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Abstract. In this work, we focus on quantitatively evaluating and rank-
ing explanation methods for time series classification based on their infor-
mativeness. Time series classification has many applications and evalu-
ating which parts of the time series are most informative for a classi-
fier decision is important. For example, to decide between Arabica and
Robusta coffee leaves, we can use an explanation method to highlight the
time series parts which differentiate these leaves. Although many expla-
nation methods have been proposed for images and time series data,
it is still unclear how to objectively evaluate them. Here, we evaluate
two model-specific explanation approaches - ResNet-CAM and MrSEQL-
SM, and two model-agnostic approaches, LIME combined with classi-
fiers MrSEQL and ROCKET. We generate saliency-based explanations
for each classifier on three time series classification datasets from the
UCR benchmark. Importance weights for all points in the timeseries are
extracted based on each explanation method, in order to perturb specific
parts of the time series and assess the impact on the classification accu-
racy of referee classifiers. We propose a new ranking-based methodology
to compare multiple explanation methods on the basis of their informa-
tiveness, by using explanation-based perturbation and aggregating the
explanation rank over the referee classifiers. This enables us to compare
explanation methods within a single dataset and also across multiple
datasets. We provide an in-depth analysis of the results attained, also
including runtime analysis for each method. Our results indicate model-
specific approaches MrSEQL-SM and ResNet-CAM are much faster than
model-agnostic approaches MrSEQL-LIME and ROCKET-LIME and
that MrSEQL-SM yields the highest informativeness rank among the
explanation methods compared.
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1 Introduction

In recent years Machine Learning (ML) systems have become highly impactful
in our everyday life. These methods are growing in terms of their complexity,
performance as well as their impact. With the rise in the complexity of ML
models, it is also becoming more important to understand their decision-making
process which is connected to their interpretability [19]. Interpretability is the
degree to which a human can understand the cause of a decision [10]. The higher
the interpretability of a machine learning model, the easier it is for someone to
understand why certain decisions or predictions are made. Understanding the
reasons behind these predictions is also important in assessing trust if actions
are to be made based on the predictions of the model. Such an understand-
ing gives insights into the model, which can be further used to transform an
unstable or inaccurate model or prediction into a stable and trustworthy model
[19]. If one can ensure that the ML model can explain decisions and have high
interpretability, then the models can be evaluated using some traits such as fair-
ness, privacy, reliability, causality, and trust [7]. The existing approaches can be
categorized as techniques that are intrinsic or post-hoc and whether they are
global or local [8,16]. A time series is an ordered sequence of numeric values
and time series classification (TSC) helps us with predicting a class label for
time series. Explainable AI and evaluating the interpretability of TSC methods,
help the user understand exactly which part of the time series data resulted in
the prediction. This explanation can be visualized as a saliency map by high-
lighting the parts of the time series which are informative for the classification
decision. There are several empirical surveys in recent TSC literature [2,3] and
methods which help in designing intrinsic as well as post-hoc explainable mod-
els [1,18,19]. However, there is still a strong need to objectively evaluate and
compare such methods and attain useful explanations. In this work, we evalu-
ate recent explanation methods and propose strategies to provide a quantitative
evaluation using informativeness. Figure 1 shows the saliency maps produced
by four explanation methods: MrSEQL-SM, ResNet-CAM, MrSEQL-LIME and
ROCKET-LIME. We can see that the four explanation methods do not agree on
which are the important parts of the time series. We aim to evaluate explanation
methods based on their informativeness through an explanation-driven pertur-
bation. We focus on methods that produce explanations in the form of saliency
maps. In our experiments, we consider two model-specific explanation methods
- ResNet-CAM [26] and MrSEQL-SM [11], and two model-independent methods
- LIME [19] combined with MrSEQL and ROCKET [4]. The main contributions
of this work include:

– A review of the state-of-the-art approaches for explanation of TSC including
model-specific explanation methods such as ResNet-CAM and MrSEQL-SM
and model-agnostic explanation methods such as LIME and Shapley.

– A new ranking-based methodology to compare multiple explanation methods
on the basis of their informativeness, by using explanation-based perturbation
and aggregating the explanation rank over a set of referee classifiers.
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Fig. 1. Saliency map explanations for a motion time series from the dataset CMJ. The
most informative parts are highlighted in deep red and the non-informative parts in
deep blue. (Color figure online)

– Generation of explanations using LIME for the recent efficient time series
classifier ROCKET.

– An empirical analysis of the runtime and an in-depth quantitative evaluation
and discussion of the results of four TSC explanation methods ranked over
three UCR datasets.

2 Related Work

We first discuss the recent literature on TSC algorithms followed by explanation
methods for TSC as well as some of the approaches used to evaluate these
explanations.

2.1 Time Series Classification

Time series are commonly used for representing data such as stock prices,
weather readings, and biological observations. Time Series Classification (TSC)
is a technique used to predict class labels for a given time series [12] and has
many applications. In the survey [3] TSC methods have been categorized into five
categories including distance-based, interval-based, dictionary-based, ensemble-
based, and Deep Learning (DL) based classifiers. The traditional distance-
based classification technique uses distance measures to determine the class
membership. The 1-Nearest-Neighbour algorithm is used as a baseline classifier
to classify univariate time series using Euclidean distance and Dynamic Time
Warping (DTW) as well as multivariate time series using Frobenius distance [20].
Interval-based classifiers select one or more intervals of the series to gener-
ate results. An example of interval-based classifiers includes Time Series Forest
Classifier (TSF) which adapts the random forest classifier to series data [5].
Dictionary-based classifiers form counts of string patterns and then build
classifiers based on the resulting features [3]. With the introduction of Bag
of SFA symbols (BOSS) [21], Word Extraction for Time Series Classification
(WEASEL) [23], SAX-VSM [11] and MrSEQL [11], dictionary-based classifiers
have seen major advancements.

Other important classes of TSC algorithms are DL-based classifiers and
Ensemble-based classifiers. DL-based approaches include the use of Multi-
Layer Perceptron (MLP), Fully Convolutional Neural Network (FCN), Residual
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Network (ResNet), Encoder, Multi-scale Convolutional Network (MCNN), Time
Le-Net (t-LeNet) and a few others [9,11]. Ensembled-based approaches include
Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE)
[2] which has high accuracy but a heavy computational cost. HIVE-COTE pre-
dictions are a weighted average of predictions produced by classifiers such as
Shapelet Transform Classifier, BOSS, Time Series Forest, and RISE.

2.2 Explanation Methods for Time Series Classification

The goal of an explanation is to relate the feature values of an instance to its
model prediction in a way that is understandable to humans [16]. One such tool
to represent these explanations is a saliency map.

Saliency Maps. A saliency map is a heatmap that highlights parts of an input
that most influenced the output classification [17]. Saliency maps can be used in
TSC to highlight the parts of the time series that are important. They are often
generated by matching a time series with a vector of weights (w) using a colour
map. This vector of weights contains a corresponding weight value for each data
point in the time series. The process of generating saliency maps in TSC and
producing the vector of weights for the mapping is called the TSC explanation
method, and the saliency map produced is known as the TSC explanation [17].
Figure 2 shows a visual representation of how a shape can be converted into a
time series using an example of a Verbena urticifolia leaf as shown in [25]. The
authors of [11] use this representation to classify the Coffee dataset and to pro-
duce explanations for the classifier decision as shown in Fig. 3. The highlighted
regions of the image correspond to the caffeine and chlorogenic acid components
of the coffee blends Arabica and Robusta. An explanation approach has three
important aspects as highlighted in [16]:

– Intrinsic or post-hoc: Intrinsic models are those which are considered inter-
pretable due to their simplicity, such as linear models or decision trees. Post-
hoc models are black-boxes and special methods need to be developed to
obtain explanations.

– Model-specific or model-agnostic: Model-specific approaches are specific to a
single model or a group of models. These rely on the working capabilities of the
particular model to provide explanations. On the other hand, model-agnostic
approaches can be utilized for any ML model regardless of the complexity of
the model.

– Local or global scope: The scope of the model can be either local or global
depending on whether the method explains an individual prediction or the
entire model.

Recent work [17] has shown some contribution towards a quantitative approach
for evaluating explanation methods for TSC, such as CAM, MrSEQL-SM and
LIME. That methodology proposed an explanation-based perturbation to com-
pute informativeness, but did not provide a way to directly compare and rank
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explanation methods within and across datasets. In this work, we focus on two
model-specific approaches - ResNet-CAM and MrSEQL-SM and two model-
agnostic approaches - MrSEQL-LIME and ROCKET-LIME - in order to quan-
titatively evaluate and rank these methods based on their informativeness.

Fig. 2. An example of how a shape can be converted into a time series representation
(reprinted from [25]).

Fig. 3. Saliency mapping generated using the MrSEQL classifier proposed in [11] on
the Coffee dataset (reprinted from [11]).

2.3 Model-Specific Approaches

ResNet-CAM. Class Activation Map (CAM) is a model-specific explanation
method that helps in explaining the output predictions of a neural network. In
previous work [26], CAM is implemented for image classification to visualize the
predicted class scores and highlight the discriminative image features used by the
CNN to classify the image. The implementation of CAM relies on performing
Global Average Pooling (GAP) just before the final output layer. Using the
above technique and the network architecture, the weights from the GAP layer
can be used to highlight the important parts of the time series which led to the
prediction. The obtained weights can then be used to visualize the explanation
using the saliency mapping of the weight vector to the original time series.
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MrSEQL-SM. Multi-resolution Symbolic Sequence Learner (MrSEQL) [6,11]
classifier is an efficient TSC algorithm that trains a linear classification model.
The algorithm transforms numeric time-series data into multiple symbolic repre-
sentations of different domains such as SAX [13] in the time domain and SFA [22]
in the frequency domain. The classifier selects the most important subsequences
from the symbolic data which are then used as input features for training the
SEQL classifier [11]. SEQL trains using logistic regression and outputs a linear
model which is a set of weighted symbolic subsequences. For the SAX features
which are in the time domain, saliency maps are then produced when these fea-
tures and weights are mapped back to the original time series. This explanation
produced in the form of a saliency map for MrSEQL with SAX features is called
MrSEQL-SM [17].

2.4 Model-Agnostic Approaches

LIME. Local Interpretable Model-agnostic Explanations (LIME) [19] is a
model-agnostic technique that explains the predictions of any classifier by
approximating it locally with an interpretable model. In [19] the authors propose
an implementation of LIME focused on training interpretable or local surrogate
models to explain individual predictions. LIME examines how variations to the
data fed into a black-box model, impact the model predictions. To achieve this,
LIME perturbs the data and obtains black-box predictions for the new data
points. Then, LIME trains an interpretable model on this perturbed dataset.
The new samples are weighted according to their proximity to the instance of
interest for which the explanation needs to be generated. This way LIME obtains
the explanations for the instances locally and does not give a global approxima-
tion. LIME was previously implemented with text, image and tabular data [19].
For tabular data, variations of the data were produced by perturbing each fea-
ture individually. In the case of images, the variations are created by segmenting
the image into superpixels which can be turned on or off with a user-defined
colour. LIME can also be adapted for time series data as shown in [15,17].
Some of the key advantages of LIME are that it makes human-friendly and eas-
ily interpretable explanations and has local fidelity in terms of giving insight
into explaining the black-box predictions locally [16]. LIME also has drawbacks,
e.g., it samples data points using a Gaussian distribution which ignores feature
correlation. There is also instability in the explanations produced, i.e., the expla-
nations vary depending on some hyperparameters. An alternative to LIME is the
Shapley value-based SHAP [14]. Even though SHAP gives benefits of local and
global interpretability, it requires a lot of computation time since it is computing
all possible feature permutations globally. Hence, LIME would have an advan-
tage of speed when compared to SHAP. There is also no open implementation
of SHAP for time series, hence we use LIME in this work.

ROCKET. RandOM Convolutional KErnal Transform (ROCKET) [4] is a
classification method that transforms time series using random convolutional
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kernels (shape features) and trains a linear classifier using those transformed
features. ROCKET can attain state-of-the-art accuracy using a fraction of the
time as compared to other algorithms, including CNN. Since ROCKET uses a
combination of shape features and numeric features - the proportion of positive
values (ppv), it becomes difficult to obtain a saliency map directly from the linear
model and we thus use LIME to obtain a post-hoc explanation for ROCKET,
called ROCKET-LIME.

2.5 Evaluation Measures for Explanation Methods

According to [7], there are three main levels for the evaluation of interpretability
- application grounded, human grounded, and function grounded. These vary in
terms of complexity and the need according to different tasks. TSC explanation
is aimed at focusing on the discriminative parts of the time series i.e., the parts
important for classification. In TSC explanation, we want to evaluate explana-
tions for individual predictions on the function level. There are several measures
that can be used to judge how good an explanation method or explanation is
[16]. Explanation methods have measures such as - expressive power in terms of
the structure of the explanation generated by the model, translucency describing
how much of the explanation method relies on looking into model parameters,
portability describing the range of ML models that can implement this explana-
tion method and the algorithmic complexity of the algorithm. Individual methods
also possess an array of measures such as accuracy (how well the explanation
reacts to unseen data), fidelity (how effectively the method estimates the pre-
diction of black-box models), consistency (does the explanation vary between
similar models or does it stay the same), stability (is a similar explanation gen-
erated on each iteration), comprehensibility (how well do humans understand
the explanations), certainty (i.e. confidence of the model prediction), degree of
importance (w.r.t the importance of features or parts of the explanation), nov-
elty (is the explanation coming from a new distribution of the training data),
and coverage in terms of the area covered.

Recent work [17] has used informativeness as an evaluation measure and
the authors entail that if the explanation is truly informative, it should point
out those parts of the time series that are most relevant for the classification
decision. The authors highlight the discriminative parts of the time series by
identifying a threshold k to find the parts where the weight vector belongs to
the (100 - k) percentile discriminative weights. The authors have also made use
of perturbation to provide evaluation for both single explanation methods as well
as multiple explanation methods. In this work, we propose a novel methodology
to calculate and compare informativeness. This extends the work of [17] and
is a ranking-based methodology that uses perturbation to compute the ranks
of multiple explanation methods over different referee classifiers and datasets.
We choose informativeness over other evaluation measures because it helps in
quantifying the evaluation for a single explanation and also gives an objective
measure to perform a comparison of multiple explanation methods.
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3 Proposed Methods

Here we discuss the technique used to perform the perturbation of the test set
in order to evaluate the informativeness of a TSC explanation method. The
perturbation process is then used for comparing different explanation methods
based on their informativeness and for our ranking approach.

3.1 Explanation-Based Perturbation of Time Series

The main aim of a TSC explanation method is to emphasize those important
regions of the time series that were most impactful for the classification decision.
Hence, if an explanation is informative, it should point out those discriminative
parts. In order to evaluate this, the discriminative regions of the time series
test sets are perturbed to examine if a decrease in the classification accuracy is
observed. The more informative the explanation is, the higher the expectation
of a decrease in accuracy after perturbation based on this explanation method
[17]. Here, we work with explanation methods that produce a saliency map for
the time series. This information is stored as an array of positive weights wt,
one weight for each step in the time series having t steps. The discriminative
weights are ranked through setting a threshold k (0 ≤ k ≤ 100) that is set at
the (100 - k) percentile of the positive weight vector (w) that explains the time
series [17]. Through this threshold, we can emphasize on the weights having
the highest magnitude in the time series. For example, for k = 10, the focus
with be on the top 10% of the highest weights coming from the explanation
method. The time series is perturbed by adding Gaussian noise to its original
signal. For a given time series represented by a vector x, the resulting perturbed
vector is represented by xperturbed where the entire time series is perturbed and
the distribution for the Gaussian noise is N(μ, σ2), where μ is the mean of the
distribution and σ is the magnitude of the noise.

xperturbed = x + N(μ, σ2) (1)

In this work, only a region is perturbed by adding noise based on the corre-
sponding weights in the explanation vector. The rest of the time series remains
unchanged. For the perturbation parameters we use μ = 0 and σ = 0.2 ∗ range.
This effectively adds or subtracts about 20% of the magnitude range of values
in that time series.

3.2 Calculating Informativeness as an Evaluation Metric

In order to quantitatively evaluate the informativeness of an explanation method,
an experiment is proposed. Firstly, a time series classifier is trained using the
original, non-perturbed training datasets as shown in Fig. 4. This classifier acts
as an evaluation classifier or referee classifier. Thereafter, perturbed test datasets
are created by adding noise to the discriminative parts of the time series. Multiple
versions of the perturbed test datasets are obtained for multiple explanation
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methods, at the same threshold k (0 ≤ k ≤ 100). Each of these perturbed
test datasets corresponds to an explanation or weight profile obtained from an
explanation method.

Fig. 4. Method of generating explanation-driven perturbed test sets and evaluating
the explanation method through a referee classifier (reprinted from [17]).

If an explanation method is truly informative, the perturbation should impact
the referee classifier more strongly than the other explanation methods. The
informativeness of an explanation method is calculated by estimating the area
under the explanation curve (AUC) described by accuracy at different pertur-
bation levels k with the help of the trapezoidal rule. This metric is coined as
an explanation loss or eLoss in the work [17] since a reduction of accuracy is
observed after adding noise to the time series based on the given explanation
method.

eLoss =
1
2
k

t∑

i=1

(acci−1 + acci) (2)

Here, k represents the values of each step normalized in the range 0–1 where k
= 0 corresponds to the original test dataset and the step k = 100 corresponds
to perturbing the entire time series, t represents the number of steps in the time
series (t = 100

k ) and acci represents the accuracy at step i. Here, we call the
eLoss the explanation AUC, this is a numeric measure that varies between 0
and 1. The explanation methods are then compared using an independent ref-
eree classifier. In this work, we use three state of the art classifiers, MrSEQL,
ROCKET and WEASEL and propose a new methodology to rank and compare
explanations methods by aggregating over referees. The explanation methods
are ranked based on their explanation AUC for each referee classifier. The
lower the AUC, the higher the rank. Once the rank is calculated for an expla-
nation method for one particular referee classifier, the overall rank is calculated
by taking the average of all the obtained ranks across referees. The explanation
method that ranks the highest is considered to be the most informative expla-
nation method over the set of referees for that dataset. We provide more details
on this strategy in the next section.
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4 Experiments

Next, we discuss the steps required to generate the informativeness of each expla-
nation method. We use the popular library sktime [24] and extend the open
source code of [17]. For each of the explanation methods, i.e., MrSEQL-SM,
ResNet-CAM, MrSEQL-LIME and ROCKET-LIME, the following steps are fol-
lowed in order to evaluate them with respect to informativeness:

1. For each dataset, a referee classifier is trained and the weights are extracted.
2. Each test time series is perturbed with Gaussian noise at different noise levels

k (i.e., 0, 10, 20, ..., 100).
3. The explanation AUC is calculated for each of the explanation methods with

each referee classifier.
4. The weights are mapped back to the original time series to generate the

saliency map for each method for each of the three datasets. The time taken
to run and generate results for each explanation method is also recorded by
using the timeit library.

5. The methods are then evaluated and ranked based on their informativeness
using our proposed ranking-based methodology.

4.1 Perturbing and Measuring Metrics

An explanation method should point to discriminative parts of the time series if it
is truly informative. If these discriminative parts are perturbed then a decrease in
classification accuracy should be observed. Once the test datasets are perturbed,
the new accuracy scores are generated and the explanation AUC is computed for
each of the explanation methods with each referee classifier to computationally
evaluate the usefulness of these explanation methods. Table 1 shows the accuracy
at different noise levels k when using MrSEQL as a referee classifier, on the
ROCKET-LIME explanation method, over the CMJ dataset. We note that the
accuracy decreases as the noise levels increase from 10 to 100. As can also be
seen in Fig. 5, this behaviour varies depending on the robustness to noise of the
referee classifier. Table 2 shows the explanation AUC and the referee rank when
using ROCKET as a referee classifier on the four explanation methods over the
CMJ dataset.

Table 1. Accuracy for explanation ROCKET-LIME using MrSEQL as a referee clas-
sifier after adding Gaussian noise at levels k from 10–100 on the CMJ dataset.

Noise level 10 20 30 40 50 60 70 80 90 100

Accuracy 0.9609 0.9553 0.9553 0.9497 0.9497 0.9497 0.9441 0.9385 0.9385 0.9385
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Table 2. Explanation AUC and rank for the explanation methods using ROCKET as
a referee classifier over the CMJ dataset.

Dataset Weights Explanation AUC for referee ROCKET Rank

CMJ MrSEQL-SM 0.8874 2

CMJ ResNet-CAM 0.9126 4

CMJ MrSEQL-LIME 0.9115 3

CMJ ROCKET-LIME 0.8866 1

4.2 Experimental Results and Evaluation

The four explanation methods are evaluated on the basis of their informativeness
based on their ranking across the referee classifiers, over the datasets CMJ,
Coffee and GunPoint. Due to the computational cost of LIME, MrSEQL-LIME
is evaluated with only CMJ and GunPoint datasets whereas ROCKET-LIME is
evaluated with the CMJ dataset only.

Accuracy. Figure 5 shows the accuracy curve for the CMJ dataset after Gaus-
sian noise is added to the time series. This is shown for all the four explanation
methods and the three referee classifiers. It can be seen that as the noise levels
increase from zero to a hundred, a dip in referee accuracy is seen for all the expla-
nation methods. This supports the fact that performing perturbation decreases
the accuracy of the referees.

In order to compare the explanation methods against each other based on
the accuracy curve, the accuracy curves are aggregated to see which method is
the most informative. The lower curve indicates that performing perturbation
decreases the accuracy of the explanation method more. This indicates that the
explanation method is more informative. Figure 6 shows the comparison of the

Table 3. Explanation AUC obtained for the four explanation methods and referee
classifiers. In bold is the lowest AUC over explanations, for a given referee, which
results in rank 1 for that explanation method and referee.

Dataset Explanation method MrSEQL ROCKET WEASEL

CMJ MrSEQL-SM 0.9441 0.8874 0.6575

ResNet-CAM 0.9453 0.9126 0.6793

MrSEQL-LIME 0.9441 0.9115 0.6933

ROCKET-LIME 0.9492 0.8866 0.7039

Coffee MrSEQL-SM 0.9625 1.000 0.9804

ResNet-CAM 0.9696 1.000 0.9696

GunPoint MrSEQL-SM 0.9477 0.7137 0.5440

ResNet-CAM 0.9610 0.7350 0.5280

MrSEQL-LIME 0.9677 0.7637 0.5727
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Fig. 5. The change in accuracy when perturbation is performed by adding Gaussian
noise to the test time series for each explanation method from (top to down) with the
three referee classifiers from (left to right) on the CMJ dataset.

Fig. 6. Comparison of accuracy after perturbation with Gaussian noise for MrSEQL-
SM, ResNet-CAM, MrSEQL-LIME and ROCKET-LIME using the CMJ dataset and
the referee classifiers, MrSEQL, ROCKET and WEASEL. The lower curve indicates
more impact of the explanation method on the referee classification accuracy.
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accuracy curves for all four explanation methods on the CMJ dataset. It can be
seen that although there is an overlap between the curves, MrSEQL-SM shown
by the red curve is slightly more informative as compared to the other methods.

Explanation AUC. Table 3 represents the explanation AUC obtained for each
of the datasets and the explanation methods across the referee classifiers. We
observe that the explanation AUC varies across the three classifiers. The lower
explanation AUC value indicates a higher referee rank contributing towards
higher informativeness.

Informativeness. The explanation methods are ranked and evaluated based
on their explanation AUC for each classifier. Then the overall rank is calculated
as the average-rank by aggregating over the referees as shown in Table 4. The
explanation method that ranks the highest is taken as the most informative
explanation method.

Table 4. Ranking of explanation methods based on their informativeness.

Dataset Explanation method MrSEQL ROCKET WEASEL Average rank

CMJ MrSEQL-SM 1.00 2.00 1.00 1.33

MrSEQL-LIME 1.00 3.00 3.00 2.33

ResNet-CAM 2.00 4.00 2.00 2.67

ROCKET-LIME 3.00 1.00 4.00 2.67

Coffee MrSEQL-SM 1.00 1.00 2.00 1.33

ResNet-CAM 2.00 1.00 1.00 1.33

GunPoint MrSEQL-SM 1.00 1.00 2.00 1.33

ResNet-CAM 2.00 2.00 1.00 1.67

MrSEQL-LIME 3.00 3.00 3.00 3.00

We make the following observations with regards to the average rank of
explanation methods for each dataset:

– CMJ: MrSEQL-SM has the highest average rank and is thus the most
informative followed by MrSEQL-LIME, ResNet-CAM and ROCKET-LIME.
Both ResNet-CAM and ROCKET-LIME seem to be equally informative due
to a similar average rank.

– Coffee: Both MrSEQL-SM and ResNet-CAM show the same average rank
and hence are equally informative.

– GunPoint: MrSEQL-SM is the most informative followed by ResNet-CAM
and then MrSEQL-LIME.

It is also important to note that the ranks vary across different referee classi-
fiers and the referee classifier contributes towards the informativeness computa-
tion of the explanation methods. Even though MrSEQL-SM performs well with
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MrSEQL and WEASEL as referee classifiers for the CMJ dataset, it ranks second
in the case of ROCKET as a referee classifier. This is also seen for ROCKET-
LIME as it ranks first when trained with ROCKET itself as a referee classifier but
not in other cases. Therefore, to obtain an aggregate behaviour of each expla-
nation method over referees, an average rank is computed. MrSEQL-SM has
the highest average rank followed by ResNet-CAM, MrSEQL-LIME and finally
ROCKET-LIME. It is also important to note that these ranks depend on the
problem statement and the dataset, and can be different for different datasets.
Further work is also needed to evaluate MrSEQL-LIME with Coffee dataset and
ROCKET-LIME with GunPoint and Coffee datasets.

Runtime Analysis. The runtime of each explanation method to train a clas-
sifier, return the weights and plot the explanation in the form of a saliency map
is calculated and displayed in Table 5. For each dataset, the run time is observed
when performing the experiment for each of the explanation methods.

Table 5. Time (seconds) for model training, getting weights and getting the explana-
tion for all the explanation methods for each dataset.

Dataset Method TrainingTime GettingWeights GettingExplanation Total(sec)

CMJ MrSEQL-SM 362.74 134.57 4.17 501.48

ResNet-CAM 6.10 5.47 7.62 19.19

MrSEQL-LIME 178.28 4438.53 4.75 4621.56

ROCKET-LIME 33.26 3962.98 6.28 4002.53

Coffee MrSEQL-SM 5.37 1.57 2.12 9.07

ResNet-CAM 1.86 1.34 0.73 3.93

GunPoint MrSEQL-SM 4.61 2.73 2.35 9.70

ResNet-CAM 1.75 3.81 0.84 6.41

MrSEQL-LIME 4.13 465.38 3.21 472.73

The following points summarize the findings for each dataset:

– CMJ: ResNet-CAM is the fastest to reproduce the results since a pre-trained
model is used for training, otherwise ROCKET would be the fastest. After
ResNet-CAM, we have MrSEQL-SM followed by ROCKET-LIME and then
finally MrSEQL-LIME.

– Coffee: ResNet-CAM is somewhat faster than MrSEQL-SM in getting the
weights and the explanation. Even if the classifier is fast to train, adding an
explanation with LIME makes the explanation step slow.

– GunPoint: MrSEQL-LIME is computationally expensive as opposed to
ResNet-CAM and MrSEQL-SM.

We note that model-specific approaches such as MrSEQL-SM and ResNet-
CAM are much faster than model agnostic approaches involving LIME, i.e.,
MrSEQL-LIME and ROCKET-LIME. Hence, even though ROCKET is an
extremely fast classification method, its computational cost increases when it
is combined with LIME to obtain an explanation.
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Fig. 7. Saliency maps produced by MrSEQL-SM, ResNet-CAM, MrSEQL-LIME and
ROCKET-LIME explanation methods for an example time series from the three classes
of the CMJ dataset.

Visualizing Saliency Mappings. The weights extracted for each of the expla-
nation methods are mapped back to the time series in order to visualize them
with the help of a saliency map. The most discriminative regions of the time
series are highlighted in red by the explanation methods whereas the least dis-
criminative regions are highlighted in blue by the explanation method on a scale
of 0–100. Saliency maps help us validate the informativeness of the explana-
tion methods. Each explanation method is compared with one another based on
the generated saliency. It is clear from the figures shown in the sections below
that all the methods give different explanations highlighting the importance
of an objective evaluation approach. The CMJ dataset contains three classes -
NORMAL, BEND and STUMBLE. Figure 7 shows the saliency maps generated
by MrSEQL-SM, ResNet-CAM, MrSEQL-LIME and ROCKET-LIME for the
CMJ dataset. It can be seen that each explanation method highlights a different
region to be most informative. MrSEQL-SM appears to be the most informa-
tive since it clearly highlights the low-middle parts of the class NORMAL, the
hump-middle part of the class BEND and the high peak part of the class STUM-
BLE (please refer to [11] for details on discriminative regions in this dataset).
MrSEQL-LIME and ROCKET-LIME also highlight similar regions however, the
explanations produced by MrSEQL-LIME is more similar to MrSEQL-SM than
ROCKET-LIME. On the other hand, ResNet-CAM does not clearly highlight
known discriminative parts in the time series of this dataset.

Discussion. From the previous experiments we observe that explanation meth-
ods can indeed be quantitatively compared using the notion of informativeness
based on ranking. The key takeaways from this work are summarized below.
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– Informativeness as an Evaluation Metric: Through the ranking method-
ology, we observe that even though there is an overlap between the explana-
tions produced by the explanation methods, MrSEQL-SM seems to be the
most informative having the highest average rank across the three referee
classifiers and the chosen datasets.

– Computation Time: LIME generates multiple perturbations of the new
example and classifies it again in order to generate an explanation, which
results in high computational time. Hence, ROCKET-LIME and MrSEQL-
LIME had a higher computation time. This is why it was challenging to evalu-
ate these methods with all the datasets. Whereas in the case of MrSEQL-SM
and ResNet-CAM we do not face this challenge since these simply use the
trained model internals to generate explanations for a new example. There-
fore, model-specific approaches like MrSEQL-SM and ResNet-CAM are faster
as opposed to model-agnostic approaches like MrSEQL-LIME and ROCKET-
LIME.

– Impact of Referee Classifier: The referee classifier can impact the clas-
sification accuracy and the explanation AUC of the explanation methods.
We can also observe from Fig. 6 that ROCKET and WEASEL appear to be
more sensitive to the noise added during perturbation and show a significant
reduction of accuracy as the amount of Gaussian noise added increases. This
is not the case for MrSEQL as a referee classifier since the reduction is not
that significant. Note that here MrSEQL only uses SAX features (in the time
domain), while WEASEL uses SFA features (in the frequency domain), and
ROCKET uses a mix of features in the time domain (i.e., convolution kernels)
and features similar to the frequency domain features (i.e., dilation).

– Saliency Mappings:. Saliency maps can yield an accurate visual repre-
sentation of what parts of the time series are considered important by the
explanation method. This not only cross evaluates the ranking methodology
but also represents the vector of weights in a visual manner.

5 Conclusion

This work aimed to quantitatively evaluate the informativeness of different
model-specific as well as model-agnostic explanation methods for TSC. Through
experimental results, we showed that TSC explanation methods can be evalu-
ated and ranked based on their informativeness and that saliency-based visual-
izations support the results attained. Our simple ranking-over-referees technique
can be implemented for practical applications in order to evaluate current TSC
explanation methods or understand the classification decision-making process of
TSC algorithms. In this work, four explanation methods are explored on three
datasets, however, this technique can be adopted and expanded to evaluate other
explanation methods and datasets based on the needs of a given problem state-
ment. For future work we will extend the study of perturbation approaches,
extend the set of referees and apply this methodology to more datasets that
have available explanation ground truth. Given the fast growth of XAI and the
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amount of new methods proposed for explaining classifiers, we consider that hav-
ing an effective methodology to objectively evaluate and compare these methods
is very important to make sure that real progress is made and that the new
explanation methods are actually useful.
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