
KG2Code: Correct Code Examples
Mining Service Based on Knowledge

Graph for Fixing API Misuses

Yangqi Zhang(B), Zhirui Kuai, Wenjin Yao, Zhiyang Zhang, and Li Kuang(B)

Department of Software Engineering, School of Computer Science and Engineering,
Central South University, Changsha, China

{zhangyangqi,8209180621,8209180518,zzy415573678,kuangli}@csu.edu.cn

Abstract. API misuse has become an important factor restricting the
quality of software services. Existing API misuse detectors based on the
API-constraint knowledge graph can not intuitively assist developers
in fixing the API misuse. Correct code examples are more direct and
straightforward for developers to modify and debug code. Therefore, we
first enrich the API-constraint knowledge graph. Besides, we publish a
service called KG2Code, which can map the API-constraint Knowledge
Graph to the Correct Code examples. According to the different types of
constraint relations in the API-constraint knowledge graph, we design a
code snippet mining framework that extracts the corresponding correct
API usage pattern from over 9528K Java repositories GitHub. KG2Code
is implemented by the interactive visualization website. It helped users
(1) learn how to use an unfamiliar API or fix an API misuse and (2)
understand why API misuse occurs.

Keywords: Quality of software services · API-constraint knowledge
graph · Mining software repositories

1 Introduction

If developers do not comply with API usage constraints in the actual soft-
ware development, it will lead to API misuse or even software crash, which
causes the software to be unreliable. For example, when using the File in
Java, File.createNewFile(String) can only be called after File.exist() to avoid
FileNotFoundException. Therefore, developers are often concerned with the
solution to API misuse. In fact, whether in Github, in StackOverflow(SO), or the
API reference documentation, there will be much implicit or explicit information
to fix the API misuse.

The API reference documentation includes a wealth of knowledge in different
aspects of the API, such as functionalities, constraints, directives, caveats, and
resource specifications. The knowledge of constraint descriptions helps develop-
ers understand the correct usage of the API, making it easy to use the API.
However, the constraint knowledge is scattered within the document of the API
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 875–882, 2021.
https://doi.org/10.1007/978-3-030-91431-8_65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_65&domain=pdf
https://doi.org/10.1007/978-3-030-91431-8_65


876 Y. Zhang et al.

elements (e.g., class), leading to many challenges for API constraint knowledge
discovery and summarization. The Q&A knowledge forum (e.g., StackOverflow)
also provides related API misuse questions and answers, but questions about API
misuse are not necessarily correct, and many answers are not clear [1]. There
are a large number of API usage examples in Github. Through these examples,
developers can quickly understand the code and modify the incorrect usage of
the API. However, it is difficult to locate the API we need from the massive
Github repositories. Therefore, fixing the API misuse through the above three
ways is not feasible in practice.

Inspired by the SO platform, we consider that correct code examples can
better improve the efficiency and effectiveness of developers than API misuse
description. Therefore, We publish a service called KG2Code, which can map
an API-constraint knowledge graph to correct code examples. For a given API
constraint triple, we extract correct code examples from the Java Github repos-
itories. First, we crawl Java repositories and filter low-quality repositories by
distributed software mining infrastructure [2]. And according to the class name
and method name, each method in the repository can be found. Next, traverse
the Abstract Syntax Trees (ASTs) of the two APIs with different constraint rela-
tions, and capture the correct code pattern of the API by converting different
data such as control structure, calling sequence, guard conditions, etc. Finally,
remove the part that we are not interested in by program slicing.

This paper makes the following contributions:

1. We expand the original API-constraint knowledge graph by adding constraint
relations and merging more data;

2. We conduct an empirical study that reveals that correct code examples can
effectively assist developers. We firstly propose an approach that can extract
correct code examples from Github based on API-constraint knowledge graph,
and we implement it as a visualization website;

3. Our manual inspection confirms the high quality of the correct examples
mined by KG2Code.

2 Related Work

API pattern mining is our significant part of KG2Code. API pattern mining is
divided into three parts: (1) By modeling the program as a code sequence or item
set and inferring programming rules by mining frequent sequences, or frequent
itemsets [3,4]. (2) Researchers apply formal concept analysis [5] to extract the
call sequence in the program [6]. (3) Researchers mine the guard conditions of
APIs by applying predicate mining technology [7].

Inspired by examplecheck [7], KG2code also mines the Github software code
repositories, but the difference is that we mine through specific patterns in the
knowledge graph. According to the knowledge graph, the calling sequence, guard
conditions, and specific conditions of the control structure of the APIs correspond
to different types of constraint relations. Besides, the SMT Solver [8] is used to
determine the equivalence of the guard conditions.



KG2Code: Correct Code Examples Mining Service 877

3 Construction of API-Constraint Knowledge Graph

To mine correct code examples, we first need to construct the API constraint
knowledge graph. Expect the four API constraint relations, which include call-
order, state-checking, value-checking, and trigger, we add three types of fine-
grained constraint relationships: redundant-checking, duplicate-checking, and
synchronized-checking, which also corresponds to the frequent API misuse types
in the MuBench [9]. We define the seven constraint relations which extend the
prior work [10] for the first time. As the construction of the API constraint
knowledge graph is similar to the prior work, A detailed description will not be
given here. The overall construction framework of the API constraint knowledge
graph is shown in Fig. 1.

Fig. 1. The construction of API-constraint knowledge graph

The entity of knowledge graph consists of API elements: package, class,
method, exception, parameter, return value, and value literals. Literal values
such as null, −1, true, negative numbers, or a range such as [0, 9]. The knowl-
edge graph contains two types of relations: declaration relations and constraint
relations. Declare relations such as a package contains a class, a class contains a
method, a method returns a numeric literal, or a method throws an exception. In
terms of the constraint relations, by referring to the most frequent API misuse
types of the MuBench, we added three fine-grained constraint relationships, and
we expanded the constraint types to seven types. Now let’s discuss the specific
usage of these seven constraint types in the knowledge graph. (see Fig. 2.)

Call-Order: API misuse caused by missing an API call or incorrect call order.
It means the method has to be called before a certain method or the method has
to be called after a certain method to avoid API misuse. For example, the file
should be closed after being written to prevent resource leakage, which means
like PrintWriter.close() should be called after the PrintWriter method (close
the PrintWriter after writing to avoid resource leak). The knowledge graph can
also express chain calls through multi-hop relations.

State-Checking: API misuse caused by missing state-checking or incorrect
state-checking. For example, we need to check the boolean value of hasnext()



878 Y. Zhang et al.

Fig. 2. The constraint relations with the corresponding knowledge graph and code
example

or isempty() before Iterator.next(). It is correct when hasnext() is true, or
isempty() is false. Otherwise, it will cause API misuse, which leads to NosuchEle-
mentexception. It is worth noting that it is very easy to confuse call-order because
it seems to be an order relation between the two methods. We have to pay
attention to that state-checking requiring state-checking on the method’s return
boolean value, while call-order does not need it.

Value-Checking: Determine whether the value of the parameter in the API fol-
lows API usage constraints of the method. For example: for the ArrayList.Get()
method, and it is necessary to check if the index is out of bounds.

Trigger: Trigger is to check whether the exception handling is missing in the
code, which leads to the API misuse. For example, Interge.parseInt(). If the
string does not contain a parsable integer, Interge.parseInt() may throw a Num-
berFormatException.

Duplicate-Checking: If some APIs are called multiple times, they will be mis-
used. For example, cipher.init() is called twice along one possible execution path,
which causes an infinite loop.

Redundant-Checking: A method does a redundant checking, which prevents
a necessary part of a usage and is executed along a certain execution path. One
case is redundant null checks. For example: UnionTypeBuilder.build() returns
a JSType that can never be null. Branching on a null check, therefore, results in
dead code.

Synchronized-Checking: In multi-threaded environments, some container
classes must be the thread-unsafe condition. For example, the HashMap in



KG2Code: Correct Code Examples Mining Service 879

JDK1.8 is thread-unsafe if a usage does not obtain a lock before updating a
HashMap that is accessed from multiple threads.

4 KG2Code

KG2Code consists of two phases. One is the offline phase, which extracts the
constraint triples in the knowledge graph and mines correct code examples
from Github’s high-quality repositories. While the other is the online phase,
which generates the KG2Code results by the visualizing website. The KG2Code
overview is shown in Fig. 3.

Fig. 3. Overview of KG2Code

4.1 Extract the Subgraph

It’s simple to extract the subgraph from the API constraint knowledge graph.
We extract the subgraph from neo4j by different relation types. However, we only
extract the subgraph for four API constraint types of relations: call-order, state-
checking, synchronized-checking, and trigger. This is because the relationship
type needs to correspond to the code pattern that can be extracted-such as
value-checking, the variables involved in a program change dynamically during
the actual running of the program, and in some value-checking examples, getting
the correct code structure requires checking if the variables are in an interval.
However, it is represented by another variable in the range of the program, and
it is difficult to ensure that the code snippet meets the requirements of value-
checking.

4.2 Extract the Structure of the API

We only extract the subgraph for four API constraint types of relations: call-
order, state-checking, synchronized-checking, and trigger.

For a given API, we search for code snippets on GitHub based on the con-
strained triples, which are from the knowledge graph. We used a distributed
software mining infrastructure to filter out some of the low-quality Java repos-
itories by some limits, such as the number of repository contributors and the



880 Y. Zhang et al.

number of version updates. We only consider repositories with at least 100 revi-
sions and 2 contributors. Then we use the relevant syntax to traverse ASTs of
Java files and match the methods and classes of interest by the name of the
class and the name of the method. In order to extract API-specific patterns,
KG2Code models each program as a structured call sequence, which extracts
variable names, but still retains the call sequence, control structure, guard con-
ditions. Furthermore, we extracted different API patterns for different constraint
types.

For the call-order relation, we need to record the order of API calls prop-
erly. In some cases, the methods are not called sequentially, for example,
code().addContent(getSpace()); this expression is a case of nested calls, we
assume that the method inside the parentheses will complete the call first when
it is run so that this sentence will be processed as ’code -> getSpace -> add-
Content’.

For the state-checking relation, we need to keep the guard condition of each
API call. We use the conjunction of the lifted predicates in all relevant control
structures. In other words, we record all the branching conditions on the method
call path and connect them with &. We then use the Z3 solver to determine
whether the two conditions are equivalent. We will formalize the equivalence of
two guard conditions as a satisfiability problem.

For the synchronized-checking and trigger relation, we traverse the abstract
syntax tree to retrain the method’s control structure, including try-catch, switch-
case, synchronized, return, various loops, and so on. For the synchronized-
checking relation, we need to record whether the synchronized modifier is added.
For the trigger relation, we need to check whether the API is contained within
the associated try-catch block.

Finally, we matched the correct code pattern for each API by the constraint
relation type and counted the number of correct code patterns conforming to
each API. The GitHub link of this file is reserved.

4.3 Program Slicing

We need to do static code slicing to filter out any statements that are not
related to the API method of interest. In this step, we retain the control struc-
ture of the method obtained in the previous step. On this basis, we record
the variables involved in the API of interest, including the caller of the API,
the receiver of the API, and the parameters used by the API. We use these
variables for static code slicing.For example (see Fig. 3.), ‘Contentmodifier =
newStringContent(mods.nextToken());’, this sentence contains the method of
interest: nextToken(), so the variables we use to slice are ‘mods’ and ‘modifier’.
All statements that contain these two variables before and after this statement
will be retained. The resulting statement and associated control structures make
up the result of the slice.



KG2Code: Correct Code Examples Mining Service 881

5 Tool Implementation and Evaluation

We built an API knowledge graph for JDK 1.81. The API constraint knowl-
edge graph includes 52,754 entities and 85,196 relationships, which includes
2,397 classes, 26,902 API methods, 50,711 parameters, 648 exceptions. There
are 58025 declared relationships and 27,171 constraint relationships, including
1586 call-order relations, 24,395 value-checking relations, 890 state-checking rela-
tions, 109 duplicate-checking relations, 85 redundant-checking relations, and 106
synchronized-checking relations. These API-constraint relations involve 19,385
methods, 6,823 parameters, and 5,347 return and 10,289 throw relations.

We scanned more than 9 million Java repositories on the 2019 October
GitHub dataset. We have implemented KG2Code as an online website. The
website front-end is implemented by using D3.js, and the back-end is imple-
mented by built-in python and nodeJS. Developers can enter a search query of
the required API. when querying java.swing. StringTokenizer.nextToken, it
shows a description of the API, the display of the API constraint subgraph from
the knowledge graph, the corresponding code example, and the number of code
examples with the same pattern. Each API can also be accessed through the
link to the original Github repository (see Fig. 4.).

Fig. 4. A snapshot of the KG2Code website

We can map 108 API-constraint relations in the MuBench to correct examples
that correspond to the API pattern. To check whether the correct examples
mined by KG2Code indeed conform to the desirable API usage. We manually
check 300 random code snippets mined by KG2code involving 30 API misuses
from the MuBench. Each API misuse contains 10 correct examples. They all
match the correct usage Java file provided. These results demonstrate that our
proposed approach the correct examples mined by KG2Code are effective.

1 https://docs.oracle.com/javase/8/docs/api.

https://docs.oracle.com/javase/8/docs/api


882 Y. Zhang et al.

6 Conclusions and Future Work

This paper first proposes a service named KG2Code, a mining framework based
on API-constraint knowledge graph for correct code examples in Github. Fur-
thermore, we expand the previous API-constraint knowledge graph with three
more fine-grained types of constraint relations, derived from API reference doc-
umentation and the MuBench. The quality of correct examples has been demon-
strated by manual inspection. In the future, we will tackle the challenges that
the API reference documentation and Github code repositories will continue to
evolve and update as time goes on.

Acknowledgement. This work has been supported by the National Key R&D Pro-
gram of China (No. 2018YFB1402800), the National Natural Science Foundation of
China (No. 61772560), and the Fundamental Research Funds for the Central Univer-
sities of Central South University (No. 2021zzts0746).

References

1. Ren, X., Sun, J., Xing, Z., Xia, X., Sun, J.: Demystify official API usage directives
with crowdsourced API misuse scenarios, erroneous code examples and patches.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 925–936 (2020)

2. Upadhyaya, G., Rajan, H.: On accelerating source code analysis at massive scale.
IEEE Trans. Softw. Eng. 44(7), 669–688 (2018)

3. Li, Z., Zhou, Y.: PR-miner: automatically extracting implicit programming rules
and detecting violations in large software code. ACM SIGSOFT Softw. Eng. Notes
30(5), 306–315 (2005)

4. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct
and high-coverage API usage patterns from source code. In: 2013 10th Working
Conference on Mining Software Repositories (MSR), pp. 319–328. IEEE (2013)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer Science & Business Media, New York (2012)

6. Gruska, N., Wasylkowski, A., Zeller, A.: Learning from 6,000 projects: lightweight
cross-project anomaly detection. In: Proceedings of the 19th international sympo-
sium on Software testing and analysis, pp. 119–130 (2010)

7. Zhang, T., Upadhyaya, G., Reinhardt, A., Rajan, H., Kim, M.: Are code examples
on an online Q&A forum reliable? A study of API misuse on stack overflow. In:
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pp. 886–896. IEEE (2018)

8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

9. Amann, S., Nadi, S., Nguyen, H.A., Nguyen, T.N., Mezini, M.: MUBench: a bench-
mark for API-misuse detectors. In: Proceedings of the 13th International Confer-
ence on Mining Software Repositories, pp. 464–467 (2016)

10. Ren, X., et al.: API-misuse detection driven by fine-grained API-constraint knowl-
edge graph. In: 2020 35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 461–472. IEEE (2020)

https://doi.org/10.1007/978-3-540-24605-3_37

	KG2Code: Correct Code Examples Mining Service Based on Knowledge Graph for Fixing API Misuses
	1 Introduction
	2 Related Work
	3 Construction of API-Constraint Knowledge Graph
	4 KG2Code
	4.1 Extract the Subgraph
	4.2 Extract the Structure of the API
	4.3 Program Slicing

	5 Tool Implementation and Evaluation
	6 Conclusions and Future Work
	References




