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Abstract. Gaussian Processes (GPs), with a complex enough additive
kernel, provide competitive results in time series forecasting compared
to state-of-the-art approaches (arima, ETS) provided that: (i) during
training the unnecessary components of the kernel are made irrelevant
by automatic relevance determination; (ii) priors are assigned to each
hyperparameter. However, GPs computational complexity grows cubi-
cally in time and quadratically in memory with the number of observa-
tions. The state space (SS) approximation of GPs allows to compute GPs
based inferences with linear complexity. In this paper, we apply the SS
representation to time series forecasting showing that SS models provide
a performance comparable with that of full GP and better than state-
of-the-art models (arima, ETS). Moreover, the SS representation allows
us to derive new models by, for instance, combining ETS with kernels.

Keywords: Time series forecasting · Gaussian Process · State space
approximation

1 Introduction

Gaussian Processes (GPs) [15] are a powerful tool for modeling correlated obser-
vations, including time series. GPs have been used for the analysis of astronom-
ical time series (see [4] and the references therein), forecasting of electric load
[12] and analysis of correlated and irregularly-sampled time series [16].

A kernel composition specific for time series has been recently proposed [3].
It contains linear trend, periodic patterns, and other flexible kernel for modeling
the non-linear trend. By setting priors on the hyperparameters, which keep the
inference within a reasonable range even on short time series, the GP yields very
accurate forecasts, outperforming the traditional time series models.

Note that the above GP based model is a type of Generalised Additive Model
(GAM) [26]. However, contrarily to traditional GAMs, it uses different nonpara-
metric components for the periodic and non-linear terms, and it is estimated in
a fully Bayesian way (that is, without backfitting).
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Yet, GPs have computational complexity O(n3) and storage demands of
O(n2); hence, they are not suitable for large datasets. Several approximations
have been proposed to reduce their computational complexity to O(n), such
as sparse approximations based on inducing points [1,6,7,14,19,20,24], which
however add additional hyperparameters.

In the case of time series, it is possible to represent the full GP as a State
Space model, without the need for any additional hyperparameter [2,11,13,17,
18,22] and with O(n) complexity.

We focus on the SS representation of the GP and we provide the following
contributions. We discuss how to represent the model of [3] as a SS model,
obtaining almost identical results on the time series of the M3 competition.

We also apply the GP model of [3] to very long time series, thanks to the SS
representation. Also in this case we obtain positive results w.r.t the competitors.

Moreover, once the covariance functions of the Gaussian are represented in
the SS framework, they can be combined with the existing SS models. This opens
up the possibility of developing novel time series models. As a proof of concept,
we consider a traditional state-space model (additive exponential smoothing)
and we replace its seasonal component with the SS representation of the peri-
odic kernel of the GP. We obtain a less parameterized model, which has higher
accuracy on the time series of the M3 competition. The resulting model is also
more flexible; for instance, it could be easily extended to manage time series con-
taining multiple seasonal patterns, unlike the traditional exponential smoothing.

2 Background

In the following section, we provide a background on (i) Gaussian Processes; (ii)
State Space models; (iii) the State Space representation of Gaussian Processes.

2.1 Gaussian Process

We consider the regression model

y = f(x) + v, (1)

where x ∈ R
p, f : Rp → R and v ∼ N(0, s2v) is the noise. Our goal is to estimate

f given the training data D = {(xi, yi), i = 1, . . . , n}. In GP regression, we
place a GP prior on the unknown f , f ∼ GP (0, kθ ),1 and calculate the posterior
distribution of f given the data D. We then employ this posterior to make
inferences about f .

In particular, we are interested in predictive inferences. Based on the train-
ing data XT = [x1, . . . ,xn], y = [y1, . . . , yn]T , and given m test inputs
(X∗)T = [x∗

1, . . . ,x
∗
m] , we aim to find the posterior distribution of f∗ =

1 A GP prior with zero mean function and covariance function kθ : Rp × R
p → R

+,
which depends on a vector of hyperparameters θ.
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[f(x∗
1), . . . , f(x∗

m)]T . From (1) and the properties of the Gaussian distribution,2

the posterior distribution of f∗ is Gaussian [15, Sec. 2.2]:

p(f∗|X∗,X,y,θ) = N(f∗; μ̂θ (X∗|X,y), K̂θ (X∗,X∗|X)), (2)

with mean and covariance given by:

μ̂θ (f∗|X,y) = Kθ (X∗,X)(Kθ (X,X))−1y,

K̂θ (X∗,X∗|X) = Kθ (X∗,X∗) − Kθ (X∗,X)(Kθ (X,X))−1Kθ (X,X∗). (3)

In GPs, the kernel defines the Covariance Function (CF) between any two
function values: Cov(f(x), f(x∗)) = kθ (x,x∗). Common kernels are the White
Noise (WN), the Linear (LIN), the Matern 3/2 (MAT32), the Matern 5/2
(MAT52), the Squared Exponential (RBF), the Cosine (COS) and the Peri-
odic (PER). Hereafter, we provide the expressions of these kernels for p = 1,
which is the case of time series; see instead [15] for generalizations:

WN: kθ (x1, x2) = s2vδx1,x2

LIN: kθ (x1, x2) = s2b + s2l x1x2

MAT32: kθ (x1, x2) = s2e

(
1 +

√
3|x1−x2|

�e

)
exp

(
−

√
3|x1−x2|

�e

)

MAT52: kθ (x1, x2) = s2e

(
1 +

√
5|x1−x2|

�e
+ 5(x1−x2)

2

3�2e

)
exp

(
−

√
5|x1−x2|

�e

)

RBF: kθ (x1, x2) = s2r exp
(

− (x1 − x2)2

2�2r

)

COS: kθ (x1, x2) = s2c cos
(

x1 − x2

τ

)

PER: kθ (x1, x2) = s2p exp
(

− (2 sin2(π|x1 − x2|/pe)
�2p

)

where δx1,x2 is the Kronecker delta, which equals one when x1 = x2 and zero
otherwise. The hyperparameters are the variances s2v, s2l , s

2
e, s

2
r, s

2
c , s

2
p > 0, the

lengthscales �r, �e, �p, τ > 0 and the period pe.
Selecting a kernel, or a combination of kernels, to determine the structure

of the covariance is a crucial factor governing the performance of a GP model.
Spectral mixture kernels (SM) [25] have been devised to overcome this issue
thanks to their property of being able to approximate any stationary kernel.3 SM
define a covariance kernel by taking the inverse Fourier transform of a weighted
sum of different shifts of a probability density. In the original formulation [25],
2 In this work, we include the additive noise v into the kernel by adding a White noise

kernel term.
3 A stationary kernel is one which is translation invariant: kθ (x1, x2) depends only on

x1 − x2, like for instance the Matern and RBF kernels.
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the authors considered a Gaussian PDF, resulting into a covariance kernel which
is the sum of the RBF×COS kernels, so each term in the sum is equal to:

SMi: kθ (x1, x2) = s2mi
exp

(
− (x1 − x2)2

2�2mi

)
cos

(
x1 − x2

τmi

)
,

with hyperparameters smi
, �mi

and τmi
.

Learning the Hyperparameters. We denote by θ the vector containing all the ker-
nels’ hyperparameters. In practical application of GPs, θ have to be selected. We
use Bayesian model selection to consistently set such parameters. Variances and
lengthscales are non-negative hyperparameters, to which we assign log-normal
priors (later we show how we define the priors). We then compute the maxi-
mum a-posteriori (MAP) estimate of θ, that is we maximize w.r.t. θ the joint
marginal probability p(y,θ), which is the product of the prior p(θ) and the
marginal likelihood [15, Ch.2]:

p(y|X,θ) = N(y; 0,Kθ (X,X)). (4)

Usually θ is selected by maximizing the marginal likelihood of Eq. (4). Yet,
better estimates can be obtained by assigning prior to the hyperparameters and
then performing MAP estimation. The MAP approach yields reliably estimates
also on short time series, as pointed out by [3], in which it is also proposed a
methodology to define such priors.

2.2 State Space Models

Consider the following stochastic continuous time-variant (LTV) State Space
(SS) model [10] {

df(t) = F(t) f(t)dt + L(t) dw(t),
y(tk) = C(tk) f(tk), (5)

where f(t) = [f1(t), . . . , fm(t)]T is the state vector,4 y(tk) is the measurement
at time tk, F(t),C(t),L(t) are known matrices of appropriate dimensions and
w(t) is a one-dimensional Wiener noise process with intensity q(t). We further
assume that the initial state f(t0) and w(t) are independent for each t ≥ t0. The
solution of the stochastic differential equation in (5) is [10]:

f(tk) = ψ(tk, t0) f(t0) +

tk∫

t0

ψ(tk, τ)L(τ) dw(τ), (6)

4 m is a latent dimension which defines the dimension of the state space. The state is
a function of tim.
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with ψ(tk, t0) = exp(
∫ tk

t0
F(t)dt) is the state transition matrix, which is com-

puted as a matrix exponential.5 Assuming that E[f(t0)] = 0, then it can be
easily proven that the vector of observations [y(t1), y(t2), . . . , y(tn)]T is Gaus-
sian distributed with zero mean and covariance matrix whose elements are given
by:

E[y(ti)y(tj)] = C(ti)ψ(ti, t0)E[f(t0)fT (t0)](C(tj)ψ(tj , t0))T

+
min(ti,tj)∫

t0

h(ti, u)h(tj , u)q(u)du
(7)

where we have exploited the fact that E[dw(u)dw(v)] = q(u)δ(u − v)dudv [10]
and defined h(t1, t2) = C(t1)ψ(t1, t2)L(τ).

In SS models, one aims to estimate the states f(t1), . . . , f(tn) given the obser-
vations y(t1), . . . , y(tn) and the initial condition. There are in particular two
problems of interest: (i) filtering whose aim is to compute p(f(tk)|y(t1), . . . , y(tk))
for every tk; (ii) smoothing whose aim is to compute p(f(tk)|y(t1), . . . , y(tn)) for
every tk. For stochastic LTV systems, filtering and smoothing can be solved
exactly using the Kalman Filter (KF) and the Rauch-Tung-Striebel smoother
[10] with complexity O(n).

2.3 SS Models Representation of GPs

When the GP has one-dimensional input, it is possible to represent (or approx-
imate) the GP with a SS model. The advantage of the SS representation is that
estimates and inferences can be computed with complexity O(n). In practice,
one has to find a SS whose covariance matrix (7) coincides (or approximates)
that of the GP. This provides the SS representation of the GP, which then
allows us to estimate f(tk) given data {y(t1), . . . , y(tn)} using the KF and the
Rauch-Tung-Striebel smoother (with complexity O(n)). This can be obtained as
follows:

1. Discretize the continuous-time SS to obtain a discrete-time SS (this step
basically consists on applying (6)):

{
f(tk) = ψ(tk, tk−1)f(tk−1) + ν(tk−1),
y(tk) = C(tk) f(tk), (8)

where ν(tk−1) =
∫ tk

tk−1
ψ(tk, τ)L dw(τ).

2. Compute the probability density function (PDF) p(f(tk)|y(t1), . . . , y(tk)),
which is Gaussian. The mean and covariance matrix of this Gaussian PDF
can be computed efficiently by using the KF.

3. Compute the Gaussian posterior PDF p(x(tk)|y(t1), . . . , y(tn)) – the mean
and covariance matrix of this PDF can be computed very efficiently by using
the Rauch-Tung-Striebel smoother. This step returns the estimates of the
state given all observations.

5 The matrix exponential is eA = I + A + A2/2! + A3/3! + . . . and, for many matrices
A, it can be computed analytically.
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4. To estimate the hyperparameters of the CF, we can perform MAP (as for
GPs). Note that, the marginal likelihood of the SS model can be computed
efficiently by the KF.

State Space Representation of Covariance Functions. The time continuous SS
representation of the covariance functions of Sect. 2.1 is given in Table 1. Such
representations do not include the variance scaling parameter that multiplies the
CF; it can be however included in the SS model by rescaling either the stochastic
forcing term or the initial condition (for SS without forcing term).

Table 1. SS representation of the CFs. When the distribution of the initial state is
not provided, it is assumed to be equal to zero. The intensity of the Wiener process w
is assumed to be q = 1.

WN

{
df
dt

(t) = dw
dt

(t)

y(tk) = f(tk)

LIN

⎧⎪⎪⎨
⎪⎪⎩

df1
dt

(t) = f2(t)

df2
dt

(t) = 0

y(tk) = f1(tk)

[
f1(t0)

f2(t0)

]
∼ N

([
0

0

]
,

[
s2b 0

0 s2l

])

MAT32

⎧⎪⎪⎨
⎪⎪⎩

df1
dt

(t) = f2(t)

df2
dt

(t) = − 3
�2

f1(t) − 2
√
3

�
f2(t) + 12

√
3

�3
dw
dt

(t)

y(tk) = f1(tk)

MAT52

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

df1
dt

(t) = f2(t)

df2
dt

(t) = f3(t)

df3
dt

(t) = − 3
√
5

�
f1(t) − 15

�2
f2(t) − 3

√
5

�
f3(t) + 400

√
5

3�5
dw
dt

(t)

y(tk) = f1(tk)

COS

⎧⎪⎪⎨
⎪⎪⎩

df1
dt

(t) = 1
τ
f2(t)

df2
dt

(t) = − 1
τ
f1(t)

y(tk) = f1(tk)

[
f1(t0)

f2(t0)

]
∼ N

([
0

0

]
,

[
1 0

0 1

])

Representing Compositions of Covariance Functions. Additive combination of
covariance functions can be represented by stacking SS models; this is called
cascade composition [17]. For instance, the SS model corresponding to WN+LIN
is:
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

df1
dt (t) = dw

dt (t)
df2
dt (t) = f3(t)
df3
dt (t) = 0
y(tk) = f1(tk) + f2(tk)

[
f2(t0)
f3(t0)

]
∼ N

([
0
0

]
,

[
s2b 0
0 s2l

])
.

Multiplicative composition of covariance functions can be obtained via parallel
composition [17] of SS models. For instance, the COS× MAT32 kernel is repre-
sented as:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

df1
dt (t) = ωf2(t) + f3(t)
df2
dt (t) = −ωf1(t) + f4(t)
df3
dt (t) = − 3

�2 f1(t) − 2
√
3

� f3(t) + ωf4(t) + 12
√
3

�3
dw1
dt (t)

df4
dt (t) = − 3

�2 f2(t) − ωf3(t) − 2
√
3

� f4(t) + 12
√
3

�3
dw2
dt (t)

y(tk) = f1(tk)

The RBF and PER kernel do not admit an exact SS representation; for this
reason, they are not shown in Table 1. However, an approximated SS representa-
tion can be given. The PER kernel can be approximated as the sum of different
Cosine covariance functions (COS + COS + . . . + COS), with a suitable choice of
their lengthscales (defined using a Fourier series expansion of the PER kernel)
[21]. In this paper, we use 7 COS terms to approximate the PER kernel. The
RBF kernel can be approximated by a SS model based on the Matern d/2 kernel,
where d = 1, 3, 5, 7, 9, . . . and the approximation improves as d increases. In this
paper, we will use d = 3.

2.4 Time Series Forecasting and Priors

In [3], GP regression was proposed for time series forecasting using the following
composite kernel:

K = PER + LIN + RBF + SM1 + SM2 + WN. (9)

The periodic kernel (PER) captures the seasonality of the time series. LIN cap-
tures the linear trend. Long-term trends are generally smooth, and can be prop-
erly modelled by the RBF kernel. The two SM kernels are used to pick up the
remaining signal. Finally, the WN kernel represents the observation (Gaussian)
noise.

This results in a kernel capturing a wide range of patterns but comprising 16
hyperparameters, which must be estimated from data. This might be challenging
on short time series, such as monthly or quarterly ones. In [3] the problem is
addressed by setting priors on the hyperparameters. In particular, lognormal
priors are adopted and they are defined through a hierarchical Bayes approach,
i.e., by analyzing a subset of monthly time series from the M3 competition. The
priors, which we also adopt, are given in Table 2.
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Table 2. Parameters of the lognormal priors. The same prior is adopted for the vari-
ances of all components in Eq. (9)

Parameter ν λ

Variance −1.5 1.0

Lengthscales

std periodic 0.2 1.0

rbf 1.1 1.0

SM1 −0.7 1.0

SM2 1.1 1.0

2.5 SS Approximation

To achieve O(n) complexity, we replace the kernel in (9) with this approximation

K̃ = (+8COS) + LIN + MAT32 + COS × MAT32 + COS × MAT32 + WN.
(10)

Fig. 1. Comparison of GP and SS forecasts. The blue dots are the training data and
the purple dots the test data. The small differences between full GP and SS are due to
the slightly different estimation of the hyperparameters. The time series are monthly
and the forecasts are computed up to 1.5 years ahead; time is expressed in years.
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Note we have approximated PER with the sum of 7 COS kernel and RBF with
MAT32.6 A GP with the above kernel can equivalently be represented by a SS
model who state has dimension 7 × 2 + 2 + 2 + 4 + 4 + 1 = 24.

Figure 1 compares the GP estimate and forecast based on the kernel (9) and
the SS approximation based on the kernel (10) on some time series from the M3
competition.7 The SS approximation provides close forecasts to the full GP. We
provide a more in-depth analysis when discussing the experiments.

2.6 Combining GP Kernel with Exponential Smoothing

Our framework is so flexible, that it allows combining the state-space represen-
tations of covariance functions and existing state-space models, thus obtaining
some novel time series models.

As a proof of concept, we consider state-space additive exponential smoothing
(additive ets), and we replace its seasonal component with the PER kernel.

The discrete-time SS representation of exponential smoothing with linear
trend is [8]:

Holt:

⎧
⎪⎨

⎪⎩

f1((k + 1)Δt) = f1(kΔt) + f2(kΔt) + αw((k + 1)Δt)

f2((k + 1)Δt) = f2(kΔt) + αβw((k + 1)Δt)

y((k + 1)Δt) = f1(kΔt) + f2(kΔt) + w((k + 1)Δt)

[
f1(t0)
f2(t0)

]

∼ N
([

0
0

]

,

[
s2l 0
0 s2b

])

where Δt is the sampling frequency and w are independent Gaussian noises with
zero mean and variance s2v. Such model has five parameters: α, β ∈ [0, 1] and
s2l , s

2
b , s

2
v.

We then complete the SS model by adding the (approximated) SS represen-
tation of the PER kernel, constituted by the sum of seven COS covariance func-
tions. When estimating the hyperparameters, automatic relevance determination
(ARD) automatically makes irrelevant the unnecessary component, without the
need for a separate model selection step.8

3 Experiments

We consider the following GP models:

– full-GP: the model of Eq. (9), trained with priors [3];
– full-GP0: the same model, trained by maximizing the marginal likelihood (no

priors);

6 We also tried a more accurate approximation of the periodic kernel, 11 COS kernels,
but it did not provide a significant better performance in the M3 competition.

7 In both cases, we have estimated the kernels hyperparameters using MAP.
8 For the variances of the Holt’s model we use the same priors as in Table 2. For

α, β, we use the prior Beta(1, 1.4) and, respectively, Beta(1, 11.4). We learned the
parameters of these priors using a hierarchical model similar to the one described in
[3].
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– SS-GP and SS-GP0, i.e., the corresponding SS models (Eq. 10) trained with
and without priors.

We use a single restart when training all the models.
As benchmarks, we consider auto.arima and ets, both available from the

forecast package [9]. The auto.arima algorithm first makes the time series sta-
tionary via differentiation; then it fits an ARMA model selecting the orders via
AICc. The ets algorithm fits several state-space exponential smoothing mod-
els [8], characterized by different types of trend, seasonality and noise; the best
model is eventually chosen via AICc. All the considered models represent the
forecast uncertainty via a Gaussian distribution.

Metrics. As performance metric, we consider the mean absolute error (MAE)
on the test set:

MAE =
T∑

t=1

|yt − ŷt|

where we denote by yt and ŷt the actual value and the expected value of the
time series at time t; σ2

t denotes the variance of the forecast at time t and by T
the length of the test set.

Furthermore, we compute the continuous-ranked probability score (CRPS)
[5], which generalizes the MAE to the case of probabilistic forecasts. It is a
proper scoring rule for probabilistic forecasts, which corresponds to the integral
of the Brier scores over the continuous predictive distribution. MAE and CRPS
are loss functions, hence the lower the better.

3.1 Monthly M3

Table 3. Performance on the M3 monthly time series.

Median Mean

Algorithm MAE CRPS MAE CRPS

SS-GP 0.489 0.342 0.567 0.421

full-GP 0.482 0.347 0.565 0.414

SS-GP0 0.550 0.408 0.627 0.499

full-GP0 0.546 0.390 0.628 0.460

ETS 0.516 0.369 0.595 0.436

Auto.arima 0.515 0.373 0.588 0.430

The M3 competition includes 1489 monthly time series. We exclude 350 of them,
which were used in [3] to define the priors of Table 2, which we also adopt. We
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thus run experiments on the remaining 1079 monthly time series. The length of
training set varies between 49 and 126 months, while the test set is always 18
months long. We standardize each time series using the mean and the standard
deviation of the training set. We fix the period of the periodic kernel to one year,
which is standard practice for M3.

The median and mean results for time series are given in Table 3. The SS-
GP and full-GP obtain the best median and mean performance on all indicators.
The performance of full-GP and of its state-space representation is practically
identical, showing that the SS approximation is very accurate. We tried also
Prophet [23] but its accuracy was not competitive. We thus dropped it.

The large improvement of full-GP and SS-GP over full-GP0 and SS-GP0

confirms that the priors are necessary to exploit the potential of the GP.

3.2 Combining GP Kernel and Exponential Smoothing

The SS representation of GPs allows us to combine GPs with state-of-the-art
models for time series forecasting such the ETS model [8].

In this section, we compare the SS model discussed previously, which uses
the following kernel:

K̃1 = (+7COS) + Holt, (11)

where the Holt kernel has been defined in Sect. 2.6.
We compare this model with additive ETS model, defined as follows. The

additive ets model fits four different models via maximum likelihood and per-
forms model selection via AICc. The four models are simple exponential smooth-
ing (ses, no trend and no seasonality), ses with linear trend, ses with linear trend
and additive seasonality, ses with additive seasonality but no trend. We imple-
ment all such models using the forecast package for R [9]. The ets framework
makes available also multiplicative models, that however we do not consider in
this section.

The seasonal component of exponential smoothing has some shortcomings:
it requires to estimate (m + 1) parameters, where m denotes then number of
samples within a period (e.g., m = 12 for monthly time series); moreover, it does
not manage complex seasonalities such non-integer periods or multiple seasonal
pattern. In our model we thus substitute it with the PER kernel (equivalently
(+7COS) kernel), which has only two (hyper)-parameters and which can model
complex seasonalities (e.g., multiple seasonalities can be modelled by adding
multiple PER kernels).

Therefore, the main differences between additive ets and our novel model are
thus:

– PER kernel vs seasonal component of exponential smoothing;
– automatic relevance determination vs model selection.

The simulation results are shown in Table 4. SS-GP is again the best model.
Comparing SS-GP performance in Table 3 and 4 is evident that the more complex
kernel (10) provides a better the performance. However, this shows how the SS
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representation of GPs opens up the possibility of developing novel time series
models combining traditional time series models with “machine-learning-like”
models.

Table 4. Performance on M3 monthly. SS-GP with kernel K̃1 compared to additive
ETS.

Median Mean

Algorithm MAE CRPS MAE CRPS

SS-GP 0.511 0.368 0.581 0.436

SS-GP0 0.538 0.387 0.608 0.461

Additive ETS 0.533 0.381 0.601 0.439

3.3 Large Datasets and Multiple Seasonality

Fig. 2. Two time series taken from the Electricity Dataset

By contrast to full GP, SS models can scale to large datasets. We provide a proof-
of-concept of that by applying the SS model to two time series in the UCI’s Elec-
tricity Dataset. Each time series is relative to the electricity consumption of client
from a period of 2011 to 2014 at an interval of 15 min. The goal is to forecast the
electricity consumption one week ahead. The length of each time series is 23997
and, therefore, we cannot run full GP (on a standard PC). Moreover, the time
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Fig. 3. One week ahead forecast computed by (i) the proposed SS model; (ii) Face-
book’s Prophet; for the two time series in Fig. 2. The time has been normalized: 1 is
one year.

series have both daily and weekly periodicity, which means the kernel in (10) is
not appropriate.

However, we can easily deal with multiple seasonality by adding another
periodic component to the kernel:

K̃ = (+7COS) + (+7COS) + LIN + MAT32 + COS × MAT32 + COS × MAT32 + WN
(12)

where the first periodic kernel (the term (+7COS)) has period 1/365.25 and the second
7/365.25.9

Figure 2 shows two time series taken from the Electricity Dataset. Figure 3 reports
the relative one week ahead forecast computed by (i) the proposed SS model; (ii)
Facebook’s Prophet. The training times are of few seconds for Prophet, and about
300 s for the SS model.

While our implementation is currently slower than Prophet, it already handles flaw-
lessly this time series. The training time of our implementation can be largely reduced
by using Stochastic Gradient (SGD) optimization, thus working with minibatch of data.
The forecasts show that the SS model is competitive also on long time series; however,
the analysis of a large number of time series is needed in order to achieve conclusions
which are significant. We defer this analysis to future work, after the completion of a
faster implementation of SS-GP based on SGD.

4 Conclusions

Focusing on time series forecasting, we have shown that a Gaussian Process with a
complex composite kernel can be accurately approximated by a state space model.

9 By contrast to arima and ETS, GP and SS models can easily model non-integer
seasonality like the ones in the Electricity dataset, see [3] for more details.
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The resulting state space model has a comparable performance, but with a complexity
which scales linearly in the input size. Moreover, given state-of-the-art models for time
series forecasting are implemented in state space form, the state space representation of
Gaussian Processes allowed us to combine traditional models (like exponential smooth-
ing) with kernel-based models (like periodic kernel) in a sound Bayesian manner.

Several future research directions are possible. One is the extension to time series
characterized by non-Gaussian likelihoods, such as count time series or intermittent
time series. Other possibilities include the combination of exponential smoothing
with the spectral mixture or the Neural Network kernel. We also plan to compare
our approach with other Generalised Additive (Mixture) Models used for time-series
forecasting.

Acknowledgements. The authors acknowledge support from the Swiss National
Research Programme 75 “Big Data” Grant No. 407540 167199/1.

References

1. Bauer, M., van der Wilk, M., Rasmussen, C.E.: Understanding probabilistic sparse
Gaussian process approximations. In: Advances in Neural Information Processing
Systems, pp. 1533–1541 (2016)

2. Benavoli, A., Zaffalon, M.: State Space representation of non-stationary Gaussian
processes. arXiv preprint arXiv:1601.01544 (2016)

3. Corani, G., Benavoli, A., Zaffalon, M.: Time series forecasting with Gaussian Pro-
cesses needs priors. In: Proceedings of the ECML PKDD (2021, accepted). https://
arxiv.org/abs/2009.08102

4. Foreman-Mackey, D., Agol, E., Ambikasaran, S., Angus, R.: Fast and scalable
Gaussian process modeling with applications to astronomical time series. Astron.
J. 154(6), 220 (2017)

5. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estima-
tion. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

6. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Pro-
ceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,
UAI 2013, pp. 282–290. AUAI Press, Arlington (2013)

7. Hernández-Lobato, D., Hernández-Lobato, J.M.: Scalable Gaussian process classi-
fication via expectation propagation. In: Artificial Intelligence and Statistics, pp.
168–176 (2016)

8. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn.
OTexts, Melbourne (2018). OTexts.com/fpp2

9. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast
package for R. J. Stat. Softw. 26(3), 1–22 (2008). http://www.jstatsoft.org/article/
view/v027i03

10. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation,
New York (2007)
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