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Abstract. Lower bounded correlation clustering problem is a general-
ization of the classical correlation clustering problem, which has many
applications in protein interaction networks, cross-lingual link detection,
and communication networks, etc. In the lower bounded correlation clus-
tering problem, we are given a complete graph and an integer L. Each
edge is labelled either by a positive sign + or a negative sign − whenever
the two endpoints of the edge are similar or dissimilar respectively. The
goal of this problem is to partition the vertex set into several clusters,
subject to an lower bound L on the sizes of clusters so as to minimize
the number of disagreements, which is the total number of the edges
with positive labels between clusters and the edges with negative labels
within clusters. In this paper, we propose the lower bounded correlation
clustering problem and formulate the problem as an integer program.
Furthermore, we provide two polynomial time algorithms with constant
approximate ratios for the lower bounded correlation clustering problem
on some special graphs.

Keywords: Lower bounded · Correlation clustering · Approximation
algorithm · Polynomial time

1 Introduction

Correlation clustering problem has numerous applications in the areas of machine
learning, computer vision, data mining, social networks and data compression.
It has been widely studied in the literature [1,11,13,18–20].

The correlation clustering problem was first introduced by Bansal et al. [4].
In this problem, we are given a complete graph G = (V,E), where each edge
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(u, v) ∈ E is labelled by + or − based on the similarity of vertices u and v. The
goal is to find a clustering of vertices V so as to make the edges within clusters
are mostly positive and the edges between different clusters are mostly negative.
Given a clustering, let each positive edge whose two endpoints lie in different
clusters and each negative edge whose endpoints lie in the same cluster be a
disagreement. Moreover, let each remaining edge be an agreement.

Based on the goal of the correlation clustering problem, there are two versions
of the correlation clustering problem: minimizing disagreements and maximizing
agreements. The goal of the former problem is to find a clustering so as to
minimize the number of disagreements. The goal of the latter problem is to find
a clustering so as to maximize the number of agreements. Given any instance
of the correlation clustering problem, the two different versions share the same
optimal solution. But the two versions of the problem are essentially different
from the point of view of approximation algorithm. In the rest of the paper,
we only consider the minimizing disagreements version of correlation clustering
problem.

The correlation clustering problem is NP -hard. Bansal et al. [4] give a 17433-
approximation algorithm, which is the first constant approximation algorithm
for the correlation clustering problem. Charikard et al. [7] first provide a very
natural linear programming formulation of the problem and prove that the inte-
grality gap of the linear program is 2. Secondly, they propose a 4-approximation
algorithm by using the method of region growth, which significantly improves the
approximation ratio of the algorithm provided by Bansal et al. [4]. Finally, for
the correlation clustering problem on general graphs, they provided an O(log n)-
approximation algorithm. The current best approximation algorithm is provided
by Chawla et al. [8], which achieves an approximate ratio of 2.06.

Because of the complexity of the practical applications, the correlation clus-
tering problem has some limitations in modelling real-life situations. In order to
adapt to the development of society and guide practice more effectively and real-
istically, various generalizations of the correlation clustering problem have been
proposed and widely studied. Such as the min-max correlation clustering [2], the
chromatic correlation clustering [5], the overlapping correlation clustering prob-
lem [6], the higher-order correlation clustering [9], the capacitated correlation
clustering problem [16], and the correlation clustering with noisy input [14,15],
among others.

Lower bound constraint is a natural constraint in combinatorial optimization
problems and it has been extensively studied [3,10,12,17]. However, there has
been no relevant research on the lower bounded correlation clustering problem.
Therefore, this work considers the lower bounded correlation clustering problem,
which is a new and natural variant of the correlation clustering problem. In this
problem, we are given a labeled complete graph G = (V,E) as well as an integer
L. The goal of this problem is to partition set V into several clusters with each
size at least L so as to minimize the total number of disagreements.

Note that the lower bounded correlation clustering problem includes the clas-
sical correlation clustering problem as a special case by letting L = 1. Note the
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case where L > |V |/2 is trivial because only one feasible solution exists for
the lower bounded correlation clustering problem. Therefore, we assume that
L ≤ |V |/2 for the rest of the discussion.

There are three main contributions in this paper.

(1) We first propose the lower bounded correlation clustering problem and give
an integer programming formulation for the problem.

(2) We provide an algorithm which returns V as the cluster. We show that the
algorithm always outputs an optimal solution for the lower bounded correla-
tion clustering problem on (2|V |/L−1)-positive edge dominant graphs (The-
orem 1). Moreover, we prove that the same algorithm is a 20-approximation
algorithm for the lower bounded correlation clustering problem on 4-positive
edge dominant graphs (Theorem 2).

(3) We present another algorithm which may return multiple clusters and prove
the algorithm is a 20-approximation algorithm for the lower bounded cor-
relation clustering problem on (5|V |/L − 1)-positive edge dominant graphs
(Theorem 3).

The rest of our paper is structured as follows. Section 2 presents some def-
initions as well as the formulation of the lower bounded correlation clustering
problem. The two algorithms are presented in Sects. 3 and 4, respectively. Some
discussions are provided in Sect. 5.

2 Lower Bounded Correlation Clustering Problem

In this section, we give some definitions used in this paper as well as the for-
mulation of the lower bounded correlation clustering problem. Given a complete
graph G = (V,E), let E+ and E− be the sets of all positive edges and all nega-
tive edges, respectively, For each positive integer k, denote set [k] = {1, 2, . . . , k}.
The lower bounded correlation clustering is defined in Definition 1.

Definition 1 (Lower bounded correlation clustering problem). Given a
labelled complete graph G = (V,E) as well as an integer L, the goal is to find a
partition C = {C1, C2, . . . , Ck} of V which satisfies |Ci| ≥ L, i ∈ [k] such that

∑

i∈[k]

|(u, v) ∈ E− : u, v ∈ Ci| +
∑

i,j∈[k]

|(u, v) ∈ E+ : u ∈ Ci, v ∈ Cj , i �= j|

is minimized.

Definition 2 (M-positive edge dominant graph). Graph G = (V,E) is an
M -positive edge dominant graph if

inf
v∈V

|E+
v |

|E−
v | ≥ M,

where E+
v := {(u, v) ∈ E+, u ∈ V } and E−

v := {(u, v) ∈ E−, u ∈ V }.
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For each edge (u, v), we introduce a 0-1 variable xuv such that xuv = 1 when
the two vertices of edge (u, v) lie in different clusters and xuv = 0 when the two
vertices of edge (u, v) lie in the same cluster. Based on the above variables and
Definition 1, we formulate the lower bounded correlation clustering problem as
the following integer program (1).

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V, (1)
∑

v∈V

(1 − xuv) ≥ L, ∀u ∈ V,

xuu = 0, ∀u ∈ V,

xuv ∈ {0, 1}, ∀u, v ∈ V.

The objective function is the total number of disagreements. The quantity∑
(u,v)∈E+ xuv is the number of disagreements generated by the positive edges,

while the quantity
∑

(u,v)∈E−(1−xuv) is the number of disagreements generated
by the negative edges. There are three types of constraints in (1). The first one
is the triangle inequality, which insures the program returns a feasible cluster of
the correlation clustering problem. The second one is a lower bound constraint,
which guarantees that there are at least L vertices in each cluster. The third one
is the natural binary constraint. By relaxing above 0-1 variables, we obtain the
LP relaxation of (1).

min
∑

(u,v)∈E+

xuv +
∑

(u,v)∈E−
(1 − xuv)

s. t. xuv + xvw ≥ xuw, ∀u, v, w ∈ V, (2)
∑

v∈V

(1 − xuv) ≥ L, ∀u ∈ V,

xuu = 0, ∀u ∈ V,

0 ≤ xuv ≤ 1, ∀u, v ∈ V.

3 A Simple Effecient Algorithm

In this section, we provide Algorithm1, which returns set V as the only clus-
ter. Furthermore, we prove that Algorithm1 achieves a constant approximation
ration for the lower bounded correlation clustering problem when restricted to
two special graphs.

Theorem 1 below can be shown based on the structure of the feasible solutions
of the lower bounded correlation clustering problem.

Theorem 1. Algorithm1 is an optimal algorithm for the lower bounded corre-
lation clustering problem on (2|V |/L − 1)-positive edge dominant graphs.
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Algorithm 1
Input: Integer L, a labelled complete graph G = (V,E).
Output: A partition of vertices.
1: Let V be a cluster.
2: return cluster V .

Proof. For each (2|V |/L−1)-positive edge dominant graph G = (V,E), we have
|E−

v | ≤ L/2,∀v ∈ V . Moreover, for each feasible solution C = {C1, . . . , Cm}
of the instance I = (G,L) which contains more than one cluster. There are
at least L cut edges generated by each vertex v. Moreover, there are at least
L/2 disagreements generated by the positive edges among these cut edges since
|E−

v | ≤ L/2. Therefore, Algorithm 1 returns an optimal solution since the dis-
agreements generated by each vertex v ∈ V is no more than |E−

v | and it can be
bounded by L/2. �

For any instance I = (G,L), where G = (V,E) is a complete 4-positive edge
dominant graph satisfying |E−

v | ≤ (|V | − 1)/5, v ∈ V , we solve (2) to obtain an
optimal fractional solution x∗ of I. For each vertex v ∈ V , compute

Avgv(V ) :=
∑

t∈V x∗
vt

|V | .

Let
cen(V ) := arg min

v∈V
Avgv(V ).

be the center vertex of set V . Then we can analyze the upper bound on the
number of disagreements based on the value of Avgcen(V )(V ). Specifically, we
consider the following two cases:

(1) Avgcen(V )(V ) ≤ 17/80;
(2) Avgcen(V )(V ) > 17/80.

3.1 Avgcen(V )(V ) ≤ 17/80

Lemma 1. For each negative edge (u,w) with x∗
ucen(V ), x

∗
wcen(V ) ≤ 19/40. The

number of disagreement generated by the negative edge (u,w) is bounded by

20 (1 − x∗
uw) .

Proof. From the first constraint of (2) and the inequalities x∗
ucen(V ), x

∗
wcen(V ) ≤

19/40, we have

1 − x∗
uw ≥ 1 − x∗

ucen(V ) − x∗
wcen(V ) ≥ 1 − 38

40
=

1
20

.

The number of disagreement generated by edge (u,w) = 1 ≤ 20(1 − x∗
uw).

We conclude the lemma. �
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Lemma 2. For each vertex w ∈ V with x∗
wcen(V ) > 19/40, the number of dis-

agreements generated by the negative edges (u,w) with x∗
ucen(V ) ≤ x∗

wcen(V ) can
be bounded by

20

⎡

⎣
∑

(u,w)∈E+,x∗
ucen(V )≤x∗

wcen(V )

x∗
uw +

∑

(u,w)∈E−,x∗
ucen(V )≤x∗

wcen(V )

(1 − x∗
uw)

⎤

⎦ .

Proof. For each vertex w ∈ V , denote

Pw(V ) :=
{
u ∈ V : (u,w) ∈ E+, x∗

ucen(V ) ≤ x∗
wcen(V )

}
,

Nw(V ) :=
{
u ∈ V : (u,w) ∈ E−, x∗

ucen(V ) ≤ x∗
wcen(V )

}
.

Recall Avgcen(V )(V ) ≤ 17/80 and x∗
wcen(V ) > 19/40. We obtain that there are

at least |V |/2 vertices in Pw(V )∪Nw(V ). Moreover we have |Pw(V )| ≥ |Nw(V )|
since

|Nw(V )| ≤ |E−
w | ≤ |V | − 1

5
.

Then, we get
∑

u∈Pw(V )

x∗
uw +

∑

u∈Nw(V )

(1 − x∗
uw)

≥
∑

u∈Pw(V )

(
x∗
wcen(V ) − x∗

ucen(V )

)
+

∑

u∈Nw(V )

(
1 − x∗

wcen(V ) − x∗
ucen(V )

)

= x∗
wcen(V )|Pw(V )| +

(
1 − x∗

wcen(V )

)
|Nw(V )| −

∑

u∈Pw(V )∪Nw(V )

x∗
ucen(V )

≥ 19
40

|Pw(V )| − 17
80

(|Pw(V )| + |Nw(V )|)

≥ 1
20

|Pw(V )|.

Therefore, the number of disagreements generated by the negative edges (u,w)
with x∗

ucen(V ) ≤ x∗
wcen(V ) is bounded by

20

⎡

⎣
∑

u∈Pw(V )

x∗
uw +

∑

u∈Nw(V )

(1 − x∗
uw)

⎤

⎦ .

We conclude the lemma. �

3.2 Avgcen(V )(V ) > 17/80

Lemma 3. For each vertex w ∈ V , the number of disagreements generated by
the negative edges (u,w) is bounded by

20
∑

(u,w)∈E+,u∈V

x∗
uw.
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Proof. From the definition of cen(V ), we obtain that if Avgcen(V )(V ) > 17/80,
then for each vertex w ∈ V

∑
u∈V x∗

uw

|V | >
17
80

(3)

holds. Moreover, for each vertex w ∈ V , we have

|E−
w | ≤ (|V | − 1)

5
and |E+

w | ≥ 4(|V | − 1)
5

. (4)

Combining (3) and (4), we obtain that for each vertex w ∈ V ,
∑

u∈E+
w
x∗
uw

|E+
w | ≥ 17

80
− 1

5
=

1
80

holds. Therefore, for each vertex w ∈ V , the number of disagreements generated
by the negative edges (u,w) is no more than |E+

w |/4 and it is bounded by

20
∑

u∈E+
w

x∗
uw.

�.

Combining Lemma 1–3, we obtain Theorem 2.

Theorem 2. Algorithm1 is a 20-approximation algorithm for the lower bounded
correlation clustering problem on 4-positive edge dominant graphs.

4 A Complex Algorithm May Outputs Multiple Clusters

In Sect. 3, we give a algorithm which only return one cluster. However, in some
applications, we may need to output more than one clusters. Therefore, we pro-
vide Algorithm 2 for some special graphs in this section which may output mul-
tiple clusters. The detailed algorithm is shown in Algorithm2.

We assume without loss of generality that the solution returned by Algo-
rithm2 contains exactly k clusters. The center set of vertices of the solution
is C := {v1, v2, . . . , vk}. The corresponding clusters are Cv1 , Cv2 , . . . , Cvk

. The
number of the disagreements generated by partition C is

∑

i∈[k−1]

|(u, v) ∈ E+ : u ∈ Cvi
, v ∈ ∪t∈[k]\[i]Cvt

| +
∑

i∈[k]

|(u, v) ∈ E− : u, v ∈ Cvi
|.

The first part is the number of disagreements generated by the positive edges
and the upper bound on the number of these disagreements is analyzed in Sub-
sect. 4.1. The second part is the number of disagreements generated by the nega-
tive edges and the upper bound on the number of these disagreements is analyzed
in Subsect. 4.2.
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Algorithm 2
Input: Integer L, and a labelled complete graph G = (V,E) with |E−

v | ≤ L/5, v ∈ V .
Output: A partition of vertices.
1: Solve (2) to obtain an optimal fractional solution x∗.
2: Initialize the un-cluster set S := V , and the center set of vertices C := ∅.
3: while S �= ∅ do
4: for each vertex v ∈ S do
5: Order the vertices in S in nondecreasing value of x∗ from v. Let set T 1

v be the
first L vertices in S according to above order and T 2

v := {t ∈ S : x∗
vt ≤ 1/2}.

Set Tv = T 1
v ∪ T 2

v and compute

Avgv(Tv) :=

∑
t∈Tv

x∗
vt

|Tv| .

6: end for
7: Choose vertex v with minimum Avgv(Tv).
8: if |S\Tv| ≥ L and Avgv(Tv) ≤ 17/80 then
9: Let Cv := Tv be a cluster.
10: Update S := S\Cv and C := C ∪ {v}.
11: else
12: Select

v := argmin
s∈S

∑
t∈S x∗

st

|S| .

13: Let Cv := S be a cluster.
14: Update S := ∅ and C := C ∪ {v}.
15: end if
16: end while
17: return Set C and C = {Cv : v ∈ C}.

4.1 Disagreements Generated by Positive Edges

Recall Algorithm 2. For each i ∈ [k−1], we have Avgvi
(Cvi

) ≤ 17/80. We analyze
the upper bound on the number of disagreements generated by the positive edges
in the following lemma.

Lemma 4. For each i ∈ [k − 1] and vertex v ∈ V \ ∪t∈[k]\[i] Cvt
, the number of

disagreements generated by the positive edges (q, v), q ∈ Cvi
is bounded by

64
17

⎡

⎣
∑

(q,v)∈E+,q∈Cvi

x∗
qv +

∑

(q,v)∈E−,q∈Cvi

(
1 − x∗

qv

)
⎤

⎦ .

Proof. For each v ∈ V \ ∪t∈[k]\[i] Cvt
, denote

E+
v (Cvi

) :=
{
(q, v) ∈ E+ : q ∈ Cvi

}
,

E−
v (Cvi

) :=
{
(q, v) ∈ E− : q ∈ Cvi

}
.

From |E−
v | ≤ L/5 and |E−

v (Cvi
)| + |E+

v (Cvi
)| ≥ L, we have

|E−
v (Cvi

)| ≤ |E+
v (Cvi

)|/4. (5)
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Combining (5) and Step 5 of Algorithm2, we have
∑

q∈E+
v (Cvi

)

x∗
qv +

∑

q∈E−
v (Cvi

)

(
1 − x∗

qv

)

≥
∑

q∈E+
v (Cvi

)

(
x∗
vvi

− x∗
qvi

)
+

∑

q∈E−
v (Cvi

)

(
1 − x∗

vvi
− x∗

qvi

)

= x∗
vvi

|E+
v (Cvi

)| +
(
1 − x∗

vvi

) |E−
v (Cvi

)| −
∑

q∈Cvi

x∗
qvi

≥ 1
2
|E+

v (Cvi
)| − 17

80
(|E+

v (Cvi
)| + |E−

v (Cvi
)|)

≥ 17
64

|E+
v (Cvi

)|.

Therefore, the number of disagreements generated by the positive edges
(q, v), q ∈ Cvi

equals |E+
v (Cvi

)| and it is bounded by

64
17

⎡

⎣
∑

(q,v)∈E+,q∈Cvi

x∗
qv +

∑

(q,v)∈E−,q∈Cvi

(
1 − x∗

qv

)
⎤

⎦ .

We conclude the lemma. �

4.2 Disagreements Generated by Negative Edges

In this subsection, we consider the disagreements generated by the negative
edges. Similar to Lemmas 2 and 3, we obtain the following two lemmas.

Lemma 5. For each cluster Cvi
with Avgvi

(Cvi
) ≤ 17/80 and vertex w ∈ Cvi

, if
x∗
wvi

> 19/40, then the number of disagreements generated by the negative edges
(u,w) with x∗

uvi
≤ x∗

wvi
is bounded by

20

⎡

⎣
∑

u∈Cvi
:(u,w)∈E+,x∗

uvi
≤x∗

wvi

x∗
uw +

∑

u∈Cvi
:(u,w)∈E+,x∗

uvi
≤x∗

wvi

(1 − x∗
uw)

⎤

⎦ .

Lemma 6. If Avgvk
(Cvk

) > 17/80, then for each vertex w ∈ Cvk
, the number

of disagreements generated by the negative edges (u,w), u ∈ Cvk
is bounded by

20
∑

(u,w)∈E+,u∈Cvk

x∗
uw.

Combining Lemmas 1, 4–Lemma 6, we obtain Theorem 3.

Theorem 3. Algorithm2 is a 20-approximation algorithm for the lower bounded
correlation clustering problem on (5|V |/L − 1)-positive edge dominant graphs.
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5 Discussions

In this paper, we first study the lower bounded correlation clustering problem
and give an integer programming formulation for the problem. We provide two
polynomial time approximation algorithms and prove that the algorithms in
this paper achieve constant approximate ratios for the lower bounded correlation
clustering problem on some special graphs. About the lower bounded correlation
clustering problem, we propose the following future research questions:

– In this paper, we prove that our algorithms achieve constant ratio for the
correlation clustering problem on some special graphs. It will be interesting
to design a polynomial time constant approximation algorithm for the lower
bounded correlation clustering problem on general complete graphs.

– In this paper, we study the minimizing disagreements version of the lower
bounded correlation clustering problem. There is no relevant research on the
maximizing agreements version of the lower bounded correlation clustering
problem. Therefore, another interesting future work is to study the maximiz-
ing agreements version of the lower bounded correlation clustering problem.
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