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Abstract. Deep Neural Networks (DNNs) have achieved state-of-the-
art performance in various applications. It is crucial to verify that the
high accuracy prediction for a given task is derived from the correct
problem representation and not from the misuse of artifacts in the data.
Hence, interpretation models have become a key ingredient in developing
deep learning models. Utilizing interpretation models enables a better
understanding of how DNN models work, and offers a sense of security.
However, interpretations are also vulnerable to malicious manipulation.
We present AdvEdge and AdvEdge+, two attacks to mislead the target
DNNs and deceive their combined interpretation models. We evaluate
the proposed attacks against two DNN model architectures coupled with
four representatives of different categories of interpretation models. The
experimental results demonstrate our attacks’ effectiveness in deceiving
the DNN models and their interpreters.
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1 Introduction

Due to the complex architecture of Deep Neural Networks (DNNs), it is still not
explicit how a DNN proposes a certain decision. This is the drawback of black-
box models for applications in which explainability is required. Being inherently
vulnerable to crafted adversarial inputs is another drawback of DNN models,
which leads to unexpected model behaviors in the decision-making process.

To represent the behavior of the DNN models in an understandable form to
humans, interpretability would be an indispensable tool. For example, in Fig. 1
(a), based on the prediction, an attribution map emphasizes the most informative
regions of the image, showing the causal relationship. Using interpretability helps
understand the inner workings of DNNs (to debug models, conduct security
analysis, and detect adversarial inputs). Figure 1 (b) shows that an adversarial
input causes the target DNN to misclassify, making an attribution map highly
distinguishable from its original attribution map, and is therefore detectable.
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Fig. 1. Example images for (a) benign, (b) regular adversarial and (c) dual adversarial
and interpretations on ResNet (classifier) and CAM (interpreter).

Classifiers with their interpreters (IDLSes) provide a sense of security in the
decision-making process with human involvement, as experts can distinguish
whether an attribution map matches the models’ prediction. However, inter-
pretability is sensitive to malicious manipulations, and this expands the vulner-
ability of DNN models to the interpretability models against adversarial attacks
[17]. Crafting adversarial input is both valid and practical to mislead the target
DNN and deceive its corresponding interpreters simultaneously. Figure 1 (c) shows
an example of these dual adversarial inputs that are misclassified by the target
DNNs and interpreted highly similar to the interpretation of benign inputs. There-
fore, IDLSes offer limited security in the decision-making process.

This paper proposes AdvEdge and AdvEdge+, which are optimized versions
of an adversarial attack that deceive the target DNN model and its corresponding
interpreter. AdvEdge and AdvEdge+ take advantage of the edge information of
the image to allow perturbation to be added to the edges in regions highlighted
by the interpreters’ attribution map. This enables a much stealthier attack as
the generated adversarial samples are challenging to detect even with interpreta-
tion and human involvement. Moreover, the proposed attacks generate effective
adversarial samples with less perturbation size.

Our Contribution. Firstly, we indicate that the existing IDLSes can be manip-
ulated by adversarial inputs. We present two attack approaches that generate
adversarial inputs to mislead the target DNN and deceive its interpreter. We
evaluate our attacks against four major types of IDLSes on a dataset and com-
pare them with the existing attack ADV2 [17]. We summarize our contributions
as follows:

– We propose AdvEdge and AdvEdge+ attacks that incorporate edge informa-
tion to enhance interpretation-derived attacks. We show that even restricting
the perturbation to edges in regions spotted by interpretation models, the
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adversarial input can be very effective. We evaluate our attacks against two
common DNNs architectures accompanied by four interpretation models that
represent different categories.

– Our evaluation includes measuring the effectiveness of the attacks in terms
of success rate and deceiving the coupled interpreters, and comparing to the
existing attack (ADV2). The results show that the proposed attacks are as
effective as ADV2 in terms of misclassification and outperform ADV2 in gen-
erating adversarial inputs with highly similar interpretations to their benign
cases. Moreover, this level of effectiveness is maintained with a smaller amount
of noise as compared with ADV2.

Organization. The rest of the paper is organized as follows: Sect. 2 high-
lights the relevant literature; Sect. 3 presents the fundamental concepts; Sect. 4
and Sect. 5 describe AdvEdge and AdvEdge+ attacks and their implementation
against four major interpreter types; Sect. 6 shows the evaluation of the attacks’
effectiveness; and Sect. 7 offers the conclusion.

2 Related Work

In this section, we provide different categories of research work that are relevant
to our work: adversarial attacks and interpretability.

Attacks. Basically, there are two main threats for machine learning models:
infecting the training data to weaken the target models (poisoning attack [5])
and manipulating the input data to make the target model misbehaves (evasion
attack [5]). Attacking deep neural networks (DNNs) has been more challenging
due to their high complexity in model architecture. Our work explores attacks
against DNNs with interpretability as a defense means.

Interpretability. Interpretation models have been used to provide the inter-
pretability for black-box DNNs via different techniques: back-propagation, inter-
mediate representations, input perturbation, and meta models [3]. It is believed
that that interpretability provides a sense of security in the decision-making
process with human involvement. Nevertheless, recent work shows that some
interpretation techniques are insensitive to DNNs or data generation processes,
whereas the behaviors of interpretation models can be impacted significantly by
the transformation without effect on DNNs [7].

Another recent work [17] shows the possibility of attacking IDLSes. Specifi-
cally, it proposes a new attacking class to deceive DNNs and their coupled inter-
pretation models simultaneously, presenting that the enhanced interpretability
provides a limited sense of security. In this work, we show the optimized ver-
sion of the attack presented in the recent work [17] to deceive target DNNs and
mislead their coupled interpretation models.
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3 Fundamental Concepts

In this section, we introduce concepts and key terms used in the paper. We
note that this paper is mainly focused on classification tasks, such as image
classification. Let f(x) = y ∈ Y denote a classifier (i.e., DNN model f) that
assigns an input (x) to a class (y) from a set of predefined classes (Y ).

Let g(x; f) = m denote an interpreter (g) that generates an attribution map
(m) that reflects the importance of features in the input sample (x) based on the
output of the classifier (f), (i.e., the value the i-th element in m (m[i]) reflects
the importance of the i-th element in x (x[i])).

In this regard, we note that there are two main methods to achieve inter-
pretation of a model: 1 Post-hoc interpretation: The interpretation can be
achieved by regulating the complexity of DNN models or by applying meth-
ods after training. This method requires creating another model to support
explanations for the current model[3]. 2 Intrinsic interpretation: Intrinsic
interpretability can be achieved by building self-explanatory DNN models which
directly integrate interpretability into their architectures [3].

Our attacks are mainly based on the first interpretation category, where an
interpreter (g) extracts information (i.e., attribution map m) about how a DNN
model f classifies the input x.

A benign input (x) is manipulated to generate adversarial sample (x̂) using
one of the well-known attacks (PGD [9], STADV [15]) to drive the model to
misclassify the input x̂ to a target class yt such that f(x̂) = yt �= f(x). These
manipulations, e.g., adversarial perturbations, are usually constrained to a norm
ball Bε(x) = {‖x̂ − x‖∞ � ε} to ensure its success and evasiveness. For example,
PGD, a first-order adversarial attack, applies a sequence of project gradient
descent on the loss function:

x̂(i+1) =
∏

Bε(x)

(
x̂(i) − α. sign(∇x̂�prd(f(x̂(i)), yt))

)
(1)

Here,
∏

is a projection operator, Bε is a norm ball restrained by a pre-fixed
ε, α is a learning rate, x is the benign sample, x̂(i) is the x̂ at the iteration i,
�prd is a loss function that indicates the difference between the model prediction
f(x̂) and yt.

4 AdvEdge Attack

IDLSes provide a level of security in the decision-making process with human
involvement. This has been a belief until a new class of attacks is presented
[17]. In their work, Zhang et al. [17] proposed ADV2 that bridges the gap by
deceiving target DNNs and their coupled interpreters simultaneously. Our work
presents new optimized versions of the attack, namely: AdvEdge and AdvEdge+.
This section gives detailed information on the proposed attacks and their usage
against four types of interpretation models.
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4.1 Attack Definition

The main purpose of the attack is to deceive the target DNNs f and their
interpreters g. To be precise, an adversarial input x̂ is generated by adding noise
to the benign input x to satisfy the following conditions:

1. The adversarial input x̂ is misclassified to yt by f : f(x̂) = yt;
2. x̂ prompts the coupled interpreter g to produce the target attribution map

mt: g(x̂; f) = mt;
3. x̂ and the benign x samples are indistinguishable.

The attack finds a small perturbation for the benign input in a way that the
results of the prediction and the interpretation are desirable. We can describe
the attack by the following optimization framework:

min
x̂

: Δ(x̂, x) s.t.

{
f(x̂) = yt

g(x̂; f) = mt
(2)

As there is high non-linearity in f(x̂) = yt and g(x̂; f) = mt for DNNs,
Eq. (2) can be rewritten as the following to be more suitable for optimization:

minx̂ : �prd(f(x̂), yt) + λ. �int(g(x̂; f),mt) s.t. Δ(x̂, x) ≤ ε (3)

Where �prd is the classification loss as in Eq. (1), �int is the interpretation loss
to measure the difference between the adversarial map g(x̂; f) and the target
map mt. To balance the two factors (�prd and �int), the hyper-parameter λ is
used. We build the Eq. (3) based on the PGD adversarial framework to compare
the performance with the existing attack while other frameworks can also be
utilized. Other settings are defined as follows: �prd(f(x̂), yt) = − log(fyt

(x̂)),
Δ(x̂, x) = ‖x̂−x‖∞, and �int(g(x̂; f),mt) = ‖g(x̂; f)−mt‖22. Overall, the attack
finds the adversarial input x̂ using a sequence of gradient descent updates:

x̂(i+1) =
∏

Bε(x)

(
x̂(i) − Nw α. sign(∇x̂�adv(x̂(i)))

)
(4)

Here, Nw is the noise function that controls the amount and the position
of noise to be added with respect to the benign input’s edge weights w. �adv

represents the equation of overall loss Eq. (3).

AdvEdge. Notice that we apply the Nw term in Eq. (4) to optimize the location
and magnitude of the added perturbation. In the first attack, AdvEdge, we fur-
ther restrict the added perturbation to the edges of the image that intersect with
the attribution map generated by the interpreter. This means that considering
the overall loss (classifier and interpreter loss), we identify the important areas
of the input and then generate noise for the edges in those areas by considering
the edge weights in the image obtained using the Sobel filter.

Let E : e → Rh×w that indicates a pixel-wise edge weights matrix for an image
with height h and width w, using common edge detector (e.g., Sobel filters in
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this settings). We apply the edge weights to the sign of the gradient update as:
E(x) ⊗ α. sign(∇x̂�adv(x̂(i))), where ⊗ denotes the Hadamard product. This
increases the noise on the edges while decreases the noise in smooth regions of
the image. Considering Nw = E(x), Eq. (3) can be expressed as:

x̂(i+1) =
∏

Bε(x)

(
x̂(i) − E(x) α. sign(∇x̂�adv(x̂(i)))

)
(5)

AdvEdge+ Similar to AdvEdge, this approach also incorporates the edge
weights of the input to optimize the perturbation. In this attack, we only apply
the noise to the edges rather than weighting the noise in the specified areas.
This is done by binarizing the edge matrix Eδ : e → [0, 1]h×w, . Then, obtain the
Hadamard product as: Eδ(x) ⊗ α. sign(∇x̂�adv(x̂(i))), where the hyperparame-
ter δ controls the threshold to binarize the edge weights. This technique allows
noise values to be complete on the edges only. To improve the effectiveness of the
attack, considering the restriction on the perturbation location, the threshold δ
is set to 0.1. In the following subsection, we discuss the details about the attack
in Eq. (4) against the representatives of four types of interpretation models,
namely: back-propagation-guided interpretation, representation-guided interpre-
tation, model-guided interpretation, and perturbation-guided interpretation.

4.2 Interpretation Models

Back-Propagation-Guided Interpretation. Back-propagation-guided inter-
pretation models calculate the gradient of the prediction of a DNN model with
reference to the given input. By doing this, the importance of each feature can
be derived. Based on the definition of this class interpretation, larger values
in the input features indicate higher relevance to the model prediction. In this
work, as the example of this class, we consider the gradient saliency (Grad) [13].
Finding the optimal x̂ for Grad-based IDLSes is inefficient via a sequence of gra-
dient descent updates (as in applying Eq. (4)), since DNNs with ReLU activation
functions cause the computation result of the Hessian matrix to be all-zero. The
issue can be solved by calculating the smoothed value of the gradient of ReLU.

Representation-Guided Interpretation. In this type of interpreters, feature
maps from intermediate layers of DNN models are extracted to produce attribu-
tion maps. We consider Class Activation Map (CAM) [18] as the representative
of this class. The importance of the input regions can be identified by projecting
back the weights of the output layer on the convolutional feature maps. Simi-
lar to the work of [17], we build g by extracting and concatenating attribution
maps from f up to the last convolutional layer and a fully connected layer. We
attack the interpreter by searching for x̂ using gradient descent updates as in
Eq. (4). The attack Eq. (4) can be applied to other interpreters of this class (e.g.,
Grad-CAM [12]).

Model-Guided Interpretation. This type of interpreters trains a masking
model to directly predict the attribution map in a single forward pass by masking
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salient positions of any input. For this type, we consider the Real-Time Image
Saliency (RTS) [1]. Directly attacking RTS has been shown to be ineffective to
find the desired adversarial inputs [17]. This is because the interpreter relies on
both the masking model and the encoder (enc(.)). To overcome the issue, we add
an extra loss term �enc(enc(x̂), enc(yt)) to the Eq. (3) to calculate the difference
of the encoder’s result with the adversarial input x̂ and the target class yt. Then,
we use the sequence of gradient descent updates as defined in Eq. (4) to find the
optimal adversarial input x̂.

Perturbation-Guided Interpretation. The perturbation-guided interpreters
aim to find the attribution maps by adding minimum noise to the input and
examining the shift in the model’s output. For this work, we consider MASK
[2] as the representative of the class. As the interpreter g is constructed as
optimization procedure, we cannot directly optimize the Eq. (3) with the Eq. (4).
For this issue, bi-level optimization framework [17] can be implemented. The loss
function is reformulated as: �adv(x,m) � �prd(f(x), yt)+λ. �int(m,mt) by adding
m as a new variable.
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Fig. 2. Attribution maps of benign and adversarial (ADV2, AdvEdge and AdvEdge+)
inputs with respect to Grad, CAM, MASK, and RTS on ResNet.

5 Experimental Setting

In this section, we explain the implementation of AdvEdge and the optimization
steps to increase the effectiveness of the attacks against target interpreters (Grad,
CAM, MASK, RTS). We build our two approaches (AdvEdge and AdvEdge+)
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based on the PGD attack that utilizes the local first order information about
the network (Eq. (5)). For the parameters, we set α = 1./255, and ε = 0.031
similar to previous studies [17]. To measure the proportion of the perturbation,
�∞ is applied. To increase the efficiency of the attack, we apply a technique
that adds noise to the edges of the images with a constant number of iterations
(#iterations = 300). The process aims to search for perturbation points on the
edges of the regions that satisfy both the classifier and interpreter.

Optimization for Both Approaches. In our attack, zero gradients of the
prediction loss prevents searching the desired result with correct interpreta-
tion (Grad). To overcome the issue, the label smoothing technique with cross-
entropy is proposed. In the technique, prediction loss is sampled using uniform
distribution U(1 − ρ, 1) and during the attacking process, the value of ρ is
decreased moderately. Considering yc = 1−yt

|Y |−1 , we calculate �prd(f(x), yt) =
−∑

c∈Y yc log fc(x).

Dataset. For our experiment, we use ImageNetV2 Top-Images [11] dataset.
ImageNetV2 is a new test set collected based on the ImageNet benchmark and
was mainly published for inference accuracy evaluation. For our test set, we use
all the images that are correctly classified by the given classifier f .

Prediction Models. Two state-of-the-art DNNs are used for the experiments,
ResNet-50 [4] and DenseNet-169 [6], which show 22.85% and 22.08% top-1
error rate on ImageNet dataset, respectively. The two DNNs are with different
capacities (i.e., 50 and 169 layers, respectively) and architectures (i.e., residual
blocks and dense blocks, respectively). Using these DNNs helps measuring the
effectiveness of our attacks.

Interpretation Models. We utilize the following interpreters as the represen-
tative of Back-Propagation-Guided, Representation-Guided, Model-Guided, and
Perturbation-Guided Interpretation classes: Grad [13], CAM [18], RTS [1], and
MASK [2] respectively. We used the original open-source implementations of the
interpreters in our experiments.

AdvEdge Attack. For the attack, we implement our attack (defined in Eq. (4)
on the basis on PGD framework. Other attacks frameworks (e.g., STADV [15]
can also be applied for the attack Eq. (4). For our case, we assume that our
both approaches are based on the targeted attack, in which the attack forces the
DNNs to misclassify the perturbed input x̂ to a specific and randomly-assigned
target class. We compare AdvEdge and AdvEdge+ with ADV2 attack, which
is considered as a new class of attacks to generate adversarial inputs for the
target DNNs and their coupled interpreters. For a fair comparison, we adopt the
same hyperparameters (learning rate, number of iterations, step size, etc..) and
experimental settings as in ADV2 [17].

6 Attack Evaluation

In this section, we conduct experiments to evaluate the effectiveness of AdvEdge
and AdvEdge+. We compare our results to ADV2 in [17]. For this comparison,
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we use the original implementation of ADV2 provided by the authors. For the
evaluation, we answer the following questions: 1 Are the proposed AdvEdge and
AdvEdge+ effective to attack DNNs? 2 Are AdvEdge and AdvEdge+ effective to
mislead interpreters? 3 Do the proposed attacks strengthen the attacks against
interpretable deep learning models?

Evaluation Metrics. We apply different evaluation metrics to measure the
effectiveness of attacks against the baseline classifiers and the interpreters.
Firstly, we evaluate the attack based on deceiving the target DNNs using the
following metrics:

– Misclassification confidence: In this metric, we observe the confidence
of predicting the targeted class, which is the probability assigned by the
corresponding DNN to the class yt.

Secondly, we evaluate the attacks based on deceiving the interpreter. This is
done by evaluating the attribution maps of adversarial samples. We note that this
task is challenging due to the lack of standard metrics to assess the attribution
maps generated by the interpreters. Therefore, we apply the following metrics
to evaluate the interpretability:

– Lp Measure: We use the L1 distance between benign and adversarial maps
to observe the difference. To obtain the results, all values are normalized to
[0, 1].

– IoU Test (Intersection-over-Union): This is another quantitative measure
to find the similarity of attribution maps. This measurement is widely used
to compare the prediction with ground truth.

Finally, to measure the amount of noise added to generate the adversarial
input, the following metric is used:

– Structural Similarity (SSIM): Added noise is measured by computing the
mean structural similarity index [14] between benign and adversarial inputs.
SSIM is a method to predict the image quality based on its distortion-free
image as reference.
To obtain the non-similarity rate (i.e., distance or noise rate), we subtract
the SSIM value from 1 (i.e., noise rate = 1 − SSIM).

6.1 Attack Effectiveness Against DNNs

We first assess the effectiveness of AdvEdge and AdvEdge+ as well as compare
the results to the existing method (ADV2 [17]) in terms of deceiving the target
DNNs. We achieved 100% attack success rate of ADV2, AdvEdge, and AdvEdge+

against different classifiers and interpreters on 10,000 images.
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Table 1. Misclassification confidence of ADV2, AdvEdge and AdvEdge+ against dif-
ferent classifiers and interpreters testing on 10,000 images.

ResNet DenseNet

Grad CAM MASK RTS Grad CAM MASK RTS

ADV2 92.19% 56.52% 53.54% 69.83% 87.88% 52.88% 58.05% 57.24%

AdvEdge 93.51% 55.53% 59.70% 68.99% 88.04% 53.79% 63.01% 57.26%

AdvEdge+ 92.49% 55.40% 53.48% 69.55% 86.94% 53.54% 62.82% 57.28%

Additionally, Table 1 presents the misclassification confidence results of the
three methods against different classifiers and interpreters on 10,000 images. It
should be said that due to the differences in the dataset and models, the results
of ADV2 are not consistent with the results achieved in [17]. Even though our
main idea is to add a small amount of perturbation to the specific regions of
images, the performance is slightly better than ADV2 in terms of Grad (ResNet),
CAM (DenseNet) and RTS (DenseNet). In other cases, the results of the models’
confidence are comparable.

6.2 Attack Effectiveness Against Interpreters

This part evaluates the effectiveness of AdvEdge and AdvEdge+ to generate
similar interpretations to the benign inputs. We compare the interpretations
of adversarial and benign inputs. We start with a qualitative comparison to
check whether attribution maps generated by AdvEdge and AdvEdge+ are
indistinguishable from benign inputs. By observing all the cases, AdvEdge and
AdvEdge+ produced interpretations that are perceptually indistinguishable from
their corresponding benign inputs. As for comparing with ADV2, all methods
generated attribution maps similar to the benign inputs. Figure 2 shows a set of
sample inputs together with their attribution maps in terms of Grad, CAM, RTS,
and MASK. As displayed in the figure, the results of our approaches provided
high similarity with their benign interpretation.
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Fig. 3. Average L1 distance of attribution maps generated by ADV2, AdvEdge and
AdvEdge+ from those of corresponding benign samples on ResNet and DenseNet.

In addition to qualitative comparison, we use Lp to measure the similarity of
produced attribution maps quantitatively. Figures 3(a) and 3(b) summarize the
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results of L1 measurement. As shown in the figures, our attacks generate adver-
sarial samples with attribution maps closer to those generated for the benign
samples compared to ADV2. The results are similar across different interpreters
on both target DNNs. We note that the effectiveness of our attack (against inter-
preters) varies depending on the interpreters. Generally, the results of Table 1,
Figs. 3(a) and 3(b) show the effectiveness of our attack in generating adversarial
inputs with highly similar interpretations to their corresponding benign samples.
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Fig. 4. IoU scores of attribution maps generated by ADV2, AdvEdge and AdvEdge+

using the four interpreters on ResNet and DenseNet. Our attacks achieve higher IoU
scores in comparison with ADV2.

Another quantitative measure to compare the similarity of attribution maps
is the IoU score. As the attribution map values are floating numbers, we bina-
rized the attribution maps to calculate the IoU. Figure 4 displays the IoU scores
of attribution maps generated by ADV2, AdvEdge and AdvEdge+ using four
interpreter models on ResNet and DenseNet. As shown in the figure, AdvEdge
and AdvEdge+ performed better than ADV2. We note that AdvEdge+ achieved
significantly better results than other methods, while AdvEdge achieved a higher
score on DenseNet with RTS interpreter.
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Fig. 5. Noise rate of adversarial inputs generated by ADV2, AdvEdge and AdvEdge+

on ResNet and DenseNet.

6.3 Adversarial Perturbation Rate

To measure the amount of noise added to the adversarial image by the attacks,
we utilize SSIM to measure the pixel-level perturbation. Using SSIM, we infer the
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parts of images that are not similar to the original images, known as noise. Fig-
ures 5(a) and 5(b) display the results of comparing the noise amount generated
by ADV2, AdvEdge, and AdvEdge+. The figures show that the amount of noise
added using AdvEdge and AdvEdge+ is significantly lower than the amount
added by ADV2. This difference is more noticeable when using the MASK inter-
preter. AdvEdge+ adds the least amount of noise to deceive the target DNN and
the MASK interpreter.

7 Conclusion

This work presents two approaches (AdvEdge and AdvEdge+) to enhance the
adversarial attacks on interpretable deep learning systems (IDLSes). These
approaches exploit the edge information to optimize the ADV2 attack that gen-
erates adversarial inputs to mislead the target DNNs and their corresponding
interpreter models simultaneously. We demonstrated the validity and effective-
ness of AdvEdge and AdvEdge+ through empirical evaluation using a large
dataset on two different DNNs architectures (i.e., ResNet and DenseNet). We
show our results against four representatives of different types of interpretation
models (i.e., Grad, CAM, MASK, and RTS). The results show that AdvEdge
and AdvEdge+ effectively generate adversarial samples that can deceive the deep
neural networks and the interpretation models.

Future Work. Besides utilizing the PGD framework, this work motivates
exploring other attack frameworks, such as DeepFool, STADV [8]. Another future
direction is to evaluate the effectiveness of potential countermeasures to defend
against AdvEdge, such as refining the DNN and interpretation models (e.g.,
via defensive distillation [10]) or applying an adversarial sample detector (e.g.,
feature squeezing [16] or through utilizing the interpretation transferability prop-
erty in an ensemble of interpreters [17]). We also consider to test whether our
approach is applicable and tractable on various sample space (e.g., numerical,
text, etc.).
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