
Vincent Lemaire · Simon Malinowski ·
Anthony Bagnall · Thomas Guyet ·
Romain Tavenard · Georgiana Ifrim (Eds.)

 123

LN
AI

 1
31

14

6th ECML PKDD Workshop, AALTD 2021
Bilbao, Spain, September 13, 2021
Revised Selected Papers

Advanced Analytics
and Learning
on Temporal Data

Lecture Notes in Artificial Intelligence 13114

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Wolfgang Wahlster
DFKI, Berlin, Germany

Zhi-Hua Zhou
Nanjing University, Nanjing, China

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Vincent Lemaire · Simon Malinowski ·
Anthony Bagnall · Thomas Guyet ·
Romain Tavenard · Georgiana Ifrim (Eds.)

Advanced Analytics
and Learning
on Temporal Data
6th ECML PKDD Workshop, AALTD 2021
Bilbao, Spain, September 13, 2021
Revised Selected Papers

Editors
Vincent Lemaire
Orange Labs
Lannion, France

Anthony Bagnall
University of East Anglia
Norwich, UK

Romain Tavenard
University of Rennes
Rennes, France

Simon Malinowski
University of Rennes
Rennes, France

Thomas Guyet
Inria Grenoble - Rhône-Alpes
Villeurbanne, France

Georgiana Ifrim
University College Dublin
Dublin, Ireland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-91444-8 ISBN 978-3-030-91445-5 (eBook)
https://doi.org/10.1007/978-3-030-91445-5

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6030-2356
https://orcid.org/0000-0003-2360-8994
https://orcid.org/0000-0002-1439-8465
https://orcid.org/0000-0002-9663-562X
https://orcid.org/0000-0002-4909-5843
https://orcid.org/0000-0002-8400-2972
https://doi.org/10.1007/978-3-030-91445-5

Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD) is the premier European machine
learning and data mining conference and builds upon over 19 years of successful events
and conferences held across Europe. This year, ECML-PKDD 2021 was planned to take
place in Bilbao, Spain, during September 13–17, 2021, but due to the COVID-19 pan-
demic it was held as a fully virtual event. The main conference was complemented by
a workshop program, where each workshop was dedicated to specialized topics, cross-
cutting issues, and upcoming research trends. This standalone LNAI volume includes the
selected papers of the 6th International Workshop on Advanced Analytics and Learning
on Temporal Data (AALTD) held at ECML-PKDD 2021.

Temporal data are frequently encountered in a wide range of domains such as
bio-informatics, medicine, finance, and engineering, among many others. They are
naturally present in emerging applications such as motion analysis, energy efficient
buildings, smart cities, socialmedia, or sensor networks. Contrary to static data, temporal
data are of complex nature, they are generally noisy and of high dimensionality, theymay
be non-stationary (i.e., first order statistics vary with time) and irregular (i.e., involving
several time granularities), and they may have several invariant domain-dependent
factors such as time delay, translation, scale, or tendency effects. These temporal
peculiarities limit the majority of standard statistical models and machine learning
approaches, that mainly assume i.i.d data, homoscedasticity, normality of residuals, etc.
To tackle such challenging temporal data we require new advanced approaches at the
intersection of statistics, time series analysis, signal processing, and machine learning.
Defining new approaches that transcend boundaries between several domains to extract
valuable information from temporal data is undeniably an important topic and it has
been the subject of active research in the last decade.

The aim of the workshop series on AALTD1 was to bring together researchers
and experts in machine learning, data mining, pattern analysis, and statistics to share
their challenging issues and advances in temporal data analysis. Analysis and learning
from temporal data covers a wide scope of tasks including learning metrics, learning
representations, unsupervised feature extraction, clustering, and classification.

For this sixth edition, the proposed workshop received papers that cover one or
several of the following topics:

– Temporal Data Clustering
– Classification of Univariate and Multivariate Time Series
– Multivariate Time Series Co-clustering
– Efficient Event Detection
– Modeling Temporal Dependencies
– Advanced Forecasting and Prediction Models

1 https://project.inria.fr/aaltd21/.

https://project.inria.fr/aaltd21/

vi Preface

– Cluster-based Forecasting
– Explanation Methods for Time Series Classification
– Multimodal Meta-learning for Time Series Regression
– Multivariate Time Series Anomaly Detection

AALTD 2021 was structured as a full-day workshop.We encouraged submissions of
regular papers that were up to 16 pages of previously unpublished work. All submitted
papers were peer reviewed (double-blind) by two or three reviewers from the Program
Committee, and selected on the basis of these reviews. AALTD 2021 received 21
submissions, among which 12 papers were accepted for inclusion in the proceedings.
The papers with the highest review rating were selected for oral presentation (seven
papers), and the others were given the opportunity to present a poster through a spotlight
session and a discussion session (five papers). The workshop had an invited talk on
“Deep Generative Models for Missing Data in Temporal Sequences”2 given by Rose Yu
of the UC San Diego department of Computer Science and Engineering, USA3.

We thank all organizers, reviewers, and authors for the time and effort invested to
make thisworkshop a success.Wewould also like to express our gratitude to themembers
of the Program Committee, the Organizing Committee of ECML-PKDD 2021, and the
technical staff who helped us to make the virtual AALTD 2021 a successful workshop.
Sincere thanks are due to Springer for their help in publishing the proceedings. Lastly,
we thank all participants and speakers at AALTD 2021 for their contributions. Their
collective support has made the workshop a really interesting and successful event, even
under the challenging circumstances of a continuing global pandemic.

November 2021 Vincent Lemaire
Simon Malinowski
Anthony Bagnall
Thomas Guyet

Romain Tavenard
Georgiana Ifrim

2 https://project.inria.fr/aaltd21/invited-speakers/.
3 https://roseyu.com.

https://project.inria.fr/aaltd21/invited-speakers/
https://roseyu.com

Organization

Program Committee Chairs

Anthony Bagnall University of East Anglia, UK
Thomas Guyet Institut Agro, IRISA, France
Georgiana Ifrim University College Dublin, Ireland
Vincent Lemaire Orange Labs, France
Simon Malinowski Université de Rennes, Inria, CNRS, IRISA, France
Romain Tavenard Université de Rennes 2, COSTEL, France

Program Committee

Amaia Abanda Basque Center for Applied Mathematics, Spain
Mustafa Baydoğan Boğaziçi University, Turkey
Alexis Bondu Orange Labs, France
Paul Honeine Université de Rouen, France
Antoine Cornuejol Agro Paris Tech, France
Padraig Cunningham University College Dublin, Ireland
Dominique Gay Université de La Réunion, France
David Guijo-Rubio Universidad de Córdoba, Spain
Iulia Ilie Siemens, Germany
James Large University of East Anglia, UK
Brian Mac Namee University College Dublin, Ireland
Andrei Marinescu Eaton, Ireland
François Painblanc Université de Rennes 2, France
Charlotte Pelletier Université de Bretagne-Sud, IRISA, France
Patrick Schäfer Humboldt Universität zu Berlin, Germany
Pavel Senin Los Alamos National Laboratory, USA
Diego Silva Universidade Federal de Sao Carlos, Brazil
Chang Wei Monash University, Australia

Contents

Oral Presentation

Ranking by Aggregating Referees: Evaluating the Informativeness
of Explanation Methods for Time Series Classification . 3

Surabhi Agarwal, Trang Thu Nguyen, Thach Le Nguyen,
and Georgiana Ifrim

State Space Approximation of Gaussian Processes for Time Series
Forecasting . 21

Alessio Benavoli and Giorgio Corani

Fast Channel Selection for Scalable Multivariate Time Series Classification 36
Bhaskar Dhariyal, Thach Le Nguyen, and Georgiana Ifrim

Temporal Phenotyping for Characterisation of Hospital Care Pathways
of COVID19 Patients . 55

Mathieu Chambard, Thomas Guyet, Yên-Lan NGuyen,
and Etienne Audureau

Non-parametric Multivariate Time Series Co-clustering Model Applied
to Driving-Assistance Systems Validation . 71

Etienne Goffinet, Mustapha Lebbah, Hanane Azzag, Giraldi Loïc,
and Anthony Coutant

TRAMESINO: Traffic Memory System for Intelligent Optimization
of Road Traffic Control . 88

Cristian Axenie, Rongye Shi, Daniele Foroni, Alexander Wieder,
Mohamad Al Hajj Hassan, Paolo Sottovia, Margherita Grossi,
Stefano Bortoli, and Götz Brasche

Detection of Critical Events in Renewable Energy Production Time Series 104
Laurens P. Stoop, Erik Duijm, Ad Feelders, and Machteld van den Broek

Poster Presentation

Multimodal Meta-Learning for Time Series Regression . 123
Sebastian Pineda Arango, Felix Heinrich, Kiran Madhusudhanan,
and Lars Schmidt-Thieme

x Contents

Cluster-Based Forecasting for Intermittent and Non-intermittent Time
Series . 139

Tom van de Looij and Mozhdeh Ariannezhad

State Discovery and Prediction from Multivariate Sensor Data 155
Olli-Pekka Rinta-Koski, Miki Sirola, Le Ngu Nguyen, and Jaakko Hollmén

RevDet: Robust and Memory Efficient Event Detection and Tracking
in Large News Feeds . 170

Abdul Hameed Azeemi, Muhammad Hamza Sohail, Talha Zubair,
Muaz Maqbool, Irfan Younas, and Omair Shafiq

From Univariate to Multivariate Time Series Anomaly Detection
with Non-Local Information . 186

Julien Audibert, Sébastien Marti, Frédéric Guyard, and Maria A. Zuluaga

Author Index . 195

Oral Presentation

Ranking by Aggregating Referees:
Evaluating the Informativeness

of Explanation Methods for Time Series
Classification

Surabhi Agarwal, Trang Thu Nguyen, Thach Le Nguyen,
and Georgiana Ifrim(B)

School of Computer Science, University College Dublin, Dublin, Ireland
{surabhi.agarwal,thu.nguyen}@ucdconnect.ie
{thach.lenguyen,georgiana.ifrim}@ucd.ie

Abstract. In this work, we focus on quantitatively evaluating and rank-
ing explanation methods for time series classification based on their infor-
mativeness. Time series classification has many applications and evalu-
ating which parts of the time series are most informative for a classi-
fier decision is important. For example, to decide between Arabica and
Robusta coffee leaves, we can use an explanation method to highlight the
time series parts which differentiate these leaves. Although many expla-
nation methods have been proposed for images and time series data,
it is still unclear how to objectively evaluate them. Here, we evaluate
two model-specific explanation approaches - ResNet-CAM and MrSEQL-
SM, and two model-agnostic approaches, LIME combined with classi-
fiers MrSEQL and ROCKET. We generate saliency-based explanations
for each classifier on three time series classification datasets from the
UCR benchmark. Importance weights for all points in the timeseries are
extracted based on each explanation method, in order to perturb specific
parts of the time series and assess the impact on the classification accu-
racy of referee classifiers. We propose a new ranking-based methodology
to compare multiple explanation methods on the basis of their informa-
tiveness, by using explanation-based perturbation and aggregating the
explanation rank over the referee classifiers. This enables us to compare
explanation methods within a single dataset and also across multiple
datasets. We provide an in-depth analysis of the results attained, also
including runtime analysis for each method. Our results indicate model-
specific approaches MrSEQL-SM and ResNet-CAM are much faster than
model-agnostic approaches MrSEQL-LIME and ROCKET-LIME and
that MrSEQL-SM yields the highest informativeness rank among the
explanation methods compared.

Keywords: Time series classification · Explanation methods

c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 3–20, 2021.
https://doi.org/10.1007/978-3-030-91445-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_1

4 S. Agarwal et al.

1 Introduction

In recent years Machine Learning (ML) systems have become highly impactful
in our everyday life. These methods are growing in terms of their complexity,
performance as well as their impact. With the rise in the complexity of ML
models, it is also becoming more important to understand their decision-making
process which is connected to their interpretability [19]. Interpretability is the
degree to which a human can understand the cause of a decision [10]. The higher
the interpretability of a machine learning model, the easier it is for someone to
understand why certain decisions or predictions are made. Understanding the
reasons behind these predictions is also important in assessing trust if actions
are to be made based on the predictions of the model. Such an understand-
ing gives insights into the model, which can be further used to transform an
unstable or inaccurate model or prediction into a stable and trustworthy model
[19]. If one can ensure that the ML model can explain decisions and have high
interpretability, then the models can be evaluated using some traits such as fair-
ness, privacy, reliability, causality, and trust [7]. The existing approaches can be
categorized as techniques that are intrinsic or post-hoc and whether they are
global or local [8,16]. A time series is an ordered sequence of numeric values
and time series classification (TSC) helps us with predicting a class label for
time series. Explainable AI and evaluating the interpretability of TSC methods,
help the user understand exactly which part of the time series data resulted in
the prediction. This explanation can be visualized as a saliency map by high-
lighting the parts of the time series which are informative for the classification
decision. There are several empirical surveys in recent TSC literature [2,3] and
methods which help in designing intrinsic as well as post-hoc explainable mod-
els [1,18,19]. However, there is still a strong need to objectively evaluate and
compare such methods and attain useful explanations. In this work, we evalu-
ate recent explanation methods and propose strategies to provide a quantitative
evaluation using informativeness. Figure 1 shows the saliency maps produced
by four explanation methods: MrSEQL-SM, ResNet-CAM, MrSEQL-LIME and
ROCKET-LIME. We can see that the four explanation methods do not agree on
which are the important parts of the time series. We aim to evaluate explanation
methods based on their informativeness through an explanation-driven pertur-
bation. We focus on methods that produce explanations in the form of saliency
maps. In our experiments, we consider two model-specific explanation methods
- ResNet-CAM [26] and MrSEQL-SM [11], and two model-independent methods
- LIME [19] combined with MrSEQL and ROCKET [4]. The main contributions
of this work include:

– A review of the state-of-the-art approaches for explanation of TSC including
model-specific explanation methods such as ResNet-CAM and MrSEQL-SM
and model-agnostic explanation methods such as LIME and Shapley.

– A new ranking-based methodology to compare multiple explanation methods
on the basis of their informativeness, by using explanation-based perturbation
and aggregating the explanation rank over a set of referee classifiers.

Evaluating the Informativeness of Explanation Methods for TSC 5

Fig. 1. Saliency map explanations for a motion time series from the dataset CMJ. The
most informative parts are highlighted in deep red and the non-informative parts in
deep blue. (Color figure online)

– Generation of explanations using LIME for the recent efficient time series
classifier ROCKET.

– An empirical analysis of the runtime and an in-depth quantitative evaluation
and discussion of the results of four TSC explanation methods ranked over
three UCR datasets.

2 Related Work

We first discuss the recent literature on TSC algorithms followed by explanation
methods for TSC as well as some of the approaches used to evaluate these
explanations.

2.1 Time Series Classification

Time series are commonly used for representing data such as stock prices,
weather readings, and biological observations. Time Series Classification (TSC)
is a technique used to predict class labels for a given time series [12] and has
many applications. In the survey [3] TSC methods have been categorized into five
categories including distance-based, interval-based, dictionary-based, ensemble-
based, and Deep Learning (DL) based classifiers. The traditional distance-
based classification technique uses distance measures to determine the class
membership. The 1-Nearest-Neighbour algorithm is used as a baseline classifier
to classify univariate time series using Euclidean distance and Dynamic Time
Warping (DTW) as well as multivariate time series using Frobenius distance [20].
Interval-based classifiers select one or more intervals of the series to gener-
ate results. An example of interval-based classifiers includes Time Series Forest
Classifier (TSF) which adapts the random forest classifier to series data [5].
Dictionary-based classifiers form counts of string patterns and then build
classifiers based on the resulting features [3]. With the introduction of Bag
of SFA symbols (BOSS) [21], Word Extraction for Time Series Classification
(WEASEL) [23], SAX-VSM [11] and MrSEQL [11], dictionary-based classifiers
have seen major advancements.

Other important classes of TSC algorithms are DL-based classifiers and
Ensemble-based classifiers. DL-based approaches include the use of Multi-
Layer Perceptron (MLP), Fully Convolutional Neural Network (FCN), Residual

6 S. Agarwal et al.

Network (ResNet), Encoder, Multi-scale Convolutional Network (MCNN), Time
Le-Net (t-LeNet) and a few others [9,11]. Ensembled-based approaches include
Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE)
[2] which has high accuracy but a heavy computational cost. HIVE-COTE pre-
dictions are a weighted average of predictions produced by classifiers such as
Shapelet Transform Classifier, BOSS, Time Series Forest, and RISE.

2.2 Explanation Methods for Time Series Classification

The goal of an explanation is to relate the feature values of an instance to its
model prediction in a way that is understandable to humans [16]. One such tool
to represent these explanations is a saliency map.

Saliency Maps. A saliency map is a heatmap that highlights parts of an input
that most influenced the output classification [17]. Saliency maps can be used in
TSC to highlight the parts of the time series that are important. They are often
generated by matching a time series with a vector of weights (w) using a colour
map. This vector of weights contains a corresponding weight value for each data
point in the time series. The process of generating saliency maps in TSC and
producing the vector of weights for the mapping is called the TSC explanation
method, and the saliency map produced is known as the TSC explanation [17].
Figure 2 shows a visual representation of how a shape can be converted into a
time series using an example of a Verbena urticifolia leaf as shown in [25]. The
authors of [11] use this representation to classify the Coffee dataset and to pro-
duce explanations for the classifier decision as shown in Fig. 3. The highlighted
regions of the image correspond to the caffeine and chlorogenic acid components
of the coffee blends Arabica and Robusta. An explanation approach has three
important aspects as highlighted in [16]:

– Intrinsic or post-hoc: Intrinsic models are those which are considered inter-
pretable due to their simplicity, such as linear models or decision trees. Post-
hoc models are black-boxes and special methods need to be developed to
obtain explanations.

– Model-specific or model-agnostic: Model-specific approaches are specific to a
single model or a group of models. These rely on the working capabilities of the
particular model to provide explanations. On the other hand, model-agnostic
approaches can be utilized for any ML model regardless of the complexity of
the model.

– Local or global scope: The scope of the model can be either local or global
depending on whether the method explains an individual prediction or the
entire model.

Recent work [17] has shown some contribution towards a quantitative approach
for evaluating explanation methods for TSC, such as CAM, MrSEQL-SM and
LIME. That methodology proposed an explanation-based perturbation to com-
pute informativeness, but did not provide a way to directly compare and rank

Evaluating the Informativeness of Explanation Methods for TSC 7

explanation methods within and across datasets. In this work, we focus on two
model-specific approaches - ResNet-CAM and MrSEQL-SM and two model-
agnostic approaches - MrSEQL-LIME and ROCKET-LIME - in order to quan-
titatively evaluate and rank these methods based on their informativeness.

Fig. 2. An example of how a shape can be converted into a time series representation
(reprinted from [25]).

Fig. 3. Saliency mapping generated using the MrSEQL classifier proposed in [11] on
the Coffee dataset (reprinted from [11]).

2.3 Model-Specific Approaches

ResNet-CAM. Class Activation Map (CAM) is a model-specific explanation
method that helps in explaining the output predictions of a neural network. In
previous work [26], CAM is implemented for image classification to visualize the
predicted class scores and highlight the discriminative image features used by the
CNN to classify the image. The implementation of CAM relies on performing
Global Average Pooling (GAP) just before the final output layer. Using the
above technique and the network architecture, the weights from the GAP layer
can be used to highlight the important parts of the time series which led to the
prediction. The obtained weights can then be used to visualize the explanation
using the saliency mapping of the weight vector to the original time series.

8 S. Agarwal et al.

MrSEQL-SM. Multi-resolution Symbolic Sequence Learner (MrSEQL) [6,11]
classifier is an efficient TSC algorithm that trains a linear classification model.
The algorithm transforms numeric time-series data into multiple symbolic repre-
sentations of different domains such as SAX [13] in the time domain and SFA [22]
in the frequency domain. The classifier selects the most important subsequences
from the symbolic data which are then used as input features for training the
SEQL classifier [11]. SEQL trains using logistic regression and outputs a linear
model which is a set of weighted symbolic subsequences. For the SAX features
which are in the time domain, saliency maps are then produced when these fea-
tures and weights are mapped back to the original time series. This explanation
produced in the form of a saliency map for MrSEQL with SAX features is called
MrSEQL-SM [17].

2.4 Model-Agnostic Approaches

LIME. Local Interpretable Model-agnostic Explanations (LIME) [19] is a
model-agnostic technique that explains the predictions of any classifier by
approximating it locally with an interpretable model. In [19] the authors propose
an implementation of LIME focused on training interpretable or local surrogate
models to explain individual predictions. LIME examines how variations to the
data fed into a black-box model, impact the model predictions. To achieve this,
LIME perturbs the data and obtains black-box predictions for the new data
points. Then, LIME trains an interpretable model on this perturbed dataset.
The new samples are weighted according to their proximity to the instance of
interest for which the explanation needs to be generated. This way LIME obtains
the explanations for the instances locally and does not give a global approxima-
tion. LIME was previously implemented with text, image and tabular data [19].
For tabular data, variations of the data were produced by perturbing each fea-
ture individually. In the case of images, the variations are created by segmenting
the image into superpixels which can be turned on or off with a user-defined
colour. LIME can also be adapted for time series data as shown in [15,17].
Some of the key advantages of LIME are that it makes human-friendly and eas-
ily interpretable explanations and has local fidelity in terms of giving insight
into explaining the black-box predictions locally [16]. LIME also has drawbacks,
e.g., it samples data points using a Gaussian distribution which ignores feature
correlation. There is also instability in the explanations produced, i.e., the expla-
nations vary depending on some hyperparameters. An alternative to LIME is the
Shapley value-based SHAP [14]. Even though SHAP gives benefits of local and
global interpretability, it requires a lot of computation time since it is computing
all possible feature permutations globally. Hence, LIME would have an advan-
tage of speed when compared to SHAP. There is also no open implementation
of SHAP for time series, hence we use LIME in this work.

ROCKET. RandOM Convolutional KErnal Transform (ROCKET) [4] is a
classification method that transforms time series using random convolutional

Evaluating the Informativeness of Explanation Methods for TSC 9

kernels (shape features) and trains a linear classifier using those transformed
features. ROCKET can attain state-of-the-art accuracy using a fraction of the
time as compared to other algorithms, including CNN. Since ROCKET uses a
combination of shape features and numeric features - the proportion of positive
values (ppv), it becomes difficult to obtain a saliency map directly from the linear
model and we thus use LIME to obtain a post-hoc explanation for ROCKET,
called ROCKET-LIME.

2.5 Evaluation Measures for Explanation Methods

According to [7], there are three main levels for the evaluation of interpretability
- application grounded, human grounded, and function grounded. These vary in
terms of complexity and the need according to different tasks. TSC explanation
is aimed at focusing on the discriminative parts of the time series i.e., the parts
important for classification. In TSC explanation, we want to evaluate explana-
tions for individual predictions on the function level. There are several measures
that can be used to judge how good an explanation method or explanation is
[16]. Explanation methods have measures such as - expressive power in terms of
the structure of the explanation generated by the model, translucency describing
how much of the explanation method relies on looking into model parameters,
portability describing the range of ML models that can implement this explana-
tion method and the algorithmic complexity of the algorithm. Individual methods
also possess an array of measures such as accuracy (how well the explanation
reacts to unseen data), fidelity (how effectively the method estimates the pre-
diction of black-box models), consistency (does the explanation vary between
similar models or does it stay the same), stability (is a similar explanation gen-
erated on each iteration), comprehensibility (how well do humans understand
the explanations), certainty (i.e. confidence of the model prediction), degree of
importance (w.r.t the importance of features or parts of the explanation), nov-
elty (is the explanation coming from a new distribution of the training data),
and coverage in terms of the area covered.

Recent work [17] has used informativeness as an evaluation measure and
the authors entail that if the explanation is truly informative, it should point
out those parts of the time series that are most relevant for the classification
decision. The authors highlight the discriminative parts of the time series by
identifying a threshold k to find the parts where the weight vector belongs to
the (100 - k) percentile discriminative weights. The authors have also made use
of perturbation to provide evaluation for both single explanation methods as well
as multiple explanation methods. In this work, we propose a novel methodology
to calculate and compare informativeness. This extends the work of [17] and
is a ranking-based methodology that uses perturbation to compute the ranks
of multiple explanation methods over different referee classifiers and datasets.
We choose informativeness over other evaluation measures because it helps in
quantifying the evaluation for a single explanation and also gives an objective
measure to perform a comparison of multiple explanation methods.

10 S. Agarwal et al.

3 Proposed Methods

Here we discuss the technique used to perform the perturbation of the test set
in order to evaluate the informativeness of a TSC explanation method. The
perturbation process is then used for comparing different explanation methods
based on their informativeness and for our ranking approach.

3.1 Explanation-Based Perturbation of Time Series

The main aim of a TSC explanation method is to emphasize those important
regions of the time series that were most impactful for the classification decision.
Hence, if an explanation is informative, it should point out those discriminative
parts. In order to evaluate this, the discriminative regions of the time series
test sets are perturbed to examine if a decrease in the classification accuracy is
observed. The more informative the explanation is, the higher the expectation
of a decrease in accuracy after perturbation based on this explanation method
[17]. Here, we work with explanation methods that produce a saliency map for
the time series. This information is stored as an array of positive weights wt,
one weight for each step in the time series having t steps. The discriminative
weights are ranked through setting a threshold k (0 ≤ k ≤ 100) that is set at
the (100 - k) percentile of the positive weight vector (w) that explains the time
series [17]. Through this threshold, we can emphasize on the weights having
the highest magnitude in the time series. For example, for k = 10, the focus
with be on the top 10% of the highest weights coming from the explanation
method. The time series is perturbed by adding Gaussian noise to its original
signal. For a given time series represented by a vector x, the resulting perturbed
vector is represented by xperturbed where the entire time series is perturbed and
the distribution for the Gaussian noise is N(μ, σ2), where μ is the mean of the
distribution and σ is the magnitude of the noise.

xperturbed = x + N(μ, σ2) (1)

In this work, only a region is perturbed by adding noise based on the corre-
sponding weights in the explanation vector. The rest of the time series remains
unchanged. For the perturbation parameters we use μ = 0 and σ = 0.2 ∗ range.
This effectively adds or subtracts about 20% of the magnitude range of values
in that time series.

3.2 Calculating Informativeness as an Evaluation Metric

In order to quantitatively evaluate the informativeness of an explanation method,
an experiment is proposed. Firstly, a time series classifier is trained using the
original, non-perturbed training datasets as shown in Fig. 4. This classifier acts
as an evaluation classifier or referee classifier. Thereafter, perturbed test datasets
are created by adding noise to the discriminative parts of the time series. Multiple
versions of the perturbed test datasets are obtained for multiple explanation

Evaluating the Informativeness of Explanation Methods for TSC 11

methods, at the same threshold k (0 ≤ k ≤ 100). Each of these perturbed
test datasets corresponds to an explanation or weight profile obtained from an
explanation method.

Fig. 4. Method of generating explanation-driven perturbed test sets and evaluating
the explanation method through a referee classifier (reprinted from [17]).

If an explanation method is truly informative, the perturbation should impact
the referee classifier more strongly than the other explanation methods. The
informativeness of an explanation method is calculated by estimating the area
under the explanation curve (AUC) described by accuracy at different pertur-
bation levels k with the help of the trapezoidal rule. This metric is coined as
an explanation loss or eLoss in the work [17] since a reduction of accuracy is
observed after adding noise to the time series based on the given explanation
method.

eLoss =
1
2
k

t∑

i=1

(acci−1 + acci) (2)

Here, k represents the values of each step normalized in the range 0–1 where k
= 0 corresponds to the original test dataset and the step k = 100 corresponds
to perturbing the entire time series, t represents the number of steps in the time
series (t = 100

k) and acci represents the accuracy at step i. Here, we call the
eLoss the explanation AUC, this is a numeric measure that varies between 0
and 1. The explanation methods are then compared using an independent ref-
eree classifier. In this work, we use three state of the art classifiers, MrSEQL,
ROCKET and WEASEL and propose a new methodology to rank and compare
explanations methods by aggregating over referees. The explanation methods
are ranked based on their explanation AUC for each referee classifier. The
lower the AUC, the higher the rank. Once the rank is calculated for an expla-
nation method for one particular referee classifier, the overall rank is calculated
by taking the average of all the obtained ranks across referees. The explanation
method that ranks the highest is considered to be the most informative expla-
nation method over the set of referees for that dataset. We provide more details
on this strategy in the next section.

12 S. Agarwal et al.

4 Experiments

Next, we discuss the steps required to generate the informativeness of each expla-
nation method. We use the popular library sktime [24] and extend the open
source code of [17]. For each of the explanation methods, i.e., MrSEQL-SM,
ResNet-CAM, MrSEQL-LIME and ROCKET-LIME, the following steps are fol-
lowed in order to evaluate them with respect to informativeness:

1. For each dataset, a referee classifier is trained and the weights are extracted.
2. Each test time series is perturbed with Gaussian noise at different noise levels

k (i.e., 0, 10, 20, ..., 100).
3. The explanation AUC is calculated for each of the explanation methods with

each referee classifier.
4. The weights are mapped back to the original time series to generate the

saliency map for each method for each of the three datasets. The time taken
to run and generate results for each explanation method is also recorded by
using the timeit library.

5. The methods are then evaluated and ranked based on their informativeness
using our proposed ranking-based methodology.

4.1 Perturbing and Measuring Metrics

An explanation method should point to discriminative parts of the time series if it
is truly informative. If these discriminative parts are perturbed then a decrease in
classification accuracy should be observed. Once the test datasets are perturbed,
the new accuracy scores are generated and the explanation AUC is computed for
each of the explanation methods with each referee classifier to computationally
evaluate the usefulness of these explanation methods. Table 1 shows the accuracy
at different noise levels k when using MrSEQL as a referee classifier, on the
ROCKET-LIME explanation method, over the CMJ dataset. We note that the
accuracy decreases as the noise levels increase from 10 to 100. As can also be
seen in Fig. 5, this behaviour varies depending on the robustness to noise of the
referee classifier. Table 2 shows the explanation AUC and the referee rank when
using ROCKET as a referee classifier on the four explanation methods over the
CMJ dataset.

Table 1. Accuracy for explanation ROCKET-LIME using MrSEQL as a referee clas-
sifier after adding Gaussian noise at levels k from 10–100 on the CMJ dataset.

Noise level 10 20 30 40 50 60 70 80 90 100

Accuracy 0.9609 0.9553 0.9553 0.9497 0.9497 0.9497 0.9441 0.9385 0.9385 0.9385

Evaluating the Informativeness of Explanation Methods for TSC 13

Table 2. Explanation AUC and rank for the explanation methods using ROCKET as
a referee classifier over the CMJ dataset.

Dataset Weights Explanation AUC for referee ROCKET Rank

CMJ MrSEQL-SM 0.8874 2

CMJ ResNet-CAM 0.9126 4

CMJ MrSEQL-LIME 0.9115 3

CMJ ROCKET-LIME 0.8866 1

4.2 Experimental Results and Evaluation

The four explanation methods are evaluated on the basis of their informativeness
based on their ranking across the referee classifiers, over the datasets CMJ,
Coffee and GunPoint. Due to the computational cost of LIME, MrSEQL-LIME
is evaluated with only CMJ and GunPoint datasets whereas ROCKET-LIME is
evaluated with the CMJ dataset only.

Accuracy. Figure 5 shows the accuracy curve for the CMJ dataset after Gaus-
sian noise is added to the time series. This is shown for all the four explanation
methods and the three referee classifiers. It can be seen that as the noise levels
increase from zero to a hundred, a dip in referee accuracy is seen for all the expla-
nation methods. This supports the fact that performing perturbation decreases
the accuracy of the referees.

In order to compare the explanation methods against each other based on
the accuracy curve, the accuracy curves are aggregated to see which method is
the most informative. The lower curve indicates that performing perturbation
decreases the accuracy of the explanation method more. This indicates that the
explanation method is more informative. Figure 6 shows the comparison of the

Table 3. Explanation AUC obtained for the four explanation methods and referee
classifiers. In bold is the lowest AUC over explanations, for a given referee, which
results in rank 1 for that explanation method and referee.

Dataset Explanation method MrSEQL ROCKET WEASEL

CMJ MrSEQL-SM 0.9441 0.8874 0.6575

ResNet-CAM 0.9453 0.9126 0.6793

MrSEQL-LIME 0.9441 0.9115 0.6933

ROCKET-LIME 0.9492 0.8866 0.7039

Coffee MrSEQL-SM 0.9625 1.000 0.9804

ResNet-CAM 0.9696 1.000 0.9696

GunPoint MrSEQL-SM 0.9477 0.7137 0.5440

ResNet-CAM 0.9610 0.7350 0.5280

MrSEQL-LIME 0.9677 0.7637 0.5727

14 S. Agarwal et al.

Fig. 5. The change in accuracy when perturbation is performed by adding Gaussian
noise to the test time series for each explanation method from (top to down) with the
three referee classifiers from (left to right) on the CMJ dataset.

Fig. 6. Comparison of accuracy after perturbation with Gaussian noise for MrSEQL-
SM, ResNet-CAM, MrSEQL-LIME and ROCKET-LIME using the CMJ dataset and
the referee classifiers, MrSEQL, ROCKET and WEASEL. The lower curve indicates
more impact of the explanation method on the referee classification accuracy.

Evaluating the Informativeness of Explanation Methods for TSC 15

accuracy curves for all four explanation methods on the CMJ dataset. It can be
seen that although there is an overlap between the curves, MrSEQL-SM shown
by the red curve is slightly more informative as compared to the other methods.

Explanation AUC. Table 3 represents the explanation AUC obtained for each
of the datasets and the explanation methods across the referee classifiers. We
observe that the explanation AUC varies across the three classifiers. The lower
explanation AUC value indicates a higher referee rank contributing towards
higher informativeness.

Informativeness. The explanation methods are ranked and evaluated based
on their explanation AUC for each classifier. Then the overall rank is calculated
as the average-rank by aggregating over the referees as shown in Table 4. The
explanation method that ranks the highest is taken as the most informative
explanation method.

Table 4. Ranking of explanation methods based on their informativeness.

Dataset Explanation method MrSEQL ROCKET WEASEL Average rank

CMJ MrSEQL-SM 1.00 2.00 1.00 1.33

MrSEQL-LIME 1.00 3.00 3.00 2.33

ResNet-CAM 2.00 4.00 2.00 2.67

ROCKET-LIME 3.00 1.00 4.00 2.67

Coffee MrSEQL-SM 1.00 1.00 2.00 1.33

ResNet-CAM 2.00 1.00 1.00 1.33

GunPoint MrSEQL-SM 1.00 1.00 2.00 1.33

ResNet-CAM 2.00 2.00 1.00 1.67

MrSEQL-LIME 3.00 3.00 3.00 3.00

We make the following observations with regards to the average rank of
explanation methods for each dataset:

– CMJ: MrSEQL-SM has the highest average rank and is thus the most
informative followed by MrSEQL-LIME, ResNet-CAM and ROCKET-LIME.
Both ResNet-CAM and ROCKET-LIME seem to be equally informative due
to a similar average rank.

– Coffee: Both MrSEQL-SM and ResNet-CAM show the same average rank
and hence are equally informative.

– GunPoint: MrSEQL-SM is the most informative followed by ResNet-CAM
and then MrSEQL-LIME.

It is also important to note that the ranks vary across different referee classi-
fiers and the referee classifier contributes towards the informativeness computa-
tion of the explanation methods. Even though MrSEQL-SM performs well with

16 S. Agarwal et al.

MrSEQL and WEASEL as referee classifiers for the CMJ dataset, it ranks second
in the case of ROCKET as a referee classifier. This is also seen for ROCKET-
LIME as it ranks first when trained with ROCKET itself as a referee classifier but
not in other cases. Therefore, to obtain an aggregate behaviour of each expla-
nation method over referees, an average rank is computed. MrSEQL-SM has
the highest average rank followed by ResNet-CAM, MrSEQL-LIME and finally
ROCKET-LIME. It is also important to note that these ranks depend on the
problem statement and the dataset, and can be different for different datasets.
Further work is also needed to evaluate MrSEQL-LIME with Coffee dataset and
ROCKET-LIME with GunPoint and Coffee datasets.

Runtime Analysis. The runtime of each explanation method to train a clas-
sifier, return the weights and plot the explanation in the form of a saliency map
is calculated and displayed in Table 5. For each dataset, the run time is observed
when performing the experiment for each of the explanation methods.

Table 5. Time (seconds) for model training, getting weights and getting the explana-
tion for all the explanation methods for each dataset.

Dataset Method TrainingTime GettingWeights GettingExplanation Total(sec)

CMJ MrSEQL-SM 362.74 134.57 4.17 501.48

ResNet-CAM 6.10 5.47 7.62 19.19

MrSEQL-LIME 178.28 4438.53 4.75 4621.56

ROCKET-LIME 33.26 3962.98 6.28 4002.53

Coffee MrSEQL-SM 5.37 1.57 2.12 9.07

ResNet-CAM 1.86 1.34 0.73 3.93

GunPoint MrSEQL-SM 4.61 2.73 2.35 9.70

ResNet-CAM 1.75 3.81 0.84 6.41

MrSEQL-LIME 4.13 465.38 3.21 472.73

The following points summarize the findings for each dataset:

– CMJ: ResNet-CAM is the fastest to reproduce the results since a pre-trained
model is used for training, otherwise ROCKET would be the fastest. After
ResNet-CAM, we have MrSEQL-SM followed by ROCKET-LIME and then
finally MrSEQL-LIME.

– Coffee: ResNet-CAM is somewhat faster than MrSEQL-SM in getting the
weights and the explanation. Even if the classifier is fast to train, adding an
explanation with LIME makes the explanation step slow.

– GunPoint: MrSEQL-LIME is computationally expensive as opposed to
ResNet-CAM and MrSEQL-SM.

We note that model-specific approaches such as MrSEQL-SM and ResNet-
CAM are much faster than model agnostic approaches involving LIME, i.e.,
MrSEQL-LIME and ROCKET-LIME. Hence, even though ROCKET is an
extremely fast classification method, its computational cost increases when it
is combined with LIME to obtain an explanation.

Evaluating the Informativeness of Explanation Methods for TSC 17

Fig. 7. Saliency maps produced by MrSEQL-SM, ResNet-CAM, MrSEQL-LIME and
ROCKET-LIME explanation methods for an example time series from the three classes
of the CMJ dataset.

Visualizing Saliency Mappings. The weights extracted for each of the expla-
nation methods are mapped back to the time series in order to visualize them
with the help of a saliency map. The most discriminative regions of the time
series are highlighted in red by the explanation methods whereas the least dis-
criminative regions are highlighted in blue by the explanation method on a scale
of 0–100. Saliency maps help us validate the informativeness of the explana-
tion methods. Each explanation method is compared with one another based on
the generated saliency. It is clear from the figures shown in the sections below
that all the methods give different explanations highlighting the importance
of an objective evaluation approach. The CMJ dataset contains three classes -
NORMAL, BEND and STUMBLE. Figure 7 shows the saliency maps generated
by MrSEQL-SM, ResNet-CAM, MrSEQL-LIME and ROCKET-LIME for the
CMJ dataset. It can be seen that each explanation method highlights a different
region to be most informative. MrSEQL-SM appears to be the most informa-
tive since it clearly highlights the low-middle parts of the class NORMAL, the
hump-middle part of the class BEND and the high peak part of the class STUM-
BLE (please refer to [11] for details on discriminative regions in this dataset).
MrSEQL-LIME and ROCKET-LIME also highlight similar regions however, the
explanations produced by MrSEQL-LIME is more similar to MrSEQL-SM than
ROCKET-LIME. On the other hand, ResNet-CAM does not clearly highlight
known discriminative parts in the time series of this dataset.

Discussion. From the previous experiments we observe that explanation meth-
ods can indeed be quantitatively compared using the notion of informativeness
based on ranking. The key takeaways from this work are summarized below.

18 S. Agarwal et al.

– Informativeness as an Evaluation Metric: Through the ranking method-
ology, we observe that even though there is an overlap between the explana-
tions produced by the explanation methods, MrSEQL-SM seems to be the
most informative having the highest average rank across the three referee
classifiers and the chosen datasets.

– Computation Time: LIME generates multiple perturbations of the new
example and classifies it again in order to generate an explanation, which
results in high computational time. Hence, ROCKET-LIME and MrSEQL-
LIME had a higher computation time. This is why it was challenging to evalu-
ate these methods with all the datasets. Whereas in the case of MrSEQL-SM
and ResNet-CAM we do not face this challenge since these simply use the
trained model internals to generate explanations for a new example. There-
fore, model-specific approaches like MrSEQL-SM and ResNet-CAM are faster
as opposed to model-agnostic approaches like MrSEQL-LIME and ROCKET-
LIME.

– Impact of Referee Classifier: The referee classifier can impact the clas-
sification accuracy and the explanation AUC of the explanation methods.
We can also observe from Fig. 6 that ROCKET and WEASEL appear to be
more sensitive to the noise added during perturbation and show a significant
reduction of accuracy as the amount of Gaussian noise added increases. This
is not the case for MrSEQL as a referee classifier since the reduction is not
that significant. Note that here MrSEQL only uses SAX features (in the time
domain), while WEASEL uses SFA features (in the frequency domain), and
ROCKET uses a mix of features in the time domain (i.e., convolution kernels)
and features similar to the frequency domain features (i.e., dilation).

– Saliency Mappings:. Saliency maps can yield an accurate visual repre-
sentation of what parts of the time series are considered important by the
explanation method. This not only cross evaluates the ranking methodology
but also represents the vector of weights in a visual manner.

5 Conclusion

This work aimed to quantitatively evaluate the informativeness of different
model-specific as well as model-agnostic explanation methods for TSC. Through
experimental results, we showed that TSC explanation methods can be evalu-
ated and ranked based on their informativeness and that saliency-based visual-
izations support the results attained. Our simple ranking-over-referees technique
can be implemented for practical applications in order to evaluate current TSC
explanation methods or understand the classification decision-making process of
TSC algorithms. In this work, four explanation methods are explored on three
datasets, however, this technique can be adopted and expanded to evaluate other
explanation methods and datasets based on the needs of a given problem state-
ment. For future work we will extend the study of perturbation approaches,
extend the set of referees and apply this methodology to more datasets that
have available explanation ground truth. Given the fast growth of XAI and the

Evaluating the Informativeness of Explanation Methods for TSC 19

amount of new methods proposed for explaining classifiers, we consider that hav-
ing an effective methodology to objectively evaluate and compare these methods
is very important to make sure that real progress is made and that the new
explanation methods are actually useful.

Acknowledgments. This publication has emanated from research supported in part
by a grant from Science Foundation Ireland through the SFI Centre for Research
Training in Machine Learning (18/CRT/6183), the Insight Centre for Data Analyt-
ics (12/RC/2289 P2) and the VistaMilk SFI Research Centre (SFI/16/RC/3835). For
the purpose of Open Access, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission. The authors
would like to thank the reviewers for their constructive feedback.

References

1. Apley, D.W., Zhu, J.: Visualizing the effects of predictor variables in black box
supervised learning models. J. R. Stat. Soc. Ser. B Stat. Methodol. 82(4), 1059–
1086 (2020). https://doi.org/10.1111/rssb.12377

2. Bagnall, A., Flynn, M., Large, J., Lines, J., Middlehurst, M.: A tale of two toolkits,
report the third: on the usage and performance of HIVE-COTE v1.0 (2020). http://
arxiv.org/abs/2004.06069

3. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/
s10618-016-0483-9

4. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate
time series classification using random convolutional kernels. DAMI. https://link.
springer.com/article/10.1007/s10618-020-00701-z

5. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification
and feature extraction. Inf. Sci. 239, 142–153 (2013)

6. Dhariyal, B., Nguyen, T.L., Gsponer, S., Ifrim, G.: An examination of the state-
of-the-art for multivariate time series classification. In: ICDMW (2020)

7. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing (2017)

8. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning (2019)
9. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Deep

learning for time series classification: a review. Data Min. Knowl. Disc. 33(4),
917–963 (2019). https://doi.org/10.1007/s10618-019-00619-1

10. Kim, B., Khanna, R., Koyejo, O.O.: Examples are not enough, learn to criticize!
Criticism for interpretability. In: NeurIPS, vol. 29, pp. 2280–2288. Curran Asso-
ciates, Inc. (2016)

11. Le Nguyen, T., Gsponer, S., Ilie, I., O’Reilly, M., Ifrim, G.: Interpretable time
series classification using linear models and multi-resolution multi-domain symbolic
representations. Data Min. Knowl. Disc. 33(4), 1183–1222 (2019). https://doi.org/
10.1007/s10618-019-00633-3

12. Lei, Y., Wu, Z.: Time series classification based on statistical features. EURASIP
J. Wirel. Commun. Netw. 2020(1), 1–13 (2020). https://doi.org/10.1186/s13638-
020-1661-4

https://doi.org/10.1111/rssb.12377
http://arxiv.org/abs/2004.06069
http://arxiv.org/abs/2004.06069
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-020-00701-z
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-020-00701-z
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1186/s13638-020-1661-4
https://doi.org/10.1186/s13638-020-1661-4

20 S. Agarwal et al.

13. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic rep-
resentation of time series. DAMI 15(2), 107–144 (2007)

14. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions (2017)
15. Metzenthen, E.: Lime for time code repository. https://github.com/emanuel-

metzenthin/Lime-For-Time/blob/master/demo/LIME-Pipeline.ipynb
16. Molnar, C.: Interpretable machine learning. https://christophm.github.io/

interpretable-ml-book/
17. Nguyen, T.T., Le Nguyen, T., Ifrim, G.: A model-agnostic approach to quan-

tifying the informativeness of explanation methods for time series classification.
In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G.
(eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 77–94. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65742-0 6

18. Ozyegen, O., Ilic, I., Cevik, M.: Evaluation of local explanation methods for mul-
tivariate time series forecasting, pp. 1–13 (2020). http://arxiv.org/abs/2009.09092

19. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” explaining the
predictions of any classifier. In: KDD, pp. 1135–1144 (2016)

20. Santos, T., Kern, R.: A literature survey of early time series classification and deep
learning. In: CEUR Workshop Proceedings, vol. 1793 (2017)

21. Schäfer, P.: The BOSS is concerned with time series classification in the presence of
noise. DAMI 29(6), 1505–1530 (2015). https://doi.org/10.1007/s10618-014-0377-7

22. Schäfer, P., Högqvist, M.: SFA: a symbolic Fourier approximation and index for
similarity search in high dimensional datasets. In: EDBT, pp. 516–527 (2012)

23. Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL.
In: CIKM, pp. 637–646 (2017)

24. Turing, A.: Sktime specifications. https://www.turing.ac.uk/research/research-
projects/sktime-toolbox-data-science-time-series

25. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate,
interpretable and fast classification. DAMI 22(1–2), 149–182 (2011)

26. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization (2015)

https://github.com/emanuel-metzenthin/Lime-For-Time/blob/master/demo/LIME-Pipeline.ipynb
https://github.com/emanuel-metzenthin/Lime-For-Time/blob/master/demo/LIME-Pipeline.ipynb
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-030-65742-0_6
http://arxiv.org/abs/2009.09092
https://doi.org/10.1007/s10618-014-0377-7
https://www.turing.ac.uk/research/research-projects/sktime-toolbox-data-science-time-series
https://www.turing.ac.uk/research/research-projects/sktime-toolbox-data-science-time-series

State Space Approximation of Gaussian
Processes for Time Series Forecasting

Alessio Benavoli1(B) and Giorgio Corani2

1 School of Computer Science and Statistics (SCSS), Trinity College Dublin,
Dublin, Ireland

alessio.benavoli@tcd.ie
2 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), USI - SUPSI

Lugano, Lugano, Switzerland
giorgio.corani@idsia.ch

Abstract. Gaussian Processes (GPs), with a complex enough additive
kernel, provide competitive results in time series forecasting compared
to state-of-the-art approaches (arima, ETS) provided that: (i) during
training the unnecessary components of the kernel are made irrelevant
by automatic relevance determination; (ii) priors are assigned to each
hyperparameter. However, GPs computational complexity grows cubi-
cally in time and quadratically in memory with the number of observa-
tions. The state space (SS) approximation of GPs allows to compute GPs
based inferences with linear complexity. In this paper, we apply the SS
representation to time series forecasting showing that SS models provide
a performance comparable with that of full GP and better than state-
of-the-art models (arima, ETS). Moreover, the SS representation allows
us to derive new models by, for instance, combining ETS with kernels.

Keywords: Time series forecasting · Gaussian Process · State space
approximation

1 Introduction

Gaussian Processes (GPs) [15] are a powerful tool for modeling correlated obser-
vations, including time series. GPs have been used for the analysis of astronom-
ical time series (see [4] and the references therein), forecasting of electric load
[12] and analysis of correlated and irregularly-sampled time series [16].

A kernel composition specific for time series has been recently proposed [3].
It contains linear trend, periodic patterns, and other flexible kernel for modeling
the non-linear trend. By setting priors on the hyperparameters, which keep the
inference within a reasonable range even on short time series, the GP yields very
accurate forecasts, outperforming the traditional time series models.

Note that the above GP based model is a type of Generalised Additive Model
(GAM) [26]. However, contrarily to traditional GAMs, it uses different nonpara-
metric components for the periodic and non-linear terms, and it is estimated in
a fully Bayesian way (that is, without backfitting).
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 21–35, 2021.
https://doi.org/10.1007/978-3-030-91445-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_2&domain=pdf
http://orcid.org/0000-0002-2522-7178
http://orcid.org/0000-0002-1541-8384
https://doi.org/10.1007/978-3-030-91445-5_2

22 A. Benavoli and G. Corani

Yet, GPs have computational complexity O(n3) and storage demands of
O(n2); hence, they are not suitable for large datasets. Several approximations
have been proposed to reduce their computational complexity to O(n), such
as sparse approximations based on inducing points [1,6,7,14,19,20,24], which
however add additional hyperparameters.

In the case of time series, it is possible to represent the full GP as a State
Space model, without the need for any additional hyperparameter [2,11,13,17,
18,22] and with O(n) complexity.

We focus on the SS representation of the GP and we provide the following
contributions. We discuss how to represent the model of [3] as a SS model,
obtaining almost identical results on the time series of the M3 competition.

We also apply the GP model of [3] to very long time series, thanks to the SS
representation. Also in this case we obtain positive results w.r.t the competitors.

Moreover, once the covariance functions of the Gaussian are represented in
the SS framework, they can be combined with the existing SS models. This opens
up the possibility of developing novel time series models. As a proof of concept,
we consider a traditional state-space model (additive exponential smoothing)
and we replace its seasonal component with the SS representation of the peri-
odic kernel of the GP. We obtain a less parameterized model, which has higher
accuracy on the time series of the M3 competition. The resulting model is also
more flexible; for instance, it could be easily extended to manage time series con-
taining multiple seasonal patterns, unlike the traditional exponential smoothing.

2 Background

In the following section, we provide a background on (i) Gaussian Processes; (ii)
State Space models; (iii) the State Space representation of Gaussian Processes.

2.1 Gaussian Process

We consider the regression model

y = f(x) + v, (1)

where x ∈ R
p, f : Rp → R and v ∼ N(0, s2v) is the noise. Our goal is to estimate

f given the training data D = {(xi, yi), i = 1, . . . , n}. In GP regression, we
place a GP prior on the unknown f , f ∼ GP (0, kθ),1 and calculate the posterior
distribution of f given the data D. We then employ this posterior to make
inferences about f .

In particular, we are interested in predictive inferences. Based on the train-
ing data XT = [x1, . . . ,xn], y = [y1, . . . , yn]T , and given m test inputs
(X∗)T = [x∗

1, . . . ,x
∗
m] , we aim to find the posterior distribution of f∗ =

1 A GP prior with zero mean function and covariance function kθ : Rp × R
p → R

+,
which depends on a vector of hyperparameters θ.

State Space Approximation of Gaussian Processes 23

[f(x∗
1), . . . , f(x∗

m)]T . From (1) and the properties of the Gaussian distribution,2

the posterior distribution of f∗ is Gaussian [15, Sec. 2.2]:

p(f∗|X∗,X,y,θ) = N(f∗; μ̂θ (X∗|X,y), K̂θ (X∗,X∗|X)), (2)

with mean and covariance given by:

μ̂θ (f∗|X,y) = Kθ (X∗,X)(Kθ (X,X))−1y,

K̂θ (X∗,X∗|X) = Kθ (X∗,X∗) − Kθ (X∗,X)(Kθ (X,X))−1Kθ (X,X∗). (3)

In GPs, the kernel defines the Covariance Function (CF) between any two
function values: Cov(f(x), f(x∗)) = kθ (x,x∗). Common kernels are the White
Noise (WN), the Linear (LIN), the Matern 3/2 (MAT32), the Matern 5/2
(MAT52), the Squared Exponential (RBF), the Cosine (COS) and the Peri-
odic (PER). Hereafter, we provide the expressions of these kernels for p = 1,
which is the case of time series; see instead [15] for generalizations:

WN: kθ (x1, x2) = s2vδx1,x2

LIN: kθ (x1, x2) = s2b + s2l x1x2

MAT32: kθ (x1, x2) = s2e

(
1 +

√
3|x1−x2|

�e

)
exp

(
−

√
3|x1−x2|

�e

)

MAT52: kθ (x1, x2) = s2e

(
1 +

√
5|x1−x2|

�e
+ 5(x1−x2)

2

3�2e

)
exp

(
−

√
5|x1−x2|

�e

)

RBF: kθ (x1, x2) = s2r exp
(

− (x1 − x2)2

2�2r

)

COS: kθ (x1, x2) = s2c cos
(

x1 − x2

τ

)

PER: kθ (x1, x2) = s2p exp
(

− (2 sin2(π|x1 − x2|/pe)
�2p

)

where δx1,x2 is the Kronecker delta, which equals one when x1 = x2 and zero
otherwise. The hyperparameters are the variances s2v, s2l , s

2
e, s

2
r, s

2
c , s

2
p > 0, the

lengthscales �r, �e, �p, τ > 0 and the period pe.
Selecting a kernel, or a combination of kernels, to determine the structure

of the covariance is a crucial factor governing the performance of a GP model.
Spectral mixture kernels (SM) [25] have been devised to overcome this issue
thanks to their property of being able to approximate any stationary kernel.3 SM
define a covariance kernel by taking the inverse Fourier transform of a weighted
sum of different shifts of a probability density. In the original formulation [25],
2 In this work, we include the additive noise v into the kernel by adding a White noise

kernel term.
3 A stationary kernel is one which is translation invariant: kθ (x1, x2) depends only on

x1 − x2, like for instance the Matern and RBF kernels.

24 A. Benavoli and G. Corani

the authors considered a Gaussian PDF, resulting into a covariance kernel which
is the sum of the RBF×COS kernels, so each term in the sum is equal to:

SMi: kθ (x1, x2) = s2mi
exp

(
− (x1 − x2)2

2�2mi

)
cos

(
x1 − x2

τmi

)
,

with hyperparameters smi
, �mi

and τmi
.

Learning the Hyperparameters. We denote by θ the vector containing all the ker-
nels’ hyperparameters. In practical application of GPs, θ have to be selected. We
use Bayesian model selection to consistently set such parameters. Variances and
lengthscales are non-negative hyperparameters, to which we assign log-normal
priors (later we show how we define the priors). We then compute the maxi-
mum a-posteriori (MAP) estimate of θ, that is we maximize w.r.t. θ the joint
marginal probability p(y,θ), which is the product of the prior p(θ) and the
marginal likelihood [15, Ch.2]:

p(y|X,θ) = N(y; 0,Kθ (X,X)). (4)

Usually θ is selected by maximizing the marginal likelihood of Eq. (4). Yet,
better estimates can be obtained by assigning prior to the hyperparameters and
then performing MAP estimation. The MAP approach yields reliably estimates
also on short time series, as pointed out by [3], in which it is also proposed a
methodology to define such priors.

2.2 State Space Models

Consider the following stochastic continuous time-variant (LTV) State Space
(SS) model [10] {

df(t) = F(t) f(t)dt + L(t) dw(t),
y(tk) = C(tk) f(tk), (5)

where f(t) = [f1(t), . . . , fm(t)]T is the state vector,4 y(tk) is the measurement
at time tk, F(t),C(t),L(t) are known matrices of appropriate dimensions and
w(t) is a one-dimensional Wiener noise process with intensity q(t). We further
assume that the initial state f(t0) and w(t) are independent for each t ≥ t0. The
solution of the stochastic differential equation in (5) is [10]:

f(tk) = ψ(tk, t0) f(t0) +

tk∫

t0

ψ(tk, τ)L(τ) dw(τ), (6)

4 m is a latent dimension which defines the dimension of the state space. The state is
a function of tim.

State Space Approximation of Gaussian Processes 25

with ψ(tk, t0) = exp(
∫ tk

t0
F(t)dt) is the state transition matrix, which is com-

puted as a matrix exponential.5 Assuming that E[f(t0)] = 0, then it can be
easily proven that the vector of observations [y(t1), y(t2), . . . , y(tn)]T is Gaus-
sian distributed with zero mean and covariance matrix whose elements are given
by:

E[y(ti)y(tj)] = C(ti)ψ(ti, t0)E[f(t0)fT (t0)](C(tj)ψ(tj , t0))T

+
min(ti,tj)∫

t0

h(ti, u)h(tj , u)q(u)du
(7)

where we have exploited the fact that E[dw(u)dw(v)] = q(u)δ(u − v)dudv [10]
and defined h(t1, t2) = C(t1)ψ(t1, t2)L(τ).

In SS models, one aims to estimate the states f(t1), . . . , f(tn) given the obser-
vations y(t1), . . . , y(tn) and the initial condition. There are in particular two
problems of interest: (i) filtering whose aim is to compute p(f(tk)|y(t1), . . . , y(tk))
for every tk; (ii) smoothing whose aim is to compute p(f(tk)|y(t1), . . . , y(tn)) for
every tk. For stochastic LTV systems, filtering and smoothing can be solved
exactly using the Kalman Filter (KF) and the Rauch-Tung-Striebel smoother
[10] with complexity O(n).

2.3 SS Models Representation of GPs

When the GP has one-dimensional input, it is possible to represent (or approx-
imate) the GP with a SS model. The advantage of the SS representation is that
estimates and inferences can be computed with complexity O(n). In practice,
one has to find a SS whose covariance matrix (7) coincides (or approximates)
that of the GP. This provides the SS representation of the GP, which then
allows us to estimate f(tk) given data {y(t1), . . . , y(tn)} using the KF and the
Rauch-Tung-Striebel smoother (with complexity O(n)). This can be obtained as
follows:

1. Discretize the continuous-time SS to obtain a discrete-time SS (this step
basically consists on applying (6)):

{
f(tk) = ψ(tk, tk−1)f(tk−1) + ν(tk−1),
y(tk) = C(tk) f(tk), (8)

where ν(tk−1) =
∫ tk

tk−1
ψ(tk, τ)L dw(τ).

2. Compute the probability density function (PDF) p(f(tk)|y(t1), . . . , y(tk)),
which is Gaussian. The mean and covariance matrix of this Gaussian PDF
can be computed efficiently by using the KF.

3. Compute the Gaussian posterior PDF p(x(tk)|y(t1), . . . , y(tn)) – the mean
and covariance matrix of this PDF can be computed very efficiently by using
the Rauch-Tung-Striebel smoother. This step returns the estimates of the
state given all observations.

5 The matrix exponential is eA = I + A + A2/2! + A3/3! + . . . and, for many matrices
A, it can be computed analytically.

26 A. Benavoli and G. Corani

4. To estimate the hyperparameters of the CF, we can perform MAP (as for
GPs). Note that, the marginal likelihood of the SS model can be computed
efficiently by the KF.

State Space Representation of Covariance Functions. The time continuous SS
representation of the covariance functions of Sect. 2.1 is given in Table 1. Such
representations do not include the variance scaling parameter that multiplies the
CF; it can be however included in the SS model by rescaling either the stochastic
forcing term or the initial condition (for SS without forcing term).

Table 1. SS representation of the CFs. When the distribution of the initial state is
not provided, it is assumed to be equal to zero. The intensity of the Wiener process w
is assumed to be q = 1.

WN

{
df
dt

(t) = dw
dt

(t)

y(tk) = f(tk)

LIN

⎧⎪⎪⎨
⎪⎪⎩

df1
dt

(t) = f2(t)

df2
dt

(t) = 0

y(tk) = f1(tk)

[
f1(t0)

f2(t0)

]
∼ N

([
0

0

]
,

[
s2b 0

0 s2l

])

MAT32

⎧⎪⎪⎨
⎪⎪⎩

df1
dt

(t) = f2(t)

df2
dt

(t) = − 3
�2

f1(t) − 2
√
3

�
f2(t) + 12

√
3

�3
dw
dt

(t)

y(tk) = f1(tk)

MAT52

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

df1
dt

(t) = f2(t)

df2
dt

(t) = f3(t)

df3
dt

(t) = − 3
√
5

�
f1(t) − 15

�2
f2(t) − 3

√
5

�
f3(t) + 400

√
5

3�5
dw
dt

(t)

y(tk) = f1(tk)

COS

⎧⎪⎪⎨
⎪⎪⎩

df1
dt

(t) = 1
τ
f2(t)

df2
dt

(t) = − 1
τ
f1(t)

y(tk) = f1(tk)

[
f1(t0)

f2(t0)

]
∼ N

([
0

0

]
,

[
1 0

0 1

])

Representing Compositions of Covariance Functions. Additive combination of
covariance functions can be represented by stacking SS models; this is called
cascade composition [17]. For instance, the SS model corresponding to WN+LIN
is:

State Space Approximation of Gaussian Processes 27

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

df1
dt (t) = dw

dt (t)
df2
dt (t) = f3(t)
df3
dt (t) = 0
y(tk) = f1(tk) + f2(tk)

[
f2(t0)
f3(t0)

]
∼ N

([
0
0

]
,

[
s2b 0
0 s2l

])
.

Multiplicative composition of covariance functions can be obtained via parallel
composition [17] of SS models. For instance, the COS× MAT32 kernel is repre-
sented as:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

df1
dt (t) = ωf2(t) + f3(t)
df2
dt (t) = −ωf1(t) + f4(t)
df3
dt (t) = − 3

�2 f1(t) − 2
√
3

� f3(t) + ωf4(t) + 12
√
3

�3
dw1
dt (t)

df4
dt (t) = − 3

�2 f2(t) − ωf3(t) − 2
√
3

� f4(t) + 12
√
3

�3
dw2
dt (t)

y(tk) = f1(tk)

The RBF and PER kernel do not admit an exact SS representation; for this
reason, they are not shown in Table 1. However, an approximated SS representa-
tion can be given. The PER kernel can be approximated as the sum of different
Cosine covariance functions (COS + COS + . . . + COS), with a suitable choice of
their lengthscales (defined using a Fourier series expansion of the PER kernel)
[21]. In this paper, we use 7 COS terms to approximate the PER kernel. The
RBF kernel can be approximated by a SS model based on the Matern d/2 kernel,
where d = 1, 3, 5, 7, 9, . . . and the approximation improves as d increases. In this
paper, we will use d = 3.

2.4 Time Series Forecasting and Priors

In [3], GP regression was proposed for time series forecasting using the following
composite kernel:

K = PER + LIN + RBF + SM1 + SM2 + WN. (9)

The periodic kernel (PER) captures the seasonality of the time series. LIN cap-
tures the linear trend. Long-term trends are generally smooth, and can be prop-
erly modelled by the RBF kernel. The two SM kernels are used to pick up the
remaining signal. Finally, the WN kernel represents the observation (Gaussian)
noise.

This results in a kernel capturing a wide range of patterns but comprising 16
hyperparameters, which must be estimated from data. This might be challenging
on short time series, such as monthly or quarterly ones. In [3] the problem is
addressed by setting priors on the hyperparameters. In particular, lognormal
priors are adopted and they are defined through a hierarchical Bayes approach,
i.e., by analyzing a subset of monthly time series from the M3 competition. The
priors, which we also adopt, are given in Table 2.

28 A. Benavoli and G. Corani

Table 2. Parameters of the lognormal priors. The same prior is adopted for the vari-
ances of all components in Eq. (9)

Parameter ν λ

Variance −1.5 1.0

Lengthscales

std periodic 0.2 1.0

rbf 1.1 1.0

SM1 −0.7 1.0

SM2 1.1 1.0

2.5 SS Approximation

To achieve O(n) complexity, we replace the kernel in (9) with this approximation

K̃ = (+8COS) + LIN + MAT32 + COS × MAT32 + COS × MAT32 + WN.
(10)

Fig. 1. Comparison of GP and SS forecasts. The blue dots are the training data and
the purple dots the test data. The small differences between full GP and SS are due to
the slightly different estimation of the hyperparameters. The time series are monthly
and the forecasts are computed up to 1.5 years ahead; time is expressed in years.

State Space Approximation of Gaussian Processes 29

Note we have approximated PER with the sum of 7 COS kernel and RBF with
MAT32.6 A GP with the above kernel can equivalently be represented by a SS
model who state has dimension 7 × 2 + 2 + 2 + 4 + 4 + 1 = 24.

Figure 1 compares the GP estimate and forecast based on the kernel (9) and
the SS approximation based on the kernel (10) on some time series from the M3
competition.7 The SS approximation provides close forecasts to the full GP. We
provide a more in-depth analysis when discussing the experiments.

2.6 Combining GP Kernel with Exponential Smoothing

Our framework is so flexible, that it allows combining the state-space represen-
tations of covariance functions and existing state-space models, thus obtaining
some novel time series models.

As a proof of concept, we consider state-space additive exponential smoothing
(additive ets), and we replace its seasonal component with the PER kernel.

The discrete-time SS representation of exponential smoothing with linear
trend is [8]:

Holt:

⎧
⎪⎨

⎪⎩

f1((k + 1)Δt) = f1(kΔt) + f2(kΔt) + αw((k + 1)Δt)

f2((k + 1)Δt) = f2(kΔt) + αβw((k + 1)Δt)

y((k + 1)Δt) = f1(kΔt) + f2(kΔt) + w((k + 1)Δt)

[
f1(t0)
f2(t0)

]

∼ N
([

0
0

]

,

[
s2l 0
0 s2b

])

where Δt is the sampling frequency and w are independent Gaussian noises with
zero mean and variance s2v. Such model has five parameters: α, β ∈ [0, 1] and
s2l , s

2
b , s

2
v.

We then complete the SS model by adding the (approximated) SS represen-
tation of the PER kernel, constituted by the sum of seven COS covariance func-
tions. When estimating the hyperparameters, automatic relevance determination
(ARD) automatically makes irrelevant the unnecessary component, without the
need for a separate model selection step.8

3 Experiments

We consider the following GP models:

– full-GP: the model of Eq. (9), trained with priors [3];
– full-GP0: the same model, trained by maximizing the marginal likelihood (no

priors);

6 We also tried a more accurate approximation of the periodic kernel, 11 COS kernels,
but it did not provide a significant better performance in the M3 competition.

7 In both cases, we have estimated the kernels hyperparameters using MAP.
8 For the variances of the Holt’s model we use the same priors as in Table 2. For

α, β, we use the prior Beta(1, 1.4) and, respectively, Beta(1, 11.4). We learned the
parameters of these priors using a hierarchical model similar to the one described in
[3].

30 A. Benavoli and G. Corani

– SS-GP and SS-GP0, i.e., the corresponding SS models (Eq. 10) trained with
and without priors.

We use a single restart when training all the models.
As benchmarks, we consider auto.arima and ets, both available from the

forecast package [9]. The auto.arima algorithm first makes the time series sta-
tionary via differentiation; then it fits an ARMA model selecting the orders via
AICc. The ets algorithm fits several state-space exponential smoothing mod-
els [8], characterized by different types of trend, seasonality and noise; the best
model is eventually chosen via AICc. All the considered models represent the
forecast uncertainty via a Gaussian distribution.

Metrics. As performance metric, we consider the mean absolute error (MAE)
on the test set:

MAE =
T∑

t=1

|yt − ŷt|

where we denote by yt and ŷt the actual value and the expected value of the
time series at time t; σ2

t denotes the variance of the forecast at time t and by T
the length of the test set.

Furthermore, we compute the continuous-ranked probability score (CRPS)
[5], which generalizes the MAE to the case of probabilistic forecasts. It is a
proper scoring rule for probabilistic forecasts, which corresponds to the integral
of the Brier scores over the continuous predictive distribution. MAE and CRPS
are loss functions, hence the lower the better.

3.1 Monthly M3

Table 3. Performance on the M3 monthly time series.

Median Mean

Algorithm MAE CRPS MAE CRPS

SS-GP 0.489 0.342 0.567 0.421

full-GP 0.482 0.347 0.565 0.414

SS-GP0 0.550 0.408 0.627 0.499

full-GP0 0.546 0.390 0.628 0.460

ETS 0.516 0.369 0.595 0.436

Auto.arima 0.515 0.373 0.588 0.430

The M3 competition includes 1489 monthly time series. We exclude 350 of them,
which were used in [3] to define the priors of Table 2, which we also adopt. We

State Space Approximation of Gaussian Processes 31

thus run experiments on the remaining 1079 monthly time series. The length of
training set varies between 49 and 126 months, while the test set is always 18
months long. We standardize each time series using the mean and the standard
deviation of the training set. We fix the period of the periodic kernel to one year,
which is standard practice for M3.

The median and mean results for time series are given in Table 3. The SS-
GP and full-GP obtain the best median and mean performance on all indicators.
The performance of full-GP and of its state-space representation is practically
identical, showing that the SS approximation is very accurate. We tried also
Prophet [23] but its accuracy was not competitive. We thus dropped it.

The large improvement of full-GP and SS-GP over full-GP0 and SS-GP0

confirms that the priors are necessary to exploit the potential of the GP.

3.2 Combining GP Kernel and Exponential Smoothing

The SS representation of GPs allows us to combine GPs with state-of-the-art
models for time series forecasting such the ETS model [8].

In this section, we compare the SS model discussed previously, which uses
the following kernel:

K̃1 = (+7COS) + Holt, (11)

where the Holt kernel has been defined in Sect. 2.6.
We compare this model with additive ETS model, defined as follows. The

additive ets model fits four different models via maximum likelihood and per-
forms model selection via AICc. The four models are simple exponential smooth-
ing (ses, no trend and no seasonality), ses with linear trend, ses with linear trend
and additive seasonality, ses with additive seasonality but no trend. We imple-
ment all such models using the forecast package for R [9]. The ets framework
makes available also multiplicative models, that however we do not consider in
this section.

The seasonal component of exponential smoothing has some shortcomings:
it requires to estimate (m + 1) parameters, where m denotes then number of
samples within a period (e.g., m = 12 for monthly time series); moreover, it does
not manage complex seasonalities such non-integer periods or multiple seasonal
pattern. In our model we thus substitute it with the PER kernel (equivalently
(+7COS) kernel), which has only two (hyper)-parameters and which can model
complex seasonalities (e.g., multiple seasonalities can be modelled by adding
multiple PER kernels).

Therefore, the main differences between additive ets and our novel model are
thus:

– PER kernel vs seasonal component of exponential smoothing;
– automatic relevance determination vs model selection.

The simulation results are shown in Table 4. SS-GP is again the best model.
Comparing SS-GP performance in Table 3 and 4 is evident that the more complex
kernel (10) provides a better the performance. However, this shows how the SS

32 A. Benavoli and G. Corani

representation of GPs opens up the possibility of developing novel time series
models combining traditional time series models with “machine-learning-like”
models.

Table 4. Performance on M3 monthly. SS-GP with kernel K̃1 compared to additive
ETS.

Median Mean

Algorithm MAE CRPS MAE CRPS

SS-GP 0.511 0.368 0.581 0.436

SS-GP0 0.538 0.387 0.608 0.461

Additive ETS 0.533 0.381 0.601 0.439

3.3 Large Datasets and Multiple Seasonality

Fig. 2. Two time series taken from the Electricity Dataset

By contrast to full GP, SS models can scale to large datasets. We provide a proof-
of-concept of that by applying the SS model to two time series in the UCI’s Elec-
tricity Dataset. Each time series is relative to the electricity consumption of client
from a period of 2011 to 2014 at an interval of 15 min. The goal is to forecast the
electricity consumption one week ahead. The length of each time series is 23997
and, therefore, we cannot run full GP (on a standard PC). Moreover, the time

State Space Approximation of Gaussian Processes 33

Fig. 3. One week ahead forecast computed by (i) the proposed SS model; (ii) Face-
book’s Prophet; for the two time series in Fig. 2. The time has been normalized: 1 is
one year.

series have both daily and weekly periodicity, which means the kernel in (10) is
not appropriate.

However, we can easily deal with multiple seasonality by adding another
periodic component to the kernel:

K̃ = (+7COS) + (+7COS) + LIN + MAT32 + COS × MAT32 + COS × MAT32 + WN
(12)

where the first periodic kernel (the term (+7COS)) has period 1/365.25 and the second
7/365.25.9

Figure 2 shows two time series taken from the Electricity Dataset. Figure 3 reports
the relative one week ahead forecast computed by (i) the proposed SS model; (ii)
Facebook’s Prophet. The training times are of few seconds for Prophet, and about
300 s for the SS model.

While our implementation is currently slower than Prophet, it already handles flaw-
lessly this time series. The training time of our implementation can be largely reduced
by using Stochastic Gradient (SGD) optimization, thus working with minibatch of data.
The forecasts show that the SS model is competitive also on long time series; however,
the analysis of a large number of time series is needed in order to achieve conclusions
which are significant. We defer this analysis to future work, after the completion of a
faster implementation of SS-GP based on SGD.

4 Conclusions

Focusing on time series forecasting, we have shown that a Gaussian Process with a
complex composite kernel can be accurately approximated by a state space model.

9 By contrast to arima and ETS, GP and SS models can easily model non-integer
seasonality like the ones in the Electricity dataset, see [3] for more details.

34 A. Benavoli and G. Corani

The resulting state space model has a comparable performance, but with a complexity
which scales linearly in the input size. Moreover, given state-of-the-art models for time
series forecasting are implemented in state space form, the state space representation of
Gaussian Processes allowed us to combine traditional models (like exponential smooth-
ing) with kernel-based models (like periodic kernel) in a sound Bayesian manner.

Several future research directions are possible. One is the extension to time series
characterized by non-Gaussian likelihoods, such as count time series or intermittent
time series. Other possibilities include the combination of exponential smoothing
with the spectral mixture or the Neural Network kernel. We also plan to compare
our approach with other Generalised Additive (Mixture) Models used for time-series
forecasting.

Acknowledgements. The authors acknowledge support from the Swiss National
Research Programme 75 “Big Data” Grant No. 407540 167199/1.

References

1. Bauer, M., van der Wilk, M., Rasmussen, C.E.: Understanding probabilistic sparse
Gaussian process approximations. In: Advances in Neural Information Processing
Systems, pp. 1533–1541 (2016)

2. Benavoli, A., Zaffalon, M.: State Space representation of non-stationary Gaussian
processes. arXiv preprint arXiv:1601.01544 (2016)

3. Corani, G., Benavoli, A., Zaffalon, M.: Time series forecasting with Gaussian Pro-
cesses needs priors. In: Proceedings of the ECML PKDD (2021, accepted). https://
arxiv.org/abs/2009.08102

4. Foreman-Mackey, D., Agol, E., Ambikasaran, S., Angus, R.: Fast and scalable
Gaussian process modeling with applications to astronomical time series. Astron.
J. 154(6), 220 (2017)

5. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estima-
tion. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

6. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Pro-
ceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,
UAI 2013, pp. 282–290. AUAI Press, Arlington (2013)

7. Hernández-Lobato, D., Hernández-Lobato, J.M.: Scalable Gaussian process classi-
fication via expectation propagation. In: Artificial Intelligence and Statistics, pp.
168–176 (2016)

8. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice, 2nd edn.
OTexts, Melbourne (2018). OTexts.com/fpp2

9. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast
package for R. J. Stat. Softw. 26(3), 1–22 (2008). http://www.jstatsoft.org/article/
view/v027i03

10. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation,
New York (2007)

11. Karvonen, T., Sarkkä, S.: Approximate state-space Gaussian processes via spectral
transformation. In: 2016 IEEE 26th International Workshop on Machine Learning
for Signal Processing (MLSP), pp. 1–6. IEEE (2016)

12. Lloyd, J.R.: GEFCom2012 hierarchical load forecasting: gradient boosting
machines and Gaussian processes. Int. J. Forecast. 30(2), 369–374 (2014)

http://arxiv.org/abs/1601.01544
https://arxiv.org/abs/2009.08102
https://arxiv.org/abs/2009.08102
https://OTexts.com/fpp2
http://www.jstatsoft.org/article/view/v027i03
http://www.jstatsoft.org/article/view/v027i03

State Space Approximation of Gaussian Processes 35

13. Loper, J., Blei, D., Cunningham, J.P., Paninski, L.: General linear-time inference
for Gaussian processes on one dimension. arXiv preprint arXiv:2003.05554 (2020)

14. Quiñonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate
Gaussian process regression. J. Machine Learn. Res. 6, 1939–1959 (2005)

15. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT
Press, Cambridge (2006)

16. Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., Aigrain, S.: Gaussian
processes for time-series modelling. Philos. Trans. Royal Soc. A Math. Phys. Eng.
Sci. 371(1984), 20110550 (2013)

17. Särkkä, S., Hartikainen, J.: Infinite-dimensional Kalman filtering approach to
spatio-temporal Gaussian process regression. In: International Conference on Arti-
ficial Intelligence and Statistics, pp. 993–1001 (2012)

18. Sarkka, S., Solin, A., Hartikainen, J.: Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: a look at Gaussian process regression
through kalman filtering. Signal Process. Mag. IEEE 30(4), 51–61 (2013)

19. Schuerch, M., Azzimonti, D., Benavoli, A., Zaffalon, M.: Recursive estimation for
sparse Gaussian process regression. Automatica 120, 109–127 (2020)

20. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In:
Advances in Neural Information Processing Systems, pp. 1257–1264 (2006)

21. Solin, A., Särkkä, S.: Explicit link between periodic covariance functions and state
space models. In: Artificial Intelligence and Statistics, pp. 904–912. PMLR (2014)

22. Solin, A., Sarkka, S.: Gaussian quadratures for state space approximation of scale
mixtures of squared exponential covariance functions. In: 2014 IEEE International
Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE
(2014)

23. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018)
24. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes.

In: van Dyk, D., Welling, M. (eds.) Proceedings of the Twelth International Con-
ference on Artificial Intelligence and Statistics. Proceedings of Machine Learn-
ing Research, PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida
USA, 16–18 April 2009, vol. 5, pp. 567–574 (2009)

25. Wilson, A., Adams, R.: Gaussian process Kernels for pattern discovery and extrap-
olation. In: International Conference on Machine Learning, pp. 1067–1075. PMLR
(2013)

26. Wood, S.N.: Generalized Additive Models: An Introduction with R. CRC Press,
Boca Raton (2017)

http://arxiv.org/abs/2003.05554

Fast Channel Selection for Scalable
Multivariate Time Series Classification

Bhaskar Dhariyal(B), Thach Le Nguyen, and Georgiana Ifrim

School of Computer Science, University College Dublin, Dublin, Ireland
{bhaskar.dhariyal,thach.lenguyen,georgiana.ifrim}@insight-centre.org

Abstract. Multivariate time series record sequences of values using mul-
tiple sensors or channels. In the classification task, we have a class label
associated with each multivariate time series. For example, a smart-
watch captures the activity of a person over time, and there are typi-
cally multiple sensors capturing aspects of motion such as acceleration,
orientation, heart beat. Existing Multivariate Time Series Classification
(MTSC) algorithms do not scale well with large datasets, and this leads
to extensive training and prediction times. This problem is attributed to
an increase in the number of records (e.g., study participants), duration
of recording (time series length), and number of channels (e.g., sensors).
Existing MTSC methods do not scale well with the number of channels,
and only a few methods can complete their training on the medium sized
UEA MTSC benchmark within 7 days. Additionally, for some problems,
only a few channels are relevant for the learning task, and thus iden-
tifying the relevant channels before training may help with improving
both the scalability and accuracy of the classifiers, as well as result in
savings for data collection and storage. In this work, we investigate a
few channel selection strategies for MTSC and propose a new approach
for fast supervised channel selection. The key idea is to use channel-wise
class separation estimation using fast computation on centroid-pairs. We
evaluate the impact of our new method on the accuracy and scalability
of a few state-of-the-art MTSC algorithms and show that our approach
can dramatically reduce the input data size, and thus improve scalability,
while also preserving accuracy. In some cases, the runtime for training the
classifier was reduced to one third of the runtime on the original dataset.
We also analyse the performance of our channel selection method in a
case study on a human motion classification task and show that we can
achieve the same accuracy using only one third of the data.

Keywords: Channel selection · Dimension reduction · Time series

1 Introduction

Time series are data recorded as ordered sequences of numeric values and are
encountered in many applications. The proliferation of IoT and sensor technol-
ogy has rapidly fuelled the collection of such sequential data. Furthermore, the
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 36–54, 2021.
https://doi.org/10.1007/978-3-030-91445-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_3

Fast Channel Selection for Scalable Multivariate Time Series Classification 37

onset of the covid19 pandemic has also enhanced the growth of temporal data
collection. For instance, a study [1] in March 2021 reported 28% growth in the
market for wearable sensing devices. Besides sensors, multimedia files like images,
audio, and video can also be converted to time series to save on data storage,
and thus become significant contributors to time series database growth.

Time-series applications vary across domains, e.g. sports science, agriculture,
or healthcare. For example, a person lifts a barbell above their head from shoul-
der level in the Military Press exercise. The motion of various body parts during
the exercise can be captured to analyse the correctness of the exercise execution.
Sensors or video recordings can help track the movement of body parts in the
form of temporal data (time series) [18]. The body parts that act as data sources
are known as channels in the time series context, and these channels record time-
series data simultaneously. The execution of the exercise can be classified into
normal and aberrant subtypes. The task of assigning discrete labels to multi-
channel time series is known as Multivariate Time Series Classification (MTSC).
In the case of a single channel, the task of assigning a label is known as Univari-
ate Time Series Classification (UTSC). Figure 1 illustrates the video capture of
a person doing a Military Press exercise and the extraction of multivariate time
series using body pose estimation with OpenPose [3].

Fig. 1. From video to multivariate time series using OpenPose (figure from [18]).

Research in UTSC has made significant progress [2], but there is much less
work done on MTSC [13]. Most literature in UTSC considers the MTSC problem
as an extended version of UTSC and tends to adapt UTSC methods for MTSC.
However, such methods ignore the computational components such as space and
time complexity which are crucial elements for MTSC, thus rendering most of
the state-of-the-art (SOTA) classifiers infeasible for practical applications. The
recent studies [5,13] highlighted scalability as a big challenge for SOTA classifiers
in MTSC, with many existing algorithms not able to complete training on 26
medium-sized UCR MTSC datasets within 7 days. The scalability challenge can
be analysed from three perspectives: the number of channels, length of time series

38 B. Dhariyal et al.

and number of samples in the dataset. This study focuses on the first aspect and
proposes a new method to select relevant channels from the training data, before
training a classifier. The study’s primary objective is to enable existing SOTA
classifiers to scale better with an increase in the number of MTSC channels,
by reducing the time and memory required for computation, while maintaining
accuracy. In particular, we examine the impact of our channel selection approach
on the recent MTSC algorithms Rocket [4], MrSEQL [10], Weasel-MUSE [16]
and 1NN-DTW [13]. The main contributions of this study are:

– We propose three greedy channel selection strategies for MTSC, to scale up
existing MTSC algorithms.

– We conduct extensive experiments on the UCR MTSC benchmark and report
a 70% reduction in computation time for the combination of channel selection
plus training MTSC algorithms, while preserving the classifier accuracy.

– We show that not all the data is useful for classification and that we achieve
significant data storage savings, e.g., 70% of the original data can be discarded
with our approaches.

– We present a case study of our methods on a real-world, 25-channel MTSC
dataset, recorded for the Military Press strength and conditioning exercise.

The rest of the paper is structured as follows. In Sect. 2, we briefly describe
the SOTA MSTC approaches and existing channel selection strategies. Section 3
presents our proposed methods. Section 4 introduces the UEA MTSC benchmark
used for the experiments and reports our empirical results. In Sect. 5 we perform
a case study on the Military Press dataset. We conclude our study in Sect. 6.

2 Related Work

In this section we give a brief overview of recent MTSC methods and discuss
existing approaches for channel selection.

2.1 Multivariate Time Series Classification

The recent empirical survey [13] provides a detailed overview of progress in
MTSC. Here we describe a subset of those methods, with a specific focus on
methods that were shown to complete the training and testing on the 26 equal-
length UEA MTSC datasets within 7 days and do not require advanced HPC
infrastructure.

1NN-DTW is a 1-Nearest Neighbour classifier with Dynamic Time Warp-
ing (DTW) distance and one of the most popular methods in MTSC. In [17] the
authors proposed two versions of DTW for MTS data, DTWI and DTWD, to
study the impact of DTW on multiple channels. The main difference between
the two versions is how they compute the distance between two multivariate
time series. The DTWI assumes each channel of MTS as an independent uni-
variate time-series and consequently sums up the distances for each channel pair.

Fast Channel Selection for Scalable Multivariate Time Series Classification 39

It calculates the optimal path P based on the pointwise distance between the
time series. The DTWD assumes that the correct warping is the same across
all channels; it computes the distance between two time series by first summing
up the distance across each channel. Unlike for DTWI , in DTWD the optimal
path P is based on the euclidean distance between two vectors that represent all
channels. Although both versions of DTW have high accuracy and are consid-
ered a strong baseline for any MTSC task, they are computationally expensive1

and have been outperformed in accuracy by more recent methods [13]. Both
DTWI and DTWD are heavily impacted by the number of time series channels,
thus optimising the number of channels can drastically help in improving their
scalability.

MrSEQL-SAX [10] is a linear classifier that extracts symbolic features from
time series. The method first transforms time-series data to multiple symbolic
representations of different domains (e.g., SAX [11] in the time domain and
SFA [15] in the frequency domain) and different resolutions (i.e., different window
sizes). The classifier extracts discriminative subsequences from the symbolic rep-
resentations and these subsequences are later combined to form a feature vector
used to train a classification model. In [10] the authors showed that adding fea-
tures from different representations types (e.g., SAX and SFA) boosts the accu-
racy of the classifier. The method was initially developed for UTSC but was also
adapted for MTSC; the adapted version views each channel as an independent
representation of the time series. Unlike UTSC ensemble classifiers, MrSEQL
uses all the extracted features from the different representations by combin-
ing them into a single feature space to train the final model. The SAX/SFA
symbolic transforms are computationally expensive. Furthermore, transforma-
tion over multiple windows iterating over full time series incurs a high cost to
the scalability of the classifier. Therefore, reducing the number of channels has
potential to significantly improve the scalability of MrSEQL. MrSEQL-SAX is
a version of MrSEQL restricted to use only SAX features (this version is more
efficient than the one using both SAX and SFA features).

WEASEL-MUSE [16] is an extension of the WEASEL algorithm developed
for UTSC. The classifier builds a bag-of-pattern (BOP) model using the SFA
transform for every channel. By rolling multiple windows of varying size on raw
and derivative time series, this method transforms those segments into unigram
and bigram words. The classifier links these words to their respective channel and
creates a histogram for each channel separately. Since there are many features
for every channel, the Chi-square feature selection method removes the irrelevant
ones. The selected features are concatenated into a single feature vector which
is fed to a logistic regression algorithm. Similar to MrSEQL, the WEASEL-
MUSE classifier also iterates over the entire time series for every channel and
performs the SFA transform for every window. This iteration and transformation

1 We have evaluated here the sktime implementation of DTW.

40 B. Dhariyal et al.

increase the overall computation cost. Also, storing many unigrams and bigrams
in memory is quite expensive.

ROCKET [4] is a recent classifier initially developed for UTSC and also
extended to MTSC. Models produced by ROCKET are often highly accurate
while keeping the computational burden low. Inspired by CNN, ROCKET relies
on convolutional kernels to extract features. Instead of learning the weights of
kernels through backpropagation, ROCKET randomly generates many convolu-
tional kernels. Additionally, kernel properties like length, dilation, stride, bias
and zero-padding are sampled at random. For the MTSC task, the internal chan-
nel selection is also random. A close look at the code shows that there are at
most 12 channels selected for any MTSC dataset, so the runtime of this algorithm
is not significantly affected by the number of channels, especially for datasets
with more than 12 channels. In principle, the kernels are just a simple linear
transformation of the input time series producing a new time series. A linear
classifier, ridge regression, trains on the feature vector formed by global max
pooling and the proportion of positive values (PPV) features extracted from the
convolution time series from every channel. ROCKET has become very popular
due to its high accuracy and speed, yet the impact of the number of channels on
this classifier in the MTSC task is not yet examined.

2.2 Channel Selection for Multivariate Time Series Classification

Channel Selection for multivariate time series is a recurring topic in the MTSC
literature. However, the focus of most work has been on accuracy, rather than
scalability. The most recent work on channel selection [8] tries to identify the
best subset of channels. The author’s method calculates a merit score based on
correlation patterns of the outputs from the classifiers. The algorithm iterates
through every possible subset to calculate the merit score, followed by wrap-
per search on the subset with top 5% merit score. 1NN-DTW is employed to
perform the classification. DTW is computationally expensive [5], and using
DTW over every possible subset amplifies this problem. Another notable study
is CleVer [19] where the author proposed three unsupervised feature subset selec-
tion techniques employing Common Principal Component Analysis (CPCA) [9]
to measure the importance of each sensor. The authors build a correlation coeffi-
cient matrix among different channels for each MTS. The principal components
of each coefficient matrix are calculated, and all the principal components are
aggregated together, and descriptive component principal components are cal-
culated. The l2-norm of the resulting vector generates the rank of each channel.
The work [7] proposed a framework for channel selection using a voting-based
method. The two criteria used were distance-based classification and confidence-
based classification. These methods were proposed for streaming data, which is
outside the scope of the current study.

In the recent study [6], the authors presented an algorithm for channel rank-
ing and channel selection. The key idea is that if a channel produces similar time

Fast Channel Selection for Scalable Multivariate Time Series Classification 41

series with the same label and different time series with a different label, then
it is an informative channel. The channel ranking algorithm assigns a relevance
score for each channel. The relevance scores are constructed on a similarity graph
among the channels. The authors find the largest eigenvector of the normalized
adjacency matrix of the similarity graph, which reflects its cluster structure.
Apart from channel ranking the authors also propose channel subset selection.
From the adjacency matrix above, the algorithm finds the linear combination of
matrices that approximates the similarity matrix of the labels and use the min-
imum number of redundant channels. Although the proposed channel ranking
and selection approach performs well with regards to accuracy, it is slow. Some
of the computational bottlenecks include finding the eigenvector and using DTW
as the distance measure.

3 Proposed Methods

Let X ∈ Rn×d×l be an MTS dataset and y the labels of the time series in the
dataset. We denote by n the number of time series in the dataset, d the number
of channels in the multivariate time series and l the time series length. In this
paper, we only consider fixed-length time series datasets.

The proposed channel selection method makes use of class centroids as rep-
resentatives of the classes. Let XA = {t ∈ X | y(t) == A} be the subset of X
that contains only samples from class A. The centroid of class A is computed as
the average of time series in that class:

CA[i, j] =
∑k=m

k=1 XA[k, i, j]
m

where m is the number of samples in class A. The multi-channel centroid CA is
a d × l matrix in which each row CA,i is the centroid of class A for channel i.

The centroid-driven channel selection technique computes the distance
matrix for every pair of class centroids, for each channel, using a distance
function(Δ) discussed later in the section. For a dataset with r classes, the total
number of pairs of class centroids is r∗(r−1)

2 . For instance, the distance matrix for
a 4-channel dataset with four classes is shown in Table 1, where channel RElbow
has the highest distance (166.99) for the pair of class centroids Cn and Cr. In our
proposed method, we examine this distance matrix to select the channels that are
most likely to be useful. The idea is that channels with larger distances between
class centroids are more likely to be discriminative, since centroids behave like
prototypes for time series in those classes. In this example, the distance between
class centroids Cn and Cr is highest for channel RElbow therefore this channel
is more likely to be useful in separating these classes than the other channels,
while channel Nose has small distances for all class pairs and so does not seem to
be useful to separate any classes. Our method has three components: a distance
measure used to compare centroids, an elbow cut heuristic used to threshold the
ranked list of channels and three channel selection strategies.

42 B. Dhariyal et al.

Table 1. Illustration of a distance matrix with 4 channels and 4 classes: a, arch, n, r.
More details about this dataset are provided in the case study described in Sect. 5.

Channels Δ(Ca, Carch) Δ(Ca, Cn) Δ(Ca, Cr) Δ(Carch, Cn) Δ(Carch, Cr) Δ(Cn, Cr)

Nose 15.93 11.13 14.90 14.20 14.60 16.93

RElbow 34.62 48.95 157.12 33.04 153.80 166.99

RHeel 29.66 39.84 9.15 16.65 25.86 35.88

LWrist 38.557 42.95 148.48 47.40 155.56 157.55

Distance Metric. In our current work we use euclidean distance to calculate
the distance (Δ) between the centroid pairs for each channel. The Euclidean
distance is measured as the l2 norm of the difference between the centroids.

Δ(CA,i, CB,i) = ‖CA,i − CB,i‖

Channel Selection Strategies. We propose and evaluate three different
strategies for channel selection to identify useful channels.

– KMeans. This strategy applies k-means clustering with k = 2 on the distance
matrix to segregate the channels. Every channel (row from distance matrix)
is assigned to one cluster. The cluster centroid represents the mean distance
of channels across every class pair. Thus, the mean of the cluster centroid
acts as a discriminating criterion. We select the channels from the cluster
whose centroid-mean is greater than the other centroid-mean, meaning that
this cluster contains channels with higher separation distance, while the other
cluster contains noisy channels.

– Elbow Class Sum (ECS). From the distance matrix, we sum all the pair-
wise distances for each channel (sum each row). The sum of the distances is
sorted in descending order, and an elbow-point is retrieved using the elbow-
cut approach described below. All the channels with a distance higher than
that of the elbow point are selected as the relevant channels. A single large
centroid-pair distances can bias this type of channel selection, favouring chan-
nels that separate two classes clearly, but may not be useful for separating
other classes.

– Elbow Class Pairwise (ECP). The second strategy, ECS, can be biased
towards channels that are useful for separating only a few classes. An alterna-
tive strategy iterates through every class pair, selects the best set of channels
for that pair and finally takes the union of channels over all pairs. This elim-
inates the potential bias found in the previous strategy. In some cases, this
can lead to selecting all the channels, however, there were only few instances
of this behaviour in the UEA dataset.

Elbow Cut. The elbow cut method [14] is a method to determine a point in a
curve where significant change can be observed, e.g., from a steep slope to almost
flat curve. This point is often referred to as the elbow or the knee point. This

Fast Channel Selection for Scalable Multivariate Time Series Classification 43

is a well-known method to determine the best number of clusters when doing
clustering. We apply it here to separate useful channels from noisy channels.
An algorithm takes as input the sorted distances corresponding to channels and
returns the elbow point. The elbow is the point at the highest distance(d) from
the line(b) joining the initial and ending point as shown in Fig. 2. The distance d

to any point on the distance curve is calculated as d = |p− (p.b̂)b̂| where b̂ = b
‖b‖

and p.b̂ is the projection of p onto b̂. The elbow-point is then elbow = argmax(d).
The channels that come before the elbow are selected as useful channels for
classification and the smaller dataset with this subset of channels is used for the
classification step (see Algorithm 1). It is clear from Fig. 2 that the elbow point
can be relaxed thus allowing a trade-off between data storage and the accuracy
of classification. In our work we use the first elbow point which corresponds to
channel RShoulder and select only the channels before this point.

Fig. 2. Elbow-point channel selection. All the channels up to RShoulder are selected.

4 Evaluation

All the experiments were conducted using the popular Python library sktime
[12]. Our primary objective in designing experiments is to understand the relative
gain or loss in computational aspects of MTSC algorithms using the proposed

44 B. Dhariyal et al.

Algorithm 1: Channel Selection for an MTSC dataset.
Input: Train dataset: X,y
Output: Selected channels

1 Initialization;
2 For each channel in X and each class, compute class centroid ;
3 Compute distance matrix for all pair of centroids;
4 if Channel-Selection is KMeans;
5 Create 2 clusters using KMeans;
6 Selected channels = cluster with higher centroid mean;
7 elif Channel-Selection is ECS ;
8 Sum the distance matrix by rows;
9 Rank channels by sum distance;

10 Find the elbow on the ranked channels;
11 Selected channels = channels with sum distances > elbow point ;
12 elif Channel-Selection is ECP;
13 For each pair of classes;
14 Rank the channels by the distances in the corresponding column of the

distance matrix;
15 Find the elbow on the ranked channels;
16 Selected channels = Selected channels ∪ channels with class pair-wise

distance > elbow point;
17 Return Selected channels;

channel selection strategies for data reduction. We release all our code in our
Github repository2.

4.1 Datasets

The UEA/UCR Time Series Classification archive [2] is a collection of univari-
ate and multivariate time series data. The repository contains 30 multivariate
datasets from a variety of application domains, e.g., ECG, motion classification,
spectra classification. These heterogeneous datasets vary regarding the number
of channels (from 2 to 1,345), number of time series (12 to 30,000) and time
series length (8 to 17,894). Here we work with the subset of 26 datasets with
equal-length time series.

4.2 MTSC Algorithms

All algorithms described in Sect. 2, except ROCKET, utilise all the channels
from the MTSC datasets. Table 2 gives the hyperparameter settings used for all
the classifiers in this study.

Table 3 presents the results of these MTSC algorithms on the 26 datasets
when no explicit channel selection is implemented. The time is shown in hours
and is the total time taken by the algorithm for training and prediction. We
2 https://github.com/mlgig/Channel-Selection-MTSC.

https://github.com/mlgig/Channel-Selection-MTSC

Fast Channel Selection for Scalable Multivariate Time Series Classification 45

Table 2. Hyperparamter setting used for various SOTA methods

Classifiers Hyperparameter-setting

WEASEL-MUSE MUSE(random state=0)

MrSEQL-SAX MrSEQLClassifier(seql mode=fs, symrep= [‘sax’])

ROCKET Rocket(random state=0)

ROCKET* ROCKET with all channels

1NN-DTW KNeighborsTimeSeriesClassifier(n neighbors=1, distance=“dtw”)

observe that ROCKET and WEASEL-MUSE have almost similar mean accu-
racy, however ROCKET is much faster. ROCKET implements a random chan-
nel selection strategy which allows it to keep the runtime bounded, no mat-
ter how many channels the dataset has; we discuss this in more detail later in
this section. ROCKET also uses a multi-threaded implementation, while all the
other algorithms are single-thread implementations, hence the significant differ-
ence in runtime. The baseline 1NN-DTW is the least accurate and the slowest
method among the four. MrSEQL-SAX does not use the SFA representations in
this study, due to the SFA implementation in sktime being too computationally
expensive, so its accuracy is lower than ROCKET and WEASEL-MUSE in this
experiment. Both WEASEL-MUSE and MrSEQL are impacted by the runtime
taken by the symbolic transform, while 1NN-DTW is impacted by the DTW
computation. In the Appendix we provide detailed results with each algorithm
on each dataset.

Table 3. Mean accuracy and total time of SOTA on 26 UEA MTSC datasets.

Classifier Accuracy Time (in hrs)

ROCKET 71.59 0.1

WEASEL-MUSE 70.28 73.22

MrSEQL-SAX 66.99 141.40

1NN-DTW 65.38 152.07

4.3 MTSC with Channel Selection

Our proposed channel selection strategies (KMeans, ECS, and ECP) are evalu-
ated on the same 26 datasets as above. The channel selection algorithm is run
before the MTSC algorithm and it typically results in a reduced dataset for
training/testing. We investigate how these strategies impact the classification
accuracy, running time (training and testing) and data storage size.

Ratio of Channels Selected. Figure 3 reports the ratio of channels selected by
our methods for each dataset (1.0 means no channel is discarded). The acronyms

46 B. Dhariyal et al.

Fig. 3. Fraction of channels selected by each of three channel selection strategies.

and details of the datasets can be found in the Appendix. The ECP ratios appear
to be higher in general, as expected and mentioned in Sect. 3. However, this
mostly occurs in datasets with a small number of channels (the right side of
Fig. 3). On the left side, where the large numbers of channels can become an
issue, ECP appears to be just as efficient as the other methods. We also observe
that all three methods are more effective on datasets with a larger number of
channels that usually pose a significant scalability challenge to existing MTSC
algorithms.

In Table 4 we show the total time taken by the three channel selection strate-
gies. This includes the time taken by each method to compute centroids and
create the distance matrix. All three techniques are run only on the training
dataset and the output is a selected subset of channels. Since these methods
only require the distance matrix for centroid-pairs, they are extremely fast even
for large datasets, as the time complexity is only affected by the number of
classes, and not by the number of samples. The subset of selected channels is
then used to create a reduced dataset as input to MTSC algorithms.

Table 4. Total time taken by three channel selection strategies on 26 UEA datasets.

Channel selection strategy KMeans ECS ECP

Total time (minutes) 0.34 0.33 0.35

Performance of Channel Selection. Table 5 shows the change in accuracy
and the percentage of time saved by the MTSC algorithms when run on the
reduced datasets after applying the three channels selection strategies.

The comparison reveals that there is a massive gain in computation time for a
minimal drop in accuracy. The time taken to find the subset (Table 4) is insignif-
icant in comparison. Out of the three channels selection strategies, ECP seems
to be the best choice for channel selection. It significantly reduces the compu-
tation time and at the same time eliminates noisy channels, thus increasing the

Fast Channel Selection for Scalable Multivariate Time Series Classification 47

Table 5. Loss/Gain in mean accuracy (ΔAcc) vs percentage time saved (%Time) with
respect to All channels (Table 3) for our three channel selection techniques on 26 UCR
datasets. The red and blue color indicates loss and gain in accuracy respectively. Higher
value for %Time or %Storage indicates more time or storage saved.

Channel Selection→ KMeans ECS ECP

Classifiers↓ ΔAcc | %Time ΔAcc|%Time ΔAcc | %Time

ROCKET -4.01 | 33.62 -4.40 | 29.23 +0.13 | 21.43

WEASEL-MUSE -4.63 | 70.46 -3.80 | 79.90 -1.53 | 73.21

MrSEQL-SAX -3.33 | 72.68 -3.80 | 84.00 +0.45 | 77.06

1NN-DTW -4.28 | 68.30 -6.08 | 68.82 +0.67 | 44.80

Mean ΔAcc| Mean %Time -4.06 | 61.26 -4.52| 65.48 -0.07 | 54.12

Mean %Storage Saved 73.95% 82.59% 74.38%

accuracy for ROCKET, 1NN-DTW and MrSEQL-SAX. The method WEASEL-
MUSE takes a small hit on accuracy (1.5%), at the benefit of saving 73.21% in
runtime. Considering that WEASEL-MUSE requires 73.2 h to complete training
and prediction on this benchmark (see Table 3), this is a significant time saving.
A similar result holds across all classifiers, and all channel selection strategies:
for a small loss in accuracy, there is a high gain in runtime. In the case of ECP,
the accuracy is preserved or even increased, with a significant saving in runtime.
We also calculate the average amount of memory saved by the channel selection
techniques over the 26 datasets. The comparison of dataframe size in memory,
before and after channel selection is used to compute these values. Overall, this
MTSC archive uses about 1.6 Gb memory and when using our channel selection
strategies, this is reduced to less than 30% of the original size. When stored on
disk this dataset is about 3.3 Gb total, and with the channel selection techniques
this is reduced to about 900 Mb.

4.4 Effectiveness of Channel Selection

In this experiment we test whether our best strategy (ECP) selects useful chan-
nels and how good the selection is compared to selecting optimal channel subsets.

Optimal Channel Subset Selection. We evaluate every possible subset of
channels on the test set to discover the optimal subset. Naturally, this brute-force
approach is very expensive and impractical for datasets with a high number of
channels as the possible combination for a dataset with d channels will be 2d−1.
Nevertheless, in this study, all the subsets for datasets with a number of chan-
nels <4 are analysed. These datasets are: AtrialFibrillation, Libras, PenDigits,
EthanolConcentration, Epilepsy, Handwriting, UWaveGestureLibrary. In this
experiment, we choose the state-of-the-art ROCKET classifier to quickly evalu-
ate all the subsets. However, because ROCKET internally randomly samples the
channels, it can select a good subset by chance and mask the issue of selecting

48 B. Dhariyal et al.

bad channels. Therefore, we modify its code to get ROCKET to use all channels
in each kernel, i.e., we use the ROCKET* variant. By doing so, the impact of a
good channel subset and a bad channel subset on classification accuracy becomes
more pronounced.

Table 6. Accuracy of ROCKET* on datasets with channels <4. Bold indicates the
optimal subset. Underscore indicates the subset selected by ECP. Empty spaces are for
datasets with less channels, e.g., dataset AF only has 2 channels, 0 and 1.

DT 0 1 2 (0, 1) (0, 2) (1, 2) (0, 1, 2)

AF 20 6.67 13.33

LB 73.9 77.78 93.89

PD 89.59 88.45 98.26

EC 54.4 49.8 53.6 38.0 44.9 39.2 36.1

EP 97.82 100 94.93 98.55 98.55 97.83 99.28

HW 38.12 32.35 42.12 45.76 59.76 50.35 57.06

UW 79.37 71.25 71.88 87.5 93.12 84.06 93.75

Table 6 shows that ECP successfully identified the optimal subset five out of
seven times. With the Epilepsy (EP) problem, it also correctly identified channel
0 as a potential issue (the classification accuracy is only 97.82% with channel
0 alone) and excluded it from the selection. However, for this dataset it seems
to be better to use either only channel 1 or all the channels. It is important to
remind the reader that this setting is evaluated directly on the test data, and
in practice we do not have perfect knowledge of the best subset of channels for
the test data. ECP selects this channels based on the training data alone, and
it seems to be effective at finding the useful channels for each task using only
training data.

Random Channel Subset Selection. In order to further understand the
effect of the ECP channel selection method, we compare the accuracy of the
ROCKET classifier, when using channels selected with different strategies. We
compare ECPRocket (ECP combined with ROCKET) with ECPsizeRandom-
Rocket, a simple baseline where the number of channels is set using ECP, but
the actual channels are picked randomly. We repeated the experiment 10 times
for each dataset and report the average accuracy in Fig. 4. We observe that for
the majority of the large datasets (number of channels >10), ECPRocket is bet-
ter, while for datasets with less number of channels (number of channels ≤10)
the ECPSizeRandomRocket works similar to ECPRocket. Note that for half of
the datasets with number of channels ≤10, ECP does not reduce the number
of channels (i.e., it keeps all the channels as shown in Fig. 3), hence the two
variants ECPRocket and ECPSizeRandomRocket simply reduce to ROCKET,

Fast Channel Selection for Scalable Multivariate Time Series Classification 49

since ECP has no effect in this case. For datasets with a higher number of chan-
nels, ECP often reduces the full channel set to a subset of good channels, and
the variant ECPRocket constrains ROCKET to work with this pool of good
channels, resulting in storage savings and improvements in accuracy. Hence, for
either small or large number of channels, ECP is fast and leads to storage savings
without resulting in loss of accuracy.

Fig. 4. Comparison of ECPRocket with ECPsizeRandomRocket. Figure 4(a) represents
datasets with number of channels >10 and Fig. 4(b) represents datasets with number
of channels <=10.

5 Case Study: Channel Selection for the Military Press
MTSC Dataset

5.1 Dataset

A total of 56 healthy volunteers (34 males and 22 females; age: 26 ± 5 years,
height: 1.73 ± 0.09 m and body mass: 72 ± 15 kg) participated in a study aimed
at analysing the execution of the Military Press strength and conditioning exer-
cise. The participants completed ten repetitions of the normal form and ten rep-
etitions of induced forms. The NSCA guidelines were applied under the guidance
of sports physiotherapists and conditioning coaches to ensure standardisation.
The dataset was extracted from the video of individuals performing the exercise
with the help of the human body pose estimation OpenPose3. There are four
classes in the dataset, namely: Normal (N), Asymmetrical (A), Reduced Range
(R) and Arch (arch). The N refers to the correct execution of the exercise; A
refers to when the barbell is lopsided and asymmetrical, R refers to the form
where the bar is not brought down completely to the shoulder level and Arch
refers to when participants arch their back. A total of 25 body parts were tracked,
3 https://github.com/CMU-Perceptual-Computing-Lab/openpose.

https://github.com/CMU-Perceptual-Computing-Lab/openpose

50 B. Dhariyal et al.

as seen in Fig. 2. These 25 body parts act as channels for the MTSC task. The
train and test size for this dataset is 1452 and 601 respectively and the length
of time-series is 160.

5.2 Channel Selection

Table 7 illustrates the selected channels for the Military Press dataset. The
Elbows and Wrists are actively involved in the exercise, as the participant is
required to lift a barbell over the shoulders. However, the Toes do not seem to
contribute to the exercise. We tried to investigate this and think that the issue
might be related to data pre-processing when the time series is extracted from
the video; investigating this aspect further is interesting but outside the scope
of this study.

Table 7. Channel selection using our three strategies. All strategies select the same 8
body parts as relevant for this classification task.

Channel selection Body parts

KMeans Elbows, Wrists, BigToes, SmallToes

ECS Wrists, Elbows, BigToes, SmallToes

ECP Elbows, Wrists, BigToes, SmallToes

5.3 Results and Discussion

Table 8 reports the results for ECP with different SOTA MTSC classifiers.
ROCKET is the fastest and most accurate classifier in this experiment. The
data normalisation which is turned on by default in ROCKET, is turned off
in the current experiment. This is due to the fact that the signal magnitude
contains important information for this task, so normalisation should not be
used in this case. For WEASEL-MUSE and MrSEQL-SAX, data normalisation
is done internally in the algorithm during the symbolic transform (SFA/SAX),
so we cannot de-activate the data normalisation step. This affects the accuracy
of these methods in this task, since the magnitude of the signal is important to
differentiate between classes. As in the previous experiments, in the case study
we also find that ECP saves a large amount of time and memory, with minimal
or no loss in accuracy. For WEASEL-MUSE, it saves about 71.6% of computa-
tion time, while for MrSEQL-SAX and 1NN-DTW it saved about 74% and 68%,
respectively. Moreover, the memory required for computation is reduced to 32%,
thus a saving of 68% on the original dataset.

Fast Channel Selection for Scalable Multivariate Time Series Classification 51

Table 8. Performance of ECP on the Military Press exercise.

Classifiers Accuracy Time (minutes)

ECP | All ECP | All

ROCKET 76.26 | 77.53 2.14 | 2.25

WEASEL-MUSE 57.57 | 57.57 30.29 | 107.02

MrSEQL-SAX 58.23 | 61.56 139.53 | 516.79

1NN-DTW 48.58 | 47.25 10.39 | 24.36

Data size (MB) Reduced|Original 15.77 | 49.29

6 Conclusion

In this study we have shown that not all the channels for MTSC are helpful.
Data noise in the form of uninformative channels can prevent the classifier from
achieving its maximum potential. We have observed that channel selection can
remove some of the noise and drastically reduce the required computation time
for existing MTSC methods. In the current study, we showed that the distance
between the class centroids of various channels plays a crucial role in identify-
ing the noisy channels. Our three-channel selection strategies ECP, ECS and
Kmeans, can select the useful channels based on this distance. All three tech-
niques significantly reduced the runtime and memory required to run SOTA
classifiers. The ECS and KMeans techniques also reduced the accuracy, while
ECP resulted in accuracy gains for MrSEQL-SAX, ROCKET and 1NN-DTW
and marginal accuracy loss for WEASEL-MUSE. We believe that with a more
robust elbow selection heuristic the performance can be improved further. Our
channel selection techniques significantly reduced the data size on disk for most
of the MTSC datasets, thus enabling significant storage savings for large MTSC
datasets where several channels are not useful for the classification task.

Acknowledgments. This publication has emanated from research supported in part
by a grant from Science Foundation Ireland through the VistaMilk SFI Research Centre
(SFI/16/RC/3835) and the Insight Centre for Data Analytics (12/RC/2289 P2). For
the purpose of Open Access, the author has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission. We would
like to thank the reviewers for their constructive feedback. We would like to thank
all the researchers that have contributed open source code and datasets to the UEA
MTSC Archive and especially, we want to thank the groups at UEA and UCR who
continue to maintain and expand the archive.

Appendix

See Tables 9 and 10.

52 B. Dhariyal et al.

Table 9. Detailed description for the 26 MTSC datasets used in this study.

Dataset Acronym TrainSize TestSize NumChannels SeriesLength NumClasses ClassCounts

ArticularyWordRecognition AWR 275 300 9 144 25 11

AtrialFibrillation AF 15 15 2 640 3 5

BasicMotions BM 40 40 6 100 4 10

Cricket CKT 108 72 6 1197 12 9

DuckDuckGeese DDG 50 50 1345 270 5 10

EigenWorms EW 128 131 6 17984 5 55

Epilepsy EP 137 138 3 206 4 34

ERing ER 30 270 4 65 6 5

EthanolConcentration EC 261 263 3 1751 4 65

FaceDetection FD 5890 3524 144 62 2 2945

FingerMovements FM 316 100 28 50 2 159

HandMovementDirection HMD 160 74 10 400 4 40

Handwriting HW 150 850 3 152 26 8

Heartbeat HB 204 205 61 405 2 57

Libras LB 180 180 2 45 15 12

LSST LSST 2459 2466 6 36 14 34

MotorImagery MI 278 100 64 3000 2 139

NATOPS NTP 180 180 24 51 6 30

PEMS-SF PSF 267 173 963 144 7 32

PenDigits PD 7494 3498 2 8 10 780

PhonemeSpectra PS 3315 3353 11 217 39 85

RacketSports RS 151 152 6 30 4 39

SelfRegulationSCP1 SR1 268 293 6 896 2 135

SelfRegulationSCP2 SR2 200 180 7 1152 2 100

StandWalkJump SWJ 12 15 4 2500 3 4

UWaveGestureLibrary UW 120 320 3 315 8 15

Table 10. The amount of memory (MB) used by each dataset when using all channels
and after applying our channel selection strategies.

Dataset OriginalSize KMeansReduced ECSReduced ECPReduced KMeansSaved% ECSSaved% ECPSaved% Channels

DuckDuckGeese 147.25 28.03 40.40 42.37 80.97 72.56 71.23 1345

PEMS-SF 315.83 92.81 41.00 104.29 70.61 87.02 66.98 963

FaceDetection 511.20 173.95 42.60 42.60 65.97 91.67 91.67 144

MotorImagery 409.53 70.39 95.98 95.98 82.81 76.56 76.56 64

Heartbeat 40.06 2.63 5.91 5.91 93.44 85.25 85.25 61

FingerMovements 4.52 2.42 0.97 0.97 46.43 78.57 78.57 28

NATOPS 2.24 1.12 1.12 1.59 50.00 50.00 29.17 24

PhonemeSpectra 65.10 11.84 11.84 11.84 81.82 81.82 81.82 11

HandMovementDirection 5.09 3.56 3.05 4.07 30.00 40.00 20.00 10

ArticularyWordRecognition 3.04 0.34 1.01 3.04 88.89 66.66 0.00 9

SelfRegulationSCP2 12.49 5.35 8.92 8.92 57.14 28.57 28.57 7

BasicMotions 0.21 0.07 0.07 0.07 66.63 66.63 66.63 6

Cricket 6.00 4.00 4.00 6.00 33.33 33.33 0.00 6

EigenWorms 105.47 17.58 17.58 70.32 83.33 83.33 33.33 6

LSST 5.97 2.98 2.98 5.97 50.00 50.00 0.00 6

RacketSports 0.32 0.05 0.11 0.22 83.30 66.64 33.32 6

SelfRegulationSCP1 11.20 5.60 5.60 5.60 50.00 50.00 50.00 6

ERing 0.08 0.04 0.02 0.08 49.92 74.88 0.00 4

StandWalkJump 0.92 0.46 0.46 0.46 49.99 49.99 49.99 4

Epilepsy 0.70 0.23 0.23 0.47 66.66 66.66 33.33 3

EthanolConcentration 10.56 7.04 3.52 10.56 33.33 66.67 0.00 3

Handwriting 0.58 0.39 0.19 0.58 33.33 66.65 0.00 3

UWaveGestureLibrary 0.91 0.61 0.30 0.91 33.33 66.66 0.00 3

AtrialFibrillation 0.15 0.08 0.08 0.08 49.96 49.96 49.96 2

Libras 0.17 0.09 0.09 0.17 49.96 49.96 0.00 2

PenDigits 2.86 1.43 1.43 2.86 50.00 50.00 0.00 2

Fast Channel Selection for Scalable Multivariate Time Series Classification 53

References

1. Consumer enthusiasm for wearable devices drives the market to 28.4% growth in
2020 (2021). https://www.idc.com/getdoc.jsp?containerId=prUS47534521

2. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/
s10618-016-0483-9

3. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: real-
time multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern
Anal. Mach. Intell. 43, 172–186 (2019)

4. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Min. Knowl.
Disc. 34, 1–42 (2020)

5. Dhariyal, B., Le Nguyen, T., Gsponer, S., Ifrim, G.: An examination of the state-of-
the-art for multivariate time series classification. In: 2020 International Conference
on Data Mining Workshops (ICDMW), pp. 243–250 (2020). https://doi.org/10.
1109/ICDMW51313.2020.00042

6. Han, S., Niculescu-Mizil, A.: Supervised feature subset selection and feature
ranking for multivariate time series without feature extraction. arXiv preprint
arXiv:2005.00259 (2020)

7. Hu, B., Chen, Y., Zakaria, J., Ulanova, L., Keogh, E.: Classification of multi-
dimensional streaming time series by weighting each classifier’s track record. In:
2013 IEEE 13th International Conference on Data Mining, pp. 281–290 (2013).
https://doi.org/10.1109/ICDM.2013.33

8. Kathirgamanathan, B., Cunningham, P.: A feature selection method for multi-
dimension time-series data. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet,
T., Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp.
220–231. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0 15

9. Krzanowski, W.: Between-groups comparison of principal components. J. Am. Stat.
Assoc. 74(367), 703–707 (1979)

10. Le Nguyen, T., Gsponer, S., Ilie, I., O’Reilly, M., Ifrim, G.: Interpretable time
series classification using linear models and multi-resolution multi-domain symbolic
representations. Data Min. Knowl. Disc. 33(4), 1183–1222 (2019). https://doi.org/
10.1007/s10618-019-00633-3

11. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic rep-
resentation of time series. Data Min. Knowl. Disc. 15(2), 107–144 (2007). https://
doi.org/10.1007/s10618-007-0064-z

12. Löning, M., Bagnall, A., Ganesh, S., Kazakov, V., Lines, J., Király, F.J.:
sktime: a unified interface for machine learning with time series. arXiv preprint
arXiv:1909.07872 (2019)

13. Ruiz, A.P., Flynn, M., Large, J., Middlehurst, M., Bagnall, A.: The great mul-
tivariate time series classification bake off: a review and experimental evaluation
of recent algorithmic advances. Data Min. Knowl. Disc. 35(2), 401–449 (2020).
https://doi.org/10.1007/s10618-020-00727-3

14. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a
haystack: detecting knee points in system behavior. In: 2011 31st International
Conference on Distributed Computing Systems Workshops, pp. 166–171. IEEE
(2011)

https://www.idc.com/getdoc.jsp?containerId=prUS47534521
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1109/ICDMW51313.2020.00042
https://doi.org/10.1109/ICDMW51313.2020.00042
http://arxiv.org/abs/2005.00259
https://doi.org/10.1109/ICDM.2013.33
https://doi.org/10.1007/978-3-030-65742-0_15
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1007/s10618-007-0064-z
http://arxiv.org/abs/1909.07872
https://doi.org/10.1007/s10618-020-00727-3

54 B. Dhariyal et al.

15. Schäfer, P., Högqvist, M.: SFA: a symbolic Fourier approximation and index for
similarity search in high dimensional datasets. In: Proceedings of the 15th Inter-
national Conference on Extending Database Technology, pp. 516–527 (2012)

16. Schäfer, P., Leser, U.: Multivariate time series classification with WEASEL+ muse.
In: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal
Data (AALTD 2018), arXiv preprint arXiv:1711.11343 (2017)

17. Shokoohi-Yekta, M., Wang, J., Keogh, E.J.: On the non-trivial generalization of
dynamic time warping to the multi-dimensional case. In: SDM (2015)

18. Singh, A., et al.: Interpretable classification of human exercise videos through pose
estimation and multivariate time series analysis. In: 5th International Workshop
on Health Intelligence (W3PHIAI 2021) at AAAI21. Springer (2021)

19. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for
multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

http://arxiv.org/abs/1711.11343

Temporal Phenotyping for
Characterisation of Hospital Care
Pathways of COVID19 Patients

Mathieu Chambard1, Thomas Guyet2(B) , Yên-Lan NGuyen3,
and Etienne Audureau4

1 ENS Rennes/IRISA, Rennes, France
2 Inria – Centre Grenoble Rhône Alpes, Lyon, France

thomas.guyet@inria.fr
3 AP-HP, Hôpital Cochin, Sorbonne Université, INSERM UMR S 1138, Pierre Louis

Institute of Epidemiology and Public Health, Paris, France
4 AP-HP, Henri Mondor Hospital, University Paris Est Créteil, Créteil, France

Abstract. During the COVID19 crisis, Intensive Care Units admitted
many patients with breathing disorders up to respiratory insufficiency.
The care strategy of such patients was difficult to find and preventing
patients to drift away toward a critical situation was one of the first
challenge of physicians. In this study, we would like to characterize care
pathways of patients that required a mechanical ventilation. The mechan-
ical ventilation is an invasive treatment for the most critical respiratory
insufficiencies. Through the analysis of the sequence of cares, we aim at
supporting physicians to better understand patients evolution and let
them propose new medical procedures to prevent some patients to be
ventilated. This article proposes a method which combines a tensor fac-
torization and sequence clustering. The tensor factorization enables to
represent the care sequences as a sequence of daily phenotypes. Then, the
sequences of phenotypes is clustered to extract typical care trajectories.
This method is experimented on real data from Greater Paris univer-
sity Hospital and is compared to a direct clustering of the sequences.
The results show that the outputs are more easily interpretable with the
proposed method.

Keywords: Tensor factorization · Sequence clustering · Phenotypes ·
Care pathways

1 Introduction

The advent of the COVID19 crisis show us the need to support physicians to
identify as early as possible people who may have medical complications. This

This project is partly founded by Fondation APHP through the Chair AI-RACLES
and received the agreement from the AP-HP CDW Scientific and Ethics Committee
(CSE-20-11-COVIPREDS). Data used in preparation of this article were obtained from
the AP-HP Covid CDW Initiative database. A complete listing of the members can be
found at: (https://eds.aphp.fr/covid-19).

c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 55–70, 2021.
https://doi.org/10.1007/978-3-030-91445-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_4&domain=pdf
http://orcid.org/0000-0002-4909-5843
http://orcid.org/0000-0002-6166-149X
https://eds.aphp.fr/covid-19
https://doi.org/10.1007/978-3-030-91445-5_4

56 M. Chambard et al.

illustrates the need for predictive analytic tools that may support stakeholders
to better manage crises in the future: better individual patient management,
better patient flows organization, etc.

In our case study, we would like to characterize the pathways of patients that
required mechanical ventilation. Mechanical ventilation is an invasive treatment
indicated when the patient’s spontaneaous breathing is inadequate to maintain
effective gaz exchange. It is a heavy treatment that physicians try to avoid
for their patients. Their characterization may help physicians to improve their
medical management procedures in these cases [5].

The characterization of a patient suffering from a disease is often called
a phenotype. A phenotype may be a collection of conditions (smoker status,
comorbidities, BMI, treatments), but the notion of phenotype may be extended
to recent procedures and drugs that have been delivered to the patient. The
information of such procedure becomes a proxy for the patient condition.

In this work, we use Electronic Health Record (EHR) data from AP-HP
(Greater Paris university hospital) to build phenotypes of patients. The data
collected by information systems provide access to rich information on hospital
stays and for a very large population of hospitalized patients. Then, the care
trajectory of a patient is described as a matrix X with features (procedures or
drugs) in columns and days in rows. The value Xi,j is 1 when patient p received
the procedure/drug i the day j. AP-HP has identified more than 20, 000 patients
hospitalized due to COVID19 from the beginning of the French crisis in March
2020 until March 2021.

There are potential flaws in the data but their volumetry and their saniti-
zation make them valuable for extracting meaningful phenotypes. During the
COVID19 crisis, physicians lack of time to code accurately the procedures or
being exhaustive in their report. A sanitization of the database has been con-
ducted all along the crisis to spur their use for research and operational purposes.
These massive data should help to identify typical patient pathways, so called
temporal phenotypes. A phenotype is a list of clinical features occurring in the
same day for a subgroup of patients. For instance, the phenotype of patients
suffering from a disease may be a combination of diagnosis codes, drugs or pro-
cedures he/she received, etc. A temporal phenotype describes a patient profile by
the evolution of its “features” during his/her hospitalization. It groups together
medications and procedures to best describe some visits.

This article proposes to use tensor factorization to identify automatically
temporal phenotypes, so called typical care trajectories, from EHR data. More
specifically, we investigate a simplified version of the CNTF model [14] which
proposes to apply machine learning techniques in order to efficiently address ten-
sor factorization (see Sect. 3). Our hypothesis is that depending on patients and
procedures, their health status evolves in different ways. Discovering a tempo-
ral phenotype means to discover both what and when procedures occur during a
patient stay and, if possible, to correlate the temporal phenotypes to patient out-
comes such as mechanical ventilation. The dataset is presented in Sect. 4. Finally,

Temporal Phenotyping for Characterisation of Hospital Care Pathways 57

Sect. 5 presents and analyses the first results of our approach on COVID19 care
pathways and is compared to KMeans clustering.

2 Related Works

Our goal is to discover phenotypes from an EHR database. Discovering pheno-
types is an unsupervised task that aims at both describing phenotypes as typical
sets of diseases and cares; and at identifying typical groups of patients having
different types of phenotype.

There are several types of approach to address this problem. UPhenome
[12] is a probabilistic approach based on Latent Dirichlet Allocation (LDA). It
describes a patient by a set of cares without considering the temporal dimension.
In our case study, we are interested in describing the longitudinal care trajectory
of patients to characterize the dynamic of their disease. This dynamic of cares
is characterized by careflow mining [3] using pattern mining techniques. In this
approach, a careflow is a sequence of cares. But in case of sparse events, tem-
poral patterns mining are more meaningful than sequential pattern mining. For
instance, Dauxais et al. [4] proposed to discover patterns describing both the
structural sequence of cares and the delay between. This problem has also been
addressed in the statistical machine learning community. Many works have been
proposed to discover structures in EHR data in supervised fashion. For instance,
MedGraph [6] proposes a supervised EMR embedding method that captures the
visit-code associations, and the temporal sequencing of visits through a point
process.

In this article, we propose to explore an unsupervised statistical machine
learning technique called non-negative tensor factorization (NNTF). NNTF has
been studied extensively and many models have been proposed to tackle it [8].
The seminal methods are PARAFAC and Canonical Polyadic (CP) decomposi-
tions [7] which are the decomposition of a tensor in a finite collection of unidimen-
sional vectors of rank R. The main limitation with this method is that it considers
a tensor with fixed dimensions. In practice, it enforces all patients to have the
same length of stay. Therefore, PARAFAC2 [9] extends the CP decomposition
for a collection of matrices with different sizes (along one dimension). Both CP
and PARAFAC2 are statistical approaches with good formal properties (e.g.,
uniqueness of the CP decomposition). Nonetheless, these approaches are not
computationally tractable on large datasets. Recently, SPARTan [10] proposed
an algorithmic reformulation of PARAFAC2 to be faster and more memory-
efficient. Another way to solve the tensor factorization consists in using machine
learning techniques that provide efficient approximated solving processes. Since
the last years, several machine learning solutions for tensor factorization have
been proposed with additional features, for instance temporal regularization [14],
handling missing values [13] or optimized for sparse data [1,2].

CNTF [14] (Collective Non-Negative Tensor Factorization) made two contri-
butions: on the one hand, it is a flexible model which includes initial condition
modeling, temporal regularization and classification regularization. Thus, CNTF

58 M. Chambard et al.

is suitable for a wide range of care trajectories analysis. On the other hand, it
proposes a description of a phenotype by a 2 dimensional matrices: one dimension
for drugs and procedures and one dimension for lab tests. This matrix represen-
tation aims at capturing correlations between the two dimensions. Nonetheless,
CNTF only enables to extract daily phenotypes, but not groups of entire care
trajectories.

3 Care Pathway Characterization Through Tensor
Factorization

In this section, we present a method for characterizing care pathways based on
tensor factorization. The proposed method has two steps:

1. A tensor factorization identifies the daily phenotypes from patient care path-
ways,

2. The sequences of phenotypes are clustered to create groups of similar care
pathways. The representative of each group is a typical care trajectories.

3.1 Tensor Factorization

In this section, we propose a factorization model inspired by CNTF [14]. Our
model borrowed from CNTF the principle of tensor factorization through func-
tion minimization and the temporal regularization. We simplified the model by
discarding the other constraints (including correlation modeling between lab
tests and cares).

Tensor factorization is a data analysis technique that consists in decompos-
ing a multidimensional tensor X into a collection of lower dimensional tensors
Y1, . . . ,Yk such that X ≈ Y1 ⊗ · · · ⊗ Yk where ⊗ is a matrix product. A non-
negative tensor factorization enforces Y· matrices to contain only positive values.

In the context of EHR data analysis, X is seen as a three-dimensional tensor
whose dimensions are the patient id (p patients), the time (d time units) and
the medical events (N types of event). The length of stay of each patient visit
are not all the same. Then, PARAFAC2 proposes a sparse representation of X
as a collection of p two-dimensional matrices. Ik denotes the length of stay of
the k-th patient such that its matrix Xk is of size Ik × N .

Given R ∈ N the number of phenotypes, the matrix factorization problem
consists in finding the matrices U of size R×N and the collections of p matrices
Wk of size Ik × R such that for all k ∈ Np:

Xk ≈ Wk ⊗ U

where U is the non-negative matrix describing the R phenotypes, and Wk is
a non-negative matrix that describes the patient stay by the occurrence of the
phenotypes each day. wkrt describes how likely the r-th phenotype exists at the
particular time point t of patient k.

Temporal Phenotyping for Characterisation of Hospital Care Pathways 59

Inspired by CNTF, the problem is to minimize the following function:

fU ,W1..p =
p∑

k=1

1
Ik

∑

i,j

x̂kij − xkij log(x̂kij)

where X̂k = Wk ⊗ U for all k = 1..p is the tensor reconstruction from
the phenotypes. In this problem formulation, the matrix reconstruction error is
divided by the number of days. It aims at balancing contribution of patients who
stayed for a long time or not.

At the moment, the temporal relationship is not taken into account in the
model. However, for the course of a disease, we cannot look at the days indepen-
dently of each other. The technique proposed in CNTF is to penalize a recon-
struction model that does not allow to accurately predict the next sequences
events or the stay outcomes. In both cases, we use a LTSM to model sequential
dependencies between wk·t vectors. The LTSM predicts the next state of the
patient or the patient outcomes. In the first case, we want to minimize the mean
square error between the real and predicted values, i.e.:

R(Wk) =
1
Ik

Ik∑

t=2

||gk(wk·(t−1)) − wk·t||2

where g denotes the prediction function of the LSTM trained on the sequence.
In the second case, we want to minimize the prediction error. In our practical

case, the outcome of the stay is whether a patient has been mechanically venti-
lated or not. In such case, the error may be evaluated through the cross-entropy
between the predicted and real outcomes.

Finally, the tensor factorization from EHR data is formalized by the following
optimization problem:

arg min
U ,W1..p

L =
p∑

k=1

1
Ik

⎛

⎝
∑

i,j

x̂kij − xkij log(x̂kij) + α ×
Ik∑

t=2

||gk(Wt−1) − Wt||2
⎞

⎠

subject to X̂k = Wk ⊗ U

U ≥ 0
Wk ≥ 0, ∀k = 1..p

where α ∈ R
+ is a parameter to balance the contribution of the two terms

of the function.
To minimize L, whatever optimization technique may be used. We use an

alternating minimization strategy, illustrated in Algorithm 1. For each mini-
batch B, the U is optimized given W1..p values, then W1..p is optimized using the
U values. As the U is optimized several times per epoch while W1..p is optimized
only once (for each batch, only one part of the matrix actually changes), then

60 M. Chambard et al.

Algorithm 1: Alternating minimization strategy (n epochs)
Data: X1..p: patient stays, R: the number of phenotypes
Result: U : phenotypes, W1..p, phenotype occurrences in patient stays

1 U ← random, W1..p ← random;
2 for e = 1..n do
3 for Patient batch B do

4 U ∗ ← U +
∂fU ,W k∈B

∂U
;

5 W ∗
k∈B ← Wk∈B +

∂fU ∗,W k∈B
+

∑
k∈B R(W k)

∂W k∈B
;

6 U ← U ∗, W1..p ← W ∗
1..p;

we used different learning rates for each optimizer. In addition, the learning rate
is decreased along the epochs to prevent from algorithm instability.

It is worth noting that we actually extract the phenotypes for the p patients.
This means that the loss function L is evaluated on the p patients and splitting
the datasets in train/test is not required.

3.2 Typical Care Trajectories

The tensor factorization enables us to change the representation of patient care
pathways from sequences of cares X1..p to sequences of phenotypes W1..p. In
these two cases, the clustering of patients’ matrices built typical care trajectories.
It gathers similar pathways in clusters, and the representative of each cluster is
a typical care trajectory.

In the general case, the patients’ matrices do not have the same size due
to different length of stay. Then, the classical clustering algorithms may not
be applied. Our proposal is to use the Dynamic Barycentre Averaging (BDA)
clustering approach [11]. DBA is a clustering algorithm for time series. It adapts
the KMeans algorithm to the DTW distance. Thanks to the use of the DTW, it
can cluster time series with different lengths. In our typical case, the sequence
of phenotypes occurrences of a patient k, i.e. Wk, is seen as a multidimensional
time series of length Ik and R dimensions. The centroid of a cluster computed
by DBA is then a typical care trajectory.

In our experiments, all patients’ stays have the same length. In this case, a
simple KMeans algorithm applies for clustering the W1..p matrices.

4 Dataset of Ventilated COVID19 Patients

The objective of this study is to characterize the stays that have been admit-
ted for COVID19. This disease affects the respiratory functions and may lead
patients to critical respiratory insufficiency. In this case, patients have to be
mechanically ventilated. This critical care procedure saves lives, but may lead
to longer stays and to medical complications. For these reasons, physicians do
their best to prevent patients from being mechanically ventilated.

Temporal Phenotyping for Characterisation of Hospital Care Pathways 61

In this section, we present the dataset that has been constructed to address
the problem of the characterization of care pathways of patient who were venti-
lated.

Data were obtained from the AP-HP clinical data warehouse. It contains
information for 27, 370 ICU admissions with at least one positive PCR1 test
in one of the hospitals in the Greater Paris region between March 2020 and
March 2021. It represents 17, 400 unique patients. The database includes dates
of admission to the intensive care unit, gender, age of each patient and possibly
date of death.

For this study, patients were selected from people in the AP-HP database over
18 years old at ICU admission with a positive PCR test. We discarded patients
having short visits (less than a day). In the original database there are 3.5 times
more visits (27, 370 visits) without ventilation procedure than visits leading to
at least a mechanical ventilation procedure (6, 066 visits). In order to balance
the dataset, we subsample the patients without ventilation procedures. Indeed,
the goal is to compare ventilated and non-ventilated patients. So the cohort
must have roughly the same number of people and a similar age distribution.
We adopted a stratified subsampling of the ventilated patients to have similar
populations in age. More precisely, patients were drawn randomly to have for
each age group (18–20, 20–40, 40–60, 60–80, 80–100, 100–120) as many ventilated
as non-ventilated people. Figure 1, on the left, displays the age distributions of
ventilated and non-ventilated patients. This figure also details the distributions
of lengths of stay and of ages of death (for COVID19 or another reason). Note
that in this study, we are not interested in the patient death but only on whether
their stay leads to a mechanical ventilation or not.

The database contains medical and administrative information about each
visit: clinical observations, lab test results, care performed or also textual medical
reports. We decided to focus on medical procedures and prescription drugs, and
to discard lab tests and medical reports. This information is collected with a
suitable quality due to their administrative purpose (patient reimbursement).
On the contrary, laboratory tests are too sparsely available and it is difficult to
extract reliable information from medical reports.

All drugs and procedures delivered are timestamped and coded using stan-
dard taxonomies. Drugs are coded with ATC2 codes and procedures are coded
with CCAM3 codes. CCAM is a French codification for medical procedures. Each
code is a type of medical event in the X tensor. Drugs and procedure deliveries
are timestamped with dates and times. We keep only the dates. For some proce-
dures performed along several days (e.g., mechanical ventilation), the procedure
is accurately recorded daily. Contrary to procedures, drugs are tagged with start
and end dates, but the ends of drug exposures is not reliable. This is currently
a potential weakness in our data.

1 PCR (Polymerase chain reaction) denotes here a test for COVID19 infection.
2 ATC: Anatomical, Therapeutical and Chemical.
3 CCAM: Classification commune des actes médicaux/Common classification of med-

ical procedures.

62 M. Chambard et al.

Table 1. Statistical characteristics of the cohorts/datasets. Raw database denotes the
database of 21, 901 patients with positive PCR tests, and final database denotes the
stratified patients, with medical feature selection.

Raw database Final database

Number of patients 21, 901 7, 358

Number of visits 37, 312 8, 937

Average age 69 years 64 years

Gender distribution M:56%, F:44% M:62%, F:38%

Average length of stay 10 days 10 days

Number of different drugs 1, 120 166

Number of different procedures 2, 635 44

Death rate 23% 28%

Fig. 1. Population characteristics. From left to right: age distribution, length of stay,
age distribution of deceased people

The next step was to select a subset of potentially meaningful drugs/
procedure among all possible codes. Indeed, the temporal and spatial complexity
is exponential with the number of features. Considering the limited computa-
tional resources available on hospital servers, a selection of features was required.
In addition, less medical features eases the interpretation of the results. The out-
putted phenotypes are more concise and there are less potential correlations to
analyze for physicians.

In the case of the COVID19 study, the patients are very heterogeneous and
have very different pathologies. The total number of medical events is very large,
1, 120 different drugs and 2, 635 different procedures. The selection of the medical
features have been done in two steps. Firstly, the 500 most frequent drugs and
200 most frequent procedures were selected. Secondly, physicians selected 166
types of drugs and 44 types of procedure from the frequency-based selection.
They selected the potentially most interesting medical features in the context of
COVID19.

Table 1 sums up some characteristics of the cohort. Figure 1 on the right
shows the distribution of the age of death. The distribution matches the known
indicators: the people most affected are people over 60 years old.

Temporal Phenotyping for Characterisation of Hospital Care Pathways 63

Finally, for each visit, we select the events that occurs d days after the entry
in an ICU. In case the patient visit started in another service, it is not taken into
account. In this study, the pathway starts the first day in an ICU service. The
entry date is used as an index date that is valid for patients who were ventilated
or not. In addition, in the perspective of having a decision support tool, it is
interesting to observe the care trajectory of a patient since its entry to decide
as soon as possible the action to take to prevent a ventilation.

5 Experiments and Results on COVID19 Care Pathways

In this section, our method is applied to the database presented in the previous
section. We remind that our objective is to investigate the care pathways of
patients who have been mechanically ventilated or not. We set d = 6 meaning
that 6 days were kept per patient from their arrival in ICU.

The tensor factorization model has been adapted from the CNTF implemen-
tation. It is implemented within the PyTorch framework. An initial study of the
algorithm convergence shown that the algorithm does not significantly improve
the results after 100 epochs. Then, we set the number of epochs to 100 and
batch size of 100 patients. The running time on the dataset detailed in the next
section is from 5 to 15 min on a server dedicated to AP-HP data analysis. This
reasonable time makes the approach practical on real data. For the clustering
algorithm, we use a K-means algorithm that suits our particular dataset which
contains sequences of the same length. We used the K-Means sklearn library
with a smart initialization of the centers.

In the remaining of this section, we start by studying the daily pheno-
types extracted from care pathways of the whole dataset (ventilated and non-
ventilated). Then, we investigate the results of the clustering phase of our method
(typical care trajectories). Finally, we propose to compare the obtained results
with the direct clustering of care trajectories.

5.1 Phenotypes of COVID19 Patients

The main parameters of our method are R, the number of phenotypes, and ρ,
initial random state. Due to the stochastic nature of the optimization process,
the results also depends on the initial random state (ρ). The method was tested
with different R ∈ [6, 12] and ρ in order to find which value to give to R and to
ρ to have insightful and robust results.

In the following, we illustrate two cases: R = 8 and R = 10. The outputted
phenotypes are illustrated in Fig. 2.

The detailed phenotypes are presented in Tables 2 and 3. After a physician’s
expertise, several pieces of information emerged from these phenotypes. First of
all, we recognize phenotypes that characterize the pathway of patients in a inten-
sive care unit. These are phenotypes with a prescription of thromboprophylaxis
like Enoxaparin and also those who received antibiotics (cefotaxime, amoxicillin

64 M. Chambard et al.

Fig. 2. Drugs phenotype result for R = 8 (on the left) and R = 10 (on the right). Each
row corresponds to a phenotype, the columns correspond to drugs identifiers. A dark
square means that the drug in column is part of the phenotype in row. The darker
the square, the more likely the drug in this phenotype. (see Tables 2 and 3 for detailed
values).

and inhibitor). This corresponds to a large part of the results: phenotypes 1.0,
1.2, 1.6, 1.7 and phenotypes 2.1, 2.2, 2.7, 2.8 and 2.9.

We also find deliveries of analgesics such as morphine, tramadol, nefopam or
paracetamol in phenotypes 1.0, 1.2, 1.5, 1.7 and also in phenotype 2.7 and 2.8.
These drugs treat muscle pain or fever caused by COVID19.

After some deaths from pulmonary embolism, a link has been discovered
between a severe form of COVID19 and a risk of venous thrombosis. Patients
gradually benefited from a preventive treatment for thrombosis such as enoxa-
parin. It appears in phenotypes 1.0, 1.2, 1.6, 2.1, 2.7 and 2.8.

The cohort has a high average age. This explains the appearance of
furosemide in phenotype 1.3 and phenotype 2.8. This drug is an anti-
hypertensive agent prescribed for elderly.

In addition, we observe common diseases in patients suffering from COVID19.
First, some patients suffer from diabetes. Some have been intubated (pheno-
type 2.2), others have hypertension (phenotype 2.7: amlodipine). Second, some
patients have cholesterol and cardiovascular problems. They are found in pheno-
types 1.3 and 2.1. Finally, phenotypes 1.5 and 2.9 correspond to patients suffer-
ing from hypertension (amlodipine, ramipril) with also cardiovascular problems
(acetylsalicylic).

Interestingly, the procedures are gathered in two or three phenotypes (1.4,
1.6, 2.0 and 2.4). Such phenotypes describes the standard monitoring procedures
in a ICU service (e.g. electrocardiogram, intra arterial pressure). Thus, the stay
of a patient being monitored in a ICU service is described with a combination
of one of such phenotypes and phenotypes for drugs deliveries. It also high-
light intubation procedures and the injection of dobutamine/dopamine present
in phenotype 2.5.

Finally, it is worth noting that ρ parameter has a low impact on the results
of the system. By repeating the experiment several times with different values,
we observe similarities between the results of phenotypes. This robustness makes

Temporal Phenotyping for Characterisation of Hospital Care Pathways 65

Table 2. Phenotypes with R = 8. Numbers indicate the likelihood of the occurrence of
a drug for a phenotype. Drugs names correspond to the French official denomination.

Ph1.0 Enoxaparine: 1.2, Injection dobutamine/dopamine: 1.11,
Paracetamol: 0.03, Dexamethasone: 0.0, Amlodipine: 0.0

Ph1.1 Insuline aspart: 0.73, Monitoring of intra-arterial pressure:
0.03, Continuous monitoring of electrocardiogram: 0.0

Ph1.2 Paracetamol: 2.33, Monitoring of intra-arterial pressure: 0.03,
Enoxaparine: 0.03, Tramadol: 0.0, Acetylsalicylique acide: 0.0

Ph1.3 Insuline glargine: 0.44, Insuline aspart: 0.24, Furosemide:
0.24, Atorvastatine: 0.18, Bisoprolol: 0.15

Ph1.4 Continuous monitoring of electrocardiogram: 1.44, Central
intra-arterial or intravenous pressure monitoring : 0.03,
Monitoring of intra-arterial pressure: 0.03

Ph1.5 Nefopam: 0.1, Acetylsalicylique acide: 0.09, Morphine: 0.09,
Amlodipine: 0.08, Monitoring of intra-arterial pressure: 0.03

Ph1.6 Central intra-arterial or intravenous pressure monitoring :
1.05, Monitoring of intra-arterial pressure: 0.06, Enoxaparine:
0.03, Acetylsalicylique acide: 0.0, Amlodipine: 0.0

Ph1.7 Heparine: 0.12, Zopiclone: 0.12, Amoxicilline et inhibiteur
d’enzyme: 0.09, Tramadol: 0.09, Nefopam: 0.06

us confident in the significance of the results. However, these are not exactly the
same phenotypes. Sometimes a phenotype of an experiment is the mixture of two
phenotypes of an experiment with a different value of ρ. This may be disturbing
for physicians.

5.2 Care Trajectories

In this section, we describe the different pathways that lead to use mechanical
ventilation or not. Then, we investigate the typical patient trajectories.

In the previous section, we analyzed the phenotypes, U . This section ana-
lyzes the information contained in W1..p matrices. These matrices represent the
sequence of cares during the first 6 days of the ICU stay.

A cluster is a group of patients having the same kind of sequences during
the first days of its stay. In our particular case, the clustering can be done with
the DBA algorithm (see Sect. 3.2) or with a regular KMeans using the Froebe-
nius distance between matrices having the same dimensions. For computational
reasons, we applied this second alternative and set up the algorithm with k = 6.

Figure 3 illustrates the six cluster centers. For a better clarity, values lower
than the half of the maximum of a matrix have been set to 0. A dark cell means
that the phenotype is significantly present in average at a given day before
starting ventilation for the group of patients.

The clusters could be split into three types of clusters. The clusters CT0, CT1

and CT2 are mostly present in unventilated people. They are 2 to 3 times more

66 M. Chambard et al.

Table 3. Phenotypes with R = 10. (see legend of Table 2)

Ph2.0 Continuous monitoring of electrocardiogram: 2.17, Monitoring
of intra-arterial pressure: 0.03, Intubation trachéale: 0.03

Ph2.1 Enoxaparine: 0.27, Dexamethasone: 0.22, Atorvastatine: 0.21,
Bisoprolol: 0.18, Amoxicilline et inhibiteur d’enzyme: 0.15

Ph2.2 Insuline aspart: 0.24, Zopiclone: 0.03, Monitoring of
intra-arterial pressure: 0.03, Intubation trachéale: 0.03,
Amoxicilline et inhibiteur d’enzyme: 0.03

Ph2.3 Insuline aspart: 0.3, Phloroglucinol: 0.18, Insuline glargine:
0.15, Zopiclone: 0.15, Metformine: 0.06

Ph2.4 Continuous monitoring of electrocardiogram: 1.96, Monitoring
of intra-arterial pressure: 0.03, Intubation trachéale: 0.03

Ph2.5 Central intra-arterial or intravenous pressure monitoring :
1.87, Injection dobutamine/dopamine: 1.29, Monitoring of
intra-arterial pressure: 0.33, Intubation trachéale: 0.15,
Continuous monitoring of electrocardiogram: 0.03

Ph2.6 Continuous monitoring of electrocardiogram: 0.04,
Prednisone: 0.03

Ph2.7 Enoxaparine: 1.36, Insuline glargine: 0.38, Nefopam: 0.35,
Amlodipine: 0.34, Ceftriaxone: 0.03

Ph2.8 Paracetamol: 1.6, Furosemide: 0.55, Enoxaparine: 0.27,
Morphine: 0.26, Tramadol: 0.12

Ph2.9 Acetylsalicylique acide: 0.24, Cefotaxime: 0.15, Prednisone:
0.15, Amlodipine: 0.12, Ramipril: 0.09

Table 4. Repartitions of ventilated/unventilated patients.

Care trajectories Patients Unventilated Ventilated

CT0 362 257 105

CT1 3093 2110 983

CT2 2889 1376 1513

CT3 883 640 243

CT4 767 30 737

CT5 884 1 883

present in non-ventilated patients than in ventilated patients. Then the clusters
CT4 and CT5 are especially present in ventilated people. Finally, cluster CT3

lies in both visits from ventilated and non-ventilated people.
We remind that the hospital stay of patients is aligned with the first days of

hospitalization. Therefore, we can have a shift in phenotypes between patients
depending on their health status at arrival. This shift is observed with cluster
CT1 and CT3. These two clusters have almost the same phenotypes: 2.1, 2.2,

Temporal Phenotyping for Characterisation of Hospital Care Pathways 67

Fig. 3. Typical care trajectories (CTi for i = 1..6) of patient during the first 6 days
of hospitalization. A typical care trajectory gives how likely a phenotype appears at
a given day of the stay. This figure uses the phenotypes extracted with R = 10 (see
Fig. 2, on the right).

2.3, 2.7, 2.8, 2.9. One is filled on the first day of hospitalization, the other on
the second day. In addition, the clusters have the same proportion of ventilated
and unventilated, which supports the fact that these clusters represent the same
kinds of patients.

The phenotypes 2.0, 2.4, 2.5 and 2.6 are mostly present in ventilated patients.
They correspond to cluster CT4 and CT5 for which 98% of the patients have
been ventilated. Indeed, the phenotypes contained in the clusters are phenotypes
linked to classical resuscitation procedures and are very similar to the ones in
the previous section.

Finally, cluster CT2 represents as many ventilated and non-ventilated
patients. This cluster appears in almost a third of patients. It is made up
of phenotypes 2.0, 2.4 and 2.6 which are mainly made of ICU procedures.
The other phenotypes present are phenotypes 2.2 and 2.6 which are mainly
prescriptions.

5.3 Comparison with Direct Clustering

In this section, the goal is to compare the trajectories extracted with our method
and the ones extracted with a direct clustering (K-Means). Figure 5 shows the
KMeans cluster centers. It illustrates the medical events’ occurrences wrt days.
The clusters of this figure are compared to the results of our method presented in

68 M. Chambard et al.

Fig. 4. The matrices of this later figure are computed by multiplying the clusters
matrices with the phenotype matrix U (see Fig. 2).

Table 5. Repartitions of ventilated/unventilated patients.

Care trajectories Patients Unventilated Ventilated

KM0 541 1 540

KM1 2422 1778 644

KM2 3839 1963 1876

KM3 1005 644 361

KM4 450 0 450

KM5 621 28 593

Fig. 4. Typical care trajectories: medical events along the first 6 days of hospitalization
(alternative view of the result presented in Fig. 3)

Table 5 provides the number of ventilated and non-ventilated patients in each
cluster.

We can observe common clusters between the two method results. For
instance, there is a strong similarity between CT1 and KM3. Additionally, CT4

and CT5 clusters look like KM0, KM4 and KM5 clusters. Then, we can conclude
that the approaches extract almost the same care trajectories.

Nonetheless, KM3 and KM4 are quite similar while there is more diversity
in the phenotypes extracted by our methods. A possible explanation is that
clustering the sequence of few phenotypes is easier than clustering the sequence
of all the medical events.

The second advantage of our method is in the ease to interpret the results
and get insight from them. We have seen that the daily phenotypes can be

Temporal Phenotyping for Characterisation of Hospital Care Pathways 69

Fig. 5. Typical care trajectories (K-Means clustering): medical events along the first 6
days of hospitalization.

interpreted by physicians. This intermediary interpretation enables physicians
also to get insights from the typical care trajectories of Fig. 2. We believe a
direct clustering providing the care trajectories without intermediary phenotype
is harder to interpret.

6 Conclusion

We presented a method to extract typical care trajectories from EHR care path-
ways. Our method combines a tensor factorization to extract daily phenotypes
and a clustering of phenotype sequences. This method has been applied to the
analysis of COVID19 patients admitted in ICU to investigate the use of mechan-
ical ventilation.

The first results with this method are interesting. First, the use of an approx-
imate tensor factorization inspired by CNTF enables to process a large number
of patient sequences. Phenotypes have been easily interpreted by physicians as
their evolution over days. Compare to the direct clustering of the sequences,
we argue that the use of phenotype is more insightful and easier to interpret.
Finally, these results are promising. It is important to continue to look at the
evolution of phenotypes in patients to compare the course of the disease in differ-
ent subgroups of the population. For the future, the goal will also be to compare
the evolution in ventilated and non-ventilated people using supervised tensor
factorization techniques.

References

1. Afshar, A., Perros, I., Papalexakis, E.E., Searles, E., Ho, J., Sun, J.: COPA: con-
strained PARAFAC2 for sparse & large datasets. In: Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, pp. 793–802
(2018)

70 M. Chambard et al.

2. Afshar, A., et al.: SWIFT: scalable Wasserstein factorization for sparse nonnegative
tensors. In: Proceedings of the AAAI Conference (2021)

3. Dagliati, A., et al.: Temporal electronic phenotyping by mining careflows of breast
cancer patients. J. Biomed. Informat. 66, 136–147 (2017)

4. Dauxais, Y., Guyet, T.: Generalized chronicles for temporal sequence classification.
In: Workshop on Advanced Analytics and Learning on Temporal Data (AALTD),
pp. 30–45 (2020)

5. Ferté, T., Cossin, S., Schaeverbeke, T., Barnetche, T., Jouhet, V., Hejblum, B.P.:
Automatic phenotyping of electronical health record: Phevis algorithm. J. Biomed.
Inform. 117, 103746 (2021)

6. Hettige, B., Wang, W., Li, Y., Le, S., Buntine, W.L.: Medgraph: structural and
temporal representation learning of electronic medical records. In: Proceedings of
the European Conference on Artificial Intelligence (ECAI), vol. 325, pp. 1810–1817
(2020)

7. Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J.
Math. Phys. 6(1–4), 164–189 (1927)

8. Hong, D., Kolda, T.G., Duersch, J.A.: Generalized canonical polyadic tensor
decomposition. SIAM Rev. 62(1), 133–163 (2020)

9. Kiers, H.A., Ten Berge, J.M., Bro, R.: PARAFAC2-part I. A direct fitting algorithm
for the PARAFAC2 model. J. Chemom. Soc. 13(3–4), 275–294 (1999)

10. Perros, I., et al.: Discovery and data mining -ACM SIGKDD), pp. 375–384 (2017)
11. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic

time warping, with applications to clustering. Patt. Recogn. 44(3), 678–693 (2011)
12. Pivovarov, R., Perotte, A.J., Grave, E., Angiolillo, J., Wiggins, C.H., Elhadad,

N.: Learning probabilistic phenotypes from heterogeneous EHR data. J. Biomed.
Inform. 58, 156–165 (2015)

13. Yin, K., Afshar, A., Ho, J.C., Cheung, W.K., Zhang, C., Sun, J.: LogPar: logistic
PARAFAC2 factorization for temporal binary data with missing values. In: Pro-
ceedings of the International Conference on Knowledge Discovery & Data Mining
(ACM SIGKDD), pp. 1625–1635 (2020)

14. Yin, K., Qian, D., Cheung, W.K., Fung, B.C.M., Poon, J.: Learning phenotypes
and dynamic patient representations via RNN regularized collective non-negative
tensor factorization. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 33, pp. 1246–1253 (2019)

Non-parametric Multivariate Time Series
Co-clustering Model Applied to

Driving-Assistance Systems Validation

Etienne Goffinet1,2(B), Mustapha Lebbah1, Hanane Azzag1, Giraldi Löıc2,
and Anthony Coutant1

1 Sorbonne Paris-Nord University, LIPN-UMR, 7030 99 Avenue Jean Baptiste
Clément, Villetaneuse, France

etienne.goffinet@lipn.univ-paris13.fr
2 Groupe Renault SAS, Avenue du Golf, Guyancourt, France

Abstract. In this paper, we propose a new Bayesian co-clustering app-
roach applied to Multivariate time series. Our methodology of Functional
Non-Parametric Latent Block Model (FunNPLBM) simultaneously cre-
ates a partition of observation and a partition of temporal variables, using
latent multivariate gaussian block distributions. We propose to use a bi-
dimensional Dirichlet Process as a prior for the block distributions param-
eters and for block proportions, which natively provides model selection.
This approach is benchmarked and studied on a simulated dataset and
applied to an advanced driver-assistance system validation use-case.

Keywords: Bayesian non parametric · Co-clustering · Model-based
clustering · Multivariate time series · Driving-assistance systems

1 Introduction

Unsupervised classification, or clustering, is a first approach to dataset explo-
ration that consists in the automatic grouping of similar observations into homo-
geneous groups, without supervision, i.e., without labels. Time series clustering
is crucial to decision-making in many domains (Industry, Health, Finance, Biol-
ogy,. . .) and has been extensively studied in the literature [1,2].

In a multivariate setting, the clustering methods deal with several variables
simultaneously. The Co-clustering (also called Bi-clustering, or block clustering)
simultaneously produces a partition of observations and a partition of variables
(respectively row-partition and column-partition). This approach creates a struc-
ture that highlights the dependencies between observation groups and variables
distributions. The co-clustering has been applied in various fields, (e.g., genetics
[27], biological applications [38], text mining [45]) and has been addressed with
a large numbers of methods: through spectral analysis [12], matrix factorization
[31], information theory [13], and, more recently, optimal transport [30] and deep
learning [44]. The Latent Block Model (LBM) [19] is a model-based co-clustering
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 71–87, 2021.
https://doi.org/10.1007/978-3-030-91445-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_5

72 E. Goffinet et al.

method, recently used in several domains [21,25]. The model-based approach
natively provides missing values inference and probabilistic outliers detection,
while keeping a sparse parameter number, which helps interpretability.

In the standard LBM approach, datasets are composed of 1-d cells, i.e., the
considered dataset is a matrix, and the co-cluster (or block) distributions are
univariate. LBM methods for time series, where each cell is a temporally-indexed
vector, have only been introduced recently. The method FLBM from [9] uses a
piecewise polynomial regression model as block distribution, which assumes that
every time series admits a latent segmented structure in a common polynomial
basis.

However, FLBM does not reduce the time series dimension as it directly
models the time series in the observation space and is impractical for high-
dimensional time series datasets. The method FunLBM [6], by contrast, includes
a dimension reduction step, which relies on functional PCA projections [36] of
the time series, and assumes a multivariate Normal model for the block distri-
bution. In a different context, some works extend these approaches by assuming
the presence of several independent [18] or hierarchically nested [10] partitions.

A limitation of FunLBM is that, as a parametric model, the number of blocks
is assumed known a priori. In practice, it is rarely true, and this number must
be estimated with an additional model selection step. This selection is usually
performed either with a grid-search or by hierarchically exploring existing clus-
ters with greedy optimization. These strategies have drawbacks: 1) with the grid
search, the computation cost can be prohibitive as every combination of block
number is tested, and the user is never certain that the true model is within the
grid; 2) the greedy optimization heuristic is sub-optimal, by picking iteratively
local optima and assuming a hierarchical structure of the mixture components;
3) whether with the greedy optimization or grid-search, choosing the model selec-
tion criterion [8,15] is not an easy task and influences the final results.

The Dirichlet Process Mixture Model (DPMM) is a Bayesian non-parametric
model-based clustering approach that can infer the number of latent clusters. As
a non-parametric model, its parameter set dimension may increase indefinitely
with the dataset size. This model is particularly well suited to massive dataset
exploration, especially when it is possible to allocate additional resources to
augment the dataset and discover new observation space areas.

Non-parametric approaches to LBM (NPLBM) have been studied in few
works [22,32], but, to the best of our knowledge, never applied to multivariate
time series co-clustering. The non-parametric framework has also been used by
[5] for the clustering of multivariate time series data based on a grid-based
multivariate density estimation, but not for coclustering. This paper proposes
to close the gap between FunLBM and NPLBM with functional non-parametric
Latent Block Model (funNPLBM), the first non-parametric model-based method
applied to multivariate time-series co-clustering.

In addition, our contribution includes a practical use case illustrating the
method’s capacities, a more compact definition of the NPLBM, experiments,
hindsight on the inference settings, and Scala code provided for reproducibility.

FunNPLBM 73

This paper illustrates the funNPLBM application to advanced driver-
assistance systems (ADAS) development, which remains a challenge for car man-
ufacturers. These systems (e.g., emergency braking, lane centering,. . .) are intro-
duced gradually into new cars. Given the high number of car models, driving
conditions, traffic laws, and given the expected reliability, it is today impossi-
ble to validate ADAS rigorously with only physical “on-tracks” tests. Groupe
Renault has invested in massive driving simulation technology to circumvent
this issue. The simulation tool mimics car driving conditions based on vehicle
physics, driver behavior, and interaction with a configurable environment. The
simulation outputs a large amount of information, mainly as multivariate time
series with unequal length. Simulated datasets dimensions are considerable: for a
given use case, the number of simulations can be as large as O(106), with O(103)
variables, each recording O(104) time steps. Overall, more than O(1013) data
points are produced.

In the following, Sect. 2 presents a review of the model-based clustering and
co-clustering. Section 3 describes funNPLBM, its inference, and the time series
preprocessing. Benchmark and experiments are studied in Sect. 4 and, finally, a
real-case application on an industrial dataset is presented in Sect. 5.

2 Related Work

In the next sections we use the following notations: X = (xi,j,s)n×p×d is the
dataset, where n is the number of rows (in our cases, the simulation number),
p the number of columns (in our case, the number of simulated variables) and
d the observation space dimension (c.f. time series dimension reduction step in
introduction of Sect. 3.1).

We denote xi,. = (xi,j)1≤j≤p the i-th row of X, x.,j = (xi,j)1≤i≤n the j-th
column. X−i,. and X.,−j designates the dataset without the corresponding row
or column. The row-clusters memberships vector is noted z = (zi)n and the
column-clusters memberships w = (wj)p, such that (zi, wj) = (k, l) indicates
that element xi,j belongs to row-cluster k and column-cluster l.

2.1 Model-Based Clustering and Dirichlet Process Mixture Model

Mixture Model (MM) [11] is a probabilistic clustering approach which assumes
that the overall density on the (p.d)-dimensional space is a convex combina-
tion of densities: p(xi,.) =

∑K
k=1 πkF (θk), with πk = p(zi = k), and F (θk) =

p(xi,.|zi = k) is the distribution of xi,. in component k, with density family F .
With this definition, sampling xi,. is performed by first drawing a membership
zi ∼ Mult(π) then drawing from F (θzi

). Model inference is performed by like-
lihood optimization using the Expectation-Maximization (EM) algorithm [11].
The MM admits the alternative representation:

∀i ∈ {1, .., n}, xi,. | θi ∼ F (θi) , θi ∼ G, G =
K∑

k=1

πkδθk
,

74 E. Goffinet et al.

with δθ the Dirac delta function, In this definition, each observation xi is asso-
ciated to a parameter θi. Because G is finite and K < n, several θi are similar,
which creates groups of elements with common distribution. The Dirichlet Pro-
cess Mixture Model (DPMM) can be seen as a Bayesian non-parametric exten-
sion of the MM where G is now an infinite random distribution with a Dirichlet
Process (DP) prior distribution. This prior is a distribution over distribution
that takes two parameters: a concentration α and a base distribution G0. The
distribution G admits [40] the stick-breaking representation G =

∑∞
k=1 πk(v)δθk

,
with

πi(v) = vi

i−1∏

j=1

(1 − vj) , v = (vi){1,...,n}, vj
i.i.d.∼ Beta(1, α), θj

i.i.d.∼ G0.

Several methods have been developed to infer DPMM’s parameters, either based
on variational inference [4], or Markov chain Monte Carlo (MCMC) [14,34]. For
large datasets applications, variational inference methods have often been pre-
ferred over MCMC for their speed, at the cost of hypothesis on the posterior
distribution structure. However, recent works [33,42] have made MCMC pro-
cesses scalable and rehabilitate their use for industrial purposes. In particular,
the collapsed Gibbs sampler is a natively fast MCMC’s method that assumes the
prior distribution G0 conjugate to the density family F . This assumption enables
close-form computations of the prior and posterior predictive distributions, that
are used to estimate posterior cluster membership probabilities.

2.2 Latent Block Model

The LBM [21] is a bi-dimensional MM, that assumes the presence of a finite
number of latent column-clusters in addition to the observation partition. Inside
a block Xk,l, each cell follows the component distribution F (θk,l), with F a
density family. The LBM likelihood of X is given by:

p(X) =
∑

Z×W
p(z,w)p(X| z,w) =

∑

Z×W
p(z)p(w)p(X| z,w),

where Z and W respectively denote the sets of all possible row and column
partitions. The row-membership distribution p(z) is defined as

∏
i p(zi) =

∏
i πzi

,
with π = (πk)K the mixing proportions, and p(w) =

∏
j p(wj) =

∏
j ρwj

. The
density of X is p(X| z,w) =

∏
k,l

∏
x∈Xk,l

p(x | θk,l), with x ∼ F (θk,l). The
inference process is usually performed in an Expectation-Maximization fashion,
e.g. with a Stochastic-Gibbs [26] approach, or variational inference [20]. In the
following, we define the funNPLBM and the stochastic inference process.

3 Functional Non-parametric Latent Block Model

This section introduces the novel Functional Non-Parametric Latent Block
Model and the inference. Because multivariate time series are observed in high-
dimensional spaces, in which models are known to suffer from the curse of dimen-
sionality, it is essential to preprocess the dataset with a dimension reduction

FunNPLBM 75

method. In addition, this step greatly reduces the computation cost. The func-
tional PCA (fPCA) [36] is a two-step dimensionality reduction method, popular
in the parametric model-based setting [6,41]. This method handles time series
with unequal lengths, as is the case in our applications. During fPCA, the time
series are first projected in a common polynomial basis. Among the many candi-
date representations available in the literature (e.g., Fourier, Legendre, Cheby-
shev, . . .), we use an interpolated log-scaled Fourier periodogram, as advocated
in [7]. This transformation consists in projecting each time series individually
in the frequency domain, then interpolating the obtained log-periodograms in a
common frequency basis. After this transformation, the second step of the fPCA
consists in projecting the obtained coefficients in a lower-dimensional space using
PCA. As a result, the unequal-length time series, described by O(103) points at
the origin, are transformed into equal-length d-dimensional vectors, with d the
number of PCA axes kept (usually less than 10).

3.1 Functional Bayesian Non-parametric Latent Block Model

In another context than the multivariate time series analysis, [32] proposed a
definition of the NPLBM. This work assumes Pitman-Yor Process (PYP) priors
for the row-memberships and column-membership. However, PYP priors (as DP
priors) are distributions over parameters and not on memberships. Using PYP,
the authors are in fact implicitly defining sets of parameter distributions that
are not linked to the block distributions. In the following, we propose a compre-
hensive definition that links block distributions and memberships intuitively.

This definition is based on a bi-dimensional extension of the DP. Each dataset
cell xi,j is associated with a parameter θi,j , grouped in the n× p matrix Θ. Two
Dirichlet Process priors are used: one on Θ’s rows and one on Θ’s columns. This
double definition ensures that every cells of a row belongs to the same row-cluster
and every column element to the same column-cluster. This process is defined
by:

xi,j | θi,j ∼ F (θi,j)

θi,. | G ∼ G,G =
∞∑

k=1

πk(s) δθk,.
,

θ.,j | H ∼ H,H =
∞∑

l=1

ρl(t) δθ.,l
,

πk(s) = sk

k−1∏

k′=1

(1 − sk′) , s = (sk){1,...,n}, sk
i.i.d.∼ Beta(1, α),

ρl(t) = tl

l−1∏

l′=1

(1 − tl′) , t = (tl){1,...,p}, tl
i.i.d.∼ Beta(1, β).

76 E. Goffinet et al.

With this definition, generating a dataset X is done by drawing π and ρ, sampling
z and w separately, then sampling Θ given z and w, and finally drawing the
cells value xi,j from F (θi,j). The likelihood of X is given by p(X | z,w, Θ) =∏

i,j p(xi,j | θi,j), and the joint prior distribution of the z and w is given by:

p(z,w, t, s, Θ | G0, α, β) = p(z | s) p(s | α) p(w | t) p(t | β) p(Θ | G0).

In the next section we describe the bi-dimensional stochastic inference process.

3.2 Model Inference

The inference is performed with a collapsed Gibbs sampler that simulates draws
from the posterior distribution p(z,w | X,G0, α). This approach directly uses
the predictive distributions closed form and therefore does not require sampling
block parameters. At each iteration m, the sampler alternates the following two-
steps:

1. Draw z(m+1) | w(m),X, α,G0,

2. Draw w(m+1) | z(m+1),X, β,G0.

During the first step, the row memberships update is performed sequentially:
each row-cluster membership zi is updated with the other row-memberships z−i

and column-partition w(m) fixed, following p(zi = k | z−i,X,w(m), α,G0) ∝
⎧
⎪⎨

⎪⎩

nk

n − 1 + α
p(xi,. | w(m),X−i, z−i, G0), existing cluster k, (1)

α

n − 1 + α
p(xi,. | w(m), G0), new row-cluster, (2)

where nk is row-cluster k size. We emphasize that the parameters Θ do not
appear in these formulas, as they are integrated over in the predictive distribu-
tions.

In Eq. (2), p(xi,. | w(m), G0) =
∏

l p(x(m)
i,l | G0), with x(m)

i,l the elements of
row i in column-cluster l at iteration m. For each column-cluster l, the prior
predictive distribution of x(m)

i,l is obtained by integrating over the component’s

parameter: p(x(m)
i,l | G0) =

∫
θ
p(x(m)

i,l | θ) p(θ | G0) dθ. Because G0 is a prior
conjugate to F , this integral is analytically tractable (see Sect. 3.3 for the detail
in the multivariate gaussian case). The joint posterior predictive distribution
p(xi,. | w(m),X−i, G0) from Eq. (1) has the same definition, with G0 updated
with the observations inside the blocks.

The second step of the Gibbs-sampler is performed symmetrically on column
clusters. Once the maximum number of iterations reached, the row and column
final partitions are estimated with the mean of the partitions sampled after burn-
in (c.f. Sect. 3.4 –Sect. 3 for computation detail). The algorithm global complexity
is linear in n, p, in the current blocks number and in the iterations number, but
also depends on the complexity of the sufficient statistics update and predictive
distribution computation. The inference is summarized in Algorithm 1. In the
next subsection we detail how Eqs. (1) and (2) simplify with our choice of G0.

FunNPLBM 77

3.3 Multivariate Gaussian Case

After the time series preprocessing step, each dataset cell xi,j is a d-dimensional
numeric vector produced by the fPCA, that we model with a multivariate Gaus-
sian density. As as conjugate prior, we choose G0 to be the Normal Inverse
Wishart (NIW) distribution with hyper-parameters (μ0, λ0, Ψ0, ν0). Given Xk,l,
the observations in block (k, l), the block parameters posterior distribution is
formally defined by p(μ,Σ | Xk,l) = NIW (μ,Σ | μk,l, κk,l, Ψk,l, νk,l), with:

μk,l =
κ0μ0 + nk,lxk,l

κk,l
, κk,l = κ0 + nk,l, νk,l = ν0 + nk,l,

Ψk,l = Ψ0 + C +
κ0nk,l

κk,l
(μ0 − xk,l)(μ0 − xk,l)T , C =

∑

x∈Xk,l

(x − xk,l)(x − xk,l)T .

With these parameters and following [16], the joint posterior predictive distribu-
tion needed in Eq. (1) is the multivariate t-student distribution:

tνk,l−p+1

(

μk,l,
(κk,l + 1) Ψk,l

κk,l(νk,l − p + 1

)

.

This definition outlines the cubic complexity in d, due to the t-student density
computation cost. The next section details the inference process implementation.

3.4 Implementation

G0 Hyperparameters Specification. The clustered objects are PCA coeffi-
cients, which are centered. Therefore we set μ0 to be the d-dimensional zero
vector. The precision matrix Ψ0 specification is a bit trickier and depends on
assumptions on the dataset. For non-parametric autoregressive models, [39] com-
pares several prior specifications for Ψ0 and concludes that the dataset precision
obtained with maximum likelihood estimation is a good standard, which we keep
in our application. κ0 and ν0, which represent the user’s confidence in μ0 and
Ψ0, are set to their lowest value, as we want them as uninformative as possible.

Initialization Strategy. Initializing a bayesian non-parametric MCMC infer-
ence algorithm is often done with single-component partition [35,37]. How-
ever, [23] shows that this strategy may be suboptimal when dealing with high-
dimensional datasets and high component numbers, and recommends to use ran-
dom partition as initial state, with more components than the actual component
number. However, this number is unknown. A tempting solution is to initialize
the partitions with one component per observation, but this choice is computa-
tionally expensive because the membership update has linear complexity in the
block number. We propose a heuristic, consisting of running the inference pro-
cess twice. In a first run, the inference is initialized with a one-cluster partition;
after this first run completion, the maximum block number sampled during the
inference is kept and used as the initial number of components for the second
run.

78 E. Goffinet et al.

Infering the Final Partitions. In output of the Gibbs sampler algorithm,
the user gets a set of sampled row-partitions (z(m))m and column-partitions
(w(m))m, that must be aggregated to obtain the final partition modes: ẑ and
ŵ. This consensus partition estimation is an NP-complete problem [29], that
several works have addressed (c.f. [43] for an extensive review). We use the
recent method [17], which proposes an efficient extension of a combinatorial
optimization method [24] that construct the partition with the minimal distance
[28] to the samples, without assumptions on the final number of clusters or on
the clustering structure.

Algorithm 1: FunNPLBM Inference
input : Dataset X, n × p × d tensor

α, β, G0 (c.f. specification strategies in Sect. 3.4–Sect. 1)
Iteration number M

output : Estimated row-partition ẑ and column-partition ŵ

Initialize z(0) and w(0) (c.f. initialization methods in Sect. 3.4–Sect. 2)
for m ← 1 to M do

for i ← 1 to n do

Compute p(zi | z−i, X,w(m), α, G0) as defined by Eqs. (1) and (2)

Sample z
(m+1)
i

for j ← 1 to p do

Compute p(wj | w−j , X, z(m+1), β, G0) as defined by Eqs. (1) and (2)

Sample w
(m+1)
j

Average the partitions (c.f. Sect. 3.4 - §3) to obtain the final partitions ẑ and ŵ.

4 Experiments on Synthetic Data

4.1 Experimental Setup

Benchmark and experiments are conducted on a dataset sampled from a known
generative model. The dataset is generated by sampling from the distributions
N (

fk,l(t), s2
)

where fk,l is a given prototype function and s = 0.02. The esti-
mated block partition quality is compared to the known generative partition,
based on several scores: the Rand Index (RI), Adjusted Rand Index (ARI) and
the Normalized Mutual Information (NMI). The RI is a popular criterion choice
in the clustering domain, which represents the proportion of correctly grouped
and separated observations with respect to the observed classes. The ARI is a
corrected-for-chance version of the RI that takes into account the probability of
getting good RI at random. The NMI is an entropy-based criterion from the infor-
mation theory literature estimating the quantity of knowledge a partition gives
on another. In the following benchmark and experiments, we work on a dataset
of dimension 140× 140, with unbalanced row cluster sizes (20, 30, 40, 30, 20) and
column cluster sizes (40, 20, 30, 20, 30), which amounts to 19600 time series.

FunNPLBM 79

4.2 Baselines and Compared Methods

As detailed in the introduction, co-clustering has been the subject of numerous
works on various data types, but most of the time on univariate observations
matrices (i.e., d = 1). To the best of our knowledge, the co-clustering on datasets
containing multidimensional cells (d > 1) has only been dealt with very recently
in the literature, and only a few methods currently exist. Apart from the model-
based method from [9], which does not include a dimension reduction aspect
and is, therefore, impractical on large datasets, FunLBM [6] is the only existing
method dealing with this use case. In addition, we consider two decoupled meth-
ods that perform co-clustering by inferring row-partitions and column-partitions
independently: a bi-dimensional Gaussian Mixture Model (BGMM) and a bi-
dimensional DPMM (BDPMM). This benchmark compares the block partitions
quality, but also the results of the associated model selection step, described by
the selected number of blocks, compared to the true number (5×5). For BGMM
and FunLBM, which are parametric approaches, this selection step is performed
by a grid-search with the ICL selection [3,26] and with a maximum of seven row
clusters and seven column clusters. In the non-parametric cases, this selection is
natively performed with the inference, with hyper-parameters α = 0.1, β = 0.1,
and G0 specified as described in Sect. 3.4. For each methods, the results are
the performances mean on 10 runs - or the median in the case of the number of
clusters. These performances are shown in Table 1.

FunNPLBM has the upper-hand in this benchmark, and estimates the cor-
rect structure, while its parametric counterpart FunLBM slightly underestimates
the correct number of blocks. In this setup, FunLBM’s performances comes from
locally optimal estimations of the candidate models during the grid-search model
selection. The same effect explains the performance’s gap between BGMM and
BDPMM. Overall, the two-steps methods BGMM and BPDMM show the worse
results, presumably because they both infer the row and column partitions inde-
pendently and therefore cannot use the row-clusters informations to help finding
the best column-clusters partition, and reciprocally. In conclusion, FunNPLBM
is able to simultaneously select the right model and to infer the right partition.
On an Ubuntu 18.04 64-bit with Intel® CoreTM i7-8850H CPU @ 2.60 GHz ×
12 CPU 32 Gib RAM, the computing time of FunNPLBM was <= 30 s.

Table 1. Benchmark with Bi-dimensional GMM (BGMM), Bi-dimensional DPMM
(BDPMM), functional Latent Block Model (FunLBM), and our proposal FunNPLBM

Score BGMM BDPMM FunLBM FunNPLBM

ARI 0.558 0.667 0.897 1

RI 0.927 0.958 0.990 1

NMI 0.837 0.905 0.968 1

Blocks 12 16 22 25

80 E. Goffinet et al.

4.3 Hyperparameters Specification Study

The hyperparameter set is composed of the base NIW distribution G0, the con-
centration parameters (α, β), the iterations number M , and the preprocessing
parameters: the Fourier basis dimension and the number of PCA axes. In an
unsupervised context, hyperparameters specification remains an active research
topic as there is no label to support hyperparameter inference. Consequently, it
is not possible to give definitive and general good specifications choices, which
depend on the dataset contents and must be hand-tuned by the experts. These
specifications, however, can be based on the knowledge of each hyperparameters
impact on funNPLBM’s behavior, which we illustrate in the following. In each
case, we compare funNPLBM’s performances when one hyperparameter varies
while keeping the others equal to given default values: α = β = 0.1, M = 10, a
Fourier expression basis of dimension 30 and 3 PCA axes.

Concentration Parameters and Number of Iterations. In the funNPLBM
setting, as in the DPM, the prior distribution of the number of components is
an increasing function of the concentration parameters: without knowledge of
the data, the higher the concentration parameters, the higher the probability of
producing high numbers of components. Because the whole method is symmetric
on the dataset rows and columns, and because the experiment dataset dimen-
sions n and p are equal, we consider the case α = β. As shown in Fig. 1, the
concentration parameters effects are negligible for this dataset and only have an
impact when extremely high (>1E12) - in which case the number of components
is highly overestimated - or extremely small (<1E–10) - in which case only one-
cluster partitions are inferred. This small impact of α comes presumably from
the high separation of the components in the time series high-dimensional obser-
vation space. This separability is simulated for this experiment but is consistent
with what we observe in practice. This separation also explains the small number
of iterations needed for convergence (here, less than 4 for 1e−6 ≤ α ≤ 1e10), and
the high stability of the MCMC. For a specific dataset, if α and β’s values are
complex to specify, we advise, as a simple workaround, to add a Gamma hyper-
prior assumption for α and β and estimate their values during the inference
algorithm, which is a common practice in the DPM setting. It implies, however,
to study specification strategies for the Gamma distribution parameters.

Preprocessing Parameters. The Fourier Basis dimension and the PCA axes
numbers both influence funNPLBM’s performances and affect the trade-off
between sparsity and quality of time series representation. Figure 2(a) shows
the effects of under-estimating or over-estimating the number of PCA axes. Low
numbers of PCA axes (<3) are associated with poor scores and few block com-
ponents due to poor representations of the time series, which are too close in
the projection space. On the contrary, if the number of axes is too high (>= 6),
the high dimensionality exaggerates the time series separation, and the compo-
nent number is overestimated, which explains the sharp decrease of the ARI and

FunNPLBM 81

Fig. 1. Scores versus alpha and iterations - with # block in log scale

NMI. In our use cases, we observed that 3 PCA axes lead to the most interesting
results. In Fig. 2(b), we observe that, with a fixed number of 3 PCA axes, high
polynomial basis dimensions (>50) are correlated with poor scores, presumably
because of lower time series representation quality (reflected by the low variance
explained score). On the contrary, when this basis dimension is low (<10), the
3-axes PCA adequately represents the information and the variance explained is
high (>= 0.97). However, in this case, the Fourier basis dimension is too low to
adequately represent the time series, which explains the poor scores. The studied
datasets, data generation scripts, and the Scala code used for the benchmark and
the experiments are available at the following (anonymized) github repository
https://tinyurl.com/4k9jze45, along with the data simulation method. In the
next section, a real-case situation is studied and illustrates the method’s interest
for Advanced Driving-Assistance Systems validation.

Fig. 2. (a) Scores versus number of PCA axes. (b) Scores versus Fourier logPeriodogram
dimension.

82 E. Goffinet et al.

5 Application to Advanced Driver-Assistance System
Validation

5.1 Use Case Description

This section illustrates the use of the co-clustering approach to the Emergency
Lane Keeping (ELK) assistance system validation. In a straight lane scenario,
the vehicle under test (called ego) is drifting towards an oncoming car on the
other lane (c.f. Fig. 3). The ELK system is expected to put the vehicle back to
its lane center with an emergency maneuver. With different settings (ego speed,
drift angle, . . .), the simulation system has produced a set of 400 simulations,
described by 22 features. We emphasize that these simulations are generated with
a simulation black-box that faithfully recreates the real-life driving conditions,
and are not simply produced by the generative model proposed in this article.

The time series are expressed in a common log-periodogram with dimension
40, then reduced to 3 PCA axes. The concentration parameters are set to 1e–2,
and the NIW parameters to the default values discussed in Sect. 3.4. The objec-
tive is to discriminate simultaneously driving patterns and correlated variables.

Fig. 3. Use case illustration: ego drifts from its lane, crosses the center line and heads
toward an oncoming vehicle. The system detects the target and change ego’s direction.

5.2 Results

The final co-clustering is the block partitions mean (c.f. averaging methods in
Sect. 3.4–Sect. 3) of 10 samples obtained after a burnin of 10 iterations and is
composed of 6 row-clusters and 13 column-clusters. With color indicating block
membership, Fig. 4 shows the global co-clustering structure, and Fig. 5 an extract
of the block contents. The first column-cluster discriminates uninformative
signals (car width, road bend radius, constant inactive system, . . .). The other
column-clusters relevantly regroup variables of interest: the 6th, 7th, and 8th
column clusters respectively regroup ego direction variables, ego lateral position
variables, and ego speed variables. Their content is shown in Fig. 5 top-left, top-
right and bottom-left respectively. The row-clustering is also insightful: each

FunNPLBM 83

Fig. 4. Resulting co-clustering on Emergency Lane Keeping (ELK) dataset. The result
consists of 6 row-clusters and 13 column-clusters

row-cluster correspond to well-separated driving behaviors. This separation is
best seen in Fig. 5 (top-right) that shows the following driving behaviors: 1) ego
drifting left and the ELK system failing (light green); 2) the symmetric behavior
on the right (dark green); 3) the ELK system correcting the car trajectory (light
orange).

Finally, the three other row-clusters (regrouping the remaining 5% of the
observations) are composed of outliers simulations, with driving behavior dis-
played on Fig. 5 (bottom-right). In this situation, the oncoming car is correctly
detected, and ego heading is changed accordingly, but not enough to prevent the
collision. In conclusion, funNPLBM has correctly discriminated uninformative
signals while creating meaningful clusters of features and clusters of simulations.
From this information, it is easy to visualize the variety of driving behaviors
that compose our datasets and understand them from the variable perspectives,
which was the original objective of the application. The next step is to link the
driving behavior to the control logic parameters and, if need be, refine them to
reach the performance objectives. With the same computer specifications than
for the experiments (c.f. Sect. 4.2), the computing time was <20 s.

84 E. Goffinet et al.

Fig. 5. Top-left: two highly negatively correlated direction change signals; top-right:
ego lateral position in the 3 biggest observation clusters; bottom-left: 2 correlated
speed variables; bottom-right: 3 outlier driving pattern in the 3 smallest observation
clusters.

6 Conclusion and Future Work

This paper describes FunNPLBM, a Bayesian non-parametric based method
that addresses the problem of co-clustering multivariate time series. This work
proposes the first Bayesian non-parametric co-clustering method dedicated to
functional data analysis, the description of an adapted collapsed Gibbs sampling,
and a more compact definition of the NPLBM model.

This method regroups redundant features, discriminates uninformative ones,
and provides the user with a two-dimensional analysis of a multivariate time
series dataset. The hyperparameters (concentrations parameters, components
parameters) specifications are discussed and experimented on a simulated
dataset, and a benchmark is presented that shows FunNPLBM adequacy in
a context that matches our assumptions. Finally, the method is applied to a
real-case dataset from the autonomous driving system validation domain. In
this application, FunNPLBM proves its ability to create meaningful clusters of
driving behavior and correlated variables simultaneously.

We are confident that FunNPLBM can be useful in other domains dealing
with correlated temporal variables. For instance in industrial contexts for sensor
anomaly detection or predictive maintenance, in health for ECG and biological
signals data analysis, in finance for stock trade data analysis. In addition, The
method can also be applied to anomaly detection thanks to the native produc-
tion of probabilistic predictive intervals and supervised classification by simply
constraining the row and column partitions values. We consider two extensions:
a) higher-order tensor co-clustering; b) relaxing the model to multi-clustering.
These perspectives will be addressed in future work.

FunNPLBM 85

References

1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inform. Syst. 53, 16–38 (2015)

2. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data Min. Knowl. Discov. 31(3), 606–660 (2016). https://doi.org/10.
1007/s10618-016-0483-9

3. Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering
with the integrated completed likelihood. IEEE Trans. Patt. Anal. Mach. Intell.
22(7), 719–725 (2000)

4. Blei, D.M., Jordan, M.I., et al.: Variational inference for dirichlet process mixtures.
Bayesian Anal. 1(1), 121–143 (2006)

5. Boullé, M.: Functional data clustering via piecewise constant nonparametric den-
sity estimation. Patt. Recogn. 45(12), 4389–4401 (2012)

6. Bouveyron, C., Bozzi, L., Jacques, J., Jollois, F.X.: The functional latent block
model for the co-clustering of electricity consumption curves. J. R. Stat. Soc. Ser.
C (Appl. Stat.) 67(4), 897–915 (2018)

7. Caiado, J., Crato, N., Peña, D.: Comparison of times series with unequal length in
the frequency domain. Commun. Stat. Simul. Comput. 38(3), 527–540 (2009)

8. Celeux, G., Frühwirth-Schnatter, S., Robert, C.P.: Model selection for mixture
models—perspectives and strategies. In: Handbook of Mixture Analysis (2018)

9. Chamroukhi, F., Biernacki, C.: Model-based co-clustering of multivariate func-
tional data. In: Proceedings of the 61st World Statistics Congress (2017)

10. Côme, E., Jouvin, N., Latouche, P., Bouveyron, C.: Hierarchical clustering with
discrete latent variable models and the integrated classification likelihood. In:
Advances in Data Analysis and Classification, pp. 1–30 (2021)

11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–22
(1977)

12. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph
partitioning. In: Proceedings of the seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 269–274 (2001)

13. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 89–98 (2003)

14. Escobar, M.D.: Estimating normal means with a dirichlet process prior. J. Am.
Stat. Assoc. 89(425), 268–277 (1994)

15. Forest, F., Mourer, A., Lebbah, M., Azzag, H., Lacaille, J.: An invariance-guided
stability criterion for time series clustering validation. In: International Conference
on Pattern Recognition (ICPR) (2020)

16. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.:
Bayesian Data Analysis. CRC Press, Boca Raton (2013)

17. Glassen, T.J., von Oertzen, T., Konovalov, D.A.: Finding the mean in a partition
distribution. BMC Bioinform. 19(1), 1–10 (2018)

18. Goffinet, E., Coutant, A., Lebbah, M., Azzag, H., Giraldi, L.: Conditional latent
block model: a multivariate time series clustering approach for autonomous driving
validation. arXiv preprint arXiv:2008.00946 (2020)

19. Govaert, G., Nadif, M.: Clustering with block mixture models. Patt. Recogn. 36(2),
463–473 (2003)

https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1007/s10618-016-0483-9
http://arxiv.org/abs/2008.00946

86 E. Goffinet et al.

20. Govaert, G., Nadif, M.: Block clustering with bernoulli mixture models: comparison
of different approaches. Comput. Stat. Data Anal. 52(6), 3233–3245 (2008)

21. Govaert, G., Nadif, M.: Co-clustering: Models, Algorithms and Applications. John
Wiley & Sons, Hoboken (2013)

22. Görür, D.: Nonparametric bayesian discrete latent variable models for unsupervised
learning. Doctoral thesis, Technische Universität Berlin, Fakultät IV - Elektrotech-
nik und Informatik, Berlin (2007)

23. Hastie, D.I., Liverani, S., Richardson, S.: Sampling from dirichlet process mixture
models with unknown concentration parameter: mixing issues in large data imple-
mentations. Stat. Comput. 25(5), 1023–1037 (2015)

24. Huelsenbeck, J.P., Andolfatto, P.: Inference of population structure under a dirich-
let process model. Genetics 175(4), 1787–1802 (2007)

25. Jacques, J., Biernacki, C.: Model-based co-clustering for ordinal data. Comput.
Stat. Data Anal. 123, 101–115 (2018)

26. Keribin, C., Brault, V., Celeux, G., Govaert, G.: Estimation and selection for the
latent block model on categorical data. Stat. Comput. 25(6), 1201–1216 (2014).
https://doi.org/10.1007/s11222-014-9472-2

27. Kluger, Y., Basri, R., Chang, J.T., Gerstein, M.: Spectral biclustering of microarray
data: coclustering genes and conditions. Genome Res. 13(4), 703–716 (2003)

28. Konovalov, D.A., Litow, B., Bajema, N.: Partition-distance via the assignment
problem. Bioinformatics 21(10), 2463–2468 (2005)

29. Křivánek, M., Morávek, J.: Np-hard problems in hierarchical-tree clustering. Acta
Inform. 23(3), 311–323 (1986)

30. Laclau, C., Redko, I., Matei, B., Bennani, Y., Brault, V.: Co-clustering through
optimal transport. In: International Conference on Machine Learning. PMLR
(2017)

31. Long, B., Zhang, Z., Yu, P.S.: Co-clustering by block value decomposition. In: Pro-
ceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, pp. 635–640 (2005)

32. Meeds, E., Roweis, S.: Nonparametric Bayesian Biclustering. Tech. rep, Citeseer
(2007)

33. Meguelati, K., Fontez, B., Hilgert, N., Masseglia, F.: Dirichlet process mixture
models made scalable and effective by means of massive distribution. In: Proceed-
ings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 502–509
(2019)

34. Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models.
J. Comput. Graph. Stat. 9(2), 249–265 (2000)

35. Nguyen, V.A., Boyd-Graber, J., Altschul, S.: Dirichlet mixtures, the dirichlet pro-
cess, and the structure of protein space. J. Comput. Biol. 20, 1—18 (2013)

36. Ramsay, J., Silverman, B.: Principal components analysis for functional data. In:
Functional Data Analysis. Springer Series in Statistics, pp. 147–172. Springer, New
York (2005). https://doi.org/10.1007/0-387-22751-2 8

37. Ross, G.J., Markwick, D.: Dirichlet process: an r package for fitting complex
Bayesian nonparametric models (2018)

38. Schlüter, K., Drenckhahn, D.: Co-clustering of denatured hemoglobin with band
3: its role in binding of autoantibodies against band 3 to abnormal and aged ery-
throcytes. Proc. Natl. Acad. Sci. 83(16), 6137–6141 (1986)

39. Schuurman, N., Grasman, R., Hamaker, E.: A comparison of inverse-Wishart prior
specifications for covariance matrices in multilevel autoregressive models. Multivar.
Behav. Res. 51(2–3), 185–206 (2016)

https://doi.org/10.1007/s11222-014-9472-2
https://doi.org/10.1007/0-387-22751-2_8

FunNPLBM 87

40. Sethuraman, J.: A constructive definition of dirichlet priors. Stat. Sin. 4, 639-650
(1994)

41. Slimen, Y.B., Allio, S., Jacques, J.: Model-based co-clustering for functional data.
Neurocomputing 291, 97–108 (2018)

42. Williamson, S., Dubey, A., Xing, E.: Parallel markov chain monte carlo for nonpara-
metric mixture models. In: International Conference on Machine Learning (2013)

43. Xanthopoulos, P.: A review on consensus clustering methods. In: Optimization in
Science and Engineering, pp. 553–566. Springer, New York (2014). https://doi.org/
10.1007/978-1-4939-0808-0

44. Xu, D., et al.: Deep co-clustering. In: Proceedings of the 2019 SIAM International
Conference on Data Mining, pp. 414–422. SIAM (2019)

45. Yan, Y., Chen, L., Tjhi, W.C.: Fuzzy semi-supervised co-clustering for text docu-
ments. Fuzzy Sets Syst. 215, 74–89 (2013)

https://doi.org/10.1007/978-1-4939-0808-0
https://doi.org/10.1007/978-1-4939-0808-0

TRAMESINO: Traffic Memory System
for Intelligent Optimization of Road

Traffic Control

Cristian Axenie1, Rongye Shi2(B), Daniele Foroni1, Alexander Wieder1,
Mohamad Al Hajj Hassan1, Paolo Sottovia1, Margherita Grossi1,

Stefano Bortoli1, and Götz Brasche1

1 Intelligent Cloud Technologies Lab, Huawei Munich Research Center,
Riesstrasse 25, 80992 Munich, Germany

cristian.axenie@huawei.com
2 EI Intelligence Twins Program, Huawei Cloud BU, Shenzhen, China

shirongye@huawei.com

Abstract. Whether efficient road traffic control needs accurate mod-
elling is still an open question. Additionally, whether complex models
can dynamically adapt to traffic uncertainty is still a design challenge
when optimizing traffic plans. What is certain is that the highly non-
linear and unpredictable real-world road traffic situations need timely
actions. This study introduces TRAMESINO (TRAffic Memory System
INtelligent Optimization). This novel approach to traffic control mod-
els only relevant causal action-consequence pairs within traffic data (e.g.
green time - car count) in order to store traffic patterns and retrieve
plausible decisions. Multiple such patterns are then combined to fully
describe the traffic context over a road network and recalled whenever
a new, but similar, traffic context is encountered. The system acts as a
memory, encoding and manipulating traffic data using high-dimensional
vectors using a spiking neural network learning substrate. This allows the
system to learn temporal regularities in traffic data and adapt to abrupt
changes, while keeping computation efficient and fast. We evaluated the
performance of TRAMESINO on real-world data against relevant state-
of-the-art approaches in terms of traffic metrics, robustness, and run-
time. Our results emphasize TRAMESINO’s advantages in modelling
traffic, adapting to disruptions, and timely optimizing traffic plans.

1 Introduction

Solving traffic congestion in urban agglomerations is still a problem resistant
to straightforward solutions despite the large amount of research and systems
developed to analyze [20], model [23], and control road traffic [26]. Systems

C. Axenie, R. Shi, D. Foroni, A. Wieder, M. A. H. Hassan, P. Sottovia, M. Grossi and
S. Bortoli—Authors contributed equally to this research.

c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 88–103, 2021.
https://doi.org/10.1007/978-3-030-91445-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_6

TRAMESINO 89

deployed in real-world [6,10,14] use a traffic model [7,24] that heavily influ-
ences the run-time performance of the overall system. Basically, the role of the
traffic model is to describe the dynamics of the traffic flow and to cope, even-
tually, with unforeseen deviations (i.e. disruptions) in traffic patterns [24]. But,
in order to achieve that, the system needs to optimize multiple metrics, such
as spatial and temporal traffic demand, traffic volume [3]. This implies a sub-
stantial computational cost that might hinder the overall real-time capabilities
of the system and increase the cost of large scale traffic optimization. It is the
system designer’s duty to make a trade-off between two dimensions, namely per-
formance and execution time. The present study addresses the problem of such
costly optimization routines and explores a novel approach to speed-up traffic
control, named TRAMESINO (TRAffic Memory System INtelligent Optimiza-
tion). At the core of TRAMESINO is the capability to exploit the similarity and
invariant features of traffic flow patterns. Basically, by storing relevant causal
patterns (i.e. action/consequence: allocated green time/measured car count) in
traffic flows, one can bypass the costly constrained optimization routines typi-
cally employed in traffic control systems. Such patterns can be correlated in time
to fully describe the traffic context in an entire region. Given “cues” of traffic
data (i.e. current car count), the system can “recover” a plausible cause (i.e. the
allocated green time). To achieve this TRAMESINO uses:

– an efficient encoding scheme for traffic timeseries covariates;
– a mechanism storing associations among traffic timeseries covariates;
– an efficient learning framework to natively process the encoded quantities and

implement the association dynamics.

In the remainder of this section, we ground our contribution and emphasize those
relevant features and drawbacks of adaptive traffic control systems motivating
our study.

1.1 Optimization-Based Adaptive Traffic Control Systems

Traditionally, flow optimization for coordinated traffic signals is based on average
travel times between intersections and average traffic volumes at each intersec-
tion [9]. However, most of these approaches do not consider the stochastic nature
of high-resolution field traffic data or capture it through computationally expen-
sive processes, such as Markov Decision Processes (MDP) [22]. Beyond stochas-
ticity, the community also explored the use of mixed-integer linear programming
(MILP) for optimizing the control of traffic signals, in particular, offsets, split
times, and phase orders [11]. The approach provided optimal results but with a
high computational cost. Additionally, such systems couldn’t handle changes of
the controlled variables in real-time due to the optimization process that needs
to iterate to convergence. In a first attempt to exploit the periodic nature of
the traffic signals, the work in [18] formulated the traffic light optimization into
a continuous optimization problem without integer variables, by modeling traf-
fic flow as sinusoidal. The system solved a convex relaxation of the non-convex

90 C. Axenie et al.

problem using a tree decomposition reduction with very good performance in
simulations, but it lacked the capability to scale and adapt to traffic disruptions.
Finally, relying on predicting arrivals at coordinated signal approaches the work
in [2] proposed the link pivot algorithm that assumed nearest-neighbor interac-
tions between signals in cyclic flow profiles to model traffic flows. Despite its well
performing optimization, the algorithm couldn’t handle unpredictable changes
in platoon shapes (i.e. occasionally caused by platoon splitting and merging) or
prediction during saturated conditions (i.e. traffic jams, accidents) limiting its
use in real-world deployments. As we briefly emphasized hitherto, aspects such
as stochasticity, simultaneous traffic assignment and traffic signal calculation,
periodicity, regional scaling, and real-time constraints, describe real-world traf-
fic situations. Each system excels in handling a sub-set of these aspects only and
cannot capture their combined impact on traffic dynamics.

1.2 Beyond Optimization

Historically, neural networks were employed in traffic control to exploit its intrin-
sic temporal dynamics. A reference work in this category is the study of [16]
which proposed a Hopfield network-based system designed to capture temporal
patterns. Opposite to optimization approaches, such a system exploited the inter-
action between neurons whose dynamics modelled traffic signals state changes
and stochasticity. These first steps away from optimization, were extended in
[17] by emphasizing the purpose of feedback loops for decreasing the differ-
ences of the conflicting flows, measured during a congestion or large number of
waiting vehicles. This solution enabled regional scaling and simultaneous traffic
assignment and traffic signal calculation using the same network, by exploiting
the capability to describe and solve a constraint satisfaction problem of Hop-
field networks [8]. Using a simplified, linear Hopfield neural network, the study
in [12] proposed a system capable of solving an arbitrary set of (linear) equa-
tions through online learning. Interestingly, the typical Hopfield network was
augmented with an additional feed-forward layer used to compute the Moore-
Penrose Generalized Inverse (i.e. pseudoinverse) of the weight connection matrix.
Calculating the pseudoinverse, allowed the system to actually compute a “best
fit” (in least squares sense) solution to the evolving traffic dynamics model (i.e.
unexpected disruptions “move” the optimum in solution space) in a parallel fash-
ion. Addressing the scaling problem, the study in [27] employed an augmented
Hopfield network to solve mixed integer programming. The approach exploited
the temporal dynamics of the Hopfield network to find better solutions than
Lagrangian relaxation and only very rarely converged to unfeasible solutions.
Finally, despite the advantages that systems, such as Hopfield networks, have,
there are some known barriers to deploy them to real-world scenarios. A first
aspect refers to the limited memory capacity of Hopfield networks, and the actual
computational cost of storing a large number of memories - which increases with
the number of neurons. Another strong limitation is the pattern orthogonality
assumption, which limits the recall accuracy, especially at scale. Considering the
unique and optimal recall of Hopfield networks, there are strong limitations due

TRAMESINO 91

to the existence of local minima and spurious states of attraction. Such a limi-
tation is stronger in the case of storing high-dimensional traffic contexts, where
due to increased similarity, identifying the discrepancy is difficult, especially in
the presence of a large number of states of attraction.

1.3 Motivation and Contributions

Besides the relevant aspects already mentioned, a significant drawback of exist-
ing traffic control systems is that they fail to fully exploit the causal coupling
(or associations) between traffic control signals and traffic flow dynamics. It is
known that, despite being highly nonlinear, traffic dynamics is regular on certain
timescales. Such regularities together with available sensory data can be used to
judiciously extract traffic contexts that can be subsequently used in optimizing
future traffic situations. Basically, the associations among the control signals
(i.e. green time/red time) and the measured outcomes (i.e. flow of cars) capture
the dynamics of traffic on a road, intersection, or region. Obviously, in order to
optimize flow and minimize delay time, the traffic control system would need to
find the best traffic light timing. This functionality is described in Fig. 1.

In this context, our contribution focuses on four main points:

– optimizing the time for decision-making and “short-circuit” re-computation
of a control signal (i.e. green time allocation) by exploiting previously learnt
patterns of traffic context (i.e. traffic flow – green time pair). Metaphorically,
TRAMESINO accumulates wisdom over traffic optimization, and uses the
acquired knowledge to bypass possibly computationally complex decision-
making processes based solely on the ongoing traffic perception.

– representing traffic contexts (i.e. regional traffic flow, local allocated green
times, etc.) as a “memory”, basically a high-dimensional numeric vector
depicting the traffic state at a certain moment in time. Additionally, such
memories can be stored and recovered using a learning system, which is at
the core of TRAMESINO. This way TRAMESINO can exploit the descriptive
power of pairs of actions and their outcomes in order to learn memories from
historical data. Such memories of associations speed-up operation, when fac-
ing new traffic situations by recalling the most similar (previously seen) traffic
context. To support this speed-up, the contexts are represented using high-
dimensional vectors, which map the complex dynamics to simple (algebraic)
operations in high-dimensional spaces.

– exploiting learned context associations among patterns of traffic (i.e. traffic
flow – allocated green time) to infer what would be the most plausible traffic
flow when a control signal (i.e. green time) is available and what would be the
green time for measured flow values. In other words, given a partial context,
TRAMESINO recalls the most similar context learnt in the past by restoring
the missing part of the context (i.e. either green time for measured flow or
flow for applied green time) - similarly to an autoassociative memory.

– release of a new real-world dataset, used in the TRAMESINO experiments,
which contains 74 days of real urban road traffic data from 8 crosses in a city
in China.

92 C. Axenie et al.

Fig. 1. TRAMESINO system functionality overview.

The main problems the proposed system solves are:

– efficiently representing traffic context using the measured data (i.e. traffic
flow) and control signals (i.e. allocated green time) in a system capable of
learning multiple associations among such causal data encoded in efficient
high-dimensional vectors;

– avoiding costly optimization methods and control signal re-computation by
exploiting previously learnt patterns of traffic data and infer, given partial
information (i.e. either traffic flow or allocated green time), what would be
the best corresponding full context corresponding to the partial information;

– scalability through storing multiple memories (i.e. multiple full traffic con-
texts) and deployment at different granularity (e.g. per lane, per direction,
per intersection);

– the efficient computation of traffic control signals (i.e. green time) that embed
and exploit the intrinsic traffic constraints and physics without an explicit
need to model the constraints;

2 Materials and Methods

In this study, we introduce TRAMESINO, a flexible framework and system capa-
ble to learn and store associations among measured traffic data (e.g. traffic flow)
and the corresponding traffic control signal generating it (i.e. allocated green
time). In order to speed up computation in similar, but novel, traffic situations,
the system recalls the most plausible learnt association.

2.1 Introducing TRAMESINO

TRAMESINO is an associative memory system for traffic flow optimization. The
system builds a vector description of the current traffic context from timeseries

TRAMESINO 93

of specific traffic data (i.e. flow of cars, green time, traffic density). The key
ingredient of TRAMESINO is the Holographic Reduced Representation (HRR)
[19], responsible for the traffic data encoding, learning, and computation with
the encoded quantities. Such a framework demonstrated already that structured
vector-representations are able to capture relations and mutual influence between
multiple traffic context data [15].

HRR are a type of Vector Symbolic Architectures (VSAs) [5] that describe
a family of modelling approaches to represent physical quantities by mapping
them to (high-dimensional) vectors. Beside the numerical structure underlying
the vectors, the core computational components of a VSA are a measure of simi-
larity and typically two algebraic operations, namely superposition and binding.
Superposition implements the basic addition and combines multiple vectors to
create a vector similar to the input vectors. Binding implements the basic mul-
tiplication in order to produce highly dissimilar response to both input vectors.
A very important aspect is the fact that binding is invertible and preserves dis-
tance metrics which support the associative memory implementation. Within
TRAMESINO, superposition allows storing multiple traffic contexts defined by
available traffic data (i.e. flow, green time, cycle time, phase length), whereas
binding provides the core mechanism to recall previously stored contexts given a
similarity metric. An important property of the high-dimensional vector space in
TRAMESINO is that with a very high probability all stored vectors are dissim-
ilar to each other (i.e. quasi-orthogonal). This enables the system to implement
the associative memory behavior using simple operations in high dimensions.
Finally, unlike many traditional neural networks, HRR do not rely on backprop-
agation but rather on algebraic operations on high-dimensional vectors which are
embarrassingly parallel operations that can be performed efficiently (in principle,
in constant time).

Data Representation. TRAMESINO uses high-dimensional HRR vectors
and operations to represent traffic contexts (i.e. action-consequence pairs)
and do computation (i.e. associative memory). Intuitively, for practical use,
TRAMESINO needs to store multiple such contexts as memories to be able
to handle arbitrary new contexts. As mentioned, in order to store multiple vec-
tors encoding traffic contexts, TRAMESINO utilizes bundling, which accounts
for an element-wise addition of the vectors. For the recall phase, TRAMESINO
utilizes binding, which is basically implementing a circular convolution. We now
introduce the formalism behind the specific HRR operations in TRAMESINO.

HRR allow for complex vector values, i.e., N ⊆ C and use a multiplication
operation � based on circular convolution. For any two vectors of size D, x,y ∈
VD(N), circular convolution � is defined as

z = x � y with zj =
D−1∑

k=0

xky(j−k)modD. (1)

94 C. Axenie et al.

Circular convolution can efficiently be computed using the Discrete Fourier
Transform (DFT) [1] defined as the function

DFT : CD → CD,x →
(∑D−1

j=0 xjζ
−jk
D

)D−1

k=0
with ζD = exp

(
i2π

D

)
. (2)

Similarly, the Inverse Discrete Fourier Transform (IDFT) is defined as the func-
tion

IDFT : CD → CD,x →
(

1
D

∑D−1
j=0 xjζ

jk
D

)D−1

k=0
. (3)

In TRAMESINO, we make use of the fact, that circular convolution can be
written as a combination of the DFT, IDFT, and element-wise multiplication �
[19]. Using the convolution theorem, we can calculate the circular convolution
of any two vectors v,w ∈ VD(N) by

v � w = IDFT (DFT (v) � DFT (w)) , (4)

with � denoting element-wise multiplication in this case. This induces that cir-
cular convolution obeys the same commutative and associative rules as element-
wise multiplication. Additionally, we define the convolutive power as the real
part of the transformed vector

vp := � (IDFT (DFT (v)p)) , (5)

This operation is used when recalling a traffic memory. This involves building
the HRR vector of a partial context (i.e. traffic flow car count), bundling and
binding it to existing memories, and then computing the similarity.

Next, we describe the encoding, its constraints, and the considerations to
handle temporal aspects (i.e. traffic contexts are timeseries of various traffic
measured quantities). TRAMESINO uses the unitary base of vectors b for encod-
ing (real-valued) scalar traffic quantities (i.e. flow of cars, green time) in high-
dimensional HRR vectors, which are in fact combinations of basis vectors using
simple algebraic operations. Additionally, it uses C0, . . . , CD to represent each
type of traffic data and T0, . . . , TD for encoding the temporal structure (i.e.
timestamps). As a design choice, we use unitary vectors u, since they have some
desirable properties, namely |u| = 1, up is still unitary for any p ∈ R, and convo-
lution with unitary vectors preserves the norm, i.e., |v| = |v ⊗ u| for any other
vector v. We can now create actual HRR vectors Vi of different traffic quantities
values vi as

Vi =
D∑

j=1

Cj ⊗ bvj ·s, (6)

where s is a scaling factor. To additionally encode the temporal structure, we
simply bind each traffic quantity vector Vi to a vector T encoding the timestamp,

VT =
D∑

i=1

⎛

⎝
D∑

j=1

Cj ⊗ bvj ·s

⎞

⎠ Ti. (7)

TRAMESINO 95

Learning and Inference. In TRAMESINO, the HRR traffic data represen-
tation and the HRR binding and bundling operations, are implemented in the
Neural Engineering Framework (NEF) [4]. NEF offers a systematic method of
“compiling” high-level descriptions, such as vector convolution, correlation, and
similarity, into synaptic connection weights between populations of spiking neu-
rons with efficient learning capabilities. In NEF, neural populations represent
time-varying signals, such as traffic flow data, through their spiking activity.
Such signals drive neural populations based on each neuron’s tuning curve, which
describes how much a particular neuron will fire as a function of the input signal.

Formally, we consider A a population of N ∈ N neurons encoding a subset
V of a real-valued vector space, i.e., V ⊆ R

n, representing measurable traffic
quantities. Given a function x(t) : R → V , we can write the activity ai at time
t of the i-th neuron in a neural population encoding a time-varying vector (e.g.
traffic flow data) x(t) as a spike train,

ai (x(t)) =
mi∑

j=1

δ(t − tj) = Gi(αi〈ei,x(t)〉 + Ji) for 1 ≤ i ≤ N, (8)

where Gi is the neural non-linearity, αi is the gain of the neuron, ei is the
neuron’s preferred encoding vector, Ji describes the neural background activity,
and tj are the mi spike-times of the i-th neuron, and 〈.〉 is the inner product. To
decode the traffic quantities x(t) back out of the neural population A, the spike
train is convolved ∗ with an exponentially decaying filter h : R → R resulting in

ãi (x(t)) =
mi∑

j=1

h(t) ∗ δ(t − tj) =
mi∑

j=1

h(t − tj). (9)

We consider here the exponential decaying filter given by h : R → R, t → e
−t
τp ,

where τp is the post-synaptic time constant. Through filtering we obtain an
estimation x̂(t) of the original input x(t) as a weighted sum with some decoder
values di

x̂(t) =
N∑

i=1

ãi (x(t))di. (10)

To calculate the optimal decoders di, the system needs to minimize the error
between input x(t) and decoded output x̂(t)

E =
∫ (

x(t) −
N∑

i=1

ãi (x(t))di

)2

dx(t). (11)

NEF solves for the decoders di by default using an efficient least squares opti-
mization [4].

Encoding and decoding operations on NEF neural populations representa-
tions allow us to encode traffic flow signals over time, and decode transforma-
tions (i.e. mathematical functions) of those signals. In fact, NEF allows us to

96 C. Axenie et al.

decode arbitrary transformations of the input traffic data by computing func-
tions across the connections between the populations of neurons encoding the
traffic data. For instance, if we consider A resp. B populations of N resp. M
neurons encoding a time-varying vector x(t) ∈ V ⊂ R

n (e.g. traffic flow) resp.
y(t) ∈ W ⊂ Rm (e.g. traffic density) and a function f : V → W ⊂ Rm. In order
to approximate the function f (i.e. traffic flow - density dependency) across a
connection from population A to population B, TRAMESINO calculates a set
of decoder values df

i for population A by minimizing the error

E =
∫ (

f(x(t)) −
N∑

i=1

ãi (x(t))df
i

)2

dx(t). (12)

Given encoders eBj and gain αB
j for 1 ≤ j ≤ M of population B, we can derive a

weight matrix for the connection from A to B approximating the function f by

wij = αB
j df

i LeBj for 1 ≤ i ≤ N and 1 ≤ j ≤ M, (13)

where L is a M × N linear operator. Here, NEF makes the assumption, that
connection weights can be factored into encoders, decoders, and a transform.
Finally, in order to implement the associative memory behavior, we need to
describe the dynamics of such an operation. But first we introduce how can we
implement such dynamics in populations of spiking neurons. If we consider A
a population of neurons with an incoming connection approximating the func-
tion f : V → W ⊂ R

m and a recurrent connection approximating the function
g : W → W (cf. Fig. 2). Thus, the overall function the population is approximat-
ing is

y(t) = h(t) ∗ (f(x(t)) + g(y(t))) (14)

with exponential decaying filter function h : R → R, t → e
−t
τ . By setting the

functions g(y(t)) = τa(y(t)) + y(t) and f(x(t)) = τb(x(t)) - with a and b arbi-
trary nonlinear functions - we obtain a neural model approximating a dynamical
system. The learning rule implementing the autoassociative memory needs to
modify the encoding vectors of active neurons to be selective to an input vector
(i.e. a partial context, traffic flow). Basically, this operation adjusts the connec-
tion weights so that a small number of distinct neurons respond to each such
partial traffic context - by triggering the memory most similar to it. For this

Fig. 2. Dynamics implementation of TRAMESINO associative memory.

TRAMESINO 97

we used the three layer neural autoassociator using NEF spiking neurons from
[25]. Given a traffic context vector x encoded by the activity of the input neu-
ral population, the filtered activity a(t) of neurons in the middle layer, and the
matrix e whose rows are the “preferred traffic context” vectors of the middle
layer neurons, we modify the “preferred traffic context” vectors of the middle
layer neurons according to:

∂e(t)
∂t

= −ηa(t)e(t) + η(a(t)xT (t), (15)

where η is the learning rate. Changing the “preferred traffic context” vectors
corresponds to changing the connection weights using a local learning rule in
Eq. 15. This system has been proven to have high accuracy, a fast, feed-forward
recall process, and efficient scaling, requiring a number of neurons linear in the
number of stored associations.

Parametrization. In all our experiments, within TRAMESINO1, traffic flow
readings from an urban region were concatenated in a context vector (i.e. mem-
ory) of size D = 1024, each encoding neural population had a size of 100 neurons,
a new memory was stored for each traffic light and each phase every n = 10 traf-
fic light cycles (i.e. accounting for a memory every approx. 5 min), and a new
green time was recalled at the generation of each new plan (i.e. approx. every
2 min). Note that, increasing the number of neurons (i.e. ≥1000) provides a more
accurate encoding and, hence results, but the computation time increase supra-
linearly. Our parametrization reflects the trade-off to make for the computation
time gain. Figure 3 provides an overview on the traffic context data, the encoding
process, and the similarity calculation processes, respectively.

3 Experiments and Results

In our experiments, we used the SPRING-MUSTARD (Spring season Multi-
cross Urban Signalized Traffic Aggregated Region Dataset) real-world dataset,
which contains 74 days of real urban road traffic data from 8 crosses in a city
in China2. The road network layout is depicted in Fig. 4a. In order to perform
experiments and evaluate the system, we simulated the real-world traffic flows in
the Simulator for Urban Mobility (SUMO) [13]. The realistic vehicular simulator
generates routes, vehicles, and traffic light signals that reproduce the real car
flows in the real-world dataset. In order to evaluate the adaptation capabilities,
we systematically introduced progressive flow magnitude disruptions over the
74 days of traffic flow data. Such degenerated traffic conditions describe non-
recurrent events such as sport events, accidents or adverse weather, for instance.
More precisely, accidents and adverse weather typically determine a decrease in

1 Codebase at: https://github.com/omlstreaming/aaltd2021.
2 The SPRING-MUSTARD real-world dataset used in our experiments is available at:

http://doi.org/10.5281/zenodo.5025264.

https://github.com/omlstreaming/aaltd2021
http://doi.org/10.5281/zenodo.5025264

98 C. Axenie et al.

Fig. 3. TRAMESINO system encoding and similarity mechanisms.

Fig. 4. Real-world road network layout and normal vs. disrupted data.

the velocity which might create jams, whereas, special activities such as football
matches or beginning/end of holidays increase the flow magnitude. Using the
real-world flow in the dataset and SUMO, we reproduce the traffic flow behavior
when disruption occurs starting from normal traffic flow data by reflecting the
disruption effect on vehicles speed and/or network capacity and demand. We
sweep the disruption magnitude from normal traffic up to 3 levels of disruption
(i.e. low, medium, high) reflected over all the 8 crosses over 24 h. The evaluated
systems are the following:

– BASELINE: static traffic planning that uses pre-stored timing plans com-
puted offline using historic data.

– MILP: Mixed-Integer Linear Programming traffic optimization implementa-
tion inspired from [18].

TRAMESINO 99

– HOPFIELD: Hopfield neural network implementation inspired from [16].
– TRAMESINO: instantiation of our system per each traffic light installed in

each direction of each of the 8 crosses in the road network.

For the evaluation of the different approaches (i.e. BASELINE, MILP, HOP-
FIELD, and TRAMESINO), we followed the next procedure:

– Simulate real-world SPRING-MUSTARD flows in SUMO and store the
results (without disruptions and with the 3 levels of progressive disruptions)
for each of the five approaches.

– Compute relevant traffic aggregation metrics (i.e. average trip duration, aver-
age speed, and waiting time, respectively).

– Rank experiments depending on performance.
– Perform statistical tests (i.e. a combination of omnibus ANOVA and posthoc

pairwise T-test with a significance p = 0.05) and adjust ranking depending
on significance.

– Evaluate best algorithms depending on ranking for subsets of relevant metrics
(i.e. the metrics with significant difference).

Our evaluation results are given in Table 1 where each of the approaches is ranked
across the disruption magnitude scale (no disruption (N) to max disruption (H))
over the specific metrics (i.e. average trip duration, average speed, and waiting
time, respectively). For flow magnitude disruptions, the level of disruption (i.e.
low (L), medium (M), and high (H)) is a factor used to adjust the number of
vehicles during the disruption. As one can see in Table 1, TRAMESINO over-
comes both HOPFIELD and BASELINE, but deviated from the optimal MILP
solution with under 30% in average trip duration and waiting time, and just
under 3% in average speed. This is due to the optimal solution that MILP finds
given the constraints that the values of the traffic quantities rely upon. How-
ever, this performance decreases in the typical metrics is successfully compen-
sated by the run-time analysis in Fig. 5. Here, when simulating one day of traffic,
TRAMESINO demonstrates that storing and recalling traffic context memories
is almost 2× faster than BASELINE and up to 5× faster than MILP, when
considering the actual optimization time (i.e. for TRAMESINO store and recall
based on similarity, constrained optimization convergence for MILP). Addition-
ally, the overall TRAMESINO processing only took around 12% from the total
simulation time of a single day (i.e. approx. 24 min). A specific analysis and eval-
uation for TRAMESINO is the accuracy and robustness of the high-dimensional
encoding. We explored how does the size of the encoding D influence the encod-
ing and decoding of each memory (i.e. in the storing and recall processes of
TRAMESINO). Intuitively, a higher dimension of the encoding will support more
accurate representations. This is visible in Fig. 6, where we stored and recalled
a varying number of traffic data memories of different dimensions. Please recall
that this process describes the entire functionality pipeline of TRAMESINO
described in Fig. 1.

100 C. Axenie et al.

Table 1. Performance evaluation of the different systems in normal traffic (N) and
with varying disruption levels: low (L), medium (M), and high (H). Besides absolute
ranking we take the average performance deviation from the optimal solution of MILP.

System/Disruption level N L M H Ranking Deviation

Average trip duration (s)

BASELINE 168.805 181.217 265.546 270.167 4 49.86%

MILP 118.336 132.406 167.173 167.673 1 0.0%

HOPFIELD 151.281 151.381 223.017 257.464 3 32.28%

TRAMESINO 156.379 157.371 203.775 236.224 2 28.44%

Average speed (km/h)

BASELINE 58.15 56.78 49.38 47.50 4 10.95%

MILP 59.30 60.00 59.40 59.10 1 0.0%

HOPFIELD 59.48 59.97 49.28 46.18 3 9.84%

TRAMESINO 59.78 59.02 52.08 48.28 2 8.14%

Waiting time (s)

BASELINE 16.45 18.53 32.59 35.13 4 7.02%

MILP 13.98 16.14 15.14 15.07 1 0.0%

HOPFIELD 13.98 14.96 29.32 37.29 3 5.84%

TRAMESINO 14.95 14.57 22.16 29.01 2 2.96%

Fig. 5. Run-time performance evaluation for the real-world flows in the simulator.

4 Discussion

Traffic optimization and control is a complex multi-factorial problem. Such a
problem requires accurate models, robust control, and, above all, efficient com-
putation, to meet real-world constraints. But, there is a trade-off to be made
in order to accommodate all these objectives. Combining human expertise,

TRAMESINO 101

Fig. 6. Encoding/decoding accuracy of TRAMESINO memories.

simple models, and heuristics, the typical static plans (i.e. BASELINE) are the
best choice when there is a predictable traffic demand and no dynamic changes
in the flow (i.e. accounts for a look-up-table query). Such models fail to cap-
ture and accommodate sudden changes in the traffic context and are typically
used as fall-back mechanisms. Increasing the price of modelling and computa-
tion with mathematical programming and constrained optimization, adaptive
systems (i.e. MILP [18]) are the choice for accurate responses to abrupt changes
in traffic dynamics. As computing new traffic light plans is required very often
(e.g. every 5 min), optimization-based systems reach their limitation at scale,
when controlling large urban networks. Constrained optimization might provide
the optimal solution but miss the timing. Trying to balance accuracy and com-
putation efficiency, while exploiting the regularity in traffic patterns for robust
control, optimization-free methods [16] were developed. Such class of methods,
of which TRAMESINO is a member, try to exploit temporal regularities in the
traffic data to store relevant patterns of action-consequence (i.e. green time/flow
of cars) to be able to bypass expensive optimization.

Looking at the evaluation in Table 1 we see that the accuracy trade-off is
visible, optimization-free methods (i.e. HOPFIELD and TRAMESINO) rank-
ing worse than MILP in the traffic specific performance metrics. This is due to
the fact that MILP’s constrained optimization focuses on satisfying all depen-
dencies among traffic data quantities (i.e. traffic flow, green time, phase offset)
in order to provide green time values that minimize trip duration, maximize
speed, and reduces waiting time, respectively. The power of such an approach
is visible also when progressive disruptions are introduced over the daily traffic
patterns. TRAMESINO outperforms the HOPFIELD model due to its efficient
computation using NEF and spiking neural networks. This allows for an efficient
high-dimensional data representation, simple algebraic operations, and memory
dynamics, that can exploit traffic data regularities. These regularities captured
by TRAMESINO’s memory yield fast adaptation to sudden changes in the traf-
fic flow patterns. As shown in Table 1 despite the increasing disruption levels
TRAMESINO is still providing the second best speed, average trip duration,
and waiting time. Finally, due to its efficient computation TRAMESINO dom-
inates in terms of run-time (see Fig. 5). Thanks to its learning and adaptation

102 C. Axenie et al.

capabilities, TRAMESINO captures traffic regularities when storing new context
memories and overcomes the judiciously-parametrized static plan of the BASE-
LINE system. This offers a serious gain in execution time, avoiding relaxation
of HOPFIELD and the optimal convergence of MILP.

5 Conclusions

In order to exploit regularities in road traffic patterns and avoid expensive opti-
mization techniques, TRAMESINO stands out as a good candidate for efficient
traffic control. The system exploits the causal relation among action - conse-
quences pairs (i.e. traffic light green time - flow of cars) in time in order to
store relevant contexts. Such traffic context memories are subsequently recalled
in new situations, but similar, traffic situations bypassing a new traffic plan
re-computation. Our experiments on real-world data demonstrate that such an
approach provides a good trade-off between accuracy and robustness overcom-
ing the static plans heuristics and the expensive optimization through a superior
gain in run-time. This behavior benefits from the rather deterministic daily traf-
fic profile but, as our experiments demonstrate, can also accommodate sudden
disruptions of increasing magnitudes.

References

1. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and Its Applications, vol.
31999. McGraw-Hill, New York (1986)

2. Day, C.M., Bullock, D.M.: Optimization of traffic signal offsets with high resolution
event data. J. Transp. Eng. Part A Syst. 146(3), 04019076 (2020)

3. Dhamija, S., Gon, A., Varakantham, P., Yeoh, W.: Online traffic signal control
through sample-based constrained optimization. In: Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling, vol. 30, pp. 366–374
(2020)

4. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. MIT Press, Cambridge (2003)

5. Gayler, R.W.: Vector symbolic architectures answer Jackendoff’s challenges for
cognitive neuroscience. arXiv preprint cs/0412059 (2004)

6. Henry, J.J., Farges, J.L., Tuffal, J.: The PRODYN real time traffic algorithm. In:
Control in Transportation Systems, pp. 305–310. Elsevier (1984)

7. Hoogendoorn, S.P., Bovy, P.H.: Generic gas-kinetic traffic systems modeling with
applications to vehicular traffic flow. Transp. Res. Part B Methodol. 35(4), 317–336
(2001)

8. Hopfield, J.J.: Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092
(1984)

9. Hu, H., Liu, H.X.: Arterial offset optimization using archived high-resolution traffic
signal data. Transp. Res. Part C Emerg. Technol. 37, 131–144 (2013)

10. Hunt, P., Robertson, D., Bretherton, R., Royle, M.C.: The scoot on-line traffic
signal optimisation technique. Traffic Eng. Contr. 23(4), 190–192 (1982)

TRAMESINO 103

11. Köhler, E., Strehler, M.: Traffic signal optimization: combining static and dynamic
models. Transp. Sci. 53(1), 21–41 (2019)

12. Lendaris, G.G., Mathia, K., Saeks, R.: Linear Hopfield networks and constrained
optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(1), 114–118
(1999)

13. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018).
https://elib.dlr.de/124092/

14. Lowrie, P.: Scats, Sydney co-ordinated adaptive traffic system: A traffic responsive
method of controlling urban traffic. Roads and Traffic Authority NSW, Traffic
Control Section (1990)

15. Mirus, F., Blouw, P., Stewart, T.C., Conradt, J.: An investigation of vehicle behav-
ior prediction using a vector power representation to encode spatial positions of
multiple objects and neural networks. Front. Neurorobot. 13, 84 (2019)

16. Nishikawa, I., Iritani, T., Sakakibara, K.: Improvements of the traffic signal con-
trol by complex-valued Hopfield networks. In: The 2006 IEEE International Joint
Conference on Neural Network Proceedings, pp. 459–464. IEEE (2006)

17. Nishikawa, I., Kuroe, Y.: Dynamics of complex-valued neural networks and its
relation to a phase oscillator system. In: Pal, N.R., Kasabov, N., Mudi, R.K.,
Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 122–129. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30499-9 18

18. Ouyang, Y., Zhang, R.Y., Lavaei, J., Varaiya, P.: Large-scale traffic signal offset
optimization. IEEE Trans. Control Netw. Syst. 7(3), 1176–1187 (2020)

19. Plate, T.A.: Holographic Reduced Representation: Distributed representation for
cognitive structures. CSLI Lecture Notes (2003)

20. Punzo, V., Simonelli, F.: Analysis and comparison of microscopic traffic flow models
with real traffic microscopic data. Transp. Res. Rec. 1934(1), 53–63 (2005)

21. Salort Sánchez, C., Wieder, A., Sottovia, P., Bortoli, S., Baumbach, J., Axenie, C.:
GANNSTER: graph-augmented neural network spatio-temporal reasoner for traffic
forecasting. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T., Tavenard, R.,
Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 63–76. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-65742-0 5

22. Sun, J., Liu, H.X.: Stochastic eco-routing in a signalized traffic network. Transp.
Res. Procedia 7, 110–128 (2015)

23. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4

24. Treiber, M., Kesting, A., Helbing, D.: Understanding widely scattered traffic flows,
the capacity drop, and platoons as effects of variance-driven time gaps. Phys. Rev.
E 74(1), 016123 (2006)

25. Voelker, A.R., Crawford, E., Eliasmith, C.: Learning large-scale heteroassociative
memories in spiking neurons. Unconv. Comput. Natural Comput. 7, 2014 (2014)

26. van Wageningen-Kessels, F., van Lint, H., Vuik, K., Hoogendoorn, S.: Genealogy
of traffic flow models. EURO J. Transp. Log. 4(4), 445–473 (2014). https://doi.
org/10.1007/s13676-014-0045-5

27. Walsh, M.P., Flynn, M.E., O’Malley, M.J.: Augmented Hopfield network for mixed-
integer programming. IEEE Trans. Neural Networks 10(2), 456–458 (1999)

https://elib.dlr.de/124092/
https://doi.org/10.1007/978-3-540-30499-9_18
https://doi.org/10.1007/978-3-030-65742-0_5
https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1007/s13676-014-0045-5
https://doi.org/10.1007/s13676-014-0045-5

Detection of Critical Events in Renewable
Energy Production Time Series

Laurens P. Stoop1,2,3(B) , Erik Duijm1 , Ad Feelders1 ,
and Machteld van den Broek4

1 Utrecht University, 3584 CS Utrecht, The Netherlands
2 Royal Netherlands Meteorological Institute, De Bilt, The Netherlands

3 TenneT TSO B.V., Arnhem, The Netherlands
4 University of Groningen, 9747 AG Groningen, The Netherlands

l.p.stoop@uu.nl

Abstract. The introduction of more renewable energy sources into the
energy system increases the variability and weather dependence of elec-
tricity generation. Power system simulations are used to assess the ade-
quacy and reliability of the electricity grid over decades, but often become
computational intractable for such long simulation periods with high
technical detail. To alleviate this computational burden, we investigate
the use of outlier detection algorithms to find periods of extreme renew-
able energy generation which enables detailed modelling of the perfor-
mance of power systems under these circumstances. Specifically, we apply
the Maximum Divergent Intervals (MDI) algorithm to power generation
time series that have been derived from ERA5 historical climate reanal-
ysis covering the period from 1950 through 2019. By applying the MDI
algorithm on these time series, we identified intervals of extreme low
and high energy production. To determine the outlierness of an inter-
val different divergence measures can be used. Where the cross-entropy
measure results in shorter and strongly peaking outliers, the unbiased
Kullback-Leibler divergence tends to detect longer and more persistent
intervals. These intervals are regarded as potential risks for the electricity
grid by domain experts, showcasing the capability of the MDI algorithm
to detect critical events in these time series. For the historical period
analysed, we found no trend in outlier intensity, or shift and lengthening
of the outliers that could be attributed to climate change. By applying
MDI on climate model output, power system modellers can investigate
the adequacy and possible changes of risk for the current and future
electricity grid under a wider range of scenarios.

Keywords: Energy climate · Power system modelling · Outlier
detection · Time series · Climate change · Anomaly detection · High
impact events

1 Introduction

With the energy transition from fossil-fuel driven generation towards inter-
mittent renewable energy sources like wind and solar power, the electricity
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 104–119, 2021.
https://doi.org/10.1007/978-3-030-91445-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_7&domain=pdf
http://orcid.org/0000-0003-2756-5653
http://orcid.org/0000-0002-8780-7004
http://orcid.org/0000-0003-4525-1949
http://orcid.org/0000-0003-1028-1742
https://doi.org/10.1007/978-3-030-91445-5_7

Detection of Critical Events in Renewable Energy 105

supply becomes more variable [31]. Additionally, electrification of space heating
will enhance [31,39] the already existing variability at the electricity demand
side [5,32]. This twofold increase in variability can be partly counteracted by
the high interconnectivity of the European electricity system [13] that enables
exchanges between countries with either electricity shortfalls or surpluses. How-
ever, large scale penetration of variable renewable energy sources can endanger
the reliability of the system as weather driven critical conditions may damage
elements in the electricity grid or lead to hours with unserved energy [34].

Therefore, insights into critical events are required to support stakehold-
ers with taking appropriate risk reducing investments during the energy transi-
tion [40]. For instance, such events could be avoided by investments in flexibility
options [14], interconnections [30], storage facilities [24], spatial balancing [16,27]
and/or back-up systems.

Power system simulation models can be used to select and quantify these
type of investments to deal with critical events in different scenarios of power
system development [17]. The simulations often search for cost-effective solutions
under pre-set reliability and environmental performance standards. However,
when all important features and limitations of the power system are taken into
account, these power system simulations can become very complex, resulting in
high computational burdens that scale with the simulation period [38].

These constraints on the simulation period impede that power system mod-
ellers sufficiently assess the impact of variability of intermittent renewables over
different timescales ranging from sub-hourly to decadal [25]. A promising method
to comprehensively incorporate the variability of renewables into power system
simulations without increasing the simulation period is the Importance Subsam-
pling approach developed by Hilbers et al. [21]. However, this method may over-
look important weather-related outliers resulting in an inaccurate assessment
of reliability under critical conditions. Although energy system experts could
complement the method of Hilbers et al. with information of extreme events in
the past [10], such information is lacking for future weather years from climate
models [7]. The latter is crucial though, among others for evaluating the power
system performance under climate change conditions.

In this paper we apply the Maximally Divergent Intervals (MDI) algorithm
developed by Barz et al. [2] that enables the systematic detection of outliers in
energy climate datasets, like renewable energy production time series. We per-
form several experiments on a energy climate dataset of 70 years to determine
the merits and limitations of this method to find critical events. The developed
method is a key step in a joint project with experts from a national meteorolog-
ical institute and a Transmission System Operator (TSO). It will be applied to
identify critical conditions in very large datasets from climate models to assess
system adequacy in many scenarios with power system simulation modelling.

This paper is organized as follows. Related work is discussed in Sect. 2 to
place the outlier detection method in a broader context. Section 3 introduces the
energy climate dataset used in this study. Next the relevant components of the
algorithm are briefly described in Sect. 4. The application of the algorithm is

106 L. P. Stoop et al.

experimentally evaluated and discussed in Sect. 5. Finally, Sect. 6 presents the
conclusion and next steps in our project.

2 Related Work

Here we will focus on related work concerned with finding critical events in
energy production data and weather data. For related work on algorithms for
outlier detection, we refer to the overview in the introduction of Barz et al. [3].

A broad research community addressed the identification of extreme weather
events in historical weather years by applying a variation of methods. Where
Wu and Chawla [37] focus on using Extreme Value Theory to detect and track
heavy rainfall events, others like Duggimpudi et al. [12] used Behavioural outlier
Factors to track the path of hurricane Katrina.

Although such extreme weather events may be of interest in their own right
due to their potential severity [1], not all high impact events are caused by
extreme weather events [33]. Therefore, research is shifting from the identification
of extreme weather events to the identification of weather events that have a
severe impact on society [40].

The impact based approach asks for a clear definition of a variable that can
measure the severity of this impact. Thus searching for weather events that pose
a risk for the operation of the power system requires first of all knowledge of how
weather influences the power system, secondly a method to classify the weather
driven impacts between normal to adverse to severe, and thirdly to detect these
severe events. Dawkins and Rushby [10], for example created a composite impact
variable capturing the relations between wind droughts and electricity demand
peaks. Another example, is the study by van der Wiel et al. [34] who also used a
composite variable representing weather dependent solar and wind supply minus
the electricity demand. By dividing the renewable generation by the electricity
demand, significantly different critical events where found by Drew et al. [11],
indicating the importance of the exact definition of the impact variable.

In most of these studies, the impacts are considered severe when the impact
value exceeds a pre-defined threshold [10,11,34]. Thus the nature of the impact
is pre-determined by this selection criterion and can for example be a shortage
or surplus of energy during a specific time horizon. Furthermore, although most
studies look at extremes at different time horizons e.g., 1 day, 1 week or 2 weeks,
they often fix the length of the time horizon before determining the outliers. As
the intensity, duration and/or timing of high impacts can change due to climate
change, a more flexible method would be beneficial when looking at climate
change related risks.

Finding critical events for the power system thus requires knowledge of the
relation between weather and impact. Expert opinion is a way to determine if an
event is critical, but it might be very subjective. A thorough overview of critical
events for the United Kingdom is given by Dawkins and Rushby [10] where they
rely on extensive expert knowledge, and by Ward [35] for the wider region of
Europe, though their work could be considered dated given the fast transition.

Detection of Critical Events in Renewable Energy 107

Additionally, despite the effort of the energy climate community the input
data for such studies are not available in a coordinated way for most countries [7].
Using labelled real world data for training an outlier detection method is thus not
a viable option, synthetic time series are therefore used within the energy climate
community. This limited availability of data is especially an issue with respect
to energy consumption data. Methods exist to model the energy consumption
[9,26,32], but the difficulty in the acquisition of the data required limits the
scope of this paper to renewable energy generation.

3 The Energy Climate Dataset

In this section we provide a brief introduction into the data used for our exper-
iments and how it was generated. We first discuss the properties of the ERA5
dataset in Sect. 3.1. After this we will discuss, in Sect. 3.2, the energy conversion
models used to create electricity generation data based on the ERA5 reanalysis
data.

3.1 The ERA5 Reanalysis Data

ERA5 is the latest reanalysis dataset developed by the European Centre for
Medium-Range Weather Forecasts [20]. In a reanalysis dataset [19], historical
observations are consistently assimilated into numerical weather models to give
a best estimate of the recent climate.

ERA5 reanalysis data stretches from 1950 to the present, with a two month
delay. The period between 1950 and 1979 is the preliminary version of the ERA5
back-extension [4]. The ERA5 and its back-extension have undergone significant
quality control and are considered state-of-the-art. The variables used in this
research are solar irradiance, wind speed at 100 m height, and 2 m temperature.

The temporal granularity of the data is hourly, with a spatial granularity
of 0.25◦ or ±31 km. The period we covered spans from 1950 through 2019. In
the spatial domain we used the subregion of Europe, defined here as the region
between latitude −14.75 to 40 East and longitude 35 to 74.75 North.

3.2 Energy Conversion Models

To calculate the electricity generation based on climate reanalysis data one needs
to know the capacity factor of wind turbines and solar photo-voltaic panels per
grid cell, and the distribution of their capacity over the region of interest. The
first can be obtained by using conversion models that compute a capacity factor
for each grid cell based on the climate variables in that grid cell. The second, a
distribution of renewable energy sources for the target year of 2050 was provided
to us upon request by Bas van Zuijlen, for details on the properties of this possible
distribution we refer to [41].

In collaboration with the TSO stakeholder of our project, several conversion
models were compared and analysed. For solar panel electricity generation we

108 L. P. Stoop et al.

compared the methods presented in [23] and [6]. More advanced methods where
not used as those require additional information on panel tilt, angle and solar
radiation components that are not available. We selected the method as set out
by [23], we refer to them for more details.

For wind turbine electricity generation we compared the methods described
in [8,15,23,28,29]. Based on the model complexity, running time and accuracy of
the output, we selected the general power curve method from [23]. However, we
made three adjustments to this model. First, we reduced the effective capacity
factor (CFe) with 5% to 95% to represent the wake losses in large scale wind-
farms. Secondly, we introduce a linear decay in the capacity factor at high wind
speeds to more accurately represent high windspeed operational conditions. The
third change was that we tuned the power curve regimes. Equation (1) gives the
capacity factor for wind turbines (CFwind) used in this study.

CFwind(t) = CFe ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if V (t) < VCI ,
V (t)3−V 3

CI

V 3
R−V 3

CI
if VCI ≤ V (t) < VR,

1 if VR ≤ V (t) < VD,
VCO−V (t)
VCO−VD

if VD ≤ V (t) < VCO,

0 if V (t) ≥ VCO.

(1)

Here V (t) is the wind speed at the height of the wind turbine and the power
curve regimes are given by the cut-in (VCI = 3 m/s), rated (VR = 11 m/s), decay
(VD = 20 m/s) and cut-out (VCO = 25 m/s) wind speed. The windspeed provided
by ERA5 (at 100 m) did not match the hub height for offshore turbines within
the capacity distribution used [41], therefore it is scaled using the wind profile
power law to 150 m. The surface roughness was set to a constant value for both
onshore (α = 0.143) and offshore regions (α = 0.11).

The total energy generation per grid cell is obtained by multiplying the capac-
ity factor with the installed capacity from the distribution used.

The temporal variations in supply are expected to play a larger role than the
spatial variation for the critical conditions in the power system. Additionally, the
current European electricity grid is highly interconnected1, even higher intercon-
nectivity of the system is expected by 2050. As we search for critical conditions
and we have to reduce the dataset size for tractability, we assume that the elec-
tricity grid can be approximated by a copper plate [41]. This implies that the
flow of electricity is not impeded and local inbalances are dealt with on system
wide scale.

Due to the copperplate assumption we can sum the electricity generation per
technology over the European region to obtain time series data. Our final input
time series data thus contains three variables, namely wind-onshore (WON),
wind-offshore (WOF), and solar photo-voltaic (SPV) electricity generation. This
data is based on historical weather years (1950–2019), but uses a possible distri-
bution of renewables in a deep decarbonised future. For each variable the length
of the time series is therefore N = 613, 594.
1 See https://www.entsoe.eu/data/map/ for a interactive map of the current network.

https://www.entsoe.eu/data/map/

Detection of Critical Events in Renewable Energy 109

4 The MDI Algorithm

In this section we give a short description of the Maximally Divergent Intervals
(MDI) algorithm (see [2,3] for more details). This algorithm finds outliers in
spatial-temporal data, but since we aggregate over the spatial component, we
will restrict the presentation to the strictly temporal case. Let

{(xt,1, xt,2, . . . , xt,d) : t = 1, . . . , N}

be a d-dimensional multivariate time series of length N . Individual samples are
written as xt ∈ R

d. Loosely speaking, an outlier is an interval in which the
distribution of the variables deviates strongly from their distribution outside
that interval. To model the probability distribution, Kernel Density Estima-
tion (KDE) using Gaussian kernels or a multivariate Gaussian distribution are
applied. The anomaly score of interval I is defined as:

S(I) = D(p̂I , p̂Ω), I ∈ I (2)

where D is some measure of the divergence between two probability distributions,
p̂I is the distribution fitted to the observations inside the interval, and p̂Ω is
the distribution fitted to the remaining observations. The set I contains all
intervals with a time horizon length between a user-specified minimum a and
maximum b, hence |I| ≈ N(b − a). Possible divergence measures are cross-
entropy, (unbiased) Kullback-Leibler and Jensen-Shannon divergence. Although
Jensen-Shannon divergence has its merits, it was found not to be tractable due
to the size of our data. The cross-entropy and Kullback-Leibler divergence are
respectively computed by:

Dce(I,Ω) =
1
|I|

∑

t∈I

log p̂Ω(xt), and Dkl(I,Ω) =
1
|I|

∑

t∈I

log
(

p̂I(xt)
p̂Ω(xt)

)

,

where p̂I(xt) is the probability density of data point t according to the probabil-
ity density fitted to the interval, and likewise p̂Ω(xt) is the probability density
of data point t according to the probability density fitted to the remainder of
the data. Barz et al. [3] note that Dkl has a bias towards smaller intervals, and
propose the unbiased variant Du-kl = 2 · |I| · Dkl. If a multivariate Gaussian
distribution is used to estimate the probability densities, then the (unbiased)
Kullback-Leibler divergence can be computed quite efficiently, since in that case
a closed-form solution is available.

To take into account the temporal correlation between data points, a tech-
nique call time-delay embedding is applied. Time-delay embedding incorporates
context from previous time-steps into each sample by transforming a given time
series {xt}N

t=1,xt ∈ R
d into another time-series {x′

t}N
t=1+(κ−1)τ , x′

t ∈ R
κd, with

x′
t =

(
x�

t x�
t−τ x�

t−2τ · · · x�
t−(κ−1)τ

)�
.

110 L. P. Stoop et al.

Here the embedding dimension κ specifies the number of samples to stack
together and the time lag τ specifies the gap between two consecutive time-steps
to be included as context.

To make the algorithm better suited for large data sets, a method that pro-
poses intervals that are likely to contain outliers is used. The idea behind the
method is that an outlier interval tends to contain several data points that would
receive high scores when using point wise outlier detection. One such point wise
scoring method is Hotelling’s T 2 score [22] (or squared Mahalanobis distance):

T 2
t = (xt − μ̂)�Σ̂−1(xt − μ̂).

At the start and end of an outlying interval, respectively, an increase and decrease
of the point wise scores is expected. Therefore, only intervals that start and end
with data points whose

g(t) = |T 2
t+1 − T 2

t−1|
value surpass the threshold θg = μ̂g + ϑ · σ̂g are considered, where ϑ is a param-
eter to be set by the user. Thus much less intervals need to be checked leading
to a substantial speed up, since estimating distributions and divergence calcula-
tions are very time consuming. The potential downside of this approach is that
outlier intervals may be overlooked, thus lowering recall. However, experiments
performed by Barz et al. [3] show that this was not the case when a reasonable
value for ϑ was selected.

In order to ensure that the top detected outliers aren’t all small variations
of the same event, starting with the top outlier, the overlap:

O(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

with lower scoring outliers is checked. If this overlap is larger than a user-defined
threshold θo, only the interval with the higher score is reported. Finally, the
algorithm sorts the intervals in descending order of their score, so that a user-
specified number of top k intervals can be selected as output.

5 Experimental Results

To determine whether the MDI algorithm is suited to identify critical events in
energy climate data we performed several experiments. Each experiment repre-
sents a potential use case for our project and partners, while they are also a test
case for the tuning and pre-processing used. The outliers found where presented
to subject matter experts to determine if they provide insight in critical events
that could influence the future energy system.

All experiments are performed on an Intel Xeon Gold 6130 CPU with 16
dual-cores at 2.1 GHz clock speed. Our setup has 125.6 GB of available RAM
memory. The multi-threading was limited to using 30 threads.

The rest of this section is organised as follows. First we discuss the tuning
performed to make the MDI algorithm usable for renewable energy generation

Detection of Critical Events in Renewable Energy 111

time series data in Sect. 5.1. The top 20 outliers detected using Cross Entropy
and the unbiased Kullback-Leibler divergence are then investigated in Sect. 5.2.
Finally in Sect. 5.3, we investigate if there are climate change induced changes
in the intensity, time of the year and length of the top 50 outliers per decade.

5.1 Tuning of the MDI Algorithm

The settings of the algorithm were chosen in consultation with the domain
experts, the model choices presented below are the end result.

Because the single Gaussian distribution gave quite a bad fit, we selected
KDE using Gaussian kernels (with kernel width 1) to estimate the probability
distributions. Hotelling’s T 2 proposal method is used with ϑ = 1.5. The allowed
overlap between intervals was set to θo = 0.5. The built-in data normalization
method of the MDI algorithm, subtraction of the mean and division by the
maximum, was used. We used both Cross Entropy and the unbiased Kullback-
Leibler divergence to score intervals.

The interval length was set to 2 days minimum, and 10 days maximum. The
reason was two-fold, the usefulness of the output as deemed by our experts and
tractability of the algorithm. At shorter timescales batteries and the shifting of
demand can be utilised to mitigate the effect of an outlier. At longer timescales
(sub-)seasonal storage, like hydrodams and hydrogen, can be utilised. However,
for the period between 2 and 10 days there are multiple technologies that could
be utilised, some of which are not yet fully developed. Knowledge of outliers
within this window can therefore help determine what technologies could be
utilised or should be further developed. Using a minimum interval length also
makes sure there is sufficient data to reliably estimate a distribution.

In order to accurately discover temporal outliers, the temporal context
embedding parameters need to be investigated. The idea behind the tempo-
ral context embedding is to pick points that are correlated at different time-lags.
To investigate the autocorrelation length, the partial autocorrelation per vari-
able was calculated (see Fig. 1). Based on these calculations we have decided to
use κ = 4 and τ = 8 as respectively temporal embedding dimension and time
lag settings, as these capture most of the autocorrelation in all variables. They
ensure that the autocorrelation in solar photo-voltaic power and onshore wind
power at the larger lags of approximately 24 h are accounted for. These settings
also ensure that at least one day and night cycle is embedded as context, which
has a big impact on the Solar Photovoltaic energy generation in particular.

The original MDI algorithm of Barz et al. [3] is implemented in an open
source library2 with both a Python implementation of the algorithm and a C++
implementation. As the Python algorithm is not well suited for large data sets,
we used the C++ implementation and additionally built a wrapper in Python that
accessed the C++ multi-threading functionality and added xarray compatibility.

2 https://github.com/cvjena/libmaxdiv.

https://github.com/cvjena/libmaxdiv

112 L. P. Stoop et al.

Fig. 1. The autocorrelation of variables at different time lags, using the Yule-Walker
method with sample size adjustment.

5.2 Outlier Identification and Assessment

In order to determine if MDI can find potential shortfalls or surges that might
affect the European energy system, we investigated the outliers that were identi-
fied by two divergence measures. The top outliers detected using Cross Entropy
and the unbiased Kullback-Leibler divergence are shown in Figs. 2 and 3, respec-
tively. The top 20 outliers were also presented to our domain experts to harness
their insight in the tuning and assessment process. Both the Cross Entropy and
unbiased Kullback-Leibler methods took just over 29 h wall clock time to calcu-
late.

According to the domain experts, the top 20 outliers found are all likely to
be high impact events. Additional investigation revealed that the top outlier
based on Cross Entropy coincides with a period that was identified by Dawkins
et al. [10] as an adverse weather system for the electricity system of the United
Kingdom and Europe. For the top outlier detected using the unbiased Kullback-
Leibler divergence, a historical high impact event was found in the Burns’ day
storm (25th jan 1991). This storm is considered one of the worst storms of the
last century for the United Kingdom, the Netherlands, and Belgium in which 97
people lost their lives.

To summarize them, the top 20 outliers were grouped based on the month
in which they occur, the length of the outlier and their type. The type of an
outlier is based on three indicators, namely Peak, Trough and Peak-Trough (see
Table 1). During a Peak, the power generation is above normal for two or more
of the three energy sources. In a Trough, power generation is below normal. The
Peak-Trough type indicates that the outlier contains a variable that has a peak
as well as one that has a trough, and the combined energy generation over the
period is neither very high nor very low.

Based on the grouping we defined classes for the outliers. For the unbiased
Kullback-Leibler divergence these classes are Winter Surplus and Summer Defi-
ciency. We consider the outliers that show a peak in the extended winter from
November through March to be part of the Winter Surplus class. Outlier events
with a trough in overall electricity generation in the extended summer period,

Detection of Critical Events in Renewable Energy 113

from May through September, are part of the Summer Deficiency class. For Cross
Entropy we have similar classes: Winter Surplus, Long Term Summer Deficiency
and Short Term Summer Deficiency. The only distinction is that for the Summer
Deficiency we have sub classes based on the length of the event: outliers that
last between 48 and 72 h are considered short term, and outlier events longer
than 72 h are considered long term.

Fig. 2. Figures depicting the outlier with the highest score using the Cross Entropy
measure. The top figures show the generation of each technology and the temporal
context in which the outlier (indicated by red lines) was found. The bottom images
provide histograms of the generation (in MWh) of each of the three technologies during
the interval (in their respective colour) and the remaining data (in purple). (Color figure
online)

Table 1. Grouping of the top 20 outliers found by the MDI algorithm in our time
series data using Cross Entropy and unbiased Kullback-Leibler method. The grouping
has been ordered in such a way that the different outlier classes can be discerned easily.
It should be noted that although the length of the intervals is near the bounds, they
are not at the bounds in general.

Cross Entropy unbiased Kullback-Leibler

Top-k Month Length(h) SPV WON WOF Type Top-k Month Length(h) SPV WON WOF Type

1/6/13/19 Aug. 48-72 + − − T 1/5/7/10 Jan. 216+ − + + P

3/5 June 48-72 + − − T 2/8/17 Dec. 216+ − + + P

07/09/2017 July 48-72 + − − T 3/4 Feb. 216+ − + + P

16 July 72-96 + − − T 11/18-20 Nov. 216+ − + + P

10/15 July 150-175 + − − T 9 Jan. 192 − 216 − + + P

14 Feb. 48-72 − + − PT 6/13/16 Feb. 216+ 0 + + P

4 Apr. 48-72 0 + + P 14 Aug. 216+ + − − T

2/11 Dec. 48-72 − + + P 15 July 216+ + − − T

12/18 Feb. 48-72 − + + P

20 Jan. 48-72 − + + P

114 L. P. Stoop et al.

Fig. 3. As Fig. 2, but for unbiased Kullback-Leibler divergence.

These classes can be problematic as they influence the whole network. A long
deficiency needs to be compensated with other methods of non-carbon generation
that need to be flexible and can be controlled, as the current battery capacities
aren’t sufficient. Shorter deficiencies during the summer are also problematic,
as they require extensive use of battery capacity. During the day the batteries
charge on the available solar photo-voltaic energy generation, but at night they
need to be discharged to compensate for the lack of wind. This strain on the bat-
teries causes them to wear. An increase in such short deficiencies represents an
economic risk, as the batteries would need to be replaced more frequently. The
Winter Surplus increases the energy generation of the grid, causing a surplus,
which can be problematic if this isn’t controlled. The surplus needs to be dis-
charged somehow. This discharge of unused energy represents an economic risk,
as the wind turbines and solar panels are wearing down, without the energy that
is generated being used.

Based on the top 20 outliers we note that the outliers detected by the
Cross Entropy measure tend to have a very short duration, whereas the out-
liers detected by the unbiased Kullback-Leibler divergence tend to be longer. As
a quick reminder, Cross Entropy is related to the Kullback-Leibler divergence
measure and the latter was found by Barz et al. [3] to have a bias towards smaller
intervals. We can thus expect this tendency to shorter intervals for Cross Entropy
outliers. However, the tendency towards longer intervals is unexpected for the
unbiased Kullback-Leibler divergence measure as it was created specifically to
be unbiased towards interval length. It should be noted that while some outliers
are found on the bounds set on the outlier duration, they are in general not on
these bounds.

Irrespective of the tendency to be near the boundary interval lengths, both
divergence measure studies where deemed to identify likely high impact events

Detection of Critical Events in Renewable Energy 115

by our domain experts. Therefore both measures should be considered when
studying high impact events in energy climate data.

5.3 Historic Climate Change and Decadal Variability

The change of intensity, time of the year, and length of outliers might change the
impact of an event and is therefore important to consider [17,33]. For these exper-
iments we combined offshore wind, onshore wind and solar photo-voltaic power
generation into a single variable called Total Electricity Generation (TEG). This
single aggregate provides a reasonable indication of shortages and surges in the
electricity system, while reducing the computational burden of the algorithm.
We identify the top 50 outliers per decade and use these in our assessment of
the intensity, time and length of the outliers over the historic period.

We found that the outliers in the TEG time series represent mostly peaks.
Trough-type outliers were difficult to detect in the TEG dataset, especially when
using the Cross Entropy measure. Potentially risky situations as in Fig. 2 remain
undetected in this univariate analysis. This underlines the added insight pro-
vided by the multivariate analysis, and highlights the importance of selecting
the correct divergence measure.

The intensity of the outliers is investigated by looking at the average
energy generation during the outlier. Figure 4 shows a boxplot of the average
Total Energy Generation during the outlier for the top 50 outliers found with
Cross Entropy divergence. While there is no linear trend visible, some period-
ical behaviour appears to influence the outlier events. This periodic behaviour
appears in all combinations of top number of outliers investigated and divergence
measures used. Due to the presence of Trough-type outlying events this effect is
hard see for the unbiased Kullback-Leibler divergence (figure not shown). Simi-
lar behaviour of multidecadel variability in German wind energy generation was
found by Wohland et al. [36].

Fig. 4. Boxplot of the average hourly Total Energy Generation during the top 50 outlier
events per decade based on the Cross Entropy measure.

116 L. P. Stoop et al.

These result emphasise that the multidecadel variability needs to be taken
into account by policy makers as it influences the strength of the outliers. Assess-
ments of the energy system currently only use a limited set of weather years and
might therefore under- or overestimate the extremeness of critical conditions for
the energy system.

We studied the timing and duration of the outliers found per decade in the
TEG time series to determine whether they are affected by climate change.
We did, however, not find any obvious trends or shifts that could potentially
be attributed to climate change. Such trends or shifts are possibly masked by
the multidecadel variability in the outliers. The time of emergence of a climate
change signal lies thus in the future, like it currently does for most climate related
impacts [18].

6 Conclusion and Future Work

Using the Maximally Divergent Intervals (MDI) algorithm we found outlying
time periods in 70 years of historic weather-derived energy production data
on three types of renewable energy. According to subject area experts from
a national Transmission System Operator (TSO), the identified outliers indeed
represented periods during which the European electricity system could be at
risk. However, when the three renewable energy generation variables were com-
bined into a single variable, Total Energy Generation, potential outliers were
missed as mostly peak-type outliers were detected. The multivariate analysis is
therefor preferred in further work. We conclude that, with the proper parameter
settings, outlier detection with MDI can help the assessment of the future energy
grid by highlighting the most extreme situations.

When analysing the Total Energy Generation peer decade we found that
the intensity of outliers manifests multidecadel variability over the last 70 years.
However, we found no trend could be attributed to climate change. This variabil-
ity in the outliers also hinders the determination of climate change attributable
shift or duration change in the historic period.

We demonstrated the added value of outlier detection with the MDI algo-
rithm compared to existing methods that require an a priori specification of
the critical events to be detected. Experiments showed that both outliers of a
different nature as well as with varying lengths were detected. Additionally, as
the length of the outlier interval is not a fixed in advance, comparison between
events of different lengths is possible. However, there is a dependency between the
lengths of the detected intervals, and the divergence measure used. Cross Entropy
tends to prefer intervals of shorter duration, while the unbiased Kullback-Leibler
divergence tends to prefer longer intervals. As both measures provide useful
insights according to our subject area experts, we will continue to use both
measures for outlier detection in energy climate data.

In the next phase of the project, the method presented here will be used
for two applications related to the assessment of power system adequacy. First,
when the outliers identified are combined with a method to represent the generic

Detection of Critical Events in Renewable Energy 117

variability of the weather, a synthetic representative time series could be con-
structed. Power system simulations based on a synthetic time series can be used
to ensure both representativeness with respect to critical climate conditions as
well as computational tractability. Second, besides applying the MDI method
on a historical climate dataset as was demonstrated in this paper, it can be
applied to climate projections from a multitude of climate simulation models
to investigate how climate change and multidecadal climate variability influence
the character and frequency of critical conditions for the electricity grid.

For both applications, the method is preferably applied to a dataset that
also takes electricity demand into account. For this purpose, the temperature
dependant component of the electricity demand should be based on climate
variables used for the calculation of the electricity generation from renewable
sources. Incorporation of energy consumption data might decrease or exacerbate
the impact of critical weather events.

Acknowledgements. The data used in the experiments contains modified Coperni-
cus Climate Change Service information, doi.org/10.24381/cds.adbb2d47 (2020). This
research received funding from the Netherlands Organisation for Scientific Research
(NWO) under grant number 647.003.005. The methodology presented here was devel-
oped as part of the IS-ENES3 project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No.
824084.

References

1. Arent, D.J., et al.: Key economic sectors and services. In: Climate Change 2014
Impacts, Adaptation and Vulnerability: Part A, pp. 659–708 (2015)

2. Barz, B., Garcia, Y.G., Rodner, E., Denzler, J.: Maximally divergent intervals
for extreme weather event detection. In: OCEANS 2017-Aberdeen. IEEE (2017).
https://doi.org/10.1109/OCEANSE.2017.8084569

3. Barz, B., Rodner, E., Garcia, Y.G., Denzler, J.: Detecting regions of maximal diver-
gence for spatio-temporal anomaly detection. IEEE Trans. Pattern Anal. Mach.
Intell. 41(5), 1088–1101 (2018). https://doi.org/10.1109/TPAMI.2018.2823766

4. Bell, B., et al.: ERA5 monthly averaged data on single levels from 1950 to
1978. Climate Data Store (CDS) (2020). https://cds.climate.copernicus-climate.
eu/. Accessed 10 Nov 2020

5. Bessec, M., Fouquau, J.: The non-linear link between electricity consumption and
temperature in Europe: a threshold panel approach. Energy Econ. 30(5), 2705–
2721 (2008). https://doi.org/10.1016/j.eneco.2008.02.003

6. Bett, P.E., Thornton, H.E.: The climatological relationships between wind and
solar energy supply in Britain. Renew. Energy 87, 96–110 (2016). https://doi.org/
10.1016/j.renene.2015.10.006

7. Bloomfield, H.C., et al.: The importance of weather and climate to energy systems:
a workshop on next generation challenges in energy-climate modeling. Bull. Am.
Meteorol. Soc. 102(1), E159–E167 (2021). https://doi.org/10.1175/BAMS-D-20-
0256.1

8. Carrillo, C., Obando Montaño, A.F., Cidrás, J., Dı́az-Dorado, E.: Review of
power curve modelling for windturbines. Renew. Sustain. Energy Rev. 21, 572–
581 (2013). https://doi.org/10.1016/j.rser.2013.01.012

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1109/OCEANSE.2017.8084569
https://doi.org/10.1109/TPAMI.2018.2823766
https://cds.climate.copernicus-climate.eu/
https://cds.climate.copernicus-climate.eu/
https://doi.org/10.1016/j.eneco.2008.02.003
https://doi.org/10.1016/j.renene.2015.10.006
https://doi.org/10.1016/j.renene.2015.10.006
https://doi.org/10.1175/BAMS-D-20-0256.1
https://doi.org/10.1175/BAMS-D-20-0256.1
https://doi.org/10.1016/j.rser.2013.01.012

118 L. P. Stoop et al.

9. Cassarino, T.G., Sharp, E., Barrett, M.: The impact of social and weather drivers
on the historical electricity demand in Europe. Appl. Energy 229, 176–185 (2018).
https://doi.org/10.1016/j.apenergy.2018.07.108

10. Dawkins, L., Rushby, I.: Characterising adverse weather for the UK elec-
tricity system (2021). nic.org.uk/app/uploads/MetOffice-Characterising-Adverse-
Weather-Phase-2a.pdf

11. Drew, D.R., et al.: Sunny windy sundays. Renew. Energy 178, 870–875 (2019).
https://doi.org/10.1016/j.renene.2019.02.029

12. Duggimpudi, M.B., Abbady, S., Chen, J., Raghavan, V.V.: Spatio-temporal out-
lier detection algorithms based on computing behavioral outlierness factor. Data
Knowl. Eng. 122, 1–24 (2019). https://doi.org/10.1016/j.datak.2017.12.001

13. ENTSO-E: Ten-year network development plan 2020. Technical Report, European
Network of Transmission System Operators for Electricity, Brussels (2021)

14. Frew, B.A., Becker, S., Dvorak, M.J., Andresen, G.B., Jacobson, M.Z.: Flexibility
mechanisms and pathways to a highly renewable us electricity future. Energy 101,
65–78 (2016). https://doi.org/10.1016/j.energy.2016.01.079

15. Gonzalez, A., et al.: EMHIRES dataset Part I: Wind power generation (2016).
https://doi.org/10.2790/831549

16. Grams, C.M., Beerli, R., Pfenninger, S., Staffell, I., Wernli, H.: Balancing Europe’s
wind-power output through spatial deployment informed by weather regimes. Nat.
Climate Change 7(8), 557–562 (2017). https://doi.org/10.1038/nclimate3338

17. Harang, I., Heymann, F., Stoop, L.P.: Incorporating climate change effects into the
European power system adequacy assessment using a post-processing method. Sus-
tain. Energy Grids Networks 24, 100403 (2020). https://doi.org/10.1016/j.segan.
2020.100403

18. Hawkins, E., Sutton, R.: Time of emergence of climate signals. Geophys. Res. Lett.
39(1) (2012). https://doi.org/10.1029/2011GL050087

19. Hersbach, H., et al.: Climate data store: ERA5 hourly data on single levels (2018).
https://doi.org/10.24381/cds.adbb2d47

20. Hersbach, H., et al.: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146(730),
1999–2049 (2020). https://doi.org/10.1002/qj.3803

21. Hilbers, A.P., Brayshaw, D.J., Gandy, A.: Importance subsampling: improving
power system planning under climate-based uncertainty. Appl. Energy 251, 113114
(2019). https://doi.org/10.1016/j.apenergy.2019.04.110

22. Hotelling, H.: The generalization of student’s ratio. In: Kotz, S., Johnson, N.L.
(eds.) Breakthroughs in Statistics. SSS (Perspectives in Statistics). Springer, New
York (1992). https://doi.org/10.1007/978-1-4612-0919-5 4

23. Jerez, S., et al.: The CLIMIX model: a tool to create and evaluate spatially-resolved
scenarios of photovoltaic and wind power development. Renew. Sustain. Energy
Rev. 42, 1–15 (2015). https://doi.org/10.1016/j.rser.2014.09.041

24. Kies, A., Schyska, B.U., von Bremen, L.: The effect of hydro power on the optimal
distribution of wind and solar generation facilities in a simplified highly renewable
European power system. Energy Procedia 97, 149–155 (2016). https://doi.org/10.
1016/j.egypro.2016.10.043

25. McCollum, D.L., Gambhir, A., Rogelj, J., Wilson, C.: Energy modellers should
explore extremes more systematically in scenarios. Nat. Energy 5(2), 104–107
(2020). https://doi.org/10.1038/s41560-020-0555-3

26. Moral-Carcedo, J., Vicéns-Otero, J.: Modelling the non-linear response of Spanish
electricity demand to temperature variations. Energy Econ. 27(3), 477–494 (2005).
https://doi.org/10.1016/j.eneco.2005.01.003

https://doi.org/10.1016/j.apenergy.2018.07.108
https://nic.org.uk/app/uploads/MetOffice-Characterising-Adverse-Weather-Phase-2a.pdf
https://nic.org.uk/app/uploads/MetOffice-Characterising-Adverse-Weather-Phase-2a.pdf
https://doi.org/10.1016/j.renene.2019.02.029
https://doi.org/10.1016/j.datak.2017.12.001
https://doi.org/10.1016/j.energy.2016.01.079
https://doi.org/10.2790/831549
https://doi.org/10.1038/nclimate3338
https://doi.org/10.1016/j.segan.2020.100403
https://doi.org/10.1016/j.segan.2020.100403
https://doi.org/10.1029/2011GL050087
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1002/qj.3803
https://doi.org/10.1016/j.apenergy.2019.04.110
https://doi.org/10.1007/978-1-4612-0919-5_4
https://doi.org/10.1016/j.rser.2014.09.041
https://doi.org/10.1016/j.egypro.2016.10.043
https://doi.org/10.1016/j.egypro.2016.10.043
https://doi.org/10.1038/s41560-020-0555-3
https://doi.org/10.1016/j.eneco.2005.01.003

Detection of Critical Events in Renewable Energy 119

27. Neubacher, C., Witthaut, D., Wohland, J.: Multi-decadal offshore wind power vari-
ability can be mitigated through optimized European allocation. Adv. Geosci. 54,
205–215 (2021). https://doi.org/10.5194/adgeo-54-205-2021

28. Ruiz, P., et al.: ENSPRESO - an open, EU-28 wide, transparent and coherent
database of wind, solar and biomass energy potentials. Energy Strategy Rev. 26,
100379 (2019). https://doi.org/10.1016/j.esr.2019.100379

29. Saint-Drenan, Y.M., et al.: A parametric model for wind turbine power curves
incorporating environmental conditions. Renew. Energy 157, 754–768 (2020).
https://doi.org/10.1016/j.renene.2020.04.123

30. Schlachtberger, D., Brown, T., Schramm, S., Greiner, M.: The benefits of coop-
eration in a highly renewable European electricity network. Energy 134, 469–481
(2017). https://doi.org/10.1016/j.energy.2017.06.004

31. Staffell, I., Pfenninger, S.: The increasing impact of weather on electricity supply
and demand. Energy 145, 65–78 (2018). https://doi.org/10.1016/j.energy.2017.12.
051

32. Thornton, H., Hoskins, B.J., Scaife, A.: The role of temperature in the variability
and extremes of electricity and gas demand in great Britain. Environ. Res. Lett.
11, 114015 (2016). https://doi.org/10.1088/1748-9326/11/11/114015

33. van der Wiel, K., Selten, F.M., Bintanja, R., Blackport, R., Screen, J.A.: Ensemble
climate-impact modelling: extreme impacts from moderate meteorological condi-
tions. Environ. Res. Lett. 15, 034050 (2020). https://doi.org/10.1088/1748-9326/
ab7668

34. van der Wiel, K., Stoop, L.P., van Zuijlen, B.R.H., Blackport, R., van den Broek,
M.A., Selten, F.M.: Meteorological conditions leading to extreme low variable
renewable energy production and extreme high energy shortfall. Renew. Sustain.
Energy Rev. 111, 261–275 (2019). https://doi.org/10.1016/j.rser.2019.04.065

35. Ward, D.M.: The effect of weather on grid systems and the reliability of electricity
supply. Climatic Change 121(1), 103–113 (2013). https://doi.org/10.1007/s10584-
013-0916-z

36. Wohland, J., Omrani, N.E., Keenlyside, N., Witthaut, D.: Significant multidecadal
variability in German wind energy generation. Wind Energy Sci. 4(3), 515–526
(2019). https://doi.org/10.5194/wes-4-515-2019

37. Wu, E., Chawla, S.: Spatio-temporal analysis of the relationship between south
American precipitation extremes and the el niño southern oscillation. In: ICDMW
2007 (2007). https://doi.org/10.1109/ICDMW.2007.102

38. Wuijts, R., van den Broek, M., van den Akker, J.: Effect of modeling choices in
the unit commitment problem. Applied Energy (2021, Submitted)

39. Zeyringer, M., Price, J., Fais, B., Li, P.H., Sharp, E.: Designing low-carbon power
systems for great Britain in 2050 that are robust to the spatiotemporal and inter-
annual variability of weather. Nat. Energy 3(5), 395–409 (2018). https://doi.org/
10.1038/s41560-018-0128-x

40. Zscheischler, J., van den Hurk, B., Ward, P.J., Westra, S.: Multivariate extremes
and compound events. In: Climate Extremes and their Implications for Impact and
Risk Assessment. Elsevier (2020)

41. van Zuijlen, B., Zappa, W., Turkenburg, W., van der Schrier, G., van den Broek,
M.: Cost-optimal reliable power generation in a deep decarbonisation future. Appl.
Energy 253, 113587 (2019). https://doi.org/10.1016/j.apenergy.2019.113587

https://doi.org/10.5194/adgeo-54-205-2021
https://doi.org/10.1016/j.esr.2019.100379
https://doi.org/10.1016/j.renene.2020.04.123
https://doi.org/10.1016/j.energy.2017.06.004
https://doi.org/10.1016/j.energy.2017.12.051
https://doi.org/10.1016/j.energy.2017.12.051
https://doi.org/10.1088/1748-9326/11/11/114015
https://doi.org/10.1088/1748-9326/ab7668
https://doi.org/10.1088/1748-9326/ab7668
https://doi.org/10.1016/j.rser.2019.04.065
https://doi.org/10.1007/s10584-013-0916-z
https://doi.org/10.1007/s10584-013-0916-z
https://doi.org/10.5194/wes-4-515-2019
https://doi.org/10.1109/ICDMW.2007.102
https://doi.org/10.1038/s41560-018-0128-x
https://doi.org/10.1038/s41560-018-0128-x
https://doi.org/10.1016/j.apenergy.2019.113587

Poster Presentation

Multimodal Meta-Learning for Time
Series Regression

Sebastian Pineda Arango1(B), Felix Heinrich2, Kiran Madhusudhanan1,
and Lars Schmidt-Thieme1

1 University of Hildesheim, Hildesheim, Germany
pineda@uni-hildesheim.de,

{kiranmadhusud,schmidt-thieme}@ismll.uni-hildesheim.de
2 Volkswagen AG, Wolfsburg, Germany

felix.heinrich1@volkswagen.de

Abstract. Recent work has shown the efficiency of deep learning mod-
els such as Fully Convolutional Networks (FCN) or Recurrent Neural
Networks (RNN) to deal with Time Series Regression (TSR) problems.
These models sometimes need a lot of data to be able to generalize,
yet the time series are sometimes not long enough to be able to learn
patterns. Therefore, it is important to make use of information across
time series to improve learning. In this paper, we will explore the idea
of using meta-learning for quickly adapting model parameters to new
short-history time series by modifying the original idea of Model Agnos-
tic Meta-Learning (MAML) [3]. Moreover, based on prior work on mul-
timodal MAML [22], we propose a method for conditioning parameters
of the model through an auxiliary network that encodes global infor-
mation of the time series to extract meta-features. Finally, we apply the
data to time series of different domains, such as pollution measurements,
heart-rate sensors, and electrical battery data. We show empirically that
our proposed meta-learning method learns TSR with few data fast and
outperforms the baselines in 9 of 12 experiments.

Keywords: Meta-learning · Time series regression · Meta-features
extraction

1 Introduction

Time series regression is a common problem that appears when hidden variables
should be inferred given a known multivariate time series. It finds applicability
on a broad range of areas such as predicting heart-rate, pollution levels or state-
of-charge of batteries. However, in order to train a model with high accuracy,

S. P. Arango and F. Heinrich—Equal contribution.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-91445-5 8) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 123–138, 2021.
https://doi.org/10.1007/978-3-030-91445-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_8
https://doi.org/10.1007/978-3-030-91445-5_8
https://doi.org/10.1007/978-3-030-91445-5_8

124 S. P. Arango et al.

a lot of data is needed. This sets some practical limitations, for instance, when
a model is to be deployed on a new system with unknown conditions such as a
new user or an older state of a battery, as new conditions cause a domain shift,
to whom a model should be adapted based on few historical data.

On the other hand, recent work on meta-learning for image classification has
shown that it is possible to achieve fast adaptation when having few data [3]. The
core idea is to learn how to adapt the parameters efficiently by looking at many
mutually-exclusive and diverse classification tasks [16]. Nevertheless, deriving a
lot of tasks requires special task designs. In image classification, sampling classes
and shuffling the labels have enabled these diverse tasks.

In time series regression problems, it is usual to have very long but few time
series, as every time series is generated from a specific and small set of conditions
(e.g. different subjects, machines, or cities). Therefore, applying powerful ideas
from meta-learning is not trivial. A proof of it is the fact that there have been
few works on how to apply those methods to time series regression, or even
related problems such as time series forecasting.

The central idea of this work is to extend model-agnostic meta-learning
(MAML) [3] and multi-modal MAML (MMAML) [22] to time series regression.
For that, we define the meta-learning problem as how to adapt fast to a new
task given a set of known samples, namely support set, so that we perform well
on predicting the output channel for other samples that belong to the same task,
or query set.

We summarize the contributions from our paper as:

– We propose a specific method for generating diverse tasks by assuming the
real scenario of few but long time series at hand.

– It is the first work on how to extend MAML and MMAML to time series
regression, and that demonstrates its improved performance over transfer
learning.

– We show the utility of our ideas through empirical evaluations on three
datasets and compare with different baselines by proposing an evaluation
protocol that can be applied for future work on meta-learning for TSR.

2 Related Work

In recent years, there has been a lot of work on meta-learning applied on few-shot
settings, specially in problems related to image classification and reinforcement
learning [3,13,19,22]. All of them share some commonalities, such as, an inner
loop, or so-called base learner that aims to use the support set to adapt the model
parameters, and an outer loop, or meta-learner, that modifies the base-learner
meta-parameters so that it learns faster. Sometimes the meta-learner is another
model such as LSTM [17] or includes memory modules [18]. Other approaches
learn a metric function that allows finding fast a good prototype given a few
samples of a new task [19].

Nevertheless, among the landscape of all the methods for performing meta-
learning, MAML stands out because it does not include additional parameters,

Multimodal Meta-Learning for Time Series Regression 125

but just aims to learn a good initialization so that a model achieves good per-
formance after few gradient descent updates. Some methods, such as TADAM
[13] or Multimodal MAML (MMAML) [22] extend MAML by using additional
networks for embedding the whole task and conditioning the parameters of the
predictive model. Other methods simplify the optimization introduced in MAML
by using first-order approximations to avoid computing Hessians [10].

It is possible to find previous work on meta-learning time series for specific
problems. Lemke et al. [8] propose a model that can learn rules on how to apply
models on the Time Series Forecasting (TSF) problem. For that, they extract
different features from the time series such as Kurtosis and Lyapunov coefficient.
Similarly, Talagala et al. [20] train a Random Forest model that decides which is
the best model to use on a new TSF problem. However, selecting the best model
or creating rules for it does not yield a continuous search space. Given a specific
support set, the set of possible models is discrete, and therefore, very limited.
N-BEATS [12] is presented as a meta-learning option for zero-shot learning TSF
that achieves good performance under unseen time series in [11]. Although it was
originally introduced as a model for purely TSF problems, the authors showed
how the architecture resembles a meta-learner that adapts weights used for the
final prediction. Nevertheless, the model itself does not provide explicitly a way
to fine-tune using some samples (few-shot learning).

To deal with Time Series Classification (TSC) in few-shot settings, Narwariya
et al. [9] show how MAML can be adapted with minor modifications. They
achieve better results compared to the baselines, where the Resnet achieved the
closest performance results. Besides MAML, attention mechanisms have been
used lately as an approach for leveraging the support set on text classification
[7] and time series forecasting [6].

3 Multimodal Meta-Learning for TSR

3.1 Problem Definition

We define generally meta-learning for time series regression as, given an ordered
set Dj = {(xn, yn)}n=1:N , the problem of learning a method that adapts the
parameters θ of a regression model fθ by using just Ds

j = {(xn, yn)}n=1:Q such
that it performs well on Dq

j = {(xn, yn)}n=Q:N . Where xn ∈ RL×C denotes
a time window with labels yn ∈ R, whereas Ds

j and Dq
j are the support and

query sets, respectively. The union of both sets, Dj = {(xn, yn)}n=1:N , is a
time series regression (TSR) task, a definition inspired by the concept of task in
meta-learning applied to image classification [3,19]. Every fixed-length window
is intended to be the input for the regressor.

Formally, the optimization objective can be defined as

min
φ,θ

∑

j

Lj(Dq
j , fθ∗) (1)

where θ∗ = U(θ,Ds
j , φ) is a learner or an update rule for the parameters θ that

depends on the support set Ds
j and the meta-parameters φ. The task loss Lj

126 S. P. Arango et al.

measures the performance of the predicted labels accounting for all the labeled
windows Lj(Dq

j , fθ|φ) =
∑

n L(yn, fθ(xn)). Since this is a regression problem, the
loss can be, for instance, the Mean Squared Error (MSE) or the Mean Absolute
Error (MAE).

When applied to a new TSR task, the learner uses the update rule to estimate
a new set of parameters θ∗ by just using Q samples (or time windows in this
context). Q is typically small, therefore training a network from scratch with
Ds

j is not possible without overfitting. However, in order to tackle this problem,
there is normally a small set of long multivariate time series (including the
target channel) S available for training such that S = {(Si, Yi)|Si ∈ RLi×C , Yi ∈
RLi , i = 1, ...,M}, where Si denotes the input channels and Yi, the output or
target channel to be predicted.

3.2 Meta-Windows: Redesigning Tasks for TSR

Independently from the approach to solve the problem formulated in Eq. 1, it
is necessary to have a lot of tasks available for training, this is also the case
for meta-learning applied to image classification. Nevertheless, the situation is
usually to have long but few multivariate time series. In this subsection, we
introduce a redesign of this setting to overcome this challenge.

Long time series are difficult to feed into a model, therefore the common app-
roach consists in creating smaller fixed-length windows through a windows gen-
eration process that uses a rolling window, Wδ,k(·), where δ denotes the window
size and k is the step size for the windows generation. Given a long multivari-
ate time series with target channel, (S, Y) ∈ S, we generate the set of labeled
windows D such that D = Wδ,k(S, Y) = {(xn, yn),xn = S(j·k):(j·k+δ), yn =
Y(j·k+δ), j = 1, ..., L − δ}, where L is the length of the multivariate time series
and the lower indexing on S and Y refers to the time axis of the time series.

The methods introduced in this paper leverage these windows by grouping
them in meta-windows. All meta-windows contain the same number of labeled
windows (denoted as l), whereas every window belongs to only one window. The
Algorithm 1 explains how the meta-windows are generated from long time series.

If the time series are not periodic, it is possible to assume that the windows
are very correlated to other temporally close windows, but are less correlated
to the temporally far samples. In fact, this can be supported by looking at
the monotonically decreasing auto-correlation diagram of Yi (see supplementary
material1). This results in a meta-window Tt ∈ T that is correlated with its
neighbor Tt+1, but approximately uncorrelated with other meta-windows.

Based on the above-mentioned assumption on temporally correlation, we
redesign a task for TSR such that two continuous windows are considered belong-
ing to the same task. It means, after the defined problem in Eq. 1, we can generate
a lot of tasks by setting a sampled meta-window Tt ∼ T as the support set Ds

j

and the next one Tt+1 as the query set. Also, due to the decreased correlation

1 Accessible in https://www.dropbox.com/s/tuzs6l8zy9zyon9/AALTD 21 MMAML
TSR Supplementary.pdf?dl=0.

https://www.dropbox.com/s/tuzs6l8zy9zyon9/AALTD_21_MMAML_TSR_Supplementary.pdf?dl=0
https://www.dropbox.com/s/tuzs6l8zy9zyon9/AALTD_21_MMAML_TSR_Supplementary.pdf?dl=0

Multimodal Meta-Learning for Time Series Regression 127

Fig. 1. Task design for a univariate time series, also applicable to multivariate time
series. We omit the other channels and the respective target associated to every window
for the sake of simplicity.

with temporally-far meta-windows, this design guarantees certain level of diver-
sity. Moreover, including meta-windows generated from different long time series
may increase this task diversity. Since the generated pair of sets support-query
aim to “simulate” a new TSR task, we refer to them as virtual tasks. The Fig. 1
illustrates this procedure.

3.3 MAML for TSR

In this section, we formally define our proposed algorithm MAML for TSR.
We denote Tt as the t-th meta-window, sampled from a distribution p(T). We
assume that the meta-windows were generated from a set of long multivariate
time series coming from different instances but with the same semantics among
the channels (i.e. three accelerometer measurements from different subjects).

Given that the meta-windows, coming from the same long time series, are
temporally ordered through a temporal index t, we want to use the meta-window
Tt as the support set, while setting the subsequent meta-window Tt+1 as the
query. The idea of MAML for TSR is, then, to find an initial set of parameters
θ∗ such that a gradient descent optimizer adapts the model fθ in one step (or
few steps) to a new domain by using just a meta-window Tt. This optimization
objective can be expressed formally as:

min
θ

∑

Tt∼p(T)

LTt+1

(
fθ−α∇θLTt (fθ)

)

= min
θ

∑

Tt∼p(T)

∑

(xj ,yj)∈Tt+1

||yj − fθ−α∇θLTt (fθ)(xj)||1
(2)

128 S. P. Arango et al.

Algorithm 1: Meta-windows generation.
Input: Long multi-variate time series with target channel

S = {(Si, Yi)|Si ∈ RLi×C , Yi ∈ RLi , i = 1, ..., N}, a rolling window
Wδ,k(·)

Input: Hyper-parameters l, δ, k : meta-window length, window size and step size
1 Initialize ordered set of meta-windows T
2 for all (Si, Yi) ∈ S:
3 Create ordered set of tuples D = Wδ,k(Si, Yi) = {(xn, yn)}
4 for n = 1, ..., � |D|

l
�:

5 Append {Dn·l:(n+1)·l} to T
6 end for
7 end for

which is based on the formulation of MAML by Finn et al. [3] for fast adap-
tation in classification with neural networks. The second line reformulates the
loss by using MAE as the task loss LT . In the Algorithm 2, we detail the process
for optimizing the proposed loss function in Eq. 2.

3.4 MMAML for TSR

In this section, we introduce the multi-modal model-agnostic meta-learning
(MMAML) for TSR which draws inspiration from [22]. This approach takes a
modulation network that changes the parameters of a task network which
makes the final prediction. The parameters are modulated according to meta-
task information that is extracted by the modulation network. Therefore, the
modulation network is a feature extractor at the task level (or meta-window
level), whereas the task network processes single windows. The extracted infor-
mation from the meta-windows is useful for the fast adaptation. In the sup-
plementary material, we show that the embeddings of the meta-windows are
forming groups with the other ones coming form the same long time series.

Encoding task information means in our current work to embed the support
set, which is a meta-window. Vuorio et al. [22] use relational networks to process
images and targets belonging to the support set. However, as we are interested
in embedding meta-windows (time series), we need to perform the task encoding
differently.

Meta-Windows Encodings. As explained before, the support set (task infor-
mation) is a meta-window T = {(xi, yi), i = 1, .., l} and is originated from a long
time series (S, Y). As a way of simplifying the meta-window, so that it can be
input to the modulation network without redundant information and by avoiding
a huge overhead in training, we propose to summarize it by concatenating the
first sample of every window (and every channel) belonging to the meta-window.
An additional channel is created after concatenating similarly the respective tar-
get signal. Therefore, the summarization is performing a downsampling of the

Multimodal Meta-Learning for Time Series Regression 129

Algorithm 2: MAML for TSR
Input: p(T) : distribution over meta-windows, with indexed, and temporally

ordered meta-windows T1, T2, ...
Input: α: learning rate, β: meta-learning rate, LT : task loss

1 randomly initialize θ
2 while not done do
3 Sample batch of meta-windows T ∼ p(T)
4 for all Tt ∈ T do:

5 Set windows Tt =
{
x
(t)
i , y

(t)
i

}

6 Evaluate ∇θLTt (fθ) using Tt and LTt

7 Compute parameter updates : θ′
t = θ − α∇θLTt (fθ)

8 Save windows Tt+1 =
{
x
(t+1)
j , y

(t+1)
j

}
for meta-update

9 end for

10 Update θ ← θ − β∇θ

∑
Tt∈T LTt+1

(
fθ′

t

)
using dataset Tt+1 and a given

model loss LTt+1 .
11 end while

meta-window. After summarizing the support set, we obtain a multivariate-time
series (MTS), which can be encoded through any representation learning algo-
rithm. For learning this latent representation, we use a variational recurrent
auto-encoder (VRAE) [2].

Modulation and Task Network. We introduce the modulation network to
be applied in our work, which comprises three sub-modules:

– Encoder. It embeds the input (summarized meta-window T ′) to a latent
representation, such that z = hθenc

(T ′) using variational bayes.
– Decoder. It reconstructs the input, formally T̂ = hθdec

(z), aiming to mini-
mize the reconstruction loss ‖T ′ − T̂ ‖2.

– Generator. It outputs the parameters ρ that modify the parameters θ from
the main network through FiLM layers [14]. Formally, ρ = hθgen

(z).

The task network is composed of a feature extractor φθext
and a last (linear)

layer θ. The final output for an input x, given the output of the generator ρ, is
then computed as:

ŷ = fθ|ρ(x) = FiLM(θ|ρ)T φθext
(x) (3)

Here we have a set of four types of parameters ω = {θ, θdec, θenc, θgen, θext}, but
θ being the most interesting ones as they are the only fine-tuned parameters for
fast adaptation in this work. In general, however, the parameters of the feature
extractor can be also included in the adaptation.

130 S. P. Arango et al.

Algorithm 3: MMAML for TSR
Input: p(T) : distribution over meta-windows, with indexed, and temporally

ordered meta-windows T1, T2, ...
Input: α, β : step size hyper-parameters, λ : weight for the variational loss

1 randomly initialize ω = {θ, θdec, θenc, θgen, θext}
2 while not done do
3 Sample batch of meta-windows T ∼ p(T)
4 for all Tt ∈ T do:
5 Set windows Tt = {xi, yi}
6 Get meta-window summary: T ′

t = Summarize(Tt)
7 Infer embedding: z = hθenc(T ′

t)
8 Generate parameters: ρ = hθgen(z)

9 Modulate last layer parameters: θ̂ = FiLM(θ|ρ)
10 Evaluate ∇θLTt (fθ̂) using Tt and LTt

11 Compute parameter updates: θ′
t = θ − α∇θLTt (fθ̂)

12 Save meta-window Tt+1 = {xj , yj} for meta-update
13 end for

14 Reconstruct meta-windows Tt ∈ T : T̂t = hθdec(hθenc(T ′
t))

15 Update ω ← ω − β∇ω

∑
Tt∈T

(
LTt+1

(
fθ′

t|ρ

)
+ λLV AE(Tt

′)
)

16 end while

The loss for MAML (Eq. 2) can be extended easily to a formulation that
includes the modulation network.

∑

(xj ,yj)∈Tt+1

||yj − fθ−α∇θLTt (fθ|ρ)|ρ(xj)||1 + λ · LV AE(T ′
t) (4)

We have included the variational loss that can be re-phrased in our context, by
denoting T ′ as the meta-window summary, in the following way:

LV AE(T ′
t) = ‖T ′

t − T̂t‖2 + KL[N (μ(T ′
t), Σ(T ′

t))‖N (0, I)], (5)

where KL is the Kullback-Leiber divergence, I is an identity matrix and
μ(·), Σ(·) are mean and covariance functions respectively, which are modelled by
the encoder.

The Algorithm 3 introduces MMAML for TSR. It comprises an outer loop
which modifies all the involved parameters ω, and an inner-loop that just involves
the parameters meant to be updated during the fast adaptation, θ.

The Fig. 2 illustrates the different modules. Note that there are two networks:
the modulation and task network. The decoder is considered outside the task
network as it is not used in inference time. More importantly, the input of the
task network is just a window, while the input for the modulation network is a
summarized meta-window.

Multimodal Meta-Learning for Time Series Regression 131

Fig. 2. MMAML for TSR architecture (based on [22]).

4 Experiments

In this section, we test our proposed ideas empirically to assess how much
improvement meta-learning can bring compared to other approaches. Further-
more, we are interested in analyzing the performance of the models after several
gradient steps and in long-term, in other words, in time horizons very far from
the support meta-window that has been used for the adaptation.

4.1 Datasets

We perform the experiments on three different datasets which belong to different
use cases.

The air pollution dataset (whose original name is 2.5 Data of Chinese
Cities Dataset2, and from now on referred as POLLUTION) contains the PM
2.5 data from Beijing, Shanghai, Guangzhou, Chengdu and Shenyang, which
includes as input channels meteoreological variables, whereas the target channel
corresponds to the PM2.5 particles concentrations. The time period of the data
spans six years, between Jan 1st, 2010 to Dec. 31st, 2015. In this dataset, every
city corresponds to a very long time series that is the source for the meta-window
generation.

The heart rate dataset (whose original name is PPG-DaLiA Dataset3,
from now on referred as HR) is to be used for PPG-based heart rate estima-
tion. It includes physiological and motion variables, recorded from wrist- and
chest-worn devices, on 15 subjects performing different activities, under real-
life conditions. We consider every subject as a very-long time series. A careful
pre-processing is necessary to synchronize the variables samples, as they have
2 https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities.
3 https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA.

https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities
https://archive.ics.uci.edu/ml/datasets/PPG-DaLiA

132 S. P. Arango et al.

different sampling frequencies, and to generate the ground-truth heart rate. More
about this is explained in the supplementary material.

The battery dataset is provided by Volkgswagen AG, and from now on is
referred as BATTERY. It is intended to predict the current voltage, given past
and current values of the current, temperature and charge. The data is divided
in eleven different folders, where every folder corresponds to a specific battery
age. Hence, the folders span aging battery information from 0 to 10 years. Every
folder contains different files (every file is considered a very long time series,
having 96 in total) that matches a specific driving cycle with different patterns
of speed, from full charge till the discharge of the battery.

Finally, the windows size used for POLLUTION, HR and BATTERY are
respectively 5, 32 and 20. An explanation for this decision is given in the sup-
plementary material.

4.2 Baselines

We compare our proposed methods with the following models:

– Target Mean We predict for all the query samples the mean of the target
from the support set such that ŷ = 1

l

∑
(xi,yi)∈Tt

yi. However, this corresponds
to an unreal scenario, as we are assuming that the target channel is not
available in inference time, but just in fast adaptation.

– Resnet We used the implementation of [21] keeping the same architecture
(filter size and number of filters). The number of parameters of the final model
is about 500.000. This model is considered, because it has shown competitive
results in time series regression [21]. Before adapting the model to a new
(virtual) task, we pre-train the network on the raw meta-training dataset
using standard training. Then, we apply transfer learning, where we freeze
the whole network parameters but the last layer (128 parameters).

– VRADA It [15] combines two networks: a VRNN as proposed by [1] and
DANN [4], which includes a domain classifier and a regressor. The VRNN
is a one-layer LSTM, with hidden dimension and the latent dimension equal
to 100 (as in the original paper). The domain classifier comprises two fully
connected layers with 100 and 50 neurons respectively, with output layer equal
to the number of different classes (which in this case we assume are each of the
original long time series in S), whereas the label predictor is a regressor with
similar architecture but with output layer equal to 1. The hidden layers use
DropOut (drop-out probability = 0.5), Batch Normalization and ReLU. The
number of total parameters for VRADA is around 236.000. It is considered as
a baseline since its architecture allows to extract domain-invariant features.

– LSTM [5] We applied an architecture with 120 neurons, 2 layers and a linear
output layer. The total number of parameters, varying according to every
dataset, is around 180.000. Although this is also the model used for applying
MAML and MMAML, we use as baseline a standard fine-tuning, after pre-
training a network without meta-learning.

Multimodal Meta-Learning for Time Series Regression 133

4.3 Experimental Setup

Given a set of few very long-time series, we split them in three disjunctive sets:
training, validation and testing. 60% of the very-long time series are assigned
to training, 20% to validation and 20% to test. For every split, we run a rolling
window that generates a set of labeled windows. Subsequently, meta-windows
are generated by applying the Algorithm 1 on every split, thus originating the
datasets splits used on meta-learning: meta-training, meta-validation and meta-
testing respectively4.

MAML and MMAML use the meta-training and meta-validation datasets,
whereas the baselines are trained using a training and validation datasets. After
training (or meta-training), the final parameters are available to be used as ini-
tialization for fine-tuning. How good the models after fine-tuning are is evaluated
using a meta-testing protocol, where every experiment is run five times to report
the mean and the 95% confidence interval.

The meta-testing follows the same procedure for the baselines and
MAML/MMAML. We draw a meta-window as the support set, and use it to
adapt (or fine-tune) the model, while the following meta-windows (up to a given
horizon H) are used as query set. By doing this iteratively, many virtual tasks
are available for the meta-testing, as simply sliding over the ordered set of meta-
windows with a given step size (meta-testing step size) gives different virtual
tasks. For instance, Fig. 3 depicts two virtual tasks separated by a meta-learning
step size equals to two. At the end, the total error is computed as the average
error over all the queries. To follow the proposed meta-testing procedure, two
parameters must be provided: the meta-testing step size and horizon.

Specifically, we experiment fine-tuning with 1 and 10 gradient updates of
the last layer parameters, except for VRADA, where all the parameters of
its regressor module are updated. For the baselines, we also experimented with
updates including weight decay. Note that MAML and MMAML also consider
this number of updates in the inner-loop during meta-training, not only in the
meta-testing. Additionally, in order to assess how good was the adaptation to
the new virtual task on the long term, we evaluate on a query set that includes
then 10 following meta-windows (10 horizons). The meta-testing step-size is set
to � M

100�, where M is the number of meta-windows generated from the long time
series Si = (Si, Yi) ∈ S. Additionally, we experiment with a meta-window length
equal to 50 (l = 50).

The training phase of the baselines uses the training set for optimizing the
parameters of the whole network by using mean absolute error (MAE) as loss
LTt

and the labeled windows. The number of iterations was limited by the early
stopping criteria, and using the error in the validation/meta-validation set as
a reference. If the error in the validation set does not decrease within a given
number of iterations (so-called patience), then the training stops. A training

4 We provide the created meta-windows for the splits of POLLUTION and
HR as pickled numpy objects in https://www.dropbox.com/sh/yds6v1uok3bjydn/
AAC5GRWw0F3clopRlk00Smvza?dl=0.

https://www.dropbox.com/sh/yds6v1uok3bjydn/AAC5GRWw0F3clopRlk00Smvza?dl=0
https://www.dropbox.com/sh/yds6v1uok3bjydn/AAC5GRWw0F3clopRlk00Smvza?dl=0

134 S. P. Arango et al.

Fig. 3. Meta-testing Protocol. This procedure enables a lot of tasks during evaluation.

epoch is considered to be the group of updates after passing over the whole
training set.

Similarly, the training of MAML/MMAML, here referenced as meta-training,
follows the Algorithm 2 and 3 respectively, only adapting the last layer parame-
ters. Early stopping was also applied, so that it stops when the meta-validation
error starts to increase after some epochs. In this context, a meta-training
epoch is one outer-loop iteration in the Algorithm 3, therefore it does not com-
pute updates for the whole set of meta-windows during one epoch, since only a
group of them are sampled.

For the baselines, we set the following parameters for all the experiments:
batch size is 128, training epochs are 1000, and the patience for the early stop-
ping is 50. In the experiments with baselines, two learning rates are considered.
On the one side, the training learning rate that is used for finding the pre-trained
parameters (Training LR). On the other side, a different learning rate is con-
sidered for fine-tuning the models during test (Fine-tuning LR). Both learning
rates are chosen from a set of possibilities {0.01, 0.001, 0.0001}, by assessing the
performance of the model with the pre-trained parameters and the performance
after fine-tuning accordingly on the validation set. For VRADA, the training LR
is fixed to 0.0003, following the value used by [15]. The weight decay for the
fine-tuning is chosen from {0, 0.5, 0.1, 0.01, 0.001, 0.0001}.

MAML algorithm uses the same LSTM architecture as the baseline, and
aims to find the best last-layers parameters so that it achieves a good perfor-
mance in few updates for a new virtual task. It uses the following settings. The
batch size (batch of meta-windows in Algorithms 2) is 20. The meta-training
epochs are set to 10000, similar to the baselines. The patience is 500, as the
definition of meta-training epoch is slightly different to training epoch, and less
data is considered in every epoch. We also include a noise level, to achieve meta-
augmentation [16] by adding noise to the targets of the support sets, such that
ynoise = y+ ε, ε ∼ {0,noise level}. This is one of the proposed approaches [16] to

Multimodal Meta-Learning for Time Series Regression 135

make the model more robust against meta-overfitting. The grid for the hyper-
parameter tuning via the meta-validation set are set as follows: meta-learning
rate (β in Algorithm 2) {0.0005, 0.00005}, learning rate (α) {0.01, 0.001, 0.0001}
and noise level {0, 0.01, 0.001}. The hyperparameters are chosen so that it
reduces the error for horizon 10 in all the experiments with MAML.

MMAML uses the same task network as MAML, a two layers LSTM, how-
ever the architecture involves other modules. The encoder and the decoder are
one-layer LSTMs with hidden size 128. The generator is a linear layer with 256
neurons, as it generates two vectors of parameters for the FiLM layer (each
of dimensionality 128). We tune the same hyper-parameters as for MAML, but
including the VRAE weight (λ in Eq. 4), considering the grid {0.1, 0.001, 0.0001}.
The final chosen configurations for the baselines and the proposed models are
presented in the support material.

4.4 Results

We present the results of the proposed experiments in the Table 1. The bold
font indicates the best results (lowest MAE) and the underlined font indicates
the second best result. Additionally, the 95% confidence interval is provided.

After the results, it is possible to observe that MMAML achieves overall good
results, always better than transfer-learning on the same backbone (LSTM) and,
most of the times, better than transfer learning even on more powerful models
such as Resnet. Moreover, the performance, after fine-tuning, remains high for a
long evaluation horizon when using MAML and MMAML as can be seen in the
results on 10 horizons. It means they exhibit less temporal overfitting.

Another important insight is that MAML is less prone to overfitting after
more gradient steps. By looking at the results on all the datasets, it is noticeable
that on 10 gradient steps, the MAML algorithm still performs better in long
horizons (10 Horizons) than MMAML. We hypothesize that this is because the
parameter modulation from MMAML based on meta-features of a meta-window
is more robust against overfitting so long as it is applied on meta-windows tem-
porally close to the support meta-window (input of the modulation network),
but might decrease the performance in temporally-far examples.

During the baselines evaluation, we notice that finding the best fine-tuning
LR given a pre-trained model is difficult, since the learning rate that works best
for the validation set may not perform equally good for the meta-testing. They
may overfit easily, as it happened on HR (1 Horizon, 1 gradient step), where
the simplest baseline performed better. Here, our proposed methods set a clear
advantage as the fine-tuning LR is already fixed in the meta-training process.
However, if the validation and test set are somewhat similar, for instance due
to a small domain shift, the fine-tuning LR tuned on the validation set may
be suitable enough for the test set. Thus, a more powerful model will have an
advantage over meta-learning approaches, as the results on BATTERY show.

136 S. P. Arango et al.

Table 1. Results

Dataset Model 1 gradient step 10 gradient steps

1 Horizon 10 Horizons 1 Horizon 10 Horizons

POLLUTION Target Mean 0.0465 ± 0.0000 0.0495 ± 0.0000 0.0465 ± 0.0000 0.0495 ± 0.0000

Resnet 0.0491 ± 0.0074 0.0502 ± 0.0062 0.0472 ± 0.0047 0.0519 ± 0.0057

VRADA 0.0444 ± 0.0012 0.0428 ± 0.0011 0.0438 ± 0.0008 0.0429 ± 0.0008

LSTM 0.0467 ± 0.0009 0.0463 ± 0.0012 0.0446 ± 0.0006 0.0437 ± 0.0005

MAML (ours) 0.0421 ± 0.0002 0.0418 ± 0.0003 0.0423 ± 0.0010 0.0416 ± 0.0009

MMAML (ours) 0.0410 ± 0.0012 0.0417 ± 0.0007 0.0411 ± 0.0010 0.0420 ± 0.0011

HR Target Mean 0.0542 ± 0.0000 0.0975 ± 0.0000 0.0542 ± 0.0000 0.0975 ± 0.0000

Resnet 0.0670 ± 0.0063 0.0817 ± 0.0035 0.0625 ± 0.0043 0.0734 ± 0.0024

VRADA 0.0789 ± 0.0066 0.0799 ± 0.0060 0.0761 ± 0.0084 0.1140 ± 0.0071

LSTM 0.0673 ± 0.0002 0.0788 ± 0.0006 0.0565 ± 0.0004 0.0906 ± 0.0010

MAML (ours) 0.0634 ± 0.0018 0.0792 ± 0.0029 0.0511 ± 0.0022 0.0711 ± 0.0068

MMAML (ours) 0.0448 ± 0.0009 0.0689 ± 0.0015 0.0507 ± 0.0008 0.0729 ± 0.0027

BATTERY Target Mean 0.0255 ± 0.0000 0.0658 ± 0.0000 0.0255 ± 0.0000 0.0658 ± 0.0000

Resnet 0.0184 ± 0.0024 0.0141 ± 0.0007 0.0091 ± 0.0007 0.0160 ± 0.0012

VRADA 0.0352 ± 0.0019 0.0309 ± 0.0016 0.0967 ± 0.0135 0.0995 ± 0.0124

LSTM 0.0407 ± 0.0025 0.0417 ± 0.0024 0.0195 ± 0.0013 0.0217 ± 0.0013

MAML (ours) 0.0243 ± 0.0012 0.0170 ± 0.0010 0.0135 ± 0.0006 0.0115 ± 0.0004

MMAML (ours) 0.0206 ± 0.0021 0.0154 ± 0.0020 0.0156 ± 0.0023 0.0149 ± 0.0022

(a) (b)

Fig. 4. Change in MAE while increasing the gradient steps during fine-tuning on meta-
testing.

4.5 Ablation Studies

We run some additional experiments to test the performance of our proposed
algorithms under different configurations. Firstly, we would like to see how the
error behaves when the models are fine-tuned beyond the number of gradient
steps assumed during the meta-training. A look at Fig. 4 makes possible to under-
stand this and how the overfitting may arise on our proposed methods under dif-
ferent horizons. The lowest error is achieved after one gradient step even on long
horizons, except for MAML on 1 horizon, where MAE keeps decreasing after
several gradient updates (Fig. 4a). This shows that MAML is robust against

Multimodal Meta-Learning for Time Series Regression 137

overfitting on close horizons, after several gradient steps. However, when having
more updates, MAML may overfit temporally, thus exhibiting bad performance
in long horizons as the orange curve depicts in Fig. 4b.

The Figs. 5a, 5b and 5c show that there is indeed an advantage of including
the variaional loss in our formulation, as there is a decreased MAE when having
values for the VRAE weight (λ) different from zero.

Fig. 5. Change in MAE with respect to VRAE.

5 Conclusion

The present work introduces an extension of Meta-Agnostic Meta-Learning
(MAML) and Multi-modal MAML (MMAML) to time series regression (TSR).
We propose a design for the tasks such that we leverage the original, more com-
mon scenario of few but long time series available. The proposed design, which
introduces the concept of “meta-window”, makes possible to have more tasks
available for meta-training. Through experiments, we show how this idea works
on different datasets, allowing to achieve better performance than traditional
methods such as transfer learning. This is the first time to apply meta-learning
for fast adaption on TSR, and it shows that it is possible to adapt to new TSR
tasks with few data and within few iterations. For future work, we hypothesize
that the application of the introduced ideas would have promising results in time
series forecasting.

Acknowledgements. The research of Kiran Madhusudhanan is co-funded by
the industry project “IIP-Ecosphere: Next Level Ecosphere for Intelligent Industrial
Production”. Sebastian Pineda Arango would also like to thank Volkswagen AG who
funded his internship in order to carry out this research.

References

1. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recur-
rent latent variable model for sequential data. In: Advances in Neural Information
Processing Systems, pp. 2980–2988 (2015)

2. Fabius, O., van Amersfoort, J.R.: Variational recurrent auto-encoders. arXiv
preprint arXiv:1412.6581 (2014)

https://www.ismll.uni-hildesheim.de/projekte/ecosphere_en.html
https://www.ismll.uni-hildesheim.de/projekte/ecosphere_en.html
http://arxiv.org/abs/1412.6581

138 S. P. Arango et al.

3. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 (2017)

4. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn.
Res. 17(1), 2030–2096 (2016)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

6. Iwata, T., Kumagai, A.: Few-shot learning for time-series forecasting. arXiv
preprint arXiv:2009.14379 (2020)

7. Jiang, X., et al.: Attentive task-agnostic meta-learning for few-shot text classifica-
tion (2019)

8. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast com-
bination. Neurocomputing 73(10–12), 2006–2016 (2010)

9. Narwariya, J., Malhotra, P., Vig, L., Shroff, G., Vishnu, T.: Meta-learning for few-
shot time series classification. In: Proceedings of the 7th ACM IKDD CoDS and
25th COMAD, pp. 28–36 (2020)

10. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm, vol. 2, no. 3,
p. 4 . arXiv preprint arXiv:1803.02999 (2018)

11. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: Meta-learning frame-
work with applications to zero-shot time-series forecasting. arXiv preprint
arXiv:2002.02887 (2020)

12. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis
expansion analysis for interpretable time series forecasting. In: International Con-
ference on Learning Representations (2020)

13. Oreshkin, B.N., López, P.R., Lacoste, A.: TADAM: task dependent adaptive metric
for improved few-shot learning. In: NeurIPS, pp. 719–729 (2018)

14. Perez, E., Strub, F., de Vries, H., Dumoulin, V., Courville, A.C.: Film: visual
reasoning with a general conditioning layer. In: AAAI, pp. 3942–3951 (2018)

15. Purushotham, S., Carvalho, W., Nilanon, T., Liu, Y.: Variational recurrent adver-
sarial deep domain adaptation. In: ICLR (2017)

16. Rajendran, J., Irpan, A., Jang, E.: Meta-learning requires meta-augmentation. In:
Advances in Neural Information Processing Systems, vol. 33 (2020)

17. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: Inter-
national Conference on Learning Representations (ICLR) (2017)

18. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: International Conference on Machine
Learning, pp. 1842–1850 (2016)

19. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

20. Talagala, T.S., Hyndman, R.J., Athanasopoulos, G., et al.: Meta-learning how to
forecast time series. Monash Econometrics Bus. Stat. Working Pap. 6, 18 (2018)

21. Tan, C.W., Bergmeir, C., Petitjean, F., Webb, G.I.: Time series extrinsic regression.
arXiv preprint arXiv:2006.12672 (2020)

22. Vuorio, R., Sun, S.H., Hu, H., Lim, J.J.: Multimodal model-agnostic meta-learning
via task-aware modulation. In: Advances in Neural Information Processing Sys-
tems, pp. 1–12 (2019)

http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/2009.14379
http://arxiv.org/abs/1803.02999
http://arxiv.org/abs/2002.02887
http://arxiv.org/abs/2006.12672

Cluster-Based Forecasting for
Intermittent and Non-intermittent Time

Series

Tom van de Looij1(B) and Mozhdeh Ariannezhad2

1 University of Amsterdam, Amsterdam, The Netherlands
tom.vandelooij@student.uva.nl

2 AIRLab, University of Amsterdam, Amsterdam, The Netherlands
m.ariannezhad@uva.nl

Abstract. Producing accurate forecasts is an essential part of success-
ful inventory management for any retail business. Previous research has
shown that the clustering of time series data into disjoint clusters can
reduce the forecast error, eventually leading to cost savings. A common
measure used to cluster time series data is Dynamic Time Warping.
While it can handle time series of different length and guarantees to pro-
vide the optimal alignment, it is computationally expensive and assumes
that one time series is a stretched non-linear version of another time
series. For datasets containing intermittent time series, i.e. showing no
clear structure, DTW is not the best suited method. In this paper, we
propose a new framework that uses Simple Exponential Smoothing (SES)
and a Self-Organizing Map (SOM) that is able to improve the clustering
performance for clusters containing intermittent and non-intermittent
time series. Using LightGBM as the forecasting model, we evaluate our
approach on a real-world dataset, and find that the computational time
can be reduced substantially compared to DTW when using a combina-
tion of SOM and LightGBM for both intermittent and non-intermittent
time series while maintaining similar levels of accuracy.

Keywords: Intermittent time series · Clustering · Forecasting ·
Self-organizing map · Hierarchical agglomerative clustering · Dynamic
time warping

1 Introduction

For any business, sales forecasting is a critical task in order to maintain a correct
inventory level, where purchasing too few units of a product leads to a lost sales
opportunity and buying too much units results in an overstock. Therefore, pro-
ducing accurate forecasts is an essential component in maintaining an efficient
supply chain [21]. According to [26], intermittent demand may constitute up to
60% of the total stock value. As a result, small improvements in the management
of intermittent stock items can contribute to substantial cost savings. Intermit-
tent time series are characterized by multiple non-demand intervals and do not
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 139–154, 2021.
https://doi.org/10.1007/978-3-030-91445-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_9

140 T. van de Looij and M. Ariannezhad

contain enough data to model trend and seasonality [19]. This makes intermittent
time series hard to forecast as there are two sources of uncertainty: the sporadic
nature of the demand level and the timing of the demand occurrence [17].

Over the last five decades, since the first specialised method for intermittent
demand was proposed in [5], there have been very few new forecasting methods
specifically designed for intermittent time series compared to fast-moving time
series [17]. Previous research has shown that partitioning the dataset into disjoint
clusters can reduce the forecast error on fast-moving time series, as data in
the same cluster will have similar patterns [9]. A common method to calculate
the similarity between two time series is Dynamic Time Warping (DTW) [1].
While it is an accurate measure to cluster misaligned time series that are similar
in shape, it assumes that one time series is a stretched non-linear version of
another time series and is expensive to compute. Moreover, previous research
has only evaluated its performance and impact on the forecasting accuracy on
small datasets (<1000 Stock Keeping Units (SKUs)) [18,20]. In a real world
business setting, where weekly or even daily forecasts are needed, the use of
DTW might be infeasible because of the computational complexity.

In this paper, we introduce a cluster-based forecasting framework that is
able to forecast both intermittent and non-intermittent time series. We propose
the use of Simple Exponential Smoothing (SES) as a preprocessing step before
clustering. The idea behind this approach is that SES can act as a filter that
removes noise from the time series and reduces outliers in the Euclidean distance,
an often used distance metric in clustering. It is computationally faster to use
and it can especially improve the clustering performance for intermittent time
series. Smoothed time series are then less penalised by the Euclidean distance
when they are misaligned, making it especially useful for intermittent time series.

We summarize our contributions as follows:

– We use a new preprocessing method before clustering to improve the cluster-
ing performance that is computationally faster to use than DTW (Sect. 3).

– We showcase our results on a publicly available dataset. Our results show
that our cluster-based approach can achieve similar results in terms of the
root mean squared error at a substantial lower computational cost compared
to DTW (Sect. 4).

– We demonstrate that a gradient boosting machine (LightGBM) can benefit
from a cluster-based approach with respect to the root mean squared error.

2 Related Work

Clustering Time Series. Cluster-based forecasting is a well studied research
problem. Dividing time series into clusters can result in much smaller forecasting
errors in contrast to a direct prediction [9]. The key insight in a cluster-based
forecasting approach is that by partitioning the whole dataset into multiple
disjoint clusters, the forecasting models trained on those separate clusters are
able to improve the accuracy compared to a forecasting model trained on the
whole dataset [13].

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 141

In order to cluster time series, Dynamic Time Warping (DTW) is used to as a
dissimilarity metric for time series of unequal length [20]. It calculates a warping
path between two sequences and is able to provide the optimal alignment. In
contrast to the Euclidean distance metric, DTW can be used to cluster time
series that are similar in shape but are out of phase. While DTW can be a good
measure to match misaligned time series, it prove to be an infeasible method
to use on a larger dataset. To calculate a distance matrix for n time series of
length m, the complexity for such a operation is O(n2m2). This makes DTW an
unsuitable measure in practice in terms of complexity compared to the Euclidean
distance. DTW also assumes that one time series is a stretched non-linear version
of another time series. In online retail, where intermittent time series are more
prevalent [8], i.e. showing no clear structure, DTW is not the best suited measure
to cluster intermittent time series.

Our focus is on efficiently clustering and modelling of a large dataset
(≈ 50,000 time series) at the lowest aggregation level containing both fast-moving
and intermittent time series. The proposed methods in the above mentioned
works are mainly evaluated on small datasets (<1000 time series) that are fore-
casted at the highest aggregation level [14,20,29]. In contrast, we propose a
method that foregoes the use of DTW as a distance measure but instead uses
Simple Exponential Smoothing (SES) as preprocessing method to improve the
clustering performance.

Time Series Forecasting. Time series forecasting has been an active area of
research since the 1970s. The publication of Time Series Analysis: Forecasting
and Control by Box and Jenkins in 1970 is perceived as an important milestone.
It enabled forecast practitioners to apply a systematic approach in time series
forecasting [27]. Since then, a wide diversity of methods and algorithms have been
used for time series forecasting. According to [15], these methods and algorithms
can be divided into two groups. The first group consists of classical statistical
approaches such as SES, Auto-Regressive Integrated Moving Average (ARIMA),
Theta, and Box-Jenkins. These methods are characterized as linear methods and
have a strong capability of modeling trend and seasonality in a time series. The
second group consists of machine learning (ML) based methods like Support
Vector Regression (SVR), Long Short-Term Memory (LSTM), and tree-based
models like XGBoost, LightGBM and Random Forest [15].

More recently, ML based methods are being proposed as an alternative to
the classical statistical methods [2]. A good indication on the advances in fore-
casting theory and practice are the M competitions. The M4 competition, held
in 2018, showcased that a combination of statistical models and ML models
were able to outperform classical methods in terms of accuracy, highlighting the
potential value of ML-based approaches in more accurate forecasting. In the
M5 competition, held in 2020, exclusively ML-based methods were the winning
solutions. As an example, LightGBM, a gradient-boosting framework developed
by Microsoft, is able to process numerous, correlated time series effectively and
reduce the forecast error [16]. In contrast to the previous M competitions, the

142 T. van de Looij and M. Ariannezhad

M5 competition was also the first competition to include intermittent demand
time series.

In this paper, we use the LightGBM model as our forecasting model and
conduct our experiments on the M5 competition dataset.

Forecasting Intermittent Time Series. In contrast to modelling fast-moving
time series, forecasting intermittent time series is a more difficult task, as there
are two sources of uncertainty: the sporadic nature of the demand volume and
the sporadic timing of the demand arrivals [17]. The first proposed method to
specifically forecast intermittent time series was introduced by Croston [5]. It
overcomes the aforementioned difficulties by using separate series for the size
of demand, and for the demand frequency. Each series is forecasted separately
using Simple Exponential Smoothing (SES) and the final forecast is derived by:

ŷt =
ẑt
p̂t

(1)

Where ẑt and p̂t are the forecast for the demand sizes and the demand inter-
vals, respectively. Later, [24] proved that the Croston’s method was biased and
proposed a new method called Syntetos-Boylan Approximation (SBA): a bias-
correction approximation [25]. To overcome the problem of the bias being posi-
tively correlated with the αp smoothing parameter, a damping factor was added
to Croston’s method:

ŷt = (1 − αp

2
)
ẑt
p̂t

(2)

While there is empirical evidence that the per series optimization can gain
improvements with respect to the bias, the values for the smoothing parameter
are selected in a adhoc manner in practice. Moreover, even with the recent
advance in specialised methods for intermittent forecasting, simpler methods
like Moving Average (MA) and SES are often used in practice [19].

In this work, we propose a clustering based approach for forecasting inter-
mittent time series, and make use of SES as a preprocessing step.

3 Methodology

We propose a cluster-based forecasting framework that leverages Simple Expo-
nential Smoothing (SES) as a preprocessing step. By comparing SES versions of
the time series to each other, we aim to improve the clustering performance.

3.1 Framework Overview

The complete framework is illustrated in Fig. 1. Given a dataset X containing n
time series of length m, we apply the SES as mentioned in Sect. 3.2 on X resulting
in X ′. X ′ is then clustered into k disjoint clusters using a clustering algorithm.

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 143

In this paper, we experiment with two clustering methods. The best performing
method is selected as the clustering method in the proposed framework. Finally,
a total of k LightGBM models are trained on the original non-smoothed dataset
X and the predicted values are obtained.

Fig. 1. The proposed framework for cluster-based time series forecasting.

3.2 Framework Details

In this section, we provide details for different components of the proposed frame-
work. First, the smoothing step is highlighted and its effect on the clustering is
discussed. We then give an overview of the two types of clustering algorithms
used in our experiments. Finally, we discuss the forecasting model used to pro-
duce the predictions.

Preprocessing. As mentioned in Sect. 2, the use of DTW as a distance metric
on a large dataset is computationally expensive compared to the Euclidean dis-
tance. To still be able to cluster time series that are similar in shape, exponential
smoothing is used as an additional preprocessing step. The intuition behind this
approach is that smoothed time series are less penalised by the Euclidean dis-
tance metric than non-smoothed time series. It enables the clustering algorithm
to capture the main components of the individual time series [23]. We use SES
as the smoothing approach in our framework [7]. SES is defined as follows:

st = αyt + (1 − α)st−1, (3)

where α is a smoothing factor between 0 and 1, yt is the value of the time series
at time step t and st is the smoothed value. The value of st is a simple weighted
average of the current observation yt and the previous smoothed value st−1.

144 T. van de Looij and M. Ariannezhad

Hierarchical Agglomerative Clustering. We aim to partition a dataset X =
{x1, ..., xn} into a collection of clusters. The first algorithm that is tried in the
clustering step of the framework is Hierarchical agglomerative clustering (HAC).
In HAC, records are stored at the leaves as singleton sets and the algorithm
proceeds by merging pairs of clusters until the root of the tree is reached, which
contains all the elements of X. The distance between any two sub-clusters of X
is called the linkage distance and can be denoted as Δ(Xi,Xj) [4]. The three
most common linkage methods are single-link, complete-link, and Ward’s. Single-
link linkage defines the distance between two clusters as the minimum distance
between their members. While it can handle quite complex cluster shapes, single-
link linkage only cares about separation and does not take cluster balance or
compactness into account. Complete-link linkage defines the distance between
two clusters as the maximum distance between their members. Therefore, it is
sensitive to outliers [22]. In our experiments, we used the Ward’s method. Instead
of measuring the distance between clusters directly, it analyses the variance of
clusters. To merge Xi(ni = |Xi|) with Xj(nj = |Xj |) Ward’s method can be
defined as:

Δ(Xi,Xj) =
ninj

ni + nj
||c(Xi) − c(Xj)||2, (4)

where c(X ′) denotes the centroid of cluster X ′ [4]. The final output of HAC
is a dendogram which defines the hierarchy of the clusters. k clusters are then
selected as the final clusters, where k is the cut-off point.

Self-organizing Map. The second type of clustering algorithm used is a Self-
Organizing Map (SOM). SOM is a type of artificial neural network (ANN) that
is able to transform a high-dimensional input into a two-dimensional represen-
tation, called a map [11]. SOM relies on competitive learning that earns acti-
vation opportunities through competition between neurons of the output layer
as opposed to error-correction learning such as back-propagation with gradient
descent [3].

A SOM network consists of i neurons arranged in a 2D grid with a normally
randomized weight vector mi. The architecture allows for lateral interaction
between the neurons to activate and inhibit each other. During each training
iteration, a training example is fed to the network and its Euclidean distance
to all weight vectors is computed. The winning neuron, also called the best-
matching unit (BMU) can be expressed as:

W (t) = arg min
i

{||x(t) − mi(t)||}. (5)

The update formula for the BMU can then be expressed as:

mi(t + 1) = mi(t) + α(t) ∗ hWi(t)[̇x(t) − mi(t)], (6)

where t is the current training iteration and x is the input vector. The amount
of movement is constrained by the time-decreasing learning rate α. The learning
rate is adjusted over time in order to make substantial changes in the network

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 145

at the beginning phase. The neighbor neurons near W (t) are denoted by the
neighbor kernel hWi. In the simplest form, it is set to 1 for all neurons close
enough to the BMU and 0 for others, but in practice a Gaussian neighborhood
is often used [12].

Table 1. Summary statistics for the M5 dataset.

Demand Intermittency

Min. 0 0.0000

Median 2.0 0.1942

Max. 4220 0.8992

Mean 7.9002 0.2386

Std. Deviation 23.6665 0.1942

LightGBM. We use LightGBM as our forecasting model. Proved to be one
of the best performing methods in the M5 competition [16], LightGBM is a
machine learning algorithm that combines two techniques: Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) in order to handle
large number of data points and a large number of features.

In a gradient boosting tree, the gradient for each data instance provides
important information that can be used for data sampling. If a data instance
corresponds to a small gradient then the training error for this data instance
will also be small, because it is already well trained. By disregarding those data
instances, the distribution of the data will change, which will in turn decrease
the accuracy of the model. GOSS avoids this problem by retaining all instances
with large gradients and uses random sampling on those with small gradients.
To counter-act the change of distribution, a constant multiplier is introduced.
As high-dimensional data are usually very sparse, this sparsity of the feature
space can be used to create an approach to reduce the number of features. It is
possible to bundle exclusive features into a single feature because many features
are mutually exclusive. This EFB step in LightGBM can significantly speed up
the training of the model without decreasing the accuracy [10]. Tweedie’s Poisson
regression was chosen as the objective function as it deals well with right-skewed
data with a large number of zeros [30], which makes is suited for the intermittent
dataset.

4 Evaluation

Data. The proposed framework is evaluated on the M5 dataset from the M5
competition, ranging from January 2011 until September 2016 and aggregated
at the week level. The major objective is to develop a forecasting model that
can be used by the supply-chain management. Therefore, the forecasts are on
the lowest aggregation level, i.e. products are forecasted at the SKU level. The

146 T. van de Looij and M. Ariannezhad

dataset contains the time series for 30,472 SKUs with the length of 278. Statis-
tical characteristics are shown in Table 1. Demand is expressed as SKU sold per
week and the intermittency of a SKU is described as the fraction of zero sales,
calculated from the first recorded sale in a time series. SKUs containing more
than 90% of zero recorded sales are removed from the M5 dataset, containing
too little information to produce any type of reliable forecast.

Fig. 2. Forecasting on a rolling window.

Experimental Setup. The data was split on the item level via 5-fold time series
cross validation. As illustrated in Fig. 2, the forecasts are made on a rolling win-
dow basis. In each fold, the next 20 time steps are predicted. To prevent leakage
of information between the training and the test set, a gap of eight time steps
between the training set and test set is used. For the baseline models (Croston’s
Method and LightGBM) the mean, standard deviation and the median RMSE
scores across the five folds are calculated.

To measure the difference in RMSE between the baseline model and the clus-
ter forecasts on a cluster level, the predictions of the SKUs from each fold in each
cluster are compared to the predictions of the SKUs in the corresponding fold of
the baseline model. The mean, standard deviation, and median RMSE is then
calculated to show the difference in RMSE on a cluster level. All experiments
are done using an Intel Core i7-8559U CPU clocked at 2.70 GHz.

Evaluating Cluster Performance. We use internal validity measures to eval-
uate the performance of the clustering algorithms. The two validity measures
used are the Calinski-Harabasz (CH) score and the Davies-Bouldin (DB) score.
The CH score is defined as:

CH(C) =
(N − |C|) ∗ ∑

ck∈C |ck|d(ck,X)
(|C| − 1) ∗ ∑

ck∈C

∑
xi∈ck

|ck|d(xi, ck)
(7)

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 147

With cluster scatter S denoted as:

S(ck) =
1
ck

∑

xi∈ck

d(xi, ck), (8)

the DB score of a cluster is:

DB(C) =
1

|C|
∑

ck∈C

max
cl∈Cnck

{
S(ck + S(cl)

d(ck, cl)

}

, (9)

Where X = {x1, ..., xn} is the dataset to be clustered, C = {c1, ..., xk} is the
clustering of X into K disjoint clusters, ck is the centroid of the cluster and X is
the centroid of the dataset [28]. The CH and DB score both measure inter and
intra cluster similarities where the CH score should be maximized and the DB
score should be minimized.

Evaluating Forecasting Performance. Due to the high degree of intermit-
tency in the dataset, the Mean Absolute Error (MAE) and the Mean Absolute
Percentage Error (MAPE) cannot be used. The MAE optimizes for the median
and when a time series contains many zeros, i.e. intermittent, the median will
also be close to zero. With intermittent time series the MAPE is also not well
suited because division by zero is very likely to occur.

To evaluate the forecasting performance the Root Mean Square Error
(RMSE) is used. The RMSE is defined as:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(10)

Where yi is the actual value, ŷi is the predicted value, and n is the total
number of observations. Because the RMSE is scale dependent it can not be
used to compare the accuracy of the models between two different datasets,
however it can be used to compare the improvements in accuracy between the
models on the same dataset.

4.1 Results

Time Series Clustering. Table 2 illustrates the best performing cluster-
ing configurations (number of cluster and smoothing parameter) based on the
Calinski-Harabasz (CH) or Davies-Bouldin (DB) score. The parameter α = N/A
indicates that no SES was applied before clustering. The use of SES improved
the clustering results for both the HAC and SOM approaches. For the HAC
method, the CH and DB score are more in agreement with what the best con-
figuration is. A smoothing parameter of 0.1 and a cluster size of 2 or 3 both
result in the highest CH score and the lowest DB score. Figures 3 and 4 show
the clustering performance for the smoothing values ranging from 0.1 to 1. The
CH score increases as the smoothing parameter increases, indicating that the

148 T. van de Looij and M. Ariannezhad

clusters are better defined. HAC shows a maximum CH score for all ten smooth-
ing values when 2 clusters are chosen. For the SOM the CH first increases as
the the number of clusters increase with a maximum CH score between 25 and
36 number of clusters. For both clustering algorithms a smoothing parameter of
0.1 appears to result in the best defined clusters.

Table 2. Best results for different clustering methods and parameters on the M5
dataset.

Clustering method # Clusters α CH score # Clusters α DB score

SOM 25 N/A 1410.0694 9 N/A 3.1737

36 0.1 2215.3234 9 0.1 1.7413

HAC 2 N/A 1163.6122 2 N/A 2.4444

2 0.1 3229.5529 3 0.1 1.5076

Fig. 3. Calinski-Harabasz and Davies-Bouldin scores for different smoothing parame-
ters (alpha) using HAC.

Analyzing the cluster performance with respect to the DB score, we can see
that for both types of clustering algorithms smaller clusters are preferred. The
DB score is minimized for a smoothing value 0.1 for both the HAC and SOM
method. For HAC the optimal number of clusters is 3 and for the SOM the
optimal number of clusters is 9.

Comparison with DTW. Table 3 shows the mean and median RMSE scores
for a subset of 20,000 SKUs from the M5 dataset. As a non-ML-based method,
Croston’s Method achieves a mean RMSE of 13.1765. A single LightGBM model
is able to achieve a mean RMSE of 8.2276 across five folds and serves as the base-
line model to which cluster-based models are compared. The SOM+LightGBM is

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 149

Fig. 4. Calinski-Harabasz and Davies-Bouldin scores for different smoothing parame-
ters (alpha) using SOM.

Table 3. Mean and median RMSE scores across five folds for various models on the
M5 dataset. Best performing scores are highlighted in gray.

Model # Clusters α Mean Median CPU Time

Croston’s Method N/A N/A 13.1765 (± 0.9298) 12.9772 2min 15s

LightGBM N/A N/A 8.2276 (± 0.3470) 8.1604 16min 13s

SOM+LightGBM 9 N/A 8.0019 (± 0.3524) 8.0830 5min 19s

SES+SOM+LightGBM 9 0.1 8.0082 (± 0.3371) 8.1112 6min 3s

SES+HAC+LightGBM 2 0.1 8.3030 (± 0.3304) 8.3267 12min 57s

DTW+HAC+LightGBM 5 N/A 8.0954 (± 0.3378) 8.0368 20h 24min 5s

the best performing model with respect to the mean RMSE, reducing the RMSE
by 0,2257 (2,82%). The DTW+HAC+LightGBM model is able to achieve sim-
ilar performance as the SOM+LightGBM model indicating that it could be a
viable alternative. The SES+HAC+LightGBM model is not able to decrease the
mean RMSE, performing worse than the baseline model. While SES is able to
improve the clustering performance, it is not able to outperform the SOM model
without SES with respect to the mean RMSE. Comparing CPU run times we
observe that while DTW+HAC+LightGBM is able to result in similar forecast-
ing performance, its CPU run time is multiplied by a factor of 246.

Figure 5 illustrates the mean RMSE difference per cluster as a percentage
compared to the mean RMSE of the baseline model (top row). The bottom row
illustrates the size of each cluster. Bars are coloured according to the mean inter-
mittency in that cluster. Looking at Fig. 5, we observe that on a cluster level, in
four out of five clusters the use of DTW+HAC were not able to produce mean-
ingful clusters to reduce the mean RMSE. The SOM was able to reduce the mean
RMSE on a cluster level for moderate (0.5) to low (0.2) average intermittency
levels within a cluster. Cluster 2 and 8, having very few zero recorded sales,

150 T. van de Looij and M. Ariannezhad

Fig. 5. Top row: mean RMSE difference across 5 folds between the baseline model
(LightGBM) and the cluster-based forecasting method (SOM) on the M5 dataset.
Bottom row: number of SKUs per cluster.

did not benefit from a clustered approach with respect to the mean RMSE.
In contrast to DTW, the SOM was able to reduce the mean RMSE for more
intermittent clusters.

Figures 6 and 7 illustrate an example forecast for an intermittent and non-
intermittent time series. A clear distinction can be made between the different
smoothing values. HAC is used to cluster the distance matrix made by DTW.

Fig. 6. Example forecast on an intermittent time series from the M5 dataset. Time
series are clustered with SOM.

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 151

Fig. 7. Example forecast on a non-intermittent time series from the M5 dataset. Time
series are clustered with SOM.

5 Discussion

Clustering time series dataset into disjoint clusters and training individual mod-
els on those clusters can lead to a reduction in the forecasting error [9,13]. A
common and accurate method to measure the similarity between two time series
is DTW [18], but it comes at a cost: it is a computationally expensive measure to
use on large datasets and on intermittent time series, DTW may not be the best
suited measure to use, since intermittent time series show no clear structure.
Our results show that by applying SES as a preprocessing method, clustering
and forecasting performance can be improved in combination with SOM. While
not achieving the same level of performance as DTW+HAC, it does come at
a substantially lower computational cost. In practice, it is then up to the fore-
cast practitioner to decide whether the focus should lie on speed, for instance in
real-time forecasting, or on accuracy when for example weekly forecasts are pro-
duced. A limitation of using SES instead of DTW is that during clustering the
Euclidean distance is still used, making it not useful for time series of different
length or for time series that are far apart from each other.

On a cluster level, the improvements in accuracy gained for intermittent time
series seems to come at a cost of a higher forecasting error for less intermittent
time series. This can be explained by the size of the produced clusters. Smaller
clusters tend to perform worse than the base model because of insufficient train-
ing examples. LightGBM may also not be the best suited model to use on smaller
clusters as it is sensitive to overfitting, especially on small datasets. Other mod-
els such as XGBoost or Random Forest in combination with recursive feature
elimination could be used on the smaller clusters to mitigate the problem of
overfitting [6].

The use of HAC, with and without SES, has almost no impact on the fore-
casting error, where HAC was unable to produce any meaningful clusters. HAC
also suffers from rich get richer behaviour, which explains the uneven cluster
sizes. This may also explain why on the M5 dataset, SES+HAC+LightGBM
was unable to reduce the mean RMSE. A cluster containing almost all the time

152 T. van de Looij and M. Ariannezhad

series does not differ much from the original dataset. Performance from a model
trained on that cluster will then be similar to the performance of a single model
on the complete dataset.

6 Conclusions and Future Work

Producing forecasts for intermittent and non-intermittent time series is a trade-
off between computational complexity and accuracy. We have explored alterna-
tives to Dynamic Time Warping that are less computationally expensive and
have shown that a combination of Simple Exponential Smoothing and a Self-
Organizing Map is able to reduce the forecast error and provide similar results to
Dynamic Time Warping in combination with Hierarchical Agglomerative Clus-
tering. Especially for intermittent time series, the use of clustering has a positive
effect on the forecasting accuracy. While the use of SES as a preprocessing step
was able to increase cluster performance, its effect on the forecasting accuracy
was minimal. Further experimentation should clarify if other versions of Expo-
nential Smoothing are able to decrease the forecasting error. We have also shown
that LightGBM can work as a model choice when forecasts are produced for sep-
arate clusters. Future work could also explore the options of combining forecasts
from a single model and a clustered model to achieve better results for both
intermittent and non-intermittent time series.

References

1. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering a
decade review. Inf. Syst. 53, 16–38 (2015). https://doi.org/10.1016/j.is.2015.04.
007

2. Ariannezhad, M., Schelter, S., de Rijke, M.: Demand forecasting in the presence
of privileged information. In: Lemaire, V., Malinowski, S., Bagnall, A., Guyet, T.,
Tavenard, R., Ifrim, G. (eds.) AALTD 2020. LNCS (LNAI), vol. 12588, pp. 46–62.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65742-0 4

3. Chen, I.-F., Lu, C.-J.: Sales forecasting by combining clustering and machine-
learning techniques for computer retailing. Neural Comput. Appl. 28(9), 2633–2647
(2016). https://doi.org/10.1007/s00521-016-2215-x

4. Contreras, P., Murtagh, F.: Hierarchical clustering. In: Handbook of Cluster Anal-
ysis (February), 103–124. Chapman and Hall/CRC, New York (2015). https://doi.
org/10.1201/b19706

5. Croston, J.D.: Forecasting and stock control for intermittent demands (1970–1977)
. Oper. Res. Q. 23(3), 289–303 (1972). http://www.jstor.org/stable/3007885

6. Darst, B.F., Malecki, K.C., Engelman, C.D.: Using recursive feature elimination in
random forest to account for correlated variables in high dimensional data. BMC
Genet. 19(1), 1–6 (2018)

7. Holt, C.C.: Forecasting seasonals and trends by exponentially weighted
moving averages. Int. J. Forecast. 20(1), 5–10 (2004). https://doi.org/10.
1016/j.ijforecast.2003.09.015, https://www.sciencedirect.com/science/article/pii/
S0169207003001134

https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1016/j.is.2015.04.007
https://doi.org/10.1007/978-3-030-65742-0_4
https://doi.org/10.1007/s00521-016-2215-x
https://doi.org/10.1201/b19706
https://doi.org/10.1201/b19706
http://www.jstor.org/stable/3007885
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134

Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series 153

8. Jha, A., Ray, S., Seaman, B., Dhillon, I.S.: Clustering to forecast sparse time-series
data (2015)

9. Kamini, V., Vadlamani, R., Prinzie, A., Van den Poel, D.: Cash demand forecasting
in ATMS by clustering and neural networks. Eur. J. Oper. Res. 232, 383–392
(2014). https://doi.org/10.1016/j.ejor.2013.07.027

10. Ke, G., et al.: Lightgbm: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, pp. 3146–3154 (2017)

11. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybernet. 69, 59–69 (1982)

12. Kohonen, T.: Self-organizing feature maps. In: Self-organization and Associative
Memory, pp. 119–157. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-
88163-3

13. Lu, C.J., Kao, L.J.: A clustering-based sales forecasting scheme by using extreme
learning machine and ensembling linkage methods with applications to computer
server. Eng. Appl. Artif. Intell. 55, 231–238 (2016). https://doi.org/10.1016/j.
engappai.2016.06.015, http://dx.doi.org/10.1016/j.engappai.2016.06.015

14. Lu, C.J., Wang, Y.W.: Combining independent component analysis and growing
hierarchical self-organizing maps with support vector regression in product demand
forecasting. Int. J. Prod. Econ. 128(2), 603–613 (2010). https://doi.org/10.1016/
j.ijpe.2010.07.004

15. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learn-
ing forecasting methods: concerns and ways forward. PLoS ONE 13(3), e0194889
(2018)

16. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M5 accuracy competi-
tion: results, findings and conclusions (October), pp. 1–44 (2020). https://www.
researchgate.net/publication/344487258

17. Nikolopoulos, K.: We need to talk about intermittent demand forecasting. Eur. J.
Oper. Res. 291(2), 549–559 (2021). https://doi.org/10.1016/j.ejor.2019.12.046

18. Paparrizos, J., Gravano, L.: Fast and accurate time-series clustering. ACM Trans.
Database Syst. 42(2) (2017). https://doi.org/10.1145/3044711

19. Petropoulos, F., Kourentzes, N.: Forecast combinations for intermittent demand.
J. Oper. Res. Soc. 66(6), 914–924 (2015). https://doi.org/10.1057/jors.2014.62

20. Puspita, P.E., Änkaya, T., Akansel, M.: Clustering-based sales forecasting in a
Forklift Distributor. UluslararasÄ Muhendislik Arastirma ve Gelistirme Dergisi,
pp. 1–17, February 2019. https://doi.org/10.29137/umagd.473977

21. Seaman, B.: Considerations of a retail forecasting practitioner. Int. J. Forecast.
34(4), 822–829 (2018). https://doi.org/10.1016/j.ijforecast.2018.03.001, https://
doi.org/10.1016/j.ijforecast.2018.03.001

22. Shalizi, C.: Distances Between Clustering, Hierarchical Clustering. Data Mining
(September), pp. 36–350 (2009). www.stat.cmu.edu/cshalizi/350

23. Smyl, S.: A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting. Int. J. Forecast. 36(1), 75–85 (2020). https://doi.org/
10.1016/j.ijforecast.2019.03.017, https://doi.org/10.1016/j.ijforecast.2019.03.017

24. Syntetos, A.A., Boylan, J.E.: On the bias of intermittent demand estimates. Int.
J. Prod. Econ. 71(1–3), 457–466 (2001)

25. Syntetos, A.A., Boylan, J.E.: The accuracy of intermittent demand estimates. Int.
J. Forecast. 21(2), 303–314 (2005)

26. Syntetos, A.A., Zied Babai, M., Gardner, E.S.: Forecasting intermittent inventory
demands: simple parametric methods vs. bootstrapping. J. Bus. Res. 68(8), 1746–
1752 (2015). https://doi.org/10.1016/j.jbusres.2015.03.034, http://dx.doi.org/10.
1016/j.jbusres.2015.03.034

https://doi.org/10.1016/j.ejor.2013.07.027
https://doi.org/10.1007/978-3-642-88163-3
https://doi.org/10.1007/978-3-642-88163-3
https://doi.org/10.1016/j.engappai.2016.06.015
https://doi.org/10.1016/j.engappai.2016.06.015
http://dx.doi.org/10.1016/j.engappai.2016.06.015
https://doi.org/10.1016/j.ijpe.2010.07.004
https://doi.org/10.1016/j.ijpe.2010.07.004
https://www.researchgate.net/publication/344487258
https://www.researchgate.net/publication/344487258
https://doi.org/10.1016/j.ejor.2019.12.046
https://doi.org/10.1145/3044711
https://doi.org/10.1057/jors.2014.62
https://doi.org/10.29137/umagd.473977
https://doi.org/10.1016/j.ijforecast.2018.03.001
https://doi.org/10.1016/j.ijforecast.2018.03.001
https://doi.org/10.1016/j.ijforecast.2018.03.001
www.stat.cmu.edu/cshalizi/350
https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/10.1016/j.ijforecast.2019.03.017
https://doi.org/10.1016/j.jbusres.2015.03.034
http://dx.doi.org/10.1016/j.jbusres.2015.03.034
http://dx.doi.org/10.1016/j.jbusres.2015.03.034

154 T. van de Looij and M. Ariannezhad

27. Tsay, R.S.: Time series and forecasting: Brief history and future research. J. Am.
Stat. Assoc. 95(450), 638–643 (2000). http://www.jstor.org/stable/2669408

28. Van Craenendonck, T., Blockeel, H.: Using internal validity measures to compare
clustering algorithms. In: ICML, pp. 1–8 (2015)

29. Xu, S., Chan, H.K., Chng, E., Tan, K.H.: A comparison of forecasting methods for
medical device demand using trend-based clustering scheme. J. Data Inf. Manag.
2(2), 85–94 (feb 2020). https://doi.org/10.1007/s42488-020-00026-y

30. Zhou, H., Yang, Y., Qian, W.: Tweedie gradient boosting for extremely unbalanced
zero-inflated data (2019)

http://www.jstor.org/stable/2669408
https://doi.org/10.1007/s42488-020-00026-y

State Discovery and Prediction
from Multivariate Sensor Data

Olli-Pekka Rinta-Koski1, Miki Sirola1, Le Ngu Nguyen1,
and Jaakko Hollmén1,2(B)

1 Department of Computer Science, Aalto University, Espoo, Finland
jaakko.hollmen@aalto.fi

2 Department of Computer and Systems Sciences, Stockholm University,
Stockholm, Sweden

Abstract. The advent of cloud computing and autonomous data cen-
ters operating fully without human supervision has highlighted the need
for fault-tolerant architectures and intelligent software tools for system
parameter optimization. Demands on computational throughput have
to be balanced with environmental concerns, such as energy consump-
tion and waste heat. Using multivariate time series data collected from
an experimental data center, we build a state model using clustering,
then estimate the states represented by the clusters using both a hidden
Markov model and a long-short term memory neural net. Knowledge of
future states of the system can be used to solve tasks such as reduced
energy consumption and optimized resource allocation in the data center.

1 Introduction

Cloud computing is the domain of connected and distributed computing resources,
where the end user does not need to be concerned about the resource topology
and nature. As systems grow in complexity, the need for intelligent, self-managing
architectures becomes evident. This domain of computing systems that manage
themselves autonomously according to goals set by human administrators is called
autonomic computing [14]. An autonomous data center is able to operate indepen-
dently, handling issues such as intermittent power failure, faulty components, and
overheating without human intervention.

The AutoDC project [11] was started by a consortium of both industrial
and academic partners to bring together an innovative design framework for
autonomous data centers. To this end, we have investigated machine learning tech-
niques and their applicability to problems in this domain. The machine learning
goals of the project are as follows: “A powerful data analytics engine is required to
achieve data collection from the various monitoring systems, which is then consol-
idated with external data sources and periodically stored as appropriate records
to allow for both real-time and off-line ecosystem modelling and machine learning
data analysis. The analytics results will ensure proper actions are applied to the
control systems for optimised power, cooling, network and server operation, which
is essential to maintain the data center ‘health’ within desired parameters to reach
identified target key performance indicator (KPI) values.”
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 155–169, 2021.
https://doi.org/10.1007/978-3-030-91445-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_10

156 O.-P. Rinta-Koski et al.

In addition to the data flowing through and being processed in the data
center, there is metadata being generated that has to do with the operational
state of the data center itself. The amount of sensor data collected at the data
center is huge, making manual annotation difficult or impossible. Our approach
is to use unsupervised learning methods to organize the sensor data into states of
the system, then build a model for prediction of these states. The purpose of the
model is to provide an autonomous method for adjusting the control parameters
of the data center, with the hope of achieving better performance in terms of
resource use. Possible optimization goals include thermal efficiency and CPU
utilization.

The rest of the paper is organized as follows: Sect. 2 outlines our proposed
approach. Section 3 presents the clustering and prediction results from our exper-
iments. Finally, we summarize our findings and conclude the paper in Sect. 4.

1.1 Prior Work

Previous work in this domain includes system state discovery using clustering of
system log data [18] and resource usage data [7,8], novelty detection in projected
spaces [25], using state change detection for history-based failure prediction [20],
and forecasting for decision making support in autonomous systems [3].

Time series analysis in the data center has been applied to a number of inter-
esting problems such as predictive maintenance, traffic balancing, and anomaly
detection. Ahuja et al. [1] have used supervised learning to predict data center
power variation. They have used a support vector machine [4] approach to pre-
dict power variation 15 min into the future, in order to have a reasonable time
period for applying changes to control parameters. Aibin et al. [12] have used
Monte Carlo tree search [16] for prediction of traffic between data centers. Shi
et al. [23] have used a number of machine learning models, including long-short
term memory [9], for anomaly detection from data center activity logs. Yang
et al. [26] used regression methods for hardware failure prediction.

2 Methods

2.1 Summary

Our approach can be summarized as follows. First, multivariate time series data
is preprocessed to reduce dimensionality. Then, system states are identified by
clustering these low-dimension projections. Finally, the clustering results are
used to build a model for state transition prediction. Two different approaches,
hidden Markov model (HMM) [19] and long short-term memory (LSTM) [9], are
discussed. Figure 1 shows a high-level view of the process for analyzing sensor
data collected from a data center.

We have studied a multivariate time series data set obtained from the EDGE
small data center testbed at the RISE ICE Datacenter in northern Sweden [5].
This experimental data set was created by creating a number of diverse load pat-
terns for the purpose of cooling system performance evaluation under varying

State Discovery and Prediction from Multivariate Sensor Data 157

conditions. The data consists of timestamped sensor observations. Computa-
tional values include server CPU and core load. Environmental sensors include
humidity and temperature.

Our model tries to identify system states based on the projection of the
data onto a low-dimensional space defined by the first c principal components.
Selection of c will be discussed later. These vectors are then clustered with
k-means clustering [17]. These clusters are taken to represent system states.
Predicting future system states makes it possible to anticipate system load and
tune control parameters according to criteria such as throughput or heat emission
reduction.

Fig. 1. A general process to analyze sensor data collected from a data center.

2.2 Data Set

Our data set contains 5072 timestamped measurements of 44 variables sampled
from sensors placed in an autonomous datacenter over a time period of slightly
over 42 h. The measured values include features such as power, CPU temper-
ature, fan signal, fan power, chamber temperature, and ambient temperature.
Each variable has been standardized by removing the mean and scaling to unit
variance, missing values have been imputed using the mean of each variable, and
the data has been resampled to uniform 30 s intervals.

2.3 Principal Component Analysis

Principal component analysis (PCA) [12] is a classical statistical technique for
linear dimension reduction of multivariate data. In PCA, the goal is to represent
the original d-dimensional data with a new orthogonal coordinate system that
has d base vectors. By choosing a lower dimensionality starting with the most
dominant base vectors, called the principal components, we can achieve a dimen-
sionality reduction of the original data by selecting a subset of c eigenvectors.
The PCA is solved by solving a corresponding eigenvalue problem. In the orig-
inal data matrix X = (xij), I = 1, . . . , n, j = 1, . . . , d, the entry xij denotes jth

158 O.-P. Rinta-Koski et al.

component of the ith data entry. The projection matrix A consisting of eigen-
vectors can be used to project the original data into a new coordinate system as
y = Ax.

We are interested in lowering the dimensionality of the high-dimensional sen-
sor data in order to visualise the data in lower dimensions, and to use the lower
dimensional representation as a starting point for further analysis. The phe-
nomenon called the curse of dimensionality [24] tells us that higher dimensional
data spaces are more difficult to model with finite data. Our point of investiga-
tion is to see whether the lower dimensional representation is a beneficial starting
point for solving subsequent tasks.

In this paper, our goal is to extract and to describe operational states of a
system, where a high dimensional sensor data describes the operation. In order
to define and describe states of the system, we apply clustering to the data. In
order to be beneficial, the clustering solution based on the lower dimensional
data should be somehow superior to the solution generated from the original
high dimensional data.

2.4 Clustering with the K-Means Algorithm

In k-means clustering [17], clusters are represented as prototypes which are local
averages of the data closest to the cluster. Data points are first assigned to clus-
ters, and the cluster memberships are iteratively adjusted according to distances
to neighbouring data points.

We apply the following procedure for the analysis: We have a high-
dimensional data set (d = 44) describing the operation of a rack in a data center
and its operation environment in terms of temperature and humidity. We lower
the dimensionality of the original data d to d′. Then we attempt to solve the
clustering problem for k clusters (k ∈ {2, . . . , 19}) using the k-means algorithm.
We measure the goodness of clustering by two measures, the Davies-Bouldin
index [6] and the Silhouette score [21]. The presented results are based on 5-fold
cross-validation repeated 5 times.

2.5 Dynamic Modeling with Hidden Markov Model

We have used HMM [19] for estimating system state. HMM is a good fit for
the problem, since the actual system state is not known but things about it can
be inferred from sensor readings. For the HMM implementation, sensor outputs
stand for emission observations, system states (HMM hidden states) are repre-
sented by the clusters, and transition probabilities are what we aim to estimate
in order to model the dynamic behaviour of the system.

Bayesian Information Criterion (BIC) [22], which is an estimator of predic-
tion error, was used for selecting an appropriate number of HMM states. BIC
maximizes the Bayesian posterior probability.

State Discovery and Prediction from Multivariate Sensor Data 159

2.6 State Prediction with Long Short-Term Memory

Recurrent neural networks are used to model the dependency of patterns in data.
They have two issues: vanishing gradient and exploding gradient [10]. LSTM [9]
models were introduced to resolve these issues by integrating a memory cell. The
cell can capture dependencies of data over arbitrary time periods and its three
gates regulate the information flow. Unlike HMMs where the Markov assumption
means that the past does not affect transition probabilities, LSTMs can model
arbitrary temporal dependencies.

In this work, the input of our LSTM model is a sequence of multivariate
sensor data (e.g. temperature, humidity, server load, fan speed, . . .). The model
output is the state of the data center, which is reflected by the sensor data. Since
we relied on unsupervised learning methods to analyze the data, the labels (i.e.
state sequences) used to train the LSTM model were generated by the kmeans
clustering algorithm and the HMM. After obtaining a sequence of states, it is
possible to use a LSTM model to predict future states.

3 Results

Fig. 2. Principal component scree plot.

160 O.-P. Rinta-Koski et al.

3.1 Dimensionality Reduction with Principal Component Analysis

After using PCA to reduce dimensionality, Fig. 2 shows the explained variance of
each of the principal components. It can be seen that the knee of the scree plot
is at or near the fourth component. Using the Kaiser criterion [13], we retained
the first four components.

3.2 Clustering with K-Means

The original data vectors of dimension 44 are replaced with vectors consisting
of the first four principal components only. These are then grouped using k-
means clustering. (Fig. 3 shows the data grouped into 3 clusters using the first 3
principal components.) These clusters are taken to be the states of the system.
With very limited information available of the physical process, interpretation
of the states is difficult and challenging. By looking at the PCA loadings in our
analysis we get information about which variables are dominating in each of
the PCA components, which opens opportunities to interpret the connections
between states and measured variable behaviour.

Fig. 3. Data division into three states by clustering.

By varying the number of clusters and computing the corresponding Davies-
Bouldin indexes and Silhouette scores, we have found that for this particular
data set, k = 3 achieves the best separation (Fig. 4).

State Discovery and Prediction from Multivariate Sensor Data 161

Fig. 4. Davies-Bouldin indexes and Silhouette scores for k ∈ {2, . . . , 19} clusters of
vectors of 4 principal components. Lower values of Davies-Bouldin index and higher
values of Silhouette score indicate better clustering.

It is possible to notice some obvious correlations between some variables and
variable groups. Typically power, temperature, utilization and fan speed are
associated with each other, while humidity has an inverse correlation. The effect
of some variables may be delayed. Room temperature control settings may also
have an effect on some variables as well as on the waste heat production of the
data center.

PCA loadings tell also the variance stored in each PCA component. In our
data the first four PCA components have respectively 37.1%, 23.3%, 8.7% and
2.8% of the total variance, collectively adding up to 72.0%. Table 1 shows the
variables that have the largest effect on each PCA component. The scale in the
left column is from 0 (no effect) to 1 (full domination). The numbers in the
variables refer to the six channels. In CPU temperatures the second number
refers to one of the two different cores in each channel.

162 O.-P. Rinta-Koski et al.

Table 1. Dominating variables in each PCA component. pSn = power, ySmn = CPU
temperature, uFn = fan signal, nFn = number of cores, pFn = fan power, xSn = load,
Tc = chamber temperature, Ta = ambient temperature, ∗ = inverse correlation.

Dominance 1st component 2nd component 3rd component 4th component

> 0.4 xS5, xS6, xS3 T ∗
c , T ∗

a

> 0.35 xS1, xS2, xS4

> 0.3

> 0.2 pF3, T
∗
c

> 0.18 pS6, pS1, nF6,
pS3, uF3, nF2,

pS4

pF1, uF3, pF4,
pF2, y

∗
S21, y

∗
S61

> 0.15 nF3, yS21, nF4,
pS2, pS5, nF1,
nF5, uF5, yS31,
uF6, yS32, yS61,
uF2, yS11, yS12,
uF4, uF1, yS51,

yS22

uF5, pF5, nF4,
nF1, nF2, nF6,
nF3, nF5, uF1,
uF4, uF6, y

∗
S52,

y∗
S41, y

∗
S42, y

∗
S12,

y∗
S11, y

∗
S31, y

∗
S22,

y∗
S62, y

∗
S32

From Table 1 and variable plots, we can make the following observations
on states and state transitions. It seems that power and CPU load (together
with some correlating variables) is a dominating factor of the 1st and 2nd PCA
component. The fan signal (correlating with fan power, fan speed, etc.) is another
major factor in the 1st and 2nd PCA component and a reason for the smaller
and bigger variations in both components. Note that the effect on the 2nd PCA
component is often reversed. Variables related to utilization are strongly related
to the 3rd PCA component. These variables include high peaks, see Fig. 5. Some
delayed temperature and humidity changes have a small effect on the 2nd and
3rd PCA component. Temperature dominates the 4th PCA component.

The 1st and 2nd PCA components define the biggest states “idle” and “CPU
power”. Inside the idle state there are high peaks in the 1st and 3rd PCA com-
ponents. These peaks seem to appear when we move from “idle” state to “CPU
power” state. The strong vibration in fan signal especially seen in the 2nd PCA
component is responsible for the third state. This effect can be noticed towards
the end of the time series, see Fig. 5. Delayed temperature changes map onto
different locations inside the “CPU power” state in the 3-D presentation. These
effects within the state represent “cooler power on” and “hotter power on”, the
latter of which is more stable. The stability of CPU load also has an effect here,
maybe because the average load is higher in stable load than in vibrating load.
The interpretation of states affected by the 4th PCA component is made harder
by the lack of graphical representation. The 4th component is mainly affected
by the two temperature measurements (chamber and ambient) in an inverse
relationship.

State Discovery and Prediction from Multivariate Sensor Data 163

Fig. 5. PCA result in time series form.

We could label the three states as idle, high CPU load, and strongly vibrating
fan signal (varying CPU load). This third state appears towards the end of the
time series where the fan signal is strongly vibrating. This state is the most
different to all the other states and could even be a failure state. This kind of
example study demonstrates that our approach constructing states according to
the physical behaviour of the process may also reveal failure states, and could
be used for anomaly detection.

The described state behaviour is valid only to this type of data having a
certain set of measured variables. There seem to be different state characteristics
in different types of data. As an example of single measured variable types, we
have experimented with large amounts of pure temperature data also collected
from an experimental data center. With this data it is also possible to find similar
states, but the characteristics are very different. Temperature data typically have
very clear and separable clusters and states. There are also fewer characteristics
such as variable delays, and the states are formed mostly by different power
levels. In addition, sometimes the vibration effect forms two alternating well-
separated states within one power level.

3.3 Modeling Dynamic Behaviour with HMM

HMM is used to model dynamic behaviour of the system. The state transi-
tion parameters model the changes in the system as one stable state turns into
another. With HMM, the classification to a desired number of states is similar to
k-means clustering. We have noted that with this data, HMM is more likely to
minimize the state transitions and gives somewhat fewer transitions. The states
and state transitions with both methods are seen in Fig. 6.

164 O.-P. Rinta-Koski et al.

Fig. 6. States and state transitions with k-means clustering and HMM. k-means in
green, HMM in red. Top: Three states. Bottom: Four states. (Color figure online)

Prediction for state probabilities for each state is calculated, see Fig. 7. Mostly
one state is on (probability 1) and the other states are off (probability 0). Near
the state transitions the probabilities may have also other values. One of the
states only appears near the end of the time series when the fan signal is vibrating
strongly.

Fig. 7. State probabilities by state.

We calculated BIC according to two parameters: the number of states and
the number of dimensions of the input data. We assumed that the sensor data
reflected 1 . . . 20 states of the data center and that dimensionality could be

State Discovery and Prediction from Multivariate Sensor Data 165

reduced while retaining enough of the relevant information. Figure 8 summarizes
BIC with various numbers of states and dimensions. Our judgement was that
s ∈ {3, 4, 5} results in a good BIC value. This result agreed with the clustering
metrics shown in Fig. 4.

Fig. 8. Bayesian information criterion (BIC) values when varying the number of states
and the number of dimensions (a model with a lower BIC is preferable).

3.4 LSTM-Based State Prediction

We performed five-fold cross-validation to obtain the aggregated results
(i.e. averaging the accuracy and the confusion matrices). The LSTM model,
built using the PyTorch library, had a hidden layer of dimension 20 and a time-
step of 10 sequences. We train the LSTM model for 100 epochs using the Adam
optimizer [15]. In each cross-validation round, the dataset was split into two
parts: 80% of the samples for training and the remaining samples for testing.

Fig. 9. Mean accuracy of hidden Markov model and long short-term memory predic-
tions. Left: Original data of dimension 44. Middle: 3D data. Right: 4D data.

We performed the experiments with the number of states ranging from three
to five. The mean accuracy of the LSTM predictions was compared to that of the

166 O.-P. Rinta-Koski et al.

HMM trained on the same dataset (also with cross-validation). The labeling of
the state sequences was generated by k-means clustering. We observed that the
mean accuracy of both models was similar when trained on the original data of
dimension 44 (see Fig. 9, left subplot). However, when using PCA to transform
the data to a lower-dimensional space (i.e. 3D in Fig. 9, middle subplot and
4D in Fig. 9, right subplot), the mean accuracy of HMM decreased significantly
compared to that of the LSTM model. This could be explained by the temporal
dependency represented by the latter.

Fig. 10. Confusion matrix of LSTM predicting five states generated by clustering. Left:
3D data. Right: 4D data.

Fig. 11. Confusion matrix of LSTM predicting five states generated by HMM. Left:
3D data. Right: 4D data.

Furthermore, we investigated the predictions output by the LSTM model
trained with state sequences generated by the k-means clustering algorithm
(Fig. 10) and the HMM (Fig. 11). As discussed in Sect. 3.3, we decided to limit

State Discovery and Prediction from Multivariate Sensor Data 167

our interest to cases with the number of states s ∈ {3, 4, 5}. Out of these, we
selected the five-state case as a representative example in which the multivariate
sensor data was transformed into a 3D and 4D space using PCA. The confu-
sion matrices showed that our LSTM model could predict the states of the data
center using sequences of sensor data embedded in a lower dimensional space.
We concluded that both methods (k-means and HMM) could be employed to
generate labels for training state prediction models.

4 Summary and Conclusions

In this paper, we have investigated using multivariate time series data to build
a model of operational states and state transitions in a data center. The data
consisted of sensor output collected from sensors in the computational environ-
ment. PCA was used to reduce the dimensionality of our original data from 44 to
4, and the resulting lower-dimension data vectors were clustered using k-means
to get a labeling of system states. This labeling was then used with both HMM
and LSTM, building two different estimates of these states.

Our results show that unsupervised learning methods can help to discover
states from multivariate sensor data. We applied k-means clustering and HMM to
explore the possible states based on sensor data and achieved consistent results.
We have identified a set of states of the data center, which we describe with a
dynamic model. We are able to predict future states using supervised learning
techniques. The use of dimension reduction techniques resulted in lowered com-
putational complexity, which is especially useful when available resources are
scarce.

Further work in this domain could involve expert interpretations of the state
discovery to define how the states map onto real operational states. These results
could then be applied to control data center parameters. Replicating these results
with data from other data centers would make these results more generally appli-
cable. This would require careful examination of variable selection, since the set
of available sensors might be very different. Comparison with other projection
techniques, such as randomized projections, remains an interesting avenue for
the future.

State discovery by itself can be used to implement data visualization for
monitoring. A prediction of the operational state of the data center could be used
to adjust system parameters such as cooling system power or CPU allocation.
Different concurrent goals such as lower power use and increased throughput may
be in conflict, so a policy to optimize how the system works could be guided by
intelligent algorithms that make predictions on how demands on the system will
change in the short term.

Acknowledgments. We acknowledge the computational resources provided by the
Aalto Science-IT project. We thank Rickard Brännvall and Jonas Gustafsson of RISE
ICE Datacenter for their help with the data set.

168 O.-P. Rinta-Koski et al.

References

1. Ahuja, N., et al.: Power variation trend prediction in modern datacenter’. In: 2017
16th IEEE Intersociety Conference on Thermal and Thermo-Mechanical Phenom-
ena in Electronic Systems (ITherm) (2017)

2. Aibin, M., et al.: Traffic prediction for inter-data center cross-stratum optimiza-
tion problems. In: Proceedings of the 2018 International Conference on Comput-
ing, Networking and Communications (ICNC): Optical and Grid Computing, p. 6
(2018)

3. Bauer, A., et al.: Time Series forecasting for self-aware systems. Proc. IEEE 108(7)
, 1068–1093, July 2020

4. Boser, B.E., Guyon, I.M., Vapnik, M.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory, pp. 144–152. ACM Press, Pittsburgh (1992)

5. Brännvall, R., et al.: EDGE: Microgrid Data Center with mixed energy storage.
In: Proceedings of the Eleventh ACM International Conference on Future Energy
Systems, E-Energy 2020: The Eleventh ACM International Conference on Future
Energy Systems. Virtual Event Australia, pp. 466–473. ACM, June 12, 2020

6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-1.2, pp. 224–227, April 1979

7. Gurumdimma, N., Jhumka, A.: Detection of recovery patterns in cluster systems
using resource usage data. In: 2017 IEEE 22nd Pacific Rim International Sympo-
sium on Dependable Computing (PRDC) (2017)

8. Gurumdimma, N., et al.: CRUDE: combining resource usage data and error logs
for accurate error detection in large-scale distributed systems. In: 2016 IEEE 35th
Symposium on Reliable Distributed Systems (SRDS), pp. 51–60. IEEE, Budapest,
September 2016

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. In: Neural Comput.
9(8), 1735–1780 (1997)

10. Hochreiter, S., et al.: Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies. In: Kolen, J.F., Kremer, S.C. (eds.) A Field Guide to
Dynamical Recurrent Networks, IEEE (2001)

11. ITEA3/AutoDC. About AutoDC. https://autodc.tech/about/. Accepted 8 Aug
2021

12. Jolliffe, I.T.: Principal component analysis. In: Lovric, M. (ed.) International Ency-
clopedia of Statistical Science. Springer, Berlin (2002). https://doi.org/10.1007/
978-3-642-04898-2 455

13. Kaiser, H.F.: The application of electronic computers to factor analysis. In: Edu-
cational and Psychological Measurement, vol. 20. pp. 141–151, April 1960

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference on Learning Representations (ICLR). San Diego, CA, USA
(2015). arXiv: 1412.6980

16. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

17. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

https://autodc.tech/about/
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/11871842_29

State Discovery and Prediction from Multivariate Sensor Data 169

18. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: System state discovery via infor-
mation content clustering of system logs. In: 2011 Sixth International Confer-
ence on Availability, Reliability and Security (ARES), pp. 301–306. IEEE, Vienna,
August 2011

19. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proc. IEEE 77(2), 257–286 (1989)

20. Rajachandrasekar, R., Besseron, X., Panda, D.K.: Monitoring and predicting hard-
ware failures in HPC clusters with FTBIPMI. In: 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops & PhD Forum, pp.
1136–1143. IEEE, Shanghai, China, May 2012

21. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

22. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
23. Shi, J., He, G., Liu, X.: Anomaly detection for key performance indicators through

machine learning. In: 2018 International Conference on Network Infrastructure and
Digital Content (IC-NIDC), pp. 1–5. IEEE, Guiyang, Aug. 2018

24. Steinbach, M., Ertöz, L., Kumar, V.: The challenges of clustering high dimen-
sional data. In: Wille, L.T. (ed.) New Directions in Statistical Physics, pp.
273–309. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-662-
08968-2 16

25. Toivola, J., Prada, M.A., Hollmén, J.: Novelty detection in projected spaces for
structural health monitoring. In: Cohen, P.R., Adams, N.M., Berthold, M.R. (eds.)
IDA 2010. LNCS, vol. 6065, pp. 208–219. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13062-5 20

26. Yang, W., et al.: Hard drive failure prediction using big data. In: 2015 IEEE
34th Symposium on Reliable Distributed Systems Workshop (SRDSW), pp. 13–18.
IEEE, Montreal, QC, September 2015

https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-662-08968-2_16
https://doi.org/10.1007/978-3-642-13062-5_20
https://doi.org/10.1007/978-3-642-13062-5_20

RevDet: Robust and Memory Efficient
Event Detection and Tracking in Large

News Feeds

Abdul Hameed Azeemi1(B), Muhammad Hamza Sohail1, Talha Zubair1,
Muaz Maqbool1, Irfan Younas1, and Omair Shafiq2

1 FAST-NUCES, Lahore, Pakistan
{l154031,l154074,l154166,l154053}@lhr.nu.edu.pk, irfan.younas@nu.edu.pk

2 Carleton University, Ottawa, Canada
omair.shafiq@carleton.ca

Abstract. With the ever-growing volume of online news feeds, event-
based organization of news articles has many practical applications
including better information navigation and the ability to view and ana-
lyze events as they develop. Automatically tracking the evolution of
events in large news corpora still remains a challenging task, and the
existing techniques for Event Detection and Tracking do not place a
particular focus on tracking events in very large and constantly updat-
ing news feeds. Here, we propose a new method for robust and efficient
event detection and tracking, which we call RevDet algorithm. RevDet
adopts an iterative clustering approach for tracking events. Even though
many events continue to develop for many days or even months, RevDet
is able to detect and track those events while utilizing only a constant
amount of space on main memory. We also devise a redundancy removal
strategy which effectively eliminates duplicate news articles and sub-
stantially reduces the size of data. We construct a large, comprehensive
new ground truth dataset specifically for event detection and tracking
approaches by augmenting two existing datasets: w2e and GDELT. We
implement RevDet algorithm and evaluate its performance on the ground
truth event chains. We discover that our algorithm is able to accurately
recover event chains in the ground-truth dataset. We also compare the
memory efficiency of our algorithm with the standard single pass clus-
tering approach, and demonstrate the appropriateness of our algorithm
for event detection and tracking task in large news feeds.

Keywords: Event detection and tracking · Large news feeds · Event
chains

1 Introduction

Internet today has become the primary source for creation and widespread dis-
semination of news articles leading to generation of huge amounts of news data
each day. With this unprecedented increase in the information available online,

c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 170–185, 2021.
https://doi.org/10.1007/978-3-030-91445-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-91445-5_11

RevDet 171

one of the major challenges is providing the user with better information navi-
gation capability. In this scenario, automatic event-based organization of news
data can lead to better structuring and classification of textual news articles
data from a variety of online news media sources, and thus provide users with
a better online experience. The task of automatic, event-based organization of
textual news article data is named as event detection and tracking (also referred
to as topic detection and tracking in many contexts) [1,2]. The process of discov-
ering a new event in a stream of news articles is referred to as Event Detection.
Event tracking involves the identification of further news stories that discuss
the detected event, and provide some additional information indicating that the
event has developed. Hence, the major task of event tracking techniques is in
essence the identification of relationships between the news articles based on the
event they report [2,6].

The existing techniques for Event Detection and Tracking do not place a par-
ticular focus on tracking events in very large, complex and constantly updating
news feeds.

Fig. 1. Per day active event chains of an year formed by our RevDet algorithm vs the
ground truth chains. To form these chains, RevDet only utilized memory required for
storing eight days data.

The major challenge of applying Event Detection and Tracking techniques to
very large news feeds is coping with the Variety, Velocity and Volume (3V’s of
Big Data) of such databases. Large and constantly updating news feeds exhibit
the following properties:

1. Most of the events occurring across the globe are reported by multiple news
agencies adding a great deal of redundancy in news feeds and a significant
increase in volume.

2. News articles reporting a rapidly developing event tend to occur in bursts and
are similar in the mention of locations i.e. they exhibit strong spatio-temporal
correlation.

172 A. H. Azeemi et al.

Fig. 2. RevDet maintains a sliding window of size n for performing memory efficient
event tracking. For a sample event X, at any given time, only the latest observed
subevents (of the event X) and the events in the sliding window are kept in the main
memory. The events inside the window are clustered together through the Birch cluster-
ing method. After clustering, similarity between the earliest events in these clusters and
the latest representatives (represented by triangles) is computed. Similar sub-events are
joined together (represented by red arrow) to form an event chain. The events which
are not tracked further are written to the permanent storage as a complete event chain.
The event window then slides by n days and this procedure is repeated until the last
event. (Color figure online)

3. Relationships between news articles are not always easy to identify from their
text, with the objective details of the event being obscured by the reporting
style used in the news article e.g. a news article discussing a recently occurring
event may give references to multiple events in the past, thereby complicating
the extraction of correct event details from the news article.

The key to developing robust and efficient approaches for event detection and
tracking in large news feeds lies in taking each of these properties into special
consideration. In this paper, we propose a new method for event detection and
tracking, which we call the RevDet algorithm. In our method, we adopt an iter-
ative clustering approach for tracking events by using only a constant amount
of space (Fig. 2). Even though many events continue to develop for many days
or even months, our method is able to track such events and form chains with
a window-size set to a small time unit of eight days. We also devise a redun-
dancy removal strategy which effectively eliminates duplicate news articles and
substantially reduces the size of data. Moreover, instead of utilizing all of the
content of news articles, we develop a concise representation using only the arti-
cle’s title and a list of locations. For evaluating our algorithm, we also construct
a large, comprehensive new ground truth dataset by augmenting two existing
datasets: w2e and GDELT. We implement RevDet algorithm, and evaluate its
performance on the ground truth event chains. We discover that our algorithm
is able to accurately recover event chains in the ground-truth dataset (Fig. 1),
with precision of 0.82 and an F1 score of 0.66. We also compare the memory
efficiency of our algorithm with the standard single pass clustering approach

RevDet 173

and demonstrate the appropriateness of our algorithm for event detection and
tracking task in large news feeds.

2 Related Work

The task of Topic Detection and Tracking (with the topic meaning an event)
was first conceived in 1996 and evolved as a joint venture between University
of Massachusetts, Carnegie Mellon University and Dragon Systems [1]. It was a
yearlong pilot study focusing on segmentation of data streams, identifying events
in news stream and tracking a particular event in different news. This initiative
provided grounds for further research on this topic and established some initial
techniques and methodologies to address the problem.

The problem was divided into three main tasks:

1. Segmentation of the data/news stream into distinct, topically homogenous
blocks.

2. Identification the first occurrence of a news story discussing a new event.
3. Subsequent tracking of the news stories that discuss the event.

Existing event detection and tracking algorithms usually adapt the single
pass clustering algorithm for the identification of news events [3,6,11]. For each
incoming news article, its similarity with previous known events is computed.
If the similarity exceeds a similarity threshold, the news article is flagged as
referring to an existing event. Otherwise, the news article is classified to be
a new event. The inherent problem in the application of single pass clustering
algorithm to very large event data is evident: the single pass clustering algorithm
must maintain a “memory” of news events. Although this is feasible for small
datasets such as TREC, maintaining all the events in memory quickly becomes
a significant challenge if large news feeds are dealt with, due to the scale at
which events are reported each day all over the world. Alternate forms of news
representation such as forming a query with only named entities and quantitative
details fails to address the problem; important details form a significant part of
news articles, and rigorous preprocessing for a significant reduction in size of
news article in memory can lead to misclassification and a significant drop in
precision.

The solution to this problem is to extend the concept of a growing ’entropy’
of the news article as used by Radinsky [13] i.e. penalizing an event on the time
distance between two events. Experiments on the TDT4 corpus with different
time thresholds have shown n = 14 days threshold to be the most appropriate.
If we make this a binary threshold, we will need to place only n days data in the
memory, with n being the upper limit on the number of days between any two
events as determined by experiments.

Other systems have considered tracking more generic ’topics’ within the news
articles. In [10] a framework has been presented for tracking topics in news
articles via short, distinct phrases that remain intact throughout the articles.
Our focus, however, is to develop a technique for tracking ‘events’ instead of

174 A. H. Azeemi et al.

‘topics’ in news stories, which are more specific and require a much greater
context than just a few phrases for achieving a high precision. Some efforts
have been made to leverage topic modelling for detection and tracking of news
events. One such technique, Latent Dirichlet allocation (LDA), is widely used
in detecting events through posts on micro-blogging sites such as Twitter. Diao
et al. [4] developed an LDA model which is able to find bursty topics on Twitter
by capturing two phenomena: posts by same user or around same times are more
likely to correspond to same topic/event.

Graph-based modeling approaches have also been used in Event Detection
and Tracking. Sayyadi et al. [14] presented an approach of building a KeyGraph
with keywords having lower inverse document frequency (IDF) filtered out. Con-
nected key words are those that occur in same document. Closely related words
form a community. A community is considered to be a synthetic document and
titled as a key document. Clustering then groups together documents similar to
the key documents, and each cluster is considered as an event.

Many event detection and tracking algorithms tend to perform better on
carefully curated test datasets but struggle to generalise to real world news feeds.
To the best of our knowledge, this is the first attempt to devise an event detection
and tracking strategy for large, noisy and complex news feeds containing a great
portion of duplicate news articles (Fig. 3).

Fig. 3. An event chain showing the progress of subevents related to earthquake in New
Zealand.

3 Definitions

Event. An event is an occurrence at a particular location during a particular
interval of time. An event is further composed of subevents such that the
beginning and the end of an event correspond to two separate subevents. Since
we are dealing with online news data, we will consider newsworthy events only
i.e. events that are significant enough to be reported by at least one online news
agency.

Subevent. A subevent, which is an atomic part of an event, is an occurrence
at a particular location and time. A subevent may only be a part of one event
only.

RevDet 175

News Article. A news article a represents a subevent e is characterized by its
publication timestamp t, title h and a list of locations mentioned in the article l.

a = (t, h, l) (1)

Event Chain. An event chain C is an ordered set of sub events {e1, e2, e3, ..., en}
of a particular event, sorted in increasing order of timestamp and where each
new sub event has some additional information as compared to its predecessor.

C = {a1, a2, a3, ..., an} (2)

Latest Representative (LR). Latest representative of an event a1 is the sub-
event in event chain with the latest timestamp i.e. the most recent news about
an event.

Earliest Representative (LR). Earliest representative of an event an is the
sub-event in event chain with the smallest timestamp i.e. the first news about
an event.

Event Window. Event window consists of unordered subevents of different
events occurring in a particular time frame Δt.

4 Approach

The first step in devising an approach for event tracking is to consider what
makes an event different from others. Depending on this definition of an event,
the event chains formed may be considerably different e.g. an event chain of a
general election in a certain country may involve all the news in relation to the
election or only the news relating to the rallies by one candidate. The decision
of this is made by determining what constitutes the event identity [2], which is
something unique to every new event, and common to the sub-events in event
chain. If an event is taken to be something that happens at particular place and
time, then the locations mentioned in a news story and t ± n days constitutes
the identity of event, with t being the event timestamp. Another option could be
to include named entities e.g. people, organizations as part of event identity, and
this has been seen to considerably increase recall in event tracking tasks [13].

Selecting the Clustering Algorithm. The choice of clustering algorithm for
the formation of event chains is an important one, since it directly influences
the representation of news articles, quality of chains formed and efficiency of the
approach. Some approaches have used the k nearest neighbours algorithm for
finding closest news articles or the k-means algorithm for grouping together the
related news. These methods would fail to work in a big data setting since they
require a parameter k as input i.e. the number of articles to group together.
Other algorithms include Wave-Cluster, DBSCAN and BIRCH. Wave-Cluster
is a grid based algorithm and the main advantage of this algorithm is the fast

176 A. H. Azeemi et al.

processing time [5]. However, Wave-Cluster does not perform well for our prob-
lem as using a single uniform grid does not result in good quality clusters nor
does it satisfy the time constraints for a highly irregular data distribution (news
articles). DBSCAN is a density based clustering algorithm. It can efficiently deal
with noise while forming high quality clusters. Unlike k-means, DBSCAN does
not require the input parameter k which is used to identify the number of clus-
ters to be formed. Although, DBSCAN seems to be a good choice, the major
drawback of this algorithm is its inability to efficiently cluster data sets with
large differences in densities.

BIRCH [15] is an unsupervised hierarchical clustering algorithm suitable to
cluster large data sets. The main advantage of using BIRCH is that it can work
incrementally i.e. does not require the whole data set in advance and can effi-
ciently adjust the number of clusters to be formed relative to the input data
set. BIRCH typically requires a single scan of the data set to form good quality
clusters and this quality can be improved using additional scans if required.

Similar to DBSCAN, BIRCH can work without the input parameter k and
can decide for itself the number of clusters to be formed. This feature of BIRCH
is essential for our research problem as the number of event chains present in
a given set of news articles can vary. Moreover, BIRCH is a first of its kind
algorithm that can efficiently handle noise. News articles which do not progress
are considered noise in our case as they form an event chain consisting of only
one node i.e. they are not tracked further.

Representation of News Articles. We represent every news article as a vector
of title, themes, locations and counts contained within the news article.

1. Title of the news article reporting the event.
Example: Powerful earthquake strikes New Zealand killing 2 people.

2. Themes associated with the event.
Example: NATURAL DISASTER; NATURAL DISASTER EARTHQUAKE;
CAUTION ADVICE; KILL;

3. Locations contained within the news article.
Example: Wellington, New Zealand, (Lat, Lng): -41.3,174.783

4. Counts associated with the event reported by the article, and of a particular
location.
Example: KILL 2, New Zealand, NZ;

These fields have been pre-extracted for every article in GDELT GKG. Instead
of a tf-idf representation, we convert themes, locations and counts into one-hot
vectors, and use a sparse representation of these vectors. This type of represen-
tation is readily accepted by the existing implementations of the Birch algorithm
e.g. SciKit [12] implementation of Birch.

Figure 4 gives an overview of the workflow adopted for forming event chains
on the prepared dataset through the proposed algorithm, and evaluating the
results.

RevDet 177

Fig. 4. A high level overview of the approach taken for formation of event chains and
evaluation of results

5 RevDet Algorithm

Now, we describe our algorithm to form event chains from news data. We say
that every sub event x in an event chain Ci contains sufficient information that
enables tracking of further events solely through x, and that these subevents
cannot track events of some other event chain Cj . i.e. for every a, b in an event
chain Ci,

similarity(Ci
a, C

i
b) > θ > similarity(Ci

a, C
j
x) | i �= j

In other words, if we are presented only with the first event of a chain, we will be
able to recover the whole event chain from the news feed. We adopt an iterative
clustering approach for tracking events.

1. Initially we add first n days data to the event window.
2. Then we cluster articles data through the birch clustering algorithm, and save

the resultant event chains to permanent storage.
3. Now, we extract the latest representatives of these event chains, and keep

them in temporary storage, discarding the rest of data in the chains (at any
given time, we only keep latest representatives belonging to at most one event
window in the past). We slide the event window by n days.

4. We then again cluster articles data to form chains y. For each latest repre-
sentative li saved in the previous step, we compute its similarity with each of
the earliest representative e of y.

sim(li, e)

where the similarity of two events sim(a, b) is defined as:

jaccard(atitle, btitle) ∗ jaccard(alocation, blocation)

178 A. H. Azeemi et al.

This ensures that two events are be considered similar if they both belong to
a certain subject (represented by title) and occur in proximity (represented
by location).

5. If the similarity is greater than 0, this indicates that the event has developed;
hence we merge these event chains with their previous one. Otherwise, we
save the event chains y.

This whole process is repeated until event window reaches the end. The
overall RevDet method is outlined in Algorithm 1.

Algorithm 1. Event Chain Formation
1: procedure RevDet(days,windowSize,threshold)
2: latestRepresentatives ← []
3: i ← 0
4: while i ≤ n do
5: previousWindow ← days[i − windowSize : i]
6: latestRepresentatives.keep(previousWindow)
7: end ← i + windowSize
8: data ← getData(days[i : end])
9: df ← concat(data[′title′], data[′locations′])

10: df ← oneHotEncode(df, sparseOutput = true)
11: clusters ← birchClustering(df, threshold)
12: for cluster in clusters do
13: eR ← getEarliestRepresentative(cluster)
14: for row in latestRepresentatives do
15: s1 ← jaccardSimilarity(row.title, eR.title)
16: s2 ← jaccardSimilarity(row.location, eR.location)
17: if s1 > 0 and s2 > 0 then
18: connectedEvents ← getEventChainByID(eR.id)
19: df ← concat(connectedEvents, df)
20: latestRepresentatives.remove(row)

21: lR ← df.tail()
22: latestRepresentatives.concat(lR)
23: df.sort()
24: saveEventChain(id = lR.id, data = df)

25: i ← i + windowSize

5.1 Implementation

We have implemented the RevDet algorithm in Python on top of the Birch
Clustering Algorithm available in SciKit Learn [12]. Our algorithm takes as input
news articles data (with two necessary columns: a list of locations and title) in
the form of per day files (sorted by ascending timestamp of the event), window
size and birch threshold. It then forms event chains and outputs each chain in a
separate file. During the formation process, it also writes some temporary files
to the permanent storage, and removes them once all chains have been formed.

RevDet 179

6 Experiments

6.1 Dataset

Fig. 5. Formation of the RevDet dataset for evaluating event detection and tracking
approaches.

GDELT
GDELT [9] is a real-time database of global human society, and essentially con-
tains a large amount of processed world news . The GDELT global knowledge
graph (GKG) is a part of GDELT database, and is the largest publicly available
dataset of news events across the globe. It contains processed data from real-time
news from around the world including locations, themes, organizations, people
and tone of every news event. The GKG table in the GDELT database has 27
columns containing a wealth of information about each news article. This dataset
provides us with pre-extracted fields of each news article for running our Event
Detection and Tracking algorithm.

Along with this, we require a fairly large event tracking dataset with fine-
grained ground truth for an effective evaluation of our algorithm. TREC’s TDT’s
datasets are unsuitable for this purpose, as they are obsolete and small: they
were collected in the year 2000 and have around only 13k articles grouped in
279 topics. The recently released dataset w2e [7] is a manually constructed sub-
stantially large TDT dataset containing 207,722 events grouped in 4501 events
and 2015 event chains. Each event chain contains urls of news articles and short
text describing each subevent in the chain.

Although w2e contains a short description of each event, it lacks the specific
processed details of news events as available in GKG (themes, locations, tone
etc.). To address this problem, we reconstruct the w2e dataset by augmenting it
with the GDELT dataset i.e. each url in the original w2e dataset is searched in
GDELT GKG table, and the details contained in the matched row in GKG table
are appended to w2e. From the resultant data, we keep only the chains which
adhere to the concept of event defined earlier i.e. throughout its development,
a news event must contain similar locations. This process discards chains with
a more general topic for example a chain containing all news related to the US
Presidential Election, instead of a specific event. Following this process (Fig. 5),
we are able to construct a fairly large and a rich dataset: RevDet dataset, for
evaluation of our event tracking algorithm containing 1329 event chains.

180 A. H. Azeemi et al.

6.2 Redundancy Removal

Most of the events are cited by multiple news agencies across the globe, thereby
adding a substantial amount of redundancy to data in news feeds. This redun-
dancy needs to eliminated since two news articles referring to the same subevent
would occur as two nodes in an event chain, with the latter node providing no
upgraded knowledge about the event. For removing this type of redundancy in
news articles, we utilize the birch clustering algorithm for clustering news arti-
cles on various attributes like Themes, Locations and Counts. Now, we have four
different methods for performing clustering on these attributes:

1. Clustering on title and locations first, then sub-clustering the resulting clus-
ters on the basis of counts,

2. Clustering on title, then sub-clustering on locations and counts,
3. Clustering on title, locations and counts, or
4. Clustering on locations, then sub-clustering on title and counts

To compare the performance of these four methods and tune birch parame-
ters, we manually cluster a subset of GKG data of 354 news articles containing
7 events and construct a ground-truth dataset containing clusters of duplicate
news articles. Two news are grouped together only if they represent the exact
same subevent. It is important to note here that while they contain the same
information, they are two different news articles with possibly different reporting
styles and the choice of words. Hence, our task is tailored towards news data
and slightly different from the approaches for near-duplicate detection, which
are more general and do not consider specific properties of news articles like
title, locations and counts etc.

We evaluate performance by clustering the news articles and comparing to the
ground truth clusters. Clustering accuracy is evaluated by calculating Precision,
Recall and F1-Score over pairs of articles i.e. through the pair-counting method.
The precision is calculated as

P =
TP

TP + FP

i.e. the fraction of pairs correctly put in one cluster, and recall as

R =
TP

TP + FN

i.e. how many actual pairs were identified. F1-score is the harmonic mean of
precision and recall and is used for selecting the best birch parameters for each
clustering approach, and we use this score for comparing the four clustering
approaches (Table 1). As shown, clustering on title and locations first, then sub-
clustering on counts yields the best result making it a suitable approach for
removing duplicate news articles. This procedure results in a 57% decrease in
the data size.

RevDet 181

Table 1. Precision, recall and F1 score for four different approaches of clustering
redundant news. Clustering on title and locations first, and then sub-clustering on
counts yields the best result, implying that the title and locations combined have the
greatest discriminatory power of correctly separating two different news.

First level Second level Precision Recall F1

Title, Locations Counts 0.97 0.77 0.86

Title Locations, Counts 0.75 0.79 0.77

Title, Locations, Counts – 0.67 0.68 0.67

Locations Title, Counts 0.92 0.41 0.57

Article’s Title vs Content. We now consider using article’s content instead of
title for detecting duplicate news articles to see whether there is a significant gain
in the F1-score. For this task, we use the themes field (originally contained in
GDELT GKG) in the dataset, which describes all the themes contained in a news
article through special categories and taxonomies which accurately capture the
content e.g. a news article about the destruction of roads by heavy rain contains
themes like

– NATURAL DISASTER MONSOON
– INFRASTRUCTURE BAD ROADS

We compare the performance by first clustering duplicate news on title, locations
and then counts. We repeat the same process with themes instead of title. As
the results in Table 2 show, using article’s content (themes) does not lead to a
significant change in the F1 score. This shows that a news article’s title has the
ability to accurately and succinctly describe the event reported in it. Moreover,
as the average content length of a news article in the data (represented by themes
length) is significantly greater than the article’s title, clustering on title is a more
suitable option of removing duplicate news than clustering on article’s content.

Table 2. Comparing the performance of title and content (represented by themes) for
clustering duplicate news together.

Method Av. length in characters Precision Recall F1 score

Title 18.7 0.97 0.77 0.86

Themes 16476.0 0.96 0.81 0.88

6.3 Algorithm Evaluation

We evaluate the performance of the algorithm by comparing the event chains
in the ground-truth dataset with the event chains formed by the algorithm. For
this, we first transform the dataset into per day files, simulating the way in
which data would be available to the algorithm in a news feed (Fig. 6). We then

182 A. H. Azeemi et al.

Fig. 6. An overview of the steps involved in preparing data for evaluation of event
chains formed by RevDet

run RevDet on these per day files and evaluate performance through Precision,
Recall and F1 score over pairs of articles in the ground truth event clusters and
the formed clusters.

Clustering Performance. The best performance of RevDet is reached on Birch
Threshold 2.3, and Window Size (Table 3). The F1 score of 0.66 on 0.82 precision
is adequate enough to form event chains of good quality as have focused on
precision focused tuning to avoid distortion of event chains with irrelevant news.
A relatively low recall indicates the difficulty in clustering news events together
with different wordings of the title. This problem can be alleviated in future
work through the use of pretrained paragraph level embeddings like Doc2Vec
[8]. The in-memory clustering approach has a much lower precision and recall.
This is due to a greater chance of an event landing in the wrong chain as the
time-dependancies between events are ignored by loading all the data into the
memory at start and then performing clustering.

We next present a macro-level comparison of active event chains in the orig-
inal dataset and in the formed ones in Fig. 1, which shows the number of event
chains that are still being developed on each day. It can be seen that RevDet
has been able to closely replicate the ground truth events.

Table 3. RevDet vs In-Memory clustering performance on tuned parameters as evalu-
ated on ground truth chains. RevDet performs far better than the in-memory clustering
approach.

Algorithm Birch threshold Window size Precision Recall F1

RevDet 2.3 8 0.81 0.56 0.66

In-Memory 2.2 – 0.56 0.24 0.34

Window Size. We next focus on the effect of window size on the results (Fig. 7).
We discover that varying the window size after 8 has little effect on the F1 score
i.e. it stays between 0.64 and 0.66. This makes 8 a good choice for window size,
and implies that most of event chains do not have a gap of greater than 8 days
between any two consecutive news. We also observe that the precision drops
slightly as the window size is increased, owing to the greater data in the event
window.

RevDet 183

Fig. 7. Plot of precision, recall and F1 score vs. window size of RevDet. At window
size 8, RevDet is able to track events with almost same clustering accuracy as with
window sizes closer to 20, while needing much lesser memory.

Fig. 8. Memory usage vs running time of RevDet algorithm. The small spikes repre-
sent the movement of event chains to and from the main memory according to their
development.

6.4 Scalability of RevDet

We next examine the memory efficiency and scalability of RevDet. The plot in
Fig. 8 shows the memory usage as the algorithm progresses. As expected, the
space requirement of temporary storage (RAM) is constant with respect to the
input data. The spikes are representative of the movement of event chains to and
from the memory. RevDet has the ability to scale efficiently with respect to the
number of news articles in the dataset which makes it a very suitable approach
for event detection and tracking in large news feeds. We also examine the space
requirement of the in-memory clustering approach in Fig. 9. The memory usage
rises sharply as all of news data is loaded into the main memory at the start,
and becomes constant once formed chains are being written to the permanent
storage. Peak memory usage of the in-memory clustering approach (≈1000 MB)
is 7 times the peak memory usage of RevDet (≈140 MB). Moreover, as the input
data will increase, the memory requirements of the former approach will grow
proportionally making it infeasible to form event chains.

184 A. H. Azeemi et al.

Fig. 9. Memory usage vs running time of an in-memory clustering approach which
loads all the data into the memory once and then performs clustering. The memory
increase from 40 s to 50 s represents the transfer of all data to the memory; the spike
at 50 s is due to clustering all data through Birch at once.

7 Conclusion and Future Work

In this paper, we have tackled the problem of robust and efficient detection and
tracking of news events in large news feeds. An iterative clustering based algo-
rithm has been proposed for this purpose which is able to extract event chains of
events that continue to develop for a long period of time, using memory as low
as required for clustering eight day news. We also propose a redundancy removal
strategy for removing duplicate news articles. We construct a new, comprehen-
sive ground truth dataset by augmenting two existing datasets: GDELT and w2e,
specifically for evaluating event detection and tracking approaches. We show the
efficacy of our method by evaluating it on the ground-truth chains. We leave
for future work the improvement in recall by clustering news articles through
incorporation of more robust text representations like Doc2Vec. RevDet can also
be extended easily to work for streaming news data and this can lead to a truly
automated and robust event classifier and an event search engine.

References

1. Allan, J., Carbonell, J.G., Doddington, G., Yamron, J., Yang, Y.: Topic detection
and tracking pilot study final report (2003)

2. Allan, J., Papka, R., Lavrenko, V.: On-line new event detection and tracking. In:
SIGIR, vol. 98, pp. 37–45. Citeseer (1998)

3. Becker, H., Naaman, M., Gravano, L.: Beyond trending topics: real-world event
identification on Twitter. In: Fifth International AAAI Conference on Weblogs
and Social Media (2011)

4. Diao, Q., Jiang, J., Zhu, F., Lim, E.P.: Finding bursty topics from microblogs.
In: Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers, vol. 1, pp. 536–544. Association for Computational Lin-
guistics (2012)

5. Fahad, A., et al.: A survey of clustering algorithms for big data: taxonomy and
empirical analysis. IEEE Trans. Emerg. Top. Comput. 2(3), 267–279 (2014).
https://doi.org/10.1109/TETC.2014.2330519

https://doi.org/10.1109/TETC.2014.2330519

RevDet 185

6. Hasan, M., Orgun, M.A., Schwitter, R.: Real-time event detection from the twitter
data stream using the TwitterNews+ framework. Inf. Process. Manage. 56(3),
1146–1165 (2019)

7. Hoang, T.A., Vo, K.D., Nejdl, W.: W2E: a worldwide-event benchmark dataset
for topic detection and tracking. In: Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, pp. 1847–1850. ACM
(2018)

8. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on International Conference on
Machine Learning, ICML 2014, vol. 32, pp. II-1188–II-1196. JMLR.org (2014).
http://dl.acm.org/citation.cfm?id=3044805.3045025

9. Leetaru, K., Schrodt, P.A.: GDELT: global data on events, location, and tone,
1979–2012. In: ISA Annual Convention, vol. 2, pp. 1–49. Citeseer (2013)

10. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the
news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 497–506 (2009)

11. Osborne, M., et al.: Real-time detection, tracking, and monitoring of automatically
discovered events in social media (2014)

12. Pedregosa, F., et al.: Scikit-learn: machine Learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

13. Radinsky, K., Horvitz, E.: Mining the web to predict future events. In: Proceedings
of the sixth ACM International Conference on Web Search and Data Mining, pp.
255–264. ACM (2013)

14. Sayyadi, H., Hurst, M., Maykov, A.: Event detection and tracking in social streams.
In: Third International AAAI Conference on Weblogs and Social Media (2009)

15. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering
method for very large databases. In: ACM Sigmod Record, vol. 25, pp. 103–114.
ACM (1996)

http://dl.acm.org/citation.cfm?id=3044805.3045025

From Univariate to Multivariate Time
Series Anomaly Detection with Non-Local

Information

Julien Audibert1,2(B), Sébastien Marti2, Frédéric Guyard3,
and Maria A. Zuluaga1

1 EURECOM, Sophia Antipolis, France
{audibert.julien,maria.zuluaga}@eurecom.fr

2 Orange, Sophia Antipolis, France
sebastien.marti@orange.com

3 Orange Labs, Sophia Antipolis, France
frederic.guyard@orange.com

Abstract. Deep neural networks (DNNs) are attractive alternatives to
more traditional methods for time series anomaly detection thanks to
their capacity to automatically learn discriminative features. Despite
their demonstrated power, different works have suggested that intro-
ducing engineered features in the time series can further improve the
performance. In this work, we present a feature engineering strategy to
transform univariate time series into a multivariate one by introducing
non-local information in the augmented data. In this way, we aim to
address an intrinsic limitation of the features learned by DNNs, which
is they rely on local information only. We study the performance of our
combination compared to each individual method and show that our
method achieves better performance without increasing computational
time on a set of 250 univariate time series proposed by the University of
California, Riverside at the 2021 KDDCup competition.

Keywords: Anomaly detection · Time series · Feature engineering ·
Non-local information

1 Introduction

A time series is a set of measured values that model and represent the behavior
of a process over time. Time series are used in a wide range of fields such as
healthcare [8], industrial control systems [2], and finance [15]. Detecting behavior
or patterns that do not match the expected behavior of previously visualized
data is a critical task and an active research discipline called time series anomaly
detection [3,5]. Numerous methods to address this problem have been developed
in recent years including statistical, machine learning and deep neural networks
(DNNs) methods.

The performance of machine learning algorithms is correlated to the quality
of the extracted features [14]. Feature engineering for augmenting time series
c© Springer Nature Switzerland AG 2021
V. Lemaire et al. (Eds.): AALTD 2021, LNAI 13114, pp. 186–194, 2021.
https://doi.org/10.1007/978-3-030-91445-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91445-5_12&domain=pdf
http://orcid.org/0000-0002-1147-766X
https://doi.org/10.1007/978-3-030-91445-5_12

From Univariate to Multivariate Time Series Anomaly Detection 187

data is usually done by bringing external but correlated information as an extra
variate to the time series. This, however, requires domain knowledge about the
measured process. Another strategy is to create local features on the time series,
such as moving averages or local maximum and minimum. Both strategies, as
they are manual, are not very efficient, time consuming and require high domain
knowledge expertise [7]. In theory, DNNs have emerged as a promising alternative
given their demonstrated capacity to automatically learn local features, thus
addressing the limitations of more conventional statistical and machine learning
methods. Despite their demonstrated power to learn such local features, it has
been shown that feature engineering can accelerate and improve the learning
performance of DNNs [4].

In this work, we propose a novel feature engineering strategy to augment time
series data in the context of anomaly detection using DNNs. Our goal is two-fold.
First, we aim to transform univariate time series into multi-variate time series
to improve DNNs performance. Second, we aim to use a feature engineering
strategy that introduces non-local information into the time series, which DNNs
are not able to learn. To achieve this, we propose to use a data structure called
Matrix-Profile as a generic non-trivial feature. Matrix-Profile allows to extract
non-local features corresponding to the similarity among the sub-sequences of a
time series. The main contributions of this paper are:

– We propose an approach that transforms univariate time series into mul-
tivariate by using a feature engineering strategy that introduces non-local
information to improve the performance of DNNs.

– We study and analyze the performance of this approach and of each method
separately using the KDDCup 2021 dataset consisting of 250 univariate time
series.

The rest of this paper is organized as follows. Section 2 briefly reviews other
works on feature engineering for anomaly detection in time series. The Sect. 3
presents the transformation of univariate time series into multivariate one and
the methods which constitute our framework. Section 4 describe the experiments
and demonstrate the performance of our approach. The paper concludes with
some discussion and perspectives in Sect. 5.

2 Related Works

Different studies have raised the importance of feature engineering for the detec-
tion of anomalies and the superiority of multivariate models in time series. A first
study conducted by Carta et al. [4] shows that in network anomaly detection, the
introduction of new features is essential to improve the performance of state-of-
the-art solutions. Fesht et al. [7] compare the performance of manual and auto-
matic feature engineering methods on drinking-water quality anomaly detection.
The study concludes that automatic feature engineering methods obtain better
performances in terms of F1-score. Ouyand et al. [11] shows that feature extrac-
tion is one of the essential keys for machine learning and proposes a method called

188 J. Audibert et al.

Fig. 1. Top: DNN automatic feature learning and extraction is limited to a local neigh-
borhood, which is typically represented by the input window information. Middle: the
matrix profile algorithm relies on non-local features, which are obtained by compar-
ing every window of the time series. Bottom: the proposed strategy brings non-local
feature information to a DNN by transforming the original univariate time series into
a multivariate one by combining the raw time series and the non-local information
obtained with matrix profile.

hierarchical time series feature extraction used for supervised binary classification.
Finally, in [1], the authors conclude that multivariate models provided a more pre-
cise and accurate forecast with smaller confidence intervals and better measures of
accuracy. Thus, studies have demonstrated the importance of feature engineering
to improve anomaly detection models as well as the performance of multivariate
methods compared to univariate ones on time series. Motivated by these ideas,
our work aims to investigate how feature engineering using non-local information
to achieve variate augmentation in time series can improve the performance of
anomaly detection DNN models in univariate time series.

3 From Univariate to Multivariate Time Series

To take advantage of the performance of multivariate methods of anomaly detec-
tion on univariate time series it is necessary to transform the univariate time
series into multivariate one. This can be achieved by adding external informa-
tion to the time series, which requires specific domain knowledge. Our strategy,

From Univariate to Multivariate Time Series Anomaly Detection 189

instead, transforms the univariate time series into a multivariate one, without
any further information than the original time series, and is generic in that no
specific knowledge on what the time series represents is required.

Our strategy consists in building another time series (i.e. another vari-
ate) by extracting non-local information from the raw time series, which DNN
approaches fail to obtain as they typically operate in local neighborhood. To this
end, we make use of the Matrix-Profile (MP) [16,17], a data structure for time
series analysis. The proposed strategy is illustrated in Fig. 1.

The Matrix profile estimates the minimal distance between all sub-sequences
of a time series. Thus, the Matrix-Profile value for a given sub-sequence is the
minimum pairwise Euclidean distance to all other sub-sequences of the time
series. A low value in the matrix profile indicates that this sub-sequence has
at least one relatively similar sub-sequence located somewhere in the original
series. In [9], it is shown that a high value indicates that the original series must
have an abnormal sub-sequence. Therefore the matrix profile can be used as an
anomaly score, with a high value indicating an anomaly.

In our approach, we propose to use the anomaly score obtained by Matrix-
Profile over a given time series and merge it point-by-point with the original
data. This can be thus seen as a data augmentation procedure using non-local
information from the same signal.

As the new time series is just a multivariate time series, any given anomaly
detection method can be used to identify anomalous points in it. In this work, we
investigate three different estimation model-based techniques [3] as base anomaly
detection methods. Among these category of methods, the auto-encoder [13] is
among the most commonly used. An auto-encoder (AE) is an artificial neural
network combining an encoder E and a decoder D. The encoder part takes the
input window W and maps it into a set of latent variables Z, whereas the decoder
maps the latent variables Z back into the input space as a reconstruction ̂W .
The difference between the original input vector W and the reconstruction ̂W
is called the reconstruction error. Thus, the training objective aims to minimize
this error. Auto-encoder-based anomaly detection uses the reconstruction error
as the anomaly score. Time windows with a high score are considered to be
anomalies [6].

Alongside the AE, we consider a more complex approach based on a Vari-
ational AutoEncoder (VAE) coupled with a recurrent neural network, the
Long Short-Term Memory Variational Auto-Encoders (LSTM-VAE) [12]. In the
LSTM-VAE, the feed forward network iof the VAE is replaced by a Long Short-
Term Memory (LSTM), which allows to model the temporal dependencies. As
in the AE, the input data is projected in a latent space. However, differently
from the AE, this representation is then used to estimate an output distribu-
tion and not to simply reconstruct a sample. An anomaly is detected when the
log-likelihood is below a threshold.

The third estimation model-based method we consider is denoted UnSuper-
vised Anomaly Detection (USAD) [2]. USAD is composed of three elements:
an encoder network and two decoder networks. The three elements are con-
nected into an architecture composed of two auto-encoders sharing the same

190 J. Audibert et al.

encoder network within a two-phase adversarial training framework. The adver-
sarial training allows to overcome the intrinsic limitations of AEs by training a
model capable of identifying when the input data does not contain an anomaly
and thus perform a good reconstruction. At the same time, the AE architecture
allows to gain stability during adversarial training of the two decoders.

The architecture is trained in two phases. First, the two AEs are trained
to learn to reconstruct the normal input windows. Secondly, the two AEs are
trained in an adversarial way, where the first one seeks to fool the second one,
while this latter one aims to learn when the data is real (coming directly from
the input) or reconstructed (coming from the other autoencoder). As with the
base AE, the anomaly score is obtained as the difference between the input data
and the data reconstructed by the concatenated autoencoders.

4 Experiments and Results

This section first describes the datasets used and the experimental setup used
in our work. Then, we study the performance of our proposed approach and
compare it against other techniques.

4.1 Datasets

In our experiments we use 250 univariate time series proposed by the University
of California, Riverside at the 2021 KDDCup competition, consisting of univari-
ate time series from many different fields. The 250 time series are composed of
a training part containing data considered as normal and a test part containing
one anomaly. The time series range from 6680 points for the smallest to 900000
points for the largest. The length of the training set represents on average 31%
of the total length of the time series (i.e. a training on the first 31% points of
the time series and a test on the next 69% points) with a minimum length of
2.5% and a maximum of 76.9%. All the time series are min-max normalized.

4.2 Experimental Setup

We use the percentage of correctly labeled series to assess the performance of
our method. A time series is considered to be correctly predicted when the index
of the point labeled as anomalous is included in a window of 100 points around
the true anomaly.

We compare our method against the matrix-profile (MP), the auto-encoder
(AE), the LSTM-VAE and USAD without the transformation of the time series.
We compute the performance of the three anomaly detection methods AE,
LSTM-VAE and USAD on a transformed univariate time series obtained using
only non-local information, i.e. with Matrix-profile (MP-AE, MP-LSTM-VAE
and MP-USAD). We assess both the AE, LSTM-VAE and USAD’s perfor-
mance using the proposed multivariate transformation, consisting of the original
raw time series and the series obtained with MP, respectively (TS+MP)-AE,

From Univariate to Multivariate Time Series Anomaly Detection 191

Table 1. Hyper-parameter settings of the different methods

Method Paramaters

MP window size = 100, discords = True

AE window size = 100, latent dimension = 10, Epochs = 100

LSTM-VAE window size = 100, Epochs = 100

USAD window size = 100, latent dimension = 10, Epochs = 100

Table 2. Methods performance and computational time.

Method Performance Train and Test
time (s× 103)

Matrix-Profile 0.416 1.47

AE 0.236 22.00

LSTM-VAE 0.198 85.31

USAD 0.276 29.00

MP-AE 0.292 22.16

MP-LSTM-VAE 0.344 84.30

MP-USAD 0.404 29.10

(TS+MA)-AE 0.148 22.38

(TS+MA)-LSTM-VAE 0.134 85.43

(TS+MA)-USAD 0.176 29.12

(TS+MP)-AE 0.536 22.50

(TS+MP)-LSTM-VAE 0.446 85.83

(TS+MP)-USAD 0.488 29.28

(TS+MP)-LSTM-VAE and (TS+MP)-USAD. To validate the relevance of the
use of non-local information in the transformation of the time series, we also
consider an identical combination with a local feature engineering strategy. In
particular, in our experiments we use the moving average (MA), respectively
(TS+MA)-AE, (TS+MA)-LSTM-VAE and (TS+MA)-USAD).

Implementation. We implement the AE using Pytorch and we used publicly
available implementations for MP[1]1, LSTM-VAE2 and USAD3. Table 1 details
the hyper-parameter setup used for each method. Where a parameter is not
specified, it indicated that we used those set by default in the original imple-
mentation

All experiments are performed on a machine equipped with an Intel(R)
Xeon(R) CPU E5-2699 v4 @ 2.20 GHz and 270 GB RAM, in a docker container
1 https://stumpy.readthedocs.io.
2 https://github.com/TimyadNyda/Variational-Lstm-Autoencoder.
3 https://github.com/robustml-eurecom/usad.

https://stumpy.readthedocs.io
https://github.com/TimyadNyda/Variational-Lstm-Autoencoder
https://github.com/robustml-eurecom/usad

192 J. Audibert et al.

running CentOS 7 version 3.10.0 with access to an NVIDIA GeForce GTX 1080
Ti 11 GB GPU.

4.3 Results

Table 2 presents the results obtained by the different methods in terms of per-
formance accuracy and computational times. Interestingly, we observe that the
performance of DNN-based methods on univariate time series is very low and
largely surpassed by the more conventional approach, the matrix profile. How-
ever, once the same techniques use the proposed data transformation strategy,
we observe an important boost in their performance. The Auto-Encoder and the
LSTM-VAE score almost 2.3 times higher when the combination of the matrix
profile and real data is used as input instead of the original data. Similarly,
USAD’s performance increases by 1.8 times when the matrix profile and raw
time series combination is used compared to its performance using only the raw
time series.

Nevertheless, we observe that the non-local transformation alone is not
enough to boost the performance of DNN methods. For instance, if the input
consists only of the univariate time series transformed using the matrix profile,
while there is some increased performance, this one is milder than when using a
multivariate time series. This confirms that DNN methods perform better in a
multivariate setup for anomaly detection.

Regarding the use of local features, i.e. the moving average, we observed
that adding it does not allow USAD, LSTM-VAE and AE to increase their
performance. Indeed, the combination of raw time series and moving average
degrades the performance of AE and USAD by about 0.1 and the performance
of LSTM-VAE by about 0.06. This suggests that any local features that might
be discriminative can be extracted by the DNNs and introducing new manually
crafted ones may be detrimental.

Finally, as it is expected, the computational time of DNN-based methods
is much longer than the MP. However, what is interesting in our findings is
that the computational time of DNN methods is very little impacted when the
dimension of the time series increases. In fact, the AE’s computational time goes
from 21993 s in the fastest univariate configuration to 22491 s in the multivariate
case. This means an increase of only 2.2% on computational time for a gain in
performance of 230%.

5 Discussion and Conclusions

In this paper, we propose an approach to augment univariate time series using
a feature engineering strategy that introduces non-local information in the gen-
eration of an additional variate to the series. In this way, we expect to address a
limitation of DNNs, as they are not conceived to learn automatically non-local
features. We achieve automatic non-local feature extraction by relying on the

From Univariate to Multivariate Time Series Anomaly Detection 193

Matrix-Profile, a method that computes the minimum pairwise Euclidean dis-
tance of all subsequences of the time series, and combining its output with the
original time series.

We used data from the KDDcup 2021 competition containing 250 univariate
time series to study the performance of our method. The performance analysis
highlighted the relevance of transforming the univariate time series using the
proposed feature engineering and data augmentation strategy. Our results show
that introducing non-local information to augment the dimension of the series
improves the performance of DNN methods. For instance, by using a very simple
method, such as an autoencoder, we were able to obtain a gain in performance
of 230%, without significantly increasing the computational time. As such, our
preliminary results suggest that non-local information represents an important
source of additional information that can increase performance of DNN methods.

While our approach focuses on the particular case of transforming uni- to
multivariate time series, this idea could be used to augment time series, which
are multivariate at origin, as a way to introduce non-local information.

In this work, we used three methods of anomaly detection based on Deep
Neural Networks in combination with Matrix profile. The good performance on
a simple auto-encoder, a recurrent network such as LTSM-VAE and USAD, a
state-of-the-art neural network, suggest that our combination could generalize
to other DNN methods. Therefore, future works should explore other feature
engineering techniques that can provide non-local information, as well as other
multivariate DNN anomaly detection methods.

Finally, our findings are consistent with one of the results of the time series
prediction competition, the M4 challenge [10], which highlighted the predictive
power of ensemble approaches combining learning-based with more conventional
statistical methods. Due to the great success of DNN methods in the recent
years, it is now often the case that more traditional methods are overseen. Our
results suggest that the use of hybrid approaches should be further explored.

References

1. Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F.M., Preen, D.B., Stewart, L.M., Fatovich,
D.M.: A comparison of multivariate and univariate time series approaches to
modelling and forecasting emergency department demand in western australia.
J. Biomed. Inform. 57, 62–73 (2015)

2. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsuper-
vised anomaly detection on multivariate time series. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD 2020, pp. 3395–3404. Association for Computing Machinery, New York
(2020)

3. Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J.A.: A review on out-
lier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 54(3),
1–33 (2021)

4. Carta, S., Podda, A.S., Reforgiato Recupero, D.R., Saia, R.: A local feature engi-
neering strategy to improve network anomaly detection. Future Internet 12(10),
177 (2020)

194 J. Audibert et al.

5. Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation
of outlier detection algorithms: experiments and analyses. Pattern Recogn. 74,
406–421 (2018)

6. Fan, C., Xiao, F., Zhao, Y., Wang, J.: Analytical investigation of autoencoder-
based methods for unsupervised anomaly detection in building energy data. Appl.
Energy 211, 1123–1135 (2018)

7. Fehst, V., La, H.C., Nghiem, T.D., Mayer, B.E., Englert, P., Fiebig, K.H.: Auto-
matic vs. manual feature engineering for anomaly detection of drinking-water qual-
ity. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO 2018, pp. 5–6. Association for Computing Machinery, New
York (2018)

8. Kale, D.C., et al.: An examination of multivariate time series hashing with appli-
cations to health care. In: 2014 IEEE International Conference on Data Mining,
pp. 260–269 (2014)

9. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile goes mad: variable-
length motif and discord discovery in data series. Data Min. Knowl. Disc. 34,
1022–1071 (2020)

10. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: The M4 competition: 100,000
time series and 61 forecasting methods. Int. J. Forecast. 36(1), 54–74 (2020)

11. Ouyang, Z., Sun, X., Yue, D.: Hierarchical time series feature extraction for power
consumption anomaly detection. In: Li, K., Xue, Y., Cui, S., Niu, Q., Yang, Z., Luk,
P. (eds.) LSMS/ICSEE -2017. CCIS, vol. 763, pp. 267–275. Springer, Singapore
(2017). https://doi.org/10.1007/978-981-10-6364-0 27

12. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted
feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett.
3(3), 1544–1551 (2018)

13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations
by Error Propagation, pp. 318–362. MIT Press, Cambridge (1986)

14. Soni, A.N.: Feature extraction methods for time series functions using machine
learning. Int. J. Innov. Res. Sci. Eng. Technol. 7(8), 8661–8665 (2018)

15. Theodossiou, P.T.: Predicting shifts in the mean of a multivariate time series pro-
cess: an application in predicting business failures. J. Am. Stat. Assoc. 88(422),
441–449 (1993)

16. Yeh, C.M., et al.: Matrix profile I: all pairs similarity joins for time series: a unifying
view that includes motifs, discords and shapelets. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 1317–1322 (2016)

17. Yeh, C.C.M., Kavantzas, N., Keogh, E.: Matrix profile VI: meaningful multidimen-
sional motif discovery. In: 2017 IEEE International Conference on Data Mining
(ICDM), pp. 565–574. IEEE (2017)

https://doi.org/10.1007/978-981-10-6364-0_27

Author Index

Agarwal, Surabhi 3
Arango, Sebastian Pineda 123
Ariannezhad, Mozhdeh 139
Audibert, Julien 186
Audureau, Etienne 55
Axenie, Cristian 88
Azeemi, Abdul Hameed 170
Azzag, Hanane 71

Benavoli, Alessio 21
Bortoli, Stefano 88
Brasche, Götz 88
Broek, Machteld van den 104

Chambard, Mathieu 55
Corani, Giorgio 21
Coutant, Anthony 71

Dhariyal, Bhaskar 36
Duijm, Erik 104

Feelders, Ad 104
Foroni, Daniele 88

Goffinet, Etienne 71
Grossi, Margherita 88
Guyard, Frédéric 186
Guyet, Thomas 55

Hassan, Mohamad Al Hajj 88
Heinrich, Felix 123
Hollmén, Jaakko 155

Ifrim, Georgiana 3, 36

Lebbah, Mustapha 71
Loïc, Giraldi 71
Looij, Tom van de 139

Madhusudhanan, Kiran 123
Maqbool, Muaz 170
Marti, Sébastien 186

Nguyen, Le Ngu 155
Nguyen, Thach Le 3, 36
Nguyen, Trang Thu 3
NGuyen, Yên-Lan 55

Rinta-Koski, Olli-Pekka 155

Schmidt-Thieme, Lars 123
Shafiq, Omair 170
Shi, Rongye 88
Sirola, Miki 155
Sohail, Muhammad Hamza 170
Sottovia, Paolo 88
Stoop, Laurens P. 104

Wieder, Alexander 88

Younas, Irfan 170

Zubair, Talha 170
Zuluaga, Maria A. 186

	 Preface
	 Organization
	 Contents
	Oral Presentation
	Ranking by Aggregating Referees: Evaluating the Informativeness of Explanation Methods for Time Series Classification
	1 Introduction
	2 Related Work
	2.1 Time Series Classification
	2.2 Explanation Methods for Time Series Classification
	2.3 Model-Specific Approaches
	2.4 Model-Agnostic Approaches
	2.5 Evaluation Measures for Explanation Methods

	3 Proposed Methods
	3.1 Explanation-Based Perturbation of Time Series
	3.2 Calculating Informativeness as an Evaluation Metric

	4 Experiments
	4.1 Perturbing and Measuring Metrics
	4.2 Experimental Results and Evaluation

	5 Conclusion
	References

	State Space Approximation of Gaussian Processes for Time Series Forecasting
	1 Introduction
	2 Background
	2.1 Gaussian Process
	2.2 State Space Models
	2.3 SS Models Representation of GPs
	2.4 Time Series Forecasting and Priors
	2.5 SS Approximation
	2.6 Combining GP Kernel with Exponential Smoothing

	3 Experiments
	3.1 Monthly M3
	3.2 Combining GP Kernel and Exponential Smoothing
	3.3 Large Datasets and Multiple Seasonality

	4 Conclusions
	References

	Fast Channel Selection for Scalable Multivariate Time Series Classification
	1 Introduction
	2 Related Work
	2.1 Multivariate Time Series Classification
	2.2 Channel Selection for Multivariate Time Series Classification

	3 Proposed Methods
	4 Evaluation
	4.1 Datasets
	4.2 MTSC Algorithms
	4.3 MTSC with Channel Selection
	4.4 Effectiveness of Channel Selection

	5 Case Study: Channel Selection for the Military Press MTSC Dataset
	5.1 Dataset
	5.2 Channel Selection
	5.3 Results and Discussion

	6 Conclusion
	References

	Temporal Phenotyping for Characterisation of Hospital Care Pathways of COVID19 Patients
	1 Introduction
	2 Related Works
	3 Care Pathway Characterization Through Tensor Factorization
	3.1 Tensor Factorization
	3.2 Typical Care Trajectories

	4 Dataset of Ventilated COVID19 Patients
	5 Experiments and Results on COVID19 Care Pathways
	5.1 Phenotypes of COVID19 Patients
	5.2 Care Trajectories
	5.3 Comparison with Direct Clustering

	6 Conclusion
	References

	Non-parametric Multivariate Time Series Co-clustering Model Applied to Driving-Assistance Systems Validation
	1 Introduction
	2 Related Work
	2.1 Model-Based Clustering and Dirichlet Process Mixture Model
	2.2 Latent Block Model

	3 Functional Non-parametric Latent Block Model
	3.1 Functional Bayesian Non-parametric Latent Block Model
	3.2 Model Inference
	3.3 Multivariate Gaussian Case
	3.4 Implementation

	4 Experiments on Synthetic Data
	4.1 Experimental Setup
	4.2 Baselines and Compared Methods
	4.3 Hyperparameters Specification Study

	5 Application to Advanced Driver-Assistance System Validation
	5.1 Use Case Description
	5.2 Results

	6 Conclusion and Future Work
	References

	TRAMESINO: Traffic Memory System for Intelligent Optimization of Road Traffic Control
	1 Introduction
	1.1 Optimization-Based Adaptive Traffic Control Systems
	1.2 Beyond Optimization
	1.3 Motivation and Contributions

	2 Materials and Methods
	2.1 Introducing TRAMESINO

	3 Experiments and Results
	4 Discussion
	5 Conclusions
	References

	Detection of Critical Events in Renewable Energy Production Time Series
	1 Introduction
	2 Related Work
	3 The Energy Climate Dataset
	3.1 The ERA5 Reanalysis Data
	3.2 Energy Conversion Models

	4 The MDI Algorithm
	5 Experimental Results
	5.1 Tuning of the MDI Algorithm
	5.2 Outlier Identification and Assessment
	5.3 Historic Climate Change and Decadal Variability

	6 Conclusion and Future Work
	References

	Poster Presentation
	Multimodal Meta-Learning for Time Series Regression
	1 Introduction
	2 Related Work
	3 Multimodal Meta-Learning for TSR
	3.1 Problem Definition
	3.2 Meta-Windows: Redesigning Tasks for TSR
	3.3 MAML for TSR
	3.4 MMAML for TSR

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental Setup
	4.4 Results
	4.5 Ablation Studies

	5 Conclusion
	References

	Cluster-Based Forecasting for Intermittent and Non-intermittent Time Series
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Framework Overview
	3.2 Framework Details

	4 Evaluation
	4.1 Results

	5 Discussion
	6 Conclusions and Future Work
	References

	State Discovery and Prediction from Multivariate Sensor Data
	1 Introduction
	1.1 Prior Work

	2 Methods
	2.1 Summary
	2.2 Data Set
	2.3 Principal Component Analysis
	2.4 Clustering with the K-Means Algorithm
	2.5 Dynamic Modeling with Hidden Markov Model
	2.6 State Prediction with Long Short-Term Memory

	3 Results
	3.1 Dimensionality Reduction with Principal Component Analysis
	3.2 Clustering with K-Means
	3.3 Modeling Dynamic Behaviour with HMM
	3.4 LSTM-Based State Prediction

	4 Summary and Conclusions
	References

	RevDet: Robust and Memory Efficient Event Detection and Tracking in Large News Feeds
	1 Introduction
	2 Related Work
	3 Definitions
	4 Approach
	5 RevDet Algorithm
	5.1 Implementation

	6 Experiments
	6.1 Dataset
	6.2 Redundancy Removal
	6.3 Algorithm Evaluation
	6.4 Scalability of RevDet

	7 Conclusion and Future Work
	References

	From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information
	1 Introduction
	2 Related Works
	3 From Univariate to Multivariate Time Series
	4 Experiments and Results
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Results

	5 Discussion and Conclusions
	References

	Author Index

