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Abstract. The detection of cohesive clusters with similar character-
istics in multiple types of networks is of immense informational value
to researchers. In this work, we propose a Weighted Semilocal Simi-
larity based Label Propagation Algorithm (WSSLPA) for such commu-
nity detection. The proposed method detects communities by using the
semilocal topological features to overcome the shortcoming of random-
ness and instability in the existing label propagation algorithms while
selecting a community label from multiple maximum labels. We asso-
ciate user-defined weight parameters with the topological features to help
WSSLPA adapt to different networks and enhance the performance met-
rics scores of detected communities. We compare the performance of the
proposed method with other community detection techniques and show
that the identified communities of WSSLPA are closer to the ground-
truth communities.

Keywords: Complex networks · Community detection · Label
propagation

1 Introduction

The emergence of network science has put forth the complex networks that model
the intricate relationships among the components of various complex systems [1].
The inception of such complex networks attract researchers’ interest to various
problems, such as their evolution [25], identify influential nodes [26], link predic-
tion [17], information diffusion [9], and so on. Community detection is one of the
fundamental problems in Network Science that aims to find strongly connected
clusters of nodes in a network, identified through more intra-cluster edges than
inter-cluster edges. A plethora of algorithms exists that are driven by different
motivations behind finding the clusters. The well known approaches are based
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on modularity optimization [19], information-theoretic techniques [10], genetic
algorithms [16], non-negative matrix factorization [3], and label propagation [7].

One algorithm that we build our work on is by Raghavan et al. [22], who pro-
posed the Label Propagation Algorithm (LPA) that utilizes the neighborhood
structures of nodes to detect communities in networks. This approach consists of
three prominent steps., In the initialization phase, nodes are randomly assigned
a unique community label. Following that, the label propagation step begins
wherein each node adapts a label that is assigned to the majority of its neigh-
bors. Finally, the algorithm terminates when nodes have a label that belongs to
the majority of their neighbors. The nodes having the same label get clustered
together, thus producing the community structure of a given network.

The time efficiency and simplicity are advantages of LPA that have encour-
aged the development of various new approaches in this direction. Poaka et
al. [20] developed a new LPA approach wherein they compute link density based
measures to avoid ties between multiple maximum labels. They also extended
their method by using fuzzy techniques to find overlapping communities in com-
plex networks. Jokar et al. [11] extended the previous approach by developing
a new metric that utilized link density to choose the future community of a
node in the case of multiple maximum labels; and also presented a balancing
parameter that assigned appropriate weights to the similarity measures between
the node pairs. Verma et al. [28] developed a semi-supervised learning technique
based on LPA to find communities in complex networks; the proposed method
initializes the communities using core nodes identified through various centrality
measures. Li et al. [14] developed an improved LPA by utilizing the modularity
function and node importance, i.e., the normalized degree centrality of the node.
The proposed algorithm first initializes the communities using the modularity
function and then performs the update step in a specific order by using the node
properties.

In light of the context above, we propose a label propagation based commu-
nity detection method to find better quality communities. We will address two
shortcomings [7] of the existing algorithms, (i) the flaw of randomness and (ii)
the lack of stability in LPA; that are encountered when the algorithm randomly
selects a future community for each node in case of multiple maximum labels.
Therefore, LPA is unable to achieve stable community structures that can be
observed by its lower metric scores that are computed by taking the mean value
on several runs. Our work addresses these issues by utilizing topology based
similarity measures, thereby breaking the tie of random assignment from mul-
tiple maximum labels in obtaining a community structure. Furthermore, the
proposed method produces a stable community structure that is demonstrated
by high metric scores obtained on various networks.

In complex networks, the global similarity measures consider the properties
of the whole network that lead to high time complexity. On the other hand,
local similarity measures examine only the immediate neighborhood informa-
tion of each node. Henceforth, we use semilocal similarity measures to strike
a balance between efficiency and information quantity. Among the semilocal
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indices, we use the extended Jaccard [2], and 2-hop neighborhood volume [29]
to find suitable future communities for the nodes. Our proposed method also
integrates user-defined parameters for the above-mentioned measures to better
adapt to different networks. We conduct experiments comparing against other
existing community detection methods on real-world networks and evaluate the
identified communities using different performance metrics.

The rest of the paper is organized as follows. Section 2 describes the algo-
rithm proposed in this study. Section 3 presents the experimental results for the
comparison of our method with various existing community detection methods.
Lastly, Sect. 4 holds the conclusion of this paper along with future directions.

2 Proposed Method

In this section, we present the details of our proposed method, namely the
Weighted Semilocal Similarity based LPA (WSSLPA). As mentioned, the
WSSLPA removes the random selection of the future community for a node
in case of multiple maximum labels. This is done with the help of topological
information that is fine-tuned by parameters.

We first discuss the parameters required for our proposed method. The
Extended Jaccard EJ coefficient for two adjacent nodes u and v is defined as,

EJ(u,v) =
|Γ2(u) ∩ Γ2(v)|
|Γ2(u) ∪ Γ2(v)| , (1)

where Γ2(u) denotes the union of the neighbors of a given node u that are either
at one-hop or two-hop distance away from node u.

The 2-Hop Neighborhood volume NV 2 for a node u is defined as,

NV 2
u =

∑

w∈Γ2(u)

deg(w), (2)

where deg(w) denotes the degree of node w and Γ2(u) is defined as in Eq. 1.
Additionally, the similarity of a pair of nodes (u, v) is represented by Simu,v

that denotes the weighted sum of EJ(u,v) and NV 2
v using Eq. 3.

Sim(u,v) = k1 · EJ(u,v) + k2 · ˜NV 2
v (3)

where ˜NV 2
v is the normalized value of NV 2

v . The NV 2 values obtained represent
the sum of degrees, therefore we normalize the NV 2 values of all the nodes in
the network to accommodate them in the interval of [0, 1].

The steps of the WSSLPA algorithm are as follows.

1. WSSLPA takes a network G(V,E) as an input, where V is the set of nodes
and E is the set of edges in network G. The initialization phase begins,
wherein WSSLPA assigns a unique community label to each node present in
the network.
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2. The label propagation phase begins. First, the algorithm arranges the nodes
in random order. Next, it chooses a maximum community label in the neigh-
borhood of each node and assigns it as the node’s future community.

3. In the case of multiple maximum labels being assigned to a single node,
say u, we use the Extended Jaccard (EJ) introduced in Eq. 1, and 2-Hop
Neighborhood Volume (NV 2) introduced in Eq. 2 as follows.
(a) Both EJ and ˜NV 2 are pre-computed for the fast execution of the pro-

posed method for all the edges and nodes, respectively.
(b) Next, Sim(u,v) is computed for every pair of nodes using EJ , ˜NV 2 and

the user-defined parameters as explained in Eq. 3.
4. We compute a community wise cumulative sum of the combined similar-

ity measure, that is Simci
sum(u) =

∑
CommunityLabel(v)=ci & (u,v)∈E Sim(u,v),

∀ci ∈ C, where C = {c1, c2, · · · , ci, · · · } is the set of community labels. Subse-
quently, the community label with maximum sum magnitude is selected to be
the future community of the given node, therefore, CommunityLabel(u) =
argmaxci{Simci

sum(u),∀ci ∈ C}.
5. The algorithm is terminated if all the nodes have a label that belongs to

the majority of their neighbors or the maximum number of iterations (t) is
reached.

We now delineate the complete steps for WSSLPA in Algorithm 1.

Algorithm 1: Weighted semilocal similarity based LPA
Input: G(V,E): The Input Network, t: Maximum Iteration Limit

1 For each node u, assign a unique community label CommunityLabel(u)
2 iterations ← 0
3 repeat
4 V ′ ← Shuffle the list of nodes V to produce a random order
5 for u in V ′ do
6 if Multiple maximum labels for node u then
7 Compute Sim score using Equation 3
8 Calculate the community wise cumulative sum of Sim score,

Simci
sum(u) =

∑
CommunityLabel(v)=ci & (u,v)∈E Sim(u,v), ∀ci ∈ C

9 CommunityLabel(u) = argmaxci{Simci
sum(u), ∀ci ∈ C}

10 else
11 CommunityLabel(u) ← Maximum label among the neighbors of

node u

12 end

13 until All nodes have a label equal to the majority of their neighbors or
iterations > t

14 return CommunityLabel
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2.1 Time Complexity

In this section, we present the time complexity of the proposed method. Let n
denotes the number of nodes in the network, kavg is the average degree for the
nodes, t is the maximum number of iterations if the termination criteria is not
satisfied (namely that of all nodes have a label matching most of their neighbors’
label).

The first step of the proposed algorithm includes the calculation of semilocal
measures. The time complexity for calculating these structural measures is equal
to O(nk2

avg). Next, the algorithm begins with the initialization phase, which takes
O(n) time. Subsequently, the label propagation step of the proposed method is
executed that has O(tnkavg) time complexity. Finally, in the termination step,
every node’s neighborhood is utilized to check the termination criteria. This
step has O(nkavg) complexity. Henceforth, the overall time complexity of the
proposed technique is O(nk2

avg + tnkavg).

3 Experimental Analysis

In this section, we introduce the real-world and synthetic datasets used in the
experiments. We then follow it with the performance analysis of the WSSLPA
algorithm as compared to the baseline community detection algorithms.

3.1 Datasets

To evaluate the performance of the proposed algorithm, we use various real-
world datasets, including Karate, Dolphins, Polbooks, Football, Cora, Citeseer,
and AS internet network. The availability of ground-truth community structure
is a critical requirement in our experiments, and thus we consider datasets hav-
ing predefined ground-truth structures. Furthermore, we also test the algorithms
on LFR benchmark network. In LFR, the minimum degree and minimum com-
munity size was set to 20, and the maximum degree and maximum community
size was set to 50. Table 1 summarizes metrics of these networks.

3.2 Experimental Settings

For the analysis, we run each algorithm (WSSLPA and baselines) 10 times and
report their averages when comparing against WSSLPA. The performance met-
rics we use to measure the overall quality of the community structures are the
Normalized mutual information (NMI) [5], and modularity [19]. We use the ter-
mination criteria to set up a maximum number of iterations our proposed method
can execute. This is applied if some nodes do not have a label that belongs to
the majority of their neighbors, and the maximum number of iterations is set to
1000 for the majority of networks (the exception is AS Internet network, where
we set this number to 100 as it is a large network).

The weight parameters, namely k1 and k2, constitute an important part of
experimental settings for WSSLPA. They help the proposed method adapt to
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Table 1. Description of datasets used in this study.

Dataset Acronym Nodes Edges #Ground-truth
communities

Ref

Karate Kar 34 78 2 [30]

Dolphins Dol 62 159 2 [15]

Polbooks Pol 105 441 3 [12]

Football Foot 115 613 12 [8]

Cora Cora 2708 5278 7 [27]

Citeseer Cite 3327 4676 7 [27]

AS Internet AS 23752 58416 176 [4]

LFR LFR 500 µ(0.1 − 0.9) 20–50 [13]

different networks efficiently and maintain a fine balance between the extended
Jaccard and 2-hop neighborhood volume. The default value of weight param-
eters is set as k1 = 0.8 and k2 = 0.2 for WSSLPA as experimentation says
that these settings provide better results compared to baselines for most of the
datasets. Table 2 presents parameter values for all datasets that provides best
results (shown in Table 3) based on the experimental observation.

Table 2. Parameters value (k1, k2) for the best results of WSSLPA.

Datasets Karate Dolphins Polbooks Football Cora Citeseer

k1, k2 0.9, 0.2 0.2, 0.8 0.9, 0.1 0.9, 0.2 0.1, 1.0 1.0, 0.1

Datasets AS LFR(µ = 0.1) LFR(µ = 0.3) LFR(µ = 0.5) LFR(µ = 0.7) LFR(µ = 0.9)

k1, k2 0.9, 0.2 1.0, 0.1 0.2, 0.1 0.7, 0.5 0.5, 0.5 0.5, 0.5

3.3 Performance Analysis

Table 3 presents the performance comparison of WSSLPA with four commu-
nity detection techniques. We compare against four established methods: leading
eigenvector algorithm (Lead) [18], LPA [22], walktrap (Walk) [21], and infomap
(Info) [23,24] algorithms. For the WSSLPA method we show both the best results
achieved, as well as the results for the default parameter setting.

We observe that WSSLPA achieves the best NMI scores on the major-
ity of networks (0.8209, 0.8483, & 0.3227 are the best NMI scores achieved by
WSSLPA on Kar, Dol, Cite, respectively), and competitive scores on others
(0.5619, 0.9150, & 0.3342 are the second best NMI scores obtained on Pol, Foot,
AS, respectively). WSSLPA with default parameters also obtains better NMI
results (on Kar, Cite, AS ) in comparison with other community detection meth-
ods. Infomap and LPA achieve the best NMI scores on some networks; however,
WSSLPA gives competitive results on them. Additionally, the Lead and Walk
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Table 3. Performance comparison using the NMI and modularity metrics

Data
Set

Algorithm Lead LPA Walk Info WSSLPA
(best)

WSSLPA
(0.8/0.2)

Kar NMI 0.6771 0.6815 0.6110 0.6994 0.8209 0.7901

Modularity 0.3934 0.3604 0.3431 0.4020 0.3970 0.3925

Dol NMI 0.4489 0.6377 0.5372 0.5844 0.8483 0.5761

Modularity 0.4911 0.4795 0.4888 0.5269 0.4331 0.4955

Pol NMI 0.5201 0.5655 0.5081 0.4934 0.5619 0.5483

Modularity 0.4671 0.4989 0.4961 0.5228 0.4904 0.4893

Foot NMI 0.6986 0.8679 0.7451 0.9241 0.9150 0.9006

Modularity 0.4926 0.5871 0.5883 0.6005 0.5807 0.5739

Cora NMI 0.3820 0.4233 0.4011 0.4128 0.4111 0.4002

Modularity 0.7318 0.7401 0.5888 0.7178 0.7339 0.6237

Cite NMI 0.3011 0.3114 0.3181 0.3119 0.3227 0.3223

Modularity 0.8541 0.8221 0.8089 0.8207 0.7531 0.7534

AS NMI 0.0000 0.2302 0.2553 0.4412 0.3342 0.3092

Modularity 0.0000 0.2010 0.1649 0.5195 0.3540 0.3139

algorithms obtain low NMI scores. For modularity analysis, WSSLPA performs
competitively in most cases while it gets low modularity scores on some networks.

The main aim of this study was to develop a community detection tech-
nique that could produce near ground-truth community structures. The proposed
WSSLPA method performs excellently on the NMI measure as it produces high
quality community structures. The modularity community score suffers from
the resolution limit problem wherein it rewards the large size communities while
ignoring the small communities [6]. This is one of the main reasons for the average
performance of WSSLPA on the modularity metric. Overall, WSSLPA produces
better performances across various networks as observed in Table 3 summarizing
the results of our experiments.

Additionally, we perform an experiment to evaluate different community
detection methods utilized in this study on the LFR benchmark datasets, run-
ning each experiment 10 times and showing the average values. We create the
LFR network with 500 nodes by varying the mixing parameter μ ∈ [0.1, 0.9].
Figure 1 presents the results for this experiment, where the x-axis denotes the
different mixing parameter values, while the y-axis represents the NMI scores
obtained by different algorithms.

We observe that the infomap method obtains the highest NMI score for
smaller μ (namely μ ∈ {0.1, 0.3}), but its NMI values fall sharply after that
to their lowest point. Similar results are observed for LPA wherein the NMI
values fall sharply after the mixing parameter value of 0.1. WSSLPA achieves the
highest score at μ = 0.1, and it drops as observed for other methods. However,
the WSSLPA achieves the highest NMI values in comparison to other algorithms
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Fig. 1. Comparison on the LFR network using the NMI performance metric.

for μ ∈ {0.7, 0.9}. This observation shows the robust nature of the proposed
community detection technique for different mixing parameter values. Lead and
Walktrap methods achieve low NMI scores in the majority of the cases except
at μ = 0.5, where they obtain higher NMI values compared to other algorithms.

The above experiments help in providing a deep insight into the performances
of various community detection techniques. They also help in exhibiting the
consistent performances of WSSLPA across a variety of datasets with the help
of different evaluation metrics. WSSLPA obtains higher NMI scores on real-world
and synthetic networks, signifying the superior quality of identified communities.

3.4 Sensitivity Analysis

We now study the impact of weight parameters, i.e., k1, k2, on the performance of
WSSLPA for different networks. For this analysis, the one parameter (k1 or k2)
will be set to 0.5 and the other will be varied in the range of [0.1, 0.9]. Figures 2,
and 3 show the NMI values of identified communities. In Fig. 2, k2 = 0.5, while
k1 ∈ [0.1, 0.9], and in Fig. 3, k1 = 0.5, while k2 varies in the range [0.1, 0.9].

We observe from Fig. 2 that the overall NMI scores of WSSLPA increase
as the value of k1 increases. In Fig. 3, we observe that the overall NMI scores
decrease with the increasing value of k2. The variation in k2 affects more the
performance on small size networks as compared to larger networks.

In Fig. 4, we show the NMI values obtained by WSSLPA on Kar, Dol, Pol,
Foot networks for all parameter (k1 and k2) settings. The results show that a
higher value of k1 and a lower value of k2 provide good results on most networks,
as expected.
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Fig. 2. Analysis of WSSLPA by varying k1 ∈ [0.1 − 0.9] while keeping k2 = 0.5.

Fig. 3. Analysis of WSSLPA by varying k2 ∈ [0.1 − 0.9], and k1 = 0.5.

We, therefore, conclude that on the majority of networks, we obtain better
NMI scores through the combination of higher k1 values and lower k2 values. An
exception is the case of Cora network wherein lower k1 and higher k2 values give
better score. This might be because, in these networks, a higher preference is
given to the centrally connected nodes while predicting clusters closer to ground-
truth community structures. Henceforth, the parameters for WSSLPA are based
on these observations that finally help the proposed algorithm achieve better
quality community structures.
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Fig. 4. Analysis of WSSLPA on Kar, Dol, Pol, & Foot networks for k1 ∈ [0.1 − 0.9]
and k2 ∈ [0.1 − 0.9].

4 Conclusion

The development of efficient and accurate community detection methods is a
keen research area in the field of network science. Recent methods propose the
utilization of local information to detect the densely connected communities
of nodes. Although such methods are efficient, they achieve low performances
because of the limited information extracted from the network. Furthermore,
global similarity methods consider the topology of the whole network, thereby
making them less efficient.

In this study, we presented a Label Propagation Algorithm (LPA), named
Weighted Semilocal Similarity based Label Propagation Algorithm (WSSLPA),
that detects high quality communities that are similar to the ground-truth com-
munities in complex networks. Our proposed method utilized semilocal similarity
measures to counter the shortcoming of randomness in LPA. Consequently, this
improved the quality of WSSLPA’s detected communities by avoiding the for-
mation of large communities, which is a shortcoming in most modularity-based
community detection methods. Additionally, the utilization of semilocal mea-
sures helped in retrieving considerable global network information, while the
label propagation technique assisted in improving the algorithm run time. The
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experimental results showed the better performance of WSSLPA on real-world as
well as on synthetic networks as compared to baseline methods. The proposed
method performs consistently on different networks and achieves competitive
NMI scores, thereby signifying the closeness of the identified communities with
respect to the ground truth community structure.

One can further extend the proposed method to attributed networks where
each node has different properties, and the edges might represent varied relation-
ships. Such diverse information can be harnessed by developing efficient semilocal
methods that can be utilized by the community detection algorithms. Further-
more, the existing method could be extended to detect overlapping communities
wherein each node can attain multiple community labels. This would help to fur-
ther develop novel community detection techniques for real-world systems where
the objects are heterogeneous, and a single object might be linked with multiple
communities.
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