.g., writing requirements vs. reading and imple-
menting requirements) and 2) the domain context of the requirement (i.e., does
the requirement describe system behavior from a domain that is familiar to the
participant, or does the requirement originate from an unknown domain?). RQ3
aims at the formulation of conditionals: Conditional clauses can be expressed by
using different cue phrases (e.g., “if”, “when”). We hypothesize that cue phrases
impact the logical interpretation of practitioners. With RQ3, we want to identify
cue phrases for which the interpretations are almost consistent, and cue phrases
which are ambiguous. This insight enables us to derive best practices on writing
conditionals in requirements specifications.

3.2 Survey Design

Target Population and Sampling. The selection of the survey participants
was driven by a purposeful sampling strategy [1] along the following criteria:
a) they elicit, maintain, implement, or verify requirements, and b) they work
in industry and not exclusively in academia. Each author prepared a list of
potential participants using their personal or second-degree contacts (conve-
nience sampling [30]). From this list, the research team jointly selected suit-
able participants based on their adequacy for the study. To increase the sample
size further, we asked each participant for other relevant contacts after the sur-
vey (snowball sampling). Our survey was started by 168 participants of which
104 completed the survey. All figures in this paper refer to the 104 participants
that completed the survey. The majority of participants were non-native English
speakers (94.2%). We received responses mainly from practitioners working in
Germany (94.2%). The remaining 5.8% of survey completions originate from
Croatia, Austria, Japan, Switzerland, United States, and China. The experience
of the participants in RE and RE-related fields is equally distributed: 18.2%
have less than 1 year experience, 26% between 1 and 3 years, 25% between 4
and 10 years, and 30.8% more than 10 years. The participants work for com-
panies operating in 22 different domains. The majority of our participants is
employed in the automotive (21%) and insurance/reinsurance (10.1%) industry.
Over the past three years, our participants have worked in 18 different roles.
Most frequently, they had roles as developers, project managers, requirements
engineers/business analysts, or testers. 77.9% of the survey participants elicit
requirements as part of their job. 59.6% verify whether requirements are met
by a system. 46.2% read requirements and implement them. 45.2% maintain the
quality of requirements.

Study Objects. To conduct the survey and answer the RQs, we used three
data sets (DS), each from a different domain. DS1 contains conditionals from
a requirements document describing the behavior of an automatic door in the
automotive domain. We argue that all participants have an understanding of



How Do Practitioners Interpret Conditionals in Requirements? 91

how an automatic car door is expected to work, so that all participants should
have the required domain knowledge. DS2 contains conditionals from aerospace
systems. We hypothesize that no or only few participants have deeper knowledge
in this domain, making DS2 well suited for an analysis of the impact of domain
knowledge on logical interpretations. DS3 contains abstract conditionals (e.g., If
event A and event B, then event C). Thus, they are free from any domain-induced
interpretation bias. To address RQ 3, we focused on four cue phrases in the con-
ditionals: “if”, “while”, “after”, and “when”. To avoid researcher bias, we created
the datasets extracting conditionals randomly from existing requirement docu-
ments used in practice. The conditionals in DS1 are taken from a requirements
document written by Mercedes-Benz Passenger Car Development.1 The condi-
tionals contained in DS2 originate from three requirements documents published
by NASA and one by ESA.2 The conditionals in DS3 are syntactically identical
to the conditionals in DS1, except that we replace the names of the events with
abstract names. DS1–3 contain four conditionals each, resulting in a total of 12
study objects. Each cue phrase occurs exactly once in each DS.

Questionnaire Design. We chose an online questionnaire as our data collection
instrument to gather quantitative data on our research questions. For the design,
we followed the guidelines of Dillman et al. [8] to reduce common mistakes when
setting up a questionnaire. Since our research goal is of descriptive nature, most
questions are closed-ended. We designed three types of questions (Q) addressing
the two dimensions and prepared a distinct set of responses (R), among which
the participants can choose. Each of these responses can be mapped to a char-
acteristic in the formalization matrix and thus allows us to determine which
characteristic the practitioners interpret as being reflected by a conditional (see
Fig. 1). We build the questionnaire for each study object (e.g., If F then G)
according to a pre-defined template (see Fig. 2). The template is structured as
follows: The first question (Q1) investigates the dimension of Necessity: if event
G cannot occur without event F , then F is not only sufficient, but also nec-
essary for G. We add “nevertheless” as a third response option (see R.1.1 in
Fig. 2) to perform a sanity check on the answers of the respondents. We argue
that interpreting that the consequent should occur although the antecedent does
not occur indicates that the sentence has not been read carefully. The second
question (Q2) covers the temporal ordering of the events. In this context, we
explicitly ask for the three temporal relations eventually, always and next state
described in Sect. 2. Should a participant perceive temporal ordering as irrele-
vant for the interpretation of a certain conditional, we can conclude that PL is
sufficient for its formalization. We ask Q1–2 for each of the 12 study objects,
resulting in a total of 24 questions. To get an overview of the background of our
respondents, we also integrated five demographic questions. In total, our final

1 Thanks to Frank Houdek for sharing the document at NLP4RE’19 [7]: https://
nlp4re.github.io/2019/uploads/demo-spec-automatic-door.pdf.

2 We retrieved these documents from the data set published by Fischbach et al. [13].
We are referring to the documents: REQ-DOC-22, REQ-DOC-26, REQ-DOC-27 and
REQ-DOC-30.

https://nlp4re.github.io/2019/uploads/demo-spec-automatic-door.pdf
https://nlp4re.github.io/2019/uploads/demo-spec-automatic-door.pdf


92 J. Fischbach et al.

questionnaire consists of 29 questions and can be also found in our replication
package.

Fig. 2. Questionnaire template. The note after each answer option (e.g.,→ IV) indicates
the matching characteristic in the formalization matrix (see Fig. 1). If a participant
selects R1.2, for example, she implicitly interprets F as necessary for G. The notes
were not included in the questionnaire.

3.3 Survey Implementation and Execution

We prepared an invitation letter to ask potential participants if they would like
to join our survey. We incorporated all of our 29 questions into the survey tool
Unipark [25]. To avoid bias in the survey data, we allow Unipark to randomize the
order of the non-demographic questions. We opened the survey on Feb 01, 2021
and closed it after 15 days. We approached all eligible contacts from our prepared
list either by e-mail or via Linkedin direct message. We also distributed the
questionnaire via a mailing list in the RE focus group of the German Informatics
Society (GI). As the traffic on our survey website decreased during the first week,
we contacted all candidates again on Feb 08.

3.4 Survey Analysis

To answer the proposed research questions, we analyzed the gathered quantita-
tive data as follows.

Analysis for RQ 1. We use heatmaps to visualize how the respondents logically
interpret the individual study objects (see Fig. 3). Each cell in the heatmaps
corresponds to a single 2-tuple. Based on the heatmaps, we analyse the logical
interpretations of the participants and decide which formalization should be
chosen for each study subject according to the most frequent 2-tuple.

Analysis for RQ 2. We focus on three factors (fn) and investigate their impact
on the logical interpretations of practitioners: (1) the experience in RE (f1:
Experience), (2) how the practitioners interact with requirements (elicit, main-
tain, verify,. . . ) in their job (f2: Interaction), and (3) the domain context of the



How Do Practitioners Interpret Conditionals in Requirements? 93

conditional (f3: Domain). To answer RQ 2, we examine the impact of f1–f3 on
the dimensions described in Sect. 2. In our survey, we collected the dimensions
for each sentence individually, resulting in 12 categorical variables per dimen-
sion (e.g., necs1, necs2, . . .necs12). To get an insight across all sentences, we
aggregated all 12 categorical variables per dimension to one variable (resulting
in Necessity, and Temporality). This allows us to analyze, for example, whether
the experience of the respondents has an impact on understanding an antecedent
only as sufficient for a consequent or as both sufficient and necessary. In other
words, does the perception of Necessity depend on Experience? As shown in
Table 1, all five variables (3× factors and 2× dimensions) are categorical with
a maximum of four levels. The majority is nominally scaled, while Experience
follows an ordinal scale. The variable Domain was not gathered directly from
the responses, but implicitly from our selection of the data sets. We thus add
Domain as variable to our data set, using a categorical scale with three levels:
domain knowledge is present (in case of DS1), domain knowledge is not present
(DS2), and domain knowledge is not necessary (DS3). By introducing this new
variable, we are able to investigate the relationship between domain knowledge
and logical interpretations. We use the chi-squared test of independence (χ2) to
analyze the relationship between all variables. We run the test by using SPSS
and test the following hypotheses (Hn):

for fn ∈ {Experience, Interaction, Domain} do
for v ∈ {Necessity, Temporality} do

H0: The interpretation of v is independent of fn.
H1: The interpretation of v depends on fn.

end for
end for

We set the p-value at 0.05 as the threshold to reject the null hypothesis. To
test our hypotheses, we need to calculate the contingency tables for each com-
bination of fn and dimension. The total number of survey answers per dimen-
sion is 1,248 (104 survey completions * 12 annotated sentences). Since we allow
the respondents to specify multiple ways to interact with requirements (e.g., to
both elicit and implement requirements), our survey data contains a multiple
dichotomy set for Interaction. In other words, we created a separate variable for
each of the selectable interaction ways (four in total for verify, maintain, elicit
and implement). Each variable has two possible values (0 or 1), which indicate
whether or not the response was selected by the participant. Therefore, we define
a multiple response set in SPSS to create the contingency table for Interaction.
The χ2 test allows us to determine if there is enough evidence to conclude an
association between two categorical variables. However, it does not indicate the
strength of the relationship. To measure the association between our variables,
we use Cramer’s Phi φ [6] in case of two nominally scaled variables and Freeman’s
theta Θ [18] in case of one ordinally scaled and one nominally scaled variable.
We calculate φ by using SPSS and Θ by using the R implementation “freeman-
Theta”. We interpret Θ according to the taxonomy of Vargha and Delaney [28].
For the interpretation of φ, we use the taxonomy of Cohen [6].



94 J. Fischbach et al.

Analysis for RQ 3. A conventional way to measure ambiguity is by calculating
the inter-rater agreement (e.g., Fleiss Kappa [16]). However, inter-rater agree-
ment measures must be used carefully, as they have a number of well known
shortcomings [10]. For example, the magnitude of the agreement values is not
meaningful if there is a large gap between the number of annotated units and
the number of involved raters. In our case, we examine only three units per cue
phrase (i.e., “if” is only included in S2, S8 and S10), each of which was annotated
by 104 raters. This discrepancy between the number of units and raters leads to
a very small magnitude of the agreement values and distorts the impression of
agreement. For example, if we calculate Fleiss Kappa regarding the dimension
Temporality of sentences that contain the cue phrase “while”, we obtain a value
of 0.053. According to the taxonomy Landis and Koch [22], this would imply only
a slight agreement between the raters. In fact, however, there is a substantial
agreement among the raters that “while” indicates a simultaneous relationship.
This can be demonstrated by the distribution of survey answers across the dif-
ferent Temporality levels (see Fig. 4). Thus, instead of reporting less meaningful
inter-rater agreement measures, we provide histograms visualizing the distribu-
tion of ratings on the three investigated dimensions. We create the histograms
for each set of study objects containing the same cue phrase. This allows us to
analyze which cue phrase produced the highest/lowest agreement for a certain
dimension.

Table 1. Overview of analyzed variables.

Name Levels Type Scale

Experience – less than 1 year
– 1–3 years
– 4–10 years
– more than 10 years

categorical
(single select)

ordinal

Interaction – elicit
– maintain
– verify
– implement

categorical
(multiple
select)

nominal

Domain – domain knowledge present
– domain knowledge not present
– domain knowledge not necessary

categorical
(single select)

nominal

Necessity – nevertheless
– only sufficient
– also necessary

categorical
(single select)

nominal

Temporality – during
– next state
– eventually
– temporal ordering not relevant

categorical
(single select)

nominal



How Do Practitioners Interpret Conditionals in Requirements? 95

4 Results

RQ 1: How do practitioners logically interpret conditional clauses in
requirements?

We first look at the total number of answers for each dimension across all data
sets. Secondly, we analyze the distribution of ratings based on our constructed
heatmaps (see Fig. 3).

Necessity. Our participants did not have a clear tendency whether an
antecedent is only sufficient or also necessary for the consequent. Among the
total of 1,248 answers, 2.1% correspond to the level “nevertheless”, 46.9% to
“also necessary”, and 51% for “only sufficient”. That means that more than half
of the respondents stated that the conditional does not cover how the system is
expected to work if the antecedent does not occur (i.e., the negative case is not
specified).

Temporality. We found that time plays a major role in the interpretation of
conditionals in requirements. Among the 1,248 answers, only 13% were “tempo-
ral ordering is irrelevant” for the interpretation. This indicates that conditionals
in requirements require temporal logics for a suitable formalization. For some
study objects, the exact temporal relationship between antecedent and conse-
quent was ambiguous. For S3, 34 participants selected “during”, 43 “next state”,
and 19 “eventually”. Similarly, we observed divergent temporal interpretations
for S2, S5, S7, S10, S11, and S12. In contrast, the respondents widely agreed
on the temporal relationship of S1 (67 survey answers for “next state”), S4 (84
survey answers for “during”), S6 (73 survey answers for “during”), S8 (67 survey
answers for “eventually”) and S9 (83 survey answers for “eventually”). Across
all study objects, 29.8% of survey answers were given for the level “during”,
20.1% for “next state” and 37.1% for “eventually”.

Agreement. Our heatmaps illustrate that there are only few study objects for
which more than half of the respondents agreed on a 2-tuple (see Fig. 3). This
trend is evident across all data sets. The presence or absence of domain knowl-
edge does not seem to have an impact on a consistent interpretation. The greatest
agreement was achieved in the case of S1 (48 survey answers for ⟨necessary, next
state⟩), S6 (49 survey answers for ⟨necessary, during⟩), S8 (53 survey answers for
⟨sufficient, eventually⟩) and S9 (56 survey answers for ⟨sufficient, eventually⟩).
However, for the majority of study objects, there was no clear agreement on a
specific 2-tuple. For S5, two 2-tuples were selected equally often, and for S10,
the two most frequent 2-tuples differed by only two survey answers.

Generally Valid Formalization? Mapping the most frequent 2-tuples in the
heatmaps to our constructed formalization matrix reveals that all study objects
can not be formalized in the same way. The most frequent 2-tuples for each study
object yield the following six patterns:



96 J. Fischbach et al.

1. ⟨necessary, next state⟩: S1, S3
2. ⟨necessary, irrelevant⟩: S2
3. ⟨necessary, during⟩: S6, S10, S11
4. ⟨necessary, eventually⟩: (S5)
5. ⟨sufficient, eventually⟩: (S5), S7, S8, S9
6. ⟨sufficient, during⟩: S4, S12

One sees immediately that it is not possible to derive a formalization for con-
ditionals in general. Especially the temporal interpretations differed between the
conditionals and the used cue phrases (see Fig. 4). However, it can be concluded
that, except for S2, the interpretations of all study objects can be represented
by LTL.

Fig. 3. Heatmaps visualizing the interpretations of the participants per study
object [Sn].



How Do Practitioners Interpret Conditionals in Requirements? 97

Table 2. Relationships between factors and interpretation.

Tested Relationship Test Statistics Measures

χ2 df p-value φ Θ

Experience and Necessity 2.384 6 0.881 – –

Experience and Temporality 31.523 9 0.001 – 0.089

Interaction and Necessity 11.005 8 2.201 – –

Interaction and Temporality 36.991 12 < 0.001 0.510 –

Domain and Necessity 22.310 4 < 0.001 0.134 –

Domain and Temporality 138.128 6 < 0.001 0.333 –

RQ 2: Which factors influence the logical interpretation of
conditional clauses in requirements?

This section reports the results of our chi-square tests (see Table 2). In our
contingency tables, no more than 20% of the expected counts are <5. Hence, we
satisfy the assumption of enough observations per category for the chi-square
test [32]. In the following, we explain the relationships where the chi-square test
indicated a dependency between the logical interpretation and a factor.

The logical interpretation regarding Temporality depends on RE
Experience. In the group with less than 1 year of experience, there is a tendency
to perceive the temporal relationship between the events as “during” (36.4%). In
the group of participants with 4–10 years of experience, most of the respondents
rated the temporal relationship as “eventually” (41.3%). The χ2 test reveals that
the distribution of ratings differs between the experience levels. The calculated
Θ value indicates that the strength of the relationship is low.

The logical interpretation regarding Temporality is dependent on how
a practitioner interacts with requirements. Our contingency table reveals
that the distribution of ratings differs between the interaction levels. Practition-
ers who implement requirements fluctuate mainly between “during” and “even-
tually”, while they rarely selected the other two Temporality levels. A different
pattern emerges for practitioners who maintain and verify requirements. Across
all study objects, they choose the levels “during”, “next state” and “eventually”
equally often. A χ2 test indicates a dependency between both variables. The
calculated φ value indicates that the strength of the relationship is high.

The logical interpretation regarding Necessity is dependent on domain
knowledge. The disagreement about whether an antecedent is only sufficient
or also necessary holds regardless of domain knowledge. However, the trend
differs between the data sets with respect to the Necessity levels. In the case of
DS1 (domain knowledge assumed), more answers were given for “also necessary”
(54.3%) than for “only sufficient” (45%). In contrast, more ratings were given for
“only sufficient” in the case of DS2 (53.1%) and DS3 (55%). The slight difference



98 J. Fischbach et al.

in the distribution of the ratings regarding Necessity is supported by the χ2 test.
However, the strength of the relationships is low.

The logical interpretation regarding Temporality is dependent on
domain knowledge. Our contingency table shows that the distribution of rat-
ings regarding Temporality differs between the data sets. In the case of DS1,
ratings were mainly given for “during” (32.9%) and “next state” (31.3%). In the
case of the unknown domain (DS2), ratings were mainly assigned to “eventually”
(46.2%), while only 20.7% were given to “next state” and 22.4% to “during”. In
DS3, where no domain knowledge is necessary for the understanding of the con-
ditionals, most ratings were given to “during” (34.1%) and “eventually” (47.1%).
A χ2 test shows that there is a statistically significant dependency between both
variables. According to the calculated φ value, the strength of the relationship
is medium.

Fig. 4. Distribution of survey answers on the different variable levels for each set of
study objects with the same cue phrase (e.g., S2, S8 and S10 include “if”).



How Do Practitioners Interpret Conditionals in Requirements? 99

RQ 3: Which (if any) cue phrases promote (un)ambiguous
interpretation?

The histograms in Fig. 4 show that the logical interpretation regarding Tem-
porality depends on the cue phrase used to express a conditional. For study
objects containing “while” (S4, S6 and S12), the respondents largely agreed
that the consequent occurs simultaneously with the antecedent. In contrast,
almost no respondent associated simultaneous events in the study objects with
the cue phrase “after”. Instead, the respondents vacillated between the tem-
poral levels “next state” and “eventually”. The largest disagreement, though,
was found in the interpretations of the conditionals “if” or “when”. Especially
in the case of “when”, there was no clear agreement across S3, S5 and S11 on
whether antecedent and consequent are in a “during”, “next state” or “even-
tually” temporal relationship. Regarding Necessity, we observe that the prac-
titioners, irrespective of the used cue phrase, disagree whether the antecedent
is only sufficient or also necessary for the consequent. We found one outlier in
our histograms (S8), where an 80% agreement for the level “sufficient” could be
achieved. For the remaining study objects, however, there is a balanced number
of survey answers for both levels.

5 Threats to Validity

Internal Validity. The respondents may have misunderstood the questions
resulting in poor quality or invalid answers. To minimize this threat, we fol-
lowed the guidelines by Dillmann [8] in the creation of the questionnaire. In
addition, we conducted a pilot phase to validate the questionnaire internally
through discussions in the research team and externally through pilot survey
runs. Selection bias is another threat. Although we have started with personal
contacts to find participants, the sampling process has been extended by indi-
rect contacts. As a result, selection bias has been reduced. Another possible
threat is the selection of dimensions by which we formalize conditionals. The
two dimensions, Temporality and Necessity, have been selected after extensive
literature research and discussion among the authors. However, the complete-
ness of dimensions can neither be proven nor rebutted. One threat that we were
unable to control was the distribution of native speakers. Although one could
argue that non-native speakers reading and writing English requirements are the
standard case for most projects, and therefore, their interpretation is meaningful
nevertheless, future research should validate the findings also with a dedicated
group of native speakers. Another threat arises from our assumption that each
participant has the necessary domain knowledge in case of DS1 but lacks it in
case of DS2. To mitigate this threat, we analyzed the feedback received during
our pilot study. In the case of DS1, almost no questions were raised, whereas in
the case of DS2, many pilot users lacked knowledge about the described system
behavior. This indicates that the respondents may have the necessary domain
knowledge to interpret the conditionals described in DS1. Furthermore, the con-
ditionals in DS1 are derived from the data set used in the tool competition at



100 J. Fischbach et al.

the NLP4RE workshop, which is claimed to be interpretable without specific
domain knowledge.

External Validity. As in every survey, the limited sample size and sampling
strategy do not provide the statistical basis to generalize the results of the study.
However, we tried to involve RE practitioners working in different roles at com-
panies from different domains to obtain a comprehensive picture of how condi-
tionals are logically interpreted. We argue that our survey sample of 104 RE
practitioners, who work in 22 different domains and of which a third have more
than 10 years of experience in RE is sufficient for a first insight into the logical
interpretation of conditionals.

Construct Validity. The questionnaire might not sufficiently cover our research
questions limiting the availability of data that provides suitable answers to
the research questions. To minimize this threat, we constructed a formaliza-
tion matrix and designed our questionnaire according to the dimensions of the
matrix to establish a distinct mapping between interpretation and suitable for-
malization.

6 Concluding Discussion and Outlook

Conditionals are common to specify desired system behavior. In this paper, we
show that conditionals are interpreted ambiguously by RE practitioners. In par-
ticular, there is disagreement (1) about whether an antecedent is only sufficient
or also necessary for a consequent, and (2) about the temporal occurrence of
antecedent and consequent when different cue phrases (such as “when” or “if”)
are used. Thus, a generic formalization of conditionals will inevitably fail at
least some practitioner’s interpretation. We see two immediate implications in
practice:

(1) Implications for automatic methods. Especially (if not limited) for
automated test case generation, it is vital to understand which behavior is desired
if the antecedent does not occur. The evidence presented in this paper refutes
the prevailing assumption (cf. [13,23]) that antecedents can always be treated
as necessary conditions. Hence, we propose that future methods should display
the automatically generated positive and negative test cases to practitioners and
explicitly verify: “Is the negative case of your conditional also valid?”. This will
foster the discussion within project teams about the expected system behavior
and enables to resolve misunderstandings at an early stage.
(2) Implications for requirements authors. It should be incorporated into
RE writing guidelines that it does matter which cue phrase is used for the formu-
lation of a conditional. “While” is interpreted consistently, but “if” and “when”
cause misunderstandings about the temporal interpretation of antecedent and
consequent. This poses a problem especially in the implementation of require-
ments and eventually leads to discrepancies between actual and expected system
behavior. Project teams should therefore agree early on how they want to inter-
pret the different cue phrases to avoid ambiguities. Additionally, our findings



How Do Practitioners Interpret Conditionals in Requirements? 101

provide empirical evidence for the claim by Berry et al. [3] and Rosadini et al. [26]
that requirements authors should always specify the negative case (e.g., by using
an else-statement) to prevent confusion about the necessity of antecedents.

Our observations open an avenue for further investigations. Among them,
we believe that it is interesting to explore how other cue phrases (e.g. once,
because, as soon as) are interpreted logically. It would furthermore be interesting
to compare our results with the logical interpretation of requirements written in
other languages.

References

1. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review
and guidelines (2020)

2. Berry, D.M., Kamsties, E.: The syntactically dangerous all and plural in specifica-
tions. IEEE Softw. 22(1), 55–57 (2005)

3. Berry, D.M., Krieger, M.M.: From contract drafting to software specification: Lin-
guistic sources of ambiguity - a handbook version 1.0 (2000)

4. de Bruijn, F., Dekkers, H.L.: Ambiguity in natural language software requirements:
a case study. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp.
233–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-
8 21

5. Ciolkowski, M., Laitenberger, O., Vegas, S., Biffl, S.: Practical experiences in the
design and conduct of surveys in empirical software engineering. In: Conradi, R.,
Wang, A.I. (eds.) Empirical Methods and Studies in Software Engineering. LNCS,
vol. 2765, pp. 104–128. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45143-3 7

6. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Academic Press,
Cambridge (1988)

7. Dalpiaz, F., Ferrari, A., Franch, X., Palomares, C.: NLP tool showcase at NLP4RE.
In: REFSQ (2019)

8. Dillman, D.A., Smyth, J.D., Christian, L.M.: Internet, Phone, Mail, and Mixed-
Mode Surveys: The Tailored Design Method (2014)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE (1999)

10. Feinstein, A.R., Cicchetti, D.V.: High agreement but low Kappa: I. The problems
of two paradoxes. J. Clin. Epidemiol. 43, 543–549 (1990)

11. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. J. Syst. Softw. 123, 190–213 (2017)

12. Femmer, H., Kučera, J., Vetrò, A.: On the impact of passive voice requirements
on domain modelling. In: ESEM (2014)

13. Fischbach, J., Hauptmann, B., Konwitschny, L., Spies, D., Vogelsang, A.: Towards
causality extraction from requirements. In: RE (2020)

14. Fischbach, J., Vogelsang, A., Spies, D., Wehrle, A., Junker, M., Freudenstein, D.:
SPECMATE: automated creation of test cases from acceptance criteria. In: ICST
(2020)

15. Fischbach, J., et al.: Automatic detection of causality in requirement artifacts:
the CiRA approach. In: Dalpiaz, F., Spoletini, P. (eds.) REFSQ 2021. LNCS,
vol. 12685, pp. 19–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
73128-1 2

https://doi.org/10.1007/978-3-642-14192-8_21
https://doi.org/10.1007/978-3-642-14192-8_21
https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1007/978-3-030-73128-1_2
https://doi.org/10.1007/978-3-030-73128-1_2


102 J. Fischbach et al.

16. Fleiss, J.L., Levin, B., Paik, M.C.: The Measurement of Interrater Agreement
(2003)

17. Frattini, J., Junker, M., Unterkalmsteiner, M., Mendez, D.: Automatic extraction
of cause-effect-relations from requirements artifacts. In: ASE (2020)

18. Freeman, L.C.: Elementary Applied Statistics : For Students in Behavioral Science
(1965)

19. Gervasi, V., Zowghi, D.: On the role of ambiguity in RE. In: Wieringa, R., Persson,
A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 248–254. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14192-8 22

20. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: Automati-
cally extracting requirements specifications from natural language. arXiv preprint
arXiv:1403.3142 (2014)

21. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16,
872–923 (1994)

22. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33, 159–174 (1977)

23. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements
syntax (ears). In: RE (2009)

24. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural
language requirements. In: ISSRE (2009)

25. QuestBack AG: Unipark/enterprise feedback suite. https://www.unipark.com/
26. Rosadini, B., et al.: Using NLP to detect requirements defects: an industrial expe-

rience in the railway domain. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017.
LNCS, vol. 10153, pp. 344–360. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54045-0 24

27. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

28. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stat. 25(2),
101–132 (2000)

29. Winter, K., Femmer, H., Vogelsang, A.: How do quantifiers affect the quality of
requirements? In: REFSQ (2020)

30. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering (2012)

31. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: DATE (2015)

32. Yates, D., Moore, D., McCabe, G.: The Practice of Statistics. W. H Freeman, New
York (1999)

https://doi.org/10.1007/978-3-642-14192-8_22
http://arxiv.org/abs/1403.3142
https://www.unipark.com/
https://doi.org/10.1007/978-3-319-54045-0_24
https://doi.org/10.1007/978-3-319-54045-0_24
https://doi.org/10.1007/978-3-030-44429-7_2


Situation- and Domain-Specific
Composition and Enactment of Business

Model Development Methods

Sebastian Gottschalk(B), Enes Yigitbas, Alexander Nowosad,
and Gregor Engels

Software Innovation Lab, Paderborn University, Paderborn, Germany
{sebastian.gottschalk,enes.yigitbas,gregor.engels}@uni-paderborn.de,

anowosad@mail.uni-paderborn.de

Abstract. Developing effective business models is a complex process
for a company where several tasks (e.g., conduct customer interviews)
need to be accomplished, and decisions (e.g., advertisement as a revenue
stream) must be made. Here, domain experts can guide the choices of
tasks and decisions with their knowledge. Nevertheless, this knowledge
needs to match the situation of the company (e.g., financial resources)
and the application domain of the product/service (e.g., mobile app) to
reduce the risk of developing ineffective business models with low market
penetration. This is not covered by one-size-fits-all development methods
without tailoring before the enaction. Therefore, we conduct a design sci-
ence study to create a situation-specific development approach for busi-
ness models. Based on situational method engineering and our previous
work in storing knowledge of methods and models in distinct reposito-
ries, this paper shows the situation-specific composition and enaction of
business model development methods. First, the method engineer com-
poses the development method out of both repositories based on the
situational context. Second, the business developer enacts the method
and develops the business model. We implement the approach in a tool
and evaluate it with a industrial case study on mobile apps.

Keywords: Business model development · Situational Method
Engineering · Lean development · Kanban boards · Canvas models

1 Introduction

The development of effective business models is an important but also challeng-
ing task for companies to stay competitive. One reason for that is that customers
want more and more integrated solutions for their perceived needs instead of

This work was partially supported by the German Research Foundation (DFG) within
the CRC “On-The-Fly Computing” (CRC 901, Project Number: 160364472SFB901)
and the German Federal Ministry of Education and Research (BMBF) through Soft-
ware Campus grant (Project Number: 01IS17046).

c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 103–118, 2021.
https://doi.org/10.1007/978-3-030-91452-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_7


104 S. Gottschalk et al.

single products [31]. Therefore, the business model can be even more important
than the latest technology of the product [8]. Here, a study of CB Insights [7] in
2019 analyzed 101 bankrupt startups and concluded that 42% of them failed due
to a missing market need. But also for established companies, the GE Innovation
Barometer [14] in 2018 stated that 64% of the over 2000 business executives have
the problem of developing effective business models for new ideas.

The development of business models is a complex and creative activity that
consists of different phases (e.g., discover, develop, etc.) where multiple tasks
(e.g., conduct customer interviews, analyze competitors, etc.) need to be accom-
plished [13]. Inside those tasks, communication and collaboration between dif-
ferent stakeholders (e.g., business developer, customer, etc.) often occur [10]. To
support business model development, companies often rely on light visualization
tools like kanban boards [18] for structuring the development process or canvas
models [24] for structuring the information in different steps of the process. Due
to the complexity of the process, there are several options for each process step,
and as a consequence, a process with the wrong activities can lower the quality
of the business model. Here, the guidance of a domain expert can support the
development so that every stakeholder has the same needed understanding of
the used methods on the kanban board and knowledge in the models [27]. In
literature, different domain experts propose various methods to develop such
business models in the form of development processes (e.g., [23]) and method
repositories (e.g., [4]). Moreover, these experts provide knowledge in the form of
taxonomies of possible (e.g., [19]) and patterns of successful (e.g., [12]) business
models. However, the method should match the company’s current situation
(e.g., financial resources, target market size), and the information in the canvas
models need to match the application domain (e.g., mobile app, social network)
of the product/service of the company [28]. This, in turn, raises the chance of
developing an effective business model for the company. Otherwise, the devel-
opment of an ineffective business model can lead to poor market penetration of
the product/service or even a company bankruptcy [26]. Although various busi-
ness model development approaches have been proposed, they do not cover the
step of tailoring the method to the current situation [17]. Tailoring by compos-
ing the method out of different method parts can include the situational context
instead of a fixed one-size-fits-all development method for all contexts. Therefore
our research question (RQ) is: How to enable the situation-specific composition
and enactment of business model development methods?

To answer this question, we conduct a design science research (DSR) study
[21] to develop an approach and a development tool. In our approach that sup-
ports non-experts in the development, the method engineer creates a method
repository and models repository from the knowledge of different domain experts.
We have already covered this in the past [16,17]. This paper aims to show the
composition and enactment of the business model development method out of
these repositories. While the method engineer should have high modeling capa-
bilities based on Business Process Model and Notation (BPMN) for the method
and feature models for the canvas during the composition, the business developer
can stay with his lightweight structuring techniques of kanban boards and can-



Situation-Specific Development of Business Models 105

vas models during the enaction. In comparison to existing methods for business
model development, our approach focuses on the importance of the method engi-
neer before the development. We implement the approach in an open-source tool
and evaluate it based on a industrial case study of developing the business model
for a local event platform. Our scientific contribution is the applied concept of
situational method engineering to business model development while companies
in practice are supported with a tool to develop their business models.

Concerning DSR, we structure the rest of the paper as follows: Sect. 2 covers
the research background regarding business model development and situational
method engineering. Section 3 provides insights into our DSR process. Section 4
shows the requirements of our solution divided into the provision of the method
and knowledge repositories, the composition of the development method, and
the enaction of the development method. Based on them, a concept is presented
in Sect. 5 and implemented in Sect. 6. Section 7 evaluates the approach with a
case study on developing a business model for a local event platform. Finally,
Sect. 8 concludes the paper and gives an outlook on the next DSR cycle.

2 Background

2.1 Business Model Development

Business models can be defined as the rationale of how the organization cre-
ates, delivers, and captures value [24]. The development of business models is
a complex task that often requires collaboration between different internal and
external stakeholders [10]. To structure the complex process, some approaches
like the BMI Magic Triangle [11] or the Cambridge Business Model Innova-
tion Process [13] propose different phases (i.e., initiation, ideation, integration,
implementation for [11]). Moreover, it is a crucial collaboration aspect to con-
duct experiments with the customers regularly to unfold their hidden needs [23].
Inside the different process activities, often light-weight visualization tools in
the form of canvas models are used. Here, for example, the Value Proposition
Canvas [25] summarizes the expected value proposition for a customer group,
and the Business Model Canvas [24] visualizes the most important aspects of
a business model. Moreover, the process can be supported with software-based
Business model Development Tools (BMDTs). While the tools in practice mainly
provide design support for business models based on the Business Model Canvas
[30], there are also first approaches in research that integrate the knowledge of
methods and models. For the methods, some approaches [9,32] propose ideas for
BMDTs that provide software support for different phases (i.e., analysis, design,
implementation, and management in [9]). For the models, some approaches pro-
vide the usage of domain-specific knowledge [5] or the usage of patterns [22] for
the development of the models. However, none of these tools deeply integrate
both knowledge sources and method composition prior to the enaction.

2.2 Situational Method Engineering

Situational Method Engineering (SME), with its origin in software development,
aims to create a development method based on the situation of a specific project



106 S. Gottschalk et al.

[20]. For that, SME has the role of a method engineer who analyzes various
methods and stores them in a method repository. After identifying the context
of the project, the engineer composes a situation-specific development method
out of the method base. This development method, in turn, is then enacted
by the project manager to run his project. To structure the method base, a
method can be divided into method fragments that are reusable atomic blocks
that have a process (called work unit), a product (called work product), or a
producer focus [6]. These method fragments are combined to method compo-
nents that transform inputs of work products into outputs of work products
and are tailored into methods. Besides their origin in software development,
some approaches also cover the business aspects of the projects. Here, some
approaches [3,15] cover business aspects as situational factors (i.e., customer,
market characteristics, product characteristics, and stakeholder involvement in
[3]) or use canvas models as work products (i.e., IoT Canvas in [15]). However,
none of these approaches incorporates the whole development cycle of business
models or uses an additional repository for the knowledge of the models.

3 Research Approach

This study uses design science research (DSR) to build an approach for the
situation-specific development of business models. We use DSR because it focuses
on the creation and incremental improvement of innovative artifacts based on
existing theories. As method, we choose the DSR cycle of Kuchler and Vaishnavi
[21] and based our research on the theories of opportunity creation [1] and bound-
ary objects [29]. The opportunity creation theory states that businesses are co-
created under high uncertainty [33]. Here, the development is an entrepreneurial
process where companies create a business model based on their assumptions
that need to be validated with the customers. Therefore, the process needs both
parts of exploitation and exploration. The bounded object theory states the
development is a heterogeneous task that requires the collaboration of different
stakeholders with different knowledge [27]. Therefore, a common understanding
between all stakeholders needs to be achieved. The process is shown in Fig. 1 and
consists of two cycles with the five steps of taking Awareness of [the] Problem,
making Suggestion for the solution, the Development of a corresponding artifact,
the Evaluation of our solution, and the drawing of a Conclusion.

Based on both applied theories, in the First Cycle, we reviewed literature
on business model development. Moreover, we conducted a systematic literature
review on decision support systems for business model development. Based on
that, we created conceptional parts for the situation-specific development of
business models. For that, we used feature models to store the business model
information of various business models. Out of this, a concrete business model
for a single business model can be derived as an instance of the feature model.
Moreover, we created a process to create and adapt those business models based
on the conduction of experiments. Here, we evaluate the approach in a feasibility
study with a tool implementation and the application of a usage scenario.



Situation-Specific Development of Business Models 107

Fig. 1. Design science research process based on Kuechler and Vaishnavi [21]

In the Second Cycle, we took the lessons learned from the last cycle and the
tool review to create an integrated concept of the approach. Here, we worked on
the extensibility of the approach by concerning knowledge about methods and
models from different domain experts. For that, we have used SME to derive a
method repository with various methods to develop and validate business models
for mobile applications [17]. Moreover, we have worked on an approach to con-
solidate the knowledge about business models from different real-world domain
experts [16]. Based on both separate parts, we developed an integrated approach
consisting of methods and models for the situation-specific development of busi-
ness models. After implementing the tool and evaluating a case study on mobile
apps, we concluded with an evaluated concept and a software tool.

4 Solution Requirements

At the beginning of our DSR study, we reviewed the literature regarding business
model development and analyzed tools on decision support systems for business
model development to get awareness of the challenges of software-based business
model development. Out of this, we derived initial generic requirements that we
refine to the current solution requirements. By considering the two stages of
construction and development of a method from situational method engineering
[20] and splitting up the provision from the method base from the construction
of the method, we structure those requirements according to the topics of (R.1)
Knowledge Provision of Methods and Models, (R.2) the Composition of the
Development Method, and (R.3) the Enactment of the Development Method.

The requirement (R.1) Knowledge Provision of Methods and Models states
that the solution should provide a variety of expert knowledge from which
situation-specific development methods could be constructed. The usefulness of
the approach profoundly relies on the usage of an appropriate method and corre-
sponding models. Therefore, the solution needs a (R.1.1) Storing of Expert Infor-
mation for different methods and models. Moreover, the approach depends on the



108 S. Gottschalk et al.

situation of the company and the application domain of the product/service. As
a consequence, the solution needs a (R.1.2) Characterisation of Context both
for the company and the product/service. Visualization can help to simplify
the work with the knowledge. Therefore, a (R.1.3) Visual Representation of
Knowledge both for the methods and models is needed. Last, business model
development is a continuous process where different stakeholders are involved
in different process activities. Therefore, the solution needs to cover an (R.1.4)
Understandability of Knowledge around all stakeholders and an (R.1.5) Exten-
sibility of Knowledge during the process.

The requirement (R.2) Composition of Development Method states that the
development method should be composed out of the expert knowledge from the
methods and models by taking the context of the company into account. The
approach highly relies on the situational factors of the company and the appli-
cation domain of the product. Therefore, the solution should cover the explicit
(R.2.1) Identification of Context before the composition of the development
method. The composition of the method could be based on a huge amount of
knowledge in the form of methods and models. As a consequence, the solution
should provide (R.2.2) Assistance in Method Composition based on the con-
text. The development of business models is a process under high uncertainty
so that not all choices can be covered in advance. Therefore, the solution should
allow a (R.2.3) Generalization of Method Composition to provide different busi-
ness model development processes simultaneously and an (R.2.4) Adaptation of
Method Composition that provides a runtime adaptation to a changing context.

The requirement (R.3) Enactment of Development Method states the devel-
opment method should be enacted so that business models could be developed
on top of the knowledge. The development of business models is a complex task
that should be supported with a software tool. Therefore, the solution should
provide (R.3.1) Executebility of Method Enaction to reduce the complexity. Busi-
ness model development is a task with high uncertainties so that experts can
not cover all knowledge in advance. As a consequence, the solution should cover
(R.3.2) Storing of Company Knowledge so that the company can add internal
methods and models. Moreover, the process is a complex task where different
stakeholders are involved in different activities. Therefore, the solution should
provide (R.3.3) Traceability of Method Enaction to reason all decisions in the
past together with (R.3.4) Stakeholder Involvement in Method Enaction to allow
the collaboration of different stakeholders in the activities.

5 Solution Concept

To address the solution requirements, we build our integrated approach for the
situation-specific development of business models. An overview of the approach
is shown in Fig. 2 which consists of the five roles of the Meta-Method Engineer,
the Method Engineer, the Domain Expert, the Business Developer, and other
Stakeholders together with the three stages of (1) Knowledge Provision of Meth-
ods and Models, (2) Composition of Development Method and (3) Enactment of



Situation-Specific Development of Business Models 109

Fig. 2. Overview of the situation-specific business model development approach

Development Method. While we shortly describe each stage in the following, the
respective subsections provide a more detailed explanation.

In the (1) Provision of Methods and Knowledge Repository, we provide gen-
eral knowledge about methods to use and models to rely on within the business
model development. For that, the Meta-Method Engineer needs first to create
meta-models of how the methods and models should be structured (1.1). After
that, different Domain Experts explain their knowledge about methods and mod-
els to the Method Engineer (1.2). The Method Engineer, in turn, formalizes the
expert knowledge according to the meta-models to make them accessible during
the composition of the method (1.3). In the (2) Composition of Development
Method, the development method is composed out of both repositories. Here,
the Business Developer explains the current context in which the business model
should be developed to the Method Engineer (2.1). The Method Engineer for-
malizes this context as the situation of the method and the domain of the model.
The engineer composes a situation-specific development method (2.2) consist-
ing of the method itself as BPMN and the canvas knowledge models as feature
models. In the (3) Enactment of Development Method, the composed method is
enacted to develop the business model. Here, the Business Developer enacts the
composed method (3.1) consisting of the development process as kanban board
and the artifacts as canvas models. During this enaction, the development can
be supported by other Stakeholders (3.2) (e.g., Designer).



110 S. Gottschalk et al.

5.1 Knowledge Provision of Methods and Models

The first stage, as shown in Fig. 3, aims to store all information of methods to use
and knowledge to rely on from multiple Domain Experts in a structured format
so that they can be used as resources during the development of business models.
For that, the Meta-Method Engineer needs to create a Method Meta Model and
a Canvas Model Meta Model. Here, we have already worked on modeling the
methods [17] and the models [16] together with exemplary repositories in the
past. Out of both repositories, we are now able to create the Method Repository
and the Canvas Model Repository. Here, the Method Engineer formalizes both
information from different Domain Experts.

Fig. 3. Exemplary knowledge provision of methods and models

For that, we have developed repositories for the methods and the mod-
els (R.1.1). Inside the Method Repository, we adapt the concept of situational
method engineering [20] and have the Method Elements, the Method Building
Blocks, and the Method Patterns. Here, Method Elements are atomic parts of
a method that can be divided into the possible situational factors, different
types of methods, performed tasks, involved stakeholders, created artifacts, and
used tools. These elements are combined to Method Building Blocks, where each
block can have different situational factors, a task, different types, the involved
stakeholders, and tools that can transform input artifacts into output artifacts.
These building blocks are structured according to Method Patterns, which are
BPMN Process Parts with situational factors when they should be used (R.1.2),
and placeholders in which specific types of building blocks could be inserted.
Inside the Canvas Model Repository, we adapt the concept of feature models [2]



Situation-Specific Development of Business Models 111

Fig. 4. Exemplary composition and enactment of development method

and have Canvas Elements, the Canvas Building Blocks, and the Canvas Models.
Here, Canvas Elements are single chunks of knowledge that can be presented in a
canvas model. Those elements are structured into a hierarchy within the Canvas
Building Blocks. For the structuring, we use standard feature model relationships
(e.g., requires, excludes) together with own relationships to save positive (e.g.,
supports) and negative (e.g., hurts) relationships between the elements. More-
over, we keep good practice patterns, and exemplary companies as instances of
the building block together with an application domain of the block(R.1.2). Last,
we provide Canvas Models (e.g., Value Proposition Canvas) as representations
to visualize the building blocks. We ensure the understandability with descrip-
tions for all important knowledge (R.1.3) and extensibility with the support for
different experts and linking all information to specific experts (R.1.4).

5.2 Composition of Development Method

The second stage, as shown in Fig. 4, aims to use the context of the company to
compose a business model development method. For that, the Business Devel-
oper describes the current context of the situation of the company and the
application domain of the product/service to the Method Engineer. The Method
Engineer formalizes this as situational factors of the Method Repository and a
list of the domains from the Canvas Model Repository to compose the method.

The Method Engineer starts the composition of a BPMN process by choosing
a Method Pattern from the Method Repository that is recommended to him by a
matching of identified situational factors and the factors of the method (R.2.1).



112 S. Gottschalk et al.

After that, he can iteratively fill the placeholders in the patterns with Method
Building Blocks or other patterns based on their type and recommendations by
the factors. Moreover, he can check the conformance of the development process
by finding wrong-filled placeholders or flows with input artifacts that have not
been defined as outputs before. After that, the Method Engineer needs to connect
the models from the Canvas Model Repository to the composing method. For
that, he gets notified about Method Building Blocks that use Canvas Models as
an output artifact. Here, he can select specific parts of Canvas Building Blocks as
Canvas Knowledge Models for each canvas that is recommended to him based on
matching the identified domain and the application domain of the building block.
If he selected multiple building blocks for a single canvas, he needs to consolidate
the knowledge as proposed by us in [16] (R.2.2). Moreover, at any time, he can
create multiple development methods (R.2.3) and change the context factors
and receives recommendations on how the method should be adapted (R.2.4).

5.3 Enactment of Development Method

The third stage, as shown in Fig. 4, aims to enact the composed method to
allow the collaboration between different stakeholders during the development
steps. For that, the Business Developer enacts the development methods in a
lightweight process engine to receive an executable process.

The process engine is based on a Kanban Board where the development steps
out of the composed method are grouped into todo, in progress, and done steps
(see Fig. 4) (R.3.1). In every activity in progress, the Business Developer can
communicate with all other Stakeholders that are mentioned in the definition
of the corresponding Method Building Block. Moreover, if the building block
is linked to a Canvas Model, the different stakeholders can collaborate on the
specific canvas (R.3.4). Here, the knowledge from the connected building blocks
can be used as recommendations. The whole process with every step is traceable
for all stakeholders so that every decision that has been made can be reasoned
over time (R.3.3). Moreover, the Business Developer can add his own method
steps (e.g., a special type of interview) and canvas elements (e.g., a special type of
advertisement) during the enaction to support flexible decision making (R.3.2).
Out of this process, the business model is developed over time.

6 Solution Implementation

Based on the solution concept, we provide an implementation of the so-called Sit-
uational Business Model Developer. Our tool supports all three proposed stages,
is released as open-source1 and can also be directly used in the web browser2.
For that, the tool uses Angular to structure the web app, PouchDB to save
all generated data in the web browser’s storage, and BPMN.io to support the
method representation. In the following, we explain the technical architecture
and show the tool support.
1 https://github.com/SebastianGTTS/situational-business-model-developer.
2 http://sebastiangtts.github.io/situational-business-model-developer/.

https://github.com/SebastianGTTS/situational-business-model-developer
http://sebastiangtts.github.io/situational-business-model-developer/


Situation-Specific Development of Business Models 113

Fig. 5. Architecture of the Situational Business Model Developer

6.1 Architecture

The high-level architecture of our tool can be seen in Fig. 5. It consists of the
Database of PouchDB to store the methods, models, and development methods
together with the Method Modeler, the Canvas Modeler, and the Development
Method Engine. The Method Modeler receives the Method Knowledge and stores
it in the Method Repository by using the Method Editor and the BPMN.io Frame-
work. The Canvas Modeler receives the Model Knowledge and stores it in the
Canvas Repository by using the Canvas Editor and custom canvas boards. The
Development Method Engine consists of the Development Method Composer and
the Development Method Enactor. The Development Method Composer takes
Context and composes a development method with the Method Composer, using
BPMN structures from the Method Modeler, and the Model Composer, using
consolidation and conflict detection algorithms from the Canvas Modeler. The
Development Method Enactor takes Information about the development and
enacts the method by using kanban boards in the Method Enactor and canvas
models in the Model Enactor to output a Business Model.

6.2 Tool-Support

The screenshots of our tool can be seen in Fig. 6. While we have already cov-
ered the provision of knowledge of methods and models in previous work, we
focus here on the composition and enactment of development methods. First,
we have the composition of the development method, which is done by choosing
the situational factors and modeling the BPMN process. Second, we have the
linkage to the knowledge models, which is done by choosing the domain-related
factors and merge the knowledge models. Third, we have the enactment of the
development method based on the kanban board. Fourth, we have the usage of
the linked models based on canvas model boards.



114 S. Gottschalk et al.

Fig. 6. Screenshots of the Situational Business Model Developer

7 Evaluation on Local Event Platform

To evaluate our approach, we conducted an industrial case study by developing
a business model for a local event platform. For that, we explain our evaluation
setting, provide execution of the study and analyze the results.

7.1 Evaluation Setting

Our aim is to investigate the integrated concept of situation-specific business
model development to answer our stated research question. Here, we follow an
explorative purpose to gather new insights for our third DSR cycle. For that, we
provide the holistic case study of a single unit to develop a business model for
OWL Live. The platform is created as part of an ongoing research project3 and
acts as a two-sided platform between event providers and event visitors. Here, the
owner wants to use new data mining techniques to aggregate events from different
providers together with natural language processing to provide an enhanced
recommendation system to the visitors. To gather the corresponding data, we
combine the direct method of customer interviews with indirect methods of a
grey literature review together with an analysis of existing information.

7.2 Execution of the Study

During the conduction, we structure our procedure according to the three stages
of Knowledge Provision of Methods and Models, the Composition of the Devel-
opment Method, and the Enactment of the Development Method.
3 Project Website: https://www.sicp.de/en/projekte/owlkultur-plattform.

https://www.sicp.de/en/projekte/owlkultur-plattform


Situation-Specific Development of Business Models 115

The Knowledge Provision of Methods and Models has been made in previ-
ous research. Here, we have already created a method repository with various
method elements, method building blocks, and method patterns based on a grey
literature review on developing business models for mobile applications [17].
Moreover, for the canvas repository, we created existing canvas models of the
Value Proposition Canvas (VPC) [25] and the Business Model Canvas (BMC)
[24] together with a custom Feature Set Canvas (FSC) for storing possible fea-
tures. While the knowledge of the BMC for the domain of mobile application,
digital platforms, content aggregations, and social networks have been already
created in [16], we created corresponding knowledge for the VPC and FSC.

In the Composition of the Development Method, we interviewed the project
manager to gather the information about the current state of the platform (e.g.,
target customer), the situation of the project (e.g., margetSize:mass), and the
application domain of the app (e.g., content aggregation). This, in turn, allowed
us to tailor a customized development method based on the phases of discovery,
analysis, design, develop and validation of a method pattern in [17]. Out of the
situational factors, we suggested identifying the target audience in the discovery
phase, followed by a market problem observation to understand current customer
pains and a store trend analysis to find trending features. Here, especially trend
analysis is often missed by other approaches. In the end, the results for the event
provider should be validated with customer interviews and the event visitors
with a social media survey. In the analysis, we suggested running a market
potential analysis together with a competitor analysis inside and outside the app
stores. In the design, the value proposition, the business model, and the feature
set need to be developed. Here, we linked the underlying canvas model to the
specific canvas knowledge models inside our model repository and consolidated
the specific knowledge based on the given application domain. Moreover, based
on the models, a competitive advantage analysis and prioritization of the features
should be done. In the development phase, we suggested the development of
a beta-version in front of the product development. During development, the
interest of the customers could be enhanced by using inbound marketing. Last,
in the validation, we suggested the ongoing interview of both customer groups.

During the Enactment of the Development Method, the first target audiences
of event providers and event visitors were identified and refined (e.g., culture
actors for event providers, early adopters for event visitors) based on the prior
feasibility study and the interview. For the discovery, the feasibility study also
covered the observation of the market problem. At the same time, in the store
trend analysis, possible features (e.g., invitation mechanism, social media con-
nection) were outlined. The interview of customers and conduction of social
media surveys are longer scheduled ongoing tasks. During the analysis, various
statistics are looked up for the market potential. Moreover, existing knowledge
[16] for local competitors and event apps are used for both competitor analy-
ses. In the design, two value propositions (i.e., event providers, event visitors)
were developed together with three possible business models (i.e., content aggre-
gator, ticket seller, sponsored platform). Moreover, the feature sets for these
business models were modeled (e.g., pipeline component for content aggrega-



116 S. Gottschalk et al.

tor), and the competitive advantage was analyzed (e.g., travel time calculator).
This competitor analysis was also the foundation for feature prioritization. All
of the canvases were structured with the tool and supported by the existing
expert knowledge. Based on those structures, a competitor analysis was done.
Currently, in the development, the beta version of the app is developed, while
the ongoing customer interviews and social media surveys should validate the
different business models and feature sets. Moreover, inbound marketing (e.g.,
landing page, social media posts) is planned to ensure high traffic during the
upcoming beta. Because of the ongoing development, the continuous validation
phase has not been started.

7.3 Analysis of Results and Implications

To evaluate our approach, we conducted a case study on developing a business
model for OWL Live. Here, the development is an ongoing task for what we
presented our results for the first four phases. By conducting the case study, we
investigate that our approach supports the development method with guidance
in new tasks to do (e.g., inbound marketing) and possible decisions to be made
(e.g., lock-in mechanism). Moreover, the approach is generalizable to allow the
development of different business models from the same knowledge and traceable
to reason all changes over time. Nevertheless, we found some limitations during
the composition and enactment that we want to discuss and fix in the next DSR
cycle. We divide those limitations into the Restrictions of Expert Knowledge,
Complexity of the Tool, and the Conduction of Single Case Study.

For the Restrictions of Expert Knowledge, we currently have just a base of
knowledge for methods and models that focuses on mobile applications and, in
particular, on event apps. This, in turn, limits the applicability of the approach
in other scenarios. Therefore, we want to extend the knowledge and focus on
models and methods for digital platforms in the future. For the Complexity of
the Tool, we currently focused on the applicability of all provided features and
dismissed a user experience that is easy to understand. This, in turn, limits the
usage of the tool by end-users. Therefore, we want to increase the usability of
the approach so that end-users can use it without prior introductions. For the
Conduction of Single Case Study, we currently have applied the approach to
the case of a local event platform. This, in turn, limits the information if the
approach can be easily transferred to other scenarios. Therefore, we want to
validate the transferability by creating several scenarios in a user study.

8 Conclusion and Future Work

The development of business models is a challenging task that can be supported
by the knowledge of methods and models from different domain experts. Here,
the knowledge needs to match the company’s situation and the application
domain of the product/service. Using two cycles of DSR, we have developed
a situation-specific business model development approach. We implemented the
approach in an open-source tool and evaluated it by conducting a case study



Situation-Specific Development of Business Models 117

on a local event platform. Here, our results suggest that our approach supports
business developers in developing business models by using the knowledge from
existing methods and models. In the future, we will conduct a third DSR cycle
to work on the extensibility of our approach and evaluate its usefulness in dif-
ferent scenarios. For that, we plan to modularize our concept so that single
development steps (e.g., calculate business outcome) can be supported by dif-
ferent software modules. Moreover, we will evaluate our approach based on a
user study in a lean development of mobile apps seminar where students have
to develop business models for their apps over a more extended period.

References

1. Alvarez, S.A., Barney, J.B., Anderson, P.: Forming and exploiting opportunities:
the implications of discovery and creation processes for entrepreneurial and orga-
nizational research. Organ. Sci. 24(1), 301–317 (2013)

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37521-7

3. Bekkers, W., van de Weerd, I., Brinkkemper, S., Mahieu, A.: The influence of
situational factors in software product management: an empirical study. In: Inter-
national Workshop on Software Product Management, pp. 41–48. IEEE (2008)

4. Bland, D.J., Osterwalder, A.: Testing Business Ideas. Wiley, Hoboken (2020)
5. Boßelmann, S., Margaria, T.: Guided business modeling and analysis for busi-

ness professionals. In: Pfannstiel, M.A., Rasche, C. (eds.) Service Business Model
Innovation in Healthcare and Hospital Management, pp. 195–211. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-46412-1 11

6. Brinkkemper, S.: Method engineering: engineering of information systems devel-
opment methods and tools. Inf. Softw. Technol. 38(4), 275–280 (1996)

7. CB Information Services: CB Insights 2019: Top 20 Reasons Why Startups Fail.
https://www.cbinsights.com/research/startup-failure-reasons-top/

8. Chesbrough, H.: Business model innovation: opportunities and barriers. Long
Range Plan. 43(2–3), 354–363 (2010)

9. Ebel, P., Bretschneider, U., Leimeister, J.M.: Leveraging virtual business model
innovation: a framework for designing business model development tools. Inf. Syst.
J. 26(5), 519–550 (2016)

10. Eppler, M.J., Hoffmann, F., Bresciani, S.: New business models through collabo-
rative idea generation. Int. J. Innov. Manag. 15(06), 1323–1341 (2011)

11. Frankenberger, K., Weiblen, T., Csik, M., Gassmann, O.: The 4I-framework of
business model innovation: a structured view on process phases and challenges.
Int. J. Prod. Dev. 18(3/4), 249 (2013)

12. Gassmann, O., Frankenberger, K., Csik, M.: The Business Model Navigator: 55
Models that Will Revolutionise Your Business. Pearson, Harlow (2014)

13. Geissdoerfer, M., Savaget, P., Evans, S.: The Cambridge business model innovation
process. Procedia Manuf. 8, 262–269 (2017)

14. General Electric Inc.: GE Global Innovation Barometer 2018. https://www.ge.
com/reports/innovation-barometer-2018/

15. Giray, G., Tekinerdogan, B.: Situational method engineering for constructing inter-
net of things development methods. In: Shishkov, B. (ed.) BMSD 2018. LNBIP,
vol. 319, pp. 221–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94214-8 14

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-319-46412-1_11
https://www.cbinsights.com/research/startup-failure-reasons-top/
https://www.ge.com/reports/innovation-barometer-2018/
https://www.ge.com/reports/innovation-barometer-2018/
https://doi.org/10.1007/978-3-319-94214-8_14
https://doi.org/10.1007/978-3-319-94214-8_14


118 S. Gottschalk et al.

16. Gottschalk, S., Kirchhoff, J., Engels, G.: Extending business model development
tools with consolidated expert knowledge. In: Shishkov, B. (ed.) BMSD 2021.
LNBIP, vol. 422, pp. 3–21. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-79976-2 1

17. Gottschalk, S., Yigitbas, E., Nowosad, A., Engels, G.: Situation-specific busi-
ness model development methods for mobile app developers. In: Augusto, A.,
Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds.)
BPMDS/EMMSAD -2021. LNBIP, vol. 421, pp. 262–276. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79186-5 17

18. Gross, J., Mcinnis, K.: Kanban Made Simple: Demystifying and Applying Toyota’s
Legendary Manufacturing Process. AMACOM, New York (2003)

19. Hartmann, P.M., Zaki, M., Feldmann, N., Neely, A.: Capturing value from big data
- a taxonomy of data-driven business models used by start-up firms. Int. J. Oper.
Prod. Manag. 36(10), 1382–1406 (2016)

20. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.J., Rossi, M.: Situational Method
Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
41467-1

21. Kuechler, B., Vaishnavi, V.: On theory development in design science research:
anatomy of a research project. Eur. J. Inf. Syst. 17(5), 489–504 (2008)

22. Lüdeke-Freund, F., Bohnsack, R., Breuer, H., Massa, L.: Research on sustain-
able business model patterns: status quo, methodological issues, and a research
agenda. In: Aagaard, A. (ed.) Sustainable Business Models. PSSBIAFE, pp. 25–
60. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93275-0 2

23. McGrath, R.G.: Business models: a discovery driven approach. Long Range Plan.
43, 247–261 (2010)

24. Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Vision-
aries, Game Changers, and Challengers. Wiley, Hoboken (2010)

25. Osterwalder, A., Pigneur, Y., Bernarda, G., Smith, A., Papadakos, P.: Value Propo-
sition Design: How to Create Products and Services Customers Want. Get Started
With. Strategyzer Series. Wiley, Hoboken (2014)

26. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2014)

27. Schwarz, J.S., Legner, C.: Business model tools at the boundary: exploring commu-
nities of practice and knowledge boundaries in business model innovation. Electron.
Mark. 30(3), 421–445 (2020)

28. Sosna, M., Trevinyo-Rodŕıguez, R.N., Velamuri, S.R.: Business model innovation
through trial-and-error learning. Long Range Plan. 43(2–3), 383–407 (2010)

29. Star, S.L., Griesemer, J.R.: Institutional ecology, ‘translations’ and boundary
objects: amateurs and professionals in Berkeley’s museum of vertebrate Zoology,
1907–39. Soc. Stud. Sci. 19(3), 387–420 (1989)

30. Szopinski, D., Schoormann, T., John, T., Knackstedt, R., Kundisch, D.: Software
tools for business model innovation: current state and future challenges. Electron.
Mark. 60(11), 2794 (2019)

31. Teece, D.J.: Business models, business strategy and innovation. Long Range Plan.
43(2–3), 172–194 (2010)

32. Terrenghi, N., Schwarz, J., Legner, C., Eisert, U.: Business model management:
current practices, required activities and IT support. In: Proceedings of the Con-
ference on Wirtschaftsinformatik, pp. 972–986 (2017)

33. Vogel, P.: From venture idea to venture opportunity. Entrep. Theory Pract. 41(6),
943–971 (2017)

https://doi.org/10.1007/978-3-030-79976-2_1
https://doi.org/10.1007/978-3-030-79976-2_1
https://doi.org/10.1007/978-3-030-79186-5_17
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/978-3-319-93275-0_2


Using a Data-Driven Context Model to Support
the Elicitation of Context-Aware Functionalities

– A Controlled Experiment

Rodrigo Falcão1(B) , Marcus Trapp1, Vaninha Vieira2,
and Alberto Vianna Dias da Silva3,4

1 Fraunhofer Institute for Experimental Software Engineering IESE,
Kaiserslautern, Germany

rodrigo.falcao@iese.fraunhofer.de
2 Institute of Computing, Federal University of Bahia, Salvador, Brazil

3 Computer Science Graduate Program, Federal University of Bahia, Salvador, Brazil
4 Federal Institute of Bahia, Salvador, Brazil

Abstract. Background: Context modeling to support the elicitation of context-
aware functionalities has been overlooked due to its high complexity. To help
overcome this, we have implemented a data-driven process that analyzes contex-
tual data and generates data-driven context models. Objective: We aim at investi-
gating to which extent a data-driven context model supports the identification of
more complex contexts (i.e., contexts that combine several contextual elements)
and unexpected context-aware functionalities. Method: We used a one factor with
two treatments randomized design with 13 experienced software engineers. Given
a specific system-supported user task, the participants were asked to come up with
requirements that describe context-aware functionalities to improve the user task.
Results: Use of the data-driven context model increased the average number of
contextual elements used to describe requirements from 1.77 to 4.23. No partici-
pant from the control group was able to identify by themselves any of the contexts
included in the model. All comparisons between groups had sufficient effect size
and power. The participants regarded the data-driven context model as a useful
tool to support the elicitation of context-aware functionalities. Conclusion: The
data-driven context model has shown potential to support the identification of
relevant contexts for given user tasks.

Keywords: Context awareness · Data-driven · Model · Requirements ·
Experiment

1 Introduction

Computers are part of everyday life and, in recent decades, have become increas-
ingly ubiquitous. The number of software-based solutions that surround us constantly
increases. Just to mention the mobile world, millions of apps are readily available in a
market where competitors yearn to release new features to their users as fast as possible

This work has been partially supported by CNPq, Brazil.

c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 119–135, 2021.
https://doi.org/10.1007/978-3-030-91452-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_8&domain=pdf
http://orcid.org/0000-0003-1222-0046
http://orcid.org/0000-0002-8748-1067
https://doi.org/10.1007/978-3-030-91452-3_8


120 R. Falcão et al.

– but not just any feature. Ideally, competitors want to deliver delightful features, which
amaze and capture their audience. These features fall into the category of unconscious
requirements [16]; as such, they are hard to elicit.

Context-aware functionalities are perceived as a way to delight users (e.g., [7,8,
15]). They consider context to produce a certain system behavior, typically a recom-
mendation or an adaptation. These types of features can be mapped to Dey’s defini-
tions of the context-aware features “presentation” and “execution” [5], respectively. The
elicitation of context-aware functionalities, in turn, demands context modeling, which
involves an analysis of the relevance of contextual elements (CEs) (e.g., [4,21]) and an
analysis of combinations of CEs (e.g., [4,10]) for a given user task (e.g., [5,6]). Accord-
ing to practitioners, these are challenging steps and have been overlooked due to their
high complexity: In a scenario with dozens of CEs, identifying which CEs influence a
given user task, either individually or in combination with others, is time-consuming,
non-intuitive, and error-prone [6].

Data-driven approaches have been named as promising to improve requirements
engineering (RE) in general [14] and context modeling in particular [22]. Therefore, we
formulate the following research question (RQ1): To which extent does a data-driven
context model support the identification of more complex contexts and unexpected
context-aware functionalities? We implemented a data-driven context modeling pro-
cess to identify relevant contexts and create context models to support practitioners in
the elicitation of context-aware functionalities. We used our implementation to generate
a context model for the system-supported user task “create a comment” of DorfFunk1,
a communication app with characteristics of a social network that has approximately
25,000 active users. DorfFunk was developed and is maintained by Fraunhofer IESE.
In this paper, we report on a controlled experiment carried out to verify to which extent
the data-driven context model supports the identification of more complex contexts (i.e.,
contexts combining several CEs) and unexpected context-aware functionalities from
contexts that, without the data-driven context model, would require more time to be
identified.

This paper is organized according to the guidelines for reporting experiments in
software engineering proposed by Jedlitschka et al. [12]. It is structured as follows:
Sect. 2 discusses related work and summarizes the data-driven context modeling pro-
cess; Sect. 3 contains the plan for the experiment; Sect. 4 describes the execution; Sect. 5
contains the analysis; Sect. 6 discusses the results; and Sect. 7 concludes the paper.

2 Background

Proposals for representing context models concerning RE are diverse; however, the
challenge of identifying the relevant contexts remains high, independent of the chosen
representation, especially when the context modeling activity is performed by humans.
Alegre el al. [1], for example, surveyed existing RE modeling techniques for context-
aware systems and mention no data-driven approach. Data-driven approaches have been
used to improve context-aware systems, though: Saputri and Seok-Won [18] reviewed
the use of machine-learning techniques (which are data-based approaches) in self-
adaptive systems and found that in 41% of them, the purpose was to support modeling.

1 https://www.digitale-doerfer.de/unsere-loesungen/dorffunk/.

https://www.digitale-doerfer.de/unsere-loesungen/dorffunk/


Using a Data-Driven Context Model 121

Fig. 1. Example of a data-driven context model.

Among these papers, only the work by Rodrigues et al. [17] is related to RE. In their
work, data mining was employed to identify relevant contexts for dependable systems,
which were later mapped manually to a contextual goal model [2]. Nonetheless, ad-hoc
context modeling has been the state of the practice [6].

In our approach, we implemented a data-driven context modeling process intro-
duced by Falcão [7] that creates context models to support the elicitation of context-
aware functionalities. These models contain contexts that were found to influence a
given user task. We define “context” as a set of instantiated CEs. For example, given a
CE “time” and another CE “location”, examples of contexts include “afternoon” (1 CE:
Time), “home” (1 CE: Location), and “afternoon at home” (combination of 2 CEs: Time
and location). The more CEs we have in a context, the more complex the context is. In
the data-driven process, contextual data is collected from available sources based on the
user task in focus, and then processed to generate a context model. The data collection
is manual and the data processing (including the model generation) is automated. We
classified the CEs as continuous or categorical, and used statistical methods to search
for correlations among them. The outcomes were transferred to a diagram referred to
as “data-driven context model”, which is a directed acyclic graph with one root node.
Each path from the root node towards a leaf describes how a context influences a user
task of interest. Figure 1 shows an example. Consider that the user task is “Prepare a
coffee”. Each of the two paths contains a set of instantiated CEs (white boxes) that,
together, were found to influence the task (e.g., “When location = WORK and time =
AFTERNOON then user prepares coffee”, i.e., the context “location =WORK and time
= AFTERNOON” influences the user task “Prepare a coffee”, according to the model).

3 Experiment Planning

3.1 Goals

From RQ1, we derived the following study goals using the GQM template [3]:

Goal 1 Increase the ability of practitioners to identify complex contexts to describe
context-aware functionalities from the point of view of the researcher in the
context of a controlled experiment with practitioners using a data-driven
context model based on DorfFunk data.

Goal 2 Improve the efficiency of the identification of relevant contexts from the
researcher’s point of view in the context of a controlled experiment with
practitioners using a data-driven context model based on DorfFunk data.

Goal 3 Improve the effectiveness of the identification of relevant contexts from the
researcher’s point of view in the context of a controlled experiment with
practitioners using a data-driven context model based on DorfFunk data.



122 R. Falcão et al.

Goal 4 Verify the usefulness of the data-driven context model from the point of
view of practitioners in the context of a controlled experiment with practi-
tioners using a data-driven context model based on DorfFunk data.

3.2 Design

The controlled experiment had a one factor with two treatments randomized design
[23]. The primary factor was the context modeling technique. The participants of the
treatment group were assigned to the data-driven context model, whereas the partici-
pants of the control group received the list of available CEs.

3.3 Participants

In practice, elicitation of context-aware functionalities is an activity that can be per-
formed by a large range of professionals, including requirements engineers, UX design-
ers, software architects, and developers, among others [6]. Therefore, we generalized
our population as software engineers with experience in information systems. No prior
experience in context awareness was required.We drew a convenient (non-probabilistic)
sample of it in the Information Systems Division at Fraunhofer IESE. We invited all 34
professionals in the division through a corporate email list. Participation was voluntary.
In order to motivate the invitees, they were informed that in the experiment they would
have the opportunity to learn about requirements elicitation of context-aware function-
alities and to participate in a practical activity about it. The informed consent form was
attached to the email. We had 21 volunteers, which was our initial sample size (it was
later reduced to 13 participants due to a deviation in the execution – see Sect. 4.2).

3.4 Participants’ Task

The participants were asked to create requirements in written form, in English, to
describe context-aware functionalities for one given system-supported user task of the
app DorfFunk. The control group participants were told that they were constrained to
stick to the list of CEs they had received to elaborate the requirements, whereas the
treatment group participants were asked to stick to using the data-driven context model
to elaborate theirs. Note that for the treatment group participants, using the data-driven
context model implied that they would be constrained by the same CEs available to the
control group participants. All participants were informed that there was no minimum
number of requirements they should create.

3.5 Hypotheses and Variables

– H1: Use of the data-driven context model influences the ability of individuals
to elaborate requirements with more complex contexts. The contexts used in the
requirements varied regarding the number of CEs they combined. We wanted to
check whether the requirements elaborated by the treatment group participants were
more (or less) complex, with complexity measured by the number of CEs combined



Using a Data-Driven Context Model 123

to describe the context used in the requirement (see Goal 1). The independent vari-
able was the context modeling technique (ad-hoc or data-driven), and the dependent
variable was the number of CEs combined to describe the contexts of each require-
ment created by the individuals. The null and alternative hypotheses were formulated
as follows: H01 : μ1 control = μ1 treatment and H11 : μ1 control �= μ1 treatment.

– H2: Use of the data-driven context model influences the efficiency of individuals
to identify the relevant contexts included in the data-driven context model. We
wanted to check whether the data-driven context model included relevant contexts
that, within a limited amount of time, would not be found by the participants of either
group (see Goal 2). The independent variable was the context modeling technique
(ad-hoc or data-driven), and the dependent variable was the percentage of relevant
data-driven contexts found by the individuals. The null and alternative hypotheses
were formulated as follows: H02 : μ2 control = μ2 treatment and H12 : μ2 control �=
μ2 treatment.

– H3: Use of the data-driven context model influences the effectiveness of individ-
uals to identify the relevant contexts included in the data-driven context model.
We wanted to verify whether the data-driven context model included relevant con-
texts that, within a limited amount of time, would be used more often by individuals
of either group (see Goal 3). The null and alternative hypotheses were formulated as
follows: H03 : μ3 control = μ3 treatment and H13 : μ3 control �= μ3 treatment.

– H4: The data-driven context model is perceived by individuals as a useful
instrument to support the elicitation of context-aware functionalities. The data-
driven context model is a new artifact aimed at improving the way individuals elicit
context-aware functionalities. We wanted to verify howmuch the participants valued
it (see Goal 4).

3.6 Experimental Materials

Informed consent: The informed consent form contained partial disclosure of the
experiment in order to prevent undesirable change of behavior by the participants [23]2.
Briefing questionnaire: This contained three questions to characterize their profes-
sional experience. They were asked about the number of years of professional expe-
rience (less than 5 years, or 5 years or more), whether their professional experience
included requirements elicitation (yes/no), and to which role most of their professional
experience was related. Instructions about the data-driven context model: The treat-
ment group participants received in advance a PDF file introducing the syntax and
semantics of the data-driven context model they would use during execution of the
experiment. Introductory presentation: A set of slides introducing the participants
to the experiment was presented. The slides contained information about the concept
of context awareness, examples of context-aware functionalities in well-known appli-
cations, a description of context modeling activities performed to support the elicita-
tion of context-aware functionalities, and a presentation of the participants’ task in the
experiment. It included a video introducing the app DorfFunk, for which the partici-
pants were to create requirements. Data-driven context model: During the execution

2 All materials are available at https://doi.org/10.5281/zenodo.5090748.

https://doi.org/10.5281/zenodo.5090748


124 R. Falcão et al.

of the experiment, the treatment group participants received a PDF file containing the
data-driven context model generated based on the analysis of contextual data of the
app DorfFunk, with focus on a specific user task. List of CEs: During the execution
of the experiment, the control group participants received a PDF file containing the list
of CEs they could use to elaborate context-aware functionalities. There were 15 CEs.
Debriefing questionnaire: Right after the participants had performed their task in the
experiment, they were asked to answer a debriefing questionnaire about the experience.
Three questions were posed to all participants: whether their task in the experiment was
clearly explained; whether the time they had to participate was adequate; and whether
they perceived their task as easy or not. They were also asked about how well they knew
the app DorfFunk, because we regarded the amount of previous knowledge about the
app as a possible confounding factor. The treatment group participants were asked addi-
tional questions about the data-driven context model they received to support the task.
For this purpose, we employed the UTAUT (Unified Theory of Acceptance and Use of
Technology [20]), tailoring the items to our case. Requirements validation checklist:
We defined and used a checklist to guide the validation of the requirements generated
by the participants in the analysis phase (see Sect. 5.2).

3.7 Procedure

The execution of the experiment was subdivided into three parts. In the first part, they
were introduced to the concepts of context awareness, elicitation of context-aware fea-
tures, and context modeling using the “introductory presentation”. Then, they received
a step-by-step introduction to the tool they would use to provide data during the exe-
cution of the experiment. At the end of the introduction, they were informed that the
specific system-supported user task they should try to improve using context awareness
was “create a comment”, and a story board illustrating the as-is situation of the system-
supported user task was shown. The user task was revealed only at the end of the intro-
duction in order to prevent the participants from thinking about possible context-aware
functionalities in advance. In the second part, the participants had 30min to perform
their task (see Sect. 3.4). When the time was over, they were informed and proceeded
to the last part, the debriefing questionnaire. At the end of the debriefing questionnaire,
the control group participants were told that some participants received different arti-
facts to perform the task, and were given the opportunity to download these artifacts,
namely the instructions about the data-driven context model and the data-driven con-
text model. Due to the COVID-19 pandemic [24], all sessions were performed online
via MS Teams3. In order to ensure that the same instructions would be provided to all
participants across the sessions, the instructions were written down before and read at
the time of the execution. After the completion of the questionnaire, they were asked to
keep the participation confidential, since other participants would join different sessions
in different date/times.

3 https://www.microsoft.com/en-us/microsoft-teams/group-chat-software.

https://www.microsoft.com/en-us/microsoft-teams/group-chat-software


Using a Data-Driven Context Model 125

4 Execution

4.1 Preparation

Before the execution of the experiment, the participants were asked via email to answer
the briefing questionnaire about their professional experience (see Sect. 3.6). The input
was used to block participants before the randomization procedure. There were two
blocks: those with less than 5 years of professional experience (N = 6), and those
with 5 years or more of experience (N = 15). The other questions (experience with
elicitation and major role) were not used to block the participants because they led
to very small odd blocks in some cases, which would compromise the randomization.
Within the blocks, the participants were randomly assigned to either the control group
(N = 11) or the treatment group (N = 10). The treatment group participants received
an email with a set of slides containing instructions about the data-driven context model,
so they would know how to use it in the experiment. They were asked to read the
material before the execution and to keep all information confidential.

Next, all participants were asked to provide their availability to participate in the
experiment. Multiple time slots were offered over a period of two weeks. Based on
their responses, we prepared and executed eight sessions between 18 and 27 May 2021.

4.2 Deviations

On the first day (18 May 18 2021), there were two sessions, with 9 participants (p1−p9)
in total, 5 of them belonging to the treatment group. At the end of the day, we performed
a data validation to check the input provided by the participants. We noticed that the
treatment group participants had apparently deviated from their task, as the results indi-
cated that they did not use the data-driven context model as intended. Furthermore,
there was a question to be answered in the debriefing questionnaire on a 5-point Likert-
like rating scale about how clearly their task in the experiment was explained, and 60%
of the treatment group participants did not agree that their task was clearly explained.
In fact, one participant contacted the moderator via private chat during the execution
to ask how they should use the data-driven context model. In addition to that, we had
the chance to talk to one participant after the experiment and they confirmed that they
did not quite understand how they should use the data-driven context model to per-
form their activity. For this reason, we changed the procedure of the experiment for the
future treatment group participants: They would be explicitly introduced to the material
“Instructions about the data-driven context model” (see Sect. 3.6), which they received
before the experiment to read by themselves. For the control group participants, the pro-
cedure was not changed. In none of the remaining six sessions, participants from both
groups took part, so we could change the procedure for the treatment group participants
without having to reschedule sessions. As a consequence of the early data validation,
where some participants were found to have misunderstood the task, the data collected
should be considered invalid [23]. As we changed the instructions for the next treatment
group participants, we also removed from the analysis all 5 subjects who had received
the original instructions. Of these, 3 belonged to the less experienced block. The other
3 less experienced participants belonged to the control group, and were therefore also



126 R. Falcão et al.

removed from the analysis; otherwise we would have had less experienced profession-
als only in the control group. For that reason, we were left with 13 participants (p4 who
participated in the first session, and p10 −p21 who participated in the later sessions), all
of them professionals with 5 years or more of experience.

5 Analysis

We used quantitative methods to analyze the data. For the briefing and debriefing
questionnaires, we used central tendency and data visualization measures. The con-
texts used in each valid requirement were extracted. If these contexts contained any of
those included in the data-driven context model, the corresponding contexts included
in the models were classified as relevant data-driven contexts. Once the contexts were
extracted, we were able to calculate the average number of CEs in the context of each
group, as well as the effectiveness and efficiency of each participant in identifying the
relevant data-driven contexts. We compared both groups using statistical tests and ver-
ified the effect size using Hedges’s g, a d family effect size measure recommended for
small sample sizes [13].

5.1 Descriptive Statistics

Among the 13 participants, 12 (92.3%) reported that their professional experience
included requirements elicitation. Figure 2a shows the participants’ main professional
role, organized by group. There was a prevalence of RE-related professionals (require-
ments engineers, UX designers) in the treatment group. With respect to the participants’
previous knowledge about the app DorfFunk, Fig. 2b shows that the control group par-
ticipants were more familiar with it (more subjects were users of the app or even par-
ticipated in the development team).

We asked the participants to rate their agreement with the statement “My task in
this experiment was clearly explained”. For this purpose, we used a 5-point Likert-
like scale (Strongly disagree, Disagree, Neutral, Agree, and Strongly agree) and found
that 11 participants (84.6%) strongly agreed and 2 (15.4%) agreed (median = mode =
“Strongly agree”). Similarly, another statement was formulated with respect to the time
the participants had to perform their task (see Fig. 2c). The mode and the median for
the control group participants was “Strongly agree”, whereas for the treatment group
participants, both mode and median were “Neutral/Agree”. Finally, a statement was
formulated to get the participants’ perception of the ease of their task. As can be seen
in Fig. 2d, the mode and the median for both groups were “Neutral”; however, for the
control group participants, the distribution of responses was spread wider, varying from
“Strongly disagree” to “Strongly agree”, whereas for the treatment group, it varied from
“Disagree” to “Agree”.

5.2 Data Set Preparation

The participants generated a total of 105 requirements; 55 (52.4%) came from the con-
trol group and 50 (47.6%) from the treatment group. Before carrying out hypothesis



Using a Data-Driven Context Model 127

Architect

Developer

Quality
Assurance

Requirements
Engineer

UX
Designer

treatment

control

"To which role do you relate most of your professional experience?"

Frequency (N=13)

0 1 2 3 40 1 2 3 4

(a) Roles.

No

Yes, but I never used it

Yes, and I am (or was)
a user of it

Yes, and I participate
(or participated) in the

app development team

treatment

control

"Did you know the app 'DorfFunk' before the experiment?"

Frequency (N=13)

0 1 2 3

(b) Experience with the app DorfFunk.

Strongly
disagree Disagree Neutral Agree

Strongly
agree

control

treatment

"The time I received to perform my task was adequate."

Fr
eq

ue
nc

y 
(N

=1
3)

0
1

2
3

4
5

(c) Time adequacy.

Strongly
disagree Disagree Neutral Agree

Strongly
agree

control

treatment

"My task in this experiment was easy."

Fr
eq

ue
nc

y 
(N

=1
3)

0
1

2
3

4

(d) Ease of the task.

Fig. 2. Frequency of responses in the debriefing questionnaire.

testing, it was necessary to validate the requirements. As validation technique, we used
a checklist with quality criteria for requirements as presented by Pohl and Rupp [16].
According to them, this technique improves the reproducibility of the validation. Our
checklist covered the following quality criteria (derived from [16] and [11]), which were
applied sequentially:

1. Agreed: A requirement should be directly related to the system-supported user task
in focus. Moreover, it should describe a context-aware feature – in our case, either
a recommendation or adaptation based on the context. In total, 24 requirements
(58.3% of them from the treatment group) failed in this criterion, e.g., “The sys-
tem should ask the user to turn on the notification of DorfFunk when the user is
in the home network after 17:00” (no direct connection to the user task “Create a
comment”).

2. Feasible: A requirement should only use CEs available in the model; otherwise they
would by technically unfeasible. In total, 5 requirements (80% of them from the
treatment group) failed in this criterion, e.g., “User in the role of suggestion worker
should have predefined answers based on the content of the suggestion.” (The content
of the suggestion was not available).

3. Necessary: A requirement must be currently applicable to the app DorfFunk. In
total, 15 requirements (53.3% of them from the treatment group) failed in this crite-



128 R. Falcão et al.

Total Agreed Feasible Necessary Complete

control treatment
Fr

eq
ue

nc
y 

(N
=1

05
)

0
20

50
55 50 45

36
44

32
41

20

40

17

Fig. 3. Frequency of requirements after each validation step, by group.

rion, e.g., “If user is the author of a post, the system should set the type of post to
clarification when the user writes a new post for the same event, but allow the user
to change it if necessary”. (There is no post type “clarification”).

4. Complete: A requirement is described in such a way that no additional information
is needed to understand it. In total, 4 requirements (75% of them from the treatment
group) failed in this criterion, e.g., “The system should give a suggestion for content
type when posting a comment on an event”. (There is no information about what
criteria should be used to give the suggestion).

In the introduction of the experiment, the participants were indirectly informed
about the criteria 1, 2, and 4. After the validation steps, we had 57 valid requirements,
29.9% of them from the treatment group (see Fig. 3). In this process, participant p21
(treatment group) was removed because none of their 6 requirements were valid (two
were not feasible and four were not necessary). The validation was performed by the
first author, who is an experienced software engineer specializing in context awareness
and with a broad understanding of the app DorfFunk. Whenever doubts came up con-
cerning the criterion “necessary”, the opinion of the product owner was heard. Next,
we extracted the contexts of these 57 requirements and counted for each how many
CEs were used to compose the context. Then we checked which of these contexts were
included in the data-driven context model in order to define a list of relevant data-driven
contexts according to the participants. The number of CEs used to describe contexts as
well as the list of relevant data-driven contexts were used to support hypothesis testing.
Due to space limitations, the raw data is not included here4.

5.3 Hypothesis Testing

H1 (“more complex contexts”). The mean number of CEs that the control group par-
ticipants used to describe their 40 contexts was μ1 control = 1.77 (SD = 0.80, min =
1, max = 5, median = 2), whereas the mean from the treatment group (17 contexts)
was μ1 treatment = 4.23 (SD = 0.97, min = 3, max = 5, median = 5)5. We
applied the Shapiro-Wilk normality test to the distributions and rejected the hypoth-
esis of normality (control: W = 0.73036, p − value = 3.183e − 07; treatment:

4 The anonymized raw data is available at https://doi.org/10.5281/zenodo.5090748.
5 For H1, H2 and H3, we used α = 0.05 as significance level and β = 0.2.

https://doi.org/10.5281/zenodo.5090748


Using a Data-Driven Context Model 129

W = 0.66011, p − value = 4.226e − 05). Then we applied the non-parametric
Wilcoxon rank sum test to compare the distributions and found that the difference
between the means was significant (p − value = 7.071e − 09); consequently, H01

can be rejected. The effect size was large (Hedges’s g = 2.84, 95% confidence interval:
2.06 to 3.62). We did a post-hoc power analysis and found power 1 − β = 0.9880658;
therefore, we can accept H11 . Conclusion: Individuals who had the model used more
complex contexts (μ1 treatment > μ1 control) to elaborate their requirements.

H2 and H3 (“efficiency” and “effectiveness”). In total, 6 contexts included in the
data-driven context model were used by participants to describe their context-aware
functionalities. None of these contexts were found by participants of the control group,
so μ2 control = μ3 control = 0%. The efficiency and the effectiveness of the treatment
group participants is shown in Table 1. The mean efficiency of the treatment group in
identifying the relevant data-driven context was μ2 treatment = 36.6% (SD = 0.217),
whereas their effectiveness was μ3 treatment = 74.6% (SD = 0.347). As we cannot
assume normal distribution from the control group, we again used the Wilcoxon rank
sum test to compare the differences and found that H02 and H03 were rejected (p −
value = 0.002033 and p − value = 0.001645, respectively). In both cases, the effect
size was large (efficiency: Hedges’s g = 2.46, 95% confidence interval: 0.87 to 4.05;
effectiveness: Hedges’s g = 1.74, 95% confidence interval: 0.33 to 3.14). We did a
post-hoc power analysis and found for efficiency power 1 − β = 0.9556588, and for
effectiveness power 1−β = 0.7392546; therefore, we can acceptH12 and cannot accept
H13 . Conclusion: Individuals who had the model were more efficient (μ3 treatment >
μ3 control). No conclusion can be drawn about effectiveness.

H4 (“a useful instrument”). With respect to the usefulness of the data-driven context
model, the participants provided their perception regarding 18 statements adapted from
UTAUT [20], covering the following aspects: performance expectancy (PE, 3 ques-
tions), effort expectancy (EE, 4 questions), attitude toward using technology (AT, 4
questions), self-efficacy (SE, 4 questions), and anxiety (AX, 3 questions). We coded the
answer options numerically (1 to 5). We reversed the code in item AT.1 of aspect AT,
and in all items of aspect AX, for they were stated in a negative way. Figure 4 shows
the distributions of the responses of each aspect.

Table 1. Efficiency and effectiveness of the treatment group participants.

Participant ID Modeled
contexts used

Total contexts
used

Efficiency Effectiveness

p16 1 3 16.7% 33.3%

p17 3 3 50% 100%

p18 1 1 16.7% 100%

p19 2 5 33.3% 40%

p20 4 4 66.6% 100%



130 R. Falcão et al.

20.0%

100.0%

80.0%

100.0%

PE.3 (n=5)

PE.2 (n=5)

PE.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(a) Performance expectancy.

40.0%

20.0%

100.0%

60.0%

100.0%

80.0%

EE.4 (n=5)

EE.3 (n=5)

EE.2 (n=5)

EE.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(b) Effort expectancy.

40.0%

20.0%

100.0%

60.0%

80.0%

100.0%

AT.4 (n=5)

AT.3 (n=5)

AT.2 (n=5)

AT.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(c) Attitude toward using technology.

80.0%

60.0%

20.0%

100.0%

100.0%

40.0%

SE.4 (n=5)

SE.3 (n=5)

SE.2 (n=5)

SE.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(d) Self-efficacy.

20.0%

40.0%

80.0%

100.0%

60.0%

AX.3 (n=5)

AX.2 (n=5)

AX.1 (n=5)

100%80%60%40%20%0%20%40%60%80%100%

1

2

3

4

5

(e) Anxiety.

Fig. 4. Participants’ assessment with respect to usefulness of model.

Table 2 shows the scores of each aspect and their reliability. The item scores were
calculated based on the mean value of the participants’ ratings; the aspect score was
calculated as the mean of the item scores composing each aspect. To verify the reliabil-
ity of the scores, we calculated their Cronbach’s alpha, which was higher than 0.7 for
PE, AT, SE, and AX, hence acceptable [9], whereas for EE it was not acceptable. Con-
clusion: Apart from the aspect Self-efficacy (SE), all aspects had high scores (> 0.4),
meaning that the participants evaluated the model positively.



Using a Data-Driven Context Model 131

Table 2. The five investigated aspects of usefulness of the data-driven context model.

Aspect Item Item
score

Aspect
score

Cronbach’s
alpha

PE - Performance expectancy PE.1 4.8 4.6 0.778

PE.2 4.4

PE.3 4.6

EE - Effort expectancy EE.1 3.8 4.05 0.468

EE.2 4.2

EE.3 3.8

EE.4 4.4

AT - Attitude toward using technology AT.1 5 4.34 0.804

AT.2 4.2

AT.3 3.8

AT.4 4.4

SE - Self-efficacy SE.1 3.2 3.75 0.752

SE.2 4.4

SE.3 4.4

SE.4 3

AX - Anxiety AX.1 3.8 4.2 0.903

AX.2 4.6

AX.3 4.2

6 Discussion

6.1 Evaluation of Results and Implications

The data-driven context model (and the process that creates it) is not about complete-
ness: There is no claim suggesting that all relevant contexts for the user task in focus
would be included in the model. Furthermore, these contexts were not said to be nec-
essarily better than others. The point is that the data-driven context model is able to
provide shortcuts in the solution space of a complex activity: context modeling. We
confirmed in the experiment that, with its support, individuals were able to find some
unexpected contexts – and to do so faster, for with unlimited time, we expect that indi-
viduals would eventually find these contexts anyway (which is a hypothesis to be inves-
tigated). As participants who used the data-driven context model were able to elabo-
rate requirements with more complex contexts, we accepted H1. Our findings back the
results of a previous empirical study performed by Falcão et al. [6], where they found
that practitioners regard the analysis of combinations of CEs as a highly complex activ-
ity. We observed this in our experiment, as a significantly lower number of CEs were
found in the contexts of the control group. In addition, this shows that the data-driven
context model contained meaningful contexts with a larger number of CEs.



132 R. Falcão et al.

We measured the participants’ efficiency and effectiveness in finding relevant data-
driven context models included in the model. Although we had expected that the treat-
ment group participants would perform better since they received the data-driven con-
text model, we assumed that some of the contexts found in the data-driven context
model would be “too obvious”, and therefore participants of the control group would
be able to identify them despite not having received the data-driven context model (and
this expectation would be even higher if we knew in advance that the control group par-
ticipants had better background knowledge about the app DorfFunk – see Sect. 5.1). For
this reason, it was unexpected for us that not a single control group participant was able
to identify by themselves any of the contexts included in the data-driven context model,
which led to zero efficiency and zero effectiveness in identifying such contexts. It is
worth noting that the result would be the same if we had considered all requirements
generated by the control group before reducing the data set as presented in Sect. 5.2.
Therefore, the treatment group participants were more efficient in finding relevant con-
texts included in the data-driven context model, which speaks (at least partially) in favor
of the representation of the model and its content. We also found higher effectiveness,
but without statistical power, which we believe was due to the sample size, since the
effect size was large.

In fact, in all tests performed (H1, H2, and H3), the effect size can be consid-
ered large (according to Kampenes et al. [13]); however, for effectiveness (H3), it is
worth noting that the 95% confidence interval ranged from small (g ≤ 0.376) to large
(g ≥ 1.002) effect sizes, and we could not accept H13 . This may have been caused by
participant p16, who created 3 valid requirements, but 2 of them could not be directly
mapped to the data-driven context model, even though they were clearly inspired by
contexts presented in the model. This added to the practical utility of the model, but
is not captured by the pragmatic evaluation we chose (e.g., in one case, p16 cleverly
inverted a context described in the model to describe a context-aware functionality). In
order to be consistent with our analysis procedure and give less room to subjectivity,
we did not include such cases in the baseline of relevant data-driven contexts.

We generally found a positive trend towards acceptance of the data-driven context
model in all aspects investigated, as can be seen in Fig. 4. One exception could be the
aspect “self-efficacy”, which had the lowest score. To a certain extent, it reflects our
need to adjust the procedure after the first two sessions of the experiment (see Sect. 4.2),
as we realized that the participants needed additional explicit instructions to understand
how to use the data-driven context model. With respect to effort expectancy, the aspect
whose reliability was not acceptable (see Sect. 5), we found the cause in item EE.1,
which referred to how clear and understandable the usage of the data-driven context
model would be. If EE.1 was removed, the aspect score would be 4.13 and the reliability
would be acceptable (0.733).

Regarding RQ1, we conclude that the approach supports the identification of more
complex contexts as well as unexpected functionalities. In a practical setting, we think
the data-driven context model should be used to support creativity group sessions, pro-
viding individuals with triggers and input that can be copied as-is, combined, or trans-
formed (the basic elements of creativity [19]) to generate new ideas – as happened, for
example, with participant p16. Working together, individuals will be in a better position



Using a Data-Driven Context Model 133

to evaluate the meaning of contexts, judge their value, discard what is irrelevant, and
leverage the shortcuts to insightful contexts provided by the model. Although, on the
one hand, the automated process helps people identify some relevant contexts faster, on
the other hand human participation remains a fundamental piece in the validation and in
the creativity steps that follow context modeling. Moreover, we expected the outcomes
to be more sound when contextual data is collected with context modeling in mind (in
the experiment, we used available data for the sake of convenience) and when more CEs
are included in the analysis, which is expected in a smart scenario [6,7].

6.2 Threats to Validity

Construct validity: Mono-operation bias: All participants performed the same task
within the context of the same application, meaning that the results can reflect the partic-
ularities of the specific setting. Confounding constructs or level of constructs: The data-
driven context model was created based on available CEs. A lower effect is expected, as
fewer CEs were involved, whereas the results may be more pronounced, as more CEs
were included in the analysis. Restrict generalizability across constructs: The process
of generating the data-driven context model may have had an impact on the overall effi-
ciency of the elicitation process. Internal validity: Interaction with selections: In the
random assignment of participants to groups, those with major background experience
in RE-related roles were concentrated in the treatment group, which may have bene-
fited the group. On the other hand, the control group had participants with more prior
knowledge about DorfFunk, which could also have been advantageous for the group.
External validity: Interaction between selection and treatment: It is possible that the
selection was not representative and the results are not generalizable, given the number
of participants and the sample strategy. Moreover, if participants with particular exper-
tise in the elicitation of context-aware functionalities had been involved, the outcomes
might be different. However, such professionals belong to a hard-to-spot population
[6]. Conclusion validity: Reliability of measures: The participants provided written
requirements, and there was a manual activity to prepare the data set (see Sect. 5.2),
extract contexts from the requirements, and count the number of CEs of each context.
Mistakes in these manual steps, especially in the preparation of the data set, may have
compromised the conclusions. Experimental setting: The experiment was performed in
online sessions via the Internet. In such settings, it is harder to check the participants’
compliance with the procedure, in particular to ensure that they focus exclusively on
the activity during the experiment.

7 Conclusion and Future Work

Context modeling to support the elicitation of context-aware functionalities is a needed
but rather overlooked activity due to its complexity, especially concerning the anal-
ysis of relevance and combinations of contextual elements. We implemented a semi-
automated data-driven approach to analyze contextual data and generate context mod-
els that revealed relevant contexts that influence a given user task of interest. We used
data from an app in use to create a data-driven context model. In this paper, we reported



134 R. Falcão et al.

its evaluation in the context of a controlled experiment with experienced software engi-
neers. The results showed that participants using the data-driven context model were
able to describe requirements with more complex contexts, while participants without
the context model were not able to identify any of the relevant contexts included in
the model. Moreover, participants using the data-driven context model regarded it as a
useful instrument to support the elicitation of context-aware functionalities. To the best
of our knowledge, this paper contributes the first controlled experiment evaluating the
usage of data-driven context modeling on the elicitation of context-aware functionali-
ties.

A limitation of the data-driven approach is that it can only draw conclusions from
existing data, and the universe of relevant combinations of CEs is much larger than what
can be inferred via data analysis. Therefore, it must be clear that the data-driven context
model reveals some relevant contexts, but never all of them. The data-driven context
model anticipates the identification of relevant contexts for a given user task, mean-
ing that part of the time-consuming work of analyzing relevant combinations can be
skipped. Nonetheless, implementing the data-driven context modeling approach intro-
duces effort as well; however, this is operational effort, which takes place in polynomial
time, taking the list of CEs as input, whereas the analysis of relevant combinations is
creative work requiring exponential time with the same input.

We want to run the experiment again with less experienced participants in order to
check whether it can attenuate the experience factor in the elicitation of context-aware
functionalities. We also consider it essential to generate the data-driven context model
using a different application in order mitigate the mono-operation bias. Furthermore,
we want to perform a case study where the participants would work together to create
context-aware functionalities based on the data-driven context model. Finally, we plan
to modify the data processor using different algorithms and evaluate which strategy
reveals more relevant contexts – which might lead to a multi-strategy approach.

References

1. Alegre, U., Augusto, J.C., Clark, T.: Engineering context-aware systems and applications: a
survey. JSS 117, 55–83 (2016)

2. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirements mod-
eling and analysis. Requirements Eng. 15(4), 439–458 (2010)

3. Basili, V., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Encyclope-
dia of Software Engineering, pp. 528–532 (1994)

4. Bauer, C., Dey, A.K.: Considering context in the design of intelligent systems: current prac-
tices and suggestions for improvement. JSS 112, 26–47 (2016)

5. Dey, A.K.: Understanding and using context. PUC 5(1), 4–7 (2001). https://doi.org/10.1007/
s007790170019

6. Falcão, R., Villela, K., Vieira, V., Trapp, M., Faria, I.: The practical role of context modeling
in the elicitation of context-aware functionalities: a survey. In: RE 2021. IEEE (2021)

7. Falcão, R.: Improving the elicitation of delightful context-aware features: a data-based app-
roach. In: RE 2017, pp. 562–567. IEEE (2017)

8. Google: Google Awareness API (2021). https://bit.ly/3wmoF56. Accessed 08 July 2021
9. Hair, J.F., Black, W., Babin, B., Anderson, R.: Multivariate Data Analysis. Pearson (2009)

https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://bit.ly/3wmoF56


Using a Data-Driven Context Model 135

10. Henricksen, K.: A framework for context-aware pervasive computing applications. Ph.D.
thesis, The University of Queensland (2003)

11. ISO/IEC/IEEE 29148 - Systems and Software Engineering - Life cycle processes - Require-
ments engineering. Standard, ISO (2018)

12. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineering.
In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software Engi-
neering, pp. 201–228. Springer, London (2008). https://doi.org/10.1007/978-1-84800-044-
5 8

13. Kampenes, V.B., Dybå, T., Hannay, J.E., Sjøberg, D.I.: A systematic review of effect size in
software engineering experiments. IST 49(11–12), 1073–1086 (2007)

14. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements engineering.
IEEE Softw. 33(1), 48–54 (2016)

15. Olsson, T., Lagerstam, E., Kärkkäinen, T., Väänänen-Vainio-Mattila, K.: Expected user expe-
rience of mobile augmented reality services: a user study in the context of shopping centres.
PUC 17(2), 287–304 (2013). https://doi.org/10.1007/s00779-011-0494-x

16. Pohl, K., Rupp, C.: Requirements Engineering: Fundamentals, Principles, and Techniques,
2nd edn. Rocky Nook, San Rafael (2015)

17. Rodrigues, A., Rodrigues, G.N., Knauss, A., Ali, R., Andrade, H.: Enhancing context speci-
fications for dependable adaptive systems: a data mining approach. IST 112, 115–131 (2019)

18. Saputri, T., Lee, S.W.: The application of machine learning in self-adaptive systems: a sys-
tematic literature review. IEEE Access 8, 205948–205967 (2020)

19. Trapp, M.: Creative people are great thieves with lousy dealers (2020). Proceedings http://
ceur-ws.org ISSN 1613, 0073

20. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information tech-
nology: Toward a unified view. MIS Q. 27, 425–478 (2003)

21. Vieira, V., Tedesco, P., Salgado, A.C., Brézillon, P.: Investigating the specifics of contextual
elements management: the CEManTIKA approach. In: Kokinov, B., Richardson, D.C., Roth-
Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 493–506.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74255-5 37

22. Villela, K., et al.: Towards ubiquitous RE: a perspective on requirements engineering in the
era of digital transformation. In: RE 2018, pp. 205–216. IEEE (2018)

23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29044-2

24. World Health Organization: COVID 19 - GLOBAL. https://bit.ly/3AI5RR0. Accessed 21
June 2021

https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/s00779-011-0494-x
http://ceur-ws.org
http://ceur-ws.org
https://doi.org/10.1007/978-3-540-74255-5_37
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://bit.ly/3AI5RR0


A Transformation Model for Excelling
in Product Roadmapping in Dynamic
and Uncertain Market Environments

Stefan Trieflinger1(B), Jürgen Münch1, Stefan Wagner2, Dominic Lang3,
and Bastian Roling4

1 Reutlingen University, Alteburgstraße 150, 72768 Reutlingen, Germany
{stefan.trieflinger,juergen.muench}@reutlingen-university.de

2 University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany
stefan.wagner@iste.uni-stuttgart.de

3 Robert Bosch GmbH, Borsigstraße 24, 70469 Stuttgart, Germany
Dominic.lang2@bosch.com

4 Viastore Software GmbH, Magirusstraße 13, 70469 Stuttgart, Germany
b.roling@viastore.com

Abstract. Context: Many companies are facing an increasingly dynamic and
uncertain market environment, making traditional product roadmapping practices
no longer sufficiently applicable. As a result, many companies need to adapt their
product roadmapping practices for continuing to operate successfully in today’s
dynamic market environment. However, transforming product roadmapping prac-
tices is a difficult process for organizations. Existing literature offers little help
on how to accomplish such a process. Objective: The objective of this paper is
to present a product roadmap transformation approach for organizations to help
them identify appropriate improvement actions for their roadmapping practices
using an analysis of their current practices.Method: Based on an existing assess-
ment procedure for evaluating product roadmapping practices, the first version
of a product roadmap transformation approach was developed in workshops with
company experts. The approach was then given to eleven practitioners and their
perceptions of the approach were gathered through interviews.Results:The result
of the study is a transformation approach consisting of a process describing what
steps are necessary to adapt the currently applied product roadmapping practice
to a dynamic and uncertain market environment. It also includes recommenda-
tions on how to select areas for improvement and two empirically based mapping
tables. The interviews with the practitioners revealed that the product roadmap
transformation approach was perceived as comprehensible, useful, and applica-
ble. Nevertheless, we identified potential for improvements, such as a clearer
presentation of some processes and the need for more improvement options in the
mapping tables. In addition, minor usability issues were identified.

Keywords: Product roadmap · Product strategy · Transformation model · Agile
development · Product management

© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 136–151, 2021.
https://doi.org/10.1007/978-3-030-91452-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_9&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_9


A Transformation Model for Excelling in Product Roadmapping 137

1 Introduction

For each company, it is crucial to provide a strategic direction, in which the product
portfolio will be developed over time in order to achieve the corporate vision. For this
purpose, product roadmaps are used in practice. Product roadmaps aim to provide an
essential understanding, proximity, and some degree of certainty regarding the direc-
tion of the future product portfolio [1]. In general, roadmaps can take various forms,
but the most common approach is the generic form proposed by EIRMA [2, 3]. This
generic roadmap is a time-based chart, comprising several layers that typically include
commercial and technological views. This approach enables to visualize the evolution
of markets, products, and technologies to be explored, together with the linkage between
the various perspectives [3]. In the context of software-intensive businesses, a product
roadmap can be seen as a strategic communication tool and a statement of intent and
direction. Consequently, a product roadmap should focus on the value it aims to deliver
to its customer and the business [4]. Furthermore, a product roadmap aims to create
alignment and a common understanding about the future direction to gather support and
to be able to coordinate the effort among all stakeholders [5]. Due to increasing market
dynamics, rapidly evolving technologies, and shifting user expectations, combined with
the adoption of lean and agile practices it is becoming increasingly difficult for compa-
nies to plan ahead and predict which products, services, or features to develop, especially
in themid- and long-term [6]. A recent study [7] on the state of practice regarding product
roadmapping revealed that most companies are using fixed-time- based charts that pro-
vide a forecast for specific products, features, or services (including concrete launch or
deployment dates). However, this approach is too static and therefore not suitable for the
operation in a dynamic and uncertain market environment [8]. As a result, companies are
facing the challenge of deciding between breaking promises by permanently adjusting
the roadmap or staying to a plan created months ago that seems increasingly outdated.
Due to the mismatch between static product roadmaps and a dynamic and uncertain
market environment, most companies have recognized that new approaches and pro-
cedures regarding the development and updating of product roadmaps are required. A
typical first step in advancing product roadmapping capabilities is to assess the current
state of product roadmapping practices in use. For this purpose, the product roadmap
self-assessment tool called DEEP was developed by the authors in previous research
[9]. The DEEP model enables practitioners to assess their current product roadmapping
practice in order to identify improvement potentials. However, the DEEP model does
not currently provide concrete measures that will lead to improvements in the product
roadmapping practices currently in use and, consequently, to higher levels in the DEEP
model. [9, 10]. This means that the derivation of proposals for improvement actions
and changes based on the assessment performed is not yet included in DEEP. For this
reason, in this article we propose an approach to transforming the product roadmap to
the requirements of a dynamic and uncertain market environment. This transformation
was built on the basis of the DEEP model and can thus be seen as an extension of our
previous research. In more detail, practitioners can use this model to identify activities
for improving their roadmapping practices based on their overall product roadmapping
maturity determined with the DEEP model. The identified activities set the stage for
achieving a higher maturity level according to DEEP.



138 S. Trieflinger et al.

2 Background and Related Work

2.1 Background

As mentioned above, the DEEP Product Roadmap Self-Assessment Tool developed in
previous research served as the basis for developing the product roadmap transformation
approach presented in this paper. The DEEP model was developed with the goal of pro-
viding practitioners with a tool to self-assess their organization’s product roadmap capa-
bilities. Themodelwas especially developed for companies that operate in a dynamic and
uncertain market environment. The model consists of nine dimensions, each comprising
five stages. Each dimension describes a relevant aspect of product roadmapping such as
“roadmap detailing”, “reliability” or “confidence”.Moreover each dimension is assigned
to five stages, with each stage describing a common product roadmapping practice. In
addition, each stage was assigned with scores that reflect their maturity. A company
can perform a self-assessment by selecting the applicable stage for each dimension and
summing up the corresponding score. After summing the scores for the nine selected
dimensions, a company receives its overall maturity level for product roadmapping. A
condensed presentation of the model is provided in Appendix A. Detailed information
about the DEEP model as well as its validation can be found in Münch et al. [9, 10].

2.2 Related Work

Various papers can be found in the academic literature that address the maturity or matu-
rity assessment of roadmapping practices as well as the improvement of such practices.
Overall, the existing scientific literature provides only an abstract insight into how a
company can evaluate its currently applied product roadmapping practices and how it
can be systematically improved [11]. Moreover, to the best of our knowledge, a trans-
formation model that provides detailed guidelines in order to adapt the currently applied
product roadmapping practices to a dynamic and uncertain market environment does not
exist. Moreover to the best of our knowledge, only the SAFe Implementation Roadmap
[12] provided detailed guidelines to adapt the applied product roadmapping practices to
a dynamic and uncertain market environment. It provides twelve steps to adapt a product
roadmap to an agile environment. However, these steps, which include recommenda-
tions for actions, are not based on a company-specific assessment that focuses on all
the details of the product roadmapping practices currently in use. Moreover Lombardo
et al. [4] developed a so-called “Roadmap Health Assessment Checklist”. The checklist
includes 15 questions. The questions address various topics around product roadmap-
ping including 1) focus on value, 2) embrace learning, 3) rally the organization about
priorities, 3) get customers excited, and 4) avoid overpromising. The health check can
be seen as a quick assessment that covers the main issues of product roadmapping. In
contrast to the DEEP model, the checklist by Lombardo et al. [4] does not explicitly
show various stages for each dimension and does not consider specific organizational
aspects such as responsibility and ownership of the roadmap. In addition, the authors do
not recommend any measures in order to improve the roadmapping practice, which is
the focus of this paper. A comprehensive literature review on product roadmapping can
be found in [11].



A Transformation Model for Excelling in Product Roadmapping 139

3 Research Approach

The research aims to help companies engaged in software-intensive business adapt their
product roadmapping practices to the demands of a dynamic and uncertain market envi-
ronment. In order to reach this objective, the authors defined the following research
questions:

• RQ1:How can companies approach the transformation of their product roadmapping
practice to a dynamic and uncertain market environment by using the DEEP product
roadmap self-assessment tool?

• RQ2: How do practitioners perceive the product roadmap transformation approach?

The authors developed the product roadmap transformation approach by conducting
expert workshops with three practitioners and two researchers. The authors selected the
practitioners based on their practical experience with product roadmapping as well as
their roles in the respective companies. The latter means that each of these participants
is involved in the product roadmapping process in their respective company. In addition,
each practitioner was also involved in the development of the DEEP model. In order
to integrate different perspectives into the model development, we selected a heteroge-
neous set of practitioners to participate in the expert workshops. This means that those
practitioners differ in their industry sectors within the software-intensive business and
sizes of their respective companies. Table 1 gives an overview of the practitioners that
participated in this workshop. We held three workshops on March 5th, 2021 (1,5 h),
March 17th, 2021, (1 h), andMarch 30th,2021 (1,5 h). To give all participants, the oppor-
tunity to reflect on the results of the individual workshops, care was taken to ensure that
there was sufficient time between the conduction of the various workshops. The same
practitioners participated in all workshops. Due to the COVID-19 situation, the work-
shops were conducted online, and the tool Mural was used for documentation. In order
to include the holistic product roadmap transformation approach, the conduction of the
DEEP assessment was chosen as the start of our discussion. Then open discussions with
the practitioners on what steps should be taken to reach a higher level with respect to
the DEEP model were held.

Table 1. Practitioners that participated in the expert workshops (size classification: small <50,
large >250).

Interviewee Position Experience Company size by no. of
employees

Participant 1 IT Coordinator 7 years Large

Participant 2 Head of Product Management 8 years Small

Participant 3 Product Owner 2 years Medium



140 S. Trieflinger et al.

To answer RQ2, we provided the product roadmap transformation approach along
with the DEEP model for practitioners to try without detailed explanations and instruc-
tions. The aim of this step was to validate the applicability and comprehensibility of the
DEEP model. The practitioners who participated in the interviews were not involved in
the development of the DEEP model and were using it for the first time. Specifically,
practitioners were asked to first conduct a self-assessment using the DEEPmodel. Then,
using the transformation model, they were asked to identify the dimension most in need
of improvement. Finally, they were asked to use the mapping tables to identify appropri-
ate actions to improve their roadmapping practices related to the previously identified
dimension. This included assessing whether the measures received were useful from
the practitioner’s point of view. Afterwards, we interviewed each participant to identify
potential for improvements (e.g., lack of clarity) of the product roadmap transformation
approach. All interviews were conducted by the same researcher online. The average
length of the interviews was 36 min with the range being between 27 min and 42 min.
In order to focus and structure the interviews and to ensure thematic comparability, we
developed an interview guide that consist of the following questions: 1) What do you
think are the strengths and weaknesses of the model? 2) Which phrases did you find
difficult to understand? 3) In your opinion, would the model help your company to adapt
the current product roadmapping practice to a dynamic and uncertain market environ-
ment? In total, we recruited 11 experts who operate in a dynamic market environment
(e.g., smart home). As with the expert workshops mentioned above the selection of the
participants was based on their experience in product roadmapping and role in their
company. For the search of suitable participants, we used our company network as well
as the platform LinkedIn. Table 2 gives an overview of the practitioners who partici-
pated in the validation process of the transformation approach. In order to conduct an
accurate data analysis, we took notes in each interview. We analysed these interview

Table 2. Participants of the interviews (size classification: small <50, large >250).

Interviewee Position Experience Company size by no. of
employees

Interviewee 1 Product Manager 5 years Medium

Interviewee 2 Product Owner 3 years Medium

Interviewee 3 Head of Product Management 7 years Large

Interviewee 4 Software Engineer 6 years Large

Interviewee 5 Product Manager 2, 5 years Small

Interviewee 6 CEO 12 years Large

Interviewee 7 Product Owner 6,5 years Small

Interviewee 8 Product Manager 7 years Medium

Interviewee 9 Head of Product Management 9 years Medium

Interviewee 10 Sales Representative 3 years Medium

Interviewee 11 Product Manager 3.5 years Large



A Transformation Model for Excelling in Product Roadmapping 141

notes by extracting main responses, key statements, and key quotes. The results of the
validation process can be found in Sect. 5. It should be noted that the product roadmap
transformation approach presented in this paper is to be seen as the first version. This
means that it will be refined based on practitioners’ feedback (see Sect. 5) and evaluated
in practice through further research.

4 Product Roadmap Transformation Approach

In the following, the product roadmap transformation approach that emerged from the
expert workshops is outlined. The aim of the product roadmap transformation approach
is to provide guidance and direction on what measures a company should take to adapt
their currently applied product roadmapping practice to a dynamic and uncertain market
environment. The product roadmap transformation approach is an extension of theDEEP
model and consists of three parts: 1) a process that proposes steps in order to transform
the currently applied product roadmapping practices to a dynamic and uncertain market
environment, 2) recommendations on how to proceed in order to select a dimension in
the DEEP model to be improved and 3) two mapping tables that provide the user of the
transformation approach with measures that lead to an improvement of the previously
selected dimension. Each of these parts is described in the following.

4.1 Process for the Product Roadmap Transformation

As mentioned above, the prerequisite for applying the transformation approach is to
assess current roadmapping practices using the DEEP assessment model. As a result
of applying the DEEP model, the user receives the overall product roadmap maturity
level of their currently applied product roadmapping practice as well as a score for each
dimension. In order to achieve a higher score in the DEEPmodel we propose a process to
transform the product roadmap to the requirements of a dynamic and uncertain market
environment. This means that the (often traditional) product roadmapping practices
currently applied will be replaced by practices suitable for creating and operating a
product roadmap in a dynamic and uncertain market environment. This process was
built on the well-known principles of the Deming cycle for continuous improvement of
processes and products and includes the individual steps “evaluate/analyse”, “design”,
“realize”, “operate” in an iterative way. The application of the whole process will take
4 to 12 weeks according to the experiences of the authors. The steps of the product
roadmap transformation process are described in the following.

Analyze: Based on the results of the DEEP model, the first step of the product roadmap
transformation process is to analyze which dimension of the DEEP model promises the
most benefit when improved. It should be noted that the lowest-rated dimension does not
necessarily have to be the highest priority for improvement. The reason for this is that
this decisionmay also depend on the respective company context (e.g., market, industry),
the company’s goals, and the position of the person who is to plan and implement the
improvements (e.g., product owner, member of the management team, head of product
management).



142 S. Trieflinger et al.

Set Goals and Choose Measure: The phase “set goals and choose measure” includes
the definition of a clear improvement objective as well as corresponding measures that
contribute to the achievement of the defined objective. An example of an objective
could be to improve the dimension “extent of alignment” from level 2 to level 4 by
establishing a process that fosters alignment. Conceivable measures in this context could
be1) the development of a commonproduct visionby conductingworkshopswith various
stakeholders, 2) the review of this product vision by conducting customer interviews,
and 3) the consolidation of the content of all existing and loosely coupled product
roadmaps based on the previously created product vision. In order to define suitable
measures for the set objective, the product roadmap transformation approach provides
appropriate guidelines. With the help of two mapping tables (see detailed description
below), measures can be identified that contribute to the improvement of the respective
dimension. The transformation approach aims to rely as much as possible on existing
empirical evidence. Care should be taken to define appropriate key results for each
measure to be delivered at the end of the iteration. This helps to analyze to what extent
the defined objective has been achieved.

Execute: This phase aims to implement the improvement actions identified in the previ-
ous phase as well as analyze their impact on the roadmapping process. In order to imple-
ment the identifiedmeasures, the authors suggest using an iterative process including the
following steps: 1) plan (the preparation for the execution of the identified measures),
2) implementation (the conduction of the identified measures), 3) review (the analysis
of the impact of the conducted measures) and 4) retrospective (i.e., the reflection of the
approach, for instance with workshops or interviews). Example questions for a retro-
spective could be: what went well, what did not go so well, what actions need to be taken
to improve the approach of improving the roadmapping practice? (Fig. 1)

Fig. 1. Process of the product roadmap transformation

In the case that failures occur (e.g., the review or retrospective reveals that the
defined measures did not contribute to the achievement of the objective) the authors
recommend returning to the phase “analyze”. The reason for this suggestion is that
taking into consideration the learnings gained during the conduction of the process as
well as changes in the frame conditions that have occurred during the time might lead to



A Transformation Model for Excelling in Product Roadmapping 143

different decisions regarding which dimension should be in focus and which measures
will most likely support them.

4.2 Procedure for Analyzing Which Dimension Promises the Most Benefit

An important step of the product roadmap transformation approach is to identify those
dimensions that aremost promising for improvement. This is done in the sub-step (“Anal-
ysewhich dimension promises themost benefit for improvement) in the product roadmap
transformation process described above (see Fig. 2). In the case that the assessment with
the DEEP model results in the overall maturity levels 3, 4, or 5 (i.e., the respective level
that a company has reached after summing up the points of the nine dimension), the
authors recommend selecting one of the following dimensions: 1) roadmap items, 2)
roadmap detailing, 3) product discovery, 4) confidence, 5) ownership, 6) responsibility,
7) extent of alignment or 8) prioritization. In contrast, if a company is on an overall matu-
rity level 1 or 2, the authors suggest disregarding the two dimensions “prioritization”
and “extent of alignment” (see Fig. 2). The reason why the dimension “prioritization”
got excluded is that an essential success factor for an effective and efficient prioritiza-
tion process for a dynamic and uncertain market environment is to understand the value
that should be delivered to the customer and the business. If a user of the DEEP model
selects a stage that considers the factor customer value (independent of the dimension)
this leads to an overall maturity of level 3 or higher. Consequently, a company at level
1 or 2 does not include the customer value (which is crucial for the prioritization) in the
roadmapping process and thus an improvement of the dimension prioritization within
these levels is not advisable. The reason for excluding the dimension “extent of align-
ment” is that the product roadmap should be in a sufficiently mature state so that the
stakeholders are able to align their activities with the roadmap. Therefore, the dimension
alignment should not be considered until the product roadmap has reached a higher level
of maturity.

Fig. 2. Selection of the most beneficial dimension of the DEEP Model for improvement

Based on this pre-selection, the product roadmap transformation approach provides
the following criteria as recommendations for the final determination of the dimensions
to be improved:



144 S. Trieflinger et al.

• Roadmap items and detailing of the roadmap:The authors recommend considering
improving the dimension “roadmap items” before improving the dimension “adequacy
of item detailing based on the timeline (roadmap detailing)”. The reason for this is
that the usage of roadmap items of different granularity (such as products, themes,
outcomes, epics) is likely to lead to a correlation between the timeline and the level of
detailing of the roadmap items. It should be noted that ideally, the short-term planning
consists only of roadmap items with high confidence.

• Product discovery and confidence: The authors recommend considering improving
the dimension “product discovery” before improving the dimension “confidence”.
“Product discovery” is the ability of a company to identify and validate products
or features before implementation. Examples of this are conducting customer inter-
views, customer focus groups or rapid prototyping. The relationship of the dimensions
“product discovery” and “confidence” can be explained in the following way: the con-
duction of product discovery activities aims at reducing the uncertainty to a level that
allows starting building a solution that provides value for the customers and/or the
business. This includes that there is high confidence that the planned solutions will
have a high impact on the customer and/or business goals. Therefore, conducting
product discovery activities is likely to contribute to achieving confidence.

• Ownership and responsibility: The dimensions “ownership” and “responsibility”
should be considered together. The dimension “ownership” describes who owns the
roadmap (i.e., signs off and approves the roadmap), while the dimension “responsi-
bility” answers the question of “who is responsible for defining the roadmap items
and conducting the roadmapping process.

• Role and authority of the “change agents”: The role and authority of those who
are responsible for the transformation of the product roadmapping practice in an
organization must be considered. The extent to which improvement is promising and
the extent to which improvement can be influenced must be weighed here.

• Company context and culture: The corporate context and culture must also be taken
into account when considering which dimension to select. Here, among other things,
the impact of an improvement must be weighed against the associated effort.

4.3 Mapping Tables

After the conduction of the DEEP model and the analyses of the results of this assess-
ment including the identification of the most promising dimension for improvement, the
question arises of how this dimension can be improved. In order to answer this question,
we developed twomapping tables as shown in Fig. 3 and Fig. 4. The aim of this mapping
tables is to support practitioners on which improvement activities can be selected for
each dimension. It should be noted that these mapping tables are initial versions based
on previous research [5, 8, 13] as well as the results from the discussions in the expert
workshops. Future research will focus on further development and validation of these
mapping tables.

Goal Opportunity Map: The “Goal-Opportunity Map”, as shown in Fig. 3, provides
recommendations on how to improve a dimension of the DEEP model. For this purpose,
the y-axis shows the dimensions of the DEEP model. In general, the improvement of



A Transformation Model for Excelling in Product Roadmapping 145

a dimension of the DEEP model can be achieved by creating artifacts, implementing
processes, or building capabilities that are essential for the operation in a dynamic and
uncertain market environment but are still missing in the current product roadmapping
process. Currently, the initial version of the “Goal-Opportunity Map” only lists artifacts
(product vision, outcomes, ideas, hypotheses, and validated learnings) on the x-axis that
are crucial for a successful product roadmapping in a dynamic and uncertain market
environment. The artifacts were identified in the expert workshops.

Applicationof theGoal-OpportunityMap: Theuser can apply the “Goal-Opportunity
Map” (see Fig. 3) by entering the previously identified dimension (see y-axis) to obtain
an artifact (see x-axis) that is needed to improve the corresponding dimension. This
is marked in Fig. 3 by the crosses that connect the dimensions and the artifacts. For
example, the dimension “roadmap items” can be improved by developing the artifact
product vision, while for the improvement of the dimension “product discovery” the
formulation of hypotheses can lead to an improvement. Note that the “responsibility”
and “ownership” dimensions have been omitted from this first version of the Goal-
Opportunity Map, as they cannot be significantly improved by artifact generation. The
reason for this is that the improvement of these dimensions depends very much on
organizational aspects (such as the culture of the company) and less on the creation of
artifacts. Therefore, the authors recommend using the assessment with the DEEP model
as an eye-opener to discuss responsibility and ownership of the product roadmap with
management (the decision of who is responsible and owns the product roadmap can
usually only be changed by management). The application of the “Goal-Opportunity
Map” does not provide an answer to the question of what activity must be performed
to develop the artifacts on the y-axis. In order to answer this question, we developed a
second map called Goal-Activity Map that is described in the following.

Fig. 3. Goal-Opportunity Map (excerpt)

Goal-Activity Map: The purpose of the “Goal-Activity Map” (see Fig. 4) is to pro-
pose concrete measures to develop the previously identified artifacts through the “Goal-
Opportunity Map”. For example, the creation of a product vision can be created by
conducting a product vision workshop. Building prototypes or conducting one or more
experiments can help to create validated learnings (e.g., results from experiments,
insights).



146 S. Trieflinger et al.

Fig. 4. Goal-Activity Map (excerpt)

The maps presented here are currently being completed as case studies in industry
are conducted. The aim is to ensure that the recommendations contained in the tables
are based on empirical experience and can be adapted to different contexts.

5 Perception of Practitioners

This section outlines the practitioner’s perception of our approach including the feed-
back gathered during the interviews. As our proposed approach for adapting the product
roadmap practice to a dynamic and uncertain market environment starts with the assess-
ment of the currently applied product roadmapping practices, the DEEP model was
also provided to the participants. This means that the practitioners first conducted a
self-assessment using the DEEP model, followed by the application of the procedure to
identify themost beneficial dimension for improvement as well as the use of themapping
tables to obtain suitable measures to improve the previously identified dimension.

Overall, our developed approach was perceived as comprehensible and applicable.
For example, one participant mentioned: “In my opinion, the whole approach is well
structured and provides useful insights to adapt the currently applied product roadmap-
ping practices.” (product manager) In particular, the focus of the approach on customer
valuewas considered useful by the participants. One participantmentioned:“What I par-
ticularly like about the model is that it addresses customer value. In our company, we
don’t think much about why a feature is being developed. I mean it is not always clearly
understood what value the features deliver to the customer and how it contributes to our
goals. Therefore, I think the focus on customer value is very useful.” (Head of Product
Management) The start of the approach with an assessment of the currently applied
product roadmapping practices was well received. In this context, one participant men-
tioned: “In my opinion, it makes absolute sense to start the transformation process with
an assessment of the company’s current approach to product roadmapping. This enables
to identify weaknesses in the current product roadmapping approach and communicate
them clearly. Therefore, the assessment provides a good basis for further discussions, for
example with the management.” (Product Owner) Another participant added: “In our
company, many people are not satisfied with the current product roadmapping approach.
However, we struggle to identify a starting point for adapting the product roadmapping
practices to a dynamic and uncertain market environment. Here, the discussions go
round and round in circles and lead nowhere. Therefore, the DEEP model offers us a
systematic way to determine the optimal starting point for the adaption of our product
roadmap (Head of Product Management). Moreover, the feedback of the participants



A Transformation Model for Excelling in Product Roadmapping 147

provided comments for the improvement of specific dimensions of the DEEP model.
Regarding the dimension “roadmap items”, one participant did not understand themean-
ing of the used terms in the description of stage four. One participant asked: “What is the
difference between topics and themes?” (Software Engineer)One participant pointed out
that the term product vision should not be part of the dimension “roadmap items”. “In
my opinion, a product vision is important for the development of a product strategy, but
it is not an item on the product roadmap. Nevertheless, the product vision is important
for a successful product roadmapping. For this reason, I would suggest separating the
product vision into its own dimension.” (Product Owner). Furthermore, one participant
indicates that an honest assessment through the DEEP model is the basis for the success
of the subsequent procedure. “In my view, the results of the DEEP model have a signif-
icant influence on the further process. This means that if the information in the DEEP
model is incorrect, the subsequent steps will also be incorrectly defined. For this reason,
I would invest as much capacity as possible to ensure that the DEEP Model has been
applied truthfully. In other words, I would fill out the model with at least 10 participants
from different departments and discuss deviations with all participants in a meeting.”
(Product Owner).

Regarding the product roadmap transformation process, the process to select the
most beneficial dimension for improvement, and the two mapping tables, the interviews
showed that each participant understood how to apply them. Regarding the product
roadmap transformation process one participant stated: “In my opinion, the structure
and functionality of the process were clear and understandable.” (CEO) Another par-
ticipant mentioned: “From the agile world and Scrum, the general structure of the
process is familiar. Therefore, I had no problems understanding the application of the
process.” (Software Engineer) Nevertheless, the interviews revealed some potential for
the improvement of the product roadmap transformation process. In this context, two
participants mentioned missing information when a process step was not fulfilled. In the
process I lack clear instructions on how to act if one or more measures do not contribute
to the achievement of the defined goals. Should I first review the goal or keep the goal
and define new measures?” (Product Manager) In this context, “it would be nice if
the process would provide recommendations.” (Product Manager) Another participant
commented: “Let’s assume that the improvement circle has been completed and the
review and retrospective did not reveal any negative findings. But during the test phase
in the phase “operate”, I gain new insights that also include negative findings. Here, the
process does not give any information about how I should behave. Would it make more
sense to define new measures or start from the analysis?” (Product Owner) Regarding
the process we developed to select themost promising dimension for improvement, there
was no ambiguity for the participants. In detail, each participant understood that in order
to determine the most promising dimension a differentiation is made between levels 1
and 2 as well as levels 3, 4, and 5. The explanation why the two dimensions “prior-
itization” and “extent of alignment” should only be considered from level 3 onwards
was also comprehensible to the participants. Finally, the structure and application of the
two mapping tables did not pose any challenge to most participants. One participant
mentioned: “After I had conceptually identified a dimension that should be improved, I
understood that this is the input for the first mapping table [i.e., the Goal-Opportunity



148 S. Trieflinger et al.

Map]. Subsequently, I was able to determine without ambiguity the measure that is rec-
ommended to improve the dimension I had chosen.” (Head of Product Management)
One participant had problems interpreting the crosses within the two mapping tables.
“When I first considered the mapping tables, it wasn’t clear to me whether the crosses
were a default or just an example. However, when I took a closer look at the structure
and content of the mapping tables, I realized how it was meant.” (Software Engineer)
Finally, three participants noted that while the proposed measures in the Goal-Activity
Map are useful, they would like to have more measures to choose from. One participant
mentioned: “In my view, the measures in the second table are helpful. Nevertheless,
I would like to see a wider choice for the creation of each artifact.” (Product Man-
ager) Another participant adds: “I would like to see more methods in the second table
[i.e., the Goal Activity Map] that are less known within product management.” (Product
Manager).

6 Threats to Validity

We use the framework according to Yin [14] as the basis for the discussion of the
validity and trustworthiness of our study. Internal validity is not discussed with respect
to the interviews since causal relationships were not examined in the study at hand.
Since our study consists of developing the product roadmap transformation approach
and conducting interviews, we describe the threats of validity according to these two
parts.

6.1 Threats to Validity of the Development of the Transformation Approach

ConstructValidity: A threat to the construct validity is that the participants in the expert
workshops misunderstood the aim of developing the product roadmap transformation
approach. For this reason, the goal and purpose of the expert workshopwere explained to
the participants in advance. In addition, technical terms were defined within the expert
workshops. Internal validity: The expert opinions used to create the model may be
incorrect or valid only in a context-specific manner. For this reason, several experts
were consulted. External validity: The transformation approach was developed with
the support of three practitioners operating in the software-intensive business. This limits
the scope of the application of the transformation approach to companies that operating
in such environments. Reliability: The reliability was supported by conducting the
expert workshops in a systematic and repeatable manner involving two researchers and
three practitioners. Therefore, a replication of the expert workshops and a reduction of
researcher bias is supported.

6.2 Threats to Validity of the Interviews with Eleven Practitioners

Construct Validity: Similar to the expert workshops, the goal and purpose of the inter-
views were explained to the interviewees prior to the interviews. In addition, the way of
data collection through interviews allowed for asking clarifying questions and avoiding



A Transformation Model for Excelling in Product Roadmapping 149

misunderstandings. External validity: The external validity is restricted due to the lim-
ited number of participants and the fact that each participant is employed in a German
company. Thus, the results are not directly transferable to other industry sectors. How-
ever, an analytical generalization may be possible for similar contexts. Reliability: The
reported results are based on the personal perceptions of each participant. The partici-
pants may have provided answers that do not fully reflect the reality of their companies.
This threat is mitigated by the fact that the participants had no apparent incentive to
polish the truth. In addition, the researchers contacted the interviewees in case of any
ambiguities or questions.

7 Summary and Future Work

In this study, the authors presented the first version of a product roadmap transformation
approach. In addition, practitioners’ perceptions of the approachwere gathered by asking
eleven practitioners to apply the approach in their respective company context. After-
wards, interviews with each participant have been conducted to gain feedback on the
product roadmap transformation approach. Overall, the product roadmap transformation
approach was perceived as comprehensible, useful, and applicable by the practitioners.
Nevertheless, we identified potential for improvements, such as a clearer presentation of
the steps of the product roadmap transformation process and the need for more content
in the mapping tables. Practitioners can use the DEEP model in order to identify their
current status of product roadmapping. Our approach to product roadmap transforma-
tion presented in this paper provides practitioners with a guide to identify improvement
potentials of currently applied product roadmapping practices. This means identifying
those parts of the currently applied roadmapping process that are not appropriate in the
context of a dynamic and uncertain market environment. Based on this, practitioners can
use our approach to systematically implement measures that will lead to an improvement
in their product roadmapping. Identifying appropriate measures for this improvement
can be done using the mapping tables we have developed. Future work is to refine and
test the product roadmap transformation approach based on the feedback and perceptions
we gathered with the interviews. In addition, we plan to incorporate further empirical
findings on product roadmapping practices into the approach. This approach promises
to help practitioners and companies to successfully manage the transfers to dealing with
a more dynamic environment with many uncertainties by helping them change their
roadmapping practices. In addition, the developed approach and its applications will
indicate to researchers where research is needed, especially where empirical evidence
is still lacking.



150 S. Trieflinger et al.

Appendix A. DEEP Product Roadmap Self-assessment Tool



A Transformation Model for Excelling in Product Roadmapping 151

References

1. Kostoff, R.N., Schaller, R.: Science and technology roadmaps. IEEE Trans. Eng. Manag.
48(2), 132–143 (2001)

2. Kameoka, A., Kuwahara, T., Li, M.: Integrated strategy development: an integrated roadmap-
ping approach. In: PICMET 2003: Portland International Conference on Management of
Engineering and Technology Management for Reshaping the World, pp. 370–379. Portland,
OR, USA (2003)

3. Phaal, R., Farrukh, J.P.C., Probert, R.: Characterization of technology roadmaps: purpose and
format. In: Portland International Conference on Management of Engineering and Technol-
ogy. Proceedings, vol. 1: Book of Summaries (IEEE Cat. No. 01CH37199), pp. 367–374.
IEEE (2001)

4. Lombardo, C.T., McCarthy, B., Ryan, E., Conners, M.: Product Roadmaps Relaunched - How
to Set Direction While Embracing Uncertainty. O’Reilly Media, Inc., Gravenstein Highway
North, Sebastopol, CA, USA (2017)

5. Trieflinger, S.,Münch, J., Bogazköy, E., Eißöer, P., Schneider, J., Roling, B.: Product roadmap
alignment – achieving the vision together: a grey literature review. In: Paasivaara, M.,
Kruchten, P. (eds.) Agile Processes in Software Engineering and Extreme Programming –
Workshops. XP 2020. Lecture Notes in Business Information Processing, vol. 396, pp. 50–57.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58858-8_6

6. Münch, J., Trieflinger, S., Lang, D.: Why feature based roadmaps fail in rapidly changing
markets: a qualitative survey. In: International Workshop on Software-intensive Business:
Start-ups, Ecosystems and Platforms, pp. 202–218. CEUR-WS (2018)

7. Münch, J., Trieflinger, S., Lang, D.: What’s hot in product roadmapping? Key practices and
success factors. In: Franch, X., Männistö, T., Martínez-Fernández, S. (eds.) Product-Focused
Software Process Improvement. PROFES 2019. LNCS, vol. 11915, pp. 401–417. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-35333-9_29

8. Münch, J., Trieflinger, S., Bogazköy, E., Roling, B., Eißler, P.: Product roadmap formats for an
uncertain future: a grey literature review. In: Euromicro Conference on Software Engineering
and Advanced Applications (SEAA2020), pp. 284–291. IEEE (2020)

9. Münch, J., Trieflinger, S., Lang, D.: DEEP: the product roadmap maturity model: a method
for assessing the product roadmapping capabilities of organizations. In: Proceedings of Inter-
national Workshop on Software-Intensive Business: Start-ups, Platforms, and Ecosystems
(SiBW2019), pp. 19–24. Conference Publishing Consulting, Passau (2019)

10. Münch, J., Trieflinger, S., Lang, D.: The product roadmapmaturitymodelDEEP: validation of
a method for assessing the product roadmap capabilities of organizations. In: Hyrynsalmi, S.,
Suoranta, M., Nguyen-Duc, A., Tyrväinen, P., Abrahamsson, P. (eds.) ICSOB 2019. LNBIP,
vol. 370, pp. 97–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33742-1_9

11. Münch, J., Trieflinger, S., Lang, D.: Product roadmap -from vision to reality: a systematic
literature review. In: Proceedings of the International Conference on Engineering, Technology
and Innovation (ICE). IEEE (2019)

12. SAFe: SAFe Implementation Roadmap. https://www.scaledagileframework.com/implement
ation-roadmap/. Accessed 5 Oct 2021

13. Trieflinger, S., Münch, J., Knoop, V.: Facing the challenges with product roadmaps in uncer-
tain markets: experience from industry. In: Proceedings of the International Conference on
Engineering, Technology and Innovation (ICE), pp. 1–8. IEEE (2021)

14. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE Publications Inc.,
London (2014)

https://doi.org/10.1007/978-3-030-58858-8_6
https://doi.org/10.1007/978-3-030-35333-9_29
https://doi.org/10.1007/978-3-030-33742-1_9
https://www.scaledagileframework.com/implementation-roadmap/


Introducing Traceability in GitHub
for Medical Software Development

Vlad Stirbu1(B) and Tommi Mikkonen2,3

1 CompliancePal, Tampere, Finland
vlad.stirbu@compliancepal.eu

2 University of Helsinki, Helsinki, Finland
3 University of Jyväskylä, Jyväskylä, Finland

tommi.mikkonen@helsinki.fi,tommi.j.mikkonen@jyu.fi

Abstract. Assuring traceability from requirements to implementation
is a key element when developing safety critical software systems. Tra-
ditionally, this traceability is ensured by a waterfall-like process, where
phases follow each other, and tracing between different phases can be
managed. However, new software development paradigms, such as contin-
uous software engineering and DevOps, which encourage a steady stream
of new features, committed by developers in a seemingly uncontrolled
fashion in terms of former phasing, challenge this view. In this paper,
we introduce our approach that adds traceability capabilities to GitHub,
so that the developers can act like they normally do in GitHub context
but produce the documentation needed by the regulatory purposes in
the process.

Keywords: Traceability · Regulated software · Continuous software
engineering · DevOps · GitHub

1 Introduction

Assuring traceability from requirements to implementation is a key element
when developing safety critical software systems. Traditionally, this traceabil-
ity is ensured by a waterfall-like process, where phases follow each other, and
tracing between different phases can be managed with relative ease. To support
this tracing, sophisticated software systems have been implemented, which take
advantage of this phasing and help developers to focus on issues at hand in the
current phase.

However, new software development paradigms, such as continuous software
engineering [2] and DevOps [9], which encourage a steady stream of new features,
committed by developers in a seemingly uncontrolled fashion in terms of former
phasing, challenge this view. Instead of advancing in phases from specification to
design to development in the same pace with all features, developers can select
items from specification to work on, and eventually they commit new code back
to the main codebase. This code is then automatically deployed to use, leaving
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 152–164, 2021.
https://doi.org/10.1007/978-3-030-91452-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_10


Introducing Traceability in GitHub for Medical Software Development 153

virtually no trace between specification and the code, unless special actions are
taken by the developers.

In this paper, we propose introducing traceability features to GitHub, the
most popular site used by software developers. With these features, the develop-
ers can act like they normally do while developing software in GitHub context,
but also produce the documentation needed by the regulators in the process.
A prototype implementation has been built, following the ideas proposed in
[11] as future work. The work has been carried out in medical context, but we
trust that the same approach can be applied in other safety critical application
domains covered by regulations. However, in the rest of this paper, we focus on
the medical domain, as regulatory restrictions may vary across the domains.

The rest of this paper is structured as follows. In Sect. 2, we present the
background and motivation of this work. In Sect. 3, we address the concept of
design control, which is an essential part of designing software intensive medical
products. In Sect. 4, we introduce the proposed approach, relying largely on
GitHub concepts. In Sect. 5, we discuss our key observations and propose some
directions for future work in connection with the proposed approach. Finally, we
draw the conclusions in Sect. 6.

2 Background and Motivation

Medical device software development has unique needs. Its design, development,
and manufacturing processes are strictly regulated. To comply with these regula-
tions, there must be proper control mechanisms in place to ensure the end prod-
uct’s safety, reliability, and ability to meet user needs. These control mechanisms
originate from the regulations’ requirements, corresponding guidance documents,
international standards, and national legislation. However, their plentiful exis-
tence is one of the reasons medical software is often considered a complex domain
by developers.

In more detail, for every phase within the product lifecycle – design, devel-
opment, manufacturing, risk management, maintenance, and post-market pro-
cesses – certain standards must be followed for regulatory compliance. The set
of applicable standards for software include general requirements for health soft-
ware product safety (IEC 82304-1) [5], software life cycle process (IEC 62304 [3]),
risk management process (ISO 14971 [7]), and usability engineering (IEC 62366-1
[4]). Furthermore, the manufacturers are expected to have a quality management
system that must comply with further associated regulations – requirements of
the Medical Device Quality Systems standard ISO 13485 [6] or its US coun-
terpart, US FDA 21 CFR part 820. These standards form a minimum yet an
overwhelming set of regulations to consider when developing medical devices
with software.

To ensure compliance to the above standards, plan-driven methodologies have
been the preferred way to develop products in regulated industries. Their cultural
affinity with the language and format used by standards referred to above have
made them the natural choice. However, the long feedback loops that character-
ize these methodologies are even longer in the high ceremony process required to



154 V. Stirbu and T. Mikkonen

comply with regulations. Furthermore, these practices are often somewhat dis-
tant from development activities that are used in non-regulated software devel-
opment. Sometimes Application Lifecycle Management (ALM) tools, commonly
used in regulated development, amplify this distance rather than helping to
overcome it.

The situation becomes particularly complex when working with medical sys-
tems that consist of software only. The developers may have no experience at all
in regulated activities, and, once the development activities are initiated, they
should have adequate knowledge in regulation-related tasks as a part of the devel-
opment. Although, the legally binding legislation texts and international stan-
dards describe the expected results, they do not describe how to achieve those
results. Therefore, practical expertise is required to define the steps required to
achieve the objectives [8]. To complicate matters further, many of the available
ALM tools require that the developers invest time and effort to keep them in
sync instead of relying on automation.

To deal with the situation, software developers – who are professionals in soft-
ware development, not regulation – often resort to compliance over-engineering
or adding extra effort to compliance-related activities to play it safe. This some-
times results in a view that compliance as the necessary evil that must be consid-
ered but has little practical relevance. Consequently, the compliance activities
are often put aside while creating software and resurrected only when a new
feature development task is completed. This resurrection often needs support
from dedicated compliance personnel, which might not be fluent with the latest
development methodologies.

The developers are not all wrong. The benefits of agile methods and contin-
uous software engineering also apply to medical software. Still, using them in
medical software development introduces the same concerns as with any tech-
nology – how to deal with legal and regulatory bindings in a new context [12].
This culminates in the context of continuous software development, where new
releases can be made several times a day, but this is not leveraged because of reg-
ulatory constraints. Instead, the developers are stopped from deploying things
until all the compliance and regulatory related processes are complete, breaking
the natural flow of the development team.

To complicate matters further, regulatory affairs professionals have often
practiced in environments where the medical devices always include hardware,
and where they typically follow linear development model. Hence they might
not have the skills and experience to operate in an agile software development
environment, in particular when medical devices that only include software are
considered.

3 Design Control in Software Intensive Medical Products

The concept of design control is a key element of a quality management system,
which ensures that the manufacturer is able to deliver products that fulfill the
user needs. The manufacturer is able to ensure, via systematic reviews, that



Introducing Traceability in GitHub for Medical Software Development 155

Review
User Needs

Review
Design Input

Review
Design Process

Verification
Review

Design Output

Validation Medical Device

Fig. 1. Application of design controls to waterfall design process [1]

the identified user needs are transformed into actionable design inputs that can
be used in a design process to obtain the design output, which serves as the
medical device. Besides the reviews, the manufacturer needs to perform specific
activities that ensures that the design output verifies the design input, and that
the resulting medical device validates the user needs, as illustrated in Fig. 1.

For software intensive medical products the design control activities can be
split into two layers, depicted in Fig. 2: the product and system development
activities (IEC 82304 [5]), and the software development activities (IEC 62304
[3]). At the product level, the identified user needs are converted to system
requirements that serve as design inputs for the software development process.
During software development, the system requirements are transformed into high
level software requirements that cover the software system and architectural
concerns. Later on, the high level software requirements are further distilled into
low level software requirements that serve as design input for implementation.

The resulting code, test cases and various other artifacts, such as architecture
and detailed module design documentation, created during the software develop-
ment activities, serve as the design outputs. The review of the artifacts and the
automated test result provide an effective verification procedure at unit, inte-
gration and system level. Automated acceptance tests together with the result
reports of clinical trials serve as the validation procedure. All these procedures
ensure that the proper design controls have been applied during development,
resulting in a medical product that meets the user needs.

The design control activities mentioned in IEC 82304 and IEC 62304 are
intended to describe only the required activities and desired outcomes, but not
the practical ways to achieve them. This approach gives the medical device man-
ufacturers the leeway that allows them to customise their quality management
system and software development methodology to reach the intended results.
However, it is up to the manufacturers to ensure that the defined quality man-
agement system and methodology are compliant to the regulatory requirements.



156 V. Stirbu and T. Mikkonen

High level SW
requirements/

Architectural design

Low level SW
requirements/

Detailed design
Unit test

Integration test

System test

Acceptance test

System requirements

Use requirements

User needs User needs met

System development activities

Software development activities

Implementation

IEC 82304

IEC 62304

Verification

Verification

Verification

Validation

Fig. 2. System and software development design control activities

4 Proposed Approach

In the following, we describe our approach for implementing effective design
controls and collect traceability artifacts using the GitHub native capabilities.
First, we describe the information model used for implementing the traceability.
We continue with an overview of the GitHub capabilities that serve as enablers
of traceability infrastructure. Then, based on a prototype implementation, we
describe how we mapped the information model into the GitHub context, and
how we automated the traceability process using GitHub actions.

4.1 Traceability Information Model

To be effective for a software intensive product, the design controls and the
traceability audit trail have to be applied to the concepts and tools that are
used by the development team during their daily activities. In this context, a
team developing medical product using an agile software development method-
ology and DevOps practices would be familiar with concepts like requirements
that cover high level concepts such as user stories, or fine grained details of an
implementation. They would be refining the user stories into implementation
specifications during the iteration planning, would implement the requirements,
and would integrate the product increment after the successful iteration review.

Our approach leverages this situation and builds an information model
around user needs. The user needs are refined into system requirements, that are
further decomposed into high level and low level software requirements. Each user
need can validated by one or more acceptance test case. Similarly, a requirement
can be verified using a relevant test suite at unit, integration or system level,



Introducing Traceability in GitHub for Medical Software Development 157

User needs

Requirement

Change request

Test case

refines

resolves

verifies

validates

part of

1

1

1

1..n

1..n

0..n

1..n

1

1

1

Fig. 3. Traceability information model

matching the corresponding requirement scope. The user needs, requirements
and test cases serve as design inputs. The implementation of a requirement is
modeled as a single change request. The change request bundles the code changes,
configurations needed to build and run the iteration in scope, automated and
manual test results, as well as design artifacts that describe the architecture
and detailed implementation of a module. Together, the contents of the change
request represents the design output. The change request becomes part of the
product after it is verified in a formal review. The entities and the links between
them convey in an effective manner the design control and the evidence in the
form of an audit trail. The resulting traceability information model is depicted
in Fig. 3.

4.2 Native GitHub Enablers

Over the years, GitHub has expanded their offerings with features beyond git. In
the following, we provide a brief overview of the capabilities leveraged for design
control and traceability in our prototype implementation.

Issues. Every GitHub hosted repository has an Issue section that enables teams
to document and track the progress of requirements, specifications of work items,
software bugs, feedback from users relevant for the scope of the software devel-
oped in the respective repository. An issue has a short title and a body that
contains the detailed description using markdown1. The body can include ref-
erences to other issues in the same or in a different repository. The references
build semantic links between various issues, that can be traversed using the web
user interface. Besides the title and the body that contains the description, the
issue has associated metadata like labels, which allows categorization of issues,
and assignees, which allows tracking who is performing the work.

1 https://github.github.com/gfm/.

https://github.github.com/gfm/


158 V. Stirbu and T. Mikkonen

Pull Requests. GitHub flow is a lightweight branching model that allows teams
to work on several work items simultaneous. With this model, the workflow
starts with a branch that is created from the code main branch. As the feature
is developed the changes are committed to the branch. When the feature imple-
mentation is considered complete, the pull request is opened signaling the intent
to merge into the main branch. Opening the pull request marks the beginning
of the review phase, during which the assigned members of the team discuss the
changes created by the implementation, and fix any problems that are identified.
To facilitate the review process, GitHub runs automated test and include the
results in the pull request metadata. When the review is complete the feature
is merged and becomes part of the product. Linking a pull request with the
corresponding issues that describes the feature is achieved by using keywords
followed by the reference in the pull request description, e.g. resolves #10.

Actions. GitHub makes easy to automate the software development workflows
with actions. Although the actions are typically used for automating the build-
ing, testing and deploying steps of a software development process, they can be
used for other purposes due to their ability to run custom jobs in response to any
GitHub event, or even third party events. As such, actions are an effective way
to extend the functionality of GitHub and enforce custom workflows, relieving
team members from doing repetitive compliance related jobs that can be done
better with automation.

4.3 Prototype Implementation

The prototype implementation relies on the GitHub native capabilities described
above. The key features of the prototype are introduced below.

Mapping to GitHub Native Capabilities. As a first step in implementing
the design controls and traceability audit trail, we need to map the informa-
tion model to the capabilities available in GitHub. The use needs, the system
and software requirements are implemented as issues labelled with the following
labels: need, system requirement and software requirement. The issue creation
in the correct format is facilitated by issue templates, which relieves the creator
from the chores of ensuring that the issue structure (e.g. sections) and labels
are fulfilled. The change requests are implemented with pull requests, while the
structure of the pull request is enforced using the pull request template. The
relations between issues are implemented using references. Finally, the test cases
are described using Gherkin syntax2 or Robot Framework3. The mapping is
summarised in Table 1.

2 https://cucumber.io/docs/gherkin/reference/.
3 https://robotframework.org.

https://cucumber.io/docs/gherkin/reference/
https://robotframework.org


Introducing Traceability in GitHub for Medical Software Development 159

Table 1. Mapping traceability to GitHub native capabilities

Traceability GitHub capability Implementation

User need Issue User need template

System requirement Issue System requirement template

Software requirement Issue Software requirement template

Change request Pull request Pull request template

Relations References Reference to related concepts in
issues and pull requests body

Test case - Gherkin or robot framework

## Issue section

Section description

---

partOf: #6

---

Listing 1: Issue body source with requirement relationship metadata

Conveying Parent Requirement Relationships. While GitHub is capable
of encoding relationships between the issues, it lacks the ability to add semantics
to the relationship. In our implementation, we decided to add the semantic
information using the frontmatter, a YAML4 formatted object that encodes issue

Fig. 4. GitHub rendering of an issue containing requirement relationship metadata

4 https://yaml.org/spec/1.2/spec.html.

https://yaml.org/spec/1.2/spec.html


160 V. Stirbu and T. Mikkonen

## Description

Issue description

## Traceability

### Related issues

- [ ] Subtask Issue (#7)

Listing 2: Issue body source with sub-requirements encoded as a checklist

metadata, typically located at the beginning or the end of the issue’s description.
The parent issue is indicated using partOf metadata. In the issue body presented
in Listing 1, the parent of the issue is the issue #6 in the same repository. The
issue is rendered by GitHub as seen in Fig. 4.

Visualizing Related Sub-requirements. To better visualize the issues that
have been refined in sub-requirements, we are using the ability of GitHub to
render markdown checklists. In Listing 2, we can see that the issue #7 defined
earlier is listed as a related issue in its parent issue #6. We can also encode
the status (e.g. open or closed), depending on the state of the corresponding
checklist item. The GitHub rendering of this issue is depicted in Fig. 5.

Fig. 5. GitHub rendering of an issue containing sub-requirements



Introducing Traceability in GitHub for Medical Software Development 161

@issue-7

Scenario: New test case

Given initial state

When the trigger

Then resulting state

Listing 3: Test case described using Gherkin syntax

Linking Change Request with Requirements and Test Cases. GitHub
has a built-in ability to link pull requests with issues using keywords such as
Resolves followed by a reference to the corresponding issue. The capability
goes further, as when an pull request is merged the linked issue is automati-
cally closed. Our prototype implementation leverages this capability for build-
ing the traceability audit trail between the change request with the requirement
resolved by it. In addition we construct relationships between the new test cases
introduced by the pull request and the requirement. For example, the test case
described in Listing 3, indicates that the new scenario tagged with @issue-7
corresponds to requirement #7. The information is included an the Traceability
section of the issue and rendered by GitHub as seen in Fig. 6.

Fig. 6. GitHub rendering of an issue resolved by a change request and the associated
test cases



162 V. Stirbu and T. Mikkonen

Automation with GitHub Actions. GitHub user interface is able to render
the descriptions of the issues, enabling the users to see the traceability informa-
tion and traverse the link relations. However, crafting by hand the markdown
according to the conventions used in this prototype implementation is laborious
and prone to errors.

To overcome this obstacle, we have automated the process using GitHub
actions. Our custom action reacts to issue and pull request events as follows.
When an issue event is triggered, the action inspects the body of the issue
looking for parent relationship. If found, the action updates the parent issue
with information about sub-requirements. Similarly, when the pull request event
is received, the action detects which issue the change resolves and updates the
corresponding information about the test cases. When an issue is merged the
status change is reflected in the issue by GitHub and out action updates the
status in the parent requirement. As a result, the process of crafting the issue
descriptions is performed mostly automated, leaving only two steps in which the
user input is needed to indicate the parent relationship and the new issue.

5 Discussion

Based on the experiences with the prototype, we next consider two key goals of
this work. These address the effectiveness of audit trail traceability in practice,
and tooling issues of software development and regulatory activities.

Traceability Audit Trail Effectiveness. Our approach enables compliance
officers to perform their activities using the same tool used by the development
team. They are able to track the decomposition of the design inputs in form
of labelled GitHub issues, starting with the system requirements, going through
the high level software requirements, and ending with the low level or detailed
software requirements. The change management is performed at every level dur-
ing the pull request review phase, which serves also as a design control. During
the pull request review, the regulatory activities are performed and the evidence
trail is collected by building relationships between requirements, test cases and
artifacts contained in the pull request, according to the traceability information
model. The highly automated process, with human input limited to very specific
procedures, enables rapid and continuous software certification without the need
of special tools (e.g. Sherlock [10]).

Lightweight formats familiar to developers like markdown, serve as effec-
tive means to document design inputs (e.g. issues), and design outputs (e.g.
software architecture and design augmented with PlantUML5 or Mermaid6 dia-
grams). Being text-based, these design documents can be properly version either
directly into GitHub, as is the case of issues, or in the git repository for all other
documents. Additionally, keeping the design documents close to the code and

5 https://plantuml.com.
6 https://mermaid-js.github.io/mermaid/.

https://plantuml.com
https://mermaid-js.github.io/mermaid/


Introducing Traceability in GitHub for Medical Software Development 163

performing the change management activities in a single step (e.g. pull request
review) ensures that the documentation is properly maintained, following the
software development pace.

Common Tooling for Software Development and Regulatory Activ-
ities. Traditionally, ALM tools address product lifecycle management, cov-
ering governance, development, and maintenance. These include management,
software architecture, programming, testing, maintenance, change management,
integration, project management, and release management. However, as already
mentioned, these often require manual interventions from developers, and a
waterfall-like approach favored by compliance officers is often prescribed in them
as the advocated process. Hence, a divide between software developers and com-
pliance officers emerges.

Distributed teams, sophisticated version management systems, and increas-
ing use of real-time collaboration have given rise to the practice of integrated
application lifecycle management, or integrated ALM, where all the tools and
tools’ users are synchronized with each other throughout the application devel-
opment stages. The proposed tool falls to this category, building on these capa-
bilities that are immediately available in GitHub and on an extensions that
support tracing the artifacts needed for compliance reasons. This in essence
integrates regulatory activities in the continuous software engineering pipeline.
This in particular concerns pull requests, which are the way to introduce changes
to software, but which can also be used as means to manage compliance with
respect to changes in code.

The proposed implementation is at present only at prototype stage. However,
although the approach looks rough comparing with the much more polished
ALM tools, it has several benefits that can be associated with the use of state-
of-the-art software engineering tools and associated ecosystems. These include (i)
leveraging a large 3rd party DevOps tools ecosystem, which includes numerous
beneficial tools and subsystems that are available either in open source or as
hosted services; (ii) the solid GitHub APIs, which are used in numerous GitHub
projects; and (iii) close integration with popular development environments such
as Visual Studio Code7.

Limitations and Future Work. The effective use of the proposed approach
requires a level of familiarity with GitHub and related the DevOps ecosystem.
Although this should be the case for experienced software-intensive organiza-
tions, traditional medical device manufacturers and compliance professionals
may find it difficult to switch from an integrated document oriented compliance
process to one where the documentation is managed as code and the authoring
tools are not word processors or spreadsheet applications. Better authoring tools
and simpler ways of navigating the GitHub user interface for non-programmers
would simplify the adoption process and make this way of working more
accessible.
7 https://code.visualstudio.com.

https://code.visualstudio.com


164 V. Stirbu and T. Mikkonen

6 Conclusions

Developing regulated software is often considered as an activity that is com-
plicated by compliance related aspects, such as traceability and risk manage-
ment. For many organizations, this has meant using waterfall-like development
approaches, where the sequential phases help in managing traceability. However,
such approach in essence eliminates the opportunity to use agile or continuous
software engineering methods.

To improve the situation, in this paper we have described our approach
that expands the GitHub functionality with traceability from requirements to
implementation, a key element when developing safety critical software systems.
Our prototype implementation demonstrates that GitHub serves as an effective
design control mechanism, allowing regulatory professionals to conduct their
regulatory activities alongside software developers.

Acknowledgements. The authors would like to thank Business Finland and the
members of the AHMED (Agile and Holistic MEdical software Development) consor-
tium for their contribution in preparing this paper.

References

1. FDA - Center for Devices and Radiological Health: Design Control Guidance for
Medical Device Manufacturers (1997)

2. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

3. International Electrotechnical Commission: IEC 62304:2006/A1:2015. Medical
device software - Software life-cycle processes (2015)

4. International Electrotechnical Commission: IEC 62366-1:2015. Medical devices -
Part 1: Application of usability engineering to medical devices (2015)

5. International Electrotechnical Commission: IEC 82304-1:2016. Health software -
Part 1: General requirements for product safety (2016)

6. International Organization for Standardization: ISO 13485:2016. Medical devices
- Quality management systems - Requirements for regulatory purposes (2016)

7. International Organization for Standardization: ISO 14971:2019. Medical devices
- Application of risk management to medical devices (2019)

8. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: DevOps in regulated software devel-
opment: case medical devices. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering: New Ideas and Emerging Technologies Results Track
(ICSE-NIER), pp. 15–18. IEEE (2017)

9. Lwakatare, L.E., et al.: DevOps in practice: a multiple case study of five companies.
Inf. Softw. Technol. 114, 217–230 (2019)

10. Santos, J.C.S., Shokri, A., Mirakhorli, M.: Towards automated evidence generation
for rapid and continuous software certification. In: 2020 IEEE International Sympo-
sium on Software Reliability Engineering Workshops (ISSREW), pp. 287–294 (2020)

11. Stirbu, V., Mikkonen, T.: CompliancePal: a tool for supporting practical agile and
regulatory-compliant development of medical software. In: 2020 IEEE International
ConferenceonSoftwareArchitectureCompanion(ICSA-C),pp.151–158.IEEE(2020)

12. Wagner, D.R.: The keepers of the gates: intellectual property, antitrust, and the
regulatory implications of systems technology. Hastings LJ 51, 1073 (1999)



Human Factors



A Preliminary Investigation on the
Relationships Between Personality Traits
and Team Climate in a Smart-Working

Development Context

Rita Francese1, Vincent Milione1, Giuseppe Scanniello2(B) ,
and Genoveffa Tortora1

1 University of Salerno, Fisciano, Italy
{francese,tortora}@unisa.it, v.milione3@studenti.unisa.it

2 University of Basilicata, Potenza, Italy
giuseppe.scanniello@unibas.it

Abstract. Developers collaborating with collective efforts in large-scale
distributed software typically have different personalities that might play
a central role in software development and in team climate. In this paper,
we have investigated if personality traits are related to the perceived team
climate of software developers (Computer Science master students) in a
smart-working development context. In particular, we conducted a pre-
liminary study with 53 master students of a Computer Science course
conducting a project work during the Covid-19 pandemic. Participants
were grouped into 19 distributed teams. We analyzed the correlation
between personality traits and team climate factors and created a pre-
dictive model for Task Orientation using these correlations. Results sug-
gest that the Extroversion personality trait (characteristic of social and
easy-going people) is statistically significant. We also observed a (weak)
positive correlation with considered team climate factors.

Keywords: Team climate · Personality trait · Distributed
development · Smart-working · Empirical study · Covid-19

1 Introduction

Personality traits are responsible for the individual’s preferences, opinions, atti-
tudes, values, and behaviors and contribute in distinguishing each individual
from the others. The Software Engineering (SE) research has been investigating
the impact of personality on the quality and performance of a software project
since 1960 [15,16,24]. Software project results are influenced by the work style
of each team member who often has a different background [17]. Team members
have to work together to accomplish a specific task, often while being face-to-
face [14]. During the Covid-19 pandemic period, cooperation has been mainly
conducted remotely, by using both asynchronous distributed development tools
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 167–182, 2021.
https://doi.org/10.1007/978-3-030-91452-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_11&domain=pdf
http://orcid.org/0000-0003-0024-7508
https://doi.org/10.1007/978-3-030-91452-3_11


168 R. Francese et al.

and synchronous video calls. Meetings have been regularly conducted to discuss
the evolution of the project and to increase the collaboration among team mem-
bers, thus enhancing team climate.1 The Team Climate influences not only the
personal relationships within the team and the team members’ satisfaction, but
it also affects the project result in terms of quality and performance.

In the literature, there is a growing interest in the team’s climate, the individ-
ual’s personality, and the relationships between productivity and team members’
satisfaction [2,7,21,23]. Many studies are focused on how different kinds of team
climate, such as for innovation or safety may derive specific results of the work-
group outcomes (e.g., oriented toward innovativeness or accident avoidance). To
obtain such a result, a shared team climate has to be perceived by the team
members and measured in a reliable way [4]. Although the interest of the SE
community on team’s climate there is a lack of studies in the context of smart-
working, i.e., a work arrangement in which employees do not commute to a
central place of work, such as an office building. As mentioned, such a kind of
work has gained in popularity during the years in software projects and obtained
a further boost during the Covid-19 pandemic.

In this paper, we present the results of a correlation study—conducted during
the Covid-19 pandemic—aiming at improving our body of knowledge on the
personality traits and the team climate relationships in a distributed smart-
working development context when developers are Computer Science students.
The participants in the study were 53 master students (graduate students) in
Computer Science at the University of Salerno. They were grouped into 19 teams,
each of them aiming at conducting a multi-platform project in distance fashion.

The main contributions of the research presented in this paper can be sum-
marized as follows:

– the correlation between personality traits and team climate factors in a dis-
tributed smart-working context have been empirically analyzed from the
point-of-view of Computer Science master students;

– a regression model for predicting Task Orientation from Extroversion has
been defined.

The remainder of the paper is organized as follows. In Sect. 2, we present
background and discuss related work. In Sect. 3, we present the adopted research
methodology. Results of the study are reported in Sect. 4. The threats to validity
and possible implications for our results are discussed in Sect. 5 and Sect. 6,
respectively. We conclude the paper with final remarks and future direction for
our research in Sect. 7.

2 Background

In this section, we first introduce the adopted personality and team climate mod-
els, then we discuss related work referring to the SE studies on the relationships
between personality and team climate.
1 Team climate refers to a shared perception among the team members of the team’s

work procedures, practices, and members’ behaviors [25].



Relationships Between Personality Traits and Team Climate 169

2.1 Big Five Model and Associated Instruments

Several models have been proposed to describe personality traits. In this paper,
we adopt the Big Five Model [11], a well-known taxonomy of personality traits.
It was originally proposed in 1961. The Big Five Model identifies 5 major per-
sonality traits described in a broad dimension.

– Openness to experience indicates how strong the individual’s imagination,
aesthetic sensitivity, and adventurousness are. High scores on this trait are
normally interpreted as the individual being intellectual, creative, and curi-
ous; on the other hand, those who score low tend to be close-mind and con-
servative.

– Conscientiousness expresses an individual’s achievement orientation and con-
trol over their impulses. Conscious individuals tend to be good and well-
organized workers capable of planning and completing tasks perfectly and effi-
ciently. Individuals with low scores in conscientiousness are typically impul-
sive and unorganized, less bound by rules.

– Extroversion indicates how individuals may be friendly, approachable,
talkative, and active. Individuals who score high on this trait tend to be
sociable, stimulated by others, and easy-going. Whereas low scores indicate
the individual may be more reserved and solitary.

– Agreeableness represents how cooperative, trusting, or empathetic an individ-
ual may be. Agreeable individuals tend to be kind in nature, sympathetic,
cooperative, and trust others more. Disagreeable individuals, instead, tend to
be suspicious and antagonistic, uncompromising, or unconcerned with other
individuals’ needs.

– Neuroticism is the measure of the individual’s emotional instability. Highly
neurotic individuals tend more likely to be anxious and insecure. Less neurotic
individuals tend to appear stable and calm.

For assessing personalty most SE studies (e.g., [6,20]) adopted the freely avail-
able International Personality Item Pool (IPIP) [12], as it gives free sets of items
and psychometric scales based on the Big Five Model framework. Among the
many questionnaires based on IPIP, we selected IPIP-NEO-120. It is made up
of 120 items. Each item is rated by the submitter using a Likert scale varying
from 1 (highly inaccurate) to 5 (highly accurate).

2.2 Team Climate Research in Software Engineering

Team climate may be defined as team member’s shared perceptions of the team’s
work procedures, practices, and member behaviours [1]. To work together effec-
tively, it is very relevant to get a positive group climate based on personal rela-
tions [27]. The concept of team climate is complex and has been decomposed
into different dimensions. The Team Climate Inventory (TCI) [25,26] aims at
assessing the team climate perception. It is largely adopted in SE for assess-
ing the team climate. It has been used for evaluating team performance [18],
satisfaction of the team members [2] and software quality [1]. Team climate is



170 R. Francese et al.

commonly assessed by using the Team Climate Inventory (TCI), a questionnaire
proposed by Anderson and West [4]. It is based on the following four factors:

– Vision shows how clear, attainable, and valued objectives are to the individual
and across the team.

– Participation Safety measures the participation levels of members in decision-
making processes and the psychological safety perceived when members would
share new or improved methods.

– Support for Innovation measures how much the team supports the ideas of
using new technologies so accepting the risks of using new and unfamiliar
technologies.

– Task Orientation measures the team’s commitment to achieving the highest
performance in their work.

The most adopted variant consists of 38 questions and was proposed by Anderson
and West [4] in 1998. A five-point Likert scale from 1 to 5 (from little extent to
great extent) is adopted to evaluate each item. Each factor is then calculated by
computing the average of all its related items.

2.3 Related Work

Many SE studies focus on team composition and team members’ personali-
ties, but only a few of them concern team climate. For example, Gomez and
Acuna [13] conducted a quasi-experiment to assess whether developers’ person-
ality affects team climate. They measure personality traits with the NEO-FFI
Test [9] and the TCI questionnaire. Participants were 105 Computer Science stu-
dents. Results suggested that the Extroversion personality factor has an influence
on software quality and no relation with team satisfaction.

Soomro et al. [22] conducted a survey with 36 IT employees concerning the
relationship between personality traits, team climate, and performance. They
adopted IPIP-NEO personality and TCI tests for assessing the personality traits
and team climate perception, and the performance by following the approach
proposed in [8]. Extroversion was significantly related to both team climate and
team performance.

Soomro et al. [21] performed a Systematic Literature Review (SLR) on the
research studies in SE investigating the relationships between personality traits
and team climate and performances. Their results revealed that at that date of
the execution of such SLR, there was no significant research on the relationships
between personality and team climate.

Acuna et al. [2] investigated the effect of personality and team climate on
product quality and satisfaction in software development teams. Results were
aggregated from a twice replicated quasi-experiment and revealed that there
exists a positive relationship between all four climate factors and satisfaction.
Also, individuals with higher Agreeableness personality factor have the highest
satisfaction levels, while both Extroversion personality and Participative Safety
and Task Orientation climate perceptions are positively correlated to software
product quality.



Relationships Between Personality Traits and Team Climate 171

Shameem et al. [18] proposed a framework aiming at associating personality
traits with team climate factors. The authors asserted that conscious and extro-
verted team members have a positive influence on the team climate and may get
effective team performance. Only a discussion is conducted, without the support
of empirical investigations.

Vishnubhotla et al. [23] studied the relationships between the five-factor
model personality traits and the factors related to team climate within the
context of Agile teams working in a Telecom company. Participants were 43
software professionals. Their results revealed that the Agreeableness personal-
ity trait has a significant positive relationship with the perceived level of team
climate. The authors also defined regression models for predicting team climate
factors from Agreeableness.

User studies in the context of (distributed) smart-working are lacking. We
conducted the study presented in this paper to better understand personality-
team climate relationships in a distributed smart-working development environ-
ment due to the current pandemic context. We also provided a linear regression
model for predicting Task Orientation.

3 Study Design and Planning

3.1 Goal

Many software companies, in their software development process, use remote
cooperation among team members, for example, both asynchronously by using
distributed development tools and synchronous by video calls. This was why we
were interested in studying the relationships between personality traits and team
climate when members work in a smart-working context. Therefore, the goal of
our study, using Goal-Question-Metric (GQM) [5], can be defined as follows:

Analyze personality traits and team climate for the purpose of understanding
their perception and correlation with respect to the development of multi-
platform applications for smart devices from the viewpoint of the developer
in the context of distributed smart-working development teams composed of
Computer Science students.

3.2 Participants

The participants were 53 students of a master degree (i.e., graduate) in Com-
puter Science at the University of Salerno. Students were enrolled in the Enter-
prise Mobile Application Development (EMAD) course for the a.y. 2020/2021.
This course was delivered in Italian Language. The students enrolled in the
EMAD course were 23.06 years old on average (σ = 1.24), 3 were female (6%),
and the remaining were male (94%). Students were grouped into 19 teams accord-
ing to their preferences; 15 teams were composed of three members and 4 by
two. All the students had web programming experience (average score of object-
oriented programming, web programming, and database courses was higher than



172 R. Francese et al.

24/30) and, before the EMAD course, they did not know React Native, NodeJS,
and Firebase, namely the technologies presented in that course.

As a laboratory activity of the EMAD course, the students were asked to
accomplish a software project in groups. Each course project consisted of the
development of a multi-platform application for smart devices with both front-
end and back-end. The teams were asked to develop the front-end by using React
Native, while the back-end with NodeJS or serverless technology, like Firebase.
We asked the participants to use Microsoft Teams for F2F meetings and Github
for distributed version control and source code management. Although we did
not impose any restriction on the communication language, the communication
took place in Italian. The development lasted from the beginning of October
2020 to the end of February 2021. The participation in our study was voluntary
and all the students of the EMAD course took part to it.

3.3 Data Collection

The course started on September 15th 2020. After one week, the lecture of the
course (one of the authors) sent an email to each student asking if they would
like to participate in our study. If she was willing to participate, she first filled
in a consensus form, and then she filled in the IPIP-NEO-120 questionnaire.
Both in the email and survey we stated the purposes of our research and assured
students that their data would be used only for research purposes and treated
anonymously. To alleviate any possible concerns, we guaranteed anonymity to
each participant and assured that none other than members of the research
group would have access to the data collected. All 53 students complied with
these terms and submitted the first survey. Each survey was tagged with a unique
id (such as M1, M2...). The participants had to fill in the IPIP-NEO-120 ques-
tionnaire by October 15th. All 53 students submitted the TCI questionnaire by
February 15th 2021. Participants filled in a consensus form. Following the app-
roach adopted by [23], the IPIP-NEO-120 answers of all members were entered
by one of the authors into an online version of the IPIP-NEO questionnaire,2

which compares the given responses with responses given by individuals of simi-
lar age and gender. These numerical scores are in percentile form. The individual
reports give further information as it classifies the given scores as low, average,
or high.

3.4 Data Analysis Procedure

We used the R statistical environment3 to perform our data analysis according
to the following steps:

2 Dr. John A. Johnson, Professor of Psychology, Penn State University, Short Form
for the IPIP-NEO (International Personality Item Pool Representation of the NEO
PI-R R©), https://bit.ly/3nHo8tK.

3 https://cran.r-project.org.

https://bit.ly/3nHo8tK
https://cran.r-project.org


Relationships Between Personality Traits and Team Climate 173

– Descriptive analysis. We show the data distribution of the two question-
naires by using boxplots. We also report descriptive statistics, i.e., median,
mean, and standard deviation, and Coefficient of Variation (CV). CV is a
dimensionless measure defined as the ratio of the standard deviation and the
mean. It represents the variability in relation to the mean of the population. It
is useful to perform a relative comparison of two measurements with different
units of measure.

– Data Aggregation. To analyze overall team view it is needed to aggregate
the scores of individual subjects. The aggregation of individual data is only
justified if there is consensus among team members, which must be measured
using some form of inter-rater agreement. To this aim, generally, the ICC(1)
index is computed. This requires that the ICC(1) index be over 0.20. ICC is
based on the assumption that data are normally distributed.

– Correlation analysis. We decided to perform correlation analysis to mea-
sure the relationships between personality traits and team climate factors. We
planned to use the Pearson correlation test. To apply this kind of analysis, we
verified the normality of data by using the Shapiro-Wilk test [19] on the TCI
and personality trait scores by setting a 95% confidence interval (α = 0.05). A
p-value smaller than α allows us to reject the null hypothesis and to conclude
that the distribution is not normal. In this case, we exploited the Spearman
non-parametric test by fixing α equals to 0.05 as for all the other statistical
tests used in our data analysis. Thus, to reject the null hypothesis–samples
are uncorrelated) the p − value must be less than 0.05. When either the
Pearson correlation test or the Spearman non-parametric test allowed us to
reject the null hypothesis that samples are uncorrelated, we further studied
that significant correlation. As for the meaning of the correlation, we consider
the interpretation provided in Table 1, e.g., if the correlation value is in the
interval [0.20, 0.39] the correlation is then considered weak and positive.

– Regression analysis. By following the approach adopted by [23], we used
linear regression for assessing whether some personality trait variables explain
some team climate factors. Linear regression may be performed when specific
requirements are held. Samples have to be normally distributed, check per-
formed during the correlation analysis. The relationship between the inde-
pendent and dependent variables to be linear. The linearity assumption may
be tested by examining the scatter plots. We also verified the normality of
the residual errors by using the Shapiro-Wilk normality test on the residuals,
requiring p − value ≥ 0.05. The absence of auto-correlation was verified by
using the Durbin-Watson test, passed for results in the [1.5, 2.5] range. The
homoscedasticity in our residuals was tested with the Breusch-Pagan test,
passing for p − value ≥ 0.05.

4 Results

In this section, we present the results of our data analysis.



174 R. Francese et al.

Table 1. Correlation Intervals

Correlation intervals Strength of the correlation

0.00 to 0.19 (−0.19 to 0) Very weak positive (negative)

0.20 to 0.39 (−0.39 to −0.20) Weak positive (negative)

0.40 to 0.69 (−0.69 to −0.40) Moderate positive (negative)

0.70 to 0.89 (−0.89 to −0.70) Strong positive (negative)

0.90 to 1 (−1 to −0.90) very Strong positive (negative)

4.1 Descriptive Analysis

In Table 2, we report the descriptive statistics to the answers to the IPIP-NEO
questionnaire according to the five personality traits: Openness, Extroversion,
Agreeableness, Conscientiousness, and Neuroticism. The answers to this ques-
tionnaire are graphically summarized by the boxplots shown in Fig. 1. In these
boxplots, we also show three thresholds, so delimiting the scores for personal-
ity traits as: low, average, and high. For example, a score is average if it is in
between 30 and 70. All the medians reported in Table 2 and shown in the boxes
in Fig. 1 are in the average area and the highest median value is for Agreeable-
ness (65). This is a relevant aspect for team working: it represents the tendency
to be altruistic, kind, trustworthy, and cooperative. Also, Conscientiousness has
a high median (61). This factor denotes that team members generally are careful
and diligent. As for Neuroticism, which is a negative quality, the medial value is
equal to 50. The lower median value can be observed for Openness, which means
that team members tend to be less creative, imaginative, and adventurous.

Table 2. Distribution of personality traits’ scores.

Personality trait Mean Median Std. Dev. CV

Openness 39.15 37 21.99 56%

Extroversion 52.43 50 24.35 37%

Agreeableness 60.92 65 26.08 43%

Conscientiousness 60.42 61 22.50 37%

Neuroticism 46.26 50 25.09 54%

In Table 2, we report also the values of the Coefficient of Variation (CV) for
each personality trait. Openness is the personality trait with the greatest CV
value (56%). This means that Openness has the biggest dispersion around the
mean. Neuroticism has also a relatively high CV (54%). CV values less than
50% can be observed for the other traits. In addition, for Conscientiousness
and Agreeableness high mean values can be observed. Therefore, we can safely
assume that most of the participants are cooperative and kind, due to the high



Relationships Between Personality Traits and Team Climate 175

Fig. 1. Personality trait scores.

Agreeableness (average value is equal to 60.92) , and also well organized and
determined, (average value for Conscientiousness is equal to 60.42).

The team climate score statistics are reported in Table 3, while we graphi-
cally summarize the distributions of the values for Vision, Participation Safety,
Support for Innovation, and Task Orientation by the box-plots shown in Fig. 2.
These boxplots show that the distributions are negatively skewed for Support
for Innovation, Vision, and Participation Safety. As for Participation Safety, 50%
of the scores is over 4.63 and CV = 14.75%. This denotes that the values are
concentrated around the mean. All the distributions are characterized by a low
dispersion around the mean and a few outliers can be observed for Vision and
Participation Safety (Fig. 2). The medians of Vision and Participation Safety
were amongst the highest. However, median scores for the other two traits can
be considered high as well. Descriptive statistics suggest that most team mem-
bers had a clear vision of the team objectives and were able to safely participate
in the team decisions.

We also computed the Individual Perceived Team Climate (IPTC) [23]. A
person’s IPTC is computed by averaging his overall scores of the four team
climate factors. We show in Fig. 3 the distribution of all the IPTC values in cor-
responding teams. We can observe that the Individual Perceived Team Climate
scores of the teams is higher than 3, except for team 3, where one of the members
scored 2.56.

Table 3. Distribution of team climate scores.

Team climate trait Mean Median Std. Dev. CV

Vision 4.12 4.36 0.72 17.39%

Participation Safety 4.38 4.63 0.65 14.75%

Support for Innovation 4.12 4.13 0,69 16.75%

Task Orientation 3.79 3.78 0.51 13.43%



176 R. Francese et al.

Fig. 2. Team climate overall scores.

4.2 Normality Test Results

The application of the Shapiro-Wilk test to the personality trait values revealed
that only Extroversion (p−value = 0.248) was normally distributed, while Con-
scientiousness (p − value = 0.041), Agreeableness (p − value = 0.032), Neuroti-
cism (p − value = 0.014) and Openness to Experience (p − value = 0.020) were
not. In the case of team climate factors, only the values for Task Orientation
(p − value = 0.657) were normally distributed.

Fig. 3. IPTC team scores.

4.3 Correlation Analysis

In this section, we present the results of correlation analysis.
In Table 4, we show in bold the correlations having p − value less than 0.05

(i.e., statistically significant) for which the correlation—between Personality
Traits and Perceived Team Climate—is significant and can be analyzed. On the
basis of the results shown in Sect. 4.3, we used the Spearman non-parametric



Relationships Between Personality Traits and Team Climate 177

Table 4. p-value correlation matrix for personality traits and team climate factors.

Vision Task ori-
entation

Support for
innovation

Participation
safety

Extroversion 0.029 0.001 0.016 0.00031

Agreeableness 0.7 0.99 0.48 0.15

Conscientiousness 0.16 0.97 0.96 0.38

Neuroticism 0.21 0.28 0.26 0.16

Openness 0,71 0.72 0.37 0.94

test in all the cases with the only exception of Extroversion/Task Orientation,
where we adopted the Pearson correlation test.

Concerning the correlation between Extroversion and Vision, the correlation
result is R = 0.3. This denotes a weak positive correlation. This means that the
increase in value of one of the variables generally corresponds to the increase of
the other. Thus, extroverted individuals have in general a better clarity of the
team objectives.

The correlation results for Extroversion and Task Orientation is depicted
in Fig. 4. Also in this case, a (weak) positive correlation is shown (R = 0.37).
This means that in general extroverted individuals are inclined to maximize the
quality of task performance.

Fig. 4. Extroversion - task orientation.

Extroversion is also related to Support for Innovation by a (weak) significant
positive correlation (R = 0.33). This means that extroverted individuals are also
creative and promote new ideas.

Extroverted individuals seems also actively involved in group interac-
tions with interpersonal and non-threatening relationships and favor a non-
judgemental climate (Participation Safety) with R = 0.48. The correlation
between Extroversion and Participation Safety can be considered moderate pos-
itive.



178 R. Francese et al.

4.4 Regression Analysis

In this section, we study the contribution of Extroversion on Task Orientation,
namely the only team climate factor that satisfied the normality assumption
required to apply the linear regression analysis. In Table 5, we report the results
of the test of the assumptions required to apply regression analysis. As shown,
all the three assumptions are satisfied.

Table 5. Tests for validating regression assumptions.

Predictive model Shapiro-Wilk Durbin-Watson Breush

Extroversion-Task Orientation p-value = 0.6063 1.76439 0.8294

Table 6. Regression model description for predicting task orientation.

Estimate Stand. Error t-value p-value

Intercept 2.476705 0.461988 5.361 Signif level
0.00

Extroversion 0.016316 0.005671 2.877 Signif level
0.01

Residual Standard Error 0.4769 on 51
degrees of
freedom

R-squared 0.1396

F-statistic 8.278 on 1 and
51 DF

Signif level
0.05

The regression model that predicts Task Orientation is summarized in
Table 6. The intercept value is 2.48. It represents the expected value of Task
Orientation variable when we consider the average of Extroversion computed on
all the samples. Extroversion = 0.02 represents the slope of the line in Fig. 4.
It means that when Extroversion increases by 1 the average score of Task Ori-
entation increases by 0.02. R-squared is the percentage of the response variable
variation that is explained by a linear model. In this case, R-squared is 13.96%.
This means that 13.96% of Task Orientation is due to the Extroversion value.
The percent error measures how close a value measured by the model is to a true
value. It is given by the ratio between the residual standard error (0.477) and
the expected value of Task Orientation variable (the intercept equal to 2.477),
which is 19.25%. p−values < 0.01 for intercept and slope. This means that both
individual variables are significant. Besides, p−values < 0.05 for F-statistic. We
can conclude that R-squared is not equal to zero, and the correlation between
the model and dependent variable is statistically significant.



Relationships Between Personality Traits and Team Climate 179

5 Threats to Validity

In this section, we discuss the main threats that could affect the validity of the
results of this study.

Internal Validity. Correlation studies prove associations, they do not demon-
strate causation [3]. Therefore, this study can just prove that a correlation
between some personality traits and team climate factors exists (as the defined
research question asked). We also defined a regression model between a personal-
ity trait and a team climate factor. Also, the difference among the projects each
team had to accomplish may be a threat that may influence the team climate.

Construct Validity. We considered a single variable for each construct studied
in the study. Concerning social threats, we tried to prevent evaluation appre-
hension by informing participants that their data were anonymized and used
in aggregated form. To mitigate the threat of violated assumptions of statisti-
cal tests, in case of not normally distributed data we adopted the Spearman’s
correlation test which does not require data normality. The strength of the asso-
ciations between the variables in the case of Spearman’s or Pearson’s correlation
index (i.e., R) is the index itself, so any issue that affects the ability to draw the
correct conclusion seems to have been handled. To deal with this threat we plan
to replicate the study in different contexts with a larger number of participants.

Conclusion Validity. Two standard questionnaires were adopted to measure
personality traits and team climate perception (Reliability of measures). Both
the questionnaires are largely adopted in the literature. Nevertheless, partici-
pants may not have answered sincerely or carefully to the statements of both
the questionnaires. To try to limit this threat we informed the participants in
the study that their data were anonymized and that they could freely leave the
study when they want.

External Validity. The study we conducted could not be generalized to the uni-
verse of the distributed smart-working development projects. Participants were
master students. But they may be more skilled in the multi-platform technolo-
gies adopted for performing the software application because these are relatively
new. They were in the second year of their master degree in Computer Sci-
ence and coming to work soon. This may mitigate this threat. The number of
developers and the number of teams might be considered limited. Each team is
composed of at most three participants. This might threaten the validity of the
results since teams in real projects could include a larger number of members.

6 Implications

Extrovert individuals like to deal with others and interact and communicate
easily. The results of our study revealed that Extroversion has a positive corre-
lation on all the team climate factors in our context (Computer Science students
- Smart-working development). This factor may be particularly relevant in the



180 R. Francese et al.

case of smart-working, because greater Extroversion may be needed when F2F
contact is missing. It is also worth mentioning that it seems that Extroversion
is related to software quality [2], and also with both team climate and team
performance variables [22]. Vishnubhotla et al. [23] in the context of a Tele-
com company determined Agreeableness as related to team climate factors, no
relationship was found for Extroversion. The researcher may be interested in
determining the considered relationships to different kinds of users (e.g., smart-
working professionals) or specific development processes (e.g., Agile context). In
that respect, our results pose the basis for future research.

In the defined regression model Extroversion explained the 13.96% of Task
Orientation. The judgment of the R-squared value depends on the context: in a
quantitative environment these results may be modest, but in a social science
context many variables intervene. Thus, low values as 10% may be accepted
for studies in the field of arts, humanities, and social sciences because human
behavior is difficult to predict [10]. This point may interest for the researcher:
she may improve our results by considering a different and wider sample where
TCI data are normally distributed and try to improve our model or get other
prediction models for the other team climate factors. It is important to point out
that this study is correlational, so no causal inference can be made (for example,
we cannot say that adding an extrovert to the team will raise the climate level).

In our study, we cannot aggregate the data of the team climate and per-
sonality traits factors because data were not normally distributed. But we can
consider the scores of the project works produced by the teams according to the
teacher evaluation that assessed participation, system complexity, technologi-
cal difficulty, usability, and presentation, with a score ranging from 1 to 5 and
weight 25% of the total score for each factor. Results revealed that T3 obtained
the worst score (score = 1), while T19 and T17 scored 2. The T3 team mem-
bers had several discussions and the project risked being abandoned, see Fig. 3.
The teacher intervention was required to solve the conflicts. This gives us the
idea that different climate visions among the team members may be related to
performances, but it is only an idea that should be better investigated.

7 Conclusion

In this paper, we presented the results of a preliminary investigation aiming
at studying the relationships between personality traits and team climate in
a distributed smart-working development context. Two largely adopted stan-
dard questionnaires were used for collecting data about the perceptions of 53
Computer Science students grouped in 19 teams. Results of the correlation anal-
ysis revealed that extrovert, out-going individuals in the current pandemic con-
text when performing remote distributed work the Extroversion personality trait
seems to be related to team climate. We also defined a regression model for pre-
dicting task Orientation scores by using the Extroversion personality trait. The
value of our research concerns the improvement of our body of knowledge in the
context of personality traits and team climate in a smart-working distributed
development context.



Relationships Between Personality Traits and Team Climate 181

To deal with external validity threats, we plan to replicate our study with a
greater number of participants. Also, a different kind of them (e.g., students vs.
practitioners) could provide a better basis for the generalization of the results.
We also plan to replicate our study when the Covid-19 pandemic will be con-
cluded. We are going to execute replications—as similar as possible to the study
presented in this paper—with the goal of showing differences in the results (orig-
inal experiment vs. replications) and plan future work to understand the role of
the Covid-19 pandemic on team climate. Future work will be also devoted to
study the relationships with productivity and other project metrics as well as
product software metrics.

References

1. Acuña, S.T., Gómez, M., Juristo, N.: Towards understanding the relationship
between team climate and software quality-a quasi-experimental study. Empir.
Softw. Eng. 13(4), 401–434 (2008). https://doi.org/10.1007/s10664-008-9074-8

2. Acuña, S.T., Gómez, M.N., Hannay, J.E., Juristo, N., Pfahl, D.: Are team person-
ality and climate related to satisfaction and software quality? Aggregating results
from a twice replicated experiment. Inf. Softw. Technol. 57, 141–156 (2015)

3. Aldrich, J.: Correlations genuine and spurious in Pearson and Yule. Stat. Sci. 10(4),
364–376 (1995). http://www.jstor.org/stable/2246135

4. Anderson, N.R., West, M.A.: Measuring climate for work group innovation: devel-
opment and validation of the team climate inventory. J. Organ. Behav.: Int. J. Ind.
Occup. Organ. Psychol. Behav. 19(3), 235–258 (1998)

5. Basili, V.R., Rombach, H.D.: The tame project: towards improvement-oriented
software environments. IEEE Trans. Softw. Eng. 14(6), 758–773 (1988)

6. Calefato, F., Iaffaldano, G., Lanubile, F., Vasilescu, B.: On developers’ personality
in large-scale distributed projects: the case of the apache ecosystem. In: Proceed-
ings of the 13th International Conference on Global Software Engineering. ICGSE
’18, pp. 92–101. Association for Computing Machinery, New York (2018). https://
doi.org/10.1145/3196369.3196372

7. Caulo, M., Francese, R., Scanniello, G., Tortora, G.: Relationships between per-
sonality traits and productivity in a multi-platform development context. In:
Chitchyan, R., Li, J., Weber, B., Yue, T. (eds.) EASE 2021: Evaluation and Assess-
ment in Software Engineering, Trondheim, Norway, 21–24 June 2021, pp. 70–79.
ACM (2021)

8. Chen, J., Qiu, G., Yuan, L., Zhang, L., Lu, G.: Assessing teamwork performance
in software engineering education: a case in a software engineering undergradu-
ate course. In: 2011 18th Asia-Pacific Software Engineering Conference, pp. 17–24
(2011). https://doi.org/10.1109/APSEC.2011.50

9. Costa, P.T., McCrae, R.R., Pando, A.C., Pamos, A., Cubero, N.S., Aranda,
M.D.A.: Inventario de Personalidad Neo Revisado (NEO PI-R); Inventario Neo
Reducido de Cinco Factores (NEO-FFI): manual profesional. Tea (2008)

10. Falk, R.F., Miller, N.B.: A primer for soft modeling. University of Akron Press
(1992)

11. Goldberg, L.R.: The structure of phenotypic personality traits. Am. Psychol. 48(1),
26 (1993)

12. Goldberg, L.R., et al.: The international personality item pool and the future of
public-domain personality measures. J. Res. Pers. 40(1), 84–96 (2006)

https://doi.org/10.1007/s10664-008-9074-8
http://www.jstor.org/stable/2246135
https://doi.org/10.1145/3196369.3196372
https://doi.org/10.1145/3196369.3196372
https://doi.org/10.1109/APSEC.2011.50


182 R. Francese et al.

13. Gómez, M.N., Acuña, S.T.: A replicated quasi-experimental study on the influence
of personality and team climate in software development. Empir. Softw. Eng. 19(2),
343–377 (2014). https://doi.org/10.1007/s10664-013-9265-9

14. Jones, M.C., Harrison, A.W.: Is project team performance: an empirical assess-
ment. Inf. Manag. 31(2), 57–65 (1996). https://doi.org/10.1016/S0378-7206(96)
01068-3. https://www.sciencedirect.com/science/article/pii/S0378720696010683

15. Lee, J.M., Shneiderman, B.: Personality and programming: time-sharing vs. batch
preference. In: Proceedings of the 1978 Annual Conference, vol. 2, pp. 561–569
(1978)

16. McCrae, R.R., Costa, P.T., Jr.: Reinterpreting the Myers-Briggs type indicator
from the perspective of the five-factor model of personality. J. Pers. 57(1), 17–40
(1989)

17. Perry, D.E., Siy, H.P., Votta, L.G.: Parallel changes in large-scale software develop-
ment: an observational case study. ACM Trans. Softw. Eng. Methodol. (TOSEM)
10(3), 308–337 (2001)

18. Shameem, M., Kumar, C., Chandra, B.: A proposed framework for effective soft-
ware team performance: a mapping study between the team members’ personality
and team climate. In: 2017 International Conference on Computing, Communica-
tion and Automation (ICCCA), pp. 912–917. IEEE (2017)

19. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3/4), 591–611 (1965)

20. Smith, E.K., Bird, C., Zimmermann, T.: Beliefs, practices, and personalities of
software engineers: a survey in a large software company. In: Proceedings of the
9th International Workshop on Cooperative and Human Aspects of Software Engi-
neering, pp. 15–18 (2016)

21. Soomro, A.B., Salleh, N., Mendes, E., Grundy, J., Burch, G., Nordin, A.: The
effect of software engineers’ personality traits on team climate and performance: a
systematic literature review. Inf. Softw. Technol. 73, 52–65 (2016)

22. Soomro, A.B., Salleh, N., Nordin, A.: How personality traits are interrelated with
team climate and team performance in software engineering? a preliminary study.
In: 2015 9th Malaysian Software Engineering Conference (MySEC), pp. 259–265.
IEEE (2015)

23. Vishnubhotla, S.D., Mendes, E., Lundberg, L.: Investigating the relationship
between personalities and agile team climate of software professionals in a tele-
com company. Inf. Softw. Technol. 126, 106335 (2020)

24. Weinberg, G.M.: The psychology of computer programming, vol. 29. Van Nostrand
Reinhold New York (1971)

25. West, M.A.: The social psychology of innovation in groups (1990)
26. West, M.A., Altink, W.M.: Innovation at work: individual, group, organizational,

and socio-historical perspectives. Eur. J. Work Organ. Psy. 5(1), 3–11 (1996)
27. Zander, A.F.: Making Groups Effective. Jossey-Bass, Hoboken (1994)

https://doi.org/10.1007/s10664-013-9265-9
https://doi.org/10.1016/S0378-7206(96)01068-3
https://doi.org/10.1016/S0378-7206(96)01068-3
https://www.sciencedirect.com/science/article/pii/S0378720696010683


Searching for Bellwether Developers for
Cross-Personalized Defect Prediction

Sousuke Amasaki1(B) , Hirohisa Aman2 , and Tomoyuki Yokogawa1

1 Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Japan
{amasaki,t-yokoga}@cse.oka-pu.ac.jp

2 Center for Information Technology, Ehime University, Matsuyama 790-8577, Japan
aman@ehime-u.ac.jp

Abstract. Context: Recent progress in the use of commit data for soft-
ware defect prediction has driven research on personalized defect pre-
diction. An idea applying one personalized model to another developer
came in for seeking an alternative model predicting better than one’s
own model. A question arose whether such exemplary developer (bell-
wether) existed as observed in traditional defect prediction. Objective: To
investigate whether bellwether developers existed and how they behaved.
Method: Experiments were conducted on 9 OSS projects. Models based
on active developers in a project were compared with each other to seek
bellwethers, whose models beaten models of the other active developers.
Their performance was evaluated with new unseen data from the other
active developers and the remaining non-active developers. Results: Bell-
wether developers were identified in all nine projects. Their performance
on new unseen data from the other active developers was not higher than
models learned by those developers. The bellwether was only a practical
choice for the non-active developers. Conclusion: Bellwethers were a use-
ful prediction model for the non-active developers but not for the other
active developers.

Keywords: Personalized defect prediction · Transfer learning ·
Bellwether effect

1 Introduction

Software defect prediction (SDP) is an active research area in software engi-
neering. Traditionally it uses static code metrics from source files to represent
characteristics of modules like classes. Machine learning approaches are often
used to train prediction models with pairs of the metrics and historical records
of bugs identified. Tremendous prediction approaches have still been proposed
so far.

A recent study [10] coined just-in-time software defect prediction (JIT SDP)
that utilizes a change in a version control system as a unit of prediction. JIT
SDP extracts metrics such as the number of adding lines from a commit and
trains a prediction model to specify bug-inducing commits. An immediate and
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 183–198, 2021.
https://doi.org/10.1007/978-3-030-91452-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_12&domain=pdf
http://orcid.org/0000-0001-8763-3457
http://orcid.org/0000-0001-7074-5225
http://orcid.org/0000-0001-6681-2608
https://doi.org/10.1007/978-3-030-91452-3_12


184 S. Amasaki et al.

finer prediction when a developer makes a commit is an advantage of JIT SDP.
It also bring another advantage that prediction models can utilize developer-
related information such as experience on a system in addition to code-related
metrics. For those reasons, JIT SDP has been a popular research topic [7,12,
21,22]. The feature of JIT SDP implies that prediction models can be trained
with the commit records of an individual developer. Personalized software defect
prediction focuses on developer’s personal data to train and predict the fault
proneness of changes [8]. It was expected to improve the prediction performance
focusing on and capturing developers’ unique characteristics.

A common issue, regardless of a unit of software defect prediction, is a small
amount of data available for training prediction models. The shortage of training
data might result in poor performance or abandonment of using software defect
prediction in practice. Cross-project defect prediction tackles this issue by using
data outside a project for training prediction models. Many CPDP approaches
have also been proposed so far [5,6,23]. Most of those studies had assumed
the traditional software defect prediction that used static code metrics. Recent
studies have also tried to improve JIT SDP in the context of CPDP [2,9,18,24].
One of the topics on CPDP is what kind of cross-project data is to be chosen for
training among multiple cross-projects. Some studies assumed a single project
and did not care about it or combined them into a single one. Other studies
proposed selection approaches among the cross-projects [4,5,25].

Krishna et al. [11] proposed a bellwether method for the cross-project selection
issue. They defined the bellwether method that searches for an exemplar project
from a set of projects worked by developers in a community and applies it to all
future data generated by that community. The authors then demonstrated with
OSS projects that such exemplar projects were found and effective for predicting
faulty modules of the other projects. A question arose here whether seeking an
exemplary developer was beneficial in the context of cross-personalized software
defect prediction. Many contributors to OSS projects are non-active developers
and make a small number of commits in a short term. No personalized defect
prediction model can be built for them. If an exemplar developer exists, it would
be helpful to predict the fault-proneness of their commits. On the one hand,
bellwether candidates, who are active developers making commits enough to
train personalized prediction models, had worked on the same project together.
On the other hand, they are very different from each other [17]. Therefore, an
exemplar developer was expected to be found as well as an exemplar project.

In this paper, for cross-personalized software defect prediction, we set out to
search for bellwether developers. Through empirical experiments, we addressed
the following research questions:

RQ1 How often bellwethers exist among active developers in a project?
RQ2 How are the bellwethers effective for predicting faults made by the other

active developers in a project?
RQ3 How are the bellwethers effective for predicting faults made by the rest of

the developers in a project?



Searching for Bellwether Developers for Cross-Personalized Defect Prediction 185

To answer these research questions, we applied the bellwether method to
developers of 9 OSS projects. Bellwethers found were used to train personalized
software defect prediction models and applied to unseen commit data of the
other active developers. Personalized software defect prediction models by the
active developers, including the bellwethers, were also compared with each other
regarding the prediction performance on the commit data made by the rest of
the developers.

The rest of this paper was organized as follows: Sect. 2 describes past stud-
ies related to personalized software defect prediction and bellwethers. Section 3
explains the methodology we adopted. Section 4 shows the experiment results
with figures and tables and answers the research questions. Section 5 discusses
the threats to the validity of our experiments. Section 6 provides a summary of
this paper.

2 Related Work

Software defect prediction (SDP) aims to prioritize software modules regarding
the fault-proneness for efficient software quality assurance activities. Different
granularity levels, such as function and file, have been considered in past studies.
As software version control systems had been prevalent, SDP at change-level
(often called just-in-time (JIT) SDP [10]) got popular in software engineering
research. An advantage of JIT SDP is that a faulty change can be attributed to a
developer as changes are recorded with the information of the authors. Another
advantage is that developers’ characteristics can be utilized for prediction in
addition to code changes.

Building JIT SDP for each developer was promising as the relationships
between developer characteristics and faults were also revealed. For instance,
Schröter et al. [17] reported that the defect density by developers was very differ-
ent from each other. Rahman et al. [16] also showed that an author’s specialized
experience in the target file is more important than general experience. Jiang et
al. [8] constructed a personalized defect prediction approach based on charac-
teristic vectors of code changes. They also created another model that combines
personal data and the other developers’ change data with different weights. Fur-
thermore, they created a meta classifier that uses a general prediction model
and the above models. Empirical experiments with OSS projects showed the
proposed models were better than the general prediction model. Xia et al. [20]
proposed a personalized defect prediction approach that combines a personalized
prediction model and other developers’ models with a multi-objective genetic
algorithm. Empirical experiments with the same data as [8] showed better pre-
diction performance. These personalized defect prediction approaches utilized
other developer’s data to improve the prediction performance.

Cross-project defect prediction is a research topic that uses data from out-
side of a target to overcome the small amount of dataset obtained. Many CPDP
approaches have also been proposed so far [5,6,23]. Combining defect predic-
tion models based on other projects was also studied as CPDP [15]. Therefore,



186 S. Amasaki et al.

the personalized defect prediction approaches in the above can be considered as
cross-personalized defect prediction approaches. Cross-personalized defect pre-
diction has not been studied well yet, and it seems a promising research topic.

Krishna et al. proposed a cross-project defect prediction approach based on
the bellwether effect [11]. Their bellwether method searches for an exemplar
project and applies it to all future data generated by that community. This
approach is so simple that a part of developers in a project is simply specified as
bellwethers. We thus focused on this approach first to see whether the bellwether
effect was observed in the context of cross-personalized defect prediction.

3 Methodology

3.1 Bellwethers Approach

According to [11], we defined the following two operators for seeking bellwether
developers in a project:

– GENERATE: Check if the project has bellwether developers using historical
commit data as follows.
1. For all pairs of developers from a project Di,Dj ∈ P , predict the fault-

proneness of historical commits of Dj using a prediction model learned
with past commits of Di

2. Specify a bellwether developer if any Di made the most accurate predic-
tion in a majority of Dj ∈ P

– APPLY: Predict the fault-proneness of new commit data using the prediction
model learned on the past commit data of the bellwether developer.

GENERATE operator is a process to find a bellwether developer. Each devel-
oper model was applied to each training data of the other developer models. The
most accurate prediction was specified using a statistical method described in
Sect. 3.4.

APPLY operator is a process to validate whether a bellwether can really
make a good prediction on future commit data. As the bellwether was defined
in the context of cross-personalized defect prediction, the prediction was made
on the commit data of the other developers only.

Finally, we omitted MONITOR operator defined in [11] as we set aside only
one testing commit data set from each developer. Such chronological evaluation
needed to be conducted in future work.

3.2 Datasets

We used commit datasets collected from 9 OSS projects1 in a past study [1]. The
nine datasets were available through a replication package2. Table 1 describes the
1 Originally ten datasets were provided but one (JGroups) was removed because only

one active developer remained after preprocessing described in this section.
2 http://doi.org/10.5281/zenodo.2594681.

http://doi.org/10.5281/zenodo.2594681


Searching for Bellwether Developers for Cross-Personalized Defect Prediction 187

definitions of change metrics in the datasets. The change metrics consist of 14
metrics of 5 dimensions defined in [10].

The datasets had no author information, and commits were linked to authors
through UNIX timestamps recorded in the datasets and the commits of their cor-
responding git repositories. Commits with the same timestamp were all removed
as it was impossible to connect those commits and their authors. The datasets
contained cases having negative values in metrics that should have recorded
counting numbers. We also removed suspicious cases that had zero values, mean-
ing nothing committed.

In general, not a few OSS developers made a small number of commits, not
enough to build personalized defect prediction models. We thus needed to iden-
tify active developers who had commits enough to build a personalized defect
prediction model (i.e., training data) and to validate the model (i.e., testing
data) using a git repository and a bug-fixing history. GENERATE and APPLY
operators required older commits for training and newer commits for testing,
respectively. Commit data of each developer were thus separated into two parts
according to their timestamps. Training data and testing data had to have
enough faulty and non-faulty commits. To this end, we decided to select devel-
opers having at least 20 faulty commits and 20 non-faulty commits in training
data and having at least 10 faulty commits and 10 non-faulty commits in testing
data. A separation was found as follows: Commits of an author were aligned
chronologically, and then a separator moved from the latest commit to the pre-
vious one until the above condition was satisfied. Note that the separations did
not assure that the training data of active developers had the same number of
commits.

Table 2 shows statistics of the original datasets, the number of selected com-
mits, and the number of active developers identified. These numbers were varied
among the datasets, and it was suitable for evaluation. Note that the commit
data of non-active developers were also set aside to address RQ3.

3.3 Prediction

We followed the prediction approach in [11]. Random Forests were employed to
predict the fault-proneness of commits. SMOTE [3], a well-known over-sampling
technique, was also used to mitigate the issue caused by the imbalance of class
labels. We followed to use these two techniques for prediction. We used SMOTE of
imblearn package as SMOTE and RandomForestClassifer of scikit-learn pack-
age as Random Forests. No parameter optimization was applied. As randomness
came in due to SMOTE, the model construction and prediction were repeated
40 times.

3.4 Performance Evaluation

This study adopted distance from perfect classification (ED) [13] as well as [11].
The ED measures the distance between a pair of Pd (recall) and Pf (false alarm)
and the ideal point on the ROC (1, 0), weighted by cost function θ as follows.



188 S. Amasaki et al.

Table 1. Changes measures

Dimension Name Definition

Diffusion NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

EntropyDistribution of modified code across each file

Size LA Lines of code added

LD Lines of code deleted

LT Lines of code in a file before the change

Purpose FIX Whether or not the change is defect fix

History NDEV The number of developers that changed the modified files

AGE The mean time interval between the last and the current change

NUC The number of unique changes to the modified files

ExperienceEXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

Table 2. Statistics of datasets

Project name Period # commits # selected
commits

# developers

Brackets 12/2011-12/2017 17, 311 8, 038 24

Broadleaf 11/2008-12/2017 14, 911 9, 430 14

Camel 03/2007-12/2017 30, 517 25, 645 17

Fabric8 12/2011-12/2017 13, 004 9, 135 10

Neutron 12/2010-12/2017 17, 311 4, 119 21

Nova 08/2010-01/2018 48, 938 15, 393 67

NPM 09/2009-11/2017 7, 893 6, 579 4

Spring-Integration 11/2007-01/2018 8, 692 7, 025 8

Tomcat 03/2006-12/2017 18, 877 1, 7908 9

Pd =
TP

FN + TP

Pf =
FP

TN + FP

ED =
√

θ · (1 − Pd)2 + (1 − θ) · Pf2

where TP, FN, FP, TN represent true positive, false negative, false positive,
and true negative, respectively. The smaller the ED, the better the personalized
prediction model. θ was set to 0.6 as well as [11].



Searching for Bellwether Developers for Cross-Personalized Defect Prediction 189

The Scott-Knott test [14] was used to statistically compare the performance
of methods on each dataset. This test makes some clusters, each of which consists
of homogeneous personalized software defect prediction models regarding their
prediction performance. A cluster with the highest performance holds treatments
that are clearly better than the others while the performance of those treatments
is equivalent.

4 Results

4.1 RQ1: Is There a Bellwether Developer in a Project?

Approach: To address RQ1, we first plotted the prediction performance of
active developers in boxplots to see how they were similar to and different from
each other. Then, GENERATE operator defined in Sect. 3.1 was applied to those
active developers to obtain a bellwether. As we occasionally found no statistical
difference among some developers while they were significantly better than the
others, we grouped them as a flock of bellwethers, which held bellwether devel-
opers with the same prediction performance. The sizes of flocks were observed
to see whether they were a majority of the active developers or not.

Results: Figure 1 shows the performance variations among developers. Each
subfigure in Fig. 1 corresponds to each project and shows boxplots of EDs of
developers on the training data of other active developers. Developer names
were anonymized in the subfigures. The boxplots were ordered according to the
median ED performance. The left-most developer provided the best prediction
model while the right-most developer did not. We observed trends of the perfor-
mance distributions as follows:

Brackets: Figure 1(a) shows the median prediction performance varied between
0.32 to 0.71. A trend was gently upward from the left side to the right side.
No chasm was found between any adjacent developers except for the right two
developers.

Broadleaf: Figure 1(b) shows the median prediction performance varied
between 0.36 to 0.76. A trend was gently upward, and a chasm was found on the
right side.

Camel: Figure 1(c) shows the median prediction performance varied between
0.32 to 0.66. Some left-side developers looked similarly. Their performance was
not different from each other. The performance of the others got worsen steadily.

Fabric: Figure 1(d) shows the median prediction performance varied between
0.32 to 0.71. The left two developers were apparently better than the others.
The others formed a gentle slope with no apparent chasm.

Neutron: Figure 1(e) shows the median prediction performance varied between
0.31 to 0.54. They formed a gentle slope, and some developers did not look
different from each other. The performance of the others got worsen steadily.



190 S. Amasaki et al.

Table 3. The number of bellwether developers found in a project

Project # of bellwethers

brackets 1

broadleaf 1

camel 3

fabric 2

neutron 6

nova 41

npm 1

spring-integration 3

tomcat 1

Nova: Figure 1(f) shows the median prediction performance varied between 0.36
to 0.73. They formed a gentle slope, and not a few developers did not look differ-
ent from each other. No clear chasm was not appeared except for the rightmost
developer.

Npm: Figure 1(g) shows the median prediction performance varied between 0.5
to 0.64. The range was narrow, but the boxes were thin. The left-most developer
thus looked significantly better than the others.

Spring-integration: Figure 1(h) shows the median prediction performance var-
ied between 0.32 to 0.65. The left three developers looked significantly better
than the others. No clear chasm did not appear among the others.

Tomcat: Figure 1(i) shows the median prediction performance varied between
0.32 to 0.68. The left-most developer was apparently better than the others. No
clear chasm did not appear among the others.

These observations shared some characteristics. The median performance val-
ues among developers got changed constantly from the left side to the right side.
Steep changes were occasionally observed to figure out the best and the worst
prediction models. The ranges of prediction performance were not so different
among projects. The median performance varied between 0.3 to 0.8 approxi-
mately. Some projects showed narrower ranges to suggest a group of personalized
defect prediction models of equivalent performance. However, the best models
often made significantly better predictions.

Table 3 shows the number of bellwether developers found as a result of the
Scott-Knott test. A single bellwether was found in four out of the nine projects.
A flock of bellwether developers was specified in the other projects. Figure 1
visually supported these results.

An interesting observation was that the number of bellwethers was not neces-
sarily relevant to the number of active developers shown in Table 2. For instance,
Brackets had a single bellwether developer while Neutron specified six bell-
wethers though they had a similar number of active developers. From this point



Searching for Bellwether Developers for Cross-Personalized Defect Prediction 191

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(a) brackets

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(b) broadleaf

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(c) camel

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(d) fabric

Fig. 1. Performance distributions among developers in terms of ED



192 S. Amasaki et al.

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(e) neutron

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(f) Performance distributions among developers (nova)

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(g) npm

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(h) spring-integration

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

developers

E
D

(i) tomcat

Fig. 1. (continued)



Searching for Bellwether Developers for Cross-Personalized Defect Prediction 193

of view, Neutron and Nova projects were different from the other projects. They
had more than half the number of active developers in a project. The differ-
ence seemed due to the homogeneity of development activities among active
developers.

Answer to RQ1: Four out of the nine projects had a bellwether devel-
oper. The rest of the projects formed a flock of bellwethers. The number of
active developers might not be related to the number of bellwethers. The
homogeneity of the active developers might cause the difference.

4.2 RQ2: How Are the Bellwethers Effective for Predicting Faults
Made by the Other Active Developers in a Project?

Approach: This research question asked whether a bellwether model could
replace models of other active developers that were applied to their own com-
mits. To address RQ2, we applied the APPLY operator shown in Sect. 3.1. We
evaluated the prediction performance of the bellwethers as follows:

1. Prepare local models, each of which was learned on training data of each the
other active developers

2. Predict the testing commit data using the local model corresponding to the
active developer of the testing data

3. Predict the same commit data provided from the other active developers using
each of the bellwether models

4. Compare the result from the bellwether and each result from the local models
using the Scott-Knott test

5. Make a decision on the prediction performance of the bellwethers.

We decided that a bellwether was “effective” if the bellwether made predic-
tions significantly better than or equivalent to all the local models. A bellwether
was decided as “ineffective” if the bellwether made predictions worse than all the
local models. Otherwise, we decided that it was marginal. That is, the bellwether
was better than some local models but worse than other local models.

Results: Table 4 shows the number of bellwether models that were decided as
effective, marginal, or ineffective. We found that only one bellwether developer
of NPM project made significantly better predictions than all the local models.
Also, no bellwether developer was decided as ineffective. Most of the bellwether
developers were decided as marginal. This result implied that active develop-
ers in the investigated projects were so diverse that bellwether developers were
not effective nor ineffective. Therefore, bellwether developers were not useful to
support other active developers in defect prediction. It can also be said that
bellwether models might be a help for some active developers. However, it was
unknown who was to be an appropriate recipient. A practical recommendation
was to use their own local models.



194 S. Amasaki et al.

Table 4. The performance of bellwether models in comparison to local models

Project Effective/Marginal/Ineffective

brackets 0/1/0

broadleaf 0/1/0

camel 0/3/0

fabric 1/1/0

neutron 0/6/0

nova 0/41/0

npm 1/0/0

spring-integration 1/2/0

tomcat 0/1/0

Answer to RQ2: The bellwether developers identified in RQ1 were not
useful to support other active developers in defect prediction. Using local
models would be a practical choice.

4.3 RQ3: Do the Bellwether Developers Also Predict Faulty
Commits of the Others Than the Bellwether Candidates?

Approach: To address RQ3, we compared the performance of personalized
prediction models learned with training commit data of the active developers,
including bellwethers. These prediction models were applied to commit data of
the non-active developers defined in Sect. 3.2. Then, the prediction results were
supplied to the Scott-Knott test to see whether bellwethers in RQ1 kept their
places. The purpose is to observe changes between the rankings shown in RQ1
and those on the non-active developers. Therefore, we also adopted Spearman’s
ρ to see how the rankings in RQ1 changed.

Results: Table 5 shows the results of the comparisons. The second column
denotes values of Spearman’s ρ. The bold figures mean the correlation was statis-
tically significant at α = 0.05. All the coefficients were high. As the insignificance
of NPM project seemed due to a small number of active developers (n = 4), we
could say the trends observed in Fig. 1 were preserved well. The third column
shows whether bellwethers in RQ1 were still a bellwether here. All the bell-
wethers kept their positions in four out of the nine projects, namely, Broadleaf,
Fabric, NPM, and Tomcat projects. For these projects, the bellwether develop-
ers were useful to predict the fault-proneness of the non-active developers. In
Brackets and Camel projects, the bellwethers were no longer the best choice for
defect prediction for the non-active developers. The fourth column of Table 5
shows to which ranks those bellwethers moved. They kept second or third places



Searching for Bellwether Developers for Cross-Personalized Defect Prediction 195

Table 5. The performance of bellwethers in comparison to the bellwether candidates
on the others data

Project Spearman’s ρ # of keep/drop New ranks of the drops

brackets 0.83 0/1 2

broadleaf 0.81 1/0 —

camel 0.81 0/3 2, 2, 3

fabric 0.89 2/0 —

neutron 0.69 1/5 2, 3, 3, 5, 5

nova 0.74 34/7 2, 3, 3, 3, 3, 4, 4

npm 0.63 1/0 —

spring-integration 0.87 1/2 3, 4

tomcat 0.97 1/0 —

and thus were practically better choices among more than ten active developers.
The same logic went to the rest of the projects. Neutron, Nova, and Spring-
integration projects had both types of bellwethers, but they totally kept better
places.

Answer to RQ3: The bellwether developers identified in RQ1 were
useful to support non-active developers in defect prediction. They were not
necessarily the best choice but practical choices among their many active
developers.

5 Threats to Validity

Our study suffered from some threats to validity that were often observed in
data-oriented software engineering research. First, we relied on commit data
from a past study. Commits and bugs of the data were linked with Commit
Guru3. Therefore, some class of defects might miss due to a limitation of this
tool. The change measures shown in Table 1 are popular but recent studies (e.g.,
[19]) proposed new measures to improve the predictive performance. These fac-
tors might affect our conclusions. Furthermore, these data had no information
regarding developers who committed as described in Sect. 3.2. We thus linked
developers and commits based on timestamps and dropped off not a few commit
data, as shown in Table 2. These automatic processes might miss correct links
and find incorrect links. Its accuracy affected our experiment results.

Second, our study divided commits of each developer into training data and
testing data chronologically but did not set the same separation among devel-
opers. Some commits were thus predicted using commits made in the future.

3 http://commit.guru.

http://commit.guru


196 S. Amasaki et al.

Furthermore, we might miss the effects of chronological proximity between com-
mits. Experiments in a chronological online situation are desirable in future
work.

Finally, the results in our study were limited to the projects investigated.
Experiments on different projects might lead to different conclusions such as the
absence of bellwether developer. We think this threat to external validity was
slightly mitigated as OSS projects were different in size, active developers, and
so on.

6 Conclusion

This study investigated the existence and performance of bellwether developers
for cross-personalized defect prediction. The first experiment revealed that bell-
wether developers existed in all the nine projects we investigated. Their person-
alized defect prediction models achieved better performance on training data of
personalized defect prediction models of the other active developers in a project.
However, the second experiment showed that these personalized defect predic-
tion models were rarely the best choice for new unseen commit data made by
the active developers. We then found that the bellwethers were practical choices
for non-active developers to predict the fault-proneness of their commits.

In future work, we will conduct experiments under chronological online sit-
uations, which is a more realistic setting for developers. The setting will enable
us to analyze what time an active developer gets and step down a bellwether
developer, for example. Also, comparisons to other cross-personalized defect pre-
diction approaches are an interesting topic for improving prediction performance.

Acknowledgment. This work was partially supported by JSPS KAKENHI Grant
#18K11246, #21K11831, #21K11833, and Wesco Scientific Promotion Foundation.

References

1. Cabral, G.G., Minku, L.L., Shihab, E., Mujahid, S.: Class imbalance evolution and
verification latency in just-in-time software defect prediction. In: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pp. 666–676 (2019).
https://doi.org/10.1109/ICSE.2019.00076

2. Catolino, G., Di Nucci, D., Ferrucci, F.: Cross-project just-in-time bug prediction
for mobile apps: An empirical assessment. In: 2019 IEEE/ACM 6th International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pp. 99–
110 (2019). https://doi.org/10.1109/MOBILESoft.2019.00023

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

4. He, Z., Peters, F., Menzies, T., Yang, Y.: Learning from open-source projects: an
empirical study on defect prediction. In: Proceedings of ESEM 2013, pp. 45–54.
IEEE (2013)

5. Herbold, S.: Training data selection for cross-project defect prediction. In: Pro-
ceedings of PROMISE ’13, pp. 6:1–6:10. ACM (2013)

https://doi.org/10.1109/ICSE.2019.00076
https://doi.org/10.1109/MOBILESoft.2019.00023


Searching for Bellwether Developers for Cross-Personalized Defect Prediction 197

6. Hosseini, S., Turhan, B., Gunarathna, D.: A systematic literature review and meta-
analysis on cross project defect prediction. IEEE Trans. Softw. Eng. 45(2), 111–147
(2019)

7. Jahanshahi, H., Jothimani, D., Başar, A., Cevik, M.: Does chronology matter in
JIT defect prediction? A partial replication study. In: Proceedings of the Fifteenth
International Conference on Predictive Models and Data Analytics in Software
Engineering, pp. 90–99 (2019). https://doi.org/10.1145/3345629.3351449

8. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: Proceedings of
International Conference on Automated Software Engineering, pp. 279–289 (2013)

9. Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., Hassan,
A.E.: Studying just-in-time defect prediction using cross-project models. Empir.
Softw. Eng. 21(6), 2072–2106 (2016). https://doi.org/10.1007/s10664-015-9400-x

10. Kamei, Y., et al.: A large-scale empirical study of just-in-time quality assurance.
IEEE Trans. Softw. Eng. 39(6), 757–773 (2013). https://doi.org/10.1109/TSE.
2012.70

11. Krishna, R., Menzies, T., Fu, W.: Too much automation? The bellwether effect and
its implications for transfer learning. In: Proceedings of International Conference
on Automated Software Engineering, pp. 122–131 (2016)

12. Li, W., Zhang, W., Jia, X., Huang, Z.: Effort-aware semi-supervised just-in-time
defect prediction. Inf. Softw. Technol. 126, 106364 (2020). https://doi.org/10.
1016/j.infsof.2020.106364

13. Ma, Y., Cukic, B.: Adequate and precise evaluation of quality models in software
engineering studies. In: Proceedings of International Workshop on Predictor Mod-
els in Software Engineering, p. 9 (2007)

14. Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models
through a multiple comparisons algorithm. IEEE Trans. Softw. Eng. 39(4), 537–
551 (2013)

15. Panichella, A., Oliveto, R., De Lucia, A.: Cross-project defect prediction models:
L’Union fait la force. In: Proceedings of CSMR-WCRE ’14, pp. 164–173. IEEE
(2014)

16. Rahman, F., Devanbu, P.: Ownership, experience and defects: a fine-grained study
of authorship. In: Proceedings of International Conference on Software Engineer-
ing, pp. 491–500 (2011)

17. Schröter, A., Zimmermann, T., Premraj, R., Zeller, A.: Where do bugs come from?
SIGSOFT Softw. Eng. Notes 31(6), 1–2 (2006)

18. Tabassum, S., Minku, L.L., Feng, D., Cabral, G.G., Song, L.: An investigation of
cross-project learning in online just-in-time software defect prediction. In: Proceed-
ings of International Conference on Software Engineering, New York, NY, USA,
pp. 554–565 (2020). https://doi.org/10.1145/3377811.3380403

19. Trautsch, A., Herbold, S., Grabowski, J.: Static source code metrics and static
analysis warnings for fine-grained just-in-time defect prediction. In: 2020 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
127–138 (2020)

20. Xia, X., Lo, D., Wang, X., Yang, X.: Collective personalized change classification
with multiobjective search. IEEE Trans. Reliab. 65(4), 1810–1829 (2016)

21. Yang, X., Lo, D., Xia, X., Sun, J.: TLEL: a two-layer ensemble learning approach
for just-in-time defect prediction. Inf. Softw. Technol. 87, 206–220 (2017)

22. Yang, Y., et al.: Effort-aware just-in-time defect prediction: simple unsupervised
models could be better than supervised models. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 157–168 (2016)

https://doi.org/10.1145/3345629.3351449
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1016/j.infsof.2020.106364
https://doi.org/10.1016/j.infsof.2020.106364
https://doi.org/10.1145/3377811.3380403


198 S. Amasaki et al.

23. Zhou, Y., et al.: How far we have progressed in the journey? An examination of
cross-project defect prediction. ACM Trans. Softw. Eng. Methodol. 27(1), 1–51
(2018)

24. Zhu, K., Zhang, N., Ying, S., Zhu, D.: Within-project and cross-project just-in-
time defect prediction based on denoising autoencoder and convolutional neural
network. IET Softw. 14(3), 185–195 (2020). https://doi.org/10.1049/iet-sen.2019.
0278

25. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In:
Proceedings of ESEC/FSE ’09, pp. 91–100. ACM (2009)

https://doi.org/10.1049/iet-sen.2019.0278
https://doi.org/10.1049/iet-sen.2019.0278


Using Machine Learning to Recognise
Novice and Expert Programmers

Chi Hong Lee(B) and Tracy Hall(B)

Lancaster University, Lancaster LA1 4YW, UK
gabriel@gabrielchl.dev, tracy.hall@lancaster.ac.uk

Abstract. Understanding and recognising the difference between novice
and expert programmers could be beneficial in a wide range of scenarios,
such as to screen programming job applicants. In this paper, we explore
the identification of code author attributes to enable novice/expert differ-
entiation via machine learning models. Our iteratively developed model
is based on data from HackerRank, a competitive programming website.
Multiple experiments were carried using 10-fold cross-validation. Our
final model performed well by differentiating novice coders from expert
coders with 71.3% accuracy.

Keywords: Code · Authorship analysis · Novice programmers ·
Expert programmers

1 Introduction

Agrawal et al.’s study [1] suggests that grouping strong students with weaker
students could improve student achievement overall. Lui et al.’s study [8] shows
that in programming courses, identifying and isolating weak students to apply a
different teaching method could lead to higher performance in the examination
and improve confidence in programming. In contrast, companies hiring program-
mers have been shown to exclude exceptional candidates where students’ grade
point average was used to pre-screen or filter candidates [5]. The ability to dis-
tinguish experienced programmers from novices could allow companies to gain
insight into candidates quickly and accurately, improving their hiring process.

Code stylometry is the study of code authorship or related analysis through
feature identification in code. Many research studies have been conducted in
this field, with at least 57 publications published between 1957 and 2020 related
to this topic [7]. Most previous research focuses on attributing the author of a
piece of code, very few previous studies classify features of the code author, such
as coding experience. The main aim of this paper is to explore the use of code
stylometry with machine learning to classify coding experience. Our three main
Research Questions are:

RQ1. Can programmers’ experience levels be classified using features from
their code?

c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 199–206, 2021.
https://doi.org/10.1007/978-3-030-91452-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_13&domain=pdf
http://orcid.org/0000-0001-5431-1283
http://orcid.org/0000-0002-2728-9014
https://doi.org/10.1007/978-3-030-91452-3_13


200 C. H. Lee and T. Hall

RQ2. What code features improve the performance of a machine learning
model to predict programmer experience?
RQ3. Which modelling techniques achieve the best classification performance
for programmer experience?

A prediction model was developed using data from novice and expert pro-
grammers. Data was crawled from HackerRank1, a competitive programming or
programming interview preparation site. Different configurations to fetch such
data and features to extract were experimented with to optimize model perfor-
mance. Our final model achieves 71.3% accuracy for correctly classifying expert
and novice programmers.

2 Related Work

Halstead [6] proposed a set of metrics to evaluate a piece of code that measures
the complexity of the code, which is heavily affected by the algorithms used in
the code. Halstead’s Metrics were reported to have a strong correlation with
student performance on computer programming courses [4]. Oman and Cook’s
work [9] on code authorship attribution used a set of 16 metrics. These metrics
identified features in code comments and formatting and were inspired by tech-
niques used for English literature authorship analysis. Oman and Cook [9] were
able to categorize most code by author accurately by applying cluster analysis.
Spafford and Weeber [10] analyzed code left in a computer system by a hacker,
to establish his or her identity. The proposed features for source code or binary
code files including:

– Language (The programming language used)
– Formatting (e.g. Number of statements per line, etc.)
– Special features (Such as code specific for certain compilers to read)
– Comments (Consistency, frequency and length)
– Variable names (e.g. naming styles of local temporary variables)
– Language features (e.g. use of for loops versus while loops, etc.)
– Scoping (Global versus local identifiers, scope of helper functions)
– Errors
– Other metrics (Halstead metrics, McCabe metrics, etc.)

Burrows and Tahaghoghi [3] explored the use of n-grams for code authorship
analysis. Using 1,640 files from 100 authors, Burrows and Tahaghoghi achieved
a 67.01% accuracy. Wisse and Veenman [11] combined 10 traditional structural,
style and layout features with 4 different n-gram metrics to reach a 91.4% accu-
racy with 10 authors and 85% accuracy with 45 authors. Bhattathiripad [2]
proposes different types of metrics, programming blunders, to be used to evalu-
ate code. Bhattathiripad points out that most explored code features focus on
the general coding styles or algorithmic choices of the whole piece of code, Bhat-
tathiripad explores the use of programming blunders to identify code authorship.
Examples of programming blunders include unused variables, unused imported
libraries, or a section of code that never gets executed.
1 https://www.hackerrank.com/.

https://www.hackerrank.com/


Using Machine Learning to Recognise Novice and Expert Programmers 201

3 Methodology

3.1 Dataset

We chose HackerRank as the data source for this project as code samples are
in a one-file script format and it is possible to attribute the author’s experience
level. HackerRank is a company that provides programmer hiring solutions to
technology companies by using their coding test systems. Their website provides
coding test practice questions, with over 7 million programmers using the website
in 2020. All submitted code is visible to the public, along with the programmer’s
profile, with some programmers also providing a link to their LinkedIn profile.
We used programmers’ LinkedIn profiles for insight into levels of experience.

In this paper, we have defined a novice programmer as one that received
programming training, but has not had any work experience, including part-time
work or internships. We have defined an expert programmer as someone who
has had full-time programming-related work experience. With this definition,
developers with marginal experience, lying between novice and professional, is
eliminated as we believe this would help develop a more accurate model. This
binary rather than continuous classification was chosen due to the limitation in
the size of the data set. However, in reality, a programmer’s expertise is not
binary. The classifications were made by manually analyzing information on the
programmer’s LinkedIn profile. For all experiments, the same 199 code samples
were used (1 for each author). Where 91 samples were classified as novice and
108 as expert.

3.2 Features

Initially, we selected 15 features (base feature set) to extract from the data set.
These features are similar to those used in previous studies [9,10] and include:
1) number of lines of code 2) ratio of empty lines to all lines 3) average length
of lines 4–7) number and average length of line comments and block comments
respectively 8–9) number and average length of the names of variables 10–15)
number of if, for, do, while, switch and cast statements. These features are simple
to extract and have been previously shown, by Oman and Cook [9], to reliably
attribute code to authors.

3.3 Machine Learning Models

Ten machine learning algorithms, shown in Table 1, were selected to be trained
and tested for all experiments. A wide range of different types of algorithms is
used, such as linear models, neural networks and decision trees. This was done
to identify the best model in experiments as well as which models generally do
better with the data set.

The models are built using the 10-fold cross-validation technique, and pre-
dictive performance is measured using accuracy, F1 and Matthews Correlation
Coefficient (MCC).



202 C. H. Lee and T. Hall

Table 1. Models used in experiments

Initial Used Full Name

LR Logistic Regression

LDA Linear Discriminant Analysis

KNN K-neighbours

CART Decision Tree

NB Gaussian Naive Bayes

SVM Lin Support Vector Classification (with linear kernel)

SVM Pol Support Vector Classification (with polynomial kernel)

SVM/SVM RBF Support Vector Classification (with radial basis function kernel)

MLP Multi-layer Perceptron

RF Random Forest

4 Results

This section presents the key experiments performed with a full list of exper-
iments provided in the Appendix. We describe how we iteratively evolved the
models via a series of experiments in order to gain improved predictive perfor-
mance. Note that all experiments were conducted based on the same dataset as
described in previous sections.

A replication package is available on the repository on GitHub.2

4.1 Exp0: First Experiment

This experiment was performed to establish a baseline against which subsequent
experiments are compared. Using all unmodified 199 code samples, and the initial
set of features listed in the previous section, the average accuracy achieved by
all 10 models was 0.605, where the top 5 averaged at 0.643.

Exp1: Base Model, Code Cleaning. Following experiment 0, we looked into
the code samples and the values of the extracted features. We noticed that in each
code sample, there is a section, referred to as general code, that is identical in
each file, such as the code which prints the function result out to standard output
for evaluation, this code is provided by HackerRank in their code template. We
proceeded to perform experiment 0 again but with all general code removed.
This resulted in an average accuracy of 0.627 (3.67% increase), and 0.662 in the
top 5 models (2.96% increase). We have decided that the set of modified files
with general code removed will be used in all future experiments.

Exp2: Halstead Metrics. This set of experiments is done aiming to compare
the model accuracy using data with and without Halstead metrics (volume,
difficulty and effort value). In experiment 2.1, only Halstead metrics’ values were

2 https://github.com/gabrielchl/novice-expert-dev-classifier-replication-package.

https://github.com/gabrielchl/novice-expert-dev-classifier-replication-package


Using Machine Learning to Recognise Novice and Expert Programmers 203

extracted from the code samples. The models had an average accuracy of 0.548,
and 0.570 in the top 5 models. In experiment 2.2, we combined the Halstead
metrics with the set of features used in experiments 0 and 1. This increased
the average model accuracy to 0.601, and 0.639 for the top 5 models, but these
accuracy values were still lower than those from previous experiments.

Exp3: Cyclomatic Complexity. In this experiment, we included cyclomatic
complexity as one of the features to extract from the code samples. The mod-
els had an average accuracy of 0.630, where the top 5 averaged at 0.670. The
inclusion of cyclomatic complexity resulted in a slight increase in accuracy.

Exp4: Style Features. two new style-related features were included in this
experiment, cond space ratio and bracket line ratio. cond space ratio is the ratio
of cases where a space is absent before the opening bracket (e.g. ”if(”) of a
condition to where the space is present (e.g. ”if (”). bracket line ratio is the
ratio of cases where curly brackets are placed on the currently (e.g. ”) {”) to
placed on a new line (e.g. ”)<line break>{”). The average accuracy of all models
was 0.623, where the top 5 reached 0.669. The top 5 models with style features
performed slightly better than the top 5 models from the base experiment.

Exp5: Normalization. In this set of experiments, normalization techniques
were applied to the dataset. In experiment 5.1, a min-max scaler was applied,
resulting in a 0.646 and 0.667 accuracy in all models and the top 5 respectively.
A standard scaler was applied in experiment 5.2, resulting in a 0.650 average
accuracy across all models and 0.683 in the top 5 models. Applying the standard
scaler resulted in a 3.67% and 6.89% improvement in the average accuracy value
for all models and the top 5 models.

Exp6: Final Model. Learning from the results of all previous experiments, a
final experiment was conducted. This experiment used the same dataset as the
previous experiments, with general code removed. Features-wise, Halstead met-
rics were not included, while the cyclomatic complexity value and style features
were included. Standard scaler was also applied to the dataset values. With this
configuration, the final set of models achieved a 0.653 average accuracy and 0.678
in the top 5 models. The best model, logistic regression, reached an accuracy
of 0.713. The models’ accuracy, f1 and MCC values are shown in Fig. 1. The
coefficients found in the best performing model is shown in Fig. 2.

5 Ethical Concerns

Given that the application is designed to give corporations the ability to deter-
mine one’s programming experience by analyzing their code, ethical concerns
may arise regarding related issues.



204 C. H. Lee and T. Hall

Fig. 1. Cross validation scores of all models in experiment 6

Fig. 2. Coefficients found in the final logistic regression model

The preselection of job application candidates would be the biggest concern
of all concerns. While it is understood that such pre-selection methods are not
always accurate and causes the loss of talents or results in hiring candidates who
are not suitable for the job, it could be arguable that these methods help save
time for both the company and the candidates, making the entire application
process more efficient.

The main concern is if the pre-selection method is fair. As the model was
trained using a dataset, biases could be existing in the dataset and be carried
over to the final model during the training model. These biases could be due to
the bias in the data source itself, or by human-induced, or systematic bias during
the collection of data. These biases could damage the reliability of the model, as



Using Machine Learning to Recognise Novice and Expert Programmers 205

well as its fairness as it could give an advantage or disadvantage to a group of
people whose code exhibits features picked up by the model but non-related to
their development experience.

The model developed in this project is not ready for real-life deployment. Not
only does it have low accuracy, but it was not thoroughly studied as well, such
as to establish the fact that whether there are biases in the model. Before these
concerns are investigated and addressed, such a system should not be deployed.

6 Conclusion

6.1 Review of the Research Questions

RQ1. Can Programmers’ Experience Levels Be Classified Using Fea-
tures from Their Code? A logistic regression model was trained using 199
code samples, achieving 71.3% accuracy.

RQ2. What Code Features Improve the Performance of a Machine
Learning Model to Predict Programmer Experience? From the final
model’s coefficient values, the top 5 features influencing the classification are as
follows: Average length of block comments, ratio of bracket without to with a
space before it, ratio of empty lines to all lines, average length of lines, and the
average length of comments.

RQ3. Which Modelling Techniques Achieve the Best Classification
Performance for Programmer Experience? Comparing the results of all
experiments, logistic regression performed best in the final, as well as most,
experiments.

6.2 Further Work

A More General and Larger Data Set. The current data set is very specific
and focused as it helps narrow the scope of this paper. However, the data set
must be more generalized for real-world use, such that different types of code
could be analyzed. Besides, a larger data set could further benefit the model’s
accuracy.

Experiments on Features and Models. Most of the features used in this
paper were focused on syntactic features, such that they are easily extracted.
More experiments could be carried on more complex features, such as n-grams
and more abstract syntax tree features, as well as to test different combinations
of those features against the accuracy of the models. Furthermore, while the set
of models selected for this study is rather diverse, further work could be done to
experiment with different configurations of those models, or to test new models,
in an attempt to reach better results. More work could also be done on the final



206 C. H. Lee and T. Hall

model, where the correlation found between features and the classification could
be further studied, as well as to test the model in extreme cases and against
possible biases.

References

1. Agrawal, R., Golshan, B., Terzi, E.: Grouping students in educational settings. In:
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining - KDD 2014 (2014). https://doi.org/10.1145/2623330.
2623748

2. Bhattathiripad, P.V.: Software piracy forensics: a proposal for incorporating dead
codes and other programming blunders as important evidence in afc test. In: 2012
IEEE 36th Annual Computer Software and Applications Conference Workshops
(July 2012). https://doi.org/10.1109/compsacw.2012.46

3. Burrows, S., Tahaghoghi, S.: Source code authorship attribution using n-grams
(January 2007)

4. Castellanos, H., Restrepo-Calle, F., Gonzalez, F.A., Echeverry, J.J.R.: Understand-
ing the relationships between self-regulated learning and students source code in a
computer programming course. In: 2017 IEEE Frontiers in Education Conference
(FIE) (October 2017). https://doi.org/10.1109/fie.2017.8190467

5. Clark, J.G., Walz, D.B., Wynekoop, J.L.: Identifying exceptional application soft-
ware developers: a comparison of students and professionals. Commun. Assoc. Inf.
Syst. 11, 8 (2003). https://doi.org/10.17705/1cais.01108

6. Halstead, M.H.: Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Inc. (May 1977)

7. Kalgutkar, V., Kaur, R., Gonzalez, H., Stakhanova, N., Matyukhina, A.: Code
authorship attribution. ACM Comput. Surv. 52, 1–36 (2019). https://doi.org/10.
1145/3292577

8. Lui, A.K., Kwan, R., Poon, M., Cheung, Y.H.Y.: Saving weak programming
students. ACM SIGCSE Bull. 36, 72 (2004). https://doi.org/10.1145/1024338.
1024376

9. Oman, P.W., Cook, C.R.: Programming style authorship analysis. In: Proceedings
of the Seventeenth Annual ACM Conference on Computer Science : Computing
trends in the 1990’s Computing trends in the 1990’s - CSC 1989 (1989). https://
doi.org/10.1145/75427.75469

10. Spafford, E.H., Weeber, S.A.: Software forensics: can we track code to its
authors? Comput. Secur. 12, 585–595 (1993). https://doi.org/10.1016/0167-
4048(93)90055-a

11. Wisse, W., Veenman, C.: Scripting dna: identifying the javascript programmer.
Digit. Investig. 15, 61–71 (2015). https://doi.org/10.1016/j.diin.2015.09.001

https://doi.org/10.1145/2623330.2623748
https://doi.org/10.1145/2623330.2623748
https://doi.org/10.1109/compsacw.2012.46
https://doi.org/10.1109/fie.2017.8190467
https://doi.org/10.17705/1cais.01108
https://doi.org/10.1145/3292577
https://doi.org/10.1145/3292577
https://doi.org/10.1145/1024338.1024376
https://doi.org/10.1145/1024338.1024376
https://doi.org/10.1145/75427.75469
https://doi.org/10.1145/75427.75469
https://doi.org/10.1016/0167-4048(93)90055-a
https://doi.org/10.1016/0167-4048(93)90055-a
https://doi.org/10.1016/j.diin.2015.09.001


Is Knowledge the Key? An Experiment
on Debiasing Architectural

Decision-Making - a Pilot Study

Klara Borowa(B) , Robert Dwornik, and Andrzej Zalewski

Institute of Control and Computation Engineering, Warsaw University of Technology,
Warsaw, Poland

klara.borowa@pw.edu.pl

Abstract. The impact of cognitive biases on architectural decision-
making has been proven by previous research. In this work, we endeavour
to create a debiasing treatment that would minimise the impact of cogni-
tive biases on architectural decision-making. We conducted a pilot study
on two groups of students, to investigate whether a simple debiasing pre-
sentation reporting on the influences of cognitive biases, can provide a
debiasing effect. The preliminary results show that this kind of treat-
ment is ineffective. Through analysing our results, we propose a set of
modifications that could result in a better effect.

Keywords: Cognitive biases · Software architecture · Architectural
decision-making · Debiasing

1 Introduction

The occurrence of cognitive biases is inherent to the human mind, and as such,
can influence all individuals taking part in the software development process
[10]: developers [3], architects [14], designers [9], testers [2].

In particular, cognitive biases have been proven to distort architectural
decision-making [18] by influencing software architects’ reasoning [14]. This influ-
ence can be particularly strong, since every systems architecture is actually a set
of design decisions [6] made by individuals. Thorough education about cognitive
biases turned out to significantly improve software effort estimation [12], which
is severely afflicted by cognitive biases [5]. Similarly, in this work we examine,
(RQ) whether educating software architects about cognitive biases can provide a
beneficial debiasing effect, which increases the rationality of decision-making.

In order to answer this question, we designed an experiment and ran a pilot
study on two groups of students. The preliminary findings show that educat-
ing engineers about the possible impact of cognitive biases is not sufficient to
mitigate the influence of cognitive biases on design decisions.

Therefore, more advanced debiasing techniques are needed. We analysed how
exactly cognitive biases influenced various elements of the conversation (argu-
ments, counterarguments, and general conversation). Based on that, we pro-
posed additional debiasing techniques that can be used in order to create a more
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 207–214, 2021.
https://doi.org/10.1007/978-3-030-91452-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_14&domain=pdf
http://orcid.org/0000-0002-7160-5950
http://orcid.org/0000-0001-5254-4761
https://doi.org/10.1007/978-3-030-91452-3_14


208 K. Borowa et al.

effective debiasing treatment. We plan to perform a modified version of this
experiment, on a larger sample, in the near future. Our long time objective is to
develop effective, debiasing techniques for architectural decision-making.

2 Related Work

The concept of cognitive biases was introduced by Tversky and Kahneman in
their work about Representativeness, Availability and Anchoring biases [17].
Cognitive biases are a by-product of the dual nature of the human mind – intu-
itive (known as System 1) and rational (known as System 2) [7]. When the logic-
based reasoning of System 2 is not applied to the initial decisions of System 1,
we can say that the decision was biased.

Software architecture, defined as set of design decisions [6], is influenced
by various human factors [16]. One of these factors are cognitive biases [18].
Their influence on architectural decision-making has been shown as significant
in recent research [8,14,18,19]. When no debiasing interventions are applied, the
consequences of such biased decisions can be severe – for example resulting in
taking on harmful Architectural Technical Debt [1].

In the domain of architecture decision-making, various debiasing techniques
were proposed [1,18]. The use of techniques that prompt designers to reflect on
their decisions, have turned out to be effective in improving the quality of the
reasoning behind design decisions [15].

Debiasing, by educating software developers about the existence of cognitive
biases and their influences, has recently been proven to work as a powerful tool
in the realm of software effort estimation [12]. The effectiveness of this approach
to debiasing architectural decision making, has not yet been empirically tested.

3 Study Design

3.1 Bias Selection

Based on the cognitive biases researched previously in relation to software devel-
opment [10], as well as biases shown previously as influencing software architec-
ture [1,18,19], we selected three cognitive biases as the subject of the experiment:

1. Anchoring – when an individual over-relies on a particular solution, estimate,
information or item, usually, the first one that they discovered or came up
with [17].

2. Optimism bias – when baseless, overly positive estimates, assumptions and
attributions are made [11].

3. Confirmation bias – the tendency to avoid the search for information that
may contradict one’s beliefs [13].



Debiasing Architectural Decision-Making – a Pilot Study 209

3.2 Data Acquisition

In order to obtain the data for our study, we took part in four meetings with two
groups of students that were working on a group project during their coursework.
The meetings were conducted online through the MS Teams platform. Both
groups were supposed to plan, design and implement a system as a part of their
course. The topic for the project was at their discretion, with the only hard
requirement being the use of Kubernetes in their solution.

In the case of one of the groups, we prepared a presentation during which
we explained the concept of cognitive biases, and how they can influence archi-
tectural decision-making. We explicitly explained the three researched cognitive
biases and gave examples of their possible influence on the students’ project.
We did not mention anything about cognitive biases or debiasing to the second
group.

The meetings proceeded as follows:

1. We asked the participants for their consent to record the meeting and to use
their data for the purpose of our research.

2. In the case of the debiased group (Team 2), we showed them our presentation
about cognitive biases in architectural decision-making. We did not perform
this action with the other group (Team 1).

3. The meeting continued naturally, without our participation, although a
researcher was present and made notes when necessary.

We also asked the participants to fill in a small survey to obtain basic statis-
tical data about them.

3.3 Data Analysis

The recordings from the meetings were transcribed. In order to identify the
cognitive biases, and their influence on decision-making, we defined a coding
scheme presented in Table 1. The codes were applied to indicate the occurrence
of the researched biases, as well as the arguments for and against the discussed
architectural decisions.

The first and second author coded the transcripts independently. Then, they
used the negotiated coding [4] method to discuss and correct the coding until
they reached a full consensus.

Subsequently, we counted the number of occurrences of each code, and anal-
ysed the fragments of the meetings that were found to have been influenced by
cognitive biases.

3.4 Participants

We recorded four meetings with two different groups of students that were work-
ing on their Master’s degrees in Computer Science at Warsaw University of
Technology. The students grouped themselves into teams depending on their
own preferences and had to choose a team leader. The teams consisted of five



210 K. Borowa et al.

Table 1. Coding scheme

Code category Code Definition

Bias – Anchoring KOT Putting too much emphasis on the first piece of

information or idea that was heard/proposed/invented.

Bias – Optimism OPT Naive faith that the unpleasant consequences of our decisions

will not happen. Typical statements include: “It will somehow be.”

“No need to think about possible problems.”, “Let’s just start

coding, it will be fine.”

Bias – Confirmation POT Not accepting and not seeking information that is inconsistent

with our current beliefs.

Arguments for the decision ARG An argument that was in favour of choosing a particular solution.

Arguments against the decision PARG A counterargument, against choosing a particular solution

members each. Most of the students (with a single exception) had prior pro-
fessional experience in software development. More detailed information on the
students is presented in Table 2.

Table 2. Participant data

Age Gender Has
professional
experience?

Job position Experience
[years]

Team No

23 M Yes Data Engineer 1 1 (not debiased)

24 M Yes Software Developer 2.5 1 (not debiased)

23 M Yes Software Developer - intern 0.1 1 (not debiased)

24 M Yes Cloud/DevOps 3 1 (not debiased)

23 M Yes Systems Engineer 2 1 (not debiased)

24 M Yes Java Developer 1.5 2 (debiased)

24 M Yes Full Stack Developer 2 2 (debiased)

24 M Yes Java Developer 2 2 (debiased)

23 F Yes Sales Analyst 1 2 (debiased)

25 M No No professional experience 0 2 (debiased)

4 Results

Using the coding scheme presented in Table 1, we obtained the following infor-
mation:

– The percentage of biased arguments in statements for or against certain archi-
tectural decisions (see Fig. 1).

– How many arguments for and against certain architectural decisions were
made during the meeting (see Fig. 2).

– How many of these arguments and counterarguments, were influenced by
cognitive biases (see Fig. 3).



Debiasing Architectural Decision-Making – a Pilot Study 211

– How many cognitive biases were present in statements not related to archi-
tectural decisions (see Fig. 3).

Figure 1, which presents the percentage of biased arguments used during the
meetings, shows that Team 1 (non-debiased) used more rational arguments than
Team 2 (debiased). This means that the debiasing treatment – simply informing
the participants about the existence of cognitive biases – was ineffective.

Figure 2 shows that there was a significant difference between the amount of
arguments and counterarguments in the discussions. Teams were less likely to
discuss the drawbacks of their decisions than their positive aspects.

Fig. 1. Biased arguments

Fig. 2. Argument count

Figure 3 illustrates the number of biased statements, as well as the ratio
between the researched biases depending on statement type.

In the case of both teams, most cognitive biases were present in statements
not related to architectural decision-making. In this type of discussion, confir-
mation bias and optimism bias were the most prevalent. This was usually due to
the teams’ need to reassure themselves that their course of action was correct.

In both teams, most of the biased arguments were influenced by the anchor-
ing bias. This means that both teams considered an array of solutions that came
to their minds first, without any additional argumentation on why the specific
solution is correct. When it comes to counterarguments, against specific architec-
tural solutions, confirmation bias was prevalent in both teams. This was usually
due to the teams’ unwillingness to change a previously made decision.



212 K. Borowa et al.

Fig. 3. Biases in statements

5 Threats to Validity

In this work, we describe a pilot study. Its main weakness is the small number of
participants that took part in the experiment. This means that all of our findings
are preliminary and cannot be perceived as final. We plan to perform a modified
version of this experiment with a larger number of teams, to obtain more data
to verify our findings.

6 Discussion

The team that was not debiased by our presentation used a significantly lower
number of biased arguments. This implies that a simple debiasing treatment, by
simply reporting on the biases is not strong enough to counter the influence of
cognitive biases on architectural decision-making.

We discovered the typical scenario of bias-influenced architectural decision
making. First, one team member proposes an idea that first came to their mind
(an idea prompted by System 1). If the solution does not disturb the current
project, other team members are unlikely to give any counterarguments (only
around half of the arguments used were counterarguments) as they are already
anchored on the initial proposition. If the solution requires changes to previously
made decisions, other team members (due to confirmation bias), are likely to give
biased counterarguments to avoid changes. Additionally, the whole atmosphere
of the conversation is heavily influenced by the confirmation bias and optimism
bias, making the team unlikely to notice any errors in their decision-making.

With these findings in mind, we propose (Sect. 7) a set of modifications to
our debiasing approach.

7 Research Outlook

Since the pilot study showed that a simple debiasing treatment does not help
to overcome the biases, we plan to extend and repeat this experiment with the
following modifications:



Debiasing Architectural Decision-Making – a Pilot Study 213

– Since the most biased arguments in favour of a solution were influenced by
anchoring, and participants were overall less likely to use counterarguments –
we propose that the person presenting a solution, should also present at least
one drawback.

– Since most biased counterarguments were influenced by confirmation bias, due
to the teams’ reluctance to change a previously made decision – we propose
that one of the team members should monitor the discussion and point out
the occurrence of such a biased argumentation.

– Since optimism bias and confirmation bias influenced the overall atmosphere
of the meetings - we propose that, at the end of the meeting, after making
the initial decisions, teams should explicitly list their drawbacks. Then, if the
need arises, decisions should be changed accordingly.

– We will add an additional code to the coding scheme - “decision”. Which will
mean the decision that was ultimately made during the meeting. This will
enable us to count how many rational and biased arguments were made in
favour of the decisions that were eventually chosen.

– Instead of a simple debiasing presentation, we will hold a longer debiasing
workshop. During this workshop, we will do more than simply inform the
participants about the influence of cognitive biases on architectural decision-
making. The participants will also be taught, through a series of practical
exercises, how to apply our debiasing techniques.

– The next experiment will be performed on a significantly bigger sample of
participants.

8 Conclusion

The preliminary results (see Sect. 4) show that a simple presentation about cog-
nitive biases and their possible influence on architectural decision-making is not
an effective debiasing method. At the same time the pilot study revealed crucial
information about how biases influenced the arguments for and against certain
decisions. This made it possible to develop a series of modifications to our debias-
ing approach (as presented in Sect. 7) in order to reshape the entire experiment.

References

1. Borowa, K., Zalewski, A., Kijas, S.: The influence of cognitive biases on architec-
tural technical debt. In: International Conference on Software Architecture (ICSA)
(2021)

2. Çalikli, G., Bener, A.B.: Influence of confirmation biases of developers on software
quality: an empirical study. Softw. Qual. J. 21(2), 377–416 (2013). https://doi.
org/10.1007/s11219-012-9180-0

3. Chattopadhyay, S., et al.: A tale from the trenches: cognitive biases and software
development. In: International Conference on Software Engineering (ICSE), pp.
654–665 (2020). https://doi.org/10.1145/3377811.3380330

https://doi.org/10.1007/s11219-012-9180-0
https://doi.org/10.1007/s11219-012-9180-0
https://doi.org/10.1145/3377811.3380330


214 K. Borowa et al.

4. Garrison, D.R., Cleveland-Innes, M., Koole, M., Kappelman, J.: Revisiting
methodological issues in transcript analysis: negotiated coding and reliability.
Internet High. Educ. 9(1), 1–8 (2006). https://doi.org/10.1016/j.iheduc.2005.11.
001

5. Halkjelsvik, T., Jørgensen, M.: Time Predictions: Understanding and Avoiding
Unrealism in Project Planning and Everyday Life. Springer Nature, Heidelberg
(2018)

6. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: Proceedings - 5th Working IEEE/IFIP Conference on Software Archi-
tecture, WICSA 2005, vol. 2005, pp. 109–120 (2005). https://doi.org/10.1109/
WICSA.2005.61

7. Kahneman, D.: Thinking, Fast and Slow. Macmillan, New York City (2011)
8. Manjunath, A., Bhat, M., Shumaiev, K., Biesdorf, A., Matthes, F.: Decision making

and cognitive biases in designing software architectures. In: Proceedings - 2018
IEEE 15th International Conference on Software Architecture Companion, ICSA-
C 2018, pp. 52–55 (2018). https://doi.org/10.1109/ICSA-C.2018.00022

9. Mohanani, R., Ralph, P., Shreeve, B.: Requirements fixation. In: International
Conference on Software Engineering (ICSE), pp. 895–906 (2014). https://doi.org/
10.1145/2568225.2568235

10. Mohanani, R., Salman, I., Turhan, B., Rodriguez, P., Ralph, P.: Cognitive biases
in software engineering: a systematic mapping study. IEEE Trans. Softw. Eng.
5589(c) (2018). https://doi.org/10.1109/TSE.2018.2877759

11. Ralph, P.: Toward a theory of debiasing software development. In: Wrycza, S. (ed.)
SIGSAND/PLAIS 2011. LNBIP, vol. 93, pp. 92–105. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25676-9 8

12. Shepperd, M., Mair, C., Jørgensen, M.: An experimental evaluation of a de-
biasing intervention for professional software developers. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing (2018). https://doi.org/10.
1145/3167132.3167293, http://arxiv.org/abs/1804.03919

13. Stacy, W., Macmillan, J.: Cognitive bias in software engineering. Commun. ACM
38(6), 57–63 (1995). https://doi.org/10.1145/203241.203256

14. Tang, A.: Software designers, are you biased? In: Proceedings - International Con-
ference on Software Engineering (January 2011), pp. 1–8 (2011). https://doi.org/
10.1145/1988676.1988678

15. Tang, A., Bex, F., Schriek, C., van der Werf, J.M.E.: Improving software design
reasoning-a reminder card approach. J. Syst. Softw. 144(April 2017), 22–40 (2018).
https://doi.org/10.1016/j.jss.2018.05.019

16. Tang, A., Razavian, M., Paech, B., Hesse, T.M.: Human aspects in software archi-
tecture decision making: a literature review. In: Proceedings - 2017 IEEE Inter-
national Conference on Software Architecture, ICSA 2017, pp. 107–116 (2017).
https://doi.org/10.1109/ICSA.2017.15

17. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases.
Science 185(4157), 1124–1131 (1974)

18. van Vliet, H., Tang, A.: Decision making in software architecture. J. Syst. Softw.
117, 638–644 (2016). https://doi.org/10.1016/j.jss.2016.01.017

19. Zalewski, A., Borowa, K., Ratkowski, A.: On cognitive biases in architecture deci-
sion making. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS, vol. 10475, pp.
123–137. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65831-5 9

https://doi.org/10.1016/j.iheduc.2005.11.001
https://doi.org/10.1016/j.iheduc.2005.11.001
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/ICSA-C.2018.00022
https://doi.org/10.1145/2568225.2568235
https://doi.org/10.1145/2568225.2568235
https://doi.org/10.1109/TSE.2018.2877759
https://doi.org/10.1007/978-3-642-25676-9_8
https://doi.org/10.1145/3167132.3167293
https://doi.org/10.1145/3167132.3167293
http://arxiv.org/abs/1804.03919
https://doi.org/10.1145/203241.203256
https://doi.org/10.1145/1988676.1988678
https://doi.org/10.1145/1988676.1988678
https://doi.org/10.1016/j.jss.2018.05.019
https://doi.org/10.1109/ICSA.2017.15
https://doi.org/10.1016/j.jss.2016.01.017
https://doi.org/10.1007/978-3-319-65831-5_9


Communicating Cybersecurity
Vulnerability Information:

A Producer-Acquirer Case Study

Martin Hell1(B) and Martin Höst2

1 Department of Electrical and Information Technology, Lund University,
Lund, Sweden

martin.hell@eit.lth.se
2 Department of Computer Science, Lund University, Lund, Sweden

martin.host@cs.lth.se

Abstract. The increase in both the use of open-source software (OSS)
and the number of new vulnerabilities reported in this software consti-
tutes an increased threat to businesses, people, and our society. To mit-
igate this threat, vulnerability information must be efficiently handled
in organizations. In addition, where e.g., IoT devices are integrated into
systems, such information must be disseminated from producers, who are
implementing patches and new firmware, to acquirers who are responsi-
ble for maintaining the systems. We conduct an exploratory case study
with one producer of IoT devices and one acquirer of the same devices,
where the acquirer integrates the devices into larger systems. Through
this two-sided case study, we describe company roles, internal and inter-
company communication, and the decisions that need to be made with
regard to cybersecurity vulnerabilities. We also identify and discuss both
challenges and opportunities for improvements, from the point of view
of both the producer and acquirer.

Keywords: Cybersecurity · Open-source software · Case study ·
Vulnerabilities · IoT

1 Introduction

The use of open-source software (OSS) is increasing and a recent GitHub report
shows that for e.g., JavaScript, 94% of active repositories use OSS, with a median
number of 10 direct and 683 indirect (or transitive) dependencies [5].

Recently, cybersecurity has made headlines across a range of media. The
number of reported vulnerabilities is increasing and cyber attacks are becoming
more sophisticated, even with nation-states as the identified attackers [6]. During
2020, the number of new vulnerabilities reported by the National Vulnerability
Database (NVD) was more than 18k. This can be compared to the 4–8k annually
reported vulnerabilities during 2005–2016 [9].

c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 215–230, 2021.
https://doi.org/10.1007/978-3-030-91452-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_15


216 M. Hell and M. Höst

The combined increase in the use of OSS and the increase in newly found
vulnerabilities puts the industry at higher risk than ever. Indeed, OSS vulnera-
bilities can potentially be exploited in all devices, products, and services that are
using those components, though admittedly, just having the component does not
necessarily mean that you are using the vulnerable part [11]. Still, as reported by
IBM, scanning for and exploiting vulnerabilities was the top attack vector dur-
ing 2020, with 35% of all incidents. This is an increase from 30% in 2019 and by
that taking over the first position of common attack vectors from phishing [14].

This higher risk raises the bar for how the industry should work with iden-
tifying and patching vulnerabilities. However, the producer of devices that are
responsible for developing the patches is often not the same as those responsi-
ble for maintaining the devices, e.g., installing the new firmware. Moreover, in
case of a breach, it is the acquirer that is responsible towards the end customers
in the role of delivering and maintaining the system. Thus, in the ecosystem of
producers and acquirers, information regarding vulnerabilities and patches needs
to be efficiently communicated, such that devices can be immediately updated,
reducing the time of exposure [10].

Serror et al. [15] analyze the security aspects of Industrial IoT system
(“Industry 4.0”) and identify patch management as one important area. Espe-
cially for long-lived components procedures for identifying patches are important
and for systems with a large number of devices automatic updates are important.
There are some attempts to support organizations in vulnerability management
through systems for supporting identification, evaluation, and remediation of
vulnerabilities [1,2]. To our best knowledge the main focus in research on vul-
nerability management has been on systems and systems developed by a single
organization. There is still a need to understand how communication of vul-
nerability information between organizations take place, and how the complete
processes of managing vulnerabilities can be supported.

Outside the area of vulnerability management there is some research on infor-
mation sharing between companies. Corallo et al. discusses “Value Networks”
and conducts an interview study in an aerospace collaboration with several com-
panies [3]. The focus is on innovation networks, i.e., advanced R&D projects with
several partners. They conclude that different activities need different manage-
ment approaches. Du et al. derive a model for analysing information sharing in
supply chains based on game theory [4]. The focus is on supply chains with two
parties, and the focus is more on the amount on information sharing rather than
the content of the shared information. These aspects are related, but there is
still a need to first investigate the actual practices of sharing information about
vulnerabilities between organizations and to understand that, before, e.g., more
advanced models are built.

The overall goal of this case study is to understand how considerations regard-
ing vulnerabilities in third-party components arise, are communicated, and are
assessed within and between a producer and an acquirer. Specifically, through
interviews with one producer and one acquirer, we aim to answer the following
research questions.



Communicating Cybersecurity Vulnerability Information 217

– RQ1: What roles and responsibilities can be identified?
– RQ2: How is vulnerability information communicated within and between

the respective organizations?
– RQ3: What decisions must be made and what information is used?
– RQ4: What challenges and opportunities can be identified, both within orga-

nizations and in the communication between them.

RQ1 is seen as a prerequisite for understanding the organizational context
and to adequately understand the result of RQ2. Similarly, RQ3 is used to bet-
ter understand the challenges and opportunities in RQ4. Based on this, we pro-
vide insight into how vulnerabilities in IoT devices are handled on both sides
of this producer-acquirer chain, and how they are communicated between the
two companies. This insight also allows us to understand what challenges and
opportunities there are for improving the handling and the communication of
vulnerabilities.

The paper is outlined as follows. In Sect. 2 we explain the methodology used
in our case study, including the involved companies and questions. We also dis-
cuss the validity of the research. In Sect. 3 we give the results, relating to the
research questions above. We summarize and discuss the identified challenges
and opportunities in Sect. 4 and we conclude the paper in Sect. 5.

2 Methodology

The research was conducted as a case study with two companies, a producer
and an acquirer. Referring to the case study classifications given in [12,13], we
conduct an exploratory case study, meaning that we aim to find out what is
happening and seek new insights for the situation where there are questions
or issues regarding cybersecurity vulnerabilities. The study is qualitative as it
is based on interviews with the involved companies and with a flexible design
allowing us to adapt interviews based on the answers from both current and
previous interviews. The overall methodology is depicted in Fig. 1. Each company
had a company lead for the case study. They had coordinating roles for their
respective organization. This coordination included identifying the most suitable
people to interview, initiating contact with the interviewees, and continuously
discussing the results or possible misconceptions.

Fig. 1. Overall methodology



218 M. Hell and M. Höst

Table 1. Participants at companies

Company Role Nbr

Producer Product Specialist 1

Producer Software Security Group (SSG) 1

Producer Release Group 1

Producer First-Line Support 1

Acquirer Support team technician 2

Acquirer Head of Support Team 1

Acquirer Product Owner 1

2.1 Involved Companies

The study focuses on two companies, for confidentiality reasons hereafter called
the producer and the acquirer.

The producer produces and sells products in the area of IoT, primarily in the
high-end segment and with a focus on a global B2B market. The IoT units can
be seen as embedded systems with hardware and software. The software consists
of a combination of in-house developed code and OSS. The organization has a
history of more than 30 years, has today more than 1000 employees, and is a
leading provider in the high-end segment.

The acquirer has a long tradition of providing high-security systems. It was
founded more than 80 years ago and has more than 100 000 employees world-
wide. The company has several business units and is active in a wide variety of
domains. One core business is to integrate IoT products into larger systems and
in turn, being a provider of these systems. The organizational part used in this
study provides IoT systems, using products from the producer (among others).
The integration of IoT into systems has not been in focus until the last few years.
Thus, this specific business is rather new to the company, but knowledge from
integrating high-security systems has been transferred also to this business.

Our case study was performed through interviews with representatives from
both the producer and the acquirer. The role and affiliation of the interviewees
are summarized in Table 1.

2.2 Interview Questions

The interviews were semi-structured, with a set of questions used as a starting
point. The research questions RQ1-RQ4 were used as a basis for the questions.
For RQ1 (roles and responsibilities), everyone was asked to describe the roles in
the organization involved in vulnerability-related questions. This also allowed us
to identify additional roles to interview.

For RQ2, we started out with an assumed natural information flow, discussed
with and verified by the company leads in the respective organization. The infor-
mation flow is divided into five steps. In the first three steps, we consider how
questions regarding vulnerabilities



Communicating Cybersecurity Vulnerability Information 219

1. arise in the acquirers’ organization,
2. are communicated to the producer, and
3. are communicated to and from the answering role within the producer’s orga-

nization.

Once the producer has reached an answer to the question, this answer is returned
to the acquirer. The parts related to the answer are divided into

4. how the answer is communicated back to the acquirer, and
5. how the answer is communicated within the acquiring organization.

The sequence of events starts at (1) in case the question is sent to the producer,
but it can also be initiated at (4) in case of publishing advisories or if the producer
pre-emptively contacts the acquirer with information.

For the acquirer, this was from the point of view of questions only targeting
this particular producer, but for the producer, the scope was vulnerability-related
questions from all their customers. In addition to the information flow, we also
aimed to understand who is making the decisions, and what information was used
to make decisions (RQ3). These questions were integrated with (3) and (4) above
for the producer, and (5) for the acquirer, as this became a natural part of the
interviews. The final part of the interviews was devoted to identifying possible
improvements to the different parts of this process (RQ4). Improvements are here
defined as initiatives or modifications that could make this process either easier
for the involved people, more efficient for the organization, or more accurate in
terms of providing answers to questions.

Since the interviewees had different roles in the information chain, the focus
of the questions varied somewhat. Understanding the overall information and
role structure was our first objective, achieved together with the company leads
(and verified during interviews). Then, the interview focus could be tailored for
that role in the information chain.

A last thing to note is that the interviews were also adopted to allow us to
verify claims and descriptions from previous interviews.

2.3 Validity

The validity of the research has been considered during the planning through a
number of measures.

– Prolonged involvement means that the research is not conducted in isolation,
meaning that there is a trust between parties. In this case, the study was
conducted in a setting with a longer cooperation, and the coordinators have
cooperated with the researchers in other studies.

– Triangulation was mainly achieved in the interviews by repeating questions
and checking results with several roles in the two organizations.

– Peer debriefing means that a group of researchers were involved and thereby
the risk of bias from one researcher is avoided. In this case, both authors were
involved in discussions and interpretation of the results.



220 M. Hell and M. Höst

– Member checking means that, e.g., participants in the study review and reflect
on the results. In this case, especially the coordinators were involved during
the study e.g. available to answer questions about results and helping out to
interpret results.

– Audit trail means keeping track of all data in a systematic way. In this study,
notes were taken from all interviews, and the analysis was based on these
notes. The researcher that took the notes was the main person in the analysis
which solves the main problems of interpreting notes from someone else.

Based on the methodology and these measures our view is that the main
validity problem is external validity. Care must be taken when generalizing the
results, but we believe that the findings can still serve as input to further studies.

3 Results

In this section, we present the results from our interviews. Each subsection cor-
responds to one of the research questions presented in Sect. 1.

3.1 Roles and Responsibilities

The acquirer has responsibility for the actual products and their integration
into the operating environments. Attacks taking advantage of vulnerabilities in
the products will in the end affect their customers so vulnerability informa-
tion is essential for securing customers’ environments and assets. Vulnerabilities
are typically handled by updating or patching the firmware. Since this can be
associated with large costs it is important to understand the impact of the vul-
nerabilities. Recall that the acquirer organizational part in focus in this study
manages units at their customers’ sites. We have identified the following roles
and responsibilities within this organizational part for handling vulnerabilities.

– The support team is centralized in one country and provides a “managed
by” solution to the production teams. It consists of approximately 20 people,
including both technicians, management, and sales. The support team intro-
duces new functionality and is responsible for identifying and prioritizing new
vulnerabilities found in the products. They are not in contact with the actual
customer sites.

– Each country has one production team, offering the integrated system to end
customers. When new vulnerabilities are discovered, they are responsible for
communicating with their customers, and also to deploy new firmware to the
individual units.

– The product owner defines the requirements for the “managed by” product.
This role does not take an active part in the process and is not part of the
actual decision regarding vulnerabilities.

The producer, being a provider of high-end products, is working with security
in a structured way. The organization takes inspiration from the BSIMM matu-
rity model [7], with a core software security group that has close contact with



Communicating Cybersecurity Vulnerability Information 221

development teams. Much effort is put into raising awareness throughout the
organizations using so-called satellites, people with interest in security that can
help to disseminate knowledge and information to their respective teams. For
vulnerabilities in third-party components specifically, we identify the following
roles and responsibilities.

– First line support receives security-related questions from customers. Here
we also include key account managers, though these are formally part of the
sales organizations. First-line support either answers the questions directly or
forward them to a product specialist, while the key account manager opens a
support issue with first-line support in order to make sure that all questions
pass their organization and expertise.

– The product specialists have deep knowledge about the products and take
an active part in product development and sprint planning. They have thus
direct contact with developers. They are responsible for answering questions
that can not be immediately answered by first-line support.

– The development teams are responsible for integrating OSS components. Indi-
vidual developers are also responsible for keeping track of the OSS compo-
nents and monitoring new updates, features, and vulnerabilities.

– The software security group (SSG) develops and leads the security initiatives
throughout the company. They are experts in the technical details surround-
ing vulnerabilities. They are responsible for conducting the triage of new
vulnerabilities, i.e., understanding the exploitability and impact of vulnera-
bilities in the context of the products and their operating environment.

– The release team is responsible for making new firmware releases in case of
newly discovered vulnerabilities require immediate patching. New firmware
can be released the same day if needed, provided that the developers have
implemented the patch. The main bottleneck is often to identify which devices
need new firmware.

These roles were agreed upon by all participants in this study.

3.2 Communication Within and Between Producer and Acquirer

How Questions Arise Within the Acquirer’s Organization. Product and
software security is the responsibility of the support team. The roles and the
communication paths for security vulnerabilities are depicted in Fig. 2. Note that
the different production teams typically do not communicate with each other at
all. While questions potentially could arise directly from customers, through the
production team, and to the support team, this has so far not happened. Since
the customer purchases a solution, they typically assume that vulnerabilities are
handled by the acquirer. A similar assumption is made by the production team,
namely that since the support team is responsible for security, those issues are
handled by them. The support team has two main sources of vulnerability-related
information that can lead to questions escalating to the producer.



222 M. Hell and M. Höst

Fig. 2. Virtually all vulnerability related questions stems from and are handled by the
support team.

– Externally produced information material. This mainly includes forum dis-
cussions, news articles, and research articles.

– Internally produced information material. This material is dominated by
reports from vulnerability scans.

Of these two, the latter is most common. The support team regularly scans the
network, searching for units and possible vulnerabilities in these. This is done
on a weekly basis for central parts of the systems, but for other parts, it is much
less regular. Finding information from externally produced material is much less
formalized. Searches are at best done on an ad-hoc basis, and most information
reaches the teams due to wide media coverage.

How Questions are Communicated to the Producer. During the inter-
views, both the producer and acquirer were asked about how, what, and to/from
whom questions were communicated. A summary of the answers is given in
Table 2. Note that the producer referred to questions from all its customers, not
only the specific acquirer in this study.

An interesting observation is that the producer organization often does not
know the role or background of the one asking. First-line support, receiving the
original question, had the impression that it was not security experts, but mostly
junior with little or no security training.

“It is very rare that the question comes from someone with deep cybersecu-
rity knowledge or even someone in the cybersecurity business. It is rather
someone that just got the task to run a network scan on the equipment.”

Since the actual role is unclear, this information is not propagated in the orga-
nization together with the question. This is a limiting factor since the technical
level of the response can then not be aligned with the person asking the question.
While the SSG expressed some concerns about this in the interview, the product
specialists never experienced any actual problems related to this. Answers were
always accepted as is.

The producer observed that a very common event is that (information from)
a report from vulnerability scanning is sent to the producer, with the goal of



Communicating Cybersecurity Vulnerability Information 223

Table 2. A summary of how vulnerability related questions are communicated to the
producer, both from the producer and acquirer’s point of view.

Questions Answers

Who is asking the question? Producer: Not clear, but seems to not be security experts

Acquirer: Support technicians (through a web portal) or

head of support team (to key account manager). The latter is

most common

Who is the question directed

towards?

Producer: First line support gets basically all questions, but

sometimes through the key account manager

Acquirer: Key account manager directly, or using support

portal in which case recipient is unknown

What question medium is

used?

Producer: Always through a webform, ending up in the

CRM. A support email address is not even provided

Acquirer: Mostly through a web form but sometimes phone

calls to key account manager

What do the customers want

to know?

Producer: One or more of “Do you know about this

vulnerability?”, “How did you handle it?”, “Is it fixed?”,

“Can we protect us in ways other than patching?”

Acquirer: Are we affected by this vulnerability?

How is the question posed? Producer: By submitting a list of CVE numbers or

vulnerability scanning results

Acquirer: If they are affected by a specific vulnerability,

referring to a vulnerability scan or CVE number

How often do you get/ask

questions about

vulnerabilities?

Producer: 1–2 per month for first-line support in one

country, 3 per week to PS (from all first-line support units), 1

per month to SSG

Acquirer: Several times per year, but not as often as once

per month

understanding to which extent deployed units are vulnerable. The information
can be in the form of a report or a screenshot from the scanner, with the accom-
panying question “We seem to have these vulnerabilities, is it true and how do
we fix it?”

This description fits very well with how this was actually done at the acquirer
side, with regular network scans to identify problems and vulnerabilities.

All questions are directed to first-line support. This is the main channel for
customer support. Customers send their questions through the online helpdesk
portal, while some have a direct connection to a key account manager and send
their questions directly to them, either by phone or by email. For security-related
questions, the key account manager must always open an issue with first-line
support such that these questions go through them. This is nowadays strictly
enforced due to historical events where bypassing first-line support resulted in
delays and misinformation.

Not only do many questions arise from vulnerability scans, but the results
of these scans are often directly referenced in the question. Many customers use
consultants for security and penetration testing, which results in a list of poten-
tial vulnerabilities. Since the customers do not have the expertise to interpret



224 M. Hell and M. Höst

and validate the results of such scans, and it is not clear if the products are
really affected, such scans escalate to questions directly to the producer.

For one first-line support country, the number of vulnerability-related ques-
tions are in the order of a few per month. This amounts to a very small proportion
of the total number of questions (<1%), but it was still evident that the numbers
have increased over the last few years.

On very rare occasions, the customer asks for a meeting with the R&D depart-
ment. This can happen when they are afraid that the problem is serious, and
they require firsthand and immediate information on how to take action.

Communication to Answering Role Within Producer’s Organization.
The communication inside the producer’s organization is depicted in Fig. 3. As
noted in Sect. 3.2, questions are directed to first-line support, or possibly to
the key account manager who in turn forwards it to first-line support. Some-
times, first-line support can answer directly, but if this is not the case, security-
related questions are re-directed to the product specialists, since the questions
are related to the products. It was estimated that 70% of all questions were
answered directly by first-line support, and 30% propagated further. For these
70%, it was almost always the case that an old firmware version was used and
the solution was to update to the newest firmware.

Upon reaching the product specialist, these can sometimes answer the ques-
tion directly. This primarily happens if the question has been asked before, or
if the answer can be found from previous security-related discussions. A quick
search in the email inbox can often answer this. Otherwise, if the question is
related to a CVE identifier, then the NVD database is used to find more infor-
mation. This database includes a short description of the vulnerability, a severity
score (CVSS), information on vulnerable and non-vulnerable versions, and links
to further information about the vulnerability. While it has been shown that this
information is not always accurate [8], it can still provide enough information to
answer the question, e.g., in which version the vulnerability was patched. The
product specialist then contacts the development team to see when the software
was patched. Questions stemming from external media are often related to new
vulnerabilities, which are not patched in deployed releases. The product special-
ist works closely with the development teams and takes part in sprint planning
and prioritization of tickets. Thus, they have a direct connection to finding out
when software is patched.

It should be noted that the time of patching is not the same as releasing a
new firmware. The answer the product specialist is really looking for is when
the new release appears, not when it was patched on the main branch. This is
controlled by a release team, which communicates closely with the developers and
the product specialist in case there are severe vulnerabilities that must be fixed.
If needed a new secure firmware can be released within a day. However, in most
cases, this team is not aware of the fact that the new release includes particular
vulnerability fixes. The release notes, which include vulnerability information,
are written by the product specialist.



Communicating Cybersecurity Vulnerability Information 225

Fig. 3. First-line support, product specialists, and the software security group handle
vulnerability related questions. Development teams implement patches and the release
team compiles the new firmware.

The software security group is sometimes involved in the process. This is
typically when the vulnerabilities require additional effort for “triaging” and
to understand their potential impact. Some technical details of a vulnerability
can often be very involved, in which case the product specialist can not answer
directly. SSG is the last resort for answering questions. At this stage, the product
specialist has refined the question, from the result of a vulnerability scan to a
more direct question related to a CVE. For a CVE, the SSG performs a triage
process, which is further discussed in Sect. 3.3. SSG has no communication with
first-line support at all.

Communication Back to Acquirer. When an answer has been found to
an explicit question, it is communicated back to the acquirer through email,
or specifically in the CRM which results in an email to the registered address.
Communication is always through first-line support. If the question escalated all
the way to SSG, then it is returned to first-line support through the product
specialist.

Some questions are implicitly answered by release notes and advisories.
Release notes describe what has been changed for a specific release and which vul-
nerabilities, if any, have been solved. The advisory is a specific document, often
relating to one or a few vulnerabilities of particular importance. The document
can provide information on both workarounds and/or which firmware release
to upgrade to. Advisories can be a result of questions, but can also be initiated
directly from the producer’s organization as a pre-emptive measure, acknowledg-
ing that many customers will benefit from this information. The release notes
are written by the product specialist.

A third possibility is that the key account manager directly contacts the
acquirer. This is often the case for important vulnerabilities, where the producer
quickly wants to disseminate the information to the largest customers. This is
an example of communication originating on the producer’s side, i.e., starting
with step (4) as given in Sect. 2.2.

How Answers are Communicated Within the Acquiring Organization.
Answers are returned to the support team via email. This email initiates an



226 M. Hell and M. Höst

immediate meeting, where the answer is discussed. The following aspects are
discussed at this meeting.

– To which extent does the vulnerability affect the organization and its cus-
tomers?

– What is required to fix the problem (amount of work)?
– Can the support team fix this or is production team involvement needed?
– How urgent is it?
– What preparation is needed by the support team?

Based on this information, the head of the support team contacts the affected
production teams, who in turn are responsible for upgrading the firmware to a
non-vulnerable version. There is no follow-up that the new firmware has actually
been installed, mostly because there are no technical tools for doing this. Thus,
this can be seen as a one-way communication of the information from the support
team to the production teams.

3.3 Decision and Information

To answer the question if a customer’s product is vulnerable to a given vulner-
ability, several pieces of information are needed

– Product information. This includes the type of product(s) and the firmware
version(s) used.

– Vulnerability information. This includes which versions of the software are
vulnerable and which are not.

As the majority of vulnerability-related questions are posed in the form of a vul-
nerability scan report, such reports typically include the vulnerability identifier.
Most often the model identifier is also included when the question is sent, but it
happens that a follow-up question is needed to identify this.

Knowing the product and model, first-line support looks at the release notes
which very often enumerate which vulnerabilities have been remedied in a specific
firmware. Most of the time the vulnerability is listed in release notes and the
answer to upgrade and to which firmware version can be delivered promptly.
First-line support has a Service-Level Agreement (SLA) with a defined number
of hours for answering questions, but vulnerability-related issues are prioritized
and the answer is often returned within a few hours depending on the issue
queue and office hours. Handling a specific vulnerability-related question is often
finished in around 30 min upon opening the issue.

Further vulnerability information is typically found in NVD. First-line sup-
port does not go this far in their analysis, but this is a primary information
source for the product specialist. Together with the development teams, this
information can reveal which firmware releases could be vulnerable.

Having a vulnerable version does not equal being vulnerable. Additional work
on understanding vulnerabilities is performed by SSG in a vulnerability triage
process. This process includes looking at the base CVSS score for a vulnerability



Communicating Cybersecurity Vulnerability Information 227

and understand how it affects the products. Sometimes high severity vulnera-
bilities turn out to be of very low or no severity in the product. This is e.g.,
the case if the vulnerable part of a component is not even used by the product.
Other times, but less often, low severity vulnerabilities turn out to be of higher
severity in the product. One example could be if availability impact is low, but
considered of very high importance to the product. A full severity analysis can
however not be performed since the SSG only knows how the software is used in
the product, but not how the product is used in an actual system.

The acquirer instead has the information needed to decide if they are actu-
ally vulnerable. As one example, in the systems that they manage, the devices
are typically not reachable from the public Internet but resides on their own
networks. This can dramatically affect the exploitability of the vulnerability and
how to prioritize an update. Such contextualized information is not known to
the producer. It is clear that the information gathering and decisions are here
very centralized to the support team.

3.4 Identified Challenges and Opportunities

In this section, we discuss challenges and opportunities that were identified in
our interviews.

From the Producer’s Point of View. As noted in Sect. 3.2, the vulnerability
scanning performed by the acquirer is often used as a basis for questions. They
wish to better understand if they are vulnerable. At the same time, the producer
also performs similar vulnerability scanning of their products. Using results from
these scans could be used to more efficiently answer such questions, but a process
to leverage this has not been defined.

The escalation of questions from first-line support, to the product specialist,
and finally to SSG heavily relies on either searching in email correspondence or
using the collective memory of the product specialists. Both the product special-
ist and the SSG representative identified this as a possible area of improvement.

“This system could break when the company grows or with growing
employee turnover.”

A better approach would be to document relevant information. Moreover,
the vast majority of vulnerabilities are already known to the SSG or to develop-
ers, being responsible for that OSS, so the information flow can be made more
efficient by documenting this analysis and vulnerability information.

A possible improvement for first-line support would be to have more security
training. They do have access to a set of training videos, but many questions
come in as scanning reports, and one suggestion was to let the people working
in first-line support do such scanning themselves, just to get an idea of how
they work and the information they provide. Submitted reports sometimes lead
to a bit of “panic” and with more understanding, they could carry out their
investigation with more confidence. There is currently one person with security



228 M. Hell and M. Höst

training and OSCP certification, who often becomes the go-to person for all
these issues.

From the Acquirer’s Point of View. Though vulnerability scans against
deployed products are performed on a regular basis, there is no structured work
for security vulnerabilities. This includes monitoring information sources for
faster identification of potential vulnerabilities. At the same time, there is much
trust in the producer’s ability to fix vulnerabilities and it is convenient to leave
this responsibility to the producer. There are also no recorded events of when
things have gone wrong. Still, there is a perceived need to have a more structured
approach to security and vulnerabilities. To this extent, the information provided
by the producer, both in release notes and in answers to direct questions is often
not enough to make informed decisions.

4 Discussion and Analysis

Based on the results in Sect. 3, we summarize a set of challenges and opportu-
nities that have been identified.

Challenge: Scattered knowledge
There is little or no centralization of knowledge regarding vulnerabilities within
the producer’s organization. The knowledge is built and disseminated by different
parts of the organization, while at the same time being information that needs to
be communicated quickly in order to protect the managed systems from attacks.
While having a well-defined process for handling vulnerability-related questions
from customers, this decentralization of knowledge could have a negative effect
on efficiency and accuracy in case there is a higher turnover of employees in the
future.

Challenge: Role-targeted security training
Though first-line support answers a majority of vulnerability-related questions,
they lack security training, and in particular training targeting the actual ques-
tions that they receive. This lowers their confidence when it comes to these types
of questions.

Challenge: Strong reliance on the producer
The acquirer is strongly reliant on the producer providing firmware updates
and timely information. Much information regarding vulnerabilities in devices
is provided through release notes. With many devices and models, it is hard to
track the newly released firmware and understand which needs to be applied
urgently and which can wait until regular maintenance.

Opportunity: Leverage internal scan information
Re-using and centralizing information from internal scans can increase the under-
standing of customers’ challenges. Since there is in-house scanning of firmware
already in place, transferring this knowledge to first-line support seems to be a



Communicating Cybersecurity Vulnerability Information 229

cost-efficient way of increasing efficiency, accuracy, and confidence in answering
questions.

Opportunity: Register for Release Notes. Release notes are linked to a specific
firmware, and the firmware is only applicable to a set of device types and models.
Allowing the acquirer to subscribe to release notes for certain devices and models
can help them to more efficiently identify if the vulnerability applies to them or
not. This need was described by the acquirer, and based on the fact that many
answers are found by first-line support consulting the release notes, this could
potentially also reduce the number of support cases.

The fact that the answer often is not enough to make decisions is reasonable.
Indeed, the producer has no knowledge of the environment in which the products
are operating. Vulnerability information is often generic, and it is up to the
affected party to determine to which extent the vulnerability can be exploited.
Only to some extent, this can be done by the triage at the producer’s side since
they know how the software is used in the product. This is also evident in the
severity score given to vulnerabilities (CVSS), where the worst-case scenario is
assumed when determining the base score. The environmental CVSS score is
instead defined for adjusting the severity level for the operating environment.
This highlights the need for security expertise throughout the supply chain.

5 Conclusion

We conducted a case study to better understand how vulnerability-related ques-
tions are handled by a producer and an acquirer of IoT devices. We describe both
how such questions are handled in the respective company and how the informa-
tion is communicated between them. The study is motivated by the fact that the
use of OSS is increasing and that new vulnerabilities are discovered and reported
to public databases at an increasing rate. Having an efficient process for identi-
fying, analyzing, and communicating information regarding firmware upgrades
is essential to mitigate an increased cybersecurity threat. Our study revealed a
set of challenges and opportunities that can be considered to facilitate improved
processes. While these are identified based on the involved companies’ needs
and procedures, we believe that they can also be considered by other companies
to improve their cybersecurity. For future work, it would be valuable to bet-
ter understand if, how and why vulnerability-related information fundamentally
differs from other types of time-critical information that need to be communi-
cated within or between organizations. Such an understanding could allow us to
identify optimizations, both from a technical, but also from an organizational
perspective.

Acknowledgements. This research was funded in part by the Swedish Government
Agency for Innovation Systems (Vinnova), grant 2018-03965, and in part by the Swedish
Foundation for Strategic Research, grant RIT17-0035.



230 M. Hell and M. Höst

References

1. Aldea, M., Gheorghică, D., Croitoru, V.: Software vulnerabilities integrated man-
agement system. In: Proceedings 13th International Conference on Communica-
tions (COMM), pp. 97–102 (2020)

2. Cobleigh, A., Hell, M., Karlsson, L., Reimer, O., Sönnerup, J., Wisenhoff, D.:
Identifying, prioritizing and evaluating vulnerabilities in third party code. In:
2018 IEEE 22nd International Enterprise Distributed Object Computing Work-
shop (EDOCW), pp. 208–211 (2018)

3. Corallo, A., Lazoi, M.: Value network collaborations for innovations in an aerospace
company. In: Proceedings IEEE International Technology Management Conference
(ICE) (2010)

4. Du, Z.T., Xie, X.Z.: Research on construction strategy of enterprise information
sharing in supply chain. In: Proceedings International Conference of Information
Science and Management Engineering (ISME), pp. 49–53 (2010)

5. GitHub: The 2020 state of the octoverse (2020). https://octoverse.github.com
6. Mansfield-Devine, S.: Nation-state attacks: the escalating menace. Netw. Secur.

2020(12), 12–17 (2020)
7. Migues, S., Steven, J., Ware, M.: Building security in maturity model - version 11

(2021). https://www.bsimm.com
8. Nguyen, V.H., Massacci, F.: The (un)reliability of NVD vulnerable versions data:

an empirical experiment on Google Chrome vulnerabilities. In: Proceedings 8th
ACM SIGSAC Symposium on Information, Computer and Communications Secu-
rity, pp. 493–498 (2013)

9. NIST: National vulnerability database (2021). https://nvd.nist.gov/
10. Olsson, T., Hell, M., Höst, M., Franke, U., Borg, M.: Sharing of vulnerability infor-

mation among companies - a survey of Swedish companies. In: Proceedings Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), pp.
284–291 (2019). https://doi.org/10.1109/SEAA.2019.00051

11. Ponta, S.E., Plate, H., Sabetta, A.: Beyond metadata: code-centric and usage-
based analysis of known vulnerabilities in open-source software. In: Proceedings
IEEE International Conference on Software Maintenance and Evolution (ICSME)
(2018)

12. Robson, C.: Real World Research: A Resource for Social Scientists and
Practisioner-Researchers. Blackwell (2002)

13. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering - Guidelines and Examples. Wiley (2012)

14. IBM Security: X-force threat intelligence index 2021 (2021). https://www.ibm.
com/se-en/security/data-breach/threat-intelligence

15. Serror, M., Hack, S., Henze, M., Schuba, M., Wehrle, K.: Challenges and oppor-
tunities in securing the industrial internet of things. IEEE Trans. Ind. Inf. 17(5),
2985–2996 (2021). https://doi.org/10.1109/TII.2020.3023507

https://octoverse.github.com
https://www.bsimm.com
https://nvd.nist.gov/
https://doi.org/10.1109/SEAA.2019.00051
https://www.ibm.com/se-en/security/data-breach/threat-intelligence
https://www.ibm.com/se-en/security/data-breach/threat-intelligence
https://doi.org/10.1109/TII.2020.3023507


Software Quality



Analyzing SAFe Practices with Respect
to Quality Requirements: Findings

from a Qualitative Study

Wasim Alsaqaf1(B), Maya Daneva1(B), Preethu Rose Anish2(B),
and Roel Wieringa1(B)

1 School of Computer Science, University of Twente, Enschede, The Netherlands
{w.h.a.alsaqaf,m.daneva,r.j.wieringa}@utwente.nl
2 Tata Research Development and Design Center, TCS, Pune, India

preethu.rose@tcs.com

Abstract. Quality Requirements (QRs) pose challenges inmany agile large-scale
distributed projects. Often, project organizations counter these challenges by bor-
rowing some heavyweight practices, e.g. addingmore documentation. At the same
time, agile methodologists proposed a few scaled agile frameworks to specifi-
cally serve agile organizations working on large and distributed systems. Little
is known about the extent to which these proposals address QRs and the specific
ways in which this happens. Moreover, evidence regarding the practical imple-
mentation of these frameworks with respect to QRs is scarce. Our paper makes
a step towards narrowing this gap of knowledge. Using an exploratory research
process, we analyze one well-documented framework, namely the Scaled Agile
Framework (SAFe).Wefirst analyzed the elements of SAFe as theywere described
in the methodological book of SAFe to identify the possible remedies to the QRs
challenges reported in previous work. We then conducted a qualitative interview-
based study to understand the practices that SAFe practitioners actually use to
mitigate those QRs challenges. Our documentary analysis of SAFe resulted in
identifying 25 SAFe elements that could (at least partially) mitigate one or more
of the reported QRs challenges. Nine of those SAFe elements were reported in our
interview-based study by SAFe practitioners as remedy for some of the reported
QRs challenges. While practitioners attempted to use the recommended SAFe
strategies for QRs, they often changed them in their own ways, or altogether
resorted to heavyweight practices that the case study organizations knew from
previously done non-SAFe projects.

Keywords: Agile scaled framework · SAFe · Quality requirements ·
Requirements engineering · Documentary analysis · Empirical research ·
Qualitative interview-based study

1 Introduction

The necessity of reacting quickly to the rapidly changing market, pushes large organiza-
tions to believe that the success stories of agile methods’ application in the context they

© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 233–248, 2021.
https://doi.org/10.1007/978-3-030-91452-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_16


234 W. Alsaqaf et al.

originally were designed for (e.g. small co-located teams) can be successfully repeated
in large-scale distributed context. However, the transferability of experiences made in
the original context to the realities of large-scale distributed contexts is far from flawless
[1–4]. Although several agile scaled frameworks have been proposed by agile practi-
tioners to guide the application of agile methods in large-scale distributed context (e.g.
Scaled Agile Framework (SAFe) [5], Large-Scale Scrum (LeSS) [6], Scrum@Scale
(S@S) [7]) relatively little research is published about these frameworks’ effectiveness
in practice, especially on an enterprise scale [2, 8]. Moreover, as per a 2018 review [3],
large-scale agile enterprises adopting these frameworks report a broad range of technical
and enterprise-level challenges due to resistance to change, shifts in the ways of thinking
of hierarchies of requirements, lack of transparency, and lack of knowledge on proper
integration of agile and non-agile ways of working. Our current paper is dedicated to
one specific type of requirements challenges in large-scale agile delivery, namely those
pertaining to quality requirements (QRs), such as security and usability. The paper builds
upon an earlier study [9] in which the authors found that often, enterprises counter QRs
challenges by borrowing some heavyweight practices, e.g. creating new artefacts (secu-
rity or usability stories) or roles (e.g. security officer, UX team), and then adding these
practices to their agile delivery cycle. Therein [9], is also stated that the introduction of
these heavyweight practices unexpectedly broughtwith themnewproblems. But do agile
scaled frameworks propose a remedy to QRs challenges in large-scale agile? If so, is the
remedy effective in practice? As we found no publication answering these questions, we
initiated an exploratory qualitative research process to understand and evaluate the agile
methodologists’ proposals for treating QRs challenges. For the purpose of our research
we chose for inclusion those scaled agile frameworks deemed ‘most popular’ according
to the 14th annual state-of-agile report issued bymarket observing firms [10]. As already
said, the present work rests on a previously published exploratory study [9] that found
15 QRs challenges and 9 practices that agile practitioners currently use to cope with the
identified challenges. We note that these findings [9] came out of an interview-based
research with practitioners in enterprises committed to agile project delivery. However,
these 9 practices were not collected in relation to any existing prescriptive or descriptive
agile scale framework such as LeSS [6] nor agile method such as Scrum [11]. Given
this background, in the present research we aim to explore those agile practices that are
suggested by the most popular published agile scaled frameworks and that could help
mitigate the QRs challenges which were identified in the previous work [9].

The present paper reports our results of analyzing one specific scaled framework,
namely, SAFe 5.0 [5]. Our ongoing research also includes some other frameworks,
however these are out of scope in this paper. In this paper, we set out to answer the
following research question:What are the agile practices suggested by SAFe that could
mitigate the effect of the QRs challenges identified in [9]? This question is decomposed
in three sub-questions:

RQ1: Which SAFe elements described in the SAFe methodological textbook and related
literature could possibly mitigate the QRs challenges defined in [9]?
RQ2: Do SAFe practitioners experience the QRs challenges identified in [9]?
RQ3: If yes, then which SAFe elements do they utilize to mitigate these challenges?



Analyzing SAFe Practices with Respect to Quality Requirements 235

Using (i) a documentary research process [12] that takes as input the SAFe method-
ological textbook [5] and its related literature, and (ii) a qualitative exploratory inter-
views with practitioners from agile organizations [13], we analyzed the practices that the
SAFe methodologists [5] proposed to use in large projects. In what follows, we first give
a background information and describe related work (Sect. 2). Thereafter we describe
our research process and provide definitions of the most important concepts (Sect. 3 and
4). We then present and discuss our results (Sect. 5 and 6) and the threats of validity
(Sect. 7). We conclude in Sect. 8.

2 Background and Related Works

The question of how large-scale frameworks (such as SAFe [5] and LeSS [6]) treat
RE problems in general, and QRs problems in particular, has become an area of active
research relatively recently. A 2017 systematic literature review [14] found that while
QR challenges are documented in empirical studies, relatively few solutions to them
have been demonstrated to work consistently well. An empirical follow-up case study
research of Alsaqaf et al. [9] indicated nine solution practices that practitioners resort to
in large-scale agile projects. However (as mentioned in the Introduction), these solution
practices were not traceable to any particular methodological guidelines linked to large-
scale framework, be it SAFe, LeSS or S@S. Next, in 2016–2020, Kasauli et al. [15]
carried out a large-scale research initiative on RE challenges and practices in large-
scale agile system development. Moyon et al. [16] extends SAFe with the S2C-SAFe
framework to achieve security compliance in large-scale agile context. To the best of our
knowledge, the empirical articles (e.g. [15, 16]) of these authors are among the very few
who particularly focused on SAFe and LeSS in order to derive potential solutions to RE
challenges. Kasauli et al. [15] also indicated that despite onemight find potential solution
elements in the popular large-scale frameworks and their methodological guidelines, for
very few of these elements there is empirical evidence to work as assumed. Furthermore,
Beecham et al. [17] examined how two scaled frameworks – SAFe and DAD [18],
address software development risks in global projects, where requirements risks formed
a major category. Using two longitudinal case studies implementing each framework,
the authors conclude in regard to the requirements risks that these “are addressed well by
bothmethods”. However, the authors also elaborate that requirements risks are not in fact
eliminated; only the impact of these risks could be reduced. We make the note however
that the addressed risks refer to scope, project goals and conflicting requirements in
general, and not particularly to QRs challenges.

Most recently, other researchers examined how large-scale agile project (that had
adopted large-scale frameworks, e.g. SAFe) cope with specific types of QRs, such as
security compliance requirements and privacy requirements [19]. The authors of [19]
developed and evaluated approaches to each of these requirements that aremeant to com-
plement SAFe. The specificity of these approaches however makes it hard to generalize
across solutions to other types of QRs.



236 W. Alsaqaf et al.

3 Research Method

This study is part of an exploratory research initiative in which we analyze the prac-
tices described by well-known agile scaled frameworks from practitioner’s perspective,
in order to understand the extent to which these practices mitigate the impact of the
QR’s challenges identified in [9]. To achieve our goal we chose to develop a two-step
qualitative research design [13]. This is suitable in cases in which researchers first use
documentary analysis techniques for examining texts (e.g. guidelines, policies, proceed-
ings) in order to develop sensitivity of the aspects of the phenomenon under study and
to come up with assumptions about what is supposed to happen in real-world situations,
and then use qualitative exploratory techniques (e.g. in-depth interviews) to understand
what actually happens in the real-world context and how much this deviates from what
is supposed to happen. We adopted this approach because it fits our research context
and also because it has demonstrated its viability in an earlier study [17] in a context
similar to ours. We designed the following research process including the following
steps: Step 1 explains our reasoning for including certain frameworks. This is described
in Sect. 3.1. Step 2 is concerned with examining the applicability of the selected agile
scaled frameworks’ practices – as described by the authors of each framework in their
respective methodological textbook with guidelines and their repository of related doc-
uments (appendices, templates, cases) –, in mitigating the QRs challenges found in our
previously published study [9]. This step is described in Sect. 3.2. It performs a docu-
mentary analysis grounded on the methodological guidelines of Appleton and Cowley
[12]. The outcome of this step is a list of assumptions that agile methodologists have
about how to treat QRs in large-scale projects. Step 3 is described in Sect. 3.3 and it
investigates the practices of the selected agile scaled frameworks as utilized in real life
by practitioners in real-world organizations, to empirically examine their application in
mitigating the identified QR’s challenges (as per the perceptions and the experiences of
those working in the field). As this paper is focused on one framework only (SAFe [5]),
it in turn reports on Steps 2 and 3 as executed in the context of analyzing this specific
framework. We describe the steps of our process in the next sub-sections.

3.1 Selecting Agile Scaled Framework

Over the years, the community of agile practitioners proposed more than 30 scaled
agile frameworks [20]. Portman [20] classified those into two categories: (1) enterprise-
targeted frameworks (e.g. SAFe [5], LeSS [6], S@S [7]) aiming to deliver complex
enterprise-level products whereby the collaboration between distributed teams is essen-
tial, and (2)web-scale-targeted frameworks (e.g. Spotify [21], Scaled Agile LeanDevel-
opment (ScALeD)1) aiming to support a company’s IT-department in maintaining exist-
ing applications, whereby the dependencies between distributed teams are minimalized.
In this paper,we focus on the first category—“enterprise-targeted frameworks” – because
these frameworks match our research interest, namely the distributed and large-scale
systems development context. Furthermore, for the purpose of our research initiative,
we limit our selection of frameworks to those that are the most used according to the

1 http://scaledprinciples.org/.

http://scaledprinciples.org/


Analyzing SAFe Practices with Respect to Quality Requirements 237

14th annual state-of-agile report of market observers [10]. This source [10] indicates
the “enterprise-targeted framework” SAFe [5] as the most popular across large organi-
zations today. While our research initiative will include more frameworks (e.g. LeSS,
and S@S), in this paper we focus solely on the agile practices of SAFe [5]. However,
our choice for SAFe [5] does not imply that we prefer or recommend SAFe. The other
frameworks will be investigated in our follow-up research.

3.2 Uncovering the Assumptions in SAFe About Engineering the QRs

The information about SAFe provided on its official website https://www.scaledagilef
ramework.com/ aswell as in its official textbook ‘SAFe 5.0DistilledAchieving Business
Agility with the Scaled Agile Framework’ [5], was taken as input into our documentary
analysis. The objective of this stage of the research process was to answer RQ1. The first
two researchers analyzed the SAFe practices by first reading and re-reading the textbook
[5] and the text resources in the website to identify those SAFe elements that could be
considered potential candidate strategies to cope with the QR challenges identified in
[9]. For clarity, we list these QRs challenges in Table 1, where the first column shows
the categories of the challenges as reported in [9] and the second column reports the
specific challenges of each respective category in the first column.

Table 1. The QR challenges as reported in [9].

Category Challenges

1. Teams coordination and communication
challenges

Late detection of QRs infeasibility

Hidden assumptions in inter-team
collaboration

Uneven teams maturity

Suboptimal inter-team organization

2. Quality assurance challenges Inadequate QRs test specification

Lack of cost-effective real integration test

Lengthy QRs acceptance checklist

Sporadic adherence to quality guidelines

3. QRs elicitation challenges Overlooking sources of QRs

Lack of QRs visibility

Ambiguous QRs communication process

4. Conceptual challenges of QRs Unclear conceptual definition of QRs

Confusion about QR’s specification
approaches

5. Architecture challenges Unmanaged architecture changes

Misunderstanding the architecture drivers

https://www.scaledagileframework.com/


238 W. Alsaqaf et al.

Our documentary analysis proceeded as follows: In a first round, the two researchers
worked independently to come up with a list of SAFe elements for which the SAFe
textbook [5] gives explicit or implicit information that the respective practice helps
with QRs. In a second round the researchers got together and have discussed their
identified practices of SAFe based on an argumentative discussion [22] and Conklin’s
dialog mapping technique for qualitative data structuring [23], in order to examine each
practice’s fitness inmitigating theQRs challenges reported in [9]. The goal was to reach a
shared rationally-supported hypothetical mapping [23] between each SAFe element and
one or more QR challenges. The result of this step was a list of assumptions indicating to
us those SAFe practices that could possibly mitigate the QR challenges in Table 1. These
assumptions mean theoretical mappings (we adopt the term from Beecham et al. [17])
and in Step 3, we want to complement themwith real-world insights from an exploratory
interview study, in order to compare and contrast our findings from theory (i.e. the SAFe
textbook) and practice. We provide more details on our analytical activity and results in
Sect. 5.1.

3.3 Understanding How Real-World SAFe Projects Resolve QRs Challenges

As indicated earlier, at this point of our research process, we wanted to know if practi-
tioners in real-world organizations experiences the QRs challenges and if so, how did
they mitigate their effects (RQ2 and RQ3). Toward this end, we performed a qualitative
exploratory study in the context of real world large-scale distributed agile projects in two
different organizations, labeled asO1 andO2. Both were selected purposefully based on
their size and their rich experience with SAFe implementation. The first (O1) is a large
Dutch government organization with about six years of SAFe experience. O1 has about
30000 employees spread over the whole country, however the IT department is located in
one big building in one city. The agile teams of the IT department are distributed within
this building. The software delivered by O1 is used by both individuals and companies
to manage their taxes and allowances and is subject to strict legal regulations. The SAFe
variant that O1 implemented is Portfolio SAFe [5] (it is explained more in detail in the
next section). The second organization (O2) is an Indian large multinational consulting
company with approximately 100000 employees. O2 is one of the biggest IT companies
in the world. It operates in more than hundred locations across several countries. O2 is
CMMI level 5 certified and has worked with SAFe since the introduction of SAFe in
2011. The agile teams of O2 are distributed across different locations and countries. The
SAFe variant they implemented is Large Solution [5]. As already stated, by doing this
interview based we aimed to answer RQ2 and RQ3. To collect the data, we conducted
nine semi-structured, open- ended, in-depth interviews according to the guidelines of
Boyce and Neale [24]. We chose the qualitative interview-based case study approach,
because our desired depth of understanding could not be achieved meaningfully through
the use of survey questionnaires and closed questions. As per Benbasat et al. [25],
employing such a research method is a particularly suitable to research situations in
which researchers study socially constructed processes in systems development projects
and seek to achieve as good as possible grasp of reality. The selection of participants
was based on the following criteria: (1) they all have at least 3 years of experience in
SAFe and at least 10 years of IT experience, (2) they all had exposure to tasks related to



Analyzing SAFe Practices with Respect to Quality Requirements 239

the engineering of QRs, (3) they all were willingness to participate. They were drawn
purposefully from the professional circle of the first and the third authors. As we were
striving for a variety of roles to cover various perspectives, we included participants
employed in different jobs (See Table 2). Four of the participants are from O1 and their
interviews took place in the Netherlands, with the first author as the interviewer. The
other participants are fromO2 and the interviews took place in India, with the third author
as the interviewer. The participants’ roles in SAFe and their experience are described
in Table 2. All interviews were in English and took around one hour. Our interview
process included the following: (i) we asked each interviewee to choose a SAFe project
in which he/she was actively involved in and in which QRs played a significant role,
(ii) we showed the list of the reported QRs challenges [9] and asked the participant to
indicate which ones he/she observed in his/her experiences in that SAFe project, and
finally (iii) we asked which SAFe elements has each participant used to cope with the
experienced QRs challenges. A list with the identified QRs challenges [9] was sent to
all participants before the interview, in order to give them the chance to understand the
challenges correctly.

Table 2. The participants in our interview-based study.

Participant ID Organization Role Years of experience in IT

P1 O2 Technical lead 12

P2 O2 Agile coach 30

P3 O2 Solution architect 14

P4 O2 Agile coach 20

P5 O2 Project manager 13

P6 O1 Agile coach 15

P7 O1 IT manager 24

P8 O1 Product manager 10

P9 O1 IT manager 18

The interviewswere audio-recorded and then thereafter transcribed by a professional
company to avoid biases. The first two researchers read the transcripts separately and
established a mapping between the by practitioners used SAFe elements and the QRs
challenges they mitigate. Using coding [26] and Conklin’s dialog mapping technique
for qualitative data structuring [23], these researchers sorted out the qualitative data and
mapped the participants’ answers against the QRs challenges in Table 1. The results of
this analytical activity are reported in Sect. 5.2. However, before that, we present the
SAFe framework [5] as this is important for understanding the context of our research.



240 W. Alsaqaf et al.

4 Scaled Agile Framework (SAFe)

SAFe is described by its authors [5] as a set of principles, practices and guidance that
can be used by enterprises to deliver small solutions as well as complex systems in an
agile way. It is a configurable framework with four variants as described below:

Essential Safe (ES) is the smallest SAFe configuration (between 50–150 practition-
ers) and the fundamental building block for all other SAFe configurations. The so-called
agile release train (ART) is the fundamental concept ofES. It is a teamof 5–12 agile teams
where each team is a cross-functional group of 5–11 practitioners. Furthermore, ES con-
sists of two levels, namely (1) team level that contains artefacts, events and processes an
agile team needs to do in order to deliver value and (2) program level which contains all
artifacts, events and processes needed to coordinate the work between the agile teams
at the team level. The agile teams apply several agile practices (e.g. Scrum, Extreme
Programming, Kanban) to deliver their part of the solution within a sprint. ART is fur-
ther responsible for planning, committing, and deploying all the work together within a
Program Increment (PI) (typically between 8 and 12 weeks). Scrum of Scrums is used
to coordinate the dependencies between the different agile teams.

Large Solution SAFe (LSS) is a SAFe configuration for delivering large and complex
systems without the need for portfolio and strategy alignment. In essence, LSS is an ES
with additional roles (e.g. Solution train, Solution train engineer), and practices (e.g.
Solution engineering, Solution management). The so-called solution train (ST) is the
basis of LSS which coordinates the work of multiple ARTs by using Scrum of Scrums
to deliver a complex system within a shared PI. As already said, O2 uses LSS.

Portfolio SAFe (PS) is concerned with managing value streams by aligning value
streams to ARTs. Values are defined as Epics and managed by an Epic owner through
the so-called portfolio kanban system. Value streams are the activities needed by an
enterprise to deliver end-to-end customers’ value. As stated earlier, O1 uses PS.

Full Safe (FS) is the complete SAFe configuration consisting of all previous con-
figurations, which is used in large enterprises to align portfolios to very large solutions.
We note that FS, while leveraging the elements of all three configurations, does not add
any new elements.

5 Results

5.1 SAFe Elements Assumed Mitigate the QRs Challenges Defined in [9]

This section summarizes our findings in regard to RQ1.We found that SAFe as presented
in [5] does recognize the importance of QRs. In fact, QRs are explicitly mentioned in
all SAFe configurations. SAFe treats QRs as constraints on the backlog items or as
restrictions on the software design and not as independent backlog items. In Tables 3,
4, 5 and 6, we present the results of our documentary analysis. These tables show,
respectively, those elements – i.e. roles, artifacts, events, practices – of all four SAFe
configurations which are supposed to influence the engineering of QRs, according to
the SAFe textbook [5] and the documents at the official SAFe website. In each of these
tables, column 1 represents the identified SAFe element which our analysis found to be
a good candidate solution to use for coping with the QRs challenges from Table 1. The



Analyzing SAFe Practices with Respect to Quality Requirements 241

second column of each table shows the SAFe configuration in which the identified SAFe
element is utilized (i.e. Essential SAFe (ES), Large Solution SAFe (LSS) and Portfolio
SAFe (PS)). Finally, the third column gives a short description of the respective SAFe
element. A dash “-” in a cell means that SAFe doesn’t mention a value for that particular
element in corresponding column. We note that elements which are related to Scrum
[11] (e.g. sprint, sprint review) are not taken into consideration in our analysis for two
reasons: 1) they are not specific to SAFe which is the subject of this study, 2) Scrum is
originally designed for a small, single, co-located teams [3] while our focus is large-scale
distributed agile teams.

Table 3. The identified SAFe roles that could help cope with QRs challenges

Roles SAFe configuration Description

Product management ES A team who is responsible for the program backlog

Solution management LSS A team who is responsible for the Solution backlog

Lean portfolio management PS A team who is responsible for the portfolio backlog

Epic owner PS The owner of an epic from the portfolio backlog that gets
implemented

System engineer ES An individual who is responsible for defining and communicating the
technical requirements where QRs might be part of within the ART

Solution engineer LSS An individual who is responsible for defining and communicating the
technical requirements where QRs might be part of within the ST

Agile release train (ART) ES A team of agile team created around values which coordinate the
activity of those teams to deliver customer values

Solution train (ST) LSS A SAFe construction to organize the work of multiple ARTs in order
of delivering complex systems

Table 4. The identified SAFe artifacts that could help cope with QRs challenges

Artifacts SAFe configuration Description

Program backlog ES A repository of all features that need to be broken down to teams user stories

Solution backlog LSS A repository of all (supportive) activities needed to enable the implementation
of other activities

Portfolio backlog PS A repository of the most abstract epics

Solution intent LSS A repository of all knowledges and requirements of the solution to be
implemented

Enabler ES, LSS, PS It is e.g. epic, feature of user story needed for extending the architecture to meet
certain requirements

As indicated in Sect. 3, we note that Full SAFe includes all other SAFe configura-
tions (e.g. ES, PS and LSS) and does not describe any unique specific element which
only exists when implementing the Full SAFe. That explains why we did not identify
specific Full SAFe elements in Tables 3, 4, 5 and 6. After identifying the SAFe elements
that could mitigate the QRs challenges identified in [9], the first two researchers mapped
these elements (in Tables 3, 4, 5 and 6) to the reported categories of the challenges by



242 W. Alsaqaf et al.

using Conklin’s dialog mapping technique for qualitative data structuring [23]. Table 7
summarizes this mapping. The first column of Table 7 shows the reported challenges,
while the second column shows those SAFe elements that could be used to mitigate the
related challenge in the first column. A dash “–” in the second column means that SAFe
does not explicitly specify a particular element (e.g. artifact, role, event, practice) that
couldmitigate the reportedQR challenge in the first column. SAFe describes elements of
four types – i.e. artifacts, roles, events, practices – that could (at least partially) mitigate
the QRs challenges reported in [9]. E.g., the different backlogs of the different SAFe
configurations (e.g. Program backlog, Solution backlog) in combination with the Solu-
tion intent artifact could be used to eliminate confusions about conceptual definitions of
QRs. SAFe however treats QRs in an unambiguous way as constraints on the product
backlog items (PBIs) and not as independent PBIs. Besides, SAFe introduces several
roles, namely: System engineer and Solution engineer, both possibly helping mitigate
architectural challenges e.g. “Unmanaged architecture changes” and “Misunderstanding
the architecture drivers” (see Table 1). However, we did not find appropriate SAFe ele-
ments that could mitigate the following two QRs challenges: “Lengthy QRs acceptance
checklist”, “Confusion about QR’s specification approaches”. We discuss this further in
our Discussion section.

Table 5. The identified SAFe events that could help cope with QRs challenges

Events SAFe configuration Description

Program Increment (PI) planning ES It is a two to three whole day planning session where all
agile teams of an ART come together to obtain a shared
understanding of the business and fill in their own
backlogs by breaking down the program backlog items
including QRs. It is analog to Sprint planning

Inspect and adapt (I&A) ES, LSS At the end of each PI, the teams of an ART come
together to inspect the delivered product, quality and de
development process. It is analog to sprint review and
retrospective

Scrum of Scrums (SoS) ES Representatives of all teams of an ART gather ate least
once weekly for 30–60 min to discuss teams progress
and dependencies

PO sync ES A 30–60 min weekly meeting for all POs and product
management of all agile teams to discuss PI objectives,
product features and scope

Pre and post PI planning (PPPI) LSS Two events of two whole days occurs before and after de
PI planning to coordinate and follow-up work of various
ARTs in relation to the Solution train

Portfolio sync PS It is a monthly event for the Lean Portfolio Management
to discus epics implementation, addressing dependencies
and removing impediments

Innovation and planning iteration (IPI) ES An iteration following the last iteration of an increment.
It is used to experiment, inspect test results and plan
possible technical changes



Analyzing SAFe Practices with Respect to Quality Requirements 243

Table 6. The identified SAFe practices that could help cope with QRs challenges

Practices SAFe configuration Description

Set-based design (SBD) LSS A practice of delaying a definitive design decision
as long as possible until all possible options are
verified and validated

Model-Based Systems Engineering (MBSE) LSS A model-centric approach to define, design and
document complex systems

Economic framework PS A set of decision guidelines that should be used to
evaluate the feasibility of QRs

Architectural runway LSS The existing code, infrastructure and architectural
guidelines to help teams enabling the
implementation of near-term features

Quadrant 4 − Agile test matrix that explains which tests should
be performed by which way (e.g. manual,
automated) to validate QRs

Table 7. Mapping SAFe elements to QR challenges

QR challenges [9] SAFe elements

Late detection of QRs infeasibility SoS, Program backlog, Solution backlog. Portfolio backlog. Solution
intent. PO sync, Portfolio sync, PPPI, PI planning

Hidden assumptions in inter-team collaboration SoS, ARTs, STs, PI planning, IPI

Uneven teams maturity Economic framework, Architectural runway, I&A, IPI

Suboptimal inter-team organization ARTs

Inadequate QRs test specification MBSE

Lack of cost-effective real integration test Quadrant 4

Lengthy QRs acceptance checklist −
Sporadic adherence to quality guidelines Economic framework, I&A, SoS

Overlooking sources of QRs Product management, Solution management, Lean Portfolio
Management, Epic owner, System engineer, Solution engineer, Solution
intent, PO sync

Lack of QRs visibility System engineer, Solution engineer

Ambiguous QRs communication process System engineer, Solution engineer, SoS, ARTs, STs

Unclear conceptual definition of QRs SoS, Program backlog, Solution backlog. Portfolio backlog. Solution
intent

Confusion about QR’s specification approaches −
Unmanaged architecture changes System engineer, Solution engineer, Architectural runway, SBD,

Enablers

Misunderstanding the architecture drivers System engineer, Solution engineer, Architectural runway, SBD,
MBSE, Enablers

5.2 Answers to RQ2 and RQ3

This section summarizes our answers to RQ2 (Do the SAFe practitioners experience the
QRs challenges identified in [9]?) and RQ3 (If yes which SAFe practices they utilize
to mitigate these challenges?) The answers came out of our qualitative analysis of the



244 W. Alsaqaf et al.

data in our interview-based study. We note that not all challenges were observable by all
participating practitioners. For each of them, we analyzed the challenges this practitioner
experienced and the way SAFe practices were used to confront the challenges (as per
this practitioner’s experience). Using coding [26] and concept-mapping practices [23],
the first two researchers mapped SAFe elements identified by the practitioners to the
challenges reported in [9]. Table 8 summarizes this mapping. The first column of the
table shows the reported categories and their related challenges, while the second column
shows the SAFe elements used by the practitioners tomitigate the related challenge in the
first column. A dash “–” in the second column means that no remedy has been identified
by the practitioners.

Table 8. Mapping SAFe elements used by practitioners to mitigate their QR challenges

QR challenges [9] SAFe elements

Late detection of QRs infeasibility −
Hidden assumptions in inter-team collaboration SoS

Uneven teams maturity Architectural runway

Suboptimal inter-team organization ARTs, Component teams

Inadequate QRs test specification Team architects, Automated test

Lack of cost-effective real integration test −
Lengthy QRs acceptance checklist References to external documents

Sporadic adherence to quality guidelines Automated tools

Overlooking sources of QRs −
Lack of QRs visibility Business owner, PO, Product management

Ambiguous QRs communication process PI planning, SoS, Architectural runway, ARTs

Unclear conceptual definition of QRs −
Confusion about QR’s specification approaches DoD, Product backlog, A generic ART’s DoD

Unmanaged architecture changes Team architects, Solution architect, Enablers, Architectural runway

Misunderstanding the architecture drivers Enterprise architect, Solution architect, Enablers, Architectural runway

In the experience of our participants, there are several remedies to the identified
QRs challenges. E.g., for the challenge “Ambiguous QRs communication process”, the
practitioners used PI planning, SoS, and Architectural runway to cope with it. In con-
trast, for other challenges (e.g. “Unclear conceptual definition of QRs”) the practitioners
did not identify any SAFe remedy. Moreover, even when practitioners belong to same
organization, they had different views on some challenges. E.g., a practitioner from
O2 did not perceive “Lengthy QRs acceptance checklist” as a challenge while another
practitioner of the same organization recognized this challenge: “If they put QRs in the
DoD, it will be a challenge for developers. We do not put them in DoD”. A practitioner
from O1 recognized this challenge as well: “In the Definition of Done we reference to
QRs”. The practitioners had different views as well regarding the challenge “Unclear
conceptual definition of QRs”. In their experiences, some of them treated QRs as PBIs:
“Performance is important for us, we described it as user stories”, “We treat both func-
tional requirements and QRs as user stories”. Other practitioners considered QRs as



Analyzing SAFe Practices with Respect to Quality Requirements 245

constraints on the PBIs and specified them in both the acceptance criteria and in the
DoD “Performance, it comes back in the acceptance criteria”. These practitioners in
fact were aligned with the methodological source of SAFe [5] which states to treat QRs
as constraints on PBIs and advices to specify them in both the acceptance criteria and in
the DoD of the PBIs. For the challenge “Late detection of QRs infeasibility”, the prac-
titioners did not identify any remedy. In fact, they accepted the invisibility of the QR as
a consequence of complex system development “You are building a complex software
and you find out that it is in practice slightly different than you had thought. I think it
doesn’t matter at all what method you use, whether it is SAFe, Scrum or waterfall, you
just run into that and you have to deal with that”.

Another practitioner explained that the “Lack of cost-effective real integration test”
is difficult to mitigate: “It is difficult to simulate complex production environment to
obtain a reasonable integration test results.” Finally, we found that in the collective
experience of our practitioners, there was no remedy for the challenge “Overlooking
sources of QRs” as well. As a practitioner from O1 reported: “Within our organization
we have more than six hundred systems that communicate with each other. Each of each
has its own stakeholders. It is almost impossible to have an overview of all stakeholders”.

6 Discussion

Table 7 maps the SAFe elements we (i.e. the authors) identified as remedy to the QRs
challenges reported in [9], while Table 8 maps those SAFe elements actively used by
practitioners to mitigate the QRs challenges. We compared both tables and noticed
the contrast between the remedies assumed in the literature of SAFe and the reme-
dies reported by the practitioners. E.g., we have identified Quadrant 4 and Economic
framework as possible remedies for, respectively “Lack of cost-effective real integra-
tion test” and “Sporadic adherence to quality guidelines”. However, no participant has
mentioned those SAFe elements as possible remedies for any of the reported challenges
in [9], despite the use of the Portfolio SAFe configuration by their organization (O1)
or the Large Solution SAFe configuration (O2). We think that this discrepancy can be
explained by the fact that the implementation of SAFe in real life differs from its theory.
In line with this thought, practitioners reported the use of different non- SAFe elements:
“We have a preparation team which is not a SAFe-construct. It consists of information
managers who prepare the work for the agile teams. Those managers were not willing
to anticipate in agile teams so we created a team for them to keep calmness”. “We are
fan of silo’s, so we have a lot of architect’s flavor e.g. a business process architect, a
process architect and an IT architect”. The tendency of introducing non-SAFe elements
into what was supposed to be SAFe, in the experience of our practitioners, was trace-
able to the “long and consistent waterfall experience” of our case study organizations
in large-scale systems delivery projects. As one of our case study organizations was
a CMM5-certified, their adoption of SAFe happened in a highly disciplined environ-
ment in which SAFe co-exists with metrics, measurement procedures, progress tracking
practices and milestone-compliance practices. For this reason, it seems logical that if
practitioners see a QR problem they might be open to resort to a heavyweight practice
that they knew to work well from their pre-agile professional experience. Moreover, one



246 W. Alsaqaf et al.

could argue that our interviewees experienced QRs challenges because the SAFe reme-
dies were not implemented with the due discipline and commitment, e.g. some practices
might have been too much “free-styled”, which means being used in an idiosyncratic
way. While this might well be possible, we think that for a large-scale organization it
might not be realistic to assume a strict SAFe implementation as per the SAFe textbook
[5]. More research is needed to substantiate this.

Furthermore, we found that despite the fact that our case study organizations did
employ some SAFe elements in their coping strategies for QRs, no practitioner indicated
that this was done in a cost-effective way. This let us think that it might be possible that
SAFe and more heavyweight methods could both be comparably expensive approaches.
This seems unsurprising, knowing that dealing with QRs represents an expensive part of
any large-scale project [15]. Next, we found that SAFe [5] treats QRs as constraints on
the backlog items or as restrictions on the software design. This observation agrees with
the treatment of QRs in heavyweight life cycle models (e.g. [27, 28]) where QRs are
operationalized into functional requirements and architecture design choices. Next, it’s
worthwhile noting that our practitioners experienced SAFe as a complex framework. A
practitioner fromO1 explains “SAFe is very precisely defined, almost a work instruction.
It is a complex framework, have you seen how big is the SAFe book in comparison to
other agile scaled frameworks’ books?.” This reflection is in line with observations of
[29, 30] regarding the SAFe’s complexity.

Finally, we found that SAFe integrated different elements that could be recognized
as heavyweight non-agile elements such as Model-Based Systems Engineering. This
finding is in line with [9]. The authors of [9] reported that heavyweight practices often
get integrated in organizations’ agile way of working to encounter QR’s challenges.

7 Threats of Validity

This section discusses the possible validity threats [13] to our empirical research design
and our findings. First, we employed documentation research method [12] which is
a reflexive approach to the analysis of documents that contain information about the
phenomenon we wish to study. There is a possible validity threat related to the types
of documents and the ability to use them as reliable sources of evidence on the social
world. We think this threat is minimal because we used the most important repository
of documents of the SAFe community of practitioners. The documents we reviewed
form the basis for this community’s education and certification programs. We were also
conscious of researchers’ bias. However, we mitigated this by including two academic
researchers (the second and the fourth co-authors) next to the two industry researchers
(the first and the third authors). This diversity of backgrounds was used to remove any
bias and checking tacit assumptions about the reviewed documents. Furthermore, our
interview study included 9 practitioners in two organizations. Their perceptions and
experiences can not be generalized to all possible large-scale enterprises using SAFe.
However, because these practitioners were with various roles and operated in very dif-
ferent cultural contexts (India and the Netherlands), we think that they cover a broad
range of professional perspectives to QRs in SAFe. Acknowledging this diversity, we
think it might well be possible to have similar findings if we included more participants



Analyzing SAFe Practices with Respect to Quality Requirements 247

from organizations similar to O1 and O2. As stated in [31], contextual similarity in terms
of process-oriented thinking, experience with both agile and heavyweight development
practices in large and very large projects, might lead to similar organizational mecha-
nisms that might produce similar effects in other similar but different organizations (e.g.
government agencies with 30000+ employees and large companies).

8 Conclusion

This paper investigated the possible remedies suggested by SAFe [5] to mitigate the
effects of QRs challenges identified in a previous study [9]. We have examined SAFe
with respect to those QRs challenges by (i) performing documentary analysis where
the official SAFe literature has been investigated and (ii) conducting an interview-based
study to understand the SAFe elements used by practitioners to cope with the QRs
challenges. Our results show that SAFe contains 25 elements (e.g. roles, artifacts, events,
practices; see Tables 3, 4, 5, 6) that are assumed to be used to mitigate the impact of
the identified QRs. Nine of those elements were also mentioned by the practitioners
involved in the interview-based study (see Table 8). We think that SAFe practitioners,
due to the complexity of the SAFe framework, implement SAFe differently from the
SAFe textbook [5]. In our opinion this difference in implementation could be the reason
for the discrepancy between the SAFe elements identified through our documentary
analysis and those identified in our exploratory interview-based study. Our follow-up
research step will be to extend this work by investigating the actual reasons behind the
discrepancy between the practical implementation of SAFe in real-world projects and
the suggested implementation described by the SAFe authors [5]. The follow-up study
will help us define a practical set of remedies to the QRs challenges identified in [9].

References

1. Smart, J.: To transform to have agility, don’t do a capital A, capital T agile transformation.
IEEE Softw. 35, 56–60 (2018)

2. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36, 1–9 (2019)

3. Kalenda, M., et al.: Scaling agile in large organizations: practices, challenges, and success
factors. J. Softw. Evol. Process 30, e1954 (2018)

4. Bick, S., et al.: Coordination challenges in large-scale software development: a case study of
planning misalignment in hybrid settings. IEEE Trans. Softw. Eng. 44, 932–950 (2018)

5. Richard, K., Leffingwell, D.: SAFe 5.0 Distilled Achieving Business Agility with the Scaled
Agile Framework, 1st edn. Pearson Education, London (2020)

6. Larman, C., Vodde, B.: Large-Scale Scrum more with Less. Pearson Education, London
(2016)

7. Sutherland, J.: The Scrum@Scale guide - the definitive guide to Scrum@Scale: scaling that
works. In: Scrum@Scale, pp. 1–19 (2019). https://www.scrumatscale.com/scrum-at-scale-
guide/

8. Paasivaara, M., et al.: Adopting SAFe to scale agile in a globally distributed organization. In:
ICGSE 2017, pp. 36–40 (2017)

9. Alsaqaf, W., et al.: Quality requirements challenges in the context of large-scale distributed
agile: an empirical study. Inf. Softw. Technol. 110, 39–55 (2019)

https://www.scrumatscale.com/scrum-at-scale-guide/


248 W. Alsaqaf et al.

10. COLLAB.NET and VERSIONONE.COM: 14th Annual State of Agile Report. Ver-
sionOne (2020). https://stateofagile.com/?_ga=2.145189495.276092471.1591726593-100
8038165.1591726593#ufh-i-615706098-14th-annual-state-of-agile-report/7027494

11. Schwaber, K., Sutherland, J.: The scrum guide. Scrum.Org and ScrumInc, p. 19 (2017)
12. Appleton, J.V., Cowley, S.: Analysing clinical practice guidelines. A method of documentary

analysis. J. Adv. Nurs. 25, 1008–1017 (1997)
13. Yin, R.K.: Case Study Research Design and Methods. 5th Revise. Sage Publications Inc.

(2013)
14. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale distributed agile

projects – a systematic literature review. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017.
LNCS, vol. 10153, pp. 219–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54045-0_17

15. Kasauli, R., et al.: Requirements engineering challenges and practices in large-scale agile
system development. J. Syst. Softw. 172, 110851 (2021)

16. Moyon, F., et al.: How to integrate security compliance requirements with agile software
engineering at scale? In: Morisio, M., Torchiano, M., Jedlitschka, A. (eds.) PROFES 2020.
LNCS, vol. 12562, pp. 69–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64148-1_5

17. Beecham, S., et al.: Do scaling agile frameworks address global software development risks?
An empirical study. J. Syst. Softw. 173, 110823 (2021)

18. Ambler, S.W., Lines,M.:DisciplinedAgileDelivery:APractitioner’sGuide toAgile Software
Delivery in the Enterprise. IBM Press (2012)

19. Wagner, T.J., Ford, T.C.: Metrics to meet security & privacy requirements with agile software
development methods in a regulated environment (2021)

20. Portman, H.: Scaling Agile in Organisaties. Van Haren Publ. (2017)
21. Kniberg, H., Ivarsson, A.: Scaling agile @ spotify - with tribes, squads, chapters & guilds

(2012)
22. Hitchcock, D.: The practice of argumentative discussion. Argumentation 16, 287–298 (2002)
23. Conklin, J.: Dialog mapping: reflections on an industrial strength case study. In: Kirschner,

P.A. et al. (eds.) Visualizing Argumentation. CSCW, pp. 117–136. Springer, London (2003).
https://doi.org/10.1007/978-1-4471-0037-9_6

24. Boyce, C., Neale, P.: Conducting in-depth interviews: a guide for designing and conducting
in-depth interviews. Evaluation 2,1–16 (2006)

25. Benbasat, I., et al.: The case research strategy in studies of information systems. MIS Q.
369–386 (1987). https://www.jstor.org/stable/248684?seq=1#page_scan_tab_contents

26. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Qualitative
Analysis. Sage (2006)

27. Kassab, M., et al.: An ontology based approach to non-functional requirements conceptual-
ization. In: 4th International Conference on Software Engineering Advances, ICSEA 2009,
pp. 299–308 (2009)

28. Mart, S., et al.: Dealing with non-functional requirements in model-driven development : a
survey. IEEE Trans. Softw. Eng. 45(4), 818–835 (2021)

29. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and challenges of adopting the scaled agile
framework (SAFe): preliminary results from a multivocal literature review. In: Kuhrmann,
M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp. 334–351. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03673-7_24

30. Ebert, C., Paasivaara, M.: Scaling agile. IEEE Softw. 34, 98–103 (2017)
31. Seddon, P., Scheepers, R.: Towards the improved treatment of generalization of knowledge

claims in IS research: drawing general conclusions from samples. Eur. J. Inf. Syst. 21, 6–21
(2011)

https://stateofagile.com/%3F_ga%3D2.145189495.276092471.1591726593-1008038165.1591726593%23ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://doi.org/10.1007/978-3-319-54045-0_17
https://doi.org/10.1007/978-3-030-64148-1_5
https://doi.org/10.1007/978-1-4471-0037-9_6
https://www.jstor.org/stable/248684%3Fseq%3D1%23page_scan_tab_contents
https://doi.org/10.1007/978-3-030-03673-7_24


Capitalizing on Developer-Tester
Communication – A Case Study

Prabhat Ram1(B), Pilar Rodríguez2, Antonin Abherve3, Alessandra Bagnato3,
and Markku Oivo1

1 M3S, Faculty of ITEE, University of Oulu, 90014 Oulu, Finland
{prabhat.ram,markku.oivo}@oulu.fi

2 Faculty of Computer Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
pilar.rodriguez@upms.es
3 Softeam, 75016 Paris, France

{antonin.abherve,alessandra.bagnato}@softeam.fr

Abstract. Communication between developers and testers can be a rich source
of insights into software development processes and practices, which may not
be easily discoverable from other means like retrospectives or project roadmaps.
With the objective of deriving and capitalizing on potential development-related
insights, we analyzed developer-tester communication in an industrial setting. We
conducted a case study at a software-intensive Agile company, within the con-
text of the development of one of their flagship products from 2016 to 2018. We
applied Latent Dirichlet Allocation (LDA) to analyze communication between
developers and testers, and then invited two case-company practitioners to study
the results for insights into their developments processes: The findings reveal the
case company’s efforts to improve their product stability, the growing emphasis on
addressing end-user concerns and other quality-related issues. The practitioners
interpreted these findings as indicators of evolution in their development process.
Based on these findings and the state of the art, we propose an insight classifi-
cation to highlight insights discoverable from developer-tester communication:
Recognizing LDA’s potential for deriving insights, the practitioners are keen on
incorporating it into their software development practices. The findings from this
study serve as evidence for use and benefits of text-mining techniques like LDA in
industrial setting, which other practitioners could adapt to elicit their own context-
influenced insights. Furthermore, the insight classification can serve as a founda-
tion for further investigation into the extent and type of insights discoverable from
developer-tester communication.

Keywords: LDA · Topic modeling · Insights · Software evolution

1 Introduction

During software development, communication between developers and testers is docu-
mented in issue/bug trackers like Jira1 andMantis2 in unstructured format. Unstructured

1 https://www.atlassian.com/software/jira.
2 https://www.mantisbt.org/.

© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 249–264, 2021.
https://doi.org/10.1007/978-3-030-91452-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_17&domain=pdf
https://www.atlassian.com/software/jira
https://www.mantisbt.org/
https://doi.org/10.1007/978-3-030-91452-3_17


250 P. Ram et al.

data are expressed in natural language [1], and so do not have a clear, semantically overt,
and easy-for-a-computer structure [2]. Software engineering is a data-rich activity [3],
and developer-tester communication are among the software artifacts that are produced
in large volume, particularly as a result of modern software development methods like
Agile software development (ASD) [1]. These artifacts may hold insights into soft-
ware design, developers’ knowledge and decisions, and overall software advancement
[1]. Their analysis can produce actionable information [4] to complement, and even
improve, the overall software development process [5, 6].

Developer communication can be used to classify developer emails based on their
purpose [7], identify source code activities in mailing list discussions [8], summarize
software artifacts [9], and identify software architecture knowledge [10] from discus-
sions on forums like Stack Overflow3. Such insights have been used for recommending
developers for bug triage [11],mentoring [12], and for code comprehension [13]. In these
investigations, information retrieval (IR) techniques like Latent Semantic Indexing (LSI)
and Latent Dirichlet Allocation (LDA) techniques have been preferred [7, 14–16]. LDA
is more suitable for handling unstructured text, while retaining semantic richness, than
other techniques like clustering and bag of words [17]. This may bewhy LDA is themost
popular topic modeling technique for indexing, searching, and clustering large amount
of unstructured data [5, 18]. Based on the surveys by Chen et al. [16] and Sun et al.
[4], LDA has been used on source codes, requirement documents, bug reports, commit
messages, and developer communication. However, its potential to derive insights from
developer-tester communication remains unexplored.

In view of the potential insights discoverable from developer communication, explo-
ration and analysis of developer-tester communication is also very likely to produce
comparable results. If conducted in an industrial setting and during software product
development, the results could help practitioners capitalize on their development data
better by generating insights from them. Owing to such demonstrable positive findings,
practitioners could expand and benefit from the use of this text-mining technique on other
unstructured data, like change logs. To our knowledge, developer-tester communication
in an industrial setting has not been studied, especially for discovering development-
related insights. A study [19] similar to ours has used data-mining techniques to recover
lost project knowledge from the informal communication conducted over instant mes-
saging, and involved stakeholders from two startups to validate the results. However,
in contrast to our study, the authors used a text-summarization algorithm and applied it
only to developer communication.

With the objective of exploring developer-tester communication for development-
related insights, we conducted a case study at a large software-intensive company using
ASD.We targeted the unstructured data captured byMantis, a bug-tracking tool used by
the case company (CC). The data relates to discussion between developers and the testing
teamwhile addressing issues4 revealed during testing, highlighted by the internal quality
team, or reported by end users. We collected the data during the development of one of

3 https://stackoverflow.com/.
4 At the case company, the term issue is used to refer to bugs, anomalies, defects etc.

https://stackoverflow.com/


Capitalizing on Developer-Tester Communication – A Case Study 251

their flagship productsModelio, and we used LDA to analyze those data. We addressed
our research objectives with the research question (RQ): What software development
related insights could be discovered from the developer-tester communication at the
case company?

We collaborated with two practitioners (henceforth stakeholders) from the CC. This
was necessary to validate the LDA results, and understand their implications, particularly
for the ongoing development of Modelio. Stakeholder involvement adds weight to our
findings, as they are likely to elicit insights that are influenced by their development
context. Based on these rationales, following are our study’s contributions:

• In collaboration with stakeholders, we present empirical evidence of using LDA to
elicit insights from developer-tester communication. Stakeholder-driven validation of
the results helps retain the embedded development context. Since the results relate to
one of the flagship products Modelio, the inferred insights carry a higher likelihood
of influencing their ongoing software development processes and practices.

• We demonstrate the use of LDA in an industrial setting to elicit development-related
insights, which the stakeholders claim would have remained undetected otherwise,
even with the use of their classical monitoring tools and project roadmaps.

• Driven by the findings and state of the art, we propose a non-exhaustive insight
classification to highlight examples of insights discoverable from developer-tester
communication, recorded in issue trackers like Mantis.

In the remainder of the paper, we discuss LDA and related work in Sect. 2, research
method in Sect. 3, followed by the study’s results in Sect. 4. Discussion of the results
is presented in Sect. 5, with limitations and threats to our research’s validity in Sect. 6,
and conclusion and future research directions in Sect. 7.

2 Background and Related Work

We first describe the LDA algorithm, which is central to our study, followed by a
discussion on how our study relates to, and differs from, the state of the art.

2.1 LDA

LDA is one of the best topic modeling techniques to automatically extract topics from
a corpus of text documents [20]. It creates statistical models to infer latent topics to
describe a corpus.As a result, an unstructured corpus canbeorganizedby their discovered
semantic structure, represented by the topics embedded within the documents [21]. LDA
identifies topics by using words that co-occur frequently in the documents of the corpus.
This is due to the nature of natural language use, where frequently co-occurring words
that constitute a topic are often semantically related [22]. Each document is a multi-
membership of topics, which in turn is a multi-membership of words. This implies that
each document can contain multiple topics, and conversely, each topic can appear in
more than one document. By extension, each word can then appear in more than one



252 P. Ram et al.

topic. In this way, LDA can discover a set of ideas or themes that succinctly describe an
entire corpus [20].

Formally, LDA infers for each ofT topics anN-dimensionalwordmembership vector
z(φ1:N) that describes the extent to which words appear in topic z. This membership
vector describes the probability that each unique word appears in topic z. In addition,
LDA infers for each document d in the corpus a T-dimensional topic membership vector
d(θ1:T), describing the extent to which each topic appears in d. This describes the
probability that each topic appears in document d [21]. LDA makes these inferences
using Bayesian techniques like Gibbs sampling [20].

2.2 Related Work

Anvik et al. [11] used Support VectorMachines on open bug repositories to identify rela-
tionships between developers and the bugs they fix, with the aim to propose a developer
recommender system for bug triage. Similarly, Zhang et al. [23] used LDA to extract
topics from bug reports, capture developers’ interests and experiences vis-à-vis these
bug reports, to propose a developer recommender system. To identify potential software
development knowledge embedded in developers’ discussions in mailing lists, Shihab
et al. [8] used various heuristics to explore 22 GNOME projects. They identified that
only a small group of developers dominate mailing list activity, and drew a correlation
between mailing list activity and code activity, concluding that developers rely heavily
on mailing lists to discuss source code changes. Also focusing on developers mailing
list activity, Di Sorbo et al. [7] used natural language parsing to classify the mail con-
tent according to purpose of communication. The authors demonstrate the use of this
approach to mine method descriptions from developers’ communication. In a similar
study, Panichella et al. [13] used Vector Space Model to automatically extract method
descriptions from developer communications recorded in bug tracking systems andmail-
ing lists. The authors used the approach to produce method descriptions from developer
communication, and argued that such analysis could be used for code comprehension,
which can be further used for source re-documentation.

Our study is similar to the above studies in the objective of extracting insights from
unstructured data, such as developer communication. However, we target developer-
tester communication, which may generate insights into both development and testing.
Moreover, the study is conducted in an industrial setting, in collaboration with two
stakeholders. According to a survey by Sun et al. [4] and the study by Zhang et al.
[23], LDA has been used mainly for developer recommendations, which is marginally
in contrast to our application of LDA on developer-tester communication. Excluding the
study by Lima et al. [19], we have not found investigation similar to ours that involved
stakeholders for interpreting and validating results.

Bertram et al. [24] classified issue trackers based on their potential utility for its users.
The authors posit that issue trackers can act as a knowledge repository, boundary object,
communication and coordination hub, and communication channel.Weadapt this classi-
fication to propose a non-exhaustive issue classification, and highlight the development-
related insights discoverable from developer-tester communication, recorded in issue
trackers like Mantis. Although the foundation for this classification is our single case



Capitalizing on Developer-Tester Communication – A Case Study 253

study, but by adapting the knowledgebase from [24], we aim to extend its relevance,
encouraging further research to review, refine, or refute it.

3 Research Method

We followed the guidelines recommended by Runeson and Höst [25] to conduct the case
study and answer the RQ.

3.1 Research Context

The CC is a large-size company, offering commercial services and solutions across
multiple domains. The CC claims to follow customized agile, as it uses various software
development methods that adhere to Agile principles, such as iterative development,
but does not have any predefined sprint cycles. For the case study, we focused on one
of their flagship products, Modelio, a modeling tool for model-driven development.
A collocated team of nine practitioners works on Modelio’s development. During our
period of interest, the CC worked on and released three different versions of this tool.

3.2 Data Collection

For our study, we used data from the bug-tracking tool Mantis. The issueDescription
and testFeedback fields in this tool record communication between the developers and
testing team in natural language. The issueDescription field records issues raised by the
testing team and even end users, and the developers respond with a fix. The testing team
attempts to resolve the issue based on this response, and records the outcome in the
testFeedback field. The data were collected for the years 2016 (189 entries), 2017 (571
entries) and 2018 (493 entries). Mantis 2019 dataset was too inadequate (66 entries) to
be included in our study. By ‘entries’, we mean the total unique textual entries extracted
from each year’s dataset, both issueDescription and testFeedback fields taken together.

3.3 LDA Application and Data Analysis

We divided the Mantis dataset into three subsets, year wise. The year-based division
approximates well to the three Modelio versions developed in 2016, 2017, and 2018.
Moreover, a division of less than 12 months would have resulted in too few entries to
produce any meaningful results, as we learned from the unintelligible topics produced
from the analysis ofMantis 2019 dataset. Another reason for the year-based division is
our previous study [26], where the same division logic was adopted to provide empirical
evidence for the use and benefits of a metrics program in an industrial setting.

For applying LDA, we used the tidytext5 format, where the text to be analyzed is
stored as a table with one-token-per-row. Generally, a token is a single word, but can even
be an n-gram (n words taken together), sentence, or paragraph [27]. A representative

5 https://www.tidytextmining.com/tidytext.html.

https://www.tidytextmining.com/tidytext.html


254 P. Ram et al.

example of how we applied LDA to our dataset can be found here6. We created a tidytext
data-frame for issueDescription and testFeedback corpora for each of the three subsets.
In the context of LDA, issueDescription is the corpus, and the individual entries therein
are the documents. This means that the 2016, 2017 and 2018 Mantis subsets have 189,
571 and 493 documents, respectively. Next, we preprocessed the issueDescription corpus
by performing tokenization, splitting the documents into individual tokens (words). We
used the tidytext R package7 to perform this step, converting the text into tidytext format.
Next, we removed stopwords, which are common English-language words like “the”,
“of”, “it”, etc. Typically, numbers are also removed, but the corpus contained mentions
ofModelio’s different versions (e.g. 3.8.00, 3.8.01), instruction set architecture (e.g. x86,
64), and operating system platforms (e.g. 10.0). We retained them to avoid losing tokens
of potential significance. Next, tokens like ‘xmldiagramreader.java’ would typically be
split into ‘xmldiagramreader’ and ‘java’ before applying LDA. However, we decided
against it, because the original text holds more meaning, and is easily identifiable and
interpretable for the stakeholders.

The preprocessing steps helped standardize the issueDescription corpus, which was
done for every testFeedback corpus as well. Next, we calculated terms frequency–
inverse document frequency (TF-IDF) for issueDescription corpora. TF measures how
frequently a word occurs in a document. IDF also measures word frequencies, but by
decreasing the weight for commonly used words and increasing it for words rarely used
in the corpus. Combined, TF-IDFmeasures frequency of a word, adjusted for how rarely
it is used, which helps identify how important a word is to a document in a corpus [27].
Although not necessary for topic modeling in general, TF-IDF is useful in exploring
data and deriving information that can help inform topic modeling.

Next, we applied LDA to every issueDescription subset separately, to elicit topics
that best describe each subset. The most essential input for LDA is the number of
topics, which are typically user defined. After several attempts, we settled on different
number of topics for different subsets. This decision was dictated by ‘γ ’ distribution,
which measures the probability of each document belonging to a topic. Higher number
of topics result in too sparse distribution, indicating that the documents are not being
sorted well into different topics. Decreasing the number of topics results in less clear
division among topics, with multiple concepts clubbed under one topic. In addition, the
stakeholders reviewed and validated the topics, aiding our decision on the number of
topics.

LDA application divided every issueDescription corpus into x semantically similar
but distinct issues-related topics. We wanted to explore if patterns observed in these
topics had corresponding patterns in how the testing team addressed them. Based on the
γ distribution, we joined each issues-related topic, and their corresponding documents,
with the tokens generated from the testFeedback corpus. Independent analysis of the
issueDescription corpus would have produced topics about only the issues the devel-
opment team worked on in a given year, without any insight into their possible causes
and how they were addressed. Similarly, analyzing the testFeedback corpus in isolation

6 https://www.tidytextmining.com/nasa.html.
7 https://cran.r-project.org/web/packages/tidytext/index.html.

https://www.tidytextmining.com/nasa.html
https://cran.r-project.org/web/packages/tidytext/index.html


Capitalizing on Developer-Tester Communication – A Case Study 255

would have produced topics that provide some visibility into the testing efforts, but with-
out the key insight into the issues those efforts were directed at. By combining the two
corpora, we could explore one-to-many relationship between the distinct issue-related
topics and how they were addressed by the testing team.

The LDA results were shared with the Product Development Team Lead and the
R&D Head at the CC, the two stakeholders that we collaborated with. We asked them
to study the findings to determine their significance from their development perspective,
identify issue-related topics and the one-to-many relationship between these topics and
the testFeedback tokens. Since LDA generates topics without labeling them, we asked
the stakeholders to label them manually. Automatic labeling is an objective exercise
[28]. Due to highly contextual knowledge embedded in unstructured data, we argue that
manual labeling is preferable to automatic labeling, and that the stakeholders are in an
ideal position to identify and interpret the topics’ significance. The stakeholders provided
their interpretations in under a week. We posit that this effort spent would be less if the
LDA results are reviewed full-time, as part of daily work, instead of as a non-urgent task
for an industry-academia collaboration. After receiving the stakeholders’ interpretations
of the results, we held an hour-long joint meeting with both the stakeholders for further
clarification on their interpretations and claims made therein, which helped us answer
the RQ.

4 Results

We first present the topics and their significance for each Mantis subset, interpreted by
the stakeholders. Next, based on this empirical evidence, and the software development
knowledge that issue trackers tend to capture [24], we present an insight classification,
to characterize the potential of developer-tester communication for development-related
insights. The LDA results the stakeholders studied and validated are available in the
Appendix8. The R code for LDA application can be found here9, but the Mantis raw
data cannot be shared due to confidentiality reasons.

4.1 Development-Related Insights from Developer-Tester Communication

The topics for all the Mantis subsets and their interpreted significance, based on their
relation with the testFeedback tokens, is presented in Table 1. Amore detailed table with
a sample of both issueDescription and testFeedback tokens the stakeholders used to infer
the topics’ significance is available in the Appendix. The ‘NA’ entries mean the stake-
holders could not find any meaningful one-to-many relationship between testFeedback
tokens and the corresponding issues-related topics.

Mantis Topics. The stakeholders claim that the six topics for the 2016 subset reflected
their project structure and implementation of their product’s lower layers. There was
major work for redesigning the model kernels, and the related issues were identified in
the topic ‘Core feature/Integration’. Stakeholders also claim that issues identified by

8 https://doi.org/10.5281/zenodo.4761727.
9 https://github.com/prabhatram/devtester_topicmodeling.

https://doi.org/10.5281/zenodo.4761727
https://github.com/prabhatram/devtester_topicmodeling


256 P. Ram et al.

Table 1. Topics extracted fromMantis dataset and practitioners’ interpretation

No. Topic Practitioners’ interpretation

Mantis 2016 subset

1 Diagram Implementation of the tool’s
diagram component

2 Modelio extensions Modelio API to integrate new
functionality

3 Core feature/Integration Integration aspects of the tool and
model storage layers

4 Project configuration Project configuration and its external
elements

5 Interoperability, Import/export OS incompatibilities and issue
reproducibility in different
environment/version of Modelio

6 Model creation NA

Mantis 2017 subset

1 Project lifecycle NA

2 Diagram Diagrams worked on during the
development in 2017

3 Workbench support Feature containing workbench
implementation

4 BPMN metamodel evolution NA

5 BPMN metamodel evolution BPMN diagram implementation and
import/export feature

6 ArchiMate metamodel support NA

7 BPMN diagrams

Mantis 2018 subset

1 General customer support Customer relations

2 BPMN metamodel NA

3 Methodological links

4 Modelio module (extensions forModelio) Solution dedicated for the tool’s
module development

5 Document view NA

6 Collaborative work/constellation Collaborative work with
Constellation

7 Diagrams Diagrams definition,
implementation, commands and
controllers in Eclipse RCP



Capitalizing on Developer-Tester Communication – A Case Study 257

the above topic and ‘Project configuration’ highlight several non-development related
anomalies that were relevant to the key components of Modelio. Overall, these topics
reveal development process themes that could not have been discovered from sources
like a project roadmap. The stakeholders regard these topics as evidence of development
activities to improve stability of the core components of Modelio.

Of the seven topics for the 2017 subset, stakeholders could not find any relation
between four of the topics and the corresponding testFeedback tokens. The tokens were
too generic to provide visibility into how the issueswere addressed. Still, the stakeholders
identified an overarching theme, characterizing their development activities for that
year. The focus was on implementation of newModeliometa-model, as evidenced in the
‘BPMNmetamodel evolutions’ and ‘ArchiMatemetamodel support’ topics. Stakeholders
identified two topics for the same issue of ‘BPMN metamodel evolutions’. Reducing the
number of topics led to failure in identifying any relationship between the issues and the
testFeedback tokens, and so we decided to retain this redundancy. Doing so helped the
stakeholders identify a relation between one of the ‘BPMNmetamodel evolutions’ topics
(#5) and the corresponding testFeedback tokens, thereby validating the decision to have
seven topics for the 2016 subset. Next, the ‘Workbench support’ topic also suggested
the focus on development of new features. The topics ‘BPMN metamodel evolution’
and ‘BPMN diagrams’ highlighted the significant work that had begun on integrating
BPMN standard. Stakeholders also claim that issues highlighted by the ‘Diagram’ topic
would have remained undetected without the use of LDA. Stakeholders also found issues
related to user interface components, while issues related toModelio core components,
present in the 2016 subset, did not recur. This suggested that the development activities
in 2017 grew closer to addressing end-user concerns.

Of the seven topics for the 2018 subset, no relationwere found among three of the top-
ics and the corresponding testFeedback tokens. Overall, these topics suggested amixture
of development activities for the year. The ‘General customer support’ topic suggested
an emphasis on addressing end-user reported issues, which were absent from both 2016
and 2017 findings. The stakeholders claim that this insight would have gone unnoticed if
they had relied on their classical monitoring tools. The topics of ‘Methodological links’
and ‘Document view’ indicate new features development. However, the four topics of
‘BPMNmetamodel’, ‘Modelio module (extensions), ‘Collaborative work/Constellation’
and ‘Diagrams’ carry more significance. Stakeholders interpreted that the team empha-
sized on general quality improvement of several features, a development activitymissing
from both 2016 and 2017. Overall, 2018 development activity focused on general quality
improvements of the products delivered.

Mantis is used to manage issues discovered by the quality team and reported by end
users. Issues discovered by the quality team on newly developed features are more crit-
ical than those reported by end users, as density of the former is directly proportional to
the quality of the development team’s work. In 2016 and 2017, most topics point towards
development of new features, which stakeholders interpret as quality problems with the
products delivered, and under-representation of issues related to the quality of existing
features (GUI, end-user reported issues). This may suggest either poor management or
smooth resolutions of these issues. Conversely, there is an under-representation of issues



258 P. Ram et al.

related to development of new features in 2018. Stakeholders view this as their develop-
ment process evolving from addressing issues affecting Modelio’s core components, to
addressing issues reported by end users and implementing general improvements. This
is indicative of improvement inModelio’s quality, with its core components stabilizing,
giving stakeholders more time to address end user reported concerns and the overall
product quality.

Based on the stakeholders’ interpretation, and the overarching development themes
identified therein, we posit three development-related insights. First, bulk of the devel-
opment activities in 2016 centered on developing new features and improving Mod-
elio’s stability by working on its core components. Second, in 2017 and particularly
2018, development activities focused on addressing overall product quality and issues
reported by the end users. Viewing these development activities together, the third insight
relates to how the development process evolved from emphasizing development of new
features andModelio’s internal quality (core components stability) to emphasizingMod-
elio’s external quality (end-user issues). Stakeholders point out that this evolution was
natural, but would have remained undetected without this study.

Insights Classification. Based on the insights interpreted from the topics and the state
of the art, we propose the following non-exhaustive insight classification, to characterize
insights discovered from developer-tester communication recorded inMantis (Fig. 1).

Fig. 1. Insight classification

Stakeholders were specific in their interpretation of how different topics for different
years afforded them visibility into their development processes and practices. Piecemeal,
the insights highlighted the efforts to address and improve the Modelio’s quality, both
internal (core component stability) and external (end-user issues). Cumulatively, the
insights are indicative of an evolution in the CC’s development process from 2016 to
2018, as development efforts evolved from focusing on new features development to
addressing product’s quality, especially external quality.

5 Discussion

We first elaborate on the development-related insights the stakeholders inferred, and
how they improve upon the benefits reported in the state of the art. We also discuss the
‘insight classification’ from the standpoint of existing literature, and the relevance and
utility that companies similar to the CC may derive from it.



Capitalizing on Developer-Tester Communication – A Case Study 259

5.1 Development-Related Insights from Developer-Tester Communication

Despite the abundance of data generated as a result of modern software development
methods like ASD, software development is still a risky endeavor, as existing tools are
still inadequate at facilitating decision-making [3]. Software analytics can help address
this shortcoming by automating processes to extract actionable information from data
[29]. Still, companies struggle to capitalize on their development data, as a clear purpose
for data collection [30, 31] and interpreting that data’s significance [3] still remain a chal-
lenge. Our study’s findings can help with both these challenges, especially for unstruc-
tured data that represent most of the development data produced [1]. The development-
related insights that can be generated fromunstructured data, with the help of text-mining
techniques like LDA, could help companies capitalize on their data.

In contrast to the LDA benefits reported in the current literature, our exploration-
centric approach helped identify insights of developers’ and testers’ engagement in
addressing product stability, issues reported by end users, and general product quality,
in addition to an overarching theme of process evolution. Stakeholders argue that these
insights would have gone unnoticed without the study. These findings may be case
specific, but they are evidence of LDA’s use for extracting development-related insights
in an industrial setting. LDA also helped the stakeholders discover transversal activities
that was not documented in their project plan, something that their classical monitoring
tools could not have detected. Insights related to addressing end-user reported issues and
general quality improvements are part of background work and difficult to assess over
time, as they are unplanned and, therefore, notmonitored.Consequently, the stakeholders
are now open to using LDA to analyze their development data at regular intervals.
Incorporating a text-mining technique into the development process can help the CC
create awareness among other stakeholders about the topics that may provide an early
indicator of changes or problems warranting further attention.

In general, stakeholders are interested a system’s history and how it evolves to under-
stand their software development process [4]. Within the context of software evolution,
how and why a software system changes can provide insights into both the specific
software system and the software development as a whole [16]. LDA applied to the
three-year Mantis data provided the CC stakeholders the historical knowledge, and the
LDA topics helped them understand how and why their product development evolved,
highlighting an evolution in their development process. Stakeholders’ tacit contextual
knowledge contributed to their interpretation of the LDA results, which lends plausi-
bility to the above claim. Although LDA was applied to old data, the findings offer the
stakeholders visibility into the development process of one of their flagship products,
which can be leveraged to manage the development of futureModelio versions.

LDA results could be seen as summarization [15] of the developer-tester communica-
tion at the CC, which could be a useful way of presenting reusable software engineering
knowledge to stakeholders [32]. Even though stakeholders-driven validation of LDA
topics is seen as a critical requirement [33], this practice is not widely adopted [34],
which reinforces our decision to include the stakeholders from the CC to study and val-
idate the LDA results. In agreement with Hindle et al. [35], the stakeholders identified
most of the relevant topics due to their familiarity of the concepts (conveyed by tokens),
but had difficulty interpreting and labelling some, due to the topics’ lack of significance.



260 P. Ram et al.

Furthermore, our study supports another finding from Hindle et al. [35], where most
topics labelled by the stakeholders matched their perception of the development pro-
cesses and activities for Modelio between 2016 and 2018. Overall, our study’s findings
are indicative of the importance and the necessity of including stakeholders to validate
LDA results, when conducted in an industrial setting.

Based on the classification of issue trackers’ utility by Bertram et al. [24], Mantis’
use as a coordination and communication hub and communication channel is typical
of any issue tracker. Mantis is used by developers, testers, and the quality team for
addressing issues, and so its utility as a boundary object is also evident at the CC, where
stakeholders utilize the stored data based on their custom needs and purposes. Most
importantly, the overall process evolution the stakeholders interpreted points to Mantis
serving as a knowledge repository, storing organizational knowledge that is difficult to
detect otherwise.With this insight, and the potential future use of LDAat theCC to derive
more such insights, stakeholders can plan their future development ofModelio better. For
example, the stakeholders claim that once Modelio’s core components were stabilized,
the team could focus on the issues reported by the end users.Modelio’s core components
stability points to the product’s internal quality, as the related issues were identified
before the use of the tool by end users [36]. Conversely, issues reported by the end users
relate toModelio’s external quality, as these issueswere identified by themwhile using it
[36]. The stakeholders can leverage this knowledge to estimate and allocate their efforts
optimally. The classification is more relevant for other researchers and practitioners,
interested in investigating insights that developer-tester communication may hold, and
which could be extracted using text-mining techniques like LDA.

6 Limitations and Threats to Validity

LDA is typically applied to large datasets, with thousands and millions of documents
[37, 38]. Our dataset may be very small, but there exists no standard for sample size. The
dataset should be large enough to generate distinct but not redundant topics, and small
enough for topics that are not too broad and heterogeneous [39]. Although the small
dataset is a limitation, stakeholders were able to extract distinct topics and non-trivial
insights characterizing their development process from 2016 to 2018.

The number of topics is another limitation of our study. Similar to ideal sample size,
there is no standard for ideal number of topics in LDA. Sbalchiero and Eder [39] provide
a guide to aid in this decision, but those recommendations appear to be for sample sizes
that are larger than ours. Informed by the γ distribution and stakeholders’ validation, we
have tried to address this limitation to some extent.

We address threats to our study’s validity based on the guidelines recommended
by Runeson and Höst [25]. We acknowledge that the developer-tester communication
documented in Mantis does not capture the process of identifying and addressing issues
in their entirety. Since the CC employs multiple tools in their software development,
investigation of Mantis’ data can provide only partial visibility into their development
processes and practices. Even though the stakeholders claimed that the LDA topics
helped highlight an evolution in their development process, the findings are still limited
by the extent of information shared among the developers and the testers throughMantis.



Capitalizing on Developer-Tester Communication – A Case Study 261

By including the Product Development Team Lead and the R&D Head in our study, we
mitigate the threat to our study’s construct validity to some extent. These stakeholders
were better judges of the significance and validity of the topics, and how these topics
represent the process of identifying and addressing issues.

Absence of contextual knowledge and other confounding factors interfere with the
validity of interpretations of LDA topics. In our study, we relied on the CC stakeholders
to interpret our findings and comment on its validity, as they possessed the necessary con-
textual knowledge to justify proper interpretation of their data. This helps us strengthen
the internal validity of our study, but the potential of confirmation bias threatens it at
the same time [40], and we acknowledge this tradeoff.

Being a single case study, external validity of our findings is affected. However, the
objective of our study is to explore development-related insights that could be extracted
from unstructured data using LDA, in an industrial setting. We hope that the positive
findings help trigger more exploratory investigation to discover the extent of knowledge
that can be extracted from such unstructured data. To this effect, we proposed an insight
classification, which may be of utility to organizations with context similar to the CC.
Similarly, interested researchers could build upon the classification, and conduct similar
investigations to refine and supplement it.

Onlyone authorwas involved in collecting the data and applyingLDA, and in creating
the classification, which can affect the reliability of the study. However, our findings have
been studied and validated by the collaborating stakeholders and the co-authors of this
study, which helps mitigate the threat to our study’s reliability.

7 Conclusion

Modern software development methods like ASD produce voluminous unstructured
data on a daily basis, which may hold insights not easily discoverable from other means.
Data related to developer communication have been leveraged to classify developer
communication, propose developers for bug triage, aid in code comprehension, etc.
However, the potential of developer-tester communication in generating development-
related insights remains unexplored, especially in industrial setting.

We conducted a case study at a large software-intensive Agile company to explore
development-tester communication for their potential to generate development-related
insights. We applied LDA on this communication data from year 2016 to 2018, and
invited two stakeholders to study and validate the results. Unexpectedly, they were able
to find insights related to the development efforts to address their flagship product’s
internal quality, external quality and general improvements. The stakeholders identified
another insight of an overarching theme of process evolution, as their development
efforts evolved from addressing new features and internal quality to emphasizing on
its external quality. The stakeholders claim that without the study, these insights may
not have been discovered. Now, stakeholders are keen on incorporating LDA in their
development process to keep track of these insights, despite the additional efforts the
techniquedemands.Wealsoproposed an insight classification to characterize the insights
that we discovered. Companies will similar development context could use these insights
to guide their analysis of developer-tester communication unstructured data. Interested
researchers are encouraged to critique and improve upon this classification.



262 P. Ram et al.

As part of future work, we plan to develop softwaremetrics that help the stakeholders
monitor and track the LDA topics they are interested in. This real-time tracking of the
significant topics can remove the requirement of conducting LDA every x months to
derive insights. Instead, stakeholders can apply LDA only when there are legitimate and
major changes to the project, resulting in different sets of topics, which in turn could be
used to update the metrics.

References

1. Haiduc, S., Arnaoudova, V., Marcus, A., Antoniol, G.: The use of text retrieval and natural
language processing in software engineering. In: Proceedings - International Conference on
Software Engineering, pp. 898–899 (2016)

2. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval. Cambridge
University Press, Cambridge (2008)

3. Buse, R.P.L., Zimmermann, T.: Information needs for software development analytics. In:
In 2012, the 34th International Conference on Software Engineering (ICSE), pp. 987–996
(2012)

4. Sun, X., Liu, X., Li, B., Duan, Y., Yang, H., Hu, J.: Exploring topic models in software engi-
neering data analysis: a survey. In: 2016 IEEE/ACIS 17th International Conference on Soft-
ware Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,
SNPD 2016, pp. 357–362. Institute of Electrical and Electronics Engineers Inc. (2016)

5. Thomas, S.W., Hassan, A.E., Blostein, D.: Mining unstructured software repositories. In:
Mens, T., Serebrenik, A., Cleve, A. (eds.) Evolving Software Systems, pp. 139–162. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-45398-4_5

6. Bettenburg, N., Adams, B.: Workshop on mining unstructured data (MUD): because “mining
unstructured data is like fishing in muddy waters”! In: Proceedings - Working Conference on
Reverse Engineering, WCRE, pp. 277–278. IEEE (2010)

7. Di Sorbo, A., Panichella, S., Visaggio, C.A., Di Penta, M., Canfora, G., Gall, H.C.: Devel-
opment emails content analyzer: intention mining in developer discussions. In: Proceedings
- 2015 30th IEEE/ACM International Conference on Automated Software Engineering ASE
2015, pp. 12–23 (2016)

8. Shihab, E., Bettenburg, N., Adams, B., Hassan, A.E.: On the central role of mailing lists in
open source projects: an exploratory study. In: Nakakoji, K., Murakami, Y., McCready, E.
(eds.) JSAI-isAI 2009. LNCS (LNAI and LNB), vol. 6284, pp. 91–103. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14888-0_9

9. Vassallo, C., Panichella, S., Di Penta, M., Canfora, G.: CODES: mining source code descrip-
tions from developers discussions. In: Proceedings of the 22nd International Conference on
Program Comprehension, pp. 106–109 (2014)

10. Soliman, M., Galster, M., Salama, A.R., Riebisch, M.: Architectural knowledge for tech-
nology decisions in developer communities: an exploratory study with StackOverflow. In:
Proceedings - 2016 13th Working IEEE/IFIP Conference on Software Architecture, WICSA
2016, pp. 128–133. IEEE (2016)

11. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings - International
Conference on Software Engineering 2006, pp. 361–370 (2006)

12. Canfora, G., Di Penta, M., Oliveto, R., Panichella, S.: Who is going to mentor newcomers in
open source projects? Proceedings of ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, FSE 2012, pp. 1–11 (2012)

13. Panichella, S., Aponte, J., Di Penta, M., Marcus, A., Canfora, G.: Mining source code
descriptions from developer communications. In: IEEE International Conference on Program
Comprehension, pp. 63–72 (2012)

https://doi.org/10.1007/978-3-642-45398-4_5
https://doi.org/10.1007/978-3-642-14888-0_9


Capitalizing on Developer-Tester Communication – A Case Study 263

14. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshynanyk, D., De Lucia, A.: How to
effectively use topic models for software engineering tasks? An approach based on genetic
algorithms. In: Proceedings - International Conference on Software Engineering, pp. 522–531
(2013)

15. Nazar, N., Hu, Y., Jiang, H.: Summarizing software artifacts: a literature review. J. Comput.
Sci. Technol. 31(5), 883–909 (2016). https://doi.org/10.1007/s11390-016-1671-1

16. Chen, T.-H., Thomas, S.W., Hassan, A.E.: A survey on the use of topic models when mining
software repositories. Empir. Softw. Eng. 21(5), 1843–1919 (2015). https://doi.org/10.1007/
s10664-015-9402-8

17. Sinoara, R.A., Scheicher, R.B., Rezende, S.O.: Evaluation of latent dirichlet allocation for
document organization in different levels of semantic complexity. In: 2017 IEEE Symposium
Series on Computational Intelligence, SSCI 2017 – Proceedings, pp. 1–8 (2018)

18. Blei, D.M.: Introduction to probabilistic topic models. Commun. ACM. 55, 77–84 (2012)
19. Lima, M., Ahmed, I., Conte, T., Nascimento, E., Oliveira, E., Gadelha, B.: Land of lost

knowledge: an initial investigation into projects lost knowledge. In: International Symposium
on Empirical Software Engineering and Measurement, Septemer 2019 (2019)

20. Blei, D.M., Lafferty, J.D.: Topic models. In: Text Mining, pp. 101–124. Chapman and
Hall/CRC (2009)

21. Thomas, S.W., Adams, B., Hassan, A.E., Blostein, D.: Studying software evolution using
topic models. Sci. Comput. Program. 80, 457–479 (2014)

22. Thomas, S.W., Adams, B., Hassan, A.E., Blostein, D.: Modeling the evolution of topics in
source code histories. In: Proceedings of the 8th Working Conference on Mining Software
Repositories, pp. 173–182 (2011)

23. Zhang, T., Yang, G., Lee, B., Lua, E.K.: A novel developer ranking algorithm for automatic
bug triage using topic model and developer relations. In: Proceedings - Asia-Pacific Software
Engineering Conference, APSEC, pp. 223–230. IEEE (2014)

24. Bertram, D., Voida, A., Greenberg, S., Walker, R.: Communication, collaboration, and bugs:
the social nature of issue tracking in small, collocated teams. In: Proceedings of the 2010
ACM Conference on Computer Supported Cooperative Work, pp. 291–300 (2010)

25. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software
engineering. Empir. Softw. Eng. 14, 131–164 (2009)

26. Ram, P., et al.: An empirical investigation into industrial use of software metrics programs.
In: Morisio, M., Torchiano, M., Jedlitschka, A. (eds.) PROFES 2020. LNCS, vol. 12562,
pp. 419–433. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64148-1_26

27. Silge, J., Robinson, D.: Text Mining with R: A Tidy Approach. O’Reilly Media, Inc. (2017)
28. Allahyari, M., Kochut, K.: Automatic topic labeling using ontology-based topic models.

In: Proceedings - 2015 IEEE 14th International Conference on Machine Learning and
Applications, ICMLA 2015, pp. 259–264 (2016)

29. Krishna, R., Agrawal, A., Rahman, A., Sobran, A., Menzies, T.: What is the connection
between issues, bugs, and enhancements? In: 2018 IEEE/ACM40th International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP), pp. 306–315
(2018)

30. Bizer,C.,Boncz, P., Brodie,M.L., Erling,O.: Themeaningful use of big data: four perspectives
- four challenges. SIGMOD Rec. 40, 56–60 (2011)

31. Holmström Olsson, H., Bosch, J.: Towards data-driven product development: a multiple case
study on post-deployment data usage in software-intensive embedded systems. In: Fitzgerald,
B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol.
167, pp. 152–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44930-
7_10

https://doi.org/10.1007/s11390-016-1671-1
https://doi.org/10.1007/s10664-015-9402-8
https://doi.org/10.1007/978-3-030-64148-1_26
https://doi.org/10.1007/978-3-642-44930-7_10


264 P. Ram et al.

32. Silva, C., Mariane, C.: Reusing software engineering knowledge from developer communi-
cation. In: ESEC/FSE 2020 - Proceedings of the 28th ACM Joint Meeting European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering,
pp. 1682–1685 (2020)

33. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic modeling. In:
Proceedings - International Conference on Software Engineering, pp. 95–104 (2010)

34. Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Relating requirements to implementa-
tion via topic analysis: do topics extracted from requirements make sense to managers and
developers? In: 2012 28th IEEE International Conference on Software Maintenance (ICSM),
pp. 243–252 (2012)

35. Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Do topics make sense to managers and
developers? Empir. Softw. Eng. 20(2), 479–515 (2014). https://doi.org/10.1007/s10664-014-
9312-1

36. Gezici, B., Tarhan, A., Chouseinoglou, O.: Internal and external quality in the evolution
of mobile software: an exploratory study in open-source market. Inf. Softw. Technol. 112,
178–200 (2019)

37. Pettinato, M., Gil, J.P., Galeas, P., Russo, B.: Log mining to re-construct system behavior: an
exploratory study on a large telescope system. Inf. Softw. Technol. 114, 121–136 (2019)

38. Noei, E., Zhang, F., Zou, Y.: Toomany user-reviews, what should app developers look at first?
IEEE Trans. Softw. Eng. 1–12 (2019)

39. Sbalchiero, S., Eder, M.: Topic modeling, long texts and the best number of topics. Some
problems and solutions. Qual. Quant. 54, 1095–1108 (2020)

40. Salman, I., Turhan, B., Vegas, S.: A controlled experiment on time pressure and confirmation
bias in functional software testing. Empir. Softw. Eng. 24, 1727–1761 (2019)

https://doi.org/10.1007/s10664-014-9312-1


Toward a Technical Debt Relationship
with the Pivoting of Growth Phase

Startups

Orges Cico1(B), Terese Besker2, Antonio Martini3, Anh Nguyen Duc4,
Renata Souza5, and Jan Bosch2

1 Norwegian University of Science and Technology, Trondheim, Norway
orges.cico@ntnu.no

2 Chalmers University of Technology, Göteborg, Sweden
{besker,jan.bosch}@chalmers.se
3 University of Oslo, Oslo, Norway

antonima@ifi.uio.no
4 University of South-Eastern Norway, Notodden, Norway

anh.nguyen.duc@usn.no
5 Universidade Federal da Bahia, Salvador, Brazil

renatamss@ufba.br

Abstract. Context: Pivot has been a common strategical tactic of star-
tups by shifting course of actions to adapt to environmental changes to
the companies. Among many factors influencing the decisions of pivot
or preserve, technical characteristics of the product and its evolution
are possible triggering factors. We have learned that technical debt is an
inherent phenomenon in startups that hinders later growth. However, we
do not yet know how technical debt might lead to pivoting in startups
and what TD processes we observe in different pivoting scenarios. Aim:
Our goal is to evaluate how technical debt influences pivoting in growth-
phase startups. Methodology: We conducted an empirical study on 11
software startups in Norway and Brazil and analyzed qualitative data
using thematic analysis. Results: We identified three ways that techni-
cal debt influences pivoting: (1) direct, (2) indirect, and (3) no-influence.
Managing and avoiding technical debt significantly reduces the likelihood
of technology pivoting and restrains indirect effects on other pivoting
types. Contribution: Our study will enable practitioners to address the
influence of technical debt on pivoting in growth-phase software star-
tups. Future researchers can benefit from our findings by conducting
exploratory studies and providing educated recommendations.

Keywords: Software startups · Technical debt · Pivoting

1 Introduction

Technical debt (TD) has become a practical problem in software practices in the
past decade. Software startups encounter TD challenges in different life-cycle
c© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 265–280, 2021.
https://doi.org/10.1007/978-3-030-91452-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_18


266 O. Cico et al.

phases because product compromises are always needed to meet urgent demands.
Most software engineering compromises influence the accumulated “debt”, which
needs to be paid at some point in time to assure long-term project sustainability
[7]. Facing TD is becoming even more of an urgent need for many software star-
tups [5,21]. Such startups are known to accumulate TD during their transition
from the early phase to the growth phase.

Pivot is a common phenomenon in different stages of software startups, where
the companies change the course of actions to survive or grow further. We mainly
attribute pivoting at an early phase to startups’ desire to explore potential prod-
ucts, measure market effects, and learn from the results. Startups face significant
challenges in overcoming TD [1,5,13] and pivoting [16], especially in the growth
phase. Previous authors emphasize that having less technical debt could give a
startup more room for pivoting and product evolution in the long term [13]. TD
affects startups’ quality and productivity when they shift to the growth phase
with stable resources [12]. TD hinders the maintainability and evolvability of
software. In turn, TD can commence pivoting, leading growth-phase startups to
significant challenges. There is little empirical evidence relating pivoting to TD
during a startup’s transition to the growth phase.

The aim of this paper is to investigate how TD affects pivoting in growth-
phase startups, thus identifying TD processes in different pivoting scenarios. We
formulated the following research questions (RQs):

RQ1: How does technical debt influence pivoting in growth-phase startups?
RQ2: How are technical debt processes associated to pivoting types in growth-
phase startups?

Based on the available literature on TD and pivoting, we first provide an
analysis of the pivoting dilemma in growth-phase startups. Then, we interview
growth phase startup practitioners about their approach to coping with TD and
their perceptions of how TD affected pivoting while transitioning to the growth
phase. Combining these findings, we categorize the influence of TD on pivoting
and the growth phase TD processes in pivoting scenarios. The different cate-
gories we identify in this paper are based on the pivoting concepts in software
startups [4] and our experience in growth-phase startups’ TD [5,8]. Specifically,
we identify three manners that TD influences pivoting in growth-phase startups:
(1) direct, (2) indirect, and (3) no-influence. Managing and avoiding technology
debt significantly reduces the likelihood of technology pivoting and restrains
indirect effects on other pivoting types. Moreover, we propose several hypothe-
ses that suggest exciting new research areas on TD and pivoting relationship
theories.

The rest of the paper is structured as follows. Section 2 presents research
background. We present our study’s design and methodology in Sect. 3. Section 4
presents the results and key findings. Section 5 discusses the findings. Finally,
Sect. 6 concludes the study and identifies opportunities for future work.



Toward a Technical Debt Relationship 267

2 Background and Related Work

2.1 Growth Phase Startups’ Pivoting: A Dilemma

Recently, startup research has proliferated as a subfield of software engineer-
ing. In this subfield, although Bajwa et al. [3,4] have conducted several studies
exploring the practices of pivoting in early phase startups, research that includes
pivoting—especially in growth-phase startups—is still in its infancy. We observe
a lack of proposals on good versus bad practices when startups need to pivot
in relation to startup phases and pivoting types. Many authors seem to agree
with the idea provided by Terho et al. [20] that pivoting mainly occurs in the
early phase; according to these authors, once the business model is established,
fine-tuning is more likely to take place.

Based on Muzellec et al. [15], the transitions of startups from one stage to
another can be characterized under different categories. Finance is one of the
most important factors for startup survival. In the early stages, funding is com-
monly based on selfcontributions, in the form of self-investment (by bootstrap-
ping between jobs) or loans (from relatives or friends). Other funding options
in the early stage of startup formation can come from pre-seed or crowdfund-
ing. In later stages, when a Minimum Viable Product (MVP) has been devel-
oped and iteration with the market is a must (do-or-die approach), the need
for larger funding amounts from venture capitalists (VCs) and angel investors
(AIs) becomes obvious. Finally, if the startup has developed a fully operational
product or service, then the market, either local or global, decides the startup’s
growth potential. After successfully growing in the market startups transition to
a more mature phase, resembling more an ordinary company.

The transition of startups is also marked by shifting the startup strategy
and the methodological evolution from ad-hoc or customized development prac-
tices [17] to more principled approaches. Strategical and methodological changes
signify pivoting of the startup, which might drastically change the whole com-
pany. According to Ries [17], a pivot is a “structured course correction designed
to test a new fundamental hypothesis about the product, strategy, and engine
of growth.”. Pivoting allows startups to continuously improve an idea through
product creation and a validation loop. A startup pivots due to a need to shift its
strategy to accommodate changes in industry or technology, customer needs, or
factors that impact its triple bottom line. Direct and indirect feedback gathered
in the product validation phase facilitates the startup pivoting process. Ries [17]
presents ten different types of pivoting (Zoom-in, Zoom-out, Customer segment,
Customer need, Platform pivot, Business Architecture, Value Capture, Engine
of Growth, Channel Pivot, Technology Pivot).

There is only one study that addresses pivoting at various stages of the
startup lifecycle (including the growth phase) by Nguyen-Duc et al. [16]. The
authors provide evidence that pivots can happen in different phases of a startup’s
lifecycle. However, the discussion of pivoting in growth phase is relatively brief.
Several other studies have addressed software startups’ pivoting with a primary
focus on early-phase startups [3,6,10,20]. Giardino et al. [9] explores pivoting in



268 O. Cico et al.

early phase startups while attributing startup failure to the neglect of pivoting.
Similarly, studies from Bosch et al. [6] address pivoting at early-stage software
startups. The study attempts to relate pivoting decisions to architectural deci-
sions. Terho et al. [20] state that pivoting influences the hypotheses in the lean
canvas model. The authors claim that pivoting typically happens early in the
startup’s life. Bajwa et al. [3,4] provides an overview of startups’ pivoting factors
at the early stage, which are mainly attributed to technology and customer seg-
ments. The number of experimentation loops is higher in startups’ early phase,
significantly decreasing in the growth phase. Pivoting in growth-phase startups
becomes more of a practitioners’ dilemma, and very few studies have addressed
the topic. As a startup matures, pivoting is a challenge that involves higher risks.

2.2 TD and Pivoting in Growth Phase Startups: A Preliminary
Analysis

Recently, Avgeriou et al. [2] stated: “The term technical debt refers to delayed
tasks and immature artifacts that constitute a ‘debt’ because they incur extra
costs in the future in the form of increased cost of change during evolution and
maintenance.”. Software startups typically encounter TD challenges in differ-
ent lifecycle phases because product compromises are always needed to meet
urgent demands. Most software engineering compromises influence the accumu-
lated “debt” that needs to be paid at some point to assure long-term project
sustainability [4].

Another recent study has argued for the need for models, frameworks, meth-
ods, and tools to track and manage TD [14]. However, few studies have presented
empirical evidence related to TD perceptions in startups. Two in particular focus
on TD perception in early-phase startups [1,11]. A more recent study uncovers
four perceptual dimensions of TD (ignore, accept, avoid, and manage) in growth-
phase startups [8]. Studies on startups’ pivoting and its relationship to TD are
scarce. One in particular argues that having less TD could give a startup more
room for pivoting and product evolution in the long term [13]. However, the
study provides no evidence of how TD is related to different pivoting scenarios
in various startup lifecycles. Of these two studies, the first focuses on an inno-
vative perspective of various TD perceptions [8] and the other [13] concerns the
relationship between TD and pivoting. We thus argue for the need to deepen
understanding of the influences of TD and pivoting.

3 Exploring the Practitioners’ Point of View

To conceptualize the role of TD in software startups’ pivoting, we interviewed
chief executive officers (CEOs) with extensive experience in software practices.
We focused our questions on identifying how they perceived TD in relation to
ten pivoting scenarios.



Toward a Technical Debt Relationship 269

3.1 Case Selection

We primarily collected data from startups located in Norway and Brazil. We
selected the sample population using the purposive sampling technique. Purpo-
sive sampling is a form of non-probability sampling in which researchers rely on
their judgment when choosing members of the population to participate in their
study [19]. To conduct our study, we purposively chose startups that are in the
growth phase. The primary motivation of our choice is because reaching growth
signifies that the startup has faced and overcome significant challenges, some of
which leading to pivoting scenarios. Some criteria we used to select our startups
are: (1) startup was in series A financing; (2) up to 5 years old product com-
mercialization; (3) entered the growth phase in the last 2 years; (4) self-owned
or independent headquarters; (5) positive return income in the past 2 years;

3.2 Case Demographics

Specifically, we interviewed six CEOs and five CTOs with more than four years
of hands-on experience with software engineering practices in their respective
startups, Table 1. Notably, all startups are in the growth phase, and all the inter-
viewees are co-founders of their startups, with active roles in product lifecycle
development.

3.3 Interview Design and Data Collection

We performed an empirical study on multiple startup cases based on an interview
template for data collection. Writing the interview questions beforehand allowed
us to focus our interview questions in connection to the RQs.

The interview process took place in three parts. In the first part, the interview
questions primarily addressed demographic information about the startup (dura-
tion: 5–10 min). The second part focused more on a broad context of the software
and technological aspects of the startup (10–15 min). The third part concentrated
on the perception of TD and its relationship to pivoting (30–40 min). We focused
the last part of the interview on two key questions that help answer our RQs:

– How have you coped (involving four processes such as ignored, accepted,
avoided, managed) with TD while transitioning from the early phase to the
growth phase?

– How has TD affected the pivoting (selecting one or more of the ten pivoting
types) of your startup while transitioning to the growth phase?

One author obtained the answers from seven startups located in Norway
and another from four startups in Brazil. Transcription and data analysis were
conducted separately by two authors, followed by discussions and disagreement
resolutions with the rest of the co-authors.



270 O. Cico et al.

Table 1. Software startups’ sample demographics.

Startup
case #

Role Country/
City

Product/Service Founded/
Commercial

Clients

Startup 1 CEO Norway/
Trondheim

SaaS - Real Time planning
for the Ocean Space

2012/2015 30+

Startup 2 CEO Norway/
Trondheim

Privacy and cybersecurity
tools

2015/2016 50+

Startup 3 CEO Norway/
Trondheim

web based digital
retrospectives

2016/2017 20+

Startup 4 CEO Norway/
Trondheim

Platform for organizing and
sharing information on the
internet

2018/2019 10+

Startup 5 CEO Norway/
Trondheim

3D vision cameras and
software for next generation
robotics

2017/2018 100+

Startup 6 CEO Norway/
Oslo

Optimal wind farm layout
services based Google PaaS

2015/2017 80+

Startup 7 CTO Norway/
Oslo

Real estate business
intelligence

2017/2019 70+

Startup 8 CTO Brazil/
Sao Paolo

Fintech company offering
accounting services

2012/2015 60+

Startup 9 CTO Brazil/
Bahia

Legal assistant offering data
based on API web services

2014/2016 100+

Startup 10 CTO Brazil/
Sao Paolo

Fintech working on
prepayment of credit card
receivables

2016/2016 40+

Startup 11 CTO Brazil/
Bahia

Energy SaaS to support
SMEs’ contracting of energy

2019/2019 1000+

3.4 Data Analysis

First, we carefully transcribed data to obtain significant evidence that would
help us answer our research question. We then used the thematic analysis app-
roach [18]. The coding process consisted of identifying recurring patterns and
themes within the interview data. The steps to conducting the systematic anal-
ysis consisted of the following: (1) Reading the transcripts. This step ini-
tially involved quick browsing and correction of the automatically transcribed
data from the audio recordings. (2) Coding. During this step, we focused on
choosing and labeling relevant words, phrases, or sentences and even larger text
fragments or sections related to TD phenomena. (3) Creating themes. After
gathering all the codes, we decided on the most relevant ones and created differ-
ent categories or themes; (4) Labeling and connecting themes. We decided
on which themes were more relevant and defined appropriate names and rela-
tionships for them; (5) Drawing the results summary. After deciding on the



Toward a Technical Debt Relationship 271

themes’ importance and hierarchy, we generated a summary of the results (cf.
Sect. 4) and discussed them in relation to previous studies (cf. Sect. 5).

4 The Relationship Between Technical Debt and Pivoting
in Growth Phase Startups

We identified several factors that influenced how the CEOs and CTOs of the
startups perceived TD’s influence on pivoting while transitioning to the growth
phase. In Fig. 1 we provide a detailed overview of the thematic analysis sum-
marized into two major groupings, which are as follows: (1) TD’s influence on
the pivoting type and determining factors (Sect. 4.1), and (2) TD processes in
pivoting scenarios and corresponding considerations (Sect. 4.2).

Based on the practitioners’ answers, we grouped the implications of TD for
pivoting into three types—TD directly influencing pivoting, TD indirectly influ-
encing pivoting, and TD not influencing pivoting—each helping to answer our
RQ1. Direct effects, as the name suggests, deal with the direct impact of TD on
pivoting when not determined by other factors. Indirect effects can be defined as
the impact of TD on pivoting determined by other factors. We define a lack of
influence when pivoting is not impacted by TD, whether directly or indirectly.
Moreover, we map TD processes (managing and avoiding) occurring in growth-
phase startups to pivot types—helping to answer our RQ2. In Sects. 4.1 and 4.2,
we provide a detailed explanation of the relationship found between TD and
pivoting.

Fig. 1. Thematic analysis of TD relationship to pivoting in growth-phase startups.



272 O. Cico et al.

4.1 TD Influence on Pivoting Types

TD Directly Influencing Pivoting. TD can have a direct influence on piv-
oting. Specifically, two of the practitioners described a direct influence of TD on
technological pivoting. The practitioners reported over ten years of tech experi-
ence, and one had co-founded over fifteen startups. They argued that accruing
TD leads to an inevitable technology pivoting scenario. Both practitioners claim
that accruing TD within their products has led to entire tech stack and code
base replacement. Specifically, the CEO from startup 1 reports:

“...Yes, so we’ve done a couple of technology pivots when we started out . . . we could say

that we’re on the third iteration of different technology at the moment ... Yes, you could say

it is because of technical debt ...”[Quote 1 - Startup 1]

Whereas, one CEO states the following:
“...But that platform couldn’t really do what we do today...so we basically had to redo the

whole platform because of all the technical debt...”[Quote 2 - Startup 3]

A TD induced technology pivot might cause challenges (as will be discussed
later) but generally leads startups toward sustainable technology solutions. This
means that products can better accommodate more features with a more robust
tech stack.

“...With our technology stack right now, we can push new features a lot faster, it is much

easier to change things around...”[Quote 3 - Startup 2]

Practitioners supported the idea that TD is inevitable, and that technology
becomes outdated with time. Thus, at least a partial technology pivot is likely
to happen in the development of every startup.

“...I think for our product changes will happen, no matter what, and technical debt will

happen, so our code needs to be changeable as well...”[Quote 4 - Startup 3]

“...But that’s the problem with technology so technology is almost like a fashion ... and in

the end it’s all about choosing tools and a platform that has enough support in the community

and thus help avoid technical debt ...”[Quote 5 - Startup 1]

Key findings:

– Technology outdate certainly leads to a technology pivot.

– TD can lead to a technology pivot long before the technology becomes outdated

because startups will continuously struggle to accommodate new product features.

TD Indirectly Influencing Pivoting. Specifically, two practitioners
described the indirect influence of TD on zoom-in, zoom-out, customer-segment,
and platform pivoting. Both practitioners had over four years of hands-on expe-
rience in business and software development, with one having extended pro-
fessional knowledge of agile practices. According to both practitioners, TD can
hinder a startup’s capability to drop or adopt features, which in turn contributes
to zoom-in or zoom-out pivoting, respectively. One of the practitioners states the
following:



Toward a Technical Debt Relationship 273

“...I’d say indirectly, yes, it [zoom-in pivoting] is related to technical debt, but not that

much that technical debt that we have already fired but more about avoiding future technical

debt we prefer to stick to one particular functionality ...”[Quote 6 - Startup 4]

Another example provided by one of the practitioners is the fact that in
complex systems, the usage of third-party solutions might increase the risk of
TD from other developers external to the startup. The utilization of third-party
solutions contributes to product limitations encouraging platform pivoting. One
of the CEOs reports the following:

“...it’s connected to other people’s technical debt. Well kind of looking at it in relation

to those other systems . . . you could also say technical debt is there and can be related to

switching our system...”[Quote 7 - Startup 6]

Furthermore, unexpected customer-segment pivoting might push resources
away from development teams, which in turn leads to accruing further TD that
influences the outcome in reaching new customers with successful software prod-
ucts.

“...because we changed from B2B to B2C sales take so much resources from our team

and it means that I have to do sales, rather than programming and coding and creating better

products...”[Quote 8 - Startup 4]

Only one participant reports pivoting in engine growth, which is tightly
related to developing and market testing only necessary features and adopt-
ing growth hacking. In this case, TD was not directly connected to the pivoting;
however, the practitioner claimed that TD being left unchecked could drastically
incapacitate the startup from achieving product growth.

“...We are doing growth hacking . . . not developing new features that are not necessarily

well thought out. . . but then we are avoiding technical debt...”[Quote 9 - Startup 1]

Key finding:

– TD can hinder startups’ software development or product growth capabilities, and

consequently, become an indirect contributor to technological and non technological

pivoting.

TD Not Influencing Pivoting. None of the practitioners presented any con-
nection between TD and customer need, business architecture, value capture, or
channel pivoting.

Three of the practitioners (Startup 5, 8 and 9) did not observe any direct or
indirect connection between technical debt and any of the pivoting types. Only
one of the startups argues that the connection of TD with pivoting is beneficial
at the early phase to obtain a proof-of-concept. However, this finding is anecdotal
for our research and helps little in understanding the role of TD now that the
startup is in growth phase:

“...We are doing growth hacking . . . not developing new features that are not necessarily

well thought out. . . but then we are avoiding technical debt...”[Quote 10 - Startup 10]



274 O. Cico et al.

Key findings:

– No practitioners have been able to find an obvious relationship between TD and
business-oriented pivot types.

– About 30% of growth-phase startups do not report any direct or indirect influence

of TD on pivoting.

4.2 TD Processes in Pivoting Scenarios

Based on the reported analysis of the relationship between TD and pivoting and
the practitioners’ answers, we can map pivoting types according to TD processes.
As discussed with the practitioners, this can help in mitigating the role of TD in
startup pivoting. According to Cico et al. [8], we observe two main TD processes
in growth-phase startups: managing TD and avoiding TD. In contrast, early
phase startups lean more towards ignoring or accepting TD.

Managing TD and Pivoting: Managing TD, as defined by Cico et al. [8],
includes recognizing, analyzing, monitoring, and measuring TD. Managing TD
is perceived by practitioners as beneficial in delaying technology pivoting. Prac-
titioners considered practices such as refactoring, TD tracking, and code reviews
to aid in mitigating technology pivoting.

“...We track it, you cannot commit any technical debt to the repository without adding a

comment in the code that this is technical debt and track it in a Jira issue...we want to keep

our technology stack operational as long as possible...”[Quote 11 - Startup 3]

“...lot of sort of prototyping turned into production software that tends to generate tech-

nical debt and that cost us to spend some efforts on refactoring ... we can then push pivoting

in time...”[Quote 12 - Startup 2]

However, one of the practitioners claimed that in particular cases, technol-
ogy becomes outdated and so managing TD might not be the right solution. The
interviewee leaned more toward the option of choosing a long-standing technol-
ogy (Node.js or Python) to delay technology pivot. Two practitioners report the
following:

“...choose something [Node.js] that we can live with for a while and to manage that

technical debt and the risk involved...”[Quote 13 - Startup 3]

“...The restrictions that we had with previous technology in distributing and managing of

the spreadsheets ... was deciding role for changing direction and moving to Power Bi ... and

we will stick to the technology for features it has been offering ...”[Quote 14 - Startup 7]

“...Now we use Python, as I told you. And our definition is based on the concepts of Clean

Architecture ... We need to reduce the technical debt to evolve the system [avoid technology

pivoting] ...”[Quote 15 - Startup 11]

Yet another practitioner supports the argument and considers technology
as fashion (cf. Quote 5 – Startup 1); in the end, is all about choosing the
latest technology with the most community support. In doing so, it is easier to
maintain or avoid technical debt and, in turn, technology pivoting.

Practitioners also reported a positive association between managing TD and
cases where TD has an indirect influence on pivoting (cf. earlier analysis). Specif-



Toward a Technical Debt Relationship 275

ically, properly managing TD can lead to smoother transitions in choosing a spe-
cific feature to be the basis of the entire product (zoom-in) or many features to
become a single product (zoom-out). Practitioners made a similar consideration
for platform and customer segment pivoting, where TD management can help
restrain its effects.

Avoiding TD and Pivoting: Avoiding TD is defined by Cico et al. [8] as
a proactive strategy to identify all potential software cycles (production–test–
release) where TD can occur and to take measures for preventing it. Avoiding
TD is typically a burden put on developers when technology pivoting is not
an option at a mature startup stage. One practitioner claims the necessity of
immediately adopting state of the art toolchains which help in avoiding TD and
in turn abrupt technology pivot:

“...We also have a big focus on moving forward when it comes to tool chains...whenever

there’s a new version of a tool chain, we jump on it immediately, so we can get small incre-

ments. . . instead of switching our code base to a new one...”[Quote 16 - Startup 6]

For several other practitioners avoiding TD-similarly to managing TD-is
bound to the technology choice, but with more scrupulous measures-such as
code generalization-performed ahead and the adoption of best practices only.
The proper technology choice delays technology pivot which in turn can trigger
less TD (an observation brought as an opposite argument to the original question
asked but demonstrates the strong bond between TD and pivoting).

“...I might with this [pivoting] be stretching it to our product UX...We are generalizing,

yeah we’re keeping it general, which is a way to avoid technical debt as well...”[Quote 17 -

Startup 3]

One practitioner reports the actual connection between avoiding TD and
engine of growth pivoting where implementation of necessary features that drive
growth should be constructed TD free (cf. Quote 9 – Startup 1 ).

Key finding:

– Managing and avoiding TD significantly reduces the likelihood of technology pivot-

ing and restrains effects on other indirect effects of TD in pivoting.

5 Discussions

5.1 TD Influence on Pivoting in Growth-Phase Startups

In our study, we focus on highlighting the influence of TD on pivoting in soft-
ware startups transitioning to the growth phase. Although we have a limited
number of participants, our study’s qualitative nature permitted us to obtain
legitimate results that focus on deeply understanding the influence of TD on
pivoting. Although this study focuses on a particular niche context, namely,
startups transitioning to the growth phase, our results reveal unnoted differences
from previous studies. Thus, we can offer practitioners and researchers unique
insights. Nevertheless, this study has limitations as discussed in Sect. 5.3.



276 O. Cico et al.

Previous studies have focused on uncovering and addressing TD influence on
pivoting in early-phase startups only [4]. We focus more on investigating how TD
influences growth-phase startups. We argue that our investigation is of interest
because of the following: (1) the TD influence on pivoting is understudied in
previous research [3,4,6,8,9,12,20], and (2) we observe the need for startups
to consider at least one pivoting type to keep up with the market’s evolution.
However, if pivoting occurs because startups cannot overcome TD thresholds,
then there is a high impact on startups’ overall success [5]. In growth-phase
startups, failure leads to greater socio-economic impacts.

Our findings enable us to emphasize three ways by which TD influences piv-
oting. Specifically, we found that TD can have a (1) direct, (2) indirect, or (3)
no-influence on pivoting. The line is very thin between the influence and no-
influence of TD on various pivoting types related to technology and business
activities. We also push our efforts further in mapping TD processes (manage-
ment and avoidance) in growth-phase startups with pivoting types.

We learn from our results that the discussion on whether TD has any influ-
ence on growth-phase startups’ pivoting is not sterile. Early studies have pro-
vided marginal arguments on TD influence on pivoting [1,13], specifically focus-
ing on early-phase startups. The reasons for this may vary, but we argue that
the research community has yet to reach maturity in TD in general and on its
influence on pivoting in particular.

5.2 Benefit to Researchers and Practitioners

Researchers can benefit from our study in the following ways: (1) by having
better insights on how TD influences various pivoting types in growth-phase
startups, (2) by mapping different TD processes to pivoting types, (3) by col-
lecting similar data that could help in surveying the startups’ TD and pivot-
ing relationship in various startup lifecycle phases, and (4) by providing guide-
lines/recommendations on how to cope with pivoting influenced by poor TD
approaches for startups in various development phases. Practitioners can benefit
from our study in the following ways: (1) Consolidating their perception of TD
influence on pivoting. Three influence manners can be identified (direct, indi-
rect, and no-influence). We also uncover TD processes that allow understanding
of TD’s influence on various pivoting types. Consolidation can help startups
choose among the best practices in coping with TD influence on pivoting in
different startup development phases; (2) Learning to adopt TD processes effi-
ciently, which can help restrain unexpected pivoting scenarios; (3) Understanding
when TD can become a risk that leads to technology-related pivoting and when
it actually can help startups achieve their market goals without the necessity to
pivot.



Toward a Technical Debt Relationship 277

5.3 Threats to Validity

This study is prone to limitations owing to its qualitative nature. However, our
intention is not to generalize but rather deepen our understanding on the rela-
tionship between TD and pivoting, which is often overlooked by most researchers.

According to Suri [19], the threats to validity in qualitative research are
primarily related to the following: (1) External Validity. External threats to
validity in qualitative studies are related to the sample size and limited con-
text under consideration. We admit that due to the limited number of cases
larger sample size is required to generalize the results. To mitigate this threat to
validity, we plan to recruit more samples and interview other roles in the star-
tups (follow-up interviews and questionnaires); (2) Internal Validity. Inter-
nal threats to validity in qualitative studies are related to data extraction and
analysis. To mitigate this threat to validity we have carefully coded and catego-
rized the transcriptions while gradually summarizing our findings from the most
significant data; (3) Construct validity. In our cases, is related to previous
knowledge about TD. The maturity level of the startups proved that they were
all familiar with the concept. We used an instrument similar to previous research
instruments in investigating TD, although applied with a different investigation
scope and lenses. Consequently, we argue that this threat to validity is almost
non-existent; (4) Descriptive validity. Although we have tried to gather as
much information as possible, we admit that some aspects might not have been
covered. To mitigate this threat to validity, we have used audio recordings of the
interviews to verify the descriptive data back in time and stored the rest of the
data electronically.

5.4 Hypotheses

Conducting interviews on a small sample in two distinct countries helped us
reduce the bias of the obtained results, although fully eliminating them is not
possible (cf. Sect. 5.3). Based on these results, we draw five hypotheses, thereby
completing the first half of our investigation. We intend to corroborate our
hypotheses by: (1) Conducting questionnaire surveys with a large sample of
growth-phase software startups, including the ones that participated in the inter-
view process, and (2) Performing triangulation with artifact analysis of our find-
ings. While identifying the relationship between TD and pivoting, we can make
assumptions (hypotheses) worth investigating in the research community.

Hypotheses:

H1: The influence of TD on technology pivot is direct and unequivocal. (cf. Section 4.1)

H2: TD accruing leads to technology pivot at some point. (cf. Section 4.1)

H3: TD has an indirect influence on both technological and business pivoting. (cf.

Section 4.1)

H4: TD is not related to business-oriented pivot types (cf. Section 4.1)

H5: Managing or avoiding TD reduces its direct or indirect influence on various pivoting

types (cf. Section 4.2)



278 O. Cico et al.

Startups’ lifetime usually does not outpace the core technology used or the
tech stack. In H1 and H2, we argue that TD in growth-phase startups has a
direct influence and higher impact on technology pivot than the technology out-
date. As reported in our findings, accommodating new features that are highly in
demand in the market may become practically impossible because of the accrued
TD, leading to a technology pivot. Researchers can corroborate both hypothe-
ses based on more quantitative data, enabling practitioners to make educated
decisions about resilient technological choices (e.g., tech stack and code base).

In H3, we do not rule out the potential indirect influence that TD might have
on various pivoting types, which is also reflected in the summary of our analysis
in Fig. 1. For instance, zoom-in, zoom-out, customer-segment, platform pivot,
and engine of growth are some of the pivoting types that are indirectly influ-
enced by TD. Reasons for this vary from limitations in startups’ own or third-
party product code to incapacitated resources or business growth, as indirectly
affected by TD. By gathering further empirical evidence, researchers would be
able to corroborate and eventually discover more factors that lead to the indirect
influence of TD on various pivoting types.

In H4, we argue that in some cases, pivoting choices are only related to busi-
ness activities, such as customer need, business architecture, value capture, and
channel pivot. This is why none of the startups could connect TD to business-
oriented pivoting, and in particular, around 30% of the startups could not con-
nect TD to any pivoting type at all. Researchers can gather further evidence
from a quantitative perspective, which would help uncover the extent to which
pivoting is related to TD from a technological perspective or business activities.

In H5, we suggest that such activities as TD management and avoidance,
which are often encountered in growth-phase startups, can mitigate the overall
effects of TD on pivoting. Especially, as illustrated in Fig. 1, technology pivoting
is closely related to both TD management and avoidance. Likewise, customer-
segment, zoom-in, zoom-out, and platform pivot types are related to TD man-
agement, and only the engine of growth pivot type is related to TD avoidance.
We observe that managing TD helps restrain various technology-related issues,
and thus, undesired technological pivoting. However, if the startup is expected
to have healthy product growth, it should take adequate measures to avoid TD.
Researchers can deepen the understanding of TD management and avoidance
with pivoting by relying on this and previous research [8].

6 Conclusions and Future Work

We explored how startups perceive TD influence on pivoting in the growth phase.
After interviewing six CEOs and five CTOs from eleven software startups from
two countries, we identified three ways by which TD influences pivoting: 1)
direct, 2) indirect, and 3) no-influence. TD influence on technology pivoting is
direct and unequivocal. Nevertheless, growth-phase startups commonly adopt
new technologies if they foresee the benefit of such technologies in easily accom-
modating product features. We also find that TD can hinder the development



Toward a Technical Debt Relationship 279

capabilities of startups, thus leading to technological and non-technological piv-
oting. Moreover, we argued that outlier startup cases exist, where pivoting is
not related to TD. However, the startups might have pivoted because of other
factors before TD actually played any particular role in their pivoting decision.
We also do not know if growth-phase startups can avoid TD-induced pivoting
by simply managing or avoiding TD.

It will be worthwhile for both researchers and practitioners to investigate
and validate our claims. Nonetheless, our findings spark an intriguing debate on
the influence of TD on pivoting when startups have reached their growth phase.
Our study can help improve startup awareness about the TD processes (e.g.,
management or avoidance) that startups need to adopt as preemptive pivoting
measures. Our results reflect patterns encountered in growth-phase startups. In
conclusion, startup research has matured sufficiently in categorizing pivoting and
TD processes but has not yet related one to the other. The orthogonal nature of
the relationship between TD and pivoting seems to suggest exciting new areas
of TD and pivoting theories.

We urge for this topic to receive the attention it deserves in the research
community. Our proposed hypotheses merits further investigation in qualitative
and quantitative studies. In the future, we plan to collect more data by surveying
and interviewing a larger sample. The triangulation will allow us to generalize
our findings and provide a clear roadmap and guidelines to be exploited by the
research and practitioner community actively participating in software startups.

References

1. Apa, C., Jeronimo, H., Nascimento, L.M., Vallespir, D., Travassos, G.H.: The per-
ception and management of technical debt in software startups. In: Nguyen-Duc,
A., Münch, J., Prikladnicki, R., Wang, X., Abrahamsson, P. (eds.) Fundamentals
of Software Startups, pp. 61–78. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-35983-6 4

2. Avgeriou, P., et al.: Managing technical debt in software engineering (dagstuhl
seminar 16162). In: Dagstuhl Reports, vol. 6. 4. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2016)

3. Bajwa, S.S.: Pivoting in software startups. In: Nguyen-Duc, A., Münch, J., Prik-
ladnicki, R., Wang, X., Abrahamsson, P. (eds.) Fundamentals of Software Startups,
pp. 27–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35983-6 2

4. Shahid, S., et al.: Start-ups must be ready to pivot. IEEE Softw. 34(3), 18–22
(2017)

5. Besker, T., et al.: Embracing technical debt, from a startup company perspective.
In: 2018 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 415–425. IEEE (2018)

6. Bosch, J., Veen, V.D., Salvador, J.: Pivots and architectural decisions: two sides
of the same medal? In: Chalmers Publication Library (CPL), pp. 310–317 (2013)

7. Brown, N., et al.: Managing technical debt in software-reliant systems. In: Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering Research,
pp. 47–52. ACM (2010)

https://doi.org/10.1007/978-3-030-35983-6_4
https://doi.org/10.1007/978-3-030-35983-6_4
https://doi.org/10.1007/978-3-030-35983-6_2


280 O. Cico et al.

8. Cico, O., Souza, R., Jaccheri, L., Nguyen Duc, A., Machado, I.: Startups transi-
tioning from early to growth phase - a pilot study of technical debt perception. In:
Klotins, E., Wnuk, K. (eds.) ICSOB 2020. LNBIP, vol. 407, pp. 102–117. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67292-8 8

9. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 27–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08738-2 3

10. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: the greenfield startup model. IEEE
Trans. Softw. Eng. 42(6), 585–604 (2016)

11. Holvitie, J., et al.: Technical debt and agile software development practices and
processes: an industry practitioner survey. Inf. Softw. Technol. 96, 141–160 (2018)

12. Jabangwe, R., et al.: An exploratory study of software evolution and quality: before,
during and after a transfer. In: 2012 IEEE Seventh International Conference on
Global Software Engineering, pp. 41–50. IEEE (2012)

13. Klotins, E., et al.: Exploration of technical debt in start-ups. In: 2018 IEEE/ACM
40th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), pp. 75–84. IEEE (2018)

14. Martini, A., Besker, T., Bosch, J.: Technical debt tracking: current state of practice:
a survey and multiple case study in 15 large organizations. Sci. Comput. Program.
163, 42–61 (2018)

15. Muzellec, L., Ronteau, S., Lambkin, M.: Two-sided internet platforms: a business
model lifecycle perspective. Ind. Mark. Manag. 45, 139–150 (2015)

16. Nguyen-Duc, A., Seppänen, P., Abrahamsson, P.: Hunter-gatherer cycle: a con-
ceptual model of the evolution of software startups. In: Proceedings of the 2015
International Conference on Software and System Process, pp. 199–203 (2015)

17. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. Currency (2011)

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131 (2009)

19. Suri, H., et al.: Purposeful sampling in qualitative research synthesis. Qual. Res.
J. 11(2), 63 (2011)

20. Terho, H., Suonsyrjä, S., Karisalo, A., Mikkonen, T.: Ways to cross the Rubicon:
pivoting in software startups. In: Abrahamsson, P., Corral, L., Oivo, M., Russo,
B. (eds.) PROFES 2015. LNCS, vol. 9459, pp. 555–568. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26844-6 41

21. Tom, E., Aurum, A.K., Vidgen, R.: An exploration of technical debt. J. Syst. Softw.
86(6), 1498–1516 (2013)

https://doi.org/10.1007/978-3-030-67292-8_8
https://doi.org/10.1007/978-3-319-08738-2_3
https://doi.org/10.1007/978-3-319-08738-2_3
https://doi.org/10.1007/978-3-319-26844-6_41


Towards a Common Testing Terminology
for Software Engineering and Data Science

Experts

Lisa Jöckel1(B), Thomas Bauer1, Michael Kläs1, Marc P. Hauer2, and Janek Groß1

1 Fraunhofer Institute for Experimental Software Engineering IESE, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

{lisa.joeckel,thomas.bauer,michael.klaes,
janek.gross}@iese.fraunhofer.de

2 Algorithm Accountability Lab, TU Kaiserslautern, Gottlieb-Daimler-Strasse 48,
67663 Kaiserslautern, Germany
hauer@cs.uni-kl.de

Abstract. Analytical quality assurance, especially testing, is an integral part
of software-intensive system development. With the increased usage of Artifi-
cial Intelligence (AI) and Machine Learning (ML) as part of such systems, this
becomes more difficult as well-understood software testing approaches cannot be
applied directly to the AI-enabled parts of the system. The required adaptation of
classical testing approaches and the development of new concepts for AI would
benefit from a deeper understanding and exchange between AI and software engi-
neering experts. We see the different terminologies used in the two communities
as a major obstacle on this way. As we consider a mutual understanding of the
testing terminology a key, this paper contributes a mapping between the most
important concepts from classical software testing and AI testing. In the mapping,
we highlight differences in the relevance and naming of the mapped concepts.

Keywords: Analytical quality assurance ·Machine learning evaluation ·
Data-driven model · Quality characteristics · Artificial intelligence testing ·
Definitions · Concept mapping · Target application scope

1 Motivation

In complex software-intensive systems, analytical quality assurance (QA) activities,
especially software testing, have proven to be crucial for achieving high product quality.
Due to the increasing relevance of Artificial Intelligence (AI) and Machine Learning
(ML) as part of software systems, the question arises how AI/ML-enabled systems, and
especially their AI/ML-based components, should be tested. The functionality of such
components, which we refer to as data-driven components (DDCs), is not explicitly
defined by a specification and implemented by a programmer within the code. Instead,
it is given by a – usually complex and not human-understandable – model that is auto-
matically derived from a data sample via a learning algorithm. Due to properties such

© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 281–289, 2021.
https://doi.org/10.1007/978-3-030-91452-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-91452-3_19


282 L. Jöckel et al.

as limited specification and understandability, the transfer of classical test approaches is
not trivial.

In the field of AI, the QA of DDCs has so far played a minor role and has mainly
been done by applying specific evaluation criteria such as accuracy to a previously
unseen subset of the available data. As the application of AI is being extended to ever
more domains, including safety-critical areas such as autonomous driving, industrial
automation, or medical applications, the demand for QA has also increased in recent
years. New techniques are being proposed and quality aspects like fairness, robustness,
and explainability are becoming more important. Although some approaches for testing
DDCs are described in the literature [1] including some very sophisticated ones, their
relation to classical software testing and system QA is not covered sufficiently yet.

We see the potential to exploit experiences and concepts from the field of classical
software testing for the QA of AI-based systems and components. To this end, collab-
oration and direct exchange between experts from both fields are important. This is,
however, impeded by different terminologies and meaning of terms, which leads to mis-
understandings and makes it more difficult to relate to work from the respective other
field.

Contribution: In this paper, we make a first step towards a common terminology. We
use established terms from classical software testing as a basis to map corresponding
concepts from the field of AI to it, pointing out differences and key challenges in trans-
ferring known concepts. The proposed mapping was developed in an interdisciplinary
collaboration among the authors, who have many years of experience in at least one of
the two fields, partly in both. We intend this to be a stimulus and a basis for discussions
aimed at building a common understanding between experts of both fields.

In Sect. 2, wewill describe some background regarding DDCs. Section 3 provides an
overview of related work on testing terminology. Section 4 presents a mapping between
testing terminology for classical software and AI. Section 5 concludes the paper.

2 Background on Data-Driven Components

In this section, we provide some background on DDCs that is relevant for understanding
the discussions on the test concepts in Sect. 4. To this end, we will briefly describe a
typical DDC lifecycle as well as supervised learning, and introduce an example use case.

As QA is done throughout the lifecycle of a DDC, we use an adapted lifecycle for
DDCs [2] that allows differentiating the purposes of QA measures and datasets (see
Fig. 1). Multiple datasets are needed for different purposes (e.g., training, validation,
testing) during the DDC lifecycle. As the functionality of DDCs is derived from and
evaluated on data, this is a key aspect that needs to be treated with caution. In the DDC
lifecycle, the specification defines, among other things, the task of the AI, its target appli-
cation scope (TAS) [3], and its required quality characteristics. The TAS is related to
the operational design domain in the automotive domain. It defines in which context and
underwhich conditions theDDC is considered applicable; hence, it is an important build-
ing block for testing and needs to be reflected by the test dataset. During construction,
the data-driven model (DDM) is built as core of the DDC. Its input-outcome relationship



Towards a Common Testing Terminology 283

is derived from a data sample, i.e., a training dataset composed for the intended task.
The expected behavior of DDCs is therefore only specified for a subset of all possible
input data. For previously unseen inputs, the expected behavior cannot be fully assured.
We distinguish two phases of analytical QA activities during design time according to
their purposes: (1) Analysis activities aim at finding potential weak points to improve the
DDM, like explainability approaches. The results from the analysis are fed back to the
construction phase. (2) Testing activities aim at providing quantitative evidence for the
specified requirements, which are generated on a test dataset that is representative for
the TAS. This differentiation into analysis and testing is a distinct feature of the lifecycle
of DDCs, as eliminating faults based on incorrect outcomes is difficult [4]. The analysis
and testing phases take place before the AI component is deployed. During operation,
monitoring activities are needed to ensure that the application is in line with the speci-
fication. In the remainder of this paper, our focus will be on analytical QA activities in
the testing phase.

Specifica�on
Construc�on

Training 
data

Analysis Tes�ng Opera�on

Valida�on 
data

Test
data

Run�me
data

Trained DDC

Improvement

Find 
weaknesses

Provide
evidence Monitor 

compliance with
specifica�on

Purpose of analy�cal
quality assurance ac�vi�es

Data 
lifecycle

Fig. 1. Lifecycle model of a DDC with analytical quality assurance for different purposes.

Techniques for buildingDDCs can be grouped by the degree of supervision they need,
which in turn influences the possibilities and raises different challenges for testing. Our
focus is on DDCs using supervised learning techniques, where there is ground truth
information for the outcomes, i.e., each data point is labeled with its expected outcome.

We will later refer to an example DDC whose task is traffic sign recognition (TSR),
i.e., classification of the traffic sign type on a given input image, on German roads.

3 Related Work on Testing Terminology

Software testing has been a fundamental discipline in software engineering since the
very beginning. Therefore, processes, terms, and definitions for software testing have
been defined since the 1980s, leading to standards such as IEEE 829 for Software Test
Documentation [5], and the IEEE 610 Standard Computer Dictionary [6], which still
represent the basis for fundamental terms and definitions in software testing. They have
been updated step by step and have been tailored for new domains and system classes
[7], as well as being supplemented with new concepts, e.g., test coverage [8].

In contrast, the testing of AI-based software systems has only gained importance
in recent years [4]. As there are many challenges related to the testing of AI [4, 9], a
transfer of concepts and the corresponding terminology from classical software testing



284 L. Jöckel et al.

is not trivial. Lenarduzzi et al. provide a mapping between terms that are misleading or
used differently in software engineering and AI [10]. Some works provide an overview
of what has been done so far in transferring testing concepts, including the definition and
relations of some testing terms [1, 4, 9]. These terms include, e.g., test input generation,
adequacy criteria, oracle, testing level, online and offline learning. However, the number
of considered terms is rather selective and not clearly oriented on the workflows for
software and AI testing, which would improve relating the terminology of both fields
to establish a common understanding. To the best of our knowledge, a comprehensive
mapping between the terminologies – considering differences and common aspects as
well as their relations to the testing workflows – has not been performed yet.

4 Mapping of Software and AI Testing Terminology

In this section,wewill first provide an overview of the basicworkflow and terminology in
classical software testing. Then we will relate common concepts and terminology from
the field of AI testing to them, pointing out some difficulties in doing so. A mapping of
the testing workflows is illustrated in Fig. 2, including testing terms, instances for the
terms from example components calculating the next gas station or classifying traffic
sign images, and highlighted differences in the workflows, i.e., different concepts and
terms or variations in their importance. Each of the following subsections describes a
part of the workflow.

4.1 Test Abstraction Levels and Objects

Software Testing. In software engineering, testing is defined as “an analyticalQAactiv-
ity inwhich systems, subsystems, or components are executedunder specified conditions,
the results are observed or recorded, and an evaluation is made of some aspect of the
system or component” [6]. This means that testing is performed on specific abstraction
levels (component, integration, system) [12] when executable artifacts such as program
code or executable models become available as test objects. A test object or test item is
defined as “a software or system item that is an object of testing” [5] and implements
a (sometimes implicit) specification. A specification is “a document that specifies, in a
complete, precise, verifiable manner, the requirements, design, behavior, or other char-
acteristics of a system or component, and, often, the procedures for determining whether
these provisions have been satisfied” [6]. The test object is tested against the require-
ments, i.e., the required capabilities of the system or system component [6], and against
quality characteristics. In this work, we focus on software component testing, which is
defined as “testing of individual hardware or software components or groups of related
components” where a component is “one of the parts that make up a system […] and
may be subdivided into other components” [6]. Each component contributes to a specific
function or set of functions of its associated system.

AI Testing. We consider DDCs to be a counterpart to classical software components.A
DDC may consist of sub-components that are organized in pipelines that include some
data pre- and post-processing in addition to the trained DDM [13]. Since data pre- and



Towards a Common Testing Terminology 285

Coverage-based :
Test Design

Coverage of all equivalence classes 
of test requirements: Coverage Criteria

Assure func onal correctness 
of f1 :

Test Objec ve

Func onal specifica on :
Specifica on

f1 – calculate next gas 
sta on if fuel level below X: Feature

TR1: Scenarios 
(city, highway, off-road) 

TR2: North and south 
hemisphere:

Test Requirements

TC1_of_6 :
Test Cases

Car on mapped road: Precondi on
GPS=a,b; fuel_lvl=0.05: Input

sta on_ID=7: Expected Result

’assert (car_pos …);
Receive data (…);

If (fuel_lvl < 0.1) then
assert(sta on_ID==exp_output)’ :

Test Script
asser on_result : Pass/Fail Criteria

TC1_of_6 Passed :
Test Results

Executable component :
Test Object

’6/6 Test Cases Executed
1 Failed Test Case: TC3_of_6
100% Eq_Class_Coverage’ :

Test Summary Report

Implementa on
[Failed Test Case]

Change Test Design & Update Test Cases

Execute 
& Evaluate

Debug to Pass Failed Test Case(s)

Formaliza on & Selec on

Aggrega on 
& Analysis

[C
ov

er
ag

e 
Cr

ite
ria

 n
ot

 fu
lfi

lle
d]

 

Demonstrate required level of 
func onal correctness of f1 :

Test Objec ve
0.999 : required confidence

Func onal specifica on :
Specifica on

f1 – classify images of traffic signs 
in TAS with accuracy ≥ 0.95: 

Feature 

Considering factors and 
permuta on such as (a) rain, 

(b) dirt, (c) backlight :
Test Requirements

data_point_42 :
Test Dataset

Applied in TAS: Precondi on
image: Input

sign_type: Expected Output

Representa ve sampling in TAS :
Test Data Acquisi on Design

Coverage of factors and permuta ons: 
Coverage Criteria

Redundant expert-based : Labeling Method

’Receive data (…);
for i=1 t to N: correctness[i] =

(ddm(image[i]) == exp_output[i])’ :
Test Script

correctness : Evalua on Criteria

correctness[42] = TRUE :
Test Results

DDC with DDM :
Test Object

‘N test data points Processed
Accuracy = 0.98

Accuracy with req. confidence > 0.93
100% Factor Coverage’ :
Test Summary Report

accuracy : Evalua on Metric
Construct DDM 

using data [accuracy < 0.95]

Change Acquisi on Method & Extend Test Dataset

Execute 
& Evaluate

Build New DDM Version (Retrain & Redesign) and Acquire New Dataset

Aggrega on 
& Analysis

[C
ov

er
ag

e 
Cr

ite
ria

 n
ot

 fu
lfi

lle
d]

 

Legend:
Different concept
Different term is used
Commonly not considered

[A
cc

ur
ac

y 
w

ith
 c

on
fid

en
ce

 <
 0

.9
5]

 

Classical So ware Tes ng Workflow
AI Tes ng Workflow

Formaliza on & Selec on

Acquisi on incl.
Labeling with Ground Truth

Test Case 

Genera on

Fig. 2. Comparison of testing workflows for classical software (top) and AI (bottom).

post-processing can be addressed with software testing approaches, AI testing focuses
on the DDM. As isolated testing of the implemented training algorithm does not reveal
whether the trained model successfully derived the intended behavior from the training
data, the trainedDDM is considered to be the test object. Yet, as the behavior of theDDM
is learned from data, ensuring that the data itself meets certain requirements becomes
increasingly important. Although data is not an ‘executable artifact’ on its own, but only
in combination with the model, certain characteristics of the dataset can be checked
(e.g., inclusion of edge cases) with regard to the intended task of the DDC and its TAS.
Contrary to classical software components, the behavior of the DDC cannot be described
in a complete and verifiable manner as part of the specification as its functionality is
not defined by the developer but is derived from data. For testing, functional correctness
is mostly regarded as a quality characteristic (others might be fairness, robustness,
and explainability). However, unlike in software testing, requirements on functional
correctness need to be given a probabilistic sense (e.g., stop signs are correctly detected
with a probability of 91%) as the input-outcome relationship cannot be fully specified
and uncertainty in the DDC outcomes cannot be fully eliminated. For integration- and



286 L. Jöckel et al.

system-level tests, aspects beyond the scope of this paper need to be considered when
a DDC is involved, like processing possibly incorrect DDC outcomes in other system
components.

4.2 Getting from Test Objective to Test Cases

Software Testing. A test objective is defined as “an identified set of software features
to be measured under specific conditions by comparing the actual behavior with the
required behavior described in the documentation or specification of the test object”
[5]. Based on this, the test design describes the method used to systematically formalize
and select test requirements, where a test requirement is defined as “a specific element
of an artifact (such as the functional system specification) that a test case or a set of
test cases must cover or an artifact property that the test case or the test case set must
satisfy” [11]. A test case is “a set of input values, execution conditions, and expected
results developed for a particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement” [6]. The quality and completeness
of test cases are assessed by test coverage criteria, which define the selection rules for
determining or collecting a set of test requirements to be considered [11]. The actual
test coverage is defined as “the degree to which a test case or set of test cases addresses
all selected test requirements of a given test object” [6]. The degree is usually expressed
as a percentage. Test coverage is often used as an acceptance and stopping criterion for
specifying test cases [8].

AI Testing. The test objective is commonly to show a required level of functional cor-
rectness as defined in the specification, e.g., an accuracy of at least 95%. As functional
correctness is measured on a data sample, we can additionally require a certain confi-
dence in the evaluation, e.g., requiring a confidence of 99.9% that the actual accuracy
is not lower than 95%. This way, we reduce the risk of wrongly assuming an accuracy
level that is too high.

In general, DDCs have to be tested on data that was not used during the development
of the DDC, i.e., the test dataset, which also contains ground truth information for
supervised models. Each data point can be seen as a test case providing the model
input and the expected outcome, e.g., an image showing a stop sign as model input
with the corresponding sign type as expected outcome. Execution preconditions are
usually not defined explicitly, but implicitly, as the inputs should be collected from
the TAS. Determining the expected outcome, i.e., the ground truth, is more difficult
in most cases than for classical software components as the labeling is mainly done
manually, not always unambiguous, and sometimes involves the observation of complex
empirical processes, e.g., when we need to determine whether a certain cancer therapy
was successful. This limits the amount of data available and the freedom in designing test
cases. Sometimes, this issue is addressed by simulations to generate labeled synthetic
data or data augmentations to add changes to a data point in a way that the ground truth is
still known [14]. However, due to limitations regarding the realism of such data, it is not
clear to which degree the testing performance can be transferred to real inputs during
operation. Commonly, the test dataset is acquired by a representative sample for the



Towards a Common Testing Terminology 287

TAS (without defining test requirements). The method for labeling the data with ground
truth information is also part of the data acquisition.

In analogy to classical software testing, test requirements could be defined. For the
example DDC, this could be done by considering relevant factors influencing the input
data quality, e.g., rain or a dirty camera lens. Here, test coverage criteriawould be based
on the influence factors and their permutations. However, defining test requirements in
this way involves expert knowledge and is often not done explicitly in practice, which
potentially leads to important influence factors not being (sufficiently) considered in the
data, such as snow-covered traffic signs. Other possible coverage criteria are related to
code coverage in classical software, like neuron coverage for neural networks demanding
neurons to exceed a defined activation level [15]. Coverage criteria are often difficult to
transfer to DDCs as they usually operate in an open context with many unforeseeable
situations. Additionally, small changes in the input might lead to large variations in the
outcome [16]. Therefore, the stopping criterion for testing is mostly handled trivially by
stopping when all data points in a given test dataset have been processed. However, this
does not necessarily reveal to which extent the test objective is addressed.

4.3 Test Execution and Evaluation

Software Testing. For the test execution, specific test scripts have to be derived from
the test cases to enable a connection to the execution environment and the test tools, to
stimulate the test object with concrete signals, messages, as well as function calls, and to
record the system responses for the subsequent evaluation [12]. The actual response is
compared with the expected response defined in the test case and implemented in the test
script to determine the test result, i.e., whether or not a specific test case has passed or
failed [7]. The test summary report includes a summary of the test activities and results,
considering failed test cases and achieved coverage level [5]. For the failed test cases, the
underlying faults are localized and fixed to improve the test object. Insufficient coverage
leads to changes of the test design and, hence, an updated set of test cases.

AI Testing. Test scripts in the sense of software testing do not play a prominent role inAI
testing. The reason is that DDCs are commonly stateless software components withwell-
defined, simple interfaces (e.g., taking as input an image of a defined size and providing
as outcome a sign type). Thus, there is no need for individual scripts implementing
different test cases but just for a single script that loads the test dataset, executes the DDC
with each input, and then computes the test results applying the evaluation criteria, e.g.,
correctness of the DDC outcome, on each pair of obtained/expected outcomes. AI test
reports commonly focus on aggregated results for the relevant evaluation metric, e.g.,
accuracy, without indicating which test cases failed. The reason is that unlike in software
testing, where faults causing a specific failure can be localized and fixed in the test object
individually, no concept equivalent to a fault exists for DDMs. The DDC will thus only
be revised if the test report indicates that the test objective is not met. In such cases, a
new DDM has to be constructed and a new test dataset needs to be acquired to avoid the
situation that the construction of the new DDM can make use of knowledge about the
test data to be applied later. The test objective might require that the evaluation metric
result is met with a given confidence. If the test report indicates that the uncertainty in



288 L. Jöckel et al.

the evaluation metric result is too high, i.e., the evaluation metric result with confidence
is lower than the required evaluation metric result, the test dataset may be extended by
acquiring additional test cases, thereby reducing the uncertainty in the evaluation metric
result.

5 Conclusion

In classical software testing, well-elaborated test concepts and processes exist. Due to
the different nature of DDCs, transferring known test concepts to AI is not trivial and
their applicability is not easy to assess. Therefore, we propose intensifying the exchange
of experience between experts from both communities. In this paper, we contribute to
this by encouraging discussions on mapping terminology from software testing to AI.

We focused on supervised DDCs, well aware that unsupervised or reinforcement
learning might raise further challenges, e.g., no ground truth information being avail-
able. Furthermore, the benefits of AI testing vary from classical software testing. While
insufficient or incorrect behavior of the DDC might be revealed, this rarely provides
information on how the behavior came to happen (e.g., due to the model hyperparam-
eters, insufficient training data, or the training process) and thus how to improve the
DDC. Additionally, we only have only a partial specification for DDCs based on a data
sample, and therefore some uncertainty always remains in the outcomes. This raises the
question of how test evidences need to be interpreted and what this implies in relation
to classical test evidences and the expected runtime performance; i.e., the validity of the
test results cannot be guaranteed for situations outside the TAS, which are often difficult
to detect.

Acknowledgments. Parts of this work have been funded by the Observatory for Artificial Intel-
ligence in Work and Society (KIO) of the Denkfabrik Digitale Arbeitsgesellschaft in the project
“KI Testing & Auditing” and by the project “AIControl” as part of the internal funding program
“KMU akut” of the Fraunhofer-Gesellschaft.

References

1. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, landscapes and
horizons. IEEE Trans. Softw. Eng. (2020). https://doi.org/10.1109/TSE.2019.2962027

2. Kläs,M.,Adler, R., Jöckel, L., et al.: Using complementary risk acceptance criteria to structure
assurance cases for safety-critical AI components. In: AISafety 2021 (2021)

3. Kläs, M., Sembach, L.: Uncertainty wrappers for data-driven models – increase the trans-
parency of AI/ML-based models through enrichment with dependable situation-aware uncer-
tainty estimates. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 358–364. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26250-1_29

4. Riccio, V., Jahangirova, G., Stocco, A., et al.: Testing machine learning based systems: a
systematic mapping. Empir. Softw. Eng. 25, 5193–5254 (2020)

5. IEEE Standard for Software and System Test Documentation. IEEE Std. 829 (2008)

https://doi.org/10.1109/TSE.2019.2962027
https://doi.org/10.1007/978-3-030-26250-1_29


Towards a Common Testing Terminology 289

6. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std. 610:1990 (1990)
7. ISO/IEC/IEEE Standard for Software Testing – Part 1: Concepts and definitions.

ISO/IEC/IEEE 29119-1:2013 (2013)
8. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.

Softw. Test. Verif. Reliabil. 22(5), 297–312 (2012)
9. Felderer, M., Ramler, R.: Quality assurance for AI-based systems: overview and challenges.

In: SWQD 2021 (2021)
10. Lenarduzzi, V., Lomio, F., Moreschini, S., Taibi, D., Tamburri, D.A.: Software quality for AI:

where we are now? In: Winkler, D., Biffl, S., Mendez, D., Wimmer, M., Bergsmann, J. (eds.)
SWQD 2021. LNBIP, vol. 404, pp. 43–53. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-65854-0_4

11. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press,
Cambridge (2016)

12. Burnstein, I.: Practical Software Testing – A Process-Oriented Approach. Springer Profes-
sional Computing. Springer, Heidelberg (2003).https://doi.org/10.1007/b97392

13. Siebert, J., Jöckel, L., Heidrich, J., et al.: Construction of a quality model for machine learning
systems. Softw. Qual. J. – Spec. Issue Inf. Syst. Qual. (2021). https://doi.org/10.1007/s11219-
021-09557-y

14. Jöckel, L., Kläs, M.: Increasing trust in data-driven model validation – a framework for
probabilistic augmentation of images and meta-data generation using application scope char-
acteristics. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS,
vol. 11698, pp. 155–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-
1_11

15. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of deep learning
systems. In: SOSP 2017 (2017)

16. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corrup-
tions and perturbations. In: ICLR 2019 (2019)

https://doi.org/10.1007/978-3-030-65854-0_4
https://doi.org/10.1007/b97392
https://doi.org/10.1007/s11219-021-09557-y
https://doi.org/10.1007/978-3-030-26601-1_11


Towards RegOps: A DevOps Pipeline
for Medical Device Software

Henrik Toivakka1,3(B) , Tuomas Granlund2,3 , Timo Poranen3 ,
and Zheying Zhang3

1 Mylab Oy, Tampere, Finland
henrik.toivakka@mylab.fi

2 Solita Oy, Tampere, Finland
tuomas.granlund@solita.fi

3 Tampere University, Tampere, Finland
{timo.poranen,zheying.zhang}@tuni.fi

Abstract. The manufacture of medical devices is a strictly regulated domain in
the European Union. Traditionally, medical software compliance activities have
been considered manual, document-centric, and burdensome. At the same time,
over the last decade, software companies have maintained competitiveness and
improved by relying on essential practices of DevOps, such as process automation
and delivery pipelines. However, applying the same principles in medical software
can be challenging due to regulatory requirements. In this paper, we utilize a
systematic approach to align the essential medical device software regulatory
requirements from the standards IEC 62304 and IEC 82304-1 and integrate them
into the software delivery pipeline, which is the main contribution of our work.
The outcome supports practitioners to establish more efficient software delivery
models while maintaining compliance with the medical device standards.

Keywords: Medical device software ·Medical device standards · Regulatory
compliance · DevOps · RegOps

1 Introduction

The EU regulation strictly controls the manufacturing of medical devices. In order to
place a medical device on the EU market, the manufacturer must prove the confor-
mity of the product with the applicable EU regulatory requirements. With a CE mark,
the manufacturer affirms conformity to regulatory requirements, and a medical device
without a CE mark cannot be sold or distributed, even free of charge. In addition to
specific product-related requirements, the processes by which the device is being manu-
factured and maintained must comply with the regulations. Both standalone and embed-
ded medical software products are regulated under the same EU regulation as physical
devices.

The DevOps paradigm has significantly changed the way how software is being
developed today. The technology transformation is supported by modern toolchains that

© Springer Nature Switzerland AG 2021
L. Ardito et al. (Eds.): PROFES 2021, LNCS 13126, pp. 290–306, 2021.
https://doi.org/10.1007/978-3-030-91452-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91452-3_20&domain=pdf
https://orcid.org/0000-0003-4906-4614
https://orcid.org/0000-0003-3955-0926
https://orcid.org/0000-0002-4638-0243
https://orcid.org/0000-0002-6205-4210
https://doi.org/10.1007/978-3-030-91452-3_20


Towards RegOps: A DevOps Pipeline for Medical Device Software 291

are designed with automation in mind. In addition, public cloud platforms offer flexible
computational environmentswith high availability, automated infrastructure, and reliable
software delivery. As the software development industry continues to improve, relying
on the DevOps best practices [1], it seems inevitable that DevOps will become the norm
regardless of the industry. However, certain DevOps key practices, such as short lead
time for changes and high deployment frequency, can be problematic from a medical
device compliance perspective [2].

In this work, we aim at improving the medical device software development pro-
cess by utilizing the automation capabilities of the DevOps paradigm while achieving
compliance with the regulations. We focus on standalone medical software and strive
to combine the DevOps goals of short process lead time and efficiency with regulatory
goals of product safety and clinical effectiveness. To achieve the goal, we systemati-
cally address the most relevant medical device regulatory requirements, align them with
DevOps automated software delivery concept, and propose a software delivery pipeline
compliant with the regulatory requirements. Our research is based on several years of
hands-on engineering of standalone software medical devices in the industry, covering
in-house development and consulting roles.

The rest of the paper is structured as follows. In Sect. 2, we provide the background
for the paper. In Sect. 3, we present the basics of DevOps practices and a reference
model for continuous software delivery in an unregulated environment. In Sect. 4, the
requirements of the standards IEC 62304 and IEC 82304-1 are aligned. In Sect. 5, we
present our proposed Regulated DevOps (RegOps) pipeline for regulated continuous
software delivery. Finally, in Sect. 6, we discuss the proposed pipeline and draw some
conclusions.

2 Background

In the EU region, the manufacturing of medical devices is regulated by Medical Device
Regulation (MDR) and In Vitro Diagnostics Regulation (IVDR). According to the legis-
lation, a medical device must be clinically effective for its intendedmedical purpose, and
it must be safe to use. Therefore, medical devices are classified according to their poten-
tial risk for a person’s health. Determining the correct device classification is essential,
as the device class defines applicable conformity assessment procedure and the extent
of a third-party conformity assessment body involvement within the process. Thus, the
intended purpose and technical properties of a device define how heavily it is being reg-
ulated. In addition, also the technical documentation of the device is part of the product.
It is not uncommon that regulatory requirements are seen as burdensome activities for
the manufacturers [4].

The EU regulatory framework can be interpreted to consist of four layers: 1) Union
harmonized legislation, 2) national legislation, 3) harmonized standards, and 4) guid-
ance documents endorsed by the Medical Device Coordination Group (MDCG) [3].
Arguably, the most convenient way to conform with the EU legislation is to utilize har-
monized, European versions of the international standards that apply to the device in
question as they provide presumption of conformity to legislation. At present, there are
no software-specific harmonized standards against MDR and IVDR, which creates a



292 H. Toivakka et al.

certain level of uncertainty as to which are the appropriate standards to apply. However,
the EU Commission’s recent standardization request [5] is an excellent source of infor-
mation to get an insight into the expectations of regulatory authorities. For all medical
software, the applicable set includes general requirements for health software product
safety (IEC 82304-1), software life cycle process (IEC 62304), riskmanagement process
(ISO 14971), usability engineering (IEC 62366-1), quality management system require-
ments (ISO 13485), and security activities in the product life cycle (IEC 81001-5-1).
Depending on the intended purpose and technical properties of the software product,
also other standards may be relevant.

From our experience, the appliance of medical device standards to software manu-
facturing can significantly slow down the development process. The time delay between
development and release can be measured with the process lead time of a software
change, which essentially means the latency between initiation and completion of a
process [6]. Modern software development paradigms, such as DevOps, could assist
in reducing the process lead time. However, a clear, universally accepted definition for
DevOps and the related practices/activities does not exist. Despite that, DevOps tries
to close the gap between the development (Dev) and the operations (Ops) [7] with a
set of practices that developers and operators have agreed upon. From the technological
viewpoint, the goal of DevOps is to reduce and join repetitive tasks with process automa-
tion in development, integration, and deployment [8]. In practice, process automation is
implemented in the Continuous Integration and Continuous Delivery (CI/CD) pipelines.
A pipeline consists of an automated and repeatable set of software life cycle processes.
The key to efficient software delivery is automation, repeatability, and reliability of the
software deployment [9].

In this paper, the concept of DevOps leans towards process automation and pipelines,
which canperformautomated tasks repeatedly to shorten theprocess lead timeand reduce
the risks related to the software delivery with deterministic deployment practices. For
this reason, the term DevOps pipeline is used as the primary term for referring to a set
of sequential activities/tasks that can be performed repeatedly and reliably.

3 DevOps and Pipelines

In this section, we present an overview of the key characteristics of DevOps that are rele-
vant from the viewpoint of software integrity and delivery process automation, followed
by a reference Continuous software delivery model [10].

3.1 Building Blocks for a DevOps Pipeline

ADevOps pipeline helps teams to build, test and deploy software through a combination
of tools/practices. Common tasks performed by a DevOps pipeline are software inte-
gration and deployment. Continuous Integration (CI) is the practice of integrating new
code frequently, preferably as soon as possible [11]. The pipeline builds the software,
runs an automated set of verification tasks against the software, and places the built soft-
ware artifact into the dedicated software artifact repository [6]. A software artifact is a
piece of software, such as a binary file, which can be copied into different computational



Towards RegOps: A DevOps Pipeline for Medical Device Software 293

environments [9]. The artifact repository stores the builds generated by the CI pipeline
alongside the metadata of the build [9]. The purpose of the CI is to prevent the code
from diverting too much between the developers and keep the code constantly intact,
ready for release. CI is enabled by storing the code in a source code repository, which
any modern distributed version control system, such as Git, can offer.

Continuous Deployment is a concept for an automated software delivery model. By
applying this practice, the software is deployed into a specific computational environment
after all automated verification activities are passed, without a human-made approval,
but not necessarily available to end-users [9, 10]. To establish the practice, a high level of
automation in the software development, testing, and delivery processes is required [6].
The pipeline handles the deployment to different computational environments. Staging
environments are utilized for testing and verifying the functionality of the software.
Finally, the production environment is the environment for the final end-users of the
software product.

3.2 DevOps Pipeline Reference Model

Fig. 1. Continuous software delivery model, adapted from [10].

For this work, we chose a Continuous software delivery model presented by Google
[10] as the primary reference for the concept of the DevOps pipeline, as illustrated in
Fig. 1. We also considered models from Humble and Microsoft [9, 12]. Google’s model
was selected because, based on our own experience from the industry, it is well-fitting
for practical use. In addition, it illustrates the basic pipelines and relationships between
different concepts well.

In the reference model, the software verification and delivery are highly automated.
A check-in into the source code repository triggers the CI pipeline, which builds the
software and runs automated checks and tests against the generated build. Software
artifacts are created and published into the artifact repository. If the CI pipeline passes



294 H. Toivakka et al.

successfully, the build is deployed into the staging and the production environments. The
software can be tested and verified in the staging environment manually before being
released to the end-users. However, if the CI pipeline fails, the original developer is
notified to fix the defects. A failing build will not be deployed.

The reference model was altered to present the sequential order of the CI/CD
pipelines and the activities more accurately. Finally, the model was polished with the
concept of Blue-Green Deployment [9], which enables more frictionless deployments.
In practice, there are two identical copies of the customer environment present, which
are swapped on software release. Thus, the rollback can be performed by swapping the
slots back to the original position if any problems occur. However, databases can be quite
challenging to manage while using this technique; thus, the issue should be recognized
in the system’s architectural design.

4 Integration of Regulatory Requirements into the DevOps
Pipeline

We aim to improve the medical device software development process by utilizing the
automation capabilities ofDevOps pipelineswhile simultaneously achieving compliance
with the most central regulatory requirements. Therefore, we selected the two most
important international standards related to medical device software development for
this research, namely IEC 62304 [13] and IEC 82304-1 [14].

Table 1. Requirements implemented in the pipeline.

Gate ID Gate title 62304 reqs 82304–1 reqs

G1 Continuous Integration 5.6.3, 5.6.5, 5.6.7, 5.7.4 n/a

7.3.3, 8.1.2, 8.1.3, 9.8

G2 Change Review and Approval 5.3.6, 5.4.4, 5.5.5, 5.6.1 5.7.4,
8.1.2, 8.1.3

n/a

G3 Deployment Pipeline n/a n/a

G4 Integration Verification 5.6.2 - 5.6.7, 5.7.4, 5.7.5 n/a

7.3.3, 8.1.3, 9.8

G5 Manufacturer Release Approval 5.6.6, 5.7.4, 5.7.5, 5.8.1 6.2, 6.3, 7.1, 8.3

5.8.3, 5.8.4, 5.8.6, 5.8.7

7.3.1, 7.3.3, 8.1.3, 9.8

Although the selected standards do not cover all regulatory requirements that must
be met to place the product on the EU market, in our experience, they represent exactly
the part of the requirements that can benefit from technical DevOps practices.



Towards RegOps: A DevOps Pipeline for Medical Device Software 295

4.1 Requirements of the Selected Standards Aligned

In our research, we aimed to identify the requirements from the standards that can be
automated or which can otherwise be implemented in a similar pipeline process as
illustrated in Fig. 1. In our systematic approach, first, we went through both standards
and collected the requirements at the level of numbered clauses. Second, we divided the
requirements into three categories:

1. requirements that could be implemented in a pipeline (presented in Table 1),
2. requirements that could be partially implemented in the pipeline (presented in Table

2), and
3. requirements excluded from the pipeline (presented in Table 3).

Finally, we mapped the requirements from categories 1 and 2 to different logical
stages, presented as Gates, in our pipeline. Because of the nature of medical device
regulatory requirements, certain Gates in our model are not fully automated but instead
contain manual, human-made decision steps. It should be noted that the process to
divide the requirements into categories and further map them to logical stages was done
iteratively.

The IEC 62304 contains three software process rigor levels based on the risk level
of the software. The levels are A, B, and C, from the lowest risk level to the highest.
Even if rigor levels A and B allow the exclusion of certain clauses of the standard, our
pipeline addresses the full spectrum of the requirements, making it suitable for also the
software with the highest risk classification.

4.2 Burdensome Requirements Arising from the Standards

From a compliance perspective, the essential aspect of the development process is that all
regulatory requirements are considered and implemented appropriately. These require-
ments create an additional layer of challenge to the usual complications related to soft-
ware projects. The standards IEC 62304 and IEC 82304-1 contain some burdensome
requirements, the automation of which could significantly improve the efficiency of the
development process.

As discussed previously, the importance of documentation is crucial in medical
device software development. As the software evolves during every development iter-
ation and change, the corresponding technical documentation must be kept up to date,
often challenging and laborious if done withmanual processes. For instance, IEC 82304-
1 requires the manufacturer to have comprehensive accompanying documentation con-
taining information regarding the safety and security of the software product. These
documents include, for example, instructions for use and the technical description. The
standard contains fairly detailed requirements on the content of accompanying docu-
mentation. Furthermore, IEC 62304 further extends the requirements for technical doc-
umentation to include details of the documents that must be produced during different
development lifecycle activities and tasks. For example, IEC 62304 requires the manu-
facturer to create software architecture and detailed design documentation for software
units.



296 H. Toivakka et al.

The requirements related to Software of Unknown Provenance (SOUP) can be a par-
ticularly troublesome area formanufacturers as IEC 62304 requires appropriatemanage-
ment of SOUP items according to its comprehensive rules. SOUP refers to a software
or part of the software that is not intended for medical use but is incorporated into a
medical device. SOUP also includes parts of software that have been developed before
the medical device development processes have been available. The manufacturer must
identify and list all SOUP components and specify functional, performance, system, and
hardware requirements for the identified components. These documents are part of the
product’s required technical documentation.

5 RegOps Pipeline for Medical Software

This section presents our proposed pipeline for the medical device software, the RegOps
pipeline, which builds on the reference pipeline illustrated in Fig. 1, and the results of
Sect. 4. To ensure compliance against the regulatory requirements, the RegOps pipeline
contains both automated and manual activities. The DevOps stages are modeled as
Gates, with acceptance criteria that must be met before software release activities can
proceed to the next stage. When the software release has passed all Gates, the regula-
tory requirements implemented within the RegOps pipeline have been fulfilled for that
specific version of the software product. The RegOps pipeline is illustrated in Fig. 2 and
presented in more detail later in this section.

It is worth noting that the RegOps pipeline relies on specific technical infrastructure
details. For instance, we assume that the manufacturer manages product-related user
requirements, software requirements, risks, anomalies, and change requests in electronic
systems that can be integrated with the Version Control System (VCS). The RegOps
pipeline itself can be implemented with a modern DevOps tool-set that is extended with
customized improvements to support regulatory compliance.

5.1 Gate 1: Continuous Integration

The CI is the first stage of the RegOps pipeline. When new code is checked into the
source code repository, the software build is triggered. In addition, automated verification
activities and static code analysis are performed, and the product documentation is
generated. Finally, the software artifact is published in the software artifact repository.
The associated documentation is published into the dedicated documentation storage
and made available for review.

In the Integration testing step, the covered regulatory requirements involve software
unit verification, software integration testing, and the documentation of the results (IEC
62304 clauses 5.6.3, 5.6.5, 5.6.7, 5.7.1), which the CI stage can perform depending on
the test automation coverage. However, the verification activities that are not covered
by the test automation must be tested later manually, increasing the process lead time.
In addition, IEC 62304 requires identifying and avoiding common software defects
(clause 5.1.12), and the implementation of this requirement can be partly automated
by performing a Static code analysis against the source code. The coding conventions,



Towards RegOps: A DevOps Pipeline for Medical Device Software 297

Table 2. Requirements partially implemented in the pipeline.

62304 req. Qualifying remarks

5.1.12 The planning activities are performed before the pipeline, but the pipeline can
support the requirement by utilizing automated Linter-tools etc.

5.3.1 - 5.3.4 Even if the design activities are performed before the pipeline, the pipeline can
support the implementation of the requirement by automating the creation of
architecture documentation

5.4.1 Even if the design activities are performed before the pipeline, the pipeline can
support the implementation of the requirement by an automated creation of
architecture documentation. In practice, the automated generation of
documentation is assisted by using annotations to document the software
structure

5.5.2 Even if process establishing activities are performed before the pipeline, the
pipeline is a tool to implement the requirement

5.5.3 Even if the design and specification activities are performed before the pipeline,
the pipeline can support the verification of the software unit implementation

5.7.1 Even if test establishing activities are performed before the pipeline, the
pipeline is a tool to implement the requirement, i.e. performing the tests

5.7.3 Retesting is performed in pipeline implicitly, whereas risk management
activities must be performed before pipeline

5.8.2 Anomaly management can be automated to a certain degree, and the
documentation generation and verification can be done within the pipeline

5.8.5 Planning tasks, incl. the software development plan and management of the
development process are performed before the pipeline. However,
infrastructure code can be part of the documentation, and pipeline participates
in the creation of the documentation

5.8.8 Technical practices can be implemented. However, practices such as user access
management for the pipeline infrastructure, are managed outside of the pipeline

6.3.2 See details from 5.8 requirements

7.1.3 Even if the evaluation activities are performed before the pipeline, the pipeline
can support the implementation of the requirement by checking that evaluation
exists and offering a convenient tool to update the evaluation if it is missing

7.4.3 See details from 7.1, 7.2, and 7.3 requirements

8.2.3 See details from 5.7.3, and 9.7

82304 req. Qualifying remarks

4.4, 4.7 Even if requirements management is done mainly before pipeline, use
requirement may need to be updated as a result of verification and validation
activities

7.2 Contents of documentation is created before the pipeline, but the pipeline can
support the requirement by automating the compilation of the documentation



298 H. Toivakka et al.

errors not detected by compilers, possible control flow defects, and usage of variables
that have not been assigned are audited during the analysis [15].

The major source of concern related to SOUPmanagement, as discussed previously,
is significantly reduced by automatically tracking SOUP components, which can also be
done using static code analysis [17]. In practice, the pipeline performs SOUP analysis
by identifying the SOUP items from the software (IEC 62304 clause 8.1.2). However,
the IEC 62304 requirements for the manufacturer to specify functional, performance,
and hardware specifications for SOUP components must still be implemented appro-
priately (clauses 5.3.3, 5.3.4). The required specifications are documented either before
the commit or in Gate 2, at the latest. Finally, various vulnerability analyses could be
performed to find any vulnerability risks arising from the SOUP items. As an example,
OWASP dependency-check tool [16] is an efficient security utility to find vulnerabilities
from third-party components.

In the Generation of documentation step, the software documentation is automati-
cally compiled, to the extent possible. For example, the required architecture documen-
tation (IEC 62304 clauses 5.3.1, 5.3.2) can be generated by using an augmented C4
software architecture model [17] by appropriately annotating the source code packages.
The generated decomposition diagram represents the actual state of the software struc-
ture. In general, the source data for documentation content can be pulled from different
data sources, and the generated documentation is stored in the VCS with the software
source code. Automatic document creation also enables implementing other IEC 62304
requirements, such as refining the system into software units (clause 5.4.1) and doc-
umenting traceability (clause 7.3.3). In addition, the step contributes to implementing
requirements related to software system testing verification (clause 5.7.4), systemconfig-
uration documentation (clause 8.1.3), and test documentation (clause 9.8). Finally, IEC
82304-1 requirements for accompanying documents (clause 7.2), as discussed earlier,
can be implemented.

To summarise, the CI stage does most of the heavy lifting in the RegOps pipeline.
It performs the automated part of the software integration verification and prepares the
software artifacts and the documentation for the following stages of the pipeline. Aside
from all the activities, CI should be a repeatable and quick process to give feedback for
the developers [18].

5.2 Gate 2: Change Review and Approval

Not all regulatory requirements can be implemented by automation, and certain specific
required tasks need manual verification. Such verification activities are often character-
ized by the fact that they are related to the outcomes of the previous steps. The second
stage of the RegOps pipeline, the Change Review and Approval stage, is the first manual
phase of the pipeline. Its purpose is to ensure systematic analysis and endorsement of
the change made, both in source code and documentation. The stage builds on the pull-
based development model [19]. A pull request is the developer’s way of announcing that
their work has been finished and is ready for further actions [20]. In practice, after the
code is committed and pushed into the source code repository, the pull request is created
automatically by the pipeline.



Towards RegOps: A DevOps Pipeline for Medical Device Software 299

Fig. 2. Our proposed RegOps Pipeline with the regulatory activities emerging from the require-
ments of the standards IEC 62304 and IEC 82304-1 applied.



300 H. Toivakka et al.

The first step in the stage is Review and verification. IEC 62304 requires the manu-
facturer to verify the software units (clause 5.5.5) against the software unit acceptance
criteria (clause 5.5.3) defined in the software unit verification process (clause 5.5.2).
The verification can be done partially by automated testing in Gate 1, but the require-
ment can only be fully met with a code review by another developer entitled to approve
the change. Other required review and verification activities include detailed design
verification (clause 5.4.4) and software architecture verification (clause 5.3.6). Even if
the planning of these activities is done before the RegOps pipeline initiates, the out-
comes can only be verified after the commit. The step also contributes to implementing
requirements related to the evaluation of verification strategies (clause 5.7.4) and system
configuration documentation (clause 8.1.3). In addition, IEC 82304-1 requires updating
the health software use and system requirements following verification, as appropriate
(clauses 4.4, 4.7). Therefore, in the verification review, if any contradictions are found
from the requirements, they may be updated to reflect reality.

The SOUP itemswere identified and analyzed in the previous stage, but there needs to
be a formalSOUPreview. Only a human can approve or reject the newSOUPcomponents
to be included in themedical software. Also, the additional documentation contents must
be verified (IEC 62304 clauses 5.3.3, 5.3.4). Additionally, the published SOUP anomaly
lists must be evaluated (clause 7.1.3).

Finally, in the Merge approval step, when the verification tasks are completed,
approved, and recorded, the change-set - that exists in the form of a pull request -
can be approved by a competent person. After the approval, the software integration
is performed automatically [21]. However, if any merge conflicts appear, changes are
withdrawn, and the software developer is notified to fix the problems. In a successful
Merge, the new code and documentation are integrated into the mainline of the source
code repository. As a by-product, the regulatory requirement to integrate the software
units (clause 5.6.1) is fulfilled.

5.3 Gate 3: Deployment Pipeline

The concept of Continuous Deployment, when considered as an automatic software
release for the end-user and as illustrated in Fig. 1, is problematic in medical device
software development [2, 2]. For instance, regulatory requirements related to product
validation can be seen as an obstacle for deploying the software directly to use, without
human-made actions. As a result, the release of the software to the end-users must be
gated by a human decision to ensure regulatory compliance. Furthermore, the final deci-
sion to release is human-made by the manufacturer’s authorized employee. Therefore,
the RegOps pipeline contains a Deployment Pipeline stage, which deploys the software
into a specific computational environment after approval, and only with appropriate
approvals, the software can be released to the end-users. The same stage is utilized for
all deployments; only the destination computational environment differs. As the soft-
ware change advances through the pipeline gates, it is deployed into inspection of other
developers, QA experts, and finally, to be used in real life.

Technically, the Deployment Pipeline pulls the software artifact generated by the CI
stage. The software artifact is then deployed into the destination computational environ-
ment. The documentation accompanied by the software is also published in a dedicated



Towards RegOps: A DevOps Pipeline for Medical Device Software 301

location for further review. Finally, the software deployment is verified automatically by
performing a set of smoke tests, which verify that the software is up and running. If the
software does not start or the smoke tests fail, the developer is notified immediately to
fix the problem.

Our research did not identify any specific requirements from the addressed standards
to be implemented in the Deployment Pipeline stage. However, as the deployment is a
crucial part of the system, the software change cannot be approved unless the deployment
is performed successfully. Also, the deployment must be gated by a human decision.
For instance, Gate 4 and Gate 5 contain specific approval activities, which essentially
trigger the software deployment.

5.4 Gate 4: Integration Verification

As a result of the actions performed in previous stages, the software is deployed into the
Staging Environment, which is as accurate a copy as possible of the final use environment
[22]. Hence, the software product can be reviewed as a whole. In addition, the software
artifacts deployed to the Staging Environment are already reviewed by another person
and automatically tested for possible defects. However, there may be a need to perform
Manual integration testing: not all test cases can be automated, and test automation
cannot be used for exploratory testing. Any additional tests can be performed in the
Staging Environment to test and verify that the software integration has been performed
successfully (IEC 62304 clause 5.6.2). The software integration and regression testing
(clauses 5.6.3 - 5.6.7) are finished at this stage.

The software system’s functionality is verified through System testing, which ensures
that the software system meets its intended requirements and performs as designed.
The system testing must be carried out in a computational environment that closely
corresponds to the actual use environment to ensure reliable test results. In Gate 4,
the part of the system testing that is automated is carried out (clauses 5.7.1, 5.7.3,
5.7.5, 7.3.3, 8.2.3, 9.8), and, again, the stage contributes to implementing requirements
related to software system testing verification (clause 5.7.4) and system configuration
documentation (clause 8.1.3). A high degree of automation coverage enables efficiency
by reducing the burdenofmanualworkduring the later stages. Furthermore, as automated
system testing can take a considerable amount of time, it is only carried out in Gate 4,
allowing fast feedback for the developers from earlier stages in the pipeline [23]. In a
scenario where any anomalies are found during the system testing, the pipeline will not
proceed. The identified anomaly is escalated to the problem resolution process (clause
5.7.2). Finally, the development team is notifiedwith an automatic problem report (clause
9.1).

The performance of the system is tested by running a set of relevant tests in the
Capacity testing step. The capacity testing provides away for themanufacturer to analyze
the behavior of the system under stress. For example, any change in the software could
introduce performance issues, which can be detected early by running performance tests
against the system.

The last step in Gate 4 is Integration approval after all other integration verification
activities are completed. Technically, the approval triggers the Deployment Pipeline,



302 H. Toivakka et al.

which then deploys the software into the QA Environment. The QA Environment is the
final environment for testing and verification before the software can be released.

5.5 Gate 5: Manufacturer Release Approval

In Gate 5, the software is system tested, the system testing is evaluated and verified, and
the software product is validated before the final release. The activities performed in this
stage are primarily manual or require human inspection.

The test cases that could not be automated are performed in the QA environment
(clauses 5.6.6, 5.7.5, 7.3.3, 9.8) within the activity ofManual system testing. Depending
on the test automation coverage, this stage may require significant amounts of resources.
However, even with comprehensive test automation coverage, exploratory testing is
recommended [24].

After the system testing has been completed, the system testing activities must be
evaluated and verified within the formal System testing evaluation and verification step.
In practice, the system test results are evaluated and verified as stated in IEC 62304
(clauses 5.7.4, 5.8.1). Essentially, all relevant test cases are verified to have been per-
formed properly. Furthermore, according to IEC 62304, any anomalies found from the
product must be documented and evaluated (clause 5.8.2, 5.8.3). In addition, the risk
control measures are to be verified (clause 7.3.1). Finally, the residual risk level of the
medical device product must be reduced to or remain at an acceptable level before the
release to the end users can happen. These requirements are implemented in theResidual
risk analysis step.

Before the final release, the manufacturer must ensure that all activities mentioned
in the software development plan are completed (clause 5.8.6). The software and docu-
mentation artifacts created by the CI are labeled with a release version tag (clause 5.8.4).
However, IEC 82304-1 extends this requirement to require a Unique Device Identifier
(UDI) (clause 7.2). The software artifacts are transferred into a permanent archive (IEC
62304 clause 5.8.7). The archived software artifacts and documentation are used to
install the product into the computational environment where it will be used. From a
technical perspective, the medical device software product is ready to be released at this
point. First, however, the manufacturer must perform the Validation according to the
validation plan (IEC 82304-1 clauses 6.2, 6.3, 8.3). Essentially, the manufacturer must
obtain reliable evidence of the software to fulfill its intended purpose.

Finally, when the software product is technically intact and verified to conform to the
regulatory requirements, the software can be released and deployed into the customer
environment by formal Release approval. In the pipeline, we utilized the Blue-green
deployment, which practically means deployment into the staging slot of the environ-
ment, as discussed earlier. This practice allows customer organizations to familiarise
themselves with the product as it is common that they have their validation processes.
Then, when it is time to release the software to the end-users, the staging slot can be
swapped with the production slot, making the software available for real-world use.

It should be highlighted that the pipeline implements some of the regulatory require-
ments implicitly, such as documenting how the release was made, the repeatability of
the release, and re-releasing the modified system (clauses 5.8.5, 5.8.8, 6.3.2). These are
the core principles of the pipeline.



Towards RegOps: A DevOps Pipeline for Medical Device Software 303

6 Discussion and Conclusions

In this paper, we have collected the most central regulatory requirements related to
medical software, that is, requirements from the standards IEC 62304 and IEC 82304-1,
and integrated the aligned requirements into our proposed software delivery pipeline.
The resultingRegOps pipeline aims to reduce the lead time of the software deliverywhile
at the same time maintaining compliance with regulatory requirements. We identified
110 requirements from the standards, of which 26 are fully implemented, and 20 are
partially implemented within the pipeline. The remaining 64 requirements, shown in
Table 3, were scoped out.

Ideally, the use of the RegOps pipeline could enable early customer feedback from
healthcare practitioners by allowing them to test the software in the staging slot of their
computational environment before the software is released into medical use. In addition
to collecting feedback, this allocated environment could be used to perform customer-
specific acceptance testing and validation activities. First, however, it must be ensured
that the unreleased software is not used for patient treatment in any circumstances.

The paper’s primary contribution for medical device software industry professionals
is to provide a conventional and pragmatic approach to deliver software for real-world
use. As the medical regulations introduce rather unique requirements in the software
industry, such as a demand for extensive and traceable documentation, the automation
capabilities of the pipeline are precious in the automatic generation of documentation.
Furthermore, when the whole delivery process is implemented within the pipeline, it
is implicitly deterministic and in control by nature in the form of version-controlled
infrastructure code - a feature that regulatory professionals appreciate. For researchers,
our consolidated regulatory requirements can act as a baseline for future extensions in
the use of DevOps practices in the medical domain. Finally, for those interested in only
DevOps, our pipeline could offer a new perspective and ideas for their work.

As a limitation in our proposed approach, we acknowledge that the RegOps pipeline
does not alone fulfill every applicable regulatory requirement associated with a medi-
cal software product. Therefore, it is only a part of the overall solution for regulatory
compliance. As discussed previously, in addition to these standards, other regulatory
requirements must also be taken into account when designing and implementing the
medical device manufacturing process.

In the future, we intend to perform a case study to validate our proposed approach’s
applicability in real-world use and to develop the concept further. Then, the pipeline
could be expanded to apply to the entire manufacturing process while retaining the
mindset for process automation. Finally, the applicability of the proposed pipeline could
be explored in the field of embeddedmedical devices, inwhich case additional regulatory
requirements related to electrical equipment need to be taken into account.



304 H. Toivakka et al.

Table 3. Requirements scoped out of the pipeline.

62304 req. Explanation

4.1 Applies to the whole organization and all its functions

4.2 Applies to the entire product development process

4.3 The software process rigor level is decided outside of
the pipeline

However, it affects how many requirements are
applicable for the product

4.4 The model is intended to support software
development done in compliance with the standard

5.1.1 - 5.1.9 Planning activities are performed before the
verification activities5.1.11, 6.1, 8.1.1

5.1.10 Applies to the entire product development process.
However, the pipeline needs to be addressed in the
supporting items management

5.2.1 - 5.2.6, The software requirements management and technical
design activities are performed before the verification
activities

5.4, 5.3.5, 5.4.2

5.4.3, 5.5.4, 7.1.1 7.1.2, 7.1.4, 7.2.1

7.4.1, 7.4.2, 8.2.1

5.5.1, 6.3.1 The implementation activities are performed before
verification activities

5.6.8, 5.7.2 However, anomalies detected in the pipeline can be
automatically forwarded to the software problem
resolution process

6.2.1 - 6.2.6 Problem and modification analysis activities are
performed before pipeline

7.2.2, 8.2.2 The software requirements management, technical
design, and implementations activities are performed
before verification activities

8.2.4 Change requests, change request approvals, and
problem reports are managed outside of the pipeline

8.3 Configuration item history is stored in VCS

9.1 - 9.7 Software problem resolution is managed outside of
the pipeline

(continued)



Towards RegOps: A DevOps Pipeline for Medical Device Software 305

Table 3. (continued)

82304 req. Explanation

4.1 Applies to general product documentation

4.2, 4.3, 4.5, 4.6 The requirements management and technical design
activities are performed before the pipeline

6.1 Planning activities are performed before the pipeline

8.4, 8.5 Post-market activities are performed after the pipeline

Acknowledgements. The authors would like to thank Business Finland and the members of
AHMED (Agile and Holistic MEdical software Development) consortium for supporting this
work.

References

1. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: 2019 Accelerate State of DevOps Report.
DevOps Research and Assessment & Google Cloud (2019)

2. Granlund, T., Mikkonen, T., Stirbu, V.: On medical device software CE compliance and con-
formity assessment. In: IEEE International Conference on Software Architecture Companion
(ICSA-C), pp. 185–191. IEEE (2020)

3. Granlund, T., Stirbu, V., Mikkonen, T.: Towards regulatory-compliant MLOps: oravizio’s
journey from a machine learning experiment to a deployed certified medical product. SN
COMPUT. SCI. 2, 342 (2021)

4. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: DevOps in regulated software development:
case medical devices. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE-NIER), pp. 15–18. IEEE (2017)

5. A standardisation request regarding medical devices to support Regulation (EU) 2017/745
and (EU) 2017/746. https://ec.europa.eu/growth/toolsdatabases/mandates/index.cfm?fuseac
tion=search.detail&id=599. Last accessed 2 Jul 2021.

6. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps Handbook: How to Create World-
Class Agility, Reliability, and Security in Technology Organizations. IT Revolution Press,
Portland (2016)

7. Wettinger, J., Breitenbücher, U., Leymann, F.: DevOpSlang – bridging the gap between
development and operations. In: Villari, M., Zimmermann, W., Lau, K.K. (eds.) Service-
Oriented and Cloud Computing. ESOCC 2014. LNCS, vol. 8745, pp. 108–122. Springer,
Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44879-3_8

8. Laukkarinen, T., Kuusinen, K., Mikkonen, T.: Regulated software meets DevOps. Inf. Softw.
Technol. 97, 176–178 (2018)

9. Humble, J., Farley, D.: ContinuousDelivery: Reliable Software Releases ThroughBuild, Test,
and Deployment Automation. Addison-Wesley, Boston (2010)

10. Google Cloud Architecture Center. https://cloud.google.com/architecture/addressingconti
nuous-delivery-challenges-in-a-kubernetes-world. Accessed 21 May 2021

11. Fowler, M.: Continuous Integration. https://www.martinfowler.com/articles/continuousInteg
ration.html. Accessed 1 June 2021

https://ec.europa.eu/growth/toolsdatabases/mandates/index.cfm%3Ffuseaction%3Dsearch.detail%26id%3D599
https://doi.org/10.1007/978-3-662-44879-3_8
https://cloud.google.com/architecture/addressingcontinuous-delivery-challenges-in-a-kubernetes-world
https://www.martinfowler.com/articles/continuousIntegration.html


306 H. Toivakka et al.

12. Microsoft Documentation: DevTest and DevOps for microservice solutions. https://docs.mic
rosoft.com/en-us/azure/architecture/solution-ideas/articles/devtest-microservice. Accessed 8
July 2021

13. IEC/EN 62304:2006/A1:2015. Medical device software - Software life-cycle processes
(2015)

14. IEC 82304-1:2016. Health software – Part 1: General requirements for product safety (2016)
15. Wichmann, B., Canning, A., Marsh, D., Clutterbock, D.,Winsborrow, L.,Ward, N.: Industrial

perspective on static analysis. Softw. Eng. J. 10(2), 69–75 (1995)
16. OWASP Dependency-Check Project. https://owasp.org/www-projectdependency-check/.

Accessed 12 July 2021
17. Stirbu, V., Mikkonen, T.: CompliancePal: a tool for supporting practical agile and regulatory-

compliant development of medical software. In: 2020 IEEE International Conference on
Software Architecture Companion (ICSA-C), pp. 151–158. IEEE (2020)

18. Duvall, P., Glover, A., Matyas, S.: Continuous Integration: Improving Software Quality and
Reducing Risk. Addison Wesley, Boston (2007)

19. Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code review:
a case study at Google. In: Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, pp. 181–190. Association for Computing
Machinery, New York (2018)

20. Fowler, M.: Pull Request. https://martinfowler.com/bliki/PullRequest.html. Accessed 1 June
2021

21. Ståhl, D., Bosch, J.: Automated software integration flows in industry: a multiple-case study.
In: Companion Proceedings of the 36th International Conference on Software Engineering,
pp. 54–63. ACM (2014)

22. Morales, J., Yasar, H., Volkman, A.: Implementing DevOps practices in highly regulated
environments. In: Proceedings of the 19th International Conference on Agile Software
Development: Companion, Article 4, pp. 1–9. ACM (2018)

23. Laukkanen, E., Mäntylä, M.: Build waiting time in continuous integration – an initial interdis-
ciplinary literature review. In: IEEE/ACM 2nd International Workshop on Rapid Continuous
Software Engineering (2015)

24. Shah, S., Cigdem, G., Sattar, A., Petersen, K.: Towards a hybrid testing process unifying
exploratory testing and scripted testing. J. Softw. Evolut. Process 26(2), 220–250 (2014)

https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/devtest-microservice
https://owasp.org/www-projectdependency-check/
https://martinfowler.com/bliki/PullRequest.html


Author Index

Abherve, Antonin 249
Alsaqaf, Wasim 233
Aman, Hirohisa 183
Amasaki, Sousuke 183
Anish, Preethu Rose 233

Bagnato, Alessandra 249
Bauer, Thomas 281
Besker, Terese 265
Borowa, Klara 207
Bosch, Jan 265
Bowring, Josefine 66

Caulo, Maria 3
Cico, Orges 265

Daneva, Maya 233
Duc, Anh Nguyen 265
Dwornik, Robert 207

Engels, Gregor 103

Falcão, Rodrigo 119
Femmer, Henning 85
Fischbach, Jannik 85
Francese, Rita 3, 167
Frattini, Julian 85

Gottschalk, Sebastian 103
Granlund, Tuomas 290
Groß, Janek 281
Guckenbiehl, Pascal 49

Hall, Tracy 199
Hauer, Marc P. 281
Hebig, Regina 20
Hell, Martin 215
Höst, Martin 215

Jöckel, Lisa 281
Joutsenlahti, Juha-Pekka 36

Kläs, Michael 281

Lang, Dominic 136
Lee, Chi Hong 199
Lehtonen, Timo 36
Leitner, Philipp 20
Loukiala, Antti 36

Martini, Antonio 265
Mendez, Daniel 85
Michael Ayas, Hamdy 20
Mikkonen, Tommi 36, 152
Milione, Vincent 167
Münch, Jürgen 136

Nowosad, Alexander 103

Oivo, Markku 249

Paasivaara, Maria 66
Poranen, Timo 290

Raatikainen, Mikko 36
Ram, Prabhat 249
Rodríguez, Pilar 249
Roling, Bastian 136

Scanniello, Giuseppe 3, 167
Souza, Renata 265
Stirbu, Vlad 152

Theobald, Sven 49
Toivakka, Henrik 290
Tortora, Genoveffa 3, 167
Trapp, Marcus 119
Trieflinger, Stefan 136

Unterkalmsteiner, Michael 85

Vianna Dias da Silva, Alberto 119
Vieira, Vaninha 119
Vogelsang, Andreas 85

Wagner, Stefan 136
Wieringa, Roel 233



Yigitbas, Enes 103
Yokogawa, Tomoyuki 183

Zalewski, Andrzej 207
Zhang, Zheying 290

308 Author Index


	Preface
	Organization
	Contents
	Agile and Migration
	Implications on the Migration from Ionic to Android
	1 Introduction
	2 Related Work
	3 Overall Assessment
	3.1 User Study
	3.2 User Study Results
	3.3 Controlled Experiment
	3.4 Controlled Experiment Results

	4 Overall Discussion
	4.1 Implications and Future Extensions
	4.2 Threats to Validity

	5 Conclusion
	References

	The Migration Journey Towards Microservices
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Participants
	3.2 Protocol
	3.3 Analysis

	4 Results
	4.1 Architectural-Level Migration Journey
	4.2 System-Level Migration Journey

	5 Discussion
	5.1 Changing Modes and the Reoccurring Phases of Migrations
	5.2 Implications for Engineering Teams
	5.3 Threats to Validity

	6 Conclusion
	References

	Migrating from a Centralized Data Warehouse to a Decentralized Data Platform Architecture
	1 Introduction
	2 Background
	2.1 Data Warehousing
	2.2 Data Lakes
	2.3 Data Platform Architecture
	2.4 Service Oriented Architecture
	2.5 Microservice Architecture

	3 Case Context and Challenges
	4 Drivers of Modernization
	5 New Data Architecture
	6 Experiences
	7 Conclusions
	References

	How Do Agile Teams Manage Impediments?
	1 Introduction
	2 Related Work and Background
	2.1 Related Work
	2.2 Background

	3 Study Design
	3.1 Research Goal and Questions
	3.2 Data Collection and Analysis
	3.3 Survey Questionnaire

	4 Study Results
	4.1 Participant Demographics
	4.2 RQ1: Identification
	4.3 RQ2: Documentation
	4.4 RQ3: Resolution
	4.5 Threats to Validity

	5 Conclusion and Future Work
	References

	Keeping the Momentum: Driving Continuous Improvement After the Large-Scale Agile Transformation
	1 Introduction
	2 Background
	2.1 Scaled Agile Framework (SAFe)
	2.2 Related Research

	3 Research Method
	3.1 Research Goals and Questions
	3.2 Case Organisation
	3.3 Data Collection
	3.4 Data Analysis and Validation

	4 Results
	4.1 RQ1: How Has the LACE Changed over Time?
	4.2 RQ2: How Does the LACE Work?
	4.3 RQ3: How Does the LACE Influence the Organisation?
	4.4 RQ4: How Can the LACE Improve to Inspire and Facilitate Change?

	5 Discussion and Conclusions
	References

	Requirements
	How Do Practitioners Interpret Conditionals in Requirements?
	1 Introduction
	2 Fundamentals
	3 Study Design
	3.1 Survey Definition
	3.2 Survey Design
	3.3 Survey Implementation and Execution
	3.4 Survey Analysis

	4 Results
	5 Threats to Validity
	6 Concluding Discussion and Outlook
	References

	Situation- and Domain-Specific Composition and Enactment of Business Model Development Methods
	1 Introduction
	2 Background
	2.1 Business Model Development
	2.2 Situational Method Engineering

	3 Research Approach
	4 Solution Requirements
	5 Solution Concept
	5.1 Knowledge Provision of Methods and Models
	5.2 Composition of Development Method
	5.3 Enactment of Development Method

	6 Solution Implementation
	6.1 Architecture
	6.2 Tool-Support

	7 Evaluation on Local Event Platform
	7.1 Evaluation Setting
	7.2 Execution of the Study
	7.3 Analysis of Results and Implications

	8 Conclusion and Future Work
	References

	Using a Data-Driven Context Model to Support the Elicitation of Context-Aware Functionalities – A Controlled Experiment
	1 Introduction
	2 Background
	3 Experiment Planning
	3.1 Goals
	3.2 Design
	3.3 Participants
	3.4 Participants' Task
	3.5 Hypotheses and Variables
	3.6 Experimental Materials
	3.7 Procedure

	4 Execution
	4.1 Preparation
	4.2 Deviations

	5 Analysis
	5.1 Descriptive Statistics
	5.2 Data Set Preparation
	5.3 Hypothesis Testing

	6 Discussion
	6.1 Evaluation of Results and Implications
	6.2 Threats to Validity

	7 Conclusion and Future Work
	References

	A Transformation Model for Excelling in Product Roadmapping in Dynamic and Uncertain Market Environments
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Research Approach
	4 Product Roadmap Transformation Approach
	4.1 Process for the Product Roadmap Transformation
	4.2 Procedure for Analyzing Which Dimension Promises the Most Benefit
	4.3 Mapping Tables

	5 Perception of Practitioners
	6 Threats to Validity
	6.1 Threats to Validity of the Development of the Transformation Approach
	6.2 Threats to Validity of the Interviews with Eleven Practitioners

	7 Summary and Future Work
	Appendix A. DEEP Product Roadmap Self-assessment Tool
	References

	Introducing Traceability in GitHub for Medical Software Development
	1 Introduction
	2 Background and Motivation
	3 Design Control in Software Intensive Medical Products
	4 Proposed Approach
	4.1 Traceability Information Model
	4.2 Native GitHub Enablers
	4.3 Prototype Implementation

	5 Discussion
	6 Conclusions
	References

	Human Factors
	A Preliminary Investigation on the Relationships Between Personality Traits and Team Climate in a Smart-Working Development Context
	1 Introduction
	2 Background
	2.1 Big Five Model and Associated Instruments
	2.2 Team Climate Research in Software Engineering
	2.3 Related Work

	3 Study Design and Planning
	3.1 Goal
	3.2 Participants
	3.3 Data Collection
	3.4 Data Analysis Procedure

	4 Results
	4.1 Descriptive Analysis
	4.2 Normality Test Results
	4.3 Correlation Analysis
	4.4 Regression Analysis

	5 Threats to Validity
	6 Implications
	7 Conclusion
	References

	Searching for Bellwether Developers for Cross-Personalized Defect Prediction
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Bellwethers Approach
	3.2 Datasets
	3.3 Prediction
	3.4 Performance Evaluation

	4 Results
	4.1 RQ1: Is There a Bellwether Developer in a Project?
	4.2 RQ2: How Are the Bellwethers Effective for Predicting Faults Made by the Other Active Developers in a Project?
	4.3 RQ3: Do the Bellwether Developers Also Predict Faulty Commits of the Others Than the Bellwether Candidates?

	5 Threats to Validity
	6 Conclusion
	References

	Using Machine Learning to Recognise Novice and Expert Programmers
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset
	3.2 Features
	3.3 Machine Learning Models

	4 Results
	4.1 Exp0: First Experiment

	5 Ethical Concerns
	6 Conclusion
	6.1 Review of the Research Questions
	6.2 Further Work

	References

	Is Knowledge the Key? An Experiment on Debiasing Architectural Decision-Making - a Pilot Study
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Bias Selection
	3.2 Data Acquisition
	3.3 Data Analysis
	3.4 Participants

	4 Results
	5 Threats to Validity
	6 Discussion
	7 Research Outlook
	8 Conclusion
	References

	Communicating Cybersecurity Vulnerability Information: A Producer-Acquirer Case Study
	1 Introduction
	2 Methodology
	2.1 Involved Companies
	2.2 Interview Questions
	2.3 Validity

	3 Results
	3.1 Roles and Responsibilities
	3.2 Communication Within and Between Producer and Acquirer
	3.3 Decision and Information
	3.4 Identified Challenges and Opportunities

	4 Discussion and Analysis
	5 Conclusion
	References

	Software Quality
	Analyzing SAFe Practices with Respect to Quality Requirements: Findings from a Qualitative Study
	1 Introduction
	2 Background and Related Works
	3 Research Method
	3.1 Selecting Agile Scaled Framework
	3.2 Uncovering the Assumptions in SAFe About Engineering the QRs
	3.3 Understanding How Real-World SAFe Projects Resolve QRs Challenges

	4 Scaled Agile Framework (SAFe)
	5 Results
	5.1 SAFe Elements Assumed Mitigate the QRs Challenges Defined in [9]
	5.2 Answers to RQ2 and RQ3

	6 Discussion
	7 Threats of Validity
	8 Conclusion
	References

	Capitalizing on Developer-Tester Communication – A Case Study
	1 Introduction
	2 Background and Related Work
	2.1 LDA
	2.2 Related Work

	3 Research Method
	3.1 Research Context
	3.2 Data Collection
	3.3 LDA Application and Data Analysis

	4 Results
	4.1 Development-Related Insights from Developer-Tester Communication

	5 Discussion
	5.1 Development-Related Insights from Developer-Tester Communication

	6 Limitations and Threats to Validity
	7 Conclusion
	References

	Toward a Technical Debt Relationship with the Pivoting of Growth Phase Startups
	1 Introduction
	2 Background and Related Work
	2.1 Growth Phase Startups' Pivoting: A Dilemma
	2.2 TD and Pivoting in Growth Phase Startups: A Preliminary Analysis

	3 Exploring the Practitioners' Point of View
	3.1 Case Selection
	3.2 Case Demographics
	3.3 Interview Design and Data Collection
	3.4 Data Analysis

	4 The Relationship Between Technical Debt and Pivoting in Growth Phase Startups
	4.1 TD Influence on Pivoting Types
	4.2 TD Processes in Pivoting Scenarios

	5 Discussions
	5.1 TD Influence on Pivoting in Growth-Phase Startups
	5.2 Benefit to Researchers and Practitioners
	5.3 Threats to Validity
	5.4 Hypotheses

	6 Conclusions and Future Work
	References

	Towards a Common Testing Terminology for Software Engineering and Data Science Experts
	1 Motivation
	2 Background on Data-Driven Components
	3 Related Work on Testing Terminology
	4 Mapping of Software and AI Testing Terminology
	4.1 Test Abstraction Levels and Objects
	4.2 Getting from Test Objective to Test Cases
	4.3 Test Execution and Evaluation

	5 Conclusion
	References

	Towards RegOps: A DevOps Pipeline for Medical Device Software
	1 Introduction
	2 Background
	3 DevOps and Pipelines
	3.1 Building Blocks for a DevOps Pipeline
	3.2 DevOps Pipeline Reference Model

	4 Integration of Regulatory Requirements into the DevOps Pipeline
	4.1 Requirements of the Selected Standards Aligned
	4.2 Burdensome Requirements Arising from the Standards

	5 RegOps Pipeline for Medical Software
	5.1 Gate 1: Continuous Integration
	5.2 Gate 2: Change Review and Approval
	5.3 Gate 3: Deployment Pipeline
	5.4 Gate 4: Integration Verification
	5.5 Gate 5: Manufacturer Release Approval

	6 Discussion and Conclusions
	References

	Author Index

