
A Framework for Accelerating Graph
Convolutional Networks on Massive

Datasets

Xiang Li1(B), Ruoming Jin2(B), Rajiv Ramnath1(B), and Gagan Agrawal3(B)

1 Ohio State University, Columbus, OH 43210, USA
{li.3880,ramnath.6}@osu.edu

2 Kent State University, Kent, OH, USA
jin@cs.kent.edu

3 Augusta University, Augusta, GA, USA
gagrawal@augusta.edu

Abstract. In recent years, there has been much interest in Graph Con-
volutional Networks (GCNs). There are several challenges associated
with training GCNs. Particularly among them, because of massive scale
of graphs, there is not only a large computation time, but also the need
for partitioning and loading data multiple times. This paper presents
a different framework in which existing GCN methods can be acceler-
ated for execution on large graphs. Building on top of ideas from meta-
learning we present an optimization strategy. This strategy is applied to
three existing frameworks, resulting in new methods that we refer to as
GraphSage++, ClusterGCN++, and GraphSaint++. Using graphs with
order of 100 million edges, we demonstrate that we reduce the overall
training time by up to 30%, while not having a noticeable reduction in
F1 scores in most cases.

1 Introduction

In recent years, there has been much interest in Graph Convolutional Networks
(GCNs) [2,15]. There are several challenges associated with training GCNs. One
of them is the neighborhood explosion when training a k-deep GCN, where the
value at each node needs to be computed as an aggregation from its k-hop neigh-
borhood. For graphs with large degrees, this computation is often intractable.
To address this challenge, a number of sampling methods have been devel-
oped [4,5,9,10,16,18].

Another problem in GCN when applied to very large graphs is the need
for partitioning the data and loading them multiple times because all of the
data may not fit in the memory of the GPU. To explain the issue, consider the
following summary of a typical training process [18]. “1. Construct a complete
GCN on the full training graph. 2. Sample nodes or edges of each layer to form
mini-batches. 3. Perform forward and backward propagation among the sampled
GCN. Steps (2) and (3) proceed iteratively". Now, if the training graph in the
c© Springer Nature Switzerland AG 2021
D. Mohaisen and R. Jin (Eds.): CSoNet 2021, LNCS 13116, pp. 79–92, 2021.
https://doi.org/10.1007/978-3-030-91434-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91434-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-91434-9_8


80 X. Li et al.

step 1 can fit into the memory of a single GPU, steps (2) and (3) can be applied
without the need for loading or unloading the data. However, GPUs often do not
have sufficient memory to allow a full training graph to be loaded. Only a limited
amount of work to date has considered this problem [6,17]. These works build
minibatches from subgraphs, and thus do not require the entire training graph
to fit into the GPU memory. However, the problem with this approach is the
high cost of frequently loading subgraphs into the GPU during each iteration.

This paper presents a different framework in which different GCN methods
can be accelerated for execution on large graphs. Our work draws its inspiration
from the idea of meta-learning [14], In meta-learning, we assume there is a large
number of tasks over the same dataset, and our goal is to optimize these tasks
all together. The correspondence we can draw is that training of a GCN using a
single large graph can be viewed as a collection of training tasks over subgraphs
or partitions, each of which fits into GPU memory.

Based on this idea, we develop an overall framework for accelerating GCN
training over large graphs. The main idea is that by focusing on training of GCN
over each subgraph that has already been loaded into memory, we can reduce the
data loading times as compared to a normal implementation. We apply this idea
to three recent algorithms for GCN training, GraphSaint [18], GraphSage [9],
and ClusterGCN [6], resulting in new algorithms GraphSaint++, GraphSage++,
and ClusterGCN++, respectively. We show mathematical analysis denoting why
these methods are still able to converge, while reducing data loading costs.

We have carried out a detailed experimental evaluation of our three new
algorithms using four graph datasets. We demonstrate how we are able to obtain
comparable convergence and final F1 scores while reducing the data loading time
by up to 90% and total training time up to 30%.

2 Technical Details

This section provides important backgrounds on GCNs, followed by discussion of
existing methods, with an emphasis on the memory requirements and associated
data loading costs.

2.1 Background

Consider a graph G = (V,E) where V is the set of vertices and E is the set of
edges E ⊆ V ×V represented by an adjacency matrix M , where an entry M(i, j)
denotes an edge between nodes i and j. Associated with every node in the graph
are F features. Thus X ∈ R|V |×F captures the F features for all nodes in the
graph.

A GCN framework is composed of a number of layers (say, L). At each layer,
the GCN computes a latent representation, using representation from the previ-
ous layer. For simplicity of presentation, we assume that the latent representation
has the same dimension F as that of node feature. Thus, we denote the repre-
sentation computed at the layer l by X l, and X0 = X. Now, the computation



Accelerating GCNs on Massive Datasets 81

at each layer can be denoted as X l+1 = A × X l × W l. Here, W l is a feature
transformation matrix, W l ∈ RF×F . The goal of the training process is to learn
these matrices. In an inductive supervised learning based on GCNs, the goal is
to learn the L weight transformation matrices while minimizing a loss function.

2.2 Existing Methods, Memory Requirements, and Data Loading
Costs

Consider the original GCN method [13]. This method evaluates embeddings for
each node in the graph for each layer yielding memory requirement as |V |×F ×L.
In addition, the process needs to maintain the matrix A and the current values
of W l for each l. Thus, the total memory requirement will be |V |×F ×L + |A| +
L×F 2. For large graphs, this can easily exceed the available memory on a single
GPU. In this work, the authors have not discussed any method for partitioning
the problem that will allow us to work on different parts of the graph. Besides
large memory requirements, this method also suffers from large computational
time cost.

Since the original GCN method was presented, several researchers have devel-
oped methods for improving the efficiency of the process [4–6,9,18] Most of these
approaches involve the use of mini-batches, possibly together with sampling of
the neighborhood. Unfortunately, these approaches do not sufficiently reduce
memory requirements for most graphs, especially when the number of layers is
large. In the mini-batch approach, consider a batch size of b. If the average degree
of a node is d, then with L layers, there are b × dL nodes for which embeddings
need to be computed. Depending upon the value of b, d, and L, this number
can easily approach |V |, resulting in memory requirements comparable to the
original GCN method. Some reduction in the exponential growth of the number
of layers can be achieved with sampling of the neighbors. For example, Graph-
SAGE [9] takes a fixed number of neighbors for each node. If this number is s
(s < d), then the number of nodes for which embeddings need to be calculated
reduces to b × sL. Note, however, that, as different nodes are selected to be part
of the mini-batch for each epoch, we have one of the two possibilities. First, we
store all nodes and their features on the device (such as the GPU). This limits
the size of the graph that can be processed. The second possibility is to load
the set of nodes that are part of the mini-batch and their neighborhood for each
epoch. This, however, means high cost of reloading data for each epoch.

Two new efforts have specifically focused on the need of processing large
graphs – ClusterGCN [6] and GraphSAINT [18]. We now describe these
approaches with an emphasis of examining the data loading costs associated
with them. ClusterGCN is an approach based on partitioning the graph, and
subsequently, choosing a mini-batch from within a partition. The advantage of
this approach is that nodes within a mini-batch are more likely to have com-
mon neighbors, thus allowing greater reuse of computations done on some of
the nodes. Because of partitioning, this approach can also deal with very large
graphs, which others approaches may not be able to handle. However, a hidden
cost associated with this method in dealing with large graphs is that of data



82 X. Li et al.

loading. If n partitions are created from the graph and the training is conducted
over m epochs, each partition needs to be loaded m times during training.

GraphSAINT [18] can also handle very large graphs, but takes a different
approach. Instead of choosing nodes that form a given mini-batch, it samples
a smaller graph from the larger graph. Each epoch of the method works with
one such sampled graph. Because the size of the sampled graph can be quite
small, this method can also train very large graphs. However, there is a cost of
sampling and loading the sampled graph for each epoch.

3 Overall Approach and Implementations

We discussed how the cost of loading either a partition or a k-step neighborhood
of mini-batch vertices, or sampled subgraphs, can be quite high. To address this
problem, we draw motivation from the previous work on meta-learning [14].

3.1 Background: Meta-learning Approach

In meta-learning, we assume there is a large number of tasks over the same
dataset, and our goal is to optimize these tasks all together. In [14], a remark-
ably simple algorithm Reptile is proposed. We summarize the approach as Algo-
rithm1. Here τ denotes a task (line 2) and Uk

τ (φ) (line 3) denotes the func-
tion that performs k gradient updates from the training algorithm on sampled
(mini-batched) data starting with φ. This training is performed using Stochastic
Gradient Descent (SGD) or Adam [12]. In line 4, we update φ, treating φ − φ̃ as
the gradient. For this update, a parameter ε is used as the step size.

Algorithm 1. Reptile (serial version)
Initialize φ (the vector of initial weights)

1: for iteration i = 1, 2, . . . do
2: Sample task τ with loss φ̃
3: Compute φ̃ = Uk

τ (φ), denoting k steps (SGD or Adam)
4: Update φ ← φ + ε(φ̃ − φ)
5: end for

In [14], it has been argued that the Reptile converges towards a solution φ
that is close (in Euclidean distance) to each task τ ’s manifold of the optimal
solutions. As stated above, meta-learning is concerned with a large number of
tasks that are being optimized together.



Accelerating GCNs on Massive Datasets 83

3.2 Our Approach

Algorithm 2. Large-Scale GCN training framework
Input: GCN model, Graph G(V, E), feature X, label Ȳ
Output: GCN model with trained weights;

1: Φ: initialization parameters
2: for macro_epoch = 1, 2, . . . , Tmacro do
3: Shuffle training nodes
4: for s = 1, 2, . . . do
5: Load or Generate Gs(Vs, Es)
6: for mini_epoch = 1, 2, · · · Tmicro do
7: φ̃ = Us(φ) , denoting a full-batch train on Gs

8: end for
9: end for

10: end for

Based on the discussion above, we can consider training a GCN on each
subgraph as a learning task (denoted as τ1, τ2, . . . ) and then training the
GCN on the original graph (denoted as G) as the meta-learning task. By doing
this, we can perform more computation/training using one subgraph that is
already loaded into the GPU memory, and thus saving the loading cost from
CPU main memory, or disk, or even remote storage (through network). For each
training task, we go through a specific number of training epochs TTotal before
the convergence is reached. The total training epoch duration is divided into two
parameters, macro_epoch and micro_epoch, such that

TTotal = Tmacro × Tmicro (1)

During each macro_epoch, one subgraph will be generated, uploaded on
to GPU and trained for Tmicro epochs. In this way, each subgraph data only
need to be generated and uploaded on to GPU for a total of Tmacro times. The
overall framework is shown as Algorithm2. This method involves loops over
macro_epochs. Each iteration starts with loading or generating a subgraph Gs

(line 3). This subgraph can be pre-computed or be constructed on the fly, as we
will explain later. The size of the each subgraph will be adjusted to be able to
fit GPU memory – since the GCN model is trained by aggregating node features
from a subgraph, a larger subgraph is expected to provide more information for
the learning task. Therefore, during each micro_epoch, each subgraph will be
full-batch trained to utilize all of its information for a better prediction perfor-
mance and Us(φ) (line 7) denotes the function that performs one-step gradient
full-batch training. Overall, the update in line 6–8 corresponds to Tmicro steps
full-batch training on the entire subgraph Gs. This is also the reason why we do
not use the parameter ε (line 4 from Algorithm1) in line 7 of Algorithm2.

Our training technique can be applied to multiple GCN learning frame-
works since it is orthogonal to both graph sampling/partition methods and



84 X. Li et al.

GCN architecture. Three different GCN training algorithm have been adopted
under our framework to illustrate the effectiveness of our proposed training strat-
egy: GraphSaint [18], GraphSage [9] and ClusterGCN [6]. The main difference
between these GCN training algorithm is their distinct strategies of constructing
subgraphs. We mainly applied GCN architecture from the previous GraphSaint
work with all the hyper-parameters carefully tuned for each benchmark dataset
[18]. We refer to the resulting algorithms as GraphSaint++, GraphSage++, and
ClusterGCN++, respectively.

The GraphSaint is a graph sampling based algorithm. To generate repre-
sentative subgraphs for efficient information aggregation during training, it uses
samplers that aggregate nodes with high influence on each other and also sample
edges [18]. Several samplers have been used, such as random node sampler, ran-
dom edge sampler, and random walk based sampler[18]. In applying our approach
here, in each macro_epoch, we first shuffle all the train nodes. A user selected
sampler will be executed to sample train nodes to construct each subgraph. The
data that is required to be uploaded on GPU for the training process includes
the adjacency matrix of subgraph, node features, edge weights, and the node
labels. A series of Tmicro epochs full-batch training is performed to update the
model weights. The data uploading and full-batch training in the micro_epoch
phase will be similar in all three GCN training algorithms.

The GraphSage is an inductive framework that learns node embeddings with
good generalization performance by utilizing a node’s neighborhood information.
More specifically, features of a node’s neighborhood will be sampled and aggre-
gated [9]. The topological structure of each node’s neighborhood and the node
features distribution will be learnt simultaneously [9]. Nodes can get informa-
tion from its neighbors at multiple hops. The number of hops and the number
of neighbor nodes on each hop are user defined parameters and can be specified
by the Neighbor Number List L = [S1, S2, . . . ]. For example, L = [10, 5] means
we include two-hop neighbors with 10 neighbor train nodes on the first hop and
5 on the second. In applying our approach, we first randomly sample a spe-
cific number of train nodes at the beginning of each macro_epoch. We further
expand the sampled nodes by further including their neighbor train nodes based
on the array L to construct the subgraph. The other details are identical to the
previous method.

The ClusterGCN framework exploits the graph clustering structure for SGD-
based training for an improved memory and computation efficiency [6]. A graph
clustering algorithm will be applied to partition the whole graph into disjoint
clusters. These clusters will later be randomly recombined into multiple isolated
subgraphs. During training, each train node can only utilize features of nodes
which locate in the same isolated subgraph [6]. We first partition the training
Graph into isolated clusters using METIS [11]. During each macro_epoch, clus-
ters will be shuffled to reduce bias and a subgraph will be constructed by com-
bining a specific number of clusters. Both the number of clusters and subgraphs
are user defined hyper-parameters and the subgraph size should be chosen so it
fits in GPU memory. The other details are the same as in other methods.



Accelerating GCNs on Massive Datasets 85

4 Experimental Results

Table 1. Dataset Details (“s” for single class and “m” for multiclass classification)

Dataset Nodes Edges Feature Classes Train/Val/Test

Flickr 89, 250 899, 756 500 7 (s) 0.50/0.25/0.25

Reddit 232, 965 11, 606, 919 602 41 (s) 0.66/0.10/0.24

Yelp 716, 847 6, 977, 410 300 100 (m) 0.75/0.10/0.15

Amazon 1, 598, 960 132, 169, 734 200 107 (m) 0.85/0.05/0.10

4.1 Implementations and Setup

Our framework implementations are based on the GraphSaint architecture [18]
with three major components: sampler, GCN model and subgraph generator.
Inside each part, we incorporate implementation for three GCN training methods
(GraphSaint [18], ClusterGCN [6] and GraphSage [9]) and we apply our strat-
egy by separating the training process into two phases as described in Sect. 3.2,
resulting in GraphSaint++, ClusterGCN++, and GraphSage++, respectively.
The hyper-parameters obtained after the tuning process are listed in the Table 2.
We use Adam [12] optimizer with learning rates carefully tuned for all our exper-
iments. Dropout regularization is applied. GCN architecture is specified as L×F ,
where L is the GCN depth and F is the hidden dimension, i.e. the dimension of
latent representation in the GCN model.

The last column of Table 2 depends on a specific GCN method as explained
below. For GraphSaint, we use the edge sampler and each edge will be sam-
pled into a subgraph based on an independent decision [18]. The Edge bud-
get in Table 2 is given as a sampling parameter to specify the expected num-
ber of edges in each subgraph [18]. For GraphSage neighborhood sampling, the
previous work [9] shows that high learning performance can be obtained by
including a neighbor number list L = [S1, S2](S1 · S2 ≤ 500) and we are using
L = [S1, S2](S1 ·S2 ≤ 500) in our work. The Node budget in Table 2 is to enforce
a pre-defined budget on the subgraph size [9]. For ClusterGCN, we applied the
strategy of stochastic multiple partitions [6] to reduce the bias and the diagonal
enhancement technique to further improve the performance. In the subgraph
generation procedure, isolated clusters are formed by using METIS clustering
algorithm [11] and later recombined into subgraphs randomly without replace-
ment. The number of isolated clusters N and the number of subgraphs K are
user-defined sampling parameters as given in the table.

Our framework is implemented in Pytorch on CUDA 10.1. The sampling part
for the GraphSaint++ and GraphSage++ is implemented in Cython 0.29.21.
Our experiments are performed on nodes with Dual Intel Xeon8268s @2.9 GHz
CPU and NVIDIA Volta V100 w/32 GB memory GPU and 384 GB DDR4
memory on OSC cluster [3]. Generation of subgraphs is performed in serial with
1 CPU core.



86 X. Li et al.

Table 2. Training configuration

GraphSaint++

Dataset Learning rate Dropout TTotal GCN architecture Edge budget
Flickr 2 × 10−4 0.2 30 3 × 256 6000
Reddit 1 × 10−3 0.1 100 4 × 128 6000
Yelp 1 × 10−3 0.1 100 3 × 512 2500
Amazon 1 × 10−2 0.1 30 3 × 512 2000
GraphSage++
Dataset Learning rate Dropout TTotal GCN architecture Node budget
Flickr 5 × 10−5 0.2 15 2 × 256 8000
Reddit 1 × 10−3 0.1 100 2 × 128 8000
Yelp 1 × 10−3 0.1 100 2 × 512 5000
Amazon 2 × 10−4 0.1 80 2 × 512 4500
ClusterGCN++
Dataset Learning rate Dropout TTotal GCN architecture K(N)

Flickr 1 × 10−3 0.2 15 3 × 256 16 (64)
Reddit 2 × 10−3 0.1 100 4 × 128 64 (256)
Yelp 2 × 10−3 0.1 100 3 × 512 64 (256)
Amazon 2 × 10−3 0.2 100 3 × 512 64 (256)

4.2 Datasets

We use four benchmark datasets, which have also been used in other recent
efforts (for example, GraphSaint [18]). Detailed statistics of all datasets are listed
in Table 1. Flickr and Reddit are used for single-class classification task, i.e.,
each node can only belong to a single class while Yelp and Amazon are for
multi-class classification. Each dataset has a specific fraction for the split of
training/validation/test data, which is shown in Table 1.

Flickr aims at classifying images based on descriptions and common prop-
erties of online images. A node in this graph stands for one image uploaded to
Flickr. An edge between two nodes will be established if comment properties exist
between two images such as geographic location and comments from the same
users. Reddit utilize users’ comments to generate predictions about online posts
communities. Each node is one user and edges will be established based on the
friendship between users. This dataset has more than 10 million edges. Yelp is
about the categorization of business according to customer’s reviews and friend-
ship in the open challenge website. One node represents one user and an edge will
be created between two nodes if two corresponding users are friends. Amazon
categorizes types of products by referring to buyers’ reviews and activities. A
node corresponds to one product on the Amazon website. If two products share
the same customer, then an edge will be created between them. This dataset has
more than 100 million edges.



Accelerating GCNs on Massive Datasets 87

Table 3. Test F1 score for different Tmicro (%)

Tmicro Flickr Reddit Yelp Amazon

GraphSaint++
1 50.19 ± 0.52 96.52 ± 0.03 65.10 ± 0.06 80.70 ± 0.04

5 47.39 ± 0.39 96.50 ± 0.03 64.81 ± 0.07 79.50 ± 0.09

10 − 96.43 ± 0.01 64.43 ± 0.01 78.76 ± 0.13

ClusterGCN++
1 50.78 ± 0.15 96.01 ± 0.05 64.31 ± 0.09 80.97 ± 0.02

5 49.49 ± 0.42 95.89 ± 0.04 64.47 ± 0.08 80.85 ± 0.03

10 − 95.67 ± 0.11 64.34 ± 0.06 80.70 ± 0.02

GraphSage++
1 50.53 ± 0.35 96.58 ± 0.04 64.61 ± 0.06 78.12 ± 0.03

5 50.81 ± 0.03 96.47 ± 0.04 64.41 ± 0.04 78.16 ± 0.05

10 − 96.34 ± 0.04 64.20 ± 0.06 78.09 ± 0.07

Fig. 1. Training time with different Tmicro across different frameworks on Yelp

Fig. 2. Training time with different Tmicro across different frameworks on Reddit



88 X. Li et al.

Fig. 3. Training time with different Tmicro across different frameworks on Amazon

4.3 F1-Score

Our first experiment focused on evaluating the impact of Tmicro on convergence.
It should be noted that when Tmicro is 1, the computations performed are iden-
tical to the original framework, i.e., GraphSage++ is same as GraphSage, and
so on (though implementations are different).

In our experiments, as different GCN training algorithms have different con-
vergence rates, we set a different value of TTotal for each combination of GCN
algorithm and dataset. During the training, we periodically take a snapshot of
the model and perform an evaluation on the validation dataset to record the con-
vergence curve. As experiments with different datasets resulted in a very similar
behavior, we show results only from the Yelp dataset in this paper. It turns out,
as we increase the value of Tmicro, the convergence did slow down, but only very
marginally. Overall, we can see that use of higher values of Tmicro parameter
remains a feasible approach for training GCNs.

We compare the F1-score performance on test data among distinct values
of Tmicro in Table 3. Each data point is generated by 7 runs under the same
hyper-parameter settings. Based on the validation F1-score, we choose the best
model snapshot, i.e. the optimal model parameters, to perform evaluation on
test data. First, we can see that the state-of-art results as reported from original

Fig. 4. Training time with different Tmicro across different frameworks on Flickr



Accelerating GCNs on Massive Datasets 89

publications of these frameworks have been reproduced when Tmicro is 1, i.e.,
when our implementation is simply reproducing original algorithm. Next, as
reflected in Table 3, the influence of Tmicro on test F1 score can vary through
different frameworks. There are some cases where Tmicro > 1 can outperform
the baseline case (Tmicro = 1). For example, ClusterGCN++ on Yelp obtains
its best F1-score with Tmicro = 5. Similar things happen to GraphSage++ on
Flickr and Amazon. For the GraphSaint++, a larger Tmicro does result in some
loss of F1 score. Overall, across different combination of GCN training methods
and datasets, decrease in F1 score is limited to at most 1–3%, again establishing
that use of higher values of Tmicro parameter remains a feasible approach for
training GCNs.

A larger value of Tmicro implies that we are more focusing on training each
subgraph and we will iterate through different subgraphs less frequently. How-
ever, compared with the baseline case (Tmicro = 1), we can still achieve good
Test F1 score while maintaining a fast convergence speed with a larger Tmicro.
As long as the subgraph is well sampled to be representative of the target graph,
we are able to obtain both fast convergence speed as reflected by the validation
F1-score convergence curve and good generalization performance as indicated by
the test F1-scores.

4.4 Training Times

Finally, we focus on the gains from training times.
The training time excludes all the data pre-processing such as sampling as

in GraphSaint++, METIS partitioning as in ClusterGCN++ or neighbor nodes
generation as in GraphSage++. It includes time cost of data uploading to the
GPU device and the on-GPU computation of training loss and parameters updat-
ing. We investigated training time for each dataset using different training meth-
ods with multiple Tmicro values as shown in Figs. 1, 2, 3 and 4. Seven runs are
performed for each experimental task to include variations for the training time.
The data loading time will shrink Tmicro times with Tmicro > 1. Significant sav-
ings on training time can be achieved especially when the data loading takes
a relatively bigger portion in the training time as in Table 4. We see a pro-
portional decrease of training time in Fig. 2. Relatively less train time saving
have been achieved for Yelp in Fig. 1 and Amazon (Fig. 3). That is because they
only have data loading time with a fraction around 10 − 15% of their training
time and GCN computation is their major time cost. That also explains why
Flickr in Fig. 4 achieves more time saving for GraphSage++ and GraphSaint++
than it does for ClusterGCN++. Overall, the improvement from Tmicro = 5 to
Tmicro = 10 remains limited and only the GraphSaint++ on Amazon as in Fig. 3
shows a relatively obvious difference. That is because a value as Tmicro = 5 will
reduce data loading time into a small enough fraction of training time so that
further optimization with Tmicro = 10 will not make a substantial difference.



90 X. Li et al.

Table 4. Data load time fraction of train time (%)

Framework Flickr Reddit Yelp Amazon

GraphSaint 27.41 ± 0.19 32.32 ± 3.63 11.76 ± 1.89 10.04 ± 1.58

ClusterGCN 10.34 ± 0.04 11.81 ± 0.95 14.94 ± 3.05 13.59 ± 0.34

GraphSage 23.06 ± 0.77 30.02 ± 1.10 14.58 ± 2.10 14.91 ± 2.39

5 Related Work

Besides GraphSage [9], ClusterGCN [6] and GraphSaint [18] that we have exten-
sively discussed and built on, other prominent efforts are as follows. FastGCN [5]
interprets the graph convolution as integral transforms of embedding functions
under probability measures and applies importance sampling among graph ver-
tices, though significant overhead could be induced by its sampling algorithm.
S-GCN [4] reduces the neighborhood sampling size using a variance reduction
technique. These both methods still have scalability issues due to the require-
ment of keeping all nodes’ intermediate embeddings in memory. There has been
previous work on developing an efficient out-of-core implementation of Convo-
lution Neural Networks (CNNs) [1]. However, the computation and data access
patterns for a CNN is very different from GCNs.

In one aspect, the idea of our work is similar to and related to the recent
work of data echoing [7] and minibatch persistency [8]. However, these works
are based on training using mini-batches, whereas we consider subgraph reuse.
Subgraphs are typically much larger and have an internal structures, whereas
the standard minibatch consists of randomized data points. In fact, the data
echoing and minibatch persistency are mainly used in settings like CNN; to
our best of knowledge, it has never been attempt in GCN. Also, we have given
mathematical analysis based on the meta-learning, whereas data echoing [7] and
minibatch persistency [8] never did.

6 Conclusions

In this paper, we have focused on the problem of training large-scale Graph Con-
volutional Networks (GCNs), which is becoming increasingly important. Draw-
ing inspiration from the idea of meta-learning, we observe that training of a GCN
using a single large graph can be viewed as a collection of training tasks over sub-
graphs or partitions, each of which fits into GPU memory. Based on this idea, we
developed both an overall framework as well as three instanciations – converting
three recent methods GraphSaint, GraphSage, and ClusterGCN, resulting into
new algorithms GraphSaint++, GraphSage++, and ClusterGCN++, respec-
tively. We have also shown mathematical analysis denoting why these methods
are still able to converge, while reducing data loading costs.



Accelerating GCNs on Massive Datasets 91

We have carried out a detailed experimental evaluation of our three new
algorithms using four graph datasets. We demonstrate how we are able to obtain
comparable convergence and final F1 scores while reducing the data loading time
by up to 90% and total training time up to 30%.

References

1. Awan, A.A., Hamidouche, K., Hashmi, J.M., Panda, D.K.: S-caffe: co-designing
MPI runtimes and Caffe for scalable deep learning on modern GPU clusters. In:
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, SIGPLAN Notices, vol. 52, no. 8, pp. 193–205, January
2017

2. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: Problems, techniques and applications. CoRR, abs/1709.07604 (2017)

3. Ohio Supercomputer Center. Ohio supercomputer center (1987)
4. Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks

with variance reduction. In: ICML, pp. 941–949 (2018)
5. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional net-

works via importance sampling. In: International Conference on Learning Repre-
sentations (ICLR) (2018)

6. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), July 2019

7. Choi, D., Passos, A., Shallue, C.J., Dahl, G.E.: Faster neural network training with
data echoing. CoRR, abs/1907.05550 (2019)

8. Fischetti, M., Mandatelli, I., Salvagnin, D.: Faster SGD training by minibatch
persistency. CoRR, abs/1806.07353 (2018)

9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30, pp. 1024–
1034 (2017)

10. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling towards fast graph
representation learning. In: Advances in Neural Information Processing Systems,
pp. 4558–4567 (2018)

11. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd Inter-
national Conference for Learning Representations (2015)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR),
abs/1609.02907 (2017)

14. Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, vol. 2, no. 3, p. 4 (2018)

15. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. CoRR, abs/1901.00596 (2019)

16. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018 (2018)

http://arxiv.org/abs/1803.02999


92 X. Li et al.

17. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Accurate, effi-
cient and scalable graph embedding. In: 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2019

18. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph
sampling based inductive learning method. In: International Conference on Learn-
ing Representations (ICLR) abs/1907.04931 (2020)


	A Framework for Accelerating Graph Convolutional Networks on Massive Datasets
	1 Introduction
	2 Technical Details
	2.1 Background
	2.2 Existing Methods, Memory Requirements, and Data Loading Costs

	3 Overall Approach and Implementations
	3.1 Background: Meta-learning Approach
	3.2 Our Approach

	4 Experimental Results
	4.1 Implementations and Setup
	4.2 Datasets
	4.3 F1-Score
	4.4 Training Times

	5 Related Work
	6 Conclusions
	References




