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Abstract. Stimulated by practical applications arising from viral mar-
keting. This paper investigates a novel Budgeted k-Submodular Maxi-
mization problem defined as follows: Given a finite set V , a budget B and
a k-submodular function f : (k + 1)V �→ R+, the problem asks to find a
solution s = (S1, S2, . . . , Sk), each element e ∈ V has a cost ci(e) to be
put into i-th set Si, with the total cost of s does not exceed B so that
f(s) is maximized. To address this problem, we propose two streaming
algorithms that provide approximation guarantees for the problem. In
particular, in the case of each element e has the same cost for all i-th
sets, we propose a deterministic streaming algorithm which provides an
approximation ratio of 1

4
−ε when f is monotone and 1

5
−ε when f is non-

monotone. For the general case, we propose a random streaming algo-
rithm that provides an approximation ratio of min{α

2
, (1−α)k
(1+β)k−β

}−ε when

f is monotone and min{α
2
, (1−α)k
(1+2β)k−2β

} − ε when f is non-monotone in

expectation, where β = maxe∈V,i,j∈[k],i�=j
ci(e)
cj(e)

and ε, α are fixed inputs.

Keywords: k-submodular · Budget constraint · Approximation
algorithm · Streaming algorithm

1 Introduction

Maximizing k-submodular functions has attracted a lot of attention because
of its potential in solving various combinatorial optimization problems such as
influence maximization [8,9,11,12], sensor placement [9,11,12], feature selection
[14] and information coverage maximization [11]. Given a finite set V and an
integer k, we define [k] = {1, 2, . . . , k} and (k + 1)V = {(X1,X2, . . . , Xk)|Xi ⊆
V,∀i ∈ [k],Xi ∩ Xj = ∅,∀i �= j} be a family of k disjoint sets. A function
f : (k + 1)V �→ R+ is k-submodular iff for any x = (X1,X2, . . . , Xk) and y =
(Y1, Y2, . . . , Yk) ∈ (k + 1)V , we have:

f(x) + f(y) ≥ f(x � y) + f(x � y) (1)
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where
x � y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x � y =

⎛
⎝X1 ∪ Y1 \ (

⋃
i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃
i�=k

Xi ∪ Yi)

⎞
⎠

Although there exists a polynomial time to maximize a k-submodular func-
tion [16], maximizing a k-submodular function is still NP-hard. Studying on
maximizing a k-submodular function was initiated by Singh et al. [14] with
k = 2. Ward et al. [17] first studied to maximize an unconstrained k-submodular
function for general k and devised a deterministic greedy algorithm which pro-
vided an approximation ratio of 1/3. Later on, [6] introduced a random greedy
approach which improved the approximation ratio to k

2k−1 by applying a proba-
bility distribution to select any larger marginal element that has a higher prob-
ability. The authors in [10] eliminated the random told above but the number
of queries increased to O(n2k2). The unconstrained maximizing k-submodular
function was further studied in [15] in online settings.

Under the size constraint, Oshaka et al. [9] first proposed 1/2-approximation
algorithm by using a greedy approach for maximizing monotone k-submodular
maximization functions. [13] showed a greedy selection that could give an approx-
imation ratio of 1/2 under the matroid constraint. The authors in [11] then
further proposed multi-objective evolutionary algorithms that provided 1/2-
approximation ratio under the size constraint but took O(kn log2 B) queries in
expectation. Recently, Nguyen [12] et al. considered the k-submodular maximiza-
tion problem subjected to the total size constraint under noises and devised two
streaming algorithms which provided the approximation ratio of O(ε(1− ε)−2B)
when f was monotone and O(ε(1 − ε)−3B) when f was non-monotone.

Although there have been many attempts to solve the problem of maximizing
a k-submodular function under several kinds of constraints, they did not cover
several cases that could happens frequently in reality in which each element
could be customized in terms of its private cost or a problem was provided with
just limited budgets. Let’s consider the following application:

Influence Maximization with k Topics. Given a social network under an
information diffusion model and k topics. Each user has a cost to start the
influence under a topic which manifests how hard it is to initially influence to
a respective person. Given a budget B, we consider the problem of finding a
set of users (seed set), each initially adopts a topic, with the total cost is at
most B to maximize the expected number of users who are eventually activated
by at least one topic. In this application, the expected number of influenced
users (objective) function is k-submodular where each user corresponds to each
element in the set V [8,9,12].

Motivated by that observation, in this work, we study a novel problem named
Budgeted k-submodular maximization (BkSM), defined as follows:

Definition 1. Given a finite set V , a budget B and a k-submodular function
f : (k + 1)V �→ R+. The problem asks to find a solution s = (S1, S2, . . . , Sk),
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each element e ∈ V has a cost ci(e) > 0 to be put in to Si, with total cost
c(s) =

∑
i∈[k]

∑
e∈Si

ci(e) ≤ B so that f(s) is maximized.

In addition, input data increasing constantly makes it impossible to be stored
in computer memory. Therefore it is critical to devise streaming algorithms which
not only reduce the requirement of stored memory but also be able to produce
guaranteed solutions in a single pass or some passes. Although streaming algo-
rithm is one of efficient methods for solving submodular maximization prob-
lems under various kinds of constraints such as cardinality constraint [1,3,7,18],
knapsack constraint [5], k-set constraint [4] and matroid constraint [2], it is not
potential to directly be applied to our BkSM problem due to intrinsic differences
between submodularity and k-submodularity.

Our Contributions. In this paper we propose several algorithms which provide
theoretical bounds of BkSM. Overall, our contributions are as follows:

– For a special case when every element has the same cost to be added to any
i-th set, we first propose a deterministic streaming algorithm (Algorithm2)
which runs in a single pass, has O(kn

ε log B) query complexity, O(B
ε log B)

space complexity and returns an approximation ratio of 1
4 − ε when f is

monotone and 1
5 − ε when f is non-monotone for any input value of ε > 0.

– For the general case, we propose a random streaming algorithm (Algorithm 4)
which runs in a single pass, has O(kn

ε log B) query complexity, O(B
ε log B)

space complexity and returns an approximation ratio of min{α
2 , (1−α)k

(1+β)k−β }−ε

when f is monotone and min{α
2 , (1−α)k

(1+2β)k−2β } − ε when f is non-monotone in

expectation where β = maxe∈V,i,j∈[k],i �=j
ci(e)
cj(e)

and α ∈ (0, 1], ε ∈ (0, 1) are
inputs.

Our algorithms is an inspired suggestion from [1,5] in which we also sequentially
make decision based on the value of incremental objective function per cost of
each element and guess the optimal solution through the maximum singleton
value. In addition, we introduce a new probability distribution to subsequently
select a new element to candidate solutions.

Organization. The rest of the paper is organized as follows: The notations and
properties of k-submodular functions are presented in Sect. 2. Section 3 and 4
present our algorithms and theoretical analysis. Finally, we conclude this work
in Sect. 5.

2 Preliminaries

Given a finite set V and an integer k, denote [k] = {1, 2, . . . , k}, let (k + 1)V =
{(X1,X2, . . . , Xk)|Xi ⊆ V,∀i ∈ [k],Xi ∩Xj = ∅,∀i �= j} be a family of k disjoint
sets, called a k-set. We define suppi(x) = Xi, supp(x) = ∪i∈[k]Xi, Xi is called
i-th set of x and an empty k-set is defined as 0 = (∅, . . . , ∅).

For x = (X1,X2, . . . Xk) and y = (Y1, Y2, . . . , Yk) ∈ (k + 1)V , if e ∈ Xi, we
write x(e) = i else if e /∈ ∪i∈[k]Xi, we write x(e) = 0 and i is called the position
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of e; adding e /∈ supp(x) into Xi can be represented by x � (e, i). In the case of
Xi = {e}, and Xj = ∅,∀j �= i, we denote x as (e, i). We denote x � y iff Xi ⊆ Yi

for all i ∈ [k].
A function f : (k+1)V �→ R is k-submodular iff for any x = (X1,X2, . . . , Xk)

and y = (Y1, Y2, . . . , Yk) ∈ (k + 1)V , we have:

f(x) + f(y) ≥ f(x � y) + f(x � y) (2)

where
x � y = (X1 ∩ Y1, . . . , Xk ∩ Yk)

and

x � y =

⎛
⎝X1 ∪ Y1 \ (

⋃
i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃
i�=k

Xi ∪ Yi)

⎞
⎠

A function f is monotone iff for any x ∈ (k + 1)V , e /∈ supp(x) and i ∈ [k], we
have

Δe,if(x) = f(X1, . . . , Xi−1,Xi ∪ {e},Xi+1, . . . , Xk) − f(X1, . . . , Xk) ≥ 0 (3)

From [17], the k-submodularity of f implies the orthant submodularity, i.e.,

Δe,if(x) ≥ Δe,if(y) (4)

and the pairwise monotonicity, i.e.,

Δe,if(x) + Δe,jf(x) ≥ 0 (5)

for any x,y ∈ (k + 1)V with x � y, e /∈ supp(y) and i, j ∈ [k] with i �= j.
In this paper, we assume that f is normalized, i.e., f(0) = 0 and each element

e has a cost ci(e) to be added into i-th set of a solution and the total cost of
k-set x is

c(x) =
∑

i∈[k],e∈suppi(x)

ci(e)

We define β as the largest ratio of different costs of an element, i.e.,

β = max
e∈V,i�=j

ci(e)
cj(e)

Without loss of generality, throughout this paper, we assume that every element
e satisfies ci(e) ≥ 1,∀i ∈ [k] and ci(e) ≤ B, otherwise we can simply remove
it. We only consider k ≥ 2 because if k = 1, the k-submodular becomes to
submodular function.
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3 Deterministic Streaming Algorithm When β = 1

In this section, we introduce a deterministic streaming algorithm for the special
case when β = 1, i.e., each element has the same cost for all i-th sets ci(e) =
cj(e),∀e ∈ V, i �= j. For simplicity, we denote c(e) = ci(e) = cj(e).

The main idea of our algorithms is that (1) we select each observed element e
based on comparing between the ratio of f per total cost at the current solution
with a threshold which is set in advance, and (2) we use the maximum singleton
value (emax, imax) defined as

(emax, imax) = arg max
e∈V,i∈[k]

f((e, i)) (6)

to obtain the final solution. We first assume that the optimal solution is known
and then remove this assumption by using the method in [1] to approximate the
optimal solution.

3.1 Deterministic Streaming Algorithm with Known Optimal
Solution

We first present a simplified version of our deterministic streaming algorithm
when the optimal solution is known. Denote o as an optimal solution and opt =
f(o), the algorithm receives v such that v ≤ opt and a parameter α ∈ (0, 1] as
inputs. The role of these parameters are going to be clarified in the main version.
The details of the algorithm are fully presented in Algorithm1. We define the
notations as follows:

• (ej , ij) as the j-th element and its position added in the main loop of the
algorithm;

• sj - the solution when adding j elements in the main loop of the algorithm;
• oj = (o � sj) � sj ;
• oj−1/2 = (o � sj) � sj−1;
• sj−1/2: If ej ∈ supp(o), then sj−1/2 = sj−1 � (ej ,o(ej)). If ej /∈ supp(o),

sj−1/2 = sj−1;
• ut = {(u1, j1), (u2, j2), . . . , (ur, jr)} - a set of elements that are in ot but not

in st, r = |supp(ut)|
• ut

i = st � {(u1, j1), (u2, j2), . . . , (ui, ji)}
The algorithm initiates a candidate solution s0 as an empty k-set. For each

new incoming element e, the algorithm updates a tuple (emax, imax) to find the
maximal singleton then checks that the total cost c(st)+c(e) exceed B or not? If
not, it finds a position i′ ∈ [k] that f(st � (e, i′)) is maximal and adds (e, i) into
st if f(st�(e,i′))

c(st)+c(e) ≥ αv
B . Otherwise, it ignores e and receives the next element. This

step helps the algorithm select any element which has high value of marginal
value per its cost as well as eliminate bad ones.

After finishing the main loop, the algorithm returns the best solution in {st}∪
{(emax, imax)} when f is monotone or returns the best solution in {sj : j ≤ t}
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Algorithm 1. Deterministic streaming algorithm with known opt

Input: a function f : (k + 1)V �→ R+, B > 0, α ∈ (0, 1], v that v ≤ opt
Output: a solution s

1. s0 ← 0, t ← 0
2. foreach e ∈ V do
3. ie ← argmaxi∈[k] f((e, i))
4. (emax, imax) ← argmax(e1,i1)∈{(emax,imax),(e,ie)} f((e1, i1))
5. if c(st) + c(e) ≤ B then
6. i′ ← argmaxi∈[k] f(s

t � (e, i))

7. if f(st�(e,i′))
c(st)+c(e)

≥ αv
B

then

8. st+1 ← st � (e, i′), t ← t + 1

9. return argmaxs∈{st}∪{(emax,imax)} f(s) if f is monotone,
argmaxs∈{sj :j≤t}∪{(emax,imax)} f(s) if f is non-monotone.

∪ {(emax, imax)} when f is non-monotone. We now analysis the approximation
guarantee of Algorithm 1. Denote et is the last addition of the main loop of the
Algorithm 1. By exploiting the relation among o, oj and sj , j ≤ t, we obtain the
following Lemma.

Lemma 1. If f is monotone then v − f(ot) ≤ f(st) and if f is non-monotone
then v − f(ot) ≤ 2f(st).

Due to the space constraint, we omit some proofs and presented them in a full
version of this paper. Lemma 1 plays an important role for analyzing approxi-
mation ratio of the algorithm, which stated in the following Theorem.

Theorem 1. Algorithm1 is a single pass streaming algorithm and returns a
solution s satisfying:

– If f is monotone, f(s) ≥ min{α
2 , 1−α

2 }v, f(s) is maximized to v
4 when α = 1

2 .
– If f is non-monotone, f(s) ≥ min{α

2 , 1−α
3 }v, f(s) is maximized to v

5 when
α = 2

5 .

3.2 Deterministic Streaming Algorithm

We present our deterministic streaming algorithm in the case of β = 1 which
reuses the framework of Algorithm 1 but removes the assumption that o is
known. We use the dynamic update method in [1] to obtain a good approxi-
mation of opt.

To specific, denote m = maxe∈V,i∈[k] f((e, i)), we have m ≤ opt ≤ Bm.
Therefore we use the value v = (1 + ε′)j for {j|m ≤ (1 + ε′)j ≤ Bm, j ∈ Z+}
to guess the value of opt by showing that there exits v such that (1 − ε′)opt ≤
v ≤ opt. However, in order to find m, we have to require at least one pass
over V . Therefore, we adapt the dynamic update method in [1] which updates
m = max{m,maxi∈[k] f((e, i))} with an already observed element e to determine
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the range of guessed optimal values. This method can help algorithm maintain
a good estimation of the optimal solution if that range shifts forward when next
elements are observed. We implement this method by using variables stj and tj
to store a candidate solution and the number of its elements in which v = (1+ε′)j

is an guessed value of opt.
We set the value of α by using Theorem 1 which provides the best approxi-

mation guarantees. The value of ε′ is set to several times higher than ε to reduce
the complexity but still ensure approximation ratios. The detail of our algorithm
is presented in Algorithm 2.

Algorithm 2. Deterministic streaming algorithm
Input: a function f : (k + 1)V �→ R+, B > 0, ε > 0.
Output: a solution s

1. If f is monotone α ← 1
2
, ε′ ← 4ε else α ← 2

5
, ε′ ← 5ε

2. foreach e ∈ V do
3. ie ← argmaxi∈[k] f((e, i))
4. (emax, imax) ← argmax(e1,i1)∈{(emax,imax),(e,ie)} f((e1, i1))

5. O ← {j|f((emax, imax)) ≤ (1 + ε′)j ≤ Bf((emax, imax)), j ∈ Z+}
6. for j ∈ O do
7. if c(stj ) + c(e) ≤ B then

8. i′ ← argmaxi∈[k] f(s
tj � (e, i)) if f(s

tj �(e,i′))
c(s

tj )+c(e)
≥ α(1+ε′)j

B
then

9. stj+1 ← stj � (e, i′), tj ← tj + 1

Lemma 2. In Algorithm2, there exists a number j ∈ Z+ so that v = (1+ ε′)j ∈
O satisfies (1 − ε′)opt ≤ v ≤ opt

Proof. Denote m = f((emax, imax)). Duet to k-submodularity of f , we have

m ≤ opt = f(o) ≤
∑

e∈supp(o)

f(e,o(e)) ≤ Bm

Let j = �log1+ε′ opt�, we have v = (1 + ε′)j ≤ opt ≤ Bm and v ≥ (1 +
ε′)log1+ε′ (opt)−1 = opt

1+ε′ ≥ opt(1 − ε′).

The performance of Algorithm 2 is claimed in the following Theorem.

Theorem 2. Algorithm2 is a single pass streaming algorithm that has
O(kn

ε log B) query complexity, O(B
ε log B) space complexity and provides an

approximation ratio of 1
4 − ε when f is monotone and 1

5 − ε when f is non-
monotone.

Proof. The size of O is at most 1
ε′ log B, finding each stj takes at most O(kn)

queries and stj includes at most B elements. Therefore, the query complexity is
O(kn

ε log B) and total space complexity is O(B
ε log B).

By Lemma 2, there exists an integer number j ∈ Z+ so that v = (1+ε′)j ∈ O
satisfies (1 − ε′)opt ≤ v ≤ opt. Apply Theorem 1, for the monotone case we
have: f(s) ≥ 1

4v ≥ 1
4 (1 − ε′)opt = (14 − ε)opt and for the non-monotone case:

f(s) ≥ 1
5v ≥ 1

5 (1 − ε′)opt = (15 − ε)opt. Hence, the theorem is proved. ��
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4 Random Streaming Algorithm for General Case

In the case each element e has multiple different cost ci(e) for each i-th set, we
can not apply previous algorithms. Therefore, in this section we introduce one
pass streaming which provides approximation ratios in expectation for BkSM
problem.

At the core of our algorithm, we introduce a new probability distribution to
choose a position for each element to establish the relationship among o, oj and
sj (Lemma 3) and analyze the performance of our algorithm. Besides, we also use
a predefined threshold to filter high-value elements into candidate solutions and
the maximum singleton value to give the final solution. Similar to the previous
section, we first introduce a simplified version of the streaming algorithm when
the optimal solution is known in advance.

4.1 Random Algorithm with Known Optimal Solution

This algorithm also receives the inputs α ∈ (0, 1) and v that v ≤ opt. We use
the same notations as in Sect. 3. This algorithm also requires one pass over V .
The algorithm imitates an empty k-set s0 and subsequently updates the solution
after once passing over V . Be different from Algorithm 1, for each e ∈ V being
observed, the algorithm finds a set collection J that contains positions satisfying
the total cost is at most B and the ratio of the increment of the objective function
per cost is at least a given threshold, i.e.,

J =
{

i ∈ [k] : c(st) + ci(e) ≤ B and
f(st � (e, i)) − f(st)

ci(e)
≥ αv

B

}
(7)

These constraints help the algorithm eliminate which position having low
increment of the objective function over its cost. If J �= ∅, the algorithm puts e
into set i of st with a probability:

p
|J|−1
i

T
=

( f(st�(e,i))−f(st)
ci(e)

)|J|−1

∑
i∈J( f(st�(e,i))−f(st)

ci(e)
)|J|−1

(8)

Simultaneously, the algorithm finds the maximum singleton value
(emax, imax) by updating the current maximal value from the set of observed
elements. As Algorithm 3, the algorithm also uses (emax, imax) as one of candi-
date solutions and finds the best among them. The full detail of this algorithm
is described in Algorithm 3.

Lemma 3 provides the relationship among o,oj and sj , j ≤ t that play an
importance role in analyzing algorithm’s performance.

Lemma 3. In Algorithm3, if there is no pair (e, i) ∈ o satisfying ∃j ∈ [t] : e /∈
supp(sj) so that f(sj�(e,i))

c(sj)+ci(e)
≥ αv

B and c(sj) + ci(e) > B, we have:

– If f is monotone, then

f(oj−1) − E[f(oj)] ≤ β(1 − 1
k

)(E[f(sj)] − f(sj−1) +
αvcj∗(ej)

kB
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Algorithm 3. Random streaming algorithm with known opt-
RanStreamWithOpt(f, opt, α)
Input: a function f : (k + 1)V �→ R+, B > 0, α ∈ (0, 1], v, v ≤ opt
Output: a solution s

1. s0 ← 0, t ← 0
2. foreach e ∈ V do
3. ie ← argmaxi∈[k] f((e, i))
4. (emax, imax) ← argmax(e1,i1)∈{(emax,imax),(e,ie)} f((e1, i1))
5. J ← ∅
6. foreach i ∈ [k] do

7. if c(st) + ci(e) ≤ B and f(st�(e,i))−f(st)
ci(e)

≥ αv
B

then

8. pi ← f(st�(e,i))−f(st)
ci(e)

; J ← J ∪ {i}

9. if J �= ∅ then

10. T ← ∑
i∈J p

|J|−1
i

11. Select a position i ∈ J with probability
p

|J|−1
i

T

12. st+1 ← st � (e, i); t ← t + 1

13. return argmaxs∈{st}∪{(emax,imax)} f(s) if f is monotone,
argmaxs∈{sj :j≤t}∪{(emax,imax)} f(s) if f is non-monotone

– If f is non-monotone, then

f(oj−1) − E[f(oj)] ≤ 2β(1 − 1
k

)(E[f(sj)] − f(sj−1)) +
2αvcj∗(ej)

kB

Theorem 3. Algorithm3 returns a solution s satisfying

– If f is monotone, E[f(s)] ≥ min{α
2 , (1−α)k

(1+β)k−β }v, f(s) is maximized to v
3+β− β

k

when α = 2
3+β− β

k

.

– If f is non-monotone, E[f(s)] ≥ min{α
2 , (1−α)k

(1+2β)k−2β }v, f(s) is maximized to
v

3+2β− 2β
k

when α = 2
3+2β− 2β

k

.

4.2 Random Streaming Algorithm

In this section we remove the assumption that the optimal solution is known
and present the random streaming algorithm which reuses the framework of
Algorithm 3.

Similar to the Algorithm 2, we use the method in [1] to estimate opt. We
assume that we know β in advance. This is feasible because we can calculate the
value of β in O(kn). We set α according to the properties of f to provide the
best performance of the algorithm. The algorithm continuously updates O ←
{j|f((emax, imax)) ≤ (1 + ε)j ≤ Bf((emax, imax)), j ∈ Z+} in order to estimate
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the value of maximal singleton and uses stj and tj to save candidate solutions,
which is updated by using the probability distribution as in Algorithm3 with
(1 + ε)j is an estimation of optimal solution. The algorithm finally compares all
candidate solutions to select the best one. The details of algorithm is presented
in Algorithm 4.

Algorithm 4. Random streaming algorithm
Input: a k-submodular function f : (k + 1)V �→ R+, B > 0, ε > 0, α ∈ (0, 1]
Output: a solution s

1. foreach e ∈ V do
2. ie ← argmaxi∈[k] f((e, i))
3. (emax, imax) ← argmax(e1,i1)∈{(emax,imax),(e,ie)} f((e1, i1))

4. O ← {j|f((emax, imax)) ≤ (1 + ε)j ≤ Bf((emax, imax)), j ∈ Z+}
5. foreach j ∈ O do
6. J ← ∅
7. foreach i ∈ [k] do

8. if c(stj ) + ci(e) ≤ B and f(s
tj �(e,i))−f(s

tj )
ci(e)

≥ α(1+ε)j

B
then

9. pi ← f(s
tj �(e,i))−f(s

tj )
ci(e)

; J ← J ∪ {i}

10. T ← ∑
i∈J p

|J|−1
i

11. Select a position i ∈ J with probability
p

|J|−1
i

T

12. stj+1 ← stj � (e, i); tj ← tj + 1

13. return argmax
s∈{stj :j∈O}∪{(emax,imax)

f(s) if f is monotone,

argmax
s{stj

i :j∈O,i≤j}∪{(emax,imax)} f(s) if f is non-monotone

Theorem 4. Algorithm4 is one pass streaming algorithm that has O(kn
ε log B)

query complexity, O(B
ε log B) space complexity and provides an approximation

ratio of min{α
2 , (1−α)k

(1+β)k−β } − ε when f is monotone and min{α
2 , (1−α)k

(1+2β)k−2β } − ε

when f is non-monotone in expectation.

Proof. By Lemma 2, there exists j ∈ Z+ that v = (1 + ε)j ∈ O satisfies (1 −
ε)opt ≤ v ≤ opt. Using similar arguments of the proof of Theorem 3, for the
monotone case

f(s) ≥ min{α

2
,

(1 − α)k
(1 + β)k − β

}v ≥
(

min{α

2
,

(1 − α)k
(1 + β)k − β

} − ε

)
opt

For the non-monotone case we also obtain the proof by applying the same argu-
ments ��
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5 Conclusions

This paper studies the BkSM, a generalized version of maximizing k-submodular
functions problem. In order to find the solution, we propose several streaming
algorithms with provable guarantees. The core of our algorithms is to exploit
the relation between candidate solutions and the optimal solution by analyzing
intermediate quantities and applying a new probability distribution to select
elements with high contributions to a current solution. In the future we are going
to conduct experiments on so some instance of BkSM to show the performance
of our algorithms in practice.
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to size constraint. In: Daumé, H., Singh, A. (eds.) Proceedings of the International
Conference on Machine Learning, (ICML-2020), Thirty-Seventh International Con-
ference on Machine Learning (2020)

https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1007/s10107-015-0900-7


38 C. V. Pham et al.

9. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size
constraints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12
December 2015, pp. 694–702 (2015)

10. Oshima, H.: Derandomization for k -submodular maximization. In: Brankovic, L.,
Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 88–99. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78825-8 8

11. Qian, C., Shi, J., Tang, K., Zhou, Z.: Constrained monotone k-submodular func-
tion maximization using multiobjective evolutionary algorithms with theoretical
guarantee. IEEE Trans. Evol. Comput. 22(4), 595–608 (2018)

12. Rafiey, A., Yoshida, Y.: Fast and private submodular and k-submodular functions
maximization with matroid constraints. In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020. Proceedings of Machine Learning
Research, vol. 119, pp. 7887–7897. PMLR (2020)

13. Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid
constraint. Discret. Optim. 23, 105–113 (2017)

14. Singh, A.P., Guillory, A., Bilmes, J.A.: On bisubmodular maximization. In:
Lawrence, N.D., Girolami, M.A. (eds.) Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2012. JMLR Pro-
ceedings, vol. 22, pp. 1055–1063. JMLR.org (2012)

15. Soma, T.: No-regret algorithms for online k-submodular maximization. In: Chaud-
huri, K., Sugiyama, M. (eds.) The 22nd International Conference on Artificial
Intelligence and Statistics, AISTATS 2019, Naha, Okinawa, Japan, 16–18 April
2019. Proceedings of Machine Learning Research, vol. 89, pp. 1205–1214. PMLR
(2019)
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