
Fast Channel Selection for Scalable
Multivariate Time Series Classification

Bhaskar Dhariyal(B), Thach Le Nguyen, and Georgiana Ifrim

School of Computer Science, University College Dublin, Dublin, Ireland
{bhaskar.dhariyal,thach.lenguyen,georgiana.ifrim}@insight-centre.org

Abstract. Multivariate time series record sequences of values using mul-
tiple sensors or channels. In the classification task, we have a class label
associated with each multivariate time series. For example, a smart-
watch captures the activity of a person over time, and there are typi-
cally multiple sensors capturing aspects of motion such as acceleration,
orientation, heart beat. Existing Multivariate Time Series Classification
(MTSC) algorithms do not scale well with large datasets, and this leads
to extensive training and prediction times. This problem is attributed to
an increase in the number of records (e.g., study participants), duration
of recording (time series length), and number of channels (e.g., sensors).
Existing MTSC methods do not scale well with the number of channels,
and only a few methods can complete their training on the medium sized
UEA MTSC benchmark within 7 days. Additionally, for some problems,
only a few channels are relevant for the learning task, and thus iden-
tifying the relevant channels before training may help with improving
both the scalability and accuracy of the classifiers, as well as result in
savings for data collection and storage. In this work, we investigate a
few channel selection strategies for MTSC and propose a new approach
for fast supervised channel selection. The key idea is to use channel-wise
class separation estimation using fast computation on centroid-pairs. We
evaluate the impact of our new method on the accuracy and scalability
of a few state-of-the-art MTSC algorithms and show that our approach
can dramatically reduce the input data size, and thus improve scalability,
while also preserving accuracy. In some cases, the runtime for training the
classifier was reduced to one third of the runtime on the original dataset.
We also analyse the performance of our channel selection method in a
case study on a human motion classification task and show that we can
achieve the same accuracy using only one third of the data.

Keywords: Channel selection · Dimension reduction · Time series

1 Introduction

Time series are data recorded as ordered sequences of numeric values and are
encountered in many applications. The proliferation of IoT and sensor technol-
ogy has rapidly fuelled the collection of such sequential data. Furthermore, the
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 36–54, 2021.
https://doi.org/10.1007/978-3-030-91445-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_3

Fast Channel Selection for Scalable Multivariate Time Series Classification 37

onset of the covid19 pandemic has also enhanced the growth of temporal data
collection. For instance, a study [1] in March 2021 reported 28% growth in the
market for wearable sensing devices. Besides sensors, multimedia files like images,
audio, and video can also be converted to time series to save on data storage,
and thus become significant contributors to time series database growth.

Time-series applications vary across domains, e.g. sports science, agriculture,
or healthcare. For example, a person lifts a barbell above their head from shoul-
der level in the Military Press exercise. The motion of various body parts during
the exercise can be captured to analyse the correctness of the exercise execution.
Sensors or video recordings can help track the movement of body parts in the
form of temporal data (time series) [18]. The body parts that act as data sources
are known as channels in the time series context, and these channels record time-
series data simultaneously. The execution of the exercise can be classified into
normal and aberrant subtypes. The task of assigning discrete labels to multi-
channel time series is known as Multivariate Time Series Classification (MTSC).
In the case of a single channel, the task of assigning a label is known as Univari-
ate Time Series Classification (UTSC). Figure 1 illustrates the video capture of
a person doing a Military Press exercise and the extraction of multivariate time
series using body pose estimation with OpenPose [3].

Fig. 1. From video to multivariate time series using OpenPose (figure from [18]).

Research in UTSC has made significant progress [2], but there is much less
work done on MTSC [13]. Most literature in UTSC considers the MTSC problem
as an extended version of UTSC and tends to adapt UTSC methods for MTSC.
However, such methods ignore the computational components such as space and
time complexity which are crucial elements for MTSC, thus rendering most of
the state-of-the-art (SOTA) classifiers infeasible for practical applications. The
recent studies [5,13] highlighted scalability as a big challenge for SOTA classifiers
in MTSC, with many existing algorithms not able to complete training on 26
medium-sized UCR MTSC datasets within 7 days. The scalability challenge can
be analysed from three perspectives: the number of channels, length of time series

38 B. Dhariyal et al.

and number of samples in the dataset. This study focuses on the first aspect and
proposes a new method to select relevant channels from the training data, before
training a classifier. The study’s primary objective is to enable existing SOTA
classifiers to scale better with an increase in the number of MTSC channels,
by reducing the time and memory required for computation, while maintaining
accuracy. In particular, we examine the impact of our channel selection approach
on the recent MTSC algorithms Rocket [4], MrSEQL [10], Weasel-MUSE [16]
and 1NN-DTW [13]. The main contributions of this study are:

– We propose three greedy channel selection strategies for MTSC, to scale up
existing MTSC algorithms.

– We conduct extensive experiments on the UCR MTSC benchmark and report
a 70% reduction in computation time for the combination of channel selection
plus training MTSC algorithms, while preserving the classifier accuracy.

– We show that not all the data is useful for classification and that we achieve
significant data storage savings, e.g., 70% of the original data can be discarded
with our approaches.

– We present a case study of our methods on a real-world, 25-channel MTSC
dataset, recorded for the Military Press strength and conditioning exercise.

The rest of the paper is structured as follows. In Sect. 2, we briefly describe
the SOTA MSTC approaches and existing channel selection strategies. Section 3
presents our proposed methods. Section 4 introduces the UEA MTSC benchmark
used for the experiments and reports our empirical results. In Sect. 5 we perform
a case study on the Military Press dataset. We conclude our study in Sect. 6.

2 Related Work

In this section we give a brief overview of recent MTSC methods and discuss
existing approaches for channel selection.

2.1 Multivariate Time Series Classification

The recent empirical survey [13] provides a detailed overview of progress in
MTSC. Here we describe a subset of those methods, with a specific focus on
methods that were shown to complete the training and testing on the 26 equal-
length UEA MTSC datasets within 7 days and do not require advanced HPC
infrastructure.

1NN-DTW is a 1-Nearest Neighbour classifier with Dynamic Time Warp-
ing (DTW) distance and one of the most popular methods in MTSC. In [17] the
authors proposed two versions of DTW for MTS data, DTWI and DTWD, to
study the impact of DTW on multiple channels. The main difference between
the two versions is how they compute the distance between two multivariate
time series. The DTWI assumes each channel of MTS as an independent uni-
variate time-series and consequently sums up the distances for each channel pair.

Fast Channel Selection for Scalable Multivariate Time Series Classification 39

It calculates the optimal path P based on the pointwise distance between the
time series. The DTWD assumes that the correct warping is the same across
all channels; it computes the distance between two time series by first summing
up the distance across each channel. Unlike for DTWI , in DTWD the optimal
path P is based on the euclidean distance between two vectors that represent all
channels. Although both versions of DTW have high accuracy and are consid-
ered a strong baseline for any MTSC task, they are computationally expensive1

and have been outperformed in accuracy by more recent methods [13]. Both
DTWI and DTWD are heavily impacted by the number of time series channels,
thus optimising the number of channels can drastically help in improving their
scalability.

MrSEQL-SAX [10] is a linear classifier that extracts symbolic features from
time series. The method first transforms time-series data to multiple symbolic
representations of different domains (e.g., SAX [11] in the time domain and
SFA [15] in the frequency domain) and different resolutions (i.e., different window
sizes). The classifier extracts discriminative subsequences from the symbolic rep-
resentations and these subsequences are later combined to form a feature vector
used to train a classification model. In [10] the authors showed that adding fea-
tures from different representations types (e.g., SAX and SFA) boosts the accu-
racy of the classifier. The method was initially developed for UTSC but was also
adapted for MTSC; the adapted version views each channel as an independent
representation of the time series. Unlike UTSC ensemble classifiers, MrSEQL
uses all the extracted features from the different representations by combin-
ing them into a single feature space to train the final model. The SAX/SFA
symbolic transforms are computationally expensive. Furthermore, transforma-
tion over multiple windows iterating over full time series incurs a high cost to
the scalability of the classifier. Therefore, reducing the number of channels has
potential to significantly improve the scalability of MrSEQL. MrSEQL-SAX is
a version of MrSEQL restricted to use only SAX features (this version is more
efficient than the one using both SAX and SFA features).

WEASEL-MUSE [16] is an extension of the WEASEL algorithm developed
for UTSC. The classifier builds a bag-of-pattern (BOP) model using the SFA
transform for every channel. By rolling multiple windows of varying size on raw
and derivative time series, this method transforms those segments into unigram
and bigram words. The classifier links these words to their respective channel and
creates a histogram for each channel separately. Since there are many features
for every channel, the Chi-square feature selection method removes the irrelevant
ones. The selected features are concatenated into a single feature vector which
is fed to a logistic regression algorithm. Similar to MrSEQL, the WEASEL-
MUSE classifier also iterates over the entire time series for every channel and
performs the SFA transform for every window. This iteration and transformation

1 We have evaluated here the sktime implementation of DTW.

40 B. Dhariyal et al.

increase the overall computation cost. Also, storing many unigrams and bigrams
in memory is quite expensive.

ROCKET [4] is a recent classifier initially developed for UTSC and also
extended to MTSC. Models produced by ROCKET are often highly accurate
while keeping the computational burden low. Inspired by CNN, ROCKET relies
on convolutional kernels to extract features. Instead of learning the weights of
kernels through backpropagation, ROCKET randomly generates many convolu-
tional kernels. Additionally, kernel properties like length, dilation, stride, bias
and zero-padding are sampled at random. For the MTSC task, the internal chan-
nel selection is also random. A close look at the code shows that there are at
most 12 channels selected for any MTSC dataset, so the runtime of this algorithm
is not significantly affected by the number of channels, especially for datasets
with more than 12 channels. In principle, the kernels are just a simple linear
transformation of the input time series producing a new time series. A linear
classifier, ridge regression, trains on the feature vector formed by global max
pooling and the proportion of positive values (PPV) features extracted from the
convolution time series from every channel. ROCKET has become very popular
due to its high accuracy and speed, yet the impact of the number of channels on
this classifier in the MTSC task is not yet examined.

2.2 Channel Selection for Multivariate Time Series Classification

Channel Selection for multivariate time series is a recurring topic in the MTSC
literature. However, the focus of most work has been on accuracy, rather than
scalability. The most recent work on channel selection [8] tries to identify the
best subset of channels. The author’s method calculates a merit score based on
correlation patterns of the outputs from the classifiers. The algorithm iterates
through every possible subset to calculate the merit score, followed by wrap-
per search on the subset with top 5% merit score. 1NN-DTW is employed to
perform the classification. DTW is computationally expensive [5], and using
DTW over every possible subset amplifies this problem. Another notable study
is CleVer [19] where the author proposed three unsupervised feature subset selec-
tion techniques employing Common Principal Component Analysis (CPCA) [9]
to measure the importance of each sensor. The authors build a correlation coeffi-
cient matrix among different channels for each MTS. The principal components
of each coefficient matrix are calculated, and all the principal components are
aggregated together, and descriptive component principal components are cal-
culated. The l2-norm of the resulting vector generates the rank of each channel.
The work [7] proposed a framework for channel selection using a voting-based
method. The two criteria used were distance-based classification and confidence-
based classification. These methods were proposed for streaming data, which is
outside the scope of the current study.

In the recent study [6], the authors presented an algorithm for channel rank-
ing and channel selection. The key idea is that if a channel produces similar time

Fast Channel Selection for Scalable Multivariate Time Series Classification 41

series with the same label and different time series with a different label, then
it is an informative channel. The channel ranking algorithm assigns a relevance
score for each channel. The relevance scores are constructed on a similarity graph
among the channels. The authors find the largest eigenvector of the normalized
adjacency matrix of the similarity graph, which reflects its cluster structure.
Apart from channel ranking the authors also propose channel subset selection.
From the adjacency matrix above, the algorithm finds the linear combination of
matrices that approximates the similarity matrix of the labels and use the min-
imum number of redundant channels. Although the proposed channel ranking
and selection approach performs well with regards to accuracy, it is slow. Some
of the computational bottlenecks include finding the eigenvector and using DTW
as the distance measure.

3 Proposed Methods

Let X ∈ Rn×d×l be an MTS dataset and y the labels of the time series in the
dataset. We denote by n the number of time series in the dataset, d the number
of channels in the multivariate time series and l the time series length. In this
paper, we only consider fixed-length time series datasets.

The proposed channel selection method makes use of class centroids as rep-
resentatives of the classes. Let XA = {t ∈ X | y(t) == A} be the subset of X
that contains only samples from class A. The centroid of class A is computed as
the average of time series in that class:

CA[i, j] =
∑k=m

k=1 XA[k, i, j]
m

where m is the number of samples in class A. The multi-channel centroid CA is
a d × l matrix in which each row CA,i is the centroid of class A for channel i.

The centroid-driven channel selection technique computes the distance
matrix for every pair of class centroids, for each channel, using a distance
function(Δ) discussed later in the section. For a dataset with r classes, the total
number of pairs of class centroids is r∗(r−1)

2 . For instance, the distance matrix for
a 4-channel dataset with four classes is shown in Table 1, where channel RElbow
has the highest distance (166.99) for the pair of class centroids Cn and Cr. In our
proposed method, we examine this distance matrix to select the channels that are
most likely to be useful. The idea is that channels with larger distances between
class centroids are more likely to be discriminative, since centroids behave like
prototypes for time series in those classes. In this example, the distance between
class centroids Cn and Cr is highest for channel RElbow therefore this channel
is more likely to be useful in separating these classes than the other channels,
while channel Nose has small distances for all class pairs and so does not seem to
be useful to separate any classes. Our method has three components: a distance
measure used to compare centroids, an elbow cut heuristic used to threshold the
ranked list of channels and three channel selection strategies.

42 B. Dhariyal et al.

Table 1. Illustration of a distance matrix with 4 channels and 4 classes: a, arch, n, r.
More details about this dataset are provided in the case study described in Sect. 5.

Channels Δ(Ca, Carch) Δ(Ca, Cn) Δ(Ca, Cr) Δ(Carch, Cn) Δ(Carch, Cr) Δ(Cn, Cr)

Nose 15.93 11.13 14.90 14.20 14.60 16.93

RElbow 34.62 48.95 157.12 33.04 153.80 166.99

RHeel 29.66 39.84 9.15 16.65 25.86 35.88

LWrist 38.557 42.95 148.48 47.40 155.56 157.55

Distance Metric. In our current work we use euclidean distance to calculate
the distance (Δ) between the centroid pairs for each channel. The Euclidean
distance is measured as the l2 norm of the difference between the centroids.

Δ(CA,i, CB,i) = ‖CA,i − CB,i‖

Channel Selection Strategies. We propose and evaluate three different
strategies for channel selection to identify useful channels.

– KMeans. This strategy applies k-means clustering with k = 2 on the distance
matrix to segregate the channels. Every channel (row from distance matrix)
is assigned to one cluster. The cluster centroid represents the mean distance
of channels across every class pair. Thus, the mean of the cluster centroid
acts as a discriminating criterion. We select the channels from the cluster
whose centroid-mean is greater than the other centroid-mean, meaning that
this cluster contains channels with higher separation distance, while the other
cluster contains noisy channels.

– Elbow Class Sum (ECS). From the distance matrix, we sum all the pair-
wise distances for each channel (sum each row). The sum of the distances is
sorted in descending order, and an elbow-point is retrieved using the elbow-
cut approach described below. All the channels with a distance higher than
that of the elbow point are selected as the relevant channels. A single large
centroid-pair distances can bias this type of channel selection, favouring chan-
nels that separate two classes clearly, but may not be useful for separating
other classes.

– Elbow Class Pairwise (ECP). The second strategy, ECS, can be biased
towards channels that are useful for separating only a few classes. An alterna-
tive strategy iterates through every class pair, selects the best set of channels
for that pair and finally takes the union of channels over all pairs. This elim-
inates the potential bias found in the previous strategy. In some cases, this
can lead to selecting all the channels, however, there were only few instances
of this behaviour in the UEA dataset.

Elbow Cut. The elbow cut method [14] is a method to determine a point in a
curve where significant change can be observed, e.g., from a steep slope to almost
flat curve. This point is often referred to as the elbow or the knee point. This

Fast Channel Selection for Scalable Multivariate Time Series Classification 43

is a well-known method to determine the best number of clusters when doing
clustering. We apply it here to separate useful channels from noisy channels.
An algorithm takes as input the sorted distances corresponding to channels and
returns the elbow point. The elbow is the point at the highest distance(d) from
the line(b) joining the initial and ending point as shown in Fig. 2. The distance d

to any point on the distance curve is calculated as d = |p− (p.b̂)b̂| where b̂ = b
‖b‖

and p.b̂ is the projection of p onto b̂. The elbow-point is then elbow = argmax(d).
The channels that come before the elbow are selected as useful channels for
classification and the smaller dataset with this subset of channels is used for the
classification step (see Algorithm 1). It is clear from Fig. 2 that the elbow point
can be relaxed thus allowing a trade-off between data storage and the accuracy
of classification. In our work we use the first elbow point which corresponds to
channel RShoulder and select only the channels before this point.

Fig. 2. Elbow-point channel selection. All the channels up to RShoulder are selected.

4 Evaluation

All the experiments were conducted using the popular Python library sktime
[12]. Our primary objective in designing experiments is to understand the relative
gain or loss in computational aspects of MTSC algorithms using the proposed

44 B. Dhariyal et al.

Algorithm 1: Channel Selection for an MTSC dataset.
Input: Train dataset: X,y
Output: Selected channels

1 Initialization;
2 For each channel in X and each class, compute class centroid ;
3 Compute distance matrix for all pair of centroids;
4 if Channel-Selection is KMeans;
5 Create 2 clusters using KMeans;
6 Selected channels = cluster with higher centroid mean;
7 elif Channel-Selection is ECS ;
8 Sum the distance matrix by rows;
9 Rank channels by sum distance;

10 Find the elbow on the ranked channels;
11 Selected channels = channels with sum distances > elbow point ;
12 elif Channel-Selection is ECP;
13 For each pair of classes;
14 Rank the channels by the distances in the corresponding column of the

distance matrix;
15 Find the elbow on the ranked channels;
16 Selected channels = Selected channels ∪ channels with class pair-wise

distance > elbow point;
17 Return Selected channels;

channel selection strategies for data reduction. We release all our code in our
Github repository2.

4.1 Datasets

The UEA/UCR Time Series Classification archive [2] is a collection of univari-
ate and multivariate time series data. The repository contains 30 multivariate
datasets from a variety of application domains, e.g., ECG, motion classification,
spectra classification. These heterogeneous datasets vary regarding the number
of channels (from 2 to 1,345), number of time series (12 to 30,000) and time
series length (8 to 17,894). Here we work with the subset of 26 datasets with
equal-length time series.

4.2 MTSC Algorithms

All algorithms described in Sect. 2, except ROCKET, utilise all the channels
from the MTSC datasets. Table 2 gives the hyperparameter settings used for all
the classifiers in this study.

Table 3 presents the results of these MTSC algorithms on the 26 datasets
when no explicit channel selection is implemented. The time is shown in hours
and is the total time taken by the algorithm for training and prediction. We
2 https://github.com/mlgig/Channel-Selection-MTSC.

https://github.com/mlgig/Channel-Selection-MTSC

Fast Channel Selection for Scalable Multivariate Time Series Classification 45

Table 2. Hyperparamter setting used for various SOTA methods

Classifiers Hyperparameter-setting

WEASEL-MUSE MUSE(random state=0)

MrSEQL-SAX MrSEQLClassifier(seql mode=fs, symrep= [‘sax’])

ROCKET Rocket(random state=0)

ROCKET* ROCKET with all channels

1NN-DTW KNeighborsTimeSeriesClassifier(n neighbors=1, distance=“dtw”)

observe that ROCKET and WEASEL-MUSE have almost similar mean accu-
racy, however ROCKET is much faster. ROCKET implements a random chan-
nel selection strategy which allows it to keep the runtime bounded, no mat-
ter how many channels the dataset has; we discuss this in more detail later in
this section. ROCKET also uses a multi-threaded implementation, while all the
other algorithms are single-thread implementations, hence the significant differ-
ence in runtime. The baseline 1NN-DTW is the least accurate and the slowest
method among the four. MrSEQL-SAX does not use the SFA representations in
this study, due to the SFA implementation in sktime being too computationally
expensive, so its accuracy is lower than ROCKET and WEASEL-MUSE in this
experiment. Both WEASEL-MUSE and MrSEQL are impacted by the runtime
taken by the symbolic transform, while 1NN-DTW is impacted by the DTW
computation. In the Appendix we provide detailed results with each algorithm
on each dataset.

Table 3. Mean accuracy and total time of SOTA on 26 UEA MTSC datasets.

Classifier Accuracy Time (in hrs)

ROCKET 71.59 0.1

WEASEL-MUSE 70.28 73.22

MrSEQL-SAX 66.99 141.40

1NN-DTW 65.38 152.07

4.3 MTSC with Channel Selection

Our proposed channel selection strategies (KMeans, ECS, and ECP) are evalu-
ated on the same 26 datasets as above. The channel selection algorithm is run
before the MTSC algorithm and it typically results in a reduced dataset for
training/testing. We investigate how these strategies impact the classification
accuracy, running time (training and testing) and data storage size.

Ratio of Channels Selected. Figure 3 reports the ratio of channels selected by
our methods for each dataset (1.0 means no channel is discarded). The acronyms

46 B. Dhariyal et al.

Fig. 3. Fraction of channels selected by each of three channel selection strategies.

and details of the datasets can be found in the Appendix. The ECP ratios appear
to be higher in general, as expected and mentioned in Sect. 3. However, this
mostly occurs in datasets with a small number of channels (the right side of
Fig. 3). On the left side, where the large numbers of channels can become an
issue, ECP appears to be just as efficient as the other methods. We also observe
that all three methods are more effective on datasets with a larger number of
channels that usually pose a significant scalability challenge to existing MTSC
algorithms.

In Table 4 we show the total time taken by the three channel selection strate-
gies. This includes the time taken by each method to compute centroids and
create the distance matrix. All three techniques are run only on the training
dataset and the output is a selected subset of channels. Since these methods
only require the distance matrix for centroid-pairs, they are extremely fast even
for large datasets, as the time complexity is only affected by the number of
classes, and not by the number of samples. The subset of selected channels is
then used to create a reduced dataset as input to MTSC algorithms.

Table 4. Total time taken by three channel selection strategies on 26 UEA datasets.

Channel selection strategy KMeans ECS ECP

Total time (minutes) 0.34 0.33 0.35

Performance of Channel Selection. Table 5 shows the change in accuracy
and the percentage of time saved by the MTSC algorithms when run on the
reduced datasets after applying the three channels selection strategies.

The comparison reveals that there is a massive gain in computation time for a
minimal drop in accuracy. The time taken to find the subset (Table 4) is insignif-
icant in comparison. Out of the three channels selection strategies, ECP seems
to be the best choice for channel selection. It significantly reduces the compu-
tation time and at the same time eliminates noisy channels, thus increasing the

Fast Channel Selection for Scalable Multivariate Time Series Classification 47

Table 5. Loss/Gain in mean accuracy (ΔAcc) vs percentage time saved (%Time) with
respect to All channels (Table 3) for our three channel selection techniques on 26 UCR
datasets. The red and blue color indicates loss and gain in accuracy respectively. Higher
value for %Time or %Storage indicates more time or storage saved.

Channel Selection→ KMeans ECS ECP

Classifiers↓ ΔAcc | %Time ΔAcc|%Time ΔAcc | %Time

ROCKET -4.01 | 33.62 -4.40 | 29.23 +0.13 | 21.43

WEASEL-MUSE -4.63 | 70.46 -3.80 | 79.90 -1.53 | 73.21

MrSEQL-SAX -3.33 | 72.68 -3.80 | 84.00 +0.45 | 77.06

1NN-DTW -4.28 | 68.30 -6.08 | 68.82 +0.67 | 44.80

Mean ΔAcc| Mean %Time -4.06 | 61.26 -4.52| 65.48 -0.07 | 54.12

Mean %Storage Saved 73.95% 82.59% 74.38%

accuracy for ROCKET, 1NN-DTW and MrSEQL-SAX. The method WEASEL-
MUSE takes a small hit on accuracy (1.5%), at the benefit of saving 73.21% in
runtime. Considering that WEASEL-MUSE requires 73.2 h to complete training
and prediction on this benchmark (see Table 3), this is a significant time saving.
A similar result holds across all classifiers, and all channel selection strategies:
for a small loss in accuracy, there is a high gain in runtime. In the case of ECP,
the accuracy is preserved or even increased, with a significant saving in runtime.
We also calculate the average amount of memory saved by the channel selection
techniques over the 26 datasets. The comparison of dataframe size in memory,
before and after channel selection is used to compute these values. Overall, this
MTSC archive uses about 1.6 Gb memory and when using our channel selection
strategies, this is reduced to less than 30% of the original size. When stored on
disk this dataset is about 3.3 Gb total, and with the channel selection techniques
this is reduced to about 900 Mb.

4.4 Effectiveness of Channel Selection

In this experiment we test whether our best strategy (ECP) selects useful chan-
nels and how good the selection is compared to selecting optimal channel subsets.

Optimal Channel Subset Selection. We evaluate every possible subset of
channels on the test set to discover the optimal subset. Naturally, this brute-force
approach is very expensive and impractical for datasets with a high number of
channels as the possible combination for a dataset with d channels will be 2d−1.
Nevertheless, in this study, all the subsets for datasets with a number of chan-
nels <4 are analysed. These datasets are: AtrialFibrillation, Libras, PenDigits,
EthanolConcentration, Epilepsy, Handwriting, UWaveGestureLibrary. In this
experiment, we choose the state-of-the-art ROCKET classifier to quickly evalu-
ate all the subsets. However, because ROCKET internally randomly samples the
channels, it can select a good subset by chance and mask the issue of selecting

48 B. Dhariyal et al.

bad channels. Therefore, we modify its code to get ROCKET to use all channels
in each kernel, i.e., we use the ROCKET* variant. By doing so, the impact of a
good channel subset and a bad channel subset on classification accuracy becomes
more pronounced.

Table 6. Accuracy of ROCKET* on datasets with channels <4. Bold indicates the
optimal subset. Underscore indicates the subset selected by ECP. Empty spaces are for
datasets with less channels, e.g., dataset AF only has 2 channels, 0 and 1.

DT 0 1 2 (0, 1) (0, 2) (1, 2) (0, 1, 2)

AF 20 6.67 13.33

LB 73.9 77.78 93.89

PD 89.59 88.45 98.26

EC 54.4 49.8 53.6 38.0 44.9 39.2 36.1

EP 97.82 100 94.93 98.55 98.55 97.83 99.28

HW 38.12 32.35 42.12 45.76 59.76 50.35 57.06

UW 79.37 71.25 71.88 87.5 93.12 84.06 93.75

Table 6 shows that ECP successfully identified the optimal subset five out of
seven times. With the Epilepsy (EP) problem, it also correctly identified channel
0 as a potential issue (the classification accuracy is only 97.82% with channel
0 alone) and excluded it from the selection. However, for this dataset it seems
to be better to use either only channel 1 or all the channels. It is important to
remind the reader that this setting is evaluated directly on the test data, and
in practice we do not have perfect knowledge of the best subset of channels for
the test data. ECP selects this channels based on the training data alone, and
it seems to be effective at finding the useful channels for each task using only
training data.

Random Channel Subset Selection. In order to further understand the
effect of the ECP channel selection method, we compare the accuracy of the
ROCKET classifier, when using channels selected with different strategies. We
compare ECPRocket (ECP combined with ROCKET) with ECPsizeRandom-
Rocket, a simple baseline where the number of channels is set using ECP, but
the actual channels are picked randomly. We repeated the experiment 10 times
for each dataset and report the average accuracy in Fig. 4. We observe that for
the majority of the large datasets (number of channels >10), ECPRocket is bet-
ter, while for datasets with less number of channels (number of channels ≤10)
the ECPSizeRandomRocket works similar to ECPRocket. Note that for half of
the datasets with number of channels ≤10, ECP does not reduce the number
of channels (i.e., it keeps all the channels as shown in Fig. 3), hence the two
variants ECPRocket and ECPSizeRandomRocket simply reduce to ROCKET,

Fast Channel Selection for Scalable Multivariate Time Series Classification 49

since ECP has no effect in this case. For datasets with a higher number of chan-
nels, ECP often reduces the full channel set to a subset of good channels, and
the variant ECPRocket constrains ROCKET to work with this pool of good
channels, resulting in storage savings and improvements in accuracy. Hence, for
either small or large number of channels, ECP is fast and leads to storage savings
without resulting in loss of accuracy.

Fig. 4. Comparison of ECPRocket with ECPsizeRandomRocket. Figure 4(a) represents
datasets with number of channels >10 and Fig. 4(b) represents datasets with number
of channels <=10.

5 Case Study: Channel Selection for the Military Press
MTSC Dataset

5.1 Dataset

A total of 56 healthy volunteers (34 males and 22 females; age: 26 ± 5 years,
height: 1.73 ± 0.09 m and body mass: 72 ± 15 kg) participated in a study aimed
at analysing the execution of the Military Press strength and conditioning exer-
cise. The participants completed ten repetitions of the normal form and ten rep-
etitions of induced forms. The NSCA guidelines were applied under the guidance
of sports physiotherapists and conditioning coaches to ensure standardisation.
The dataset was extracted from the video of individuals performing the exercise
with the help of the human body pose estimation OpenPose3. There are four
classes in the dataset, namely: Normal (N), Asymmetrical (A), Reduced Range
(R) and Arch (arch). The N refers to the correct execution of the exercise; A
refers to when the barbell is lopsided and asymmetrical, R refers to the form
where the bar is not brought down completely to the shoulder level and Arch
refers to when participants arch their back. A total of 25 body parts were tracked,
3 https://github.com/CMU-Perceptual-Computing-Lab/openpose.

https://github.com/CMU-Perceptual-Computing-Lab/openpose

50 B. Dhariyal et al.

as seen in Fig. 2. These 25 body parts act as channels for the MTSC task. The
train and test size for this dataset is 1452 and 601 respectively and the length
of time-series is 160.

5.2 Channel Selection

Table 7 illustrates the selected channels for the Military Press dataset. The
Elbows and Wrists are actively involved in the exercise, as the participant is
required to lift a barbell over the shoulders. However, the Toes do not seem to
contribute to the exercise. We tried to investigate this and think that the issue
might be related to data pre-processing when the time series is extracted from
the video; investigating this aspect further is interesting but outside the scope
of this study.

Table 7. Channel selection using our three strategies. All strategies select the same 8
body parts as relevant for this classification task.

Channel selection Body parts

KMeans Elbows, Wrists, BigToes, SmallToes

ECS Wrists, Elbows, BigToes, SmallToes

ECP Elbows, Wrists, BigToes, SmallToes

5.3 Results and Discussion

Table 8 reports the results for ECP with different SOTA MTSC classifiers.
ROCKET is the fastest and most accurate classifier in this experiment. The
data normalisation which is turned on by default in ROCKET, is turned off
in the current experiment. This is due to the fact that the signal magnitude
contains important information for this task, so normalisation should not be
used in this case. For WEASEL-MUSE and MrSEQL-SAX, data normalisation
is done internally in the algorithm during the symbolic transform (SFA/SAX),
so we cannot de-activate the data normalisation step. This affects the accuracy
of these methods in this task, since the magnitude of the signal is important to
differentiate between classes. As in the previous experiments, in the case study
we also find that ECP saves a large amount of time and memory, with minimal
or no loss in accuracy. For WEASEL-MUSE, it saves about 71.6% of computa-
tion time, while for MrSEQL-SAX and 1NN-DTW it saved about 74% and 68%,
respectively. Moreover, the memory required for computation is reduced to 32%,
thus a saving of 68% on the original dataset.

Fast Channel Selection for Scalable Multivariate Time Series Classification 51

Table 8. Performance of ECP on the Military Press exercise.

Classifiers Accuracy Time (minutes)

ECP | All ECP | All

ROCKET 76.26 | 77.53 2.14 | 2.25

WEASEL-MUSE 57.57 | 57.57 30.29 | 107.02

MrSEQL-SAX 58.23 | 61.56 139.53 | 516.79

1NN-DTW 48.58 | 47.25 10.39 | 24.36

Data size (MB) Reduced|Original 15.77 | 49.29

6 Conclusion

In this study we have shown that not all the channels for MTSC are helpful.
Data noise in the form of uninformative channels can prevent the classifier from
achieving its maximum potential. We have observed that channel selection can
remove some of the noise and drastically reduce the required computation time
for existing MTSC methods. In the current study, we showed that the distance
between the class centroids of various channels plays a crucial role in identify-
ing the noisy channels. Our three-channel selection strategies ECP, ECS and
Kmeans, can select the useful channels based on this distance. All three tech-
niques significantly reduced the runtime and memory required to run SOTA
classifiers. The ECS and KMeans techniques also reduced the accuracy, while
ECP resulted in accuracy gains for MrSEQL-SAX, ROCKET and 1NN-DTW
and marginal accuracy loss for WEASEL-MUSE. We believe that with a more
robust elbow selection heuristic the performance can be improved further. Our
channel selection techniques significantly reduced the data size on disk for most
of the MTSC datasets, thus enabling significant storage savings for large MTSC
datasets where several channels are not useful for the classification task.

Acknowledgments. This publication has emanated from research supported in part
by a grant from Science Foundation Ireland through the VistaMilk SFI Research Centre
(SFI/16/RC/3835) and the Insight Centre for Data Analytics (12/RC/2289 P2). For
the purpose of Open Access, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission. We would
like to thank the reviewers for their constructive feedback. We would like to thank
all the researchers that have contributed open source code and datasets to the UEA
MTSC Archive and especially, we want to thank the groups at UEA and UCR who
continue to maintain and expand the archive.

Appendix

See Tables 9 and 10.

52 B. Dhariyal et al.

Table 9. Detailed description for the 26 MTSC datasets used in this study.

Dataset Acronym TrainSize TestSize NumChannels SeriesLength NumClasses ClassCounts

ArticularyWordRecognition AWR 275 300 9 144 25 11

AtrialFibrillation AF 15 15 2 640 3 5

BasicMotions BM 40 40 6 100 4 10

Cricket CKT 108 72 6 1197 12 9

DuckDuckGeese DDG 50 50 1345 270 5 10

EigenWorms EW 128 131 6 17984 5 55

Epilepsy EP 137 138 3 206 4 34

ERing ER 30 270 4 65 6 5

EthanolConcentration EC 261 263 3 1751 4 65

FaceDetection FD 5890 3524 144 62 2 2945

FingerMovements FM 316 100 28 50 2 159

HandMovementDirection HMD 160 74 10 400 4 40

Handwriting HW 150 850 3 152 26 8

Heartbeat HB 204 205 61 405 2 57

Libras LB 180 180 2 45 15 12

LSST LSST 2459 2466 6 36 14 34

MotorImagery MI 278 100 64 3000 2 139

NATOPS NTP 180 180 24 51 6 30

PEMS-SF PSF 267 173 963 144 7 32

PenDigits PD 7494 3498 2 8 10 780

PhonemeSpectra PS 3315 3353 11 217 39 85

RacketSports RS 151 152 6 30 4 39

SelfRegulationSCP1 SR1 268 293 6 896 2 135

SelfRegulationSCP2 SR2 200 180 7 1152 2 100

StandWalkJump SWJ 12 15 4 2500 3 4

UWaveGestureLibrary UW 120 320 3 315 8 15

Table 10. The amount of memory (MB) used by each dataset when using all channels
and after applying our channel selection strategies.

Dataset OriginalSize KMeansReduced ECSReduced ECPReduced KMeansSaved% ECSSaved% ECPSaved% Channels

DuckDuckGeese 147.25 28.03 40.40 42.37 80.97 72.56 71.23 1345

PEMS-SF 315.83 92.81 41.00 104.29 70.61 87.02 66.98 963

FaceDetection 511.20 173.95 42.60 42.60 65.97 91.67 91.67 144

MotorImagery 409.53 70.39 95.98 95.98 82.81 76.56 76.56 64

Heartbeat 40.06 2.63 5.91 5.91 93.44 85.25 85.25 61

FingerMovements 4.52 2.42 0.97 0.97 46.43 78.57 78.57 28

NATOPS 2.24 1.12 1.12 1.59 50.00 50.00 29.17 24

PhonemeSpectra 65.10 11.84 11.84 11.84 81.82 81.82 81.82 11

HandMovementDirection 5.09 3.56 3.05 4.07 30.00 40.00 20.00 10

ArticularyWordRecognition 3.04 0.34 1.01 3.04 88.89 66.66 0.00 9

SelfRegulationSCP2 12.49 5.35 8.92 8.92 57.14 28.57 28.57 7

BasicMotions 0.21 0.07 0.07 0.07 66.63 66.63 66.63 6

Cricket 6.00 4.00 4.00 6.00 33.33 33.33 0.00 6

EigenWorms 105.47 17.58 17.58 70.32 83.33 83.33 33.33 6

LSST 5.97 2.98 2.98 5.97 50.00 50.00 0.00 6

RacketSports 0.32 0.05 0.11 0.22 83.30 66.64 33.32 6

SelfRegulationSCP1 11.20 5.60 5.60 5.60 50.00 50.00 50.00 6

ERing 0.08 0.04 0.02 0.08 49.92 74.88 0.00 4

StandWalkJump 0.92 0.46 0.46 0.46 49.99 49.99 49.99 4

Epilepsy 0.70 0.23 0.23 0.47 66.66 66.66 33.33 3

EthanolConcentration 10.56 7.04 3.52 10.56 33.33 66.67 0.00 3

Handwriting 0.58 0.39 0.19 0.58 33.33 66.65 0.00 3

UWaveGestureLibrary 0.91 0.61 0.30 0.91 33.33 66.66 0.00 3

AtrialFibrillation 0.15 0.08 0.08 0.08 49.96 49.96 49.96 2

Libras 0.17 0.09 0.09 0.17 49.96 49.96 0.00 2

PenDigits 2.86 1.43 1.43 2.86 50.00 50.00 0.00 2

Fast Channel Selection for Scalable Multivariate Time Series Classification 53

References

1. Consumer enthusiasm for wearable devices drives the market to 28.4% growth in
2020 (2021). https://www.idc.com/getdoc.jsp?containerId=prUS47534521

2. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/
s10618-016-0483-9

3. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: real-
time multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern
Anal. Mach. Intell. 43, 172–186 (2019)

4. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Min. Knowl.
Disc. 34, 1–42 (2020)

5. Dhariyal, B., Le Nguyen, T., Gsponer, S., Ifrim, G.: An examination of the state-of-
the-art for multivariate time series classification. In: 2020 International Conference
on Data Mining Workshops (ICDMW), pp. 243–250 (2020). https://doi.org/10.
1109/ICDMW51313.2020.00042

6. Han, S., Niculescu-Mizil, A.: Supervised feature subset selection and feature
ranking for multivariate time series without feature extraction. arXiv preprint
arXiv:2005.00259 (2020)

7. Hu, B., Chen, Y., Zakaria, J., Ulanova, L., Keogh, E.: Classification of multi-
dimensional streaming time series by weighting each classifier’s track record. In:
2013 IEEE 13th International Conference on Data Mining, pp. 281–290 (2013).
https://doi.org/10.1109/ICDM.2013.33

8. Kathirgamanathan, B., Cunningham, P.: A feature selection method for multi-
dimension time-series data. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet,
T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp.
220–231. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0 15

9. Krzanowski, W.: Between-groups comparison of principal components. J. Am. Stat.
Assoc. 74(367), 703–707 (1979)

10. Le Nguyen, T., Gsponer, S., Ilie, I., O’Reilly, M., Ifrim, G.: Interpretable time
series classification using linear models and multi-resolution multi-domain symbolic
representations. Data Min. Knowl. Disc. 33(4), 1183–1222 (2019). https://doi.org/
10.1007/s10618-019-00633-3

11. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic rep-
resentation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007). https://
doi.org/10.1007/s10618-007-0064-z

12. Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J.:
sktime: a unified interface for machine learning with time series. arXiv preprint
arXiv:1909.07872 (2019)

13. Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.: The great mul-
tivariate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Min. Knowl. Disc. 35(2), 401–449 (2020).
https://doi.org/10.1007/s10618-020-00727-3

14. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a
haystack: detecting knee points in system behavior. In: 2011 31st International
Conference on Distributed Computing Systems Workshops, pp. 166–171. IEEE
(2011)

https://www.idc.com/getdoc.jsp?containerId=prUS47534521
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1109/ICDMW51313.2020.00042
https://doi.org/10.1109/ICDMW51313.2020.00042
http://arxiv.org/abs/2005.00259
https://doi.org/10.1109/ICDM.2013.33
https://doi.org/10.1007/978-3-030-65742-0_15
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1007/s10618-007-0064-z
http://arxiv.org/abs/1909.07872
https://doi.org/10.1007/s10618-020-00727-3

54 B. Dhariyal et al.

15. Schäfer, P., Högqvist, M.: SFA: a symbolic Fourier approximation and index for
similarity search in high dimensional datasets. In: Proceedings of the 15th Inter-
national Conference on Extending Database Technology, pp. 516–527 (2012)

16. Schäfer, P., Leser, U.: Multivariate time series classification with WEASEL+ muse.
In: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal
Data (AALTD 2018), arXiv preprint arXiv:1711.11343 (2017)

17. Shokoohi-Yekta, M., Wang, J., Keogh, E.J.: On the non-trivial generalization of
dynamic time warping to the multi-dimensional case. In: SDM (2015)

18. Singh, A., et al.: Interpretable classification of human exercise videos through pose
estimation and multivariate time series analysis. In: 5th International Workshop
on Health Intelligence (W3PHIAI 2021) at AAAI21. Springer (2021)

19. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for
multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

http://arxiv.org/abs/1711.11343

	Fast Channel Selection for Scalable Multivariate Time Series Classification
	1 Introduction
	2 Related Work
	2.1 Multivariate Time Series Classification
	2.2 Channel Selection for Multivariate Time Series Classification

	3 Proposed Methods
	4 Evaluation
	4.1 Datasets
	4.2 MTSC Algorithms
	4.3 MTSC with Channel Selection
	4.4 Effectiveness of Channel Selection

	5 Case Study: Channel Selection for the Military Press MTSC Dataset
	5.1 Dataset
	5.2 Channel Selection
	5.3 Results and Discussion

	6 Conclusion
	References

