
Streaming Algorithms for Maximizing
Non-submodular Functions on the Integer

Lattice

Bin Liu1(B), Zihan Chen1, Huijuan Wang2, and Weili Wu3

1 School of Mathematical Sciences, Ocean University of China, Qingdao, China
binliu@ouc.edu.cn

2 School of Mathematics and Statistics, Qingdao University, Qingdao, China
3 Department of Computer Science, The University of Texas at Dallas,

Richardson, TX 75080, USA

Abstract. Submodular functions play a key role in combinatorial
optimization field. The problem of maximizing submodular and non-
submodular functions on the integer lattice has received a lot of recent
attention. In this paper, we study streaming algorithms for the problem
of maximizing a monotone non-submodular functions with cardinality
constraint on the integer lattice. For a monotone non-submodular func-
tion f : Zn

+ → R+ defined on the integer lattice with diminishing-return
(DR) ratio γ, we present a one pass streaming algorithm that gives a
(1 − 1

2γ − ε)-approximation, requires at most O(kε−1 log k/γ) space and
O(ε−1 log k/γ· log ‖B‖∞) update time per element. To the best of our
knowledge, this is the first streaming algorithm on the integer lattice for
this constrained maximization problem.

Keywords: Streaming algorithm · Cardinality constraint ·
Non-submodular maximization · Integer lattice

1 Introduction

A set function f : 2E → R with a ground set E is called submodular if for
any A,B ⊆ E, it holds that f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B). There is an
equivalent definition of submodularity which called diminishing marginal return
property, i.e. for any S ⊆ T ⊆ E and e ∈ E \ T , we have f(S ∪ {e}) − f(S) ≥
f(T ∪ {e}) − f(T ). We say a set function f is monotone if for any S ⊆ T ⊆ E,
it holds f(S) ≤ f(T ). Submodular functions play a key role in combinatorial
optimization, as they capture many instances such as rank functions of matroids,
cuts functions of graphs and covering functions [1,8]. The few decades have
seen a proliferation of works on submodular maximization. In particular, there
are many algorithms for maximizing a submodular function subject to various

This work was supported in part by the National Natural Science Foundation of China
(11971447, 11871442), and the Fundamental Research Funds for the Central Universi-
ties.

c© Springer Nature Switzerland AG 2021
D. Mohaisen and R. Jin (Eds.): CSoNet 2021, LNCS 13116, pp. 3–14, 2021.
https://doi.org/10.1007/978-3-030-91434-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91434-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-91434-9_1


4 B. Liu et al.

constraints such as greedy algorithms, random sampling algorithms and local
search algorithms which achieve constant factor approximation guarantees.

Due to the phenomenon of big data, constrained submodular maximization
has found many new applications, including data summarization [2,3], general-
ized assignment [4] and influence maximization in social networks [5–7]. In some
of the above applications, the amount of input data is much larger than the data
that the individual computers can store. This issue motivates us to use stream-
ing computation approach to process the data which uses only a small amount
of memory and only a single pass over the data ideally. That is, when each item
in the ground set E = {e1, ..., en} arrives, the streaming algorithm must decide
whether to keep the current item before the arrival of the next item. Gener-
ally, there are four indicators to measure the streaming algorithm, which are
approximation ratio, query complexity, memory complexity and the number of
passes to scan all data. Up to now, much work has been done on submodular
maximization in the streaming model [9–12].

Set functions are powerful tools to describe the problem of elements selec-
tion. However, in practice, we sometimes face situations that cannot be solved
with set functions such as problems that allow multiple choices of an element
in the ground set. Thus it is nature for us to generalize a submodular func-
tion from set E to integer lattice ZE . Recently, much work has studied the gen-
eralization of submodular functions on bounded integer lattice [13–15]. But in
instances, functions with many problems are non-submodular [16,17]. To solve
this problem, some parameters were proposed to describe the closeness of non-
submodular function and submodular function, such as diminishing-return ratio,
submodularity ratio and generic submodularity ratio [16,21,22]. In this paper,
we describe a streaming algorithm for non-submodular maximization with a car-
dinality constraint on the integer lattice. Let B ∈ Zn

+ be an integer vector and
[B] = {x ∈ Zn

+|0 ≤ x(i) ≤ B(i),∀1 ≤ i ≤ n} be an integer lattice domain, where
x(i) denotes the i-th component of vector x . Our problem is described as follows

max f(x )
s. t. ‖x‖1 ≤ k, (1)

x ≤ B.

where f : ZE
+ → R is a non-negative monotone non-submodular function with

f(0) = 0, and k is a positive integer.

Our Contribution. In this paper, we focus on maximizing non-submodular
functions subject to a cardinality constraint on the integer lattice. Inspired by
the Sieve-Streaming algorithm introduced by Badanidiyuru et al. [9], we propose
a one pass streaming algorithm. For each arriving item with its copies, we employ
a modified binary search algorithm (cf. Sect. 2) to determine the amount of the
current item that should be kept. Finally, we give a (1 − 1

2γ − ε)-approximation
algorithm with memory O(kε−1 log k/γ) and update time O(ε−1 log k/γ log lmax)
per element, where γ is the diminishing return (DR) ratio (cf. Definition 1) for
non-submodular functions on the integer lattice. To the best of our knowledge,
this is the first streaming algorithm on the integer lattice for this constrained
maximization problem.



Streaming Algorithms for Maximizing Non-submodular Functions 5

1.1 Additional Related Work

The research on submodular and non-submodular optimization is too extensive
to give a comprehensive description. In the following, we only describe the related
work of this paper.

Integer Lattice. As a generalization of submodular set functions, a func-
tion is called lattice submodular function if for any x ,y ∈ ZE , we have
f(x ) + f(y) ≥ f(x ∨ y) + f(x ∧ y), where ∨ and ∧ are coordinate-wise max
and min. However, unlike set functions, submodularity on integer lattice is not
equivalent to diminishing returns property. A function f : ZE → R satisfy-
ing f(x + Xe) − f(x ) ≥ f(y + Xe) − f(y) is called diminishing-return(DR)
submodular function for any x ,y ∈ ZE with x ≤ y and e ∈ E, where Xe

denotes the unit vector with coordinate e being 1 and other components are
0. Note that lattice submodularity is weaker than DR-submodularity in general
[14]. For maximizing a monotone submodular function subject to a knapsack
constraint on the integer lattice, Soma et al. [14] proposed a pseudo-polynomial-
time algorithm with approximation ratio 1 − 1/e. Later, the running time is
significantly improved. Soma et al. [13] proposed polynomial-time algorithms
which use threshold greedy technique to achieve an arbitrarily close to 1 − 1/e
approximation for both lattice and DR-submodular maximization under a cardi-
nality constraint, DR-submodular maximization under a polymatroid constraint
and a knapsack constraint.

Streaming Model. For monotone submodular maximization subject to a
cardinality constraint, Badanidiyuru et al. [9] presented the first one pass
1/2-approximation streaming algorithm named Sieve-Streaming with memory
O(k log k/ε) and update time O(log k/ε) per element. In contrast, Buchbinder et
al. [10] designed a streaming algorithm with a lower ratio of 1/4 but an improved
memory complexity O(k). For this problem, Norouzi-Fard et al. [11] proved that
with memory O(n/k), the best approximation ratio of the one pass streaming
algorithm for this problem is 1/2. Kazemi et al. [12] described a streaming algo-
rithm called Sieve Streaming++, which obtained a approximation of 1/2 with
memory O(k/ε). Following this vain, [17] studied the non-submodular function
with cardinality constraint and give a (1 − 1

2γ − ε)-approximation streaming
algorithm with memory O(k log(k/γ)/ε) and update time O(log(k/γ)/ε) per
element.

In the streaming setting, besides the set functions we mentioned above,
there are also works considering submodular maximization on the integer lat-
tice. Zhang et al. [19,20] gave (1/2 − ε) algorithms for DR-submodular and
lattice submodular maximization with cardinality constraint, respectively. For
DR-submodular maximization subject to knapsack constraint, Tan et al. [18]
proposed a (1/3 − ε)-approximation algorithm with a single pass.

Non-submodular Functions. Das and Kempe [21] gave the concept of sub-
modularity ratio γs to describe how close a function is from being submodular.
Kuhnle et al. [16] proposed the diminishing-return (DR) ratio γd on the integer
lattice, and generalized the definition of submodularity ratio γs in [21] from set



6 B. Liu et al.

functions to the integer lattice. Later, Nong et al. [22] defined the generic sub-
modularity ratio γ to measure the diminishing return property of a set function.
DR ratio defined in [16] is the extension of generic submodularity ratio defined in
[22] from set to the integer lattice. For maximizing a monotone non-submodular
function subject to cardinality constraint, Nong et al. [22] proved that standard
greedy algorithm achieves a (1 − e−γ)-approximation with query complexity
O(nk). Wang et al. [17] introduced a streaming algorithm with approximation
1 − 1

2γ − ε. In addition, Kuhnle et al. [16] utilized threshold greedy technique to
obtain a algorithm for maximizing monotone non-submodular functions on the
integer lattice whose approximation ratio arbitrarily approaching (1 − e−γsγd).

The rest of this paper is organized as follows. The necessary notations and
subproblems that our algorithms need to solve are introduced in Sect. 2. In Sect. 3
we first propose a streaming algorithm with known optimal value. Then in Sect. 4
we introduce a streaming algorithm with known value of the unit standard vec-
tor. Finally, we present the one pass streaming algorithm for the non-submodular
functions in Sect. 5.

2 Preliminaries

In this section, we will define the DR ratio and introduce some notations and
properties about non-submodular function on a bounded integer lattice.

Notations. Denote Z+ and R+ be the non-negative integers and non-negative
reals, respectively. Let E represent a finite ground set of size n. For each e ∈ E,
we use x(e) to denote the component of a vector x ∈ ZE

+ corresponding to
element e. Let B ∈ Zn

+ be an integer vector and [B] = {x ∈ Zn
+|0 ≤ x(i) ≤

B(i),∀1 ≤ i ≤ n} be an integer lattice domain. Specially, [k] = {1, 2, ..., k} for
any integer k ∈ Z+. For any ei ∈ E, let Xi denote the unit vector in which
the i-th component is 1 and the other components are 0. The zero vector is
represented by 0. For vectors x ,y ∈ ZE

+, we define fy (x ) = f(y + x ) − f(y).
For a vector x ∈ ZE

+, let supp+(x ) be the set {e ∈ E|x(e) > 0}, and {x} be
the multiset corresponding to vector x . Finally, we define x ∨y to be the vector
whose i-th coordinate is max{x (i),y(i)}, and x ∧ y to be the vector whose i-th
coordinate is min{x (i),y(i)}.

Using this notations we can now define DR ratio as follows.

Definition 1 (DR Ratio [16]). Let function f : ZE
+ → R, the diminishing-

return (DR) ratio of f , γ, is the maximum value in [0, 1] such that for any
e ∈ E, and for all x ≤ y, such that y + Xe ≤ B,

γfy(Xe) ≤ fx(Xe).

Next, we describe a subproblem of our algorithm need to solve, namely, binary
search pivot subproblem.

BinarySearchPivot. Integer lattice can be represented as a multiset, where
elements can be contained repeatedly. In a streaming algorithm on the inte-
ger lattice, when element e and its copies arrive, any l satisfying (1)fy (lXe) ≥



Streaming Algorithms for Maximizing Non-submodular Functions 7

lτ ; (2)fy ((l + 1)Xe) < (l + 1)τ is named as a pivot with respect to y , e, τ . The
subproblem is described as follows: given a threshold τ , determine a valid pivot
which satisfies both (1) and (2). In the literature, Soma et al. [13] studied the
maximization of DR-submodular functions f on the integer lattice, and they used
the standard Binary Search algorithm to obtain a valid pivot. Meanwhile, when
f is non-submodular, BinarySearchPivot algorithm of Kuhnle et al. [16] ensures
the average marginal contribution of elements added exceeds τ . In this paper,
we focus on non-submodular functions, thus we analyze our algorithms using the
BinarySearchPivot as a subroutine. The full algorithm for BinarySearchPivot is
given in Appendix A. Next, we use the following lemma of Kuhnle et al. [16].

Lemma 1 ([16]). BinarySearchPivot finds a valid pivot l ∈ {0, .., lmax} in
O(log lmax) queries of f , where lmax = min{B(e) − y(e), k − ‖y‖1}.

3 Streaming Algorithm with Known OPT

In this section, we assume that the optimal value of the problem (1) is known.
Then we present an algorithm that obtains a constant ratio with polynomial
query complexity. Procedure for BinarySearchPivot is desired; see section 2 for
an analysis of this subproblem.

Overview of Algorithm. Inspired by [9], we present a threshold greedy algo-
rithm in the streaming model. Suppose that a parameter v with λOPT ≤ v ≤
OPT is known, where λ ∈ [0, 1]. When element ei and its B(ei) copies arrive,
we utilize the BinarySearchPivot algorithm with threshold τ = γv

2γk to obtain a
valid pivot li. That is, when algorithm runs to element ei, we employ Algorithm
BinarySearchPivot to obtain a appropriate li which satisfies

fy (liXi)
li

≥ γv

2γk
.

and
fy ((li + 1)Xi)

li + 1
<

γv

2γk
.

Finally, we add liXi to the current solution y .

Algorithm 1. Streaming-Know-OPT
Require: function f , cardinality k, ground set E, B and v such that λOPT ≤ v ≤

OPT .
1: y ← 0
2: for i = 1, 2, ..., n do
3: if ‖y‖1 ≤ k then
4: li ←BinarySearchPivot(f, y , B(ei), ei, k, γv

2γk
)

5: y ← y + liXi

6: end if
7: end for
8: return y



8 B. Liu et al.

Lemma 2. For the i-th iteration, Algorithm BinarySearchPivot considers the
element ei and its copies B(ei). Let yi be the current solution y at the end
of iteration i of Algorithm1. Then for each vector yi ≤ v ≤ w ≤ B, where
i = 1, 2, ..., n, we have

f(w) − f(v) ≤ 1
γ

∑
ei∈supp+{w−v}(w(ei) − v(ei))fyi

(Xi).

The above lemma is proven in Appendix B. From Lemma 2, it is clearly to
see that for any vector y ≤ v ≤ w ≤ B , we also have

f(w) − f(v) ≤ 1
γ

∑

ei∈{w−v}
fy (Xi). (2)

Lemma 3. Let yi be the vector y following the i-th update of Algorithm1, then
it satisfies

f(yi) ≥ γv‖yi‖1
2γk

. (3)

Proof. The proof is by induction. First, since f is normalized, we have f(0) =
0. Next, we suppose that for vector y i−1 the result holds, that is, f(y i−1) ≥
γv‖yi−1‖1

2γk . Let li be the valid pivot returned by Algorithm BinarySearchPivot
during the i-th iteration of Algorithm 1, then we have y i = y i−1 + liXi. We now
show inequation 3 holds.

By Algorithm BinarySearchPivot we know

f(y i−1 + liXi) − f(y i−1) ≥ li
γv

2γk
. (4)

Using the above assumption and the equality 4, we have

f(y i−1 + liXi) ≥ f(y i−1) + li
γv

2γk

≥ γv‖y i−1‖1
2γk

+ li
γv

2γk

=
γv(‖y i−1‖1 + li)

2γk

=
γv‖y i‖1

2γk
.

Thus the lemma follows.

Theorem 1. Let f be a non-submodular function with DR ratio γ ∈ [0, 1]. For
any given λ ∈ [0, 1], denote y be the output of Algorithm1. Then we have

– f(y) ≥ min{λγ/2γ , 1 − 1/2γ}OPT , where OPT is the optimal value.
– Algorithm1 requires one pass, at most k space and O(log ‖B‖∞) update time

per element.



Streaming Algorithms for Maximizing Non-submodular Functions 9

Proof. The proof splits into two cases depending on the cardinality of solution
y returned by Algorithm1.

1. At the end of the algorithm we have ‖y‖1 = k, then by Lemma 3 we get

f(y) ≥ γv‖y‖1
2γk

=
γv

2γ
≥ λγ

2γ
· OPT.

2. We consider the case ‖y‖1 < k. Suppose that y∗ is the optimal solution of
Algorithm 1, then it is easy to see that ‖y∗‖1 = k. Let x = (y∗ − y) ∨ 0.
Denote y i be the vector at the end of i-th iteration of Algorithm 1, y i =
l1X1 + ... + liXi. Then by Lemma 1 and Algorithm BinarySearchPivot, we
have

fyi
(Xi) <

γv

2γk
. (5)

Next, from 5, the monotonicity of f , Lemma 2 and the choice of v, we have
that

OPT − f(y) ≤ f(y∗ ∨ y) − f(y)
≤ f(y + x ) − f(y)

≤ 1
γ

∑

ei∈supp+{x}
x(ei)fyi

(Xi)

≤ 1
γ

∑

ei∈supp+{x}
x(ei)

γv

2γk

≤ v

2γ

≤ 1
2γ

OPT.

Rearranging the above inequality, we get

f(y) ≥ (1 − 1
2γ

)OPT.

From the above two cases, we have

f(y) ≥ min{λγ

2γ
, 1 − 1

2γ
} · OPT.

4 Streaming Algorithm with Known f(Xe)

The premise of Algorithm 1 is that we know the value of the optimal solution
OPT , which is unrealistic. To address this issue, we present the next algorithm,
which is instantiated with different guesses of OPT . Suppose that we know the
maximum values α = maxe∈E f(Xe). Combining with the DR ratio of f , it is
easy to see the guesses v ∈ Vε of OPT are increasing from α to kα/γ. For each
guesses v, Algorithm 2 outputs a feasible solution yv. Finally, the best of these
candidate vectors is returned.



10 B. Liu et al.

Algorithm 2. Streaming-Know-MAX VAL
Require: function f , cardinality k, ground set E, B, α = maxe∈E f(Xe).
1: Vε = {(1 + ε)i|i ∈ Z, α/(1 + ε) ≤ (1 + ε)i ≤ kα/γ}
2: for each v ∈ Vε, set yv ← 0
3: for i = 1, 2, ..., n do
4: for v ∈ Vε do
5: if ‖yv‖1 ≤ k then
6: li ←BinarySearchPivot(f, yv, B(ei), ei, k, γv

2γk
)

7: yv ← yv + liXi

8: end if
9: end for

10: end for
11: return arg maxv∈Vε f(yv)

The next lemma is proven in Appendix C.

Lemma 4. There is a guesses v ∈ Vε such that (1 − ε) · OPT ≤ v ≤ OPT .

Theorem 2. Let f be a non-submodular function with DR ratio γ ∈ [0, 1]. For
any given ε ∈ [0, 1], denote y be the output of Algorithm2. Then we have

– f(y) ≥ (1 − 1/2γ − ε)OPT , where OPT is the optimal value.
– Algorithm2 requires one pass, at most O(kε−1 log k/γ) space and

O(ε−1 log k/γ log ‖B‖∞) update time per element.

Proof. By the result of Lemma 4, we know that there must be a v0 such that
(1 − ε)OPT ≤ v0 ≤ OPT . Let y0 denote the solution of Algorithm 2 output
corresponding to v0. For the rest of the proof, we suppose that the results of
Lemma 1, Lemma 2 and Lemma 3 all hold for the Algorithm2 with value v0.
Thus, in the same way as Theorem 1, we consider the following two cases

1. When ‖y0‖1 = k, by applying Lemma 3, we have

f(y0) ≥ γv0‖y0‖1
2γk

=
γv0
2γ

≥ (1 − ε)γ
2γ

· OPT.

2. When ‖y0‖1 < k, we have

f(y0) ≥ (1 − 1
2γ

) · OPT.

Obviously, we can get the following inequality

(1 − ε)γ
2γ

≥ 1 − 1
2γ

− ε,∀ε ∈ (0, 1), γ ∈ [0, 1].

From the above two cases, we have

f(y0) ≥ min{ (1 − ε)γ
2γ

, 1 − 1
2γ

} · OPT

≥ min{ (1 − ε)γ
2γ

, 1 − 1
2γ

− ε} · OPT

= (1 − 1
2γ

− ε) · OPT.



Streaming Algorithms for Maximizing Non-submodular Functions 11

Memory and Query Complexity. We first argue that the amount of Vε is
O(ε−1 log k/γ). For each arriving element e, we need to consider all the parame-
ters in Vε to get O(ε−1 log k/γ) different solutions. This implies that the memory
of Algorithm 2 is O(kε−1 log k/γ). Further, suppose that the element e is fixed,
then for each v ∈ Vε, we have to call to Algorithm BinarySearchPivot to get a
valid pivot. Combine with Lemma 1, we conclude that the query complexity is
O(ε−1 log ‖B‖∞ log k/γ).

5 The One Pass Streaming Algorithm

Algorithm 3. Streaming Algorithm
Require: function f , cardinality k, ground set E, B and ε ∈ (0, 1).
1: Vε = {(1 + ε)i|i ∈ Z+}
2: for each v ∈ Vε, set yv ← 0
3: α ← 0, β ← 0
4: for i = 1, 2, ..., n do
5: α ← max{α, f(Xi)}, β ← {β, f(B(ei)Xi)}
6: Vi

ε = {(1 + ε)s|s ∈ Z, α/(1 + ε) ≤ (1 + ε)s ≤ 2γkβ/γ}
7: Delete all yv, where v /∈ Vi

ε

8: for v ∈ Vi
ε do

9: if ‖yv‖1 < k then
10: li ←BinarySearchPivot(f, yv, B(ei), ei, k, γv

2γk
)

11: yv ← yv + liXi

12: end if
13: end for
14: end for
15: return arg maxv∈Vn

ε
f(yv)

Both Algorithm 1 and Algorithm 3 are idealized versions. This is due to the fact
that we do not know the exact value of OPT and α defined in Algorithm 2. To
solve this problem, we present a new one-pass algorithm in this section, in which
we estimate the values of α and a new parameter β. For each element e, denote
α and β be the current maximum f(Xe) and f(B(e)Xe). This implies that when
element ei and its copies arrive, their corresponding set Vi

ε will be updated,
which is recorded as Vi

ε = {(1+ ε)s|s ∈ Z, α/(1+ ε) ≤ (1+ ε)s ≤ 2γkβ/γ}. When
the parameter v first appears in Vi

ε, the value of the vector yv is 0. When the
parameter v is not in Vi

ε, we delete the vector yv to save memory. Finally, the
best of yv is returned.

Lemma 5. For any v ∈ ∪n
i=1Vi

ε, denote yv be the final solution of Algorithm3
and xv = (y∗ − yv) ∨ 0. Suppose that v first appears in Vm

ε . Then for each
ei, i ∈ [m − 1], it always satisfies

f(xv(ei)Xi) < xv(ei) · γv

2γk
. (6)



12 B. Liu et al.

Proof. The proof is by contradiction. Suppose that there exists a i0 ∈ [m − 1]
such that

f(x v(ei0)Xi0) ≥ x v(ei0)
γv

2γk
. (7)

Let αi = maxj∈[i] f(Xj) and βi = maxj∈[i] f(B(ej)Xj). Then combine the mono-
tonicity of f and (6), we have

v ≤ f(x v(i0)Xi0)2
γk

x v(ei0)γ
≤ 2γk

γ
f(B(ei0)Xi0) ≤ 2γkβi0

γ
.

Since v ∈ Vm
ε , we get

v ≥ αm

1 + ε
≥ αi0

1 + ε
.

Using the above two inequalities, we have αi0
1+ε ≤ v ≤ 2γkβi0

γ . That implies
that v ∈ Vi0 , which contradicts the fact v first appears in Vm

ε . Thus we get the
desired result.

Theorem 3. Let f be a non-submodular consider with DR ratio γ ∈ [0, 1]. For
any given ε ∈ [0, 1], denote y be the output of Algorithm3. Then we have

– f(y) ≥ (1 − 1/2γ − ε)OPT , where OPT is the optimal value.
– Algorithm3 requires one pass, at most O(kε−1 log k/γ) space and

O(ε−1 log k/γ log ‖B‖∞) update time per element.

Proof. By the result of Lemma 4, we know that there must be a v0 such that
(1 − ε)OPT ≤ v0 ≤ OPT . From Lemma 5, we can assume that v0 is considered
when the first element arriving. For the rest of the proof, we consider the quality
of yv0 . The analysis is similar as in Theorem 2, thus we have

f(yv0) ≥ (1 − 1/2γ − ε)OPT.

Since y is the maximum of all solutions, we have

f(y) ≥ f(yv0) ≥ (1 − 1/2γ − ε)OPT.

Thus, we complete the proof.

References

1. Goemans, M.-X., Williamson, D.-P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

2. Lin, H., Bilmes, J.: A class of submodular functions for document summariza-
tion. In: 49th Annual Meeting of the Association for Computational Linguistics,
Portland, Oregon, pp. 510–520. Association for Computational Linguistics (2011)

3. Sipos, R., Swaminathan, A., Shivaswamy, P., Joachims, T.: Temporal corpus sum-
marization using submodular word coverage. In: 21st ACM International Confer-
ence on Information and Knowledge Management, Maui, HI, USA, pp. 754–763.
Association for Computing Machinery (2012)



Streaming Algorithms for Maximizing Non-submodular Functions 13

4. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint (extended abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72792-7 15

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social net-
works. In: 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, pp. 199–208. Association for Computing
Machinery (2009)

6. Seeman, L., Singer, Y.: Adaptive seeding in social networks. In: 54th Annual Sym-
posium on Foundations of Computer Science, Berkeley, CA, USA, pp. 459–468.
Institute of Electrical and Electronic Engineers (2013)

7. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY, USA, pp.
1029–1038. Association for Computing Machinery (2010)

8. Ageev, A.-A., Sviridenko, M.-I.: An 0.828-approximation algorithm for the unca-
pacitated facility location problem. Discret. Appl. Math. 93(2–3), 149–156 (1999)

9. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-
ular maximization: massive data summarization on the fly. In: 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York,
NY, USA, pp. 671–680. Association for Computing Machinery (2014)

10. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. In: 26th ACM-SIAM Symposium on Discrete Algorithms, Cambridge,
Massachusetts, USA, pp. 1202–1216. Society for Industrial and Applied Mathe-
matics (2014)

11. Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh, A., Mousavifar, A., Svens-
son, O.: Beyond 1/2-approximation for submodular maximization on massive data
streams. In: 35th International Conference on Machine Learning, Stockholm, Swe-
den, pp. 3829–3838. International Machine Learning Society (2018)

12. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-
modular streaming in all its glory: tight approximation, minimum memory and
low adaptive complexity. In: 36th International Conference on Machine Learning,
Long Beach, California, pp. 3311–3320. International Machine Learning Society
(2019)

13. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the inte-
ger lattice. Math. Program. 539–563 (2018). https://doi.org/10.1007/s10107-018-
1324-y

14. Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.-I.: Optimal budget allo-
cation: theoretical guarantee and efficient algorithm. In: 31th International Con-
ference on Machine Learning, Beijing, China, pp. 351–359. International Machine
Learning Society (2014)

15. Nong, Q., Fang, J., Gong, S., Du, D., Feng, Y., Qu, X.: A 1/2-approximation
algorithm for maximizing a non-monotone weak-submodular function on a bounded
integer lattice. J. Comb. Optim. 39(4), 1208–1220 (2020). https://doi.org/10.1007/
s10878-020-00558-4

16. Kuhnle, A., Smith, J.-D., Crawford, V., Thai, M.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: 35th International
Conference on Machine Learning, Stockholm, Sweden, pp. 2786–2795. International
Machine Learning Society (2018)

https://doi.org/10.1007/978-3-540-72792-7_15
https://doi.org/10.1007/s10107-018-1324-y
https://doi.org/10.1007/s10107-018-1324-y
https://doi.org/10.1007/s10878-020-00558-4
https://doi.org/10.1007/s10878-020-00558-4


14 B. Liu et al.

17. Wang, Y., Xu, D., Wang, Y., Zhang, D.: Non-submodular maximization on massive
data streams. J. Glob. Optim. 76(4), 729–743 (2019). https://doi.org/10.1007/
s10898-019-00840-8

18. Tan, J., Zhang, D., Zhang, H., Zhang, Z.: Streaming algorithms for monotone
DR-submodular maximization under a knapsack constraint on the integer lattice.
In: Ning, L., Chau, V., Lau, F. (eds.) PAAP 2020. CCIS, vol. 1362, pp. 58–67.
Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0010-4 6

19. Zhang, Z., Guo, L., Wang, Y., Xu, D., Zhang, D.: Streaming algorithms for max-
imizing monotone DR-submodular functions with a cardinality constraint on the
integer lattice. Asia-Pac. J. Oper. Res. 2140004 (2021)

20. Zhang, Z., Guo, L., Wang, L., Zou, J.: A streaming model for monotone lattice
submodular maximization with a cardinality constraint. In: Zhang, Y., Xu, Y.,
Tian, H. (eds.) PDCAT 2020. LNCS, vol. 12606, pp. 362–370. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-69244-5 32

21. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: 28th International
Conference on Machine Learning, Bellevue, WA, USA, pp. 1057–1064. Interna-
tional Machine Learning Society (2011)

22. Nong, Q., Sun, T., Gong, S., Fang, Q., Du, D., Shao, X.: Maximize a monotone
function with a generic submodularity ratio. In: Du, D.-Z., Li, L., Sun, X., Zhang,
J. (eds.) AAIM 2019. LNCS, vol. 11640, pp. 249–260. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27195-4 23

https://doi.org/10.1007/s10898-019-00840-8
https://doi.org/10.1007/s10898-019-00840-8
https://doi.org/10.1007/978-981-16-0010-4_6
https://doi.org/10.1007/978-3-030-69244-5_32
https://doi.org/10.1007/978-3-030-27195-4_23

	Streaming Algorithms for Maximizing Non-submodular Functions on the Integer Lattice
	1 Introduction
	1.1 Additional Related Work

	2 Preliminaries
	3 Streaming Algorithm with Known OPT
	4 Streaming Algorithm with Known f(Xe)
	5 The One Pass Streaming Algorithm
	References




