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Abstract. In recent years, submodularity has been found in a wide
range of connections and applications with different scientific fields. How-
ever, many applications in practice do not fully meet the characteristics
of diminishing returns. In this paper, we consider the problem of max-
imizing unconstrained non-negative weakly-monotone non-submodular
set function. The generic submodularity ratio γ is a bridge connect-
ing the non-negative monotone functions and the submodular functions,
and no longer applicable to the non-monotone functions. We study a
class of non-monotone functions, define as the weakly-monotone func-
tion, redefine the submodular ratio related to it and name it weakly-
monotone submodularity ratio γ̂, propose a deterministic double greedy
algorithm, which implements the γ̂

γ̂+2
approximation of the maximizing

unconstrained non-negative weakly-monotone function problem. When
γ̂ = 1, the algorithm achieves an approximate guarantee of 1/3, achiev-
ing the same ratio as the deterministic algorithm for the unconstrained
submodular maximization problem.

Keywords: Non-submodular optimization · Unconstrained ·
Submodularity ratio

1 Introduction

The research on combination problems with submodular property has received
extensive attention in recent years. We say the function f : 2N → R+ is sub-
modular on the finite ground set N if and only if for any subsets S, T of N , we
have:
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f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) (1)

i.e. for any two subsets S ⊆ T ⊆ N and e ∈ N \ T

f(S ∪ {e}) − f(S) ≥ f(T ∪ {e}) − f(T ).

We say the function f is monotone if for any two subsets S, T of N such that
S ⊆ T , we have

f(S) ≤ f(T ) (2)

Submodularity has a very intuitive interpretation in economics, which called
the diminishing marginal utility. The diminishing marginal utility enables sub-
modular functions to accurately simulate diversity and information gain in prac-
tical applications. At the same time, submodular functions can be solved accu-
rately to minimize and approximately maximize in polynomial time [16]. These
make submodular functions getting increasing attention in the field of artificial
intelligence [24] and data mining [1], such as: social network influence [19], deep
compressed sensing [22], sensor placement [21], targeted marketing [6], to name
a few.

Unconstrained submodular problems is one of the most basic problem in sub-
modular optimization. The factor of the approximation algorithm for the uncon-
strained submodular maximization problem is hardly better than 1/2 in polyno-
mial time [8]. In fact, many basic NP-hard problems are special cases of uncon-
strained submodular maximization, including undirected cut problems [11],
directed cut problems [14], the maximum facility location problems [18], and
some limited satisfiability problems. In addition, the approximation algorithms
of the unconstrained submodular maximization problem have been used as a
subroutine of many other algorithms, such as social network marketing [15], and
so on.

The study of unconstrained submodular maximization problems began in
the 1960s [5]. Obviously, there are not many results. Feige et al. [9] were the
first team to rigorously study general unconstrained submodular maximization
issues: they proposed an uniform random subset algorithm and a local search
algorithm, then increased the approximation guarantee to 2/5 by adding noise
to the local search algorithm; they also showed that it may require exponential
query to achieve an approximate ratio of 1/2+ε in the value oracle model. Gharan
et al. [12] and Feldman et al. [10] used methods such as simulated annealing to
further improve the noisy local search technique. Buchbinder et al. [3] showed
that a simple random algorithm strategy can be used to achieve the tight 1/2-
approximate ratio. Later, their team [4] gave the de-randomized algorithm with
the same approximate ratio. Roughgarden et al. [20] studied online unconstrained
submodular maximization problem, provided a polynomial-time no-1/2-regret
algorithm for this problem.

The applicability of submodular function is quite convenient and extensive.
Is it possible to apply skills to connect the general function problem with the
submodular problem, and then use the algorithms for submodular problem to
solve the general problem effectively and securely? Based on one of the equivalent
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definitions of submodular functions, Das and Kempe [7] proposed the submodu-
larity ratio γN,k with respect to the ground set U and the parameter k, which is a
quantity characterizing how close a general set function is to being submodular.
Bian et al. [2] combined and generalized the ideas of curvature α and the sub-
modularity ratio γN,k. Gong et al. [13] provided a more practical measurement γ
which is called generic submodularity ratio which is depend on the monotonicity
of the function.

In application, the problem with monotonic and submodularity is an ideal-
ized situation. For social network marketing, participants’ decision-making are
affected by the following conditions in actual social networks [17]: the social
trust between participants, the social relationship between participants, and the
preference similarity between participants. An appropriate number of “Big V”,
“Opinion Leader”, “KOL” and “Online Celebrity” recommendations could make
things widely spread without causing too much disgust, so as to ensure the pos-
itive growth of marketing effect. For the facility location problems, suppose the
objective function is to evaluate the overall income of supermarkets in a city.
The scope of the city would not change in a short time, and the construction
and daily operation of the supermarket is a fixed cost. When the supermarket
supply meets the urban demand [23], the newly opened supermarkets and pre-
vious supermarkets have to carry out price reduction and promotion in order to
survive, which reduces the overall income.

Our Results. In this paper, we study a class of non-monotone functions which
is a relaxed version of the monotonicity called the weakly-monotone, and discuss
the problem of maximizing unconstrained weakly-monotone functions.

• We first give the definition of weakly-monotone function, then define the
weakly-monotone submodularity ratio γ̂.

• Second, we present a deterministic double greedy algorithm for the uncon-
strained weakly-monotone maximization problem, and prove the algorithm
achieves γ̂

γ̂+2 -approximation ratio in 2n+2 times query and in O(n) comput-
ing time.

In addition, when the γ̂ reaches 1(i.e. the function is submodular), the approx-
imation guarantee of the algorithm recovers the tight ratio as deterministic algo-
rithm for the unconstrained submodular maximization problem.

Organization. The rest of this paper is structured as follows. In Sect. 2,
we introduce the basic definitions and symbols used throughout this article,
and give new definitions. We provide a deterministic algorithm for the uncon-
strained weakly-monotone functions maximization problem in Sect. 3, and give
the approximate ratio analysis. Section 4 offers direction of future work.

2 Preliminaries

In this paper, we consider the problem of maximizing an unconstrained non-
negative weakly-monotone function, the objective is to select a subset S of the
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ground set N to maximize f(S). The set function f : 2N → R+ is a non-negative
weakly-monotone set function with f(∅) = 0. This problem can be stated as:

max
S⊆N

f(S). (3)

f(S ∪ T ) − f(S) denotes the marginal gain of adding the set T ⊆ N to the set
S ⊆ N . Specially, when the set T = {e} ∈ N \ S, the marginal gain of adding
the single element e to the set S is defined as f(S ∪ {e}) − f(S).

Then, we defined the weakly-monotone function in following:

Definition 1. Weakly-monotone: Let f : 2N → R+ be a non-negative set
function with for any two subsets of different sizes S, T of N that f(S) 
= f(T ).
We say f is weakly-monotone if for any subset A ⊆ N and any e ∈ N \ A,

1. if f(A ∪ {e}) > f(A), for any S ⊆ N such that A � S, f(A) 
= f(S);
2. if f(A ∪ {e}) < f(A), for any S ⊆ N such that A � S, f(A) > f(S).

Example 1. N = {1, 2, 3, 4, 5}, f(S) = min{|S|, |N | − |S| + 0.5}.
When A = ∅, e ∈ N \ A, f(A ∪ {e}) = 1 > 0 = f(A): for any A � S ⊆

{1, 2, 3, 4, 5}, f(S) ∈ {1, 2, 2.5, 1.5, 0.5} 
= 0 = f(A);
When A ∈ {{1}, {2}, {3}, {4}, {5}}, e ∈ N \ A, f(A ∪ {e}) = 2 > 1 = f(A):

for any A � S ⊆ {1, 2, 3, 4, 5}, f(S) ∈ {2, 2.5, 1.5, 0.5} 
= 1 = f(A);
When A ∈ {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5},

{4, 5}}, e ∈ N \ A, f(A ∪ {e}) = 2.5 > 2 = f(A): for any A � S ⊆ {1, 2, 3, 4, 5},
f(S) ∈ {2.5, 1.5, 0.5} 
= 2 = f(A);

When A ∈ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4},
{2, 3, 5}, {2, 4, 5}, {3, 4, 5}}, e ∈ N \ A, f(A ∪ {e}) = 1.5 < 2.5 = f(A): for
any A � S ⊆ {1, 2, 3, 4, 5}, f(S) ∈ {1.5, 0.5} < 2.5 = f(A);

When A ∈ {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}, e ∈ N \
A, f(A ∪ {e}) = 0.5 < 1.5 = f(A): for any A � S ⊆ {1, 2, 3, 4, 5}, f(S) = 0.5 <
1.5 = f(A).

For the function that does not conform to the strictly property, we only need
to add a small disturbance to the value of the function. For example, if there are
two equal function values Q, we could add Q

n·10k to the second function value,
and so on.

Then, we give the definition of the weakly-monotone submodularity ratio γ̂.

Definition 2. Weakly-monotone submodularity ratio: For a non-negative
weakly-monotone set function f : 2N → R+, the weakly-monotone submodularity
ratio of f is the largest scalar γ̂ satisfied the corresponding inequailities under
these two cases, for any S ⊆ N and any e ∈ N \ S:

1. When f(S ∪ {e}) − f(S) > 0, for any T ⊆ N \ {e} such that S ⊆ T :

f(S ∪ {e}) − f(S) � γ̂ | f(T ∪ {e}) − f(T ) |;
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2. When f(S ∪ {e}) − f(S) < 0, for any T ⊆ N \ {e} such that S ⊆ T :

f(S ∪ {e}) − f(S) � 1
γ̂

[f(T ∪ {e}) − f(T )].

Note 1. The weakly-monotone submodularity ratio γ̂ of f in Example 1 is 0.5.

For non-negative weakly-monotone set functions, the following lemma always
holds.

Lemma 1. Given a non-negative weakly-monotone set function f : 2N → R+

with weakly-monotone submodularity ratio γ̂, it always holds that

a. γ̂ ∈ (0, 1].
b. If the function f is submodular, then γ̂ = 1.

Throughout this paper, denotes S as the output solution by the algorithm;
denote O and OPT (i.e. f(O) = OPT ) as the optimal set and the value of the
optimal sets respectively. We assume that a single query on the oracle value
requires O(1) time.

3 The Deterministic-Greedy Algorithm

In this section, we propose a deterministic algorithm for maximizing uncon-
strained weakly-monotone functions. The algorithm runs in n iterations. In the
i-th iteration, we only consider whether to keep the element ei in the solution.
The algorithm always maintains two feasible solutions S and T . The initial set-
ting of S is an empty set and the T is the ground set N . The algorithm in
arbitrary sequence checks each element ei ∈ N one by one to decide on adding it
to S or deleting it from T . The decision is greedy depend on the size of marginal
gain ai of adding ei to S and marginal gain bi of abandoning e from S. If ai is
not less than bi, adding ei to S; otherwise, removing ei from T . After traversing
all the elements in N , we get S = T which as the output of the algorithm. The
principle of double greedy is intuitive as the operation for the element that we
decide brings greater marginal benefits. A formal description of the algorithm
appears as Algorithm 1.

In order to prove the approximate ratio of the algorithm, we give some addi-
tional notations. According to the construction of S and T , S staring with the
empty set denotes S0, T staring with the ground set N denotes T0; in the i−th
iteration, the algorithm either adds ei to Si−1 or removes ei from Ti−1. Record
the S as Si and record T as Ti when we have finished the operation.

First, we introduce an intermediate function f((O∪Si)∩Ti), using the change
of intermediate function to bound the loss of f(S) and f(T ) in each iteration.

Lemma 2. For all i = 1, 2, · · · , n:

f((O ∪ Si−1) ∩ Ti−1) − f((O ∪ Si) ∩ Ti) ≤ 1
γ̂

[f(Si) − f(Si−1) + f(Ti) − f(Ti−1)]
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Algorithm 1. Deterministic-Greedy
Input: evaluation oracle f : 2N → R+

Output: the set S

1: Initialize S ← ∅, T ← N
2: for i = 1 to n do
3: Initialize ai ← f(S ∪ {ei}) − f(S)
4: Initialize bi ← f(T \ {ei}) − f(T )
5: if ai ≥ bi then
6: S ← S ∪ {ei}
7: T ← T
8: else
9: S ← S

10: T ← T \ {ei}
11: return S

Due to the length limitation, we only give the main idea of proof: from the
relationship between ai and bi, the proof is divided into two cases: ai ≥ bi or
ai < bi. In each case, we need to find out the relationship between Si−1, Ti−1

and Si, Ti, and show one of ai and bi must more than 0; then we discuss whether
ei is in the optimal solution O and whether the value of f((O ∪ Si−1) ∩ Ti−1)
increases; in the end, using the definition of γ̂ to find the relationship between
the f((O∪Si−1)∩Ti−1)−f((O∪Si)∩Ti) and f(Si)−f(Si−1)+f(Ti)−f(Ti−1).

Then, we use the total change of intermediate function f((O ∪ Si) ∩ Ti) to
bound the total loss of f(S) and f(T ) at the algorithm.

Lemma 3.

f((O ∪ S0) ∩ T0) − f((O ∪ Sn) ∩ Tn)) ≤ 1
γ̂

[f(Sn) + f(Tn) − f(S0) − f(T0)]

Proof. Summing up the inequalities in Lemma2 for all i = 1, 2, · · · , n, we get

n
∑

i=1

(f((O ∪ Si−1) ∩ Ti−1) − f(O ∪ Si) ∩ Ti)))

≤ 1
γ̂

n
∑

i=1

[f(Si) − f(Si−1) + f(Ti) − f(Ti−1)]

(4)

Combine the similar items, we have

f((O ∪ S0) ∩ T0) − f((O ∪ Sn) ∩ Tn))

≤ 1
γ̂

[f(Sn) + f(Tn) − f(T0)]
(5)

Notice, at the begining of the algorithm the intermediate function f((O ∪
S0) ∩ T0) is f(O).



56 M. Cui et al.

Theorem 1. For any non-negative weakly-monotone function f : 2N → R+,
Algorithm Deterministic-Greedy is a γ̂

γ̂+2 -approximation algorithm, the query
complexity is 2n + 2, the computing time is O(n).

Proof. From the setting of Si, Ti (i = 0, 1, · · · , n), we can easily get Sn = Tn = S;
(O ∪ Sn) ∩ Tn = Sn = S. So

f(O) − f(S) ≤ 2
γ̂

f(S)

Thus,

f(S) ≥ γ̂

γ̂ + 2
OPT.

Then, we consider the queries of the algorithm by two parts. The first part is
to compute the value of ai when every element ei arrive, the number of queries
in this part is n + 1. The second part is to compute the value of bi whenevery
element ei arrive, the number of queries in this part is also n + 1. Consequently,
the number of queries is 2n + 2. Thus, the computing time of the algorithm is
O(n) oracle queries plus O(n) other operations.

From [3], we know that for any ε > 0, (1/3 + ε)-approximation is tight for
deterministic algorithm for unconstrained submodular maximization problem.
When γ̂ = 1, the algorithm has an approximation ratio of 1/3. Therefore, we
can say our algorithm is tight.

4 Discussion

Today, we would face the increasingly large data sets that are ubiquitous in
modern machine learning and data mining applications. Greedy algorithm is
highly continuous and would no longer have advantages in large-scale data sets.
Various algorithms have been proposed to solve numerous submodular prob-
lems including large-scale problems according to application requirements, which
can be roughly divided into centralized algorithms, streaming algorithms, dis-
tributed algorithms and decentralized framework. My recent interest is parallel
algorithms for submodular problems. One future work is the research of paral-
lel algorithms for maximizing an unconstrained non-negative weakly-monotone
function on large-scale data sets or streaming setting.
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