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Abstract. Independent cascade (IC) model is a widely used influence
propagation model for social networks. In this paper, we incorporate the
concept and techniques from causal inference to study the identifiabil-
ity of parameters from observational data in extended IC model with
unobserved confounding factors, which models more realistic propaga-
tion scenarios but is rarely studied in influence propagation modeling
before. We provide the conditions for the identifiability or unidentifiabil-
ity of parameters for several special structures including the Markovian
IC model, semi-Markovian IC model, and IC model with a global unob-
served variable. Parameter identifiability is important for other tasks
such as influence maximization under the diffusion networks with unob-
served confounding factors.
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1 Introduction

Extensive research has been conducted studying the information and influence
propagation behavior in social networks, with numerous propagation models and
optimization algorithms proposed (cf. [2,16]). Social influence among individuals
in a social network is intrinsically a causal behavior—one’s action or behavior
causes the change of the behavior of his or her friends in the network. Therefore,
it is helpful to view influence propagation as a causal phenomenon and apply
the tools in causal inference to this domain.

In causal inference, one key consideration is the confounding factors caused
by unobserved variables that affect the observed behaviors of individuals in the
network. For example, we may observe that user A adopts a new product and a
while later her friend B adopts the same new product. This situation could be
because A influences B and causes B’s adoption, but it could also be caused by an
unobserved factor (e.g. an unknown information source) that affects both A and
B. Confounding factors are important in understanding the propagation behavior
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in networks, but so far the vast majority of influence propagation research does
not consider confounders in network propagation modeling. In this paper, we
intend to fill this gap by explicitly including unobserved confounders into the
model, and we borrow the research methodology from causal inference to carry
out our research.

Causal inference research has developed many tools and methodologies to
deal with such unobserved confounders, and one important problem in causal
inference is to study the identifiability of the causal model, that is, if we can
identify the certain effect of an intervention, or identify causal model param-
eters, from the observational data. In this paper, we introduce the concept of
identifiability in causal inference research to influence propagation research and
study whether the propagation models can be identified from observational data
when there are unobserved factors in the causal propagation model. We propose
the extend the classical independent cascade (IC) model to include unobserved
causal factors, and consider the parameter identifiability problem for several
common causal graph structures. Our main results are as follows. First, for the
Markovian IC model, in which each unobserved variable may affect only one
observed node in the network, we show that it is fully identifiable. Second, for
the semi-Markovian IC model, in which each unobserved variable may affect
exactly two observed nodes in the network, we show that as long as a local
graph structure exists in the network, then the model is not parameter iden-
tifiable. For the special case of a chain graph where all observed nodes form
a chain and every unobserved variable affect two neighbors on the chain, the
above result implies that we need to know at least n/2 parameters to make the
rest parameters identifiable, where n is the number of observed nodes in the
chain. We then show a positive result that when we know n parameters on the
chain, the rest parameters are identifiable. Third, for the global hidden factor
model where we have an unobserved variable that affects all observed nodes in
the graph, we provide reasonable sufficient conditions so that the parameters are
identifiable.

Overall, we view that our work starts a new direction to integrate rich
research results from network propagation modeling and causal inference so that
we could view influence propagation from the lens of causal inference, and obtain
more realistic modeling and algorithmic results in this area. For example, from
the causal inference lens, the classical influence maximization problem [16] of
finding a set of k nodes to maximize the total influence spread is really a causal
intervention problem of forcing an intervention on k nodes for their adoptions,
and trying to maximize the causal effect of this intervention. Our study could give
a new way of studying influence maximization that works under more realistic
network scenarios encompassing unobserved confounders. Due to the limitation
of space, the complete proofs of some of the theorems are placed in the full
version [8] on arXiv, and only outlines are given in this version.
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2 Related Work

Influence Propagation Modeling. As described in [2], the main two mod-
els used to describe influence propagation are the independent cascade model
and the linear threshold model. Past researches on influence propagation mostly
focused on influence maximization problems, such as [16,23]. In these articles,
they select seed nodes online, observe the propagation in the network, and opti-
mize the number of activated nodes after propagation by selecting optimal seed
nodes. Also, some works are studying the seed-node set minimization problem,
such as [12]. However, in our work, we mainly consider restoring the parame-
ters in the independent cascade model by observing the network propagation.
After obtaining the parameters in the network, we can then base on this to
accomplish downstream tasks including influence maximization and seed-node
set minimization.

Causal Inference and Identifiability. For general semi-Markovian Bayesian
causal graphs, [14] and [22] have given two different algorithms to determine
whether a do effect is identifiable, and these two algorithms have both soundness
and correctness. [15] also proves that the ID algorithm and the repeating use of
the do calculus are equivalent, so for semi-Markovian Bayesian causal graphs,
the do calculus can be used to compute all identifiable do effects.

In addition, for a special type of causal model, the linear causal model, arti-
cles [4] and [9] have given some necessary conditions and sufficient conditions on
whether the parameters in the graph are identifiable with respect to the structure
of the causal graph. However, the necessary and sufficient condition for param-
eter identifiability problem is not addressed and it remains an open question. In
this paper, we study another special causal model derived from the IC model.
Since the IC model can be viewed as a Bayesian causal model when the graph
structure is a directed acyclic graph and it has some special properties, we try
to give some necessary conditions and sufficient conditions for the parameters
to be identifiable under some special graph structures.

3 Model and Problem Definitions

Following the convention in causal inference literature (e.g. [20]), we use capital
letters (U, V,X, . . .) to represent variables or a set of variables, and their corre-
sponding lower-case letters to represent their values. For a directed graph, we
use U ’s and V ’s to represent nodes since each node will also be treated as a
random variable in causal inference. For a node Vi, we use N+(Vi) and N−(Vi)
to represent the set of its out-neighbors and in-neighbors, respectively. When
the graph is directed acyclic (DAG), we refer to a node’s in-neighbors as its
parents and denote the set as Pa(Vi) = N−(Vi). When we refer to the actual
values of the parent nodes of Vi, we use pa(Vi). For a positive integer k, we use
[k] to denote {1, 2, . . . , k}. We use boldface letters to represent vectors, such as
r = (r1, r2, . . . , rn) = (ri)i∈[n].

The classical independent cascade model [16] of influence diffusion in a social
network is modeled as follows. The social network is modeled as a directed graph
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G = (V,E), where V = {V1, V2, · · · , Vn} is the set of nodes representing individ-
uals in the social network, and E ⊆ V ×V is the set of directed edges representing
the influence relationship between the individuals. Each edge (Vi, Vj) ∈ E is asso-
ciated with an influence probability p(i, j) ∈ (0, 1] (we assume that p(i, j) = 0 if
(Vi, Vj) /∈ E). Each node is either in state 0 or state 1, representing the idle state
and the active state, respectively. At time step 0, a seed set S0 ⊆ V of nodes
is selected and activated (i.e. their states are set to 1), and all other nodes are
in state 0. The propagation proceeds in discrete time steps t = 1, 2, . . .. Let St

denote the set of nodes that are active by time t, and let S−1 = ∅. At any time
t = 1, 2, . . ., the newly activated node Vi ∈ St−1\St−2 tries to activate each of its
inactive outgoing neighbors Vj ∈ N+(Vi), and the activation is successful with
probability p(i, j). If successful, Vj is activated at time t and thus Vj ∈ St. The
activation trial of Vi on its out-neighbor Vj is independent of all other activation
trials. Once activated, nodes stay as active, that is, St−1 ⊆ St. The propagation
process ends at a step when there are no new nodes activated. It easy to see that
the propagation ends in at most n − 1 steps, so we use Sn−1 to denote the final
set of active nodes after the propagation.

Influence propagation is naturally a result of causal effect—one node’s acti-
vation causes the activation of its outgoing neighbors. If the graph is directed
and acyclic, then the IC model on this graph can be equated to a Bayesian
causal model. In fact, we can consider each node in the IC model as a vari-
able, and for a node Vi, it takes the value determined by P (Vi = 1|pa(Vi)) =
1 − ∏

j:Vj∈Pa(Vi),vj=1 in pa(Vi)
(1 − pj,i). Obviously, this is equivalent to our defi-

nition in the IC model. IC model is introduced in [16] to model influence propa-
gation in social networks, but in general, it can model the causal effects among
binary random variables. In this paper, we mainly consider the directed acyclic
graph (DAG) setting, which is in line with the causal graph setting in the causal
inference literature [20]. We discuss the extension to general cyclic graphs or
networks in the full version [8].

All variables V1, V2, . . . , Vn are observable, and we call them observed vari-
ables. They correspond to observed behaviors of individuals in the social network.
There are also potentially many unobserved (or hidden) variables that affecting
individuals’ behaviors. We use U = {U1, U2, . . .} to represent the set of unob-
served variables. In the IC model, we assume each Ui is a binary random variable
with probability ri to be 1 and probability 1 − ri to be 0, and all unobserved
variables are mutually independent. We allow unobserved variables Ui’s to have
directed edges pointing to the observed variables Vj ’s, but we do not consider
directed edges among the unobserved variables in this paper. If Ui has a directed
edge pointing to Vj , we usually use qi,j to represent the parameter on this edge.
It has the same semantics as the pi,j ’s in the classical IC model: if Ui = 1, then
with probability qi,j Ui successfully influence Vj by setting its state to 1, and with
probability 1−qi,j Vj ’s state is not affected by Ui, and this influence or activation
effect is independent from all other activation attempts on other edges. Thus,
overall, in a network with unobserved or hidden variables, we use G = (U, V,E)
to represent the corresponding causal graph, where U is the set of unobserved
variables, V is the set of observed variables, and E ⊆ (V × V ) ∪ (U × V ) is



Causal Inference for Influence Propagation 19

the set of directed edges. We assume that G is a DAG, and the state of every
unobserved variable Ui is sampled from {0, 1} with parameter ri, while the state
of every observed variable Vj is determined by the states of its parents and the
parameters on the incoming edges of Vj following the IC model semantics. In
the DAG G, we refer to an observable node Vi as a root if it has no observable
parents in the graph. Every root Vi has at least one unobserved parent. We
use vectors p, q, r to represent parameter vectors associated with edges among
observed variables, edges from unobserved to observed variables, and unobserved
nodes, respectively. We refer to the model M = (G = (U, V,E),p, q, r) as the
causal IC model. When the distinction is needed, we use capital letters P,Q,R
to represent the parameter names, and lower boldface letters p, q, r to represent
the parameter values.

In this paper, we focus on the parameter identifiability problem following the
causal inference literature. In the context of the IC model, the states of nodes
V = {V1, V2, . . . , Vn} are observable while the states of U = {U1, U2, . . .} are
unobservable. We define parameter identifiability as follows.

Definition 1 (Parameter Identifiability). Given a graph G = (U, V,E), we
say that a set of IC model parameters Θ ⊆ P ∪ Q ∪ R on G is identifiable if
after fixing the values of parameters outside Θ and fixing the observed probabil-
ity distributions P (V ′ = v′) for all V ′ ⊆ V and all v′ ∈ {0, 1}|V ′|, the values of
parameters in Θ are uniquely determined. We say that the graph G is parameter
identifiable if Θ = P ∪ Q ∪ R. Accordingly, the algorithmic problem of parame-
ter identifiability is to derive the unique values of parameters in Θ given graph
G = (U, V,E), the values of parameters outside Θ, and the observed probability
distributions P (V ′ = v′) for all V ′ ⊆ V and all v′ ∈ {0, 1}|V ′|. Finally, if the algo-
rithm only uses a polynomial number of observed probability values P (V ′ = v′)’s
and runs in polynomial time, where both polynomials are with respect to the graph
size, we say that the parameters in Θ are efficiently identifiable.

Note that when there are no unobserved variables (except the unique unob-
served variables for each root of the graph), the problem is mainly to derive the
parameters pi,j ’s from all observed P (V ′ = v′)’s. In this case, the parameter
identifiability problem bears similarity with the well-studied network inference
problem [1,3,5–7,10,11,13,17–19,21]. The network inference problem focuses
on using observed cascade data to derive the network structure and propagation
parameters, and it emphasizes on the sample complexity of inferring parameters.
Hence, when there are no unobserved variables in the model, we could use the
network inference methods to help to solve the parameter identifiability prob-
lem. However, in real social influence and network propagation, there are other
hidden factors that affect the propagation and the resulting distribution. Such
hidden factors are not addressed in the network inference literature. In contrast,
our study in this paper is focusing on addressing these hidden factors in net-
work inference, and thus we borrow the ideas from causal inference to study the
identifiability problem under the IC model.

In this paper, we study three types of unobserved variables that could com-
monly occur in network influence propagation. They correspond to three types
of IC models with unobserved variables, as summarized below.
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Markovian IC Model. In the Markovian IC model, each observed variable
Vi is associated with a unique unobserved variable Ui, and there is a directed
edge from Ui to Vi. This models the scenario where each individual in the social
network has some latent and unknown factor that affects its observed behavior.
We use qi to denote the parameter on the edge (Ui, Vi). Note that the effect of
Ui on the activation of Vi is determined by probability ri · qi, and thus we treat
ri = 1 for all i ∈ [n], and focus on identifying parameters qi’s. Thus the graph
G = (U, V,E) has parameters q = (qi)i∈[n], and p = (pi,j)(Vi,Vj)∈E . Figure 1
shows an example of a Markovian IC model. If some qi = 0, it means that the
observed variable Vi has no latent variable influencing it, and it only receives
influence from other observed variables.

Fig. 1. A Markovian IC model with
five nodes.

Fig. 2. A Markovian IC model with five
nodes and a global unobserved variable.

Semi-Markovian IC Model. The second type of unobserved variables is the
hidden variables connected to exactly two observed variables in the graph. In
particular, for every pair of nodes Vi, Vj ∈ V , we allow one unobserved variable
Ui,j that has two edges, one pointing to Vi and the other pointing to Vj . This
models the scenario that two individuals in the social network has a common
unobserved confounder that may affect the behavior of two individuals. We call
this type of model semi-Markovian IC model, following the common terminology
of the semi-Markovian model in the literature [20]. In this model, each Ui,j

has a parameter ri,j , and edges (Ui,j , Vi) and (Ui,j , Vj) have parameters qi,j,1
and qi,j,2 respectively. Therefore, the graph has parameters r = (ri,j)(Vi,Vj)∈E ,
q = (qi,j,1, qi,j,2)(Vi,Vj)∈E , and p = (pi,j)(Vi,Vj)∈E .

Within this model, we will pay special attention to a special type of graphs
where the observed variables form a chain, i.e. V1 → V2 → · · · → Vn, and the
unobserved variables always point to the two neighbors on the chain. In this case,
we use Ui to denote the unobserved variable associated with edge (Vi, Vi+1), and
the parameters on the edges (Ui, Vi) and (Ui, Vi+1) are denoted as qi,1 and qi,2,
respectively. Figure 3 represents this chain model.
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Fig. 3. The semi-Markovian IC chain model.

IC Model with A Global Unobserved Variable. The third type of hidden
variables is a global unobserved variable U0 that points to all observed variables
in the network. This naturally models the global causal effect where some com-
mon factor affects all or most individuals in the network. For every edge (U0, Vi),
we use q0,i to represent its parameter.

Moreover, we can combine this model with the Markovian IC model, where
we allow both unobserved variable Ui for each individual and a global unobserved
varoable U0. Figure 2 represents this model.

4 Parameter Identifiability of the Markovian IC Model

For the Markovian IC model in which every observed variable has its own unob-
served variable, we can fully identify the model parameters in most cases, as
given by the following theorem.

Theorem 1 (Identifiability of the Markovian IC Model). For an arbi-
trary Markovian IC model G = (U, V,E) with parameters q = (qi)i∈[n] and
p = (pi,j)(Vi,Vj)∈E, all the qi parameters are efficiently identifiable, and for every
i ∈ [n], if qi �= 1, then all pj,i parameters for (Vj , Vi) ∈ E are efficiently identi-
fiable.

Proof. For an observed variable (node) Vi, suppose that its observed parents are
Vi1 , Vi2 , · · · , Vit . Therefore, we have

P (Vi = 0|Vi1 = 0, · · · , Vit = 0) = 1 − qi, (1)
P (Vi = 0|Vij

= 1, Vi1 = 0, · · · , Vij−1 = 0, Vij+1 = 0, · · · , Vit = 0) = (1 − qi)(1 − pij ,i
). (2)

From Eq. (1), we can obtain the value of qi. Then if qi �= 1, from Eq. (2), we
can derive the value of pij ,i. Moreover, for each root node Vi, we can get qi by
computing qi = P (Vi = 1). The computational efficiency is obvious. �	

The theorem essentially says that all parameters are identifiable under the
Markovian IC model, except for the corner case where some qi = 1. In this case,
the observed variable Vi is fully determined by its unobserved parent Ui, so we
cannot determine the influence from other observed parents of Vi to Vi. But the
influence from the observed parents of Vi to Vi is not useful any way in this
case, so the edges from the observed parents of Vi to Vi will not affect the causal
inference in the graph and they can be removed.
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5 Parameter Identifiability of the Semi-Markovian IC
Model

Following the definition in the model section, we then consider the identifiabil-
ity problem of the semi-Markovian models. We will demonstrate that in most
cases, this model is not parameter identifiable. Actually, from [22] we know that
the semi-Markovian Bayesian causal model is also not identifiable in general.
Essentially, our conclusion is not related to their result. On the other side, we
will show that with some parameters known in advance, the semi-Markovian IC
chain model will be identifiable.

5.1 Condition on Unidentifiability of the Semi-Markovian IC Model

More specifically, the following theorem shows the unidentifiability of the semi-
Markovian IC model with a special structure in it.

Theorem 2 (Unidentifiability of the Semi-Markovian IC Model). Sup-
pose in a general graph G, we can find the following structure. There are three
observable nodes V1, V2, V3 such that (V1, V2) ∈ E, (V2, V3) ∈ E and unobservable
U1, U2 with (U1, V1), (U1, V2), (U2, V2), (U2, V3) ∈ E. Suppose each of U1, U2 only
has two edges associated to it, the three nodes V1, V2, V3 can be written adjacently
in a topological order of nodes in U ∪ V . Then we can deduce that the graph G
is not parameter identifiable.

Figure 4 is an example of the structure described in the above theorem.

Fig. 4. An example of the structure in Theorem 2.

Proof (Outline). To prove that the parameters in the model with this structure
are not identifiable, we give two different sets of parameters directly. We show
that these two different sets of parameters produce the same distribution of
nodes in V , and thus the set of parameters is not identifiable by observing
only the distribution of V . The details of these two sets of parameters and the
distributions they produce are included in the full technical report [8]. �	
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5.2 Identifiability of the Chain Model

We now consider the chain model as described in Sect. 3 and depicted in Fig. 3.
In this structure, we present a conclusion of identifiability under the assumption
that the valuations of some parameters are our prior knowledge.

We divide the parameters of the graph into four vectors

q1 = (q1,1, q2,1, · · · , qn−1,1), q2 = (q1,2, q2,2, · · · , qn−1,2), (3)
p = (p1, p2, · · · , pn−1), r = (r1, r2, · · · , rn−1). (4)

For the chain model, our theorem below shows that once the parameters p1
is known, q2 or r is known, the set consists of remaining parameters in the chain
is efficiently identifiable.

Theorem 3 (Identifiability of the Semi-Markovian IC Chain Model).
Suppose that we have a semi-Markovian IC chain model with the graph

G = (U, V,E) and the IC parameters p = (pi)i∈[n−1], q1 = (qi,1)i∈[n−1],
q2 = (qi,2)i∈[n−1] and r = (ri)i∈[n−1], and suppose that all parameters are in
the range (0, 1). If the values of parameter p1 is known, q2 or r is known, then
the remaining parameters are efficiently identifiable.

Proof (Outline). We use induction to prove this theorem. Under the assumption
that p1 is known and q2 or r is known, suppose p1, p2, · · · , pt−2, r1, r2, · · · , rt−2,
q1,1, q2,1, · · · , qt−2,1 and q1,2, q2,2, · · · , qt−2,2, rt−1qt−1,1 has been determined by
us, and we prove that qt−1,1, rt−1, pt−1, qt−1,2 and rtqt,1 can also be determined.
In fact, by the distribution of the first t nodes on the chain we can obtain three
different equations, and after substituting our known parameters, the inductive
transition can be completed. It is worthy noting that this inductive process can
also be used to compute the unknown parameters efficiently.

The proof is lengthy because of the many corner cases considered and the
need to discuss the cases t = n, t = 2 and 2 < t < n. �

According to Theorem 3 we get that the semi-Markovian chain is param-
eter identifiable in the case that n particular parameters are known. Simul-
taneously, by Theorem 2, we can show that if just less than 
n+1

2 � parame-
ters are known, then this semi-Markovian chain will not be parameter identi-
fiable. Actually, if the chain model is parameter identifiable, utilizing Theorem
2, we know that for each 2 ≤ t ≤ n − 1, at least one of parameters between
pt−1, pt, rt−1, rt, qt−1,1, qt−1,2, qt,1 and qt,2 should be known. Therefore, we let
t = 2, 4, · · · , 2
n−1

2 �, we can deduce that at least 
n−1
2 � should be known. For-

mally, we have the following corollary of Theorem 2 and Theorem 3.

Corollary 1. For a semi-Markovian IC chain model, if no more than 
n−1
2 �

parameters are known in advance, the remaining parameters are unidentifiable;
if it is allowed to know n parameters in advance, we can choose p1, q2 or p1, r
to be known, then the remaining parameters are identifiable.
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6 Parameter Identifiability of Model with a Global
Hidden Variable

Next, we consider the case where there is a global hidden variable in the causal
IC model, defined as those in Sect. 3. If there is only one hidden variable U0

in the whole model, we prove that the parameters in general in this model are
identifiable; if there is not only U0, the model is also Markovian, that is, there
are also n hidden variables U1, · · · , Un corresponding to V1, V2, · · · , Vn, then the
parameters in this model are identifiable if certain conditions are satisfied.

6.1 Observable IC Model with only a Global Hidden Variable

Suppose the observed variables in the connected DAG graph G = (U, V,E) are
V1, V2, · · · , Vn in a topological order and there is a global hidden variable U0

such that there exists an edge from U0 to the node for each observable variable
Vi. Suppose the activating probability of U0 is r and the activating probability
from U to Vi is qi ∈ [0, 1) (naturally, q1 �= 0 and there are at least 3 of nonzero
qi’s). Now we propose a theorem according to these settings.

Theorem 4 (Identifiability of the IC Model with a Global Hidden
Variable). For an arbitrary IC model with a global hidden variable G =
(U, V,E) with parameters q = (qi)i∈[n], r and p = (pi,j)(Vi,Vj)∈E such that
qi �= 1, pi,j �= 1 and r �= 1 for ∀i, j ∈ [n], all the parameters in p, r and q are
identifiable.

Proof (Outline). We discuss this problem in two cases, the first one is the exis-
tence of two disconnected points Vi, Vj , i < j in V and qi, qj �= 0. At this point
we can use 1 − qj = P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj=0)

P (V1=0,V2=0,··· ,Vi=1,Vi+1=0,··· ,Vj−1=0) to solve out qj , and
then use P (V1 = 0, V2 = 0, · · · , Vj = 0) and P (V1 = 0, V2 = 0, · · · , Vj−1 = 0) to
solve out r.

After getting r, by the quotients of probabilities of propagating results, we
can get all the parameters.

Another case is that there is no Vi, Vj as described above. At this point
there must exist three points Vi, Vj , Vk that are connected with each other and
qi, qj , qk �= 0. We observe the probabilities of different possible propagating
results of these three points with all other nodes are 0 after the propagation.
From these, we can solve out qi, qj , qk, and then solve out all parameters by the
same method as in the first case. �	

6.2 Markovian IC Model with a Global Hidden Variable (Mixed
Model)

Suppose the model is G = (U, V,E), where U = {U0, U1, U2, · · · , Un}, V =
{V1, V2, · · · , Vn}. Here, V1, V2, · · · , Vn are in a topological order. The parameters
are r0, q0 = (q0,i)i∈[n], q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E .
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Theorem 5 (Identifiability of Markovian IC Model with a Global Hid-
den Variable (Mixed Model)). For an arbitrary Markovian IC Model with
a Global Hidden Variable G = (U, V,E) with parameters r0, q0 = (q0,i)i∈[n],
q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E, we suppose that all the parameters are not
1. If ∃i, j, k ∈ [n], i < j < k such that each pair in Vi, Vj , Vk are disconnected
and q0,i, q0,j , q0,k �= 0, then the parameters q0,t, qt and pt,l, l > t > k are iden-
tifiable. Moreover, if Vi, Vj , Vk can be adjacently continuous in some topological
order, i.e. j = i + 1, k = i + 2 without loss of generality, all the parameters are
identifiable.

Proof (Outline). Assuming that there exist Vi, Vj , Vk that satisfy the require-
ments of the theorem, then we can write expressions for the distribution of these
three parameters when all other nodes with subscripts not greater than l are
equal to 0. In fact, we can see that with these 8 expressions, we can solve for
P (V1 = 0, · · · , Vl = 0, U0 = 1) and P (V1 = 0, · · · , Vl = 0, U0 = 0).

Since we have P (V1 = 0, · · · , Vl = 0, U0 = 1) = r
∏l

t=1(1 − qt)(1 − q0,t) and
P (V1 = 0, · · · , Vl = 0, U0 = 0) = (1 − r)

∏l
t=1(1 − qt), we will be able to obtain

all the parameters very easily by dividing these equations two by two. This proof
has some trivial discussion to show that this computational method does not fail
due to corner cases. �	

Notice that the parameters in this model are identifiable when and only when
a special three-node structure appears in it. Intuitively, this is because through
this structure we can more easily obtain some information about the parameters,
which does not contradict the intuition of Theorem 2.

7 Conclusion

In this paper, we study the parameter identifiability of the independent cascade
model in influence propagation and show conditions on identifiability or uniden-
tifiability for several classes of causal IC model structure. We believe that the
incorporation of observed confounding factors and causal inference techniques is
important in the next step of influence propagation research and identifiability
of the IC model is our first step towards this goal. There are many open prob-
lems and directions in combining causal inference and propagation research. For
example, seed selection and influence maximization correspond to the interven-
tion (or do effect) in causal inference, and how to compute such intervention
effect under the network with unobserved confounders and how to do influence
maximization is a very interesting research question. In terms of identifiability,
one can also investigate the identifiability of the intervention effect, or whether
given some intervention effect one can identify more of such effects.
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