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A time series is a set of measured values that model and represent the behavior
of a process over time. Time series are used in a wide range of fields such as
healthcare [8], industrial control systems [2], and finance [15]. Detecting behavior
or patterns that do not match the expected behavior of previously visualized
data is a critical task and an active research discipline called time series anomaly
detection [3,5]. Numerous methods to address this problem have been developed
in recent years including statistical, machine learning and deep neural networks
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Abstract. Deep neural networks (DNNs) are attractive alternatives to
more traditional methods for time series anomaly detection thanks to
their capacity to automatically learn discriminative features. Despite
their demonstrated power, different works have suggested that intro-
ducing engineered features in the time series can further improve the
performance. In this work, we present a feature engineering strategy to
transform univariate time series into a multivariate one by introducing
non-local information in the augmented data. In this way, we aim to
address an intrinsic limitation of the features learned by DNNs, which
is they rely on local information only. We study the performance of our
combination compared to each individual method and show that our
method achieves better performance without increasing computational
time on a set of 250 univariate time series proposed by the University of
California, Riverside at the 2021 KDDCup competition.

Keywords: Anomaly detection + Time series + Feature engineering -
Non-local information

Introduction

(DNNs) methods.

The performance of machine learning algorithms is correlated to the quality
of the extracted features [14]. Feature engineering for augmenting time series
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data is usually done by bringing external but correlated information as an extra
variate to the time series. This, however, requires domain knowledge about the
measured process. Another strategy is to create local features on the time series,
such as moving averages or local maximum and minimum. Both strategies, as
they are manual, are not very efficient, time consuming and require high domain
knowledge expertise [7]. In theory, DNNs have emerged as a promising alternative
given their demonstrated capacity to automatically learn local features, thus
addressing the limitations of more conventional statistical and machine learning
methods. Despite their demonstrated power to learn such local features, it has
been shown that feature engineering can accelerate and improve the learning
performance of DNNs [4].

In this work, we propose a novel feature engineering strategy to augment time
series data in the context of anomaly detection using DNNs. Our goal is two-fold.
First, we aim to transform univariate time series into multi-variate time series
to improve DNNs performance. Second, we aim to use a feature engineering
strategy that introduces non-local information into the time series, which DNNs
are not able to learn. To achieve this, we propose to use a data structure called
Matrix-Profile as a generic non-trivial feature. Matrix-Profile allows to extract
non-local features corresponding to the similarity among the sub-sequences of a
time series. The main contributions of this paper are:

— We propose an approach that transforms univariate time series into mul-
tivariate by using a feature engineering strategy that introduces non-local
information to improve the performance of DNNs.

— We study and analyze the performance of this approach and of each method
separately using the KDDCup 2021 dataset consisting of 250 univariate time
series.

The rest of this paper is organized as follows. Section 2 briefly reviews other
works on feature engineering for anomaly detection in time series. The Sect.3
presents the transformation of univariate time series into multivariate one and
the methods which constitute our framework. Section 4 describe the experiments
and demonstrate the performance of our approach. The paper concludes with
some discussion and perspectives in Sect. 5.

2 Related Works

Different studies have raised the importance of feature engineering for the detec-
tion of anomalies and the superiority of multivariate models in time series. A first
study conducted by Carta et al. [4] shows that in network anomaly detection, the
introduction of new features is essential to improve the performance of state-of-
the-art solutions. Fesht et al. [7] compare the performance of manual and auto-
matic feature engineering methods on drinking-water quality anomaly detection.
The study concludes that automatic feature engineering methods obtain better
performances in terms of Fl-score. Ouyand et al. [11] shows that feature extrac-
tion is one of the essential keys for machine learning and proposes a method called
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Fig. 1. Top: DNN automatic feature learning and extraction is limited to a local neigh-
borhood, which is typically represented by the input window information. Middle: the
matrix profile algorithm relies on non-local features, which are obtained by compar-
ing every window of the time series. Bottom: the proposed strategy brings non-local
feature information to a DNN by transforming the original univariate time series into
a multivariate one by combining the raw time series and the non-local information
obtained with matrix profile.

hierarchical time series feature extraction used for supervised binary classification.
Finally, in [1], the authors conclude that multivariate models provided a more pre-
cise and accurate forecast with smaller confidence intervals and better measures of
accuracy. Thus, studies have demonstrated the importance of feature engineering
to improve anomaly detection models as well as the performance of multivariate
methods compared to univariate ones on time series. Motivated by these ideas,
our work aims to investigate how feature engineering using non-local information
to achieve variate augmentation in time series can improve the performance of
anomaly detection DNN models in univariate time series.

3 From Univariate to Multivariate Time Series

To take advantage of the performance of multivariate methods of anomaly detec-
tion on univariate time series it is necessary to transform the univariate time
series into multivariate one. This can be achieved by adding external informa-
tion to the time series, which requires specific domain knowledge. Our strategy,
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instead, transforms the univariate time series into a multivariate one, without
any further information than the original time series, and is generic in that no
specific knowledge on what the time series represents is required.

Our strategy consists in building another time series (i.e. another vari-
ate) by extracting non-local information from the raw time series, which DNN
approaches fail to obtain as they typically operate in local neighborhood. To this
end, we make use of the Matrix-Profile (MP) [16,17], a data structure for time
series analysis. The proposed strategy is illustrated in Fig. 1.

The Matrix profile estimates the minimal distance between all sub-sequences
of a time series. Thus, the Matrix-Profile value for a given sub-sequence is the
minimum pairwise Euclidean distance to all other sub-sequences of the time
series. A low value in the matrix profile indicates that this sub-sequence has
at least one relatively similar sub-sequence located somewhere in the original
series. In [9], it is shown that a high value indicates that the original series must
have an abnormal sub-sequence. Therefore the matrix profile can be used as an
anomaly score, with a high value indicating an anomaly.

In our approach, we propose to use the anomaly score obtained by Matrix-
Profile over a given time series and merge it point-by-point with the original
data. This can be thus seen as a data augmentation procedure using non-local
information from the same signal.

As the new time series is just a multivariate time series, any given anomaly
detection method can be used to identify anomalous points in it. In this work, we
investigate three different estimation model-based techniques [3] as base anomaly
detection methods. Among these category of methods, the auto-encoder [13] is
among the most commonly used. An auto-encoder (AE) is an artificial neural
network combining an encoder F and a decoder D. The encoder part takes the
input window W and maps it into a set of latent variables Z, whereas the decoder
maps the latent variables Z back into the input space as a reconstruction W.
The difference between the original input vector W and the reconstruction W
is called the reconstruction error. Thus, the training objective aims to minimize
this error. Auto-encoder-based anomaly detection uses the reconstruction error
as the anomaly score. Time windows with a high score are considered to be
anomalies [6].

Alongside the AE, we consider a more complex approach based on a Vari-
ational AutoEncoder (VAE) coupled with a recurrent neural network, the
Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) [12]. In the
LSTM-VAE, the feed forward network iof the VAE is replaced by a Long Short-
Term Memory (LSTM), which allows to model the temporal dependencies. As
in the AE, the input data is projected in a latent space. However, differently
from the AE, this representation is then used to estimate an output distribu-
tion and not to simply reconstruct a sample. An anomaly is detected when the
log-likelihood is below a threshold.

The third estimation model-based method we consider is denoted UnSuper-
vised Anomaly Detection (USAD) [2]. USAD is composed of three elements:
an encoder network and two decoder networks. The three elements are con-
nected into an architecture composed of two auto-encoders sharing the same
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encoder network within a two-phase adversarial training framework. The adver-
sarial training allows to overcome the intrinsic limitations of AEs by training a
model capable of identifying when the input data does not contain an anomaly
and thus perform a good reconstruction. At the same time, the AE architecture
allows to gain stability during adversarial training of the two decoders.

The architecture is trained in two phases. First, the two AEs are trained
to learn to reconstruct the normal input windows. Secondly, the two AEs are
trained in an adversarial way, where the first one seeks to fool the second one,
while this latter one aims to learn when the data is real (coming directly from
the input) or reconstructed (coming from the other autoencoder). As with the
base AE, the anomaly score is obtained as the difference between the input data
and the data reconstructed by the concatenated autoencoders.

4 Experiments and Results

This section first describes the datasets used and the experimental setup used
in our work. Then, we study the performance of our proposed approach and
compare it against other techniques.

4.1 Datasets

In our experiments we use 250 univariate time series proposed by the University
of California, Riverside at the 2021 KDDCup competition, consisting of univari-
ate time series from many different fields. The 250 time series are composed of
a training part containing data considered as normal and a test part containing
one anomaly. The time series range from 6680 points for the smallest to 900000
points for the largest. The length of the training set represents on average 31%
of the total length of the time series (i.e. a training on the first 31% points of
the time series and a test on the next 69% points) with a minimum length of
2.5% and a maximum of 76.9%. All the time series are min-max normalized.

4.2 Experimental Setup

We use the percentage of correctly labeled series to assess the performance of
our method. A time series is considered to be correctly predicted when the index
of the point labeled as anomalous is included in a window of 100 points around
the true anomaly.

We compare our method against the matrix-profile (MP), the auto-encoder
(AE), the LSTM-VAE and USAD without the transformation of the time series.
We compute the performance of the three anomaly detection methods AE,
LSTM-VAE and USAD on a transformed univariate time series obtained using
only non-local information, i.e. with Matrix-profile (MP-AE, MP-LSTM-VAE
and MP-USAD). We assess both the AE, LSTM-VAE and USAD’s perfor-
mance using the proposed multivariate transformation, consisting of the original
raw time series and the series obtained with MP, respectively (TS+MP)-AE,
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Table 1. Hyper-parameter settings of the different methods

Method Paramaters

MP window_size = 100, discords = True

AE window-size = 100, latent_dimension = 10, Epochs = 100
LSTM-VAE | window_size = 100, Epochs = 100

USAD window_size = 100, latent_dimension = 10, Epochs = 100

Table 2. Methods performance and computational time.

Method Performance | Train and Test
time (s x 10%)

Matrix-Profile 0.416 1.47

AE 0.236 22.00
LSTM-VAE 0.198 85.31

USAD 0.276 29.00
MP-AE 0.292 22.16
MP-LSTM-VAE 0.344 84.30
MP-USAD 0.404 29.10
(TS+MA)-AE 0.148 22.38
(TS+MA)-LSTM-VAE | 0.134 85.43
(TS+MA)-USAD 0.176 29.12
(TS+MP)-AE 0.536 22.50
(TS+MP)-LSTM-VAE | 0.446 85.83
(TS+MP)-USAD 0.488 29.28

(TS+MP)-LSTM-VAE and (TS+MP)-USAD. To validate the relevance of the
use of non-local information in the transformation of the time series, we also
consider an identical combination with a local feature engineering strategy. In

particular, in our experiments we use the moving average (MA), respectively
(TS+MA)-AE, (TS+MA)-LSTM-VAE and (TS+MA)-USAD).

Implementation. We implement the AE using Pytorch and we used publicly
available implementations for MP[1]}, LSTM-VAE? and USAD?. Table 1 details
the hyper-parameter setup used for each method. Where a parameter is not
specified, it indicated that we used those set by default in the original imple-
mentation

All experiments are performed on a machine equipped with an Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20 GHz and 270 GB RAM, in a docker container

! https://stumpy.readthedocs.io.
2 https://github.com/TimyadNyda/Variational-Lstm- Autoencoder.
3 https://github.com/robustml-eurecom /usad.
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running CentOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080
Ti 11 GB GPU.

4.3 Results

Table 2 presents the results obtained by the different methods in terms of per-
formance accuracy and computational times. Interestingly, we observe that the
performance of DNN-based methods on univariate time series is very low and
largely surpassed by the more conventional approach, the matrix profile. How-
ever, once the same techniques use the proposed data transformation strategy,
we observe an important boost in their performance. The Auto-Encoder and the
LSTM-VAE score almost 2.3 times higher when the combination of the matrix
profile and real data is used as input instead of the original data. Similarly,
USAD’s performance increases by 1.8 times when the matrix profile and raw
time series combination is used compared to its performance using only the raw
time series.

Nevertheless, we observe that the non-local transformation alone is not
enough to boost the performance of DNN methods. For instance, if the input
consists only of the univariate time series transformed using the matrix profile,
while there is some increased performance, this one is milder than when using a
multivariate time series. This confirms that DNN methods perform better in a
multivariate setup for anomaly detection.

Regarding the use of local features, i.e. the moving average, we observed
that adding it does not allow USAD, LSTM-VAE and AE to increase their
performance. Indeed, the combination of raw time series and moving average
degrades the performance of AE and USAD by about 0.1 and the performance
of LSTM-VAE by about 0.06. This suggests that any local features that might
be discriminative can be extracted by the DNNs and introducing new manually
crafted ones may be detrimental.

Finally, as it is expected, the computational time of DNN-based methods
is much longer than the MP. However, what is interesting in our findings is
that the computational time of DNN methods is very little impacted when the
dimension of the time series increases. In fact, the AE’s computational time goes
from 21993 s in the fastest univariate configuration to 22491 s in the multivariate
case. This means an increase of only 2.2% on computational time for a gain in
performance of 230%.

5 Discussion and Conclusions

In this paper, we propose an approach to augment univariate time series using
a feature engineering strategy that introduces non-local information in the gen-
eration of an additional variate to the series. In this way, we expect to address a
limitation of DNNs, as they are not conceived to learn automatically non-local
features. We achieve automatic non-local feature extraction by relying on the
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Matrix-Profile, a method that computes the minimum pairwise Euclidean dis-
tance of all subsequences of the time series, and combining its output with the
original time series.

We used data from the KDDcup 2021 competition containing 250 univariate
time series to study the performance of our method. The performance analysis
highlighted the relevance of transforming the univariate time series using the
proposed feature engineering and data augmentation strategy. Our results show
that introducing non-local information to augment the dimension of the series
improves the performance of DNN methods. For instance, by using a very simple
method, such as an autoencoder, we were able to obtain a gain in performance
of 230%, without significantly increasing the computational time. As such, our
preliminary results suggest that non-local information represents an important
source of additional information that can increase performance of DNN methods.

While our approach focuses on the particular case of transforming uni- to
multivariate time series, this idea could be used to augment time series, which
are multivariate at origin, as a way to introduce non-local information.

In this work, we used three methods of anomaly detection based on Deep
Neural Networks in combination with Matrix profile. The good performance on
a simple auto-encoder, a recurrent network such as LTSM-VAE and USAD, a
state-of-the-art neural network, suggest that our combination could generalize
to other DNN methods. Therefore, future works should explore other feature
engineering techniques that can provide non-local information, as well as other
multivariate DNN anomaly detection methods.

Finally, our findings are consistent with one of the results of the time series
prediction competition, the M4 challenge [10], which highlighted the predictive
power of ensemble approaches combining learning-based with more conventional
statistical methods. Due to the great success of DNN methods in the recent
years, it is now often the case that more traditional methods are overseen. Our
results suggest that the use of hybrid approaches should be further explored.

References

1. Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F.M., Preen, D.B., Stewart, L.M., Fatovich,
D.M.: A comparison of multivariate and univariate time series approaches to
modelling and forecasting emergency department demand in western australia.
J. Biomed. Inform. 57, 62-73 (2015)

2. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsuper-
vised anomaly detection on multivariate time series. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2020, pp. 3395-3404. Association for Computing Machinery, New York
(2020)

3. Blazquez-Garcia, A., Conde, A., Mori, U., Lozano, J.A.: A review on out-
lier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 54(3),
1-33 (2021)

4. Carta, S., Podda, A.S., Reforgiato Recupero, D.R., Saia, R.: A local feature engi-
neering strategy to improve network anomaly detection. Future Internet 12(10),
177 (2020)



194

10.

11.

12.

13.

14.

15.

16.

17.

J. Audibert et al.

Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation
of outlier detection algorithms: experiments and analyses. Pattern Recogn. 74,
406-421 (2018)

Fan, C., Xiao, F., Zhao, Y., Wang, J.: Analytical investigation of autoencoder-
based methods for unsupervised anomaly detection in building energy data. Appl.
Energy 211, 1123-1135 (2018)

Fehst, V., La, H.C., Nghiem, T.D., Mayer, B.E., Englert, P., Fiebig, K.H.: Auto-
matic vs. manual feature engineering for anomaly detection of drinking-water qual-
ity. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO 2018, pp. 5-6. Association for Computing Machinery, New
York (2018)

Kale, D.C., et al.: An examination of multivariate time series hashing with appli-
cations to health care. In: 2014 IEEE International Conference on Data Mining,
pp. 260269 (2014)

Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile goes mad: variable-
length motif and discord discovery in data series. Data Min. Knowl. Disc. 34,
1022-1071 (2020)

Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: 100,000
time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54-74 (2020)
Ouyang, Z., Sun, X., Yue, D.: Hierarchical time series feature extraction for power
consumption anomaly detection. In: Li, K., Xue, Y., Cui, S., Niu, Q., Yang, Z., Luk,
P. (eds.) LSMS/ICSEE -2017. CCIS, vol. 763, pp. 267-275. Springer, Singapore
(2017). https://doi.org/10.1007/978-981-10-6364-0-27

Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted
feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett.
3(3), 1544-1551 (2018)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations
by Error Propagation, pp. 318-362. MIT Press, Cambridge (1986)

Soni, A.N.: Feature extraction methods for time series functions using machine
learning. Int. J. Innov. Res. Sci. Eng. Technol. 7(8), 8661-8665 (2018)
Theodossiou, P.T.: Predicting shifts in the mean of a multivariate time series pro-
cess: an application in predicting business failures. J. Am. Stat. Assoc. 88(422),
441-449 (1993)

Yeh, C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying
view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 1317-1322 (2016)

Yeh, C.C.M., Kavantzas, N., Keogh, E.: Matrix profile VI: meaningful multidimen-
sional motif discovery. In: 2017 IEEE International Conference on Data Mining
(ICDM), pp. 565-574. IEEE (2017)


https://doi.org/10.1007/978-981-10-6364-0_27

	From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information
	1 Introduction
	2 Related Works
	3 From Univariate to Multivariate Time Series
	4 Experiments and Results
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Results

	5 Discussion and Conclusions
	References




