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Abstract. Business Process Management communities increasingly
adopt the blockchain technology to support trustworthy decentralized
execution of processes. In this context, the interest in business process
choreographies rises as they offer a distributed way to compose and con-
trol cross-organizational processes. In choreographies, the process view
is distributed between participants to limit privacy leakages. Hence, the
process observability (i.e., who knows what) is challenging. On one side,
partners have no insight into each other’s orchestration and communi-
cate peer-to-peer via the public view. On the other side, they have to
maintain their internal orchestrations’ states consistent with the chore-
ography’s global state. The need to ensure a privacy-preserving method
to enforce a blockchain-based execution thus rises. In the present work,
we propose a unified solution for the hybrid on/off-chain generation and
execution of business process choreographies. The public view, shared
understanding of the cross-organizational process, is triggered by the
on-chain smart contract. Participants generate their private views off-
chain using this on-chain public view. They execute afterward the pri-
vate views in their off-chain process execution engine. Our prototypical
implementation demonstrates the feasibility of the approach.

Keywords: Decentralized choreographies - Business Process
Management - Dynamic condition response graphs - Blockchain

1 Introduction

A cross-organizational process can be defined as a process scattered across dif-
ferent organizations. It comprises private processes carried out by individual
partners, where internal data such as model and execution logs should not be
visible to the other partners. It also includes a public process, where several
© Springer Nature Switzerland AG 2021

H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 81-96, 2021.
https://doi.org/10.1007/978-3-030-91431-8_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-91431-8_6

82 T. Henry et al.

partners collaborate in a coordinated way. All partners should trust the exe-
cution state of the public process. A trade-off between ensuring the privacy of
partners’ private processes and the exposure of the public process thus arises.
In cross-organizational processes, model flexibility is also at stake, as processes
are dynamic: partners should be able to change their internal processes without
impacting the public process [15]. Thus, the following question arises: (RQ) how
to carry out a separation of concerns that preserves the privacy of the private
processes, trust of the public process, and flexibility of the whole?

In the literature, business process choreographies answer the need for such
separation of concerns by clearly specifying coordination tasks [1,6]. In addi-
tion, the public process is shared between participants to limit privacy leakages.
Meanwhile, private views hold the set of (1) internal tasks of a particular partner
not disclosed to the other partners, and (2) communication tasks in which this
partner is involved, i.e., the projection of the public view over this partner [1].
However, the trustworthy execution of the public view remains challenging as it
is often managed centrally [6].

Blockchain has been leveraged in the literature as a trustworthy coordination
mechanism for collaborative business processes [5,6]. In [5], a smart contract
manages the public workflow of an orchestration. However, in this approach, the
execution of private tasks off-chain is only mentioned and the inner mechanism
has not been detailed further. Additionally, in [6], the smart contract is used to
manage the public view of a choreography, and so doing enforcing the order of
messages. Nonetheless, in this work, a private/public separation is suggested but
only the public view mechanism is implemented. Additionally, there is no on/off-
chain enforcement of projections during deployment of the process instance.
Thus, to the best of our knowledge, none of the retrieved works addresses the
trustworthy deployment of choreographies. This deployment remains challenging
as private information should not be shared between partners at design nor
runtime. Moreover, none of the retrieved works proposes a detailed mechanism
for the execution of projections using a hybrid on/off-chain mechanism.

In this paper, we contribute to the literature through a unified solution for the
design and execution of business process choreographies in a hybrid on/off-chain
fashion. The first contribution of this paper is a mechanism for the deployment
of the global process which offers trustworthiness while preserving the sepa-
ration of concerns. At deployment time, participants build incrementally the
global process from a public view stored in a smart contract. Each participant
will compute off-chain its role projection comprising public events where she is
involved, and private events are kept off-chain for privacy concerns. This way, pri-
vate control-flows remain in the participants’ process engines, while blockchain
systems ensure a tamper-proof public view. The blockchain has no access to
the private events; it is the aggregation of all role projections that will render
the global process. The second contribution is a hybrid on/off-chain mechanism
for the execution of cross-organizational choreographies. The roles execute their
internal tasks off-chain in their local process execution engine. Meanwhile, a
smart contract manages public interactions. When the smart contract receives
an interaction request initiated from one of the roles (sender or receiver(s)),
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it executes the task and communicates its state back. The roles update their
private states accordingly. Hence, we achieve a trustworthy separation of con-
cerns preserving partners’ private processes’ privacy. Most existing works use
an imperative paradigm such as BPMN. However, we chose to model choreogra-
phies with a declarative language that abstracts the control-flow through a set of
rules or constraints [3,10], namely Dynamic-Condition-Response (DCR) graphs
[11,25]. We believe that the declarative paradigm corresponds to the dynamic
nature of choreography interactions, as business modelers cannot predefine all
the execution paths of a model in constant evolution. Only essential constraints
are specified in the model. We demonstrate our approach’s feasibility through
an implemented prototype and its effectiveness via a set of experiments.

The remainder of this paper is organized as follows. Section 2 introduces key
concepts around blockchain and DCR graphs. Section 3 presents our motivating
example. Section 4 details our approach. Section 5 presents an implemented pro-
totype as a validation of our approach. Section 6 reviews the main known related
work. Finally, Sect.7 concludes the paper.

2 Background

A blockchain [26] is a distributed ledger holding a linked list of transactions
organized in blocks. Each block contains (1) the reference to the previous block,
(2) a tamper-evident digest of the transaction history to attest the integrity
and blocks ordering, and (3) the list of the transactions to commit. Independent
peers maintain the network. Peers use dedicated consensus algorithms such as
proof-of-work or proof-of-stake to append transactions to the chain [13]. Some
blockchains host smart contracts, deterministic scripts enforcing the terms of
an agreement [14]. Business process approaches use blockchain to monitor in a
decentralized fashion an agreed-upon scheme [17].

DCR is a declarative business process modeling language whose formalism is
described in [11]. We refer to the following definition (cf [11]):

Definition 1. A DCR graph G is a tuple (E, M, L, f, — o, ¢ — — o
— 4, — %), where:

— F is a set of events

- M = (In,Pe,Ex) C E x E x E is a marking

— L is a set of labels

— f: EF — L is a labelling function

~ICExEforle{— o0 — — o, — + — %} are relations between
events.

With DCR, processes are modelled as a set of events E linked together with
relations." Markings M capture the graph’s state at runtime by referring to the
triplet (currently included events In, currently pending responses Pe, previously

1A DCR event is equivalent to a BPMN activity.
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executed events Ex). Relations model in a loosely fashion the constraints linking
two events. The end-user can enact any enabled activity at any time and more
than one time during a process instance execution. DCR graphs hold five types
of relations. Two relations, condition and milestone, model pre-execution con-
straints. They restrain the enactment of an event. The condition relation implies
that a task must be launched for another to start, while milestone requires full
task completion. Three relations translate the effects of an event execution to
the remaining activity markings. Fzclude and include respectively lock or unlock
the receiver task. Response sets the receiver task to pending upon completion of
the source task. A DCR choreography [11,23] models and executes DCR graphs
in a distributed way. It comprises choreography events that ease coordination
between independent entities and internal events. We reconcile the definition of
a DCR choreography proposed in [11] and formalize it as follows:

Definition 2. A DCR choreography is a triple (G, I, R) where G is a DCR
graph, I is a set of interactions and R is a set of roles. An interaction i is a
triple (e, 7, r') in which the event e is initiated by the role r and received by the
roles ¥’ C R\ {r}. For an event e € E, e.type is the type of the event, e.type
€ {¢,7}, where (i) € denotes the set of internal events in G, i.e., events having
one initiator r € R and (ii) v are the set of interactions in G (v = I).

In Fig. 1a, Shipping is a choreography event sent by Driver and received by
Florist and Customer. GetOrder is an internal event of the role Florist.
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3 Motivating Example

Figure 1a represents a DCR choreography of a delivery process involving three
participants: Customer, Florist, and Driver. Table 1 illustrates several executions
of the graph instance. Each column corresponds to an event marking of the graph
in the form (included, pending, executed). Each line stands for an event query
triggered. For example, initially, no event is executed nor pending. The event
GetOrder is included in the execution set. Thus the initial marking of GetOrder
is (1, 0, 0). Each participant has control over the set of internal and choreography
events where she is involved. We define this set of events as her private view. For
example, the sub-graph in orange in Fig. 1a depicts the global view of a process
involving three partners: Florist, Driver, and Customer. Figure 1b and Fig. lc
depict respectively the private views over Driver and Florist.

Requirements arise when dealing with the execution of such choreography.
The activities for which some of the participants are not interested in (e.g.,
ReturnTruck) or confidential (e.g., GetOrder) must be kept private. The pub-
lic view must express by design the information and requirements needed to
execute the workflow. Moreover, public activities must be tamper-proof, and
the execution flow fulfilled to keep on with the agreed-upon flow. The system
must offer integrity by design. If a claim occurs, the system becomes the single
source of truth. Former works on private and public views have been proposed
before blockchain emergence [15,18]. A separation of concerns is reached by sep-
arating public and private views. However, trust in the execution of the public
view is still needed. Blockchain brings two interesting properties with regards to
our research: decentralization and tamper-proof logs. Thus, the public view of
a business process could be completely decentralized by design while ensuring
trust through the tamper-proof logs property. Nonetheless, two questions arise in
this setting to preserve the separation of concerns between participants. The first
question concerns the deployment of the global process in each local BPMS. The
deployment shall not be managed by a centralized entity that would then upload
the public view on-chain. Otherwise, the trust issue would rise again. Addition-
ally, the question of how to ensure that projections are completed off-chain while
avoiding any leakage of information remains. The second question concerns the
execution of the global graph. The smart contracts acts as an entry-point to
ensure correctness of execution of the public view. The mechanism managing
the two-sided public/private execution of tasks needs to be defined to ensure
that each participant can manage its projection in a trustworthy fashion.

4 The Approach

4.1 Design Time: Generating Public and Private Views

This section presents the hybrid on/off-chain protocol developed to generate
the partners view-based projections (cf Fig.2). A smart contract comprising (1)
DCR execution constraints rules, and (2) a list of workflows initially empty, is
used to manage workflow instances. The workflow responsible generates the new
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Table 1. Evolution of the markings of the DCR graph in Fig. 1a

Markings (included, pending, executed)

GetOrder | CallDriver | Shipping | CheckOrder | Accept | Reject | Deliver | SettleOrder
(init) (1,0,0) |(0,0,0) (0, 0,0) |(0,0,0) (0, 0,0)(0,0,0) (0,0,0) (0,0, 0)
GetOrder |(1,0,1) |(1,1,0) (0, 0,0) |(0,0,0) (0, 0,0)(0,0,0) (0,0,0) (0,0,0)
CallDriver | (1,0, 1) |(1,0,1) (1, 1,0) [(0, 0, 0) (0,0,0)(0,0,0) (0,0,0) (0,0, 0)

workflow and updates the on-chain smart contract with the new public view. For
each instance, the workflow comprises: the relation matrices and markings of the
public view (cf. Sect. 2), the role addresses linked to each activity, and the IPFS
hash of the textual input. The hash serves as a unique identifier for the workflow.
Then, each participant computes its private view by combining the public view
with its internal events. The output is a bitvectorized DCR graph. These private
views constitute the entry point for the hybrid runtime execution. Finally, once
the generation of role projections fulfilled, the smart contract unlocks the process
instances for execution.

Used Formalism. Let (G, I, R) be a DCR choreography (cf. Definition 2), we
define this DCR choreography through its public view G and private views G,
V r € R, which are derived from G. We formalize G, and G, V r € R as follows:

Definition 3. Public View G, is a tuple (E,, M., L,, fy, — oy, ¢ —,
— 0y, — +~, — %5), where:

1. E,={eel}
2. M, = (In, Pey, Ex) where In, = InNE,, Pe, = PeNE,, and Fz, =
ExNE,

fr(e) = 1)

L, :img(f'y)

— o, =— eN((— e E,) x
o — . =e¢—N((e—E,)xE
— oy, =—oN((— o E,) X
— ty=—+0((—+ E,)

s Yoy = %1 (—> % Ey) x E)

Hence, I, € {—> 0,0 —,, —> 0, — 4., — %4}

© XN W

Definition 4. Private Views For a role r € R, G,. = a tuple (E,., M,., L., f,

—— 0, 0 —— . ——Op, — Fp, — %r)a where:

1. B, ={e € E | Initiator(e) = r U Receiver(e) =r}
2. M, = (In,, Pe,,Ex,) where In, = InN E,, Pe, = PenN E,, and Ex, =

w
T
—~
&
L
~
—~
)
S~—
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Translating DCR Graphs into Bitvectors. The public and private views
are initially described as a textual input following the semantics prescribed in
[16]. The reader can find input examples in the source code repository of our
prototype.? We translate each view into a bitvector representation for execution
in the off-chain and on-chain process execution engines [5,7]. We describe in the
following paragraph the approach computing such representation.

The bitvector representation comprises (1) the five relation matrices of the
DCR graph and (2) the three markings of the graph. The five relation matri-
ces are computed out of an input view. For each relation [event; — event;],
the item a;; in the relation matrix is set to one. Besides, we generate the three
initial bit-vector markings of the graph (Algorithm 1, 1.3-5). The executed and
pending initial markings are set to zero as no event has been executed yet.

2 https://anonymous.4open.science/r /hybridChoreo- 1CFS8//.


https://anonymous.4open.science/r/hybridChoreo-1CF8/

88 T. Henry et al.

Algorithm 1. Marking Vectorization of a private view

Data: G, = (E,I)

Result: the list of included, executed, and pending marking vectors
1 Function initializeMarkings(F,[):

var len «— length(E);
// INITIALIZE VECTORS
3 var In « Vector(size : len);
4 var Pen « Vector(size : len);
5 var Ex « Vector(size : len);
// DETECT INITIALLY INCLUDED EVENTS
6 var 1=0;
7 forall the e € F.c do
8 var hasPreceedingFEvent «— FALSE;
9 forall the rel € do
10 if rel.target == e then
11 hasPreceedingEvent — TRUE;
12 break;
13 if not hasPreceeding Event then
14 | In[i] < 1;// NO PRECEEDING EVENTS
15 1=i+1;
16 return [In, Pen, Ex]

17 End Function

The included state of the event is set to one if it has no pre-execution con-
dition (Algorithm 1, 1.6-15). We now illustrate the Florist projection bitvec-
torisation. First, we generate the five relation matrices. In the Florist private
projection, a condition relation links CallDriver and Shipping. Thus, Condition
lidcaiiDriver, 1dShipping) = 1. The same protocol follows for each relation of the
graph. We then compute the three markings of the projection. The pending and
executed bit-vectors are filled with eleven zeros (one for each event of Epjorist)-
The Florist included bit-vector is filled similarly, except for GetOrder which is
set to one (no pre-condition).

Hybrid On/Off-Chain Generation of Views. The generation of views com-
prises two steps: the on-chain public view first and private views.

The public view managed on-chain, G, is the DCR graph consisting of the
set of choreography events, i.e., events having one or many receivers and their
relations, that model participants interactions. A representative of all partici-
pants first generates the approved bitvector representation of the public view
(Fig. 2, stepl). The public view consists of choreography events and their rela-
tions. Each role has a public blockchain address, and choreography events are
mapped to a sender role. Moreover, the representative saves the textual public
view input to IPFS to keep track of it, and saves the hash into the smart contract.
The smart contract locks the process instance while waiting for each participant
projection (Fig. 2, step2). A variable named cnt, initially set to zero, keeps track
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of the number of projections realized. The process instance is unlocked for exe-
cution when cnt equals the number of participants. The public events of Fig. 1a
are {Shipping, CheckOrder, Accept, Reject, Pay, UnloadTruck, PayDriver}. The
smart contract stores these events and relations where at least two public events
are involved. Internal events such as { ReturnTruck} for Driver, or {GetOrder,
CallDriver, SettleOrder} for Florist are kept off-chain.

Once the public view populates the smart contract, each participant fetches
it (Fig. 2, step4). The private projection is generated by extracting all the events
of G where the participant is an initiator or a receiver in a choreography event.
We conjointly extract relations connecting these events. Afterward, the partici-
pant combines off-chain the public view with its internal events (Fig. 2, step4).
The obtained projection over the role r is G,.. A dedicated smart contract func-
tion named, confirmProjection(), enables participants to update cnt after the
local projection. The function uses two mapping variables. The first mapping,
approval, records whether a participant has generated its local projection. The
second mapping, didFetch, records whether the participant did fetch the public
view (necessary condition to realize the projection). The following constraints
restrain ent update: (i) the sender’s address must belong to the list of addresses
white-listed in the smart contract, (ii) participants can only update the variable
once, and (iii) must have fetched the public projection first. In the motivating
example, Florist asks the public projection to the smart contract. The smart
contract verifies that its address belongs to the white-list, forwards the pub-
lic view to Florist, and updates cnt to 1. Florist projects the view over her
role. She obtains a set of receive events: {Shipping, CheckOrder, Accept, Reject,
Pay, UnloadTruck}, and one send event { PayDriver}. She then adds its internal
activities { GetOrder, CallDriver, SettleOrder} to the projection. Lastly, Florist
triggers confirmProjection().

4.2 Hybrid Off/On-Chain Runtime Execution

Our approach proposes a hybrid execution at runtime: the private DCR execu-
tion engine of the involved participants manages the private projections. Mean-
while, a smart contract called S triggers the execution logic of the public tasks
on blockchain. An event execution query comprises the name of the event and its
class: internal, or choreography. The execution logic depends on the event class.
The private and public projections communicate via choreography events. Par-
ticipant executes private events off-chain (cf. Fig. 3a). For an internal event, the
private process engine looks at its private markings (see Fig. 3a). If the event is
enabled,® we apply post-execution constraints to the bound events (i.e., events
are set to pending, included, or excluded), and update the marking accord-
ingly. For example, the execution request of GetOrder (Fig.la) will succeed: it
does not have any pre-execution constraint. Thus, the executed marking of the
event GetOrder will be set to one. The post-execution constraints (condition and
response) will unlock CallDriver and set its pending marking to one.

3 An event is enabled if the following preconditions are fulfilled: the event is included,
and the condition and milestone relations are executed.
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The smart contract S handles the execution of the choreography send and
receive events (cf. Fig.3b). S holds the bitvector representation of the public
view and two functions: enableEzecution() checks the enabling preconditions,
and ezecute() computes the enabled event and updates the marking vectors.
The execution of a choreography event follows the subsequent steps (see Fig. 3b).
First, the backend receives an execution query (step 1) and forwards it to the
smart contract APT (step 2). The latter sends a transaction (Tx) to S to call
the function enableEzecution() (step 3). The Tx includes the event’s name to
execute, the event initiator, the receiver (if it is a choreography event), and
the event state (enabled, included, executed). If the activation conditions are
verified, the function ezecute() updates the event state (the three bit-vectors)
and the public projection state (the five relation matrices). The Tx callback
containing the updated states is sent back to the smart contract API (step 4),
which forwards it to the local backend (step 5). The backend updates the public
projection (step 6). Changes are propagated to the concerned private projections
(step 7). Choreography events are by nature of interest to process participants. S
makes their execution management trustworthy as its behavior is deterministic,
and the choreography states stored into the smart contract are tamper-proof.

5 Evaluation

Our proof of concept is a hybrid on/off-chain business process engine manag-
ing declarative choreographies (code repo: cf footnote 2). We use a Ganache



Trustworthy Cross-Organizational Collaborations 91

testnet to deploy the public smart contract S which manages each process. S
comprises (1) execution constraints rules, and (2) a list of workflows initially
empty. The initial cost of deployment of S is 0.06413472 ETH (i.e., 137.6%). For
each workflow, RoleAdmin (1) generates the public view bitvector representa-
tion (Sect. 4.1), (2) saves the textual public view input to IPFS, and (3) registers
the new workflow on-chain by calling the function uploadPublicView. The work-
flow is identified by the IPFS unique hash. Participants interact with the smart
contract via API calls to generate their private views. Afterwards, the process
instance is released for execution. The local process execution engine executes
internal events off-chain and forwards choreography events to the blockchain.

We instantiate three cross-organizational processes in the platform to assess
the execution cost in terms of gas fees and time. We test two workflows from the
literature: the invoice and oncology workflows [25], and the motivating example.
We run the experiments on a personal computer with an Intel i5 core CPU, 4 GB
of RAM. At the time of writing, 1IETH = 2,145.733. We evaluate the public-to-
private projection costs of the system for the deployment of the three processes
mentioned above (cf. Table2a). For each workflow, the public view registra-
tion cost is worth 0.068352 ETH (146.7%) for the delivery workflow, 0.040947
ETH (87.9%) for the invoice workflow, and 0.065019 ETH (139.5%) for the oncol-
ogy workflow. Afterwards, each role fetches the public view, and confirms its
projection. The delivery and invoice workflows share the same costs for fetch-
ing the public view and confirming the projection. Such cost, corresponding to
updating approval and didFetch, is proportional to the number of roles regis-
tered. The total cost for instantiating a choreography corresponds to public view
upload, and the number of roles # R times the private projection cost. It is worth
0.078534 ETH (168.5%), 0.051129 ETH (109.7%), and 0.079795 ETH (171.2%) for
the delivery, invoice, and oncology workflows respectively. The public-to-private
total projection cost depends on the number of roles and events.

We also evaluate the performance of the system at runtime: Table 2a presents
the results obtained after the enactment of one trace. The reported execution
time factors the transaction confirmation time. The average transaction fees
requested for a task execution are smaller than the process instantiation ones.
Moreover, the average execution time for a private task is one order of magnitude
smaller than the one needed for a public task. Indeed, we compute private activ-
ities off-chain. Thus the execution time of a private event corresponds comprises
checking the event nature (private or public), and updating private markings.
On the opposite, the execution of public activities comprises an interaction with
the blockchain network. Against this backdrop, the local execution of private
tasks reduces the overall execution time.

Finally, we compare the transaction costs of our approach to the BPMN-
based experiments presented in [8]. We translate into DCR choreographies the
two open-sourced BPMN choreographies presented in [5], namely supply chain
and incident management. We deploy and execute the choreography in our pro-
totype, and compare the results. Table 3 shows the instantiation and task exe-
cution average gas fees; task execution fees correspond to the average cost of
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Table 2. Hybrid on/off-chain Projection and execution costs Hybrid on/off-chain Pro-
jection and execution costs

(a) Public-to-private projection costs, W. =Workflow

Step|Role Function Delivery W. |Invoice W. |[Oncology W.
A |RoleAdmin |uploadPublic View()|0.068352 ETH|0.040947 ETH|0.065019 ETH
Bl |Roler in R|fetchPublicView() [0.002006 ETH|0.002006 ETH|0.002139 ETH
B2 |Role r in R|confirmProjection()|0.001388 ETH|0.001388 ETH|0.001555 ETH
Total Cost = A + #R.(B1+B2) 0.078534 ETH|0.051129 ETH|0.079795 ETH

(b) Task execution costs (Pub/Pri= public/private tasks).

Workflow Tx. Fees |Exec Time
Name #Parties #Pub #Pri #Constraints| Task Exec |Pub |Pri
Delivery 3 9 1 28 0.0093 ETH|15s |1s
Invoice 3 8 2 15 0.0069 ETH|10s |1s
Oncology 4 10 3 21 0.0117 ETH|19s |2s
[Mean 0.0093 ETH|14.6s[1.3s

Table 3. Gas fees comparison of BPMN [8] and DCR choreographies (our approach)
run on the Ethereum blockchain

Workflow #Tasks | #Gateways | Gas fees [8] (BPMN) | Our approach

Supply chain [5] |10 2 Instantiation | 1,100,590 1,074,178
Task exec. 566,861 478,527

Incident Mgt. [5] | 9 6 Instantiation | 1 119,803 930,399
Task exec. 324,420 456,887

execution of a task. A gain of 26,412 gas for the supply chain workflow, and
189,404 gas for the incident management workflow can be noticed with the DCR,
approach. Thus, the DCR-based smart-contract requires less fees for instantia-
tion than the BPMN one in these workflows. Regarding task execution costs, the
modeling choice does not seem to impact gas fees: a gain can be noticed with
DCR in the supply chain workflow, but not in the incident management one.
The number of gateways (2 in the supply chain, and six in the incident manage-
ment workflow) may explain such disparity. Indeed, each exclusive gateway is
translated into an include and a response relation for each decision path in the
DCR model. Such translation may explain the gas difference.

6 Related Work

Regarding traditional view-based approaches, authors in [15,18] use process
views to build an abstracted version of each partners’ private processes in order
to hide its internal structure. In [18], authors define a SOG (Symbolic Obser-
vation Graph) for each choreography participants. A SOG is an abstraction of
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the reachability state graph of a formally modeled process (e.g., an LTS). The
nodes in the SOG are meta-states, i.e., a set of states connected by unobserved
(internal) activities, and the edges are labelled with observed (interaction) activ-
ities. The SOG of the choreography process is the product of the SOGs of the
participants. In [15], roles inter-connect via a set of virtual activities. These vir-
tual activities abstract choreography interactions, and are enacted by a trusted
third-party. In these works, partners’ privacy is reached by separating public and
private views. However, trust issues remain as shared execution logic and data
are managed in a centralized fashion, often by a third-party [6].

Blockchains have been leveraged as trusted mechanisms to ensure the public
view correctness in recent work. In the following, we classify related works man-
aging collaborative processes on-chain according to (1) the choice of paradigm
which impacts the system flexibility and scalability, (2) the public/private views
separation which impacts confidentiality, and (3) the deployment which impacts
participants trust. The paradigm criterion refers to the process modeling choice
used to represent collaborative processes on blockchain. In [4-6,19,21,24], the
imperative modeling approach is chosen: BPMN business models describe the
control flow in a sequential manner. Other works such as [2,7,9,12,20] use the
declarative modeling approach where only execution constraints are specified.
[9,12] propose LTL for smart contract parametrized pre and post-execution con-
ditions, however without including implementations. Authors in [20] use the
artifact-centric language, in [2] XML, and in [7] DCR. The view-based criterion
refers to the separate display of the global process: in a view-based setting, partic-
ipants only have access to their tasks. [2,4,5,7,9,12,20,21,24] do not consider the
public/private view separation. For example, in [5,7,19], authors handle orches-
tration schemes only. [6] considers a choreography but authors do not expand
on the participants’ private workflows execution and deployment. Though the
generation of the public and private views in [6] is suggested, projections are
not enforced in a trustworthy fashion in this work. The deployment criterion
refers to the deployment model chosen for collaborative processes. Regarding
fully on-chain schemes, a translator maps directly BPMN [5,6,19], DCR [7], or
XML [2] models into Solidity. Additionally, a custom interface binds local exe-
cution engines with blockchain in [6]. In [24], authors run choreographies with
Bitcoin instead of smart contracts. [9,12] advise the direct end-to-end deploy-
ment of public processes. [20] stores the hash of an artifact-based multi-party
process in a smart contract but no details are given on off-chain tasks. Regarding
hybrid on/off-chain schemes, [21] proposed a set of on/off-chain connectors, but
processes are intra-organizational and the system allows only monetary opera-
tions. In [4], a gateway enables interactions of an off-chain intra-organizational
BPMN process with heterogeneous blockchains.

Most blockchain-based collaborative processes cited in the literature do not
consider declarative choreographies. When they do, they do not distinguish
the partners’ internal processes and the public view of the choreography when
deployed to the chain. Consequently, the contribution of this paper is to answer
cross-organizational needs for process flexibility and trustworthy separation of
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concerns. To do so, we build a collaborative BPMS that offers modeling flexibil-
ity, as well as a trustworthy and privacy-preserving separation of concerns. We
chose a declarative language that offers collaboration flexibility, necessary due
to the dynamic nature of collaborations. We add to this design choice the pub-
lic/private view separation and a hybrid deployment to enforce in a trustworthy
fashion the separation of concerns.

7 Discussion and Conclusion

This paper leverages the management of business process choreographies using
blockchain to address the need for a trustworthy separation of concerns. Addi-
tionally, we model choreographies with a declarative language called DCR. This
language offers loosely-constrained models to meet the flexibility requirements
of cross-organizational processes. To enhance privacy at design time, the public
view of the choreography is stored in a smart contract, and participants generate
their private view off-chain. On the execution side, internal events are executed
locally for privacy concerns, while choreography events are executed on-chain for
accountability concerns.

This approach represents a first effort to separate the public and private
views of a declarative choreography and proceed with its hybrid off/on-chain
management. Results confirm the advantages of separating public from private
events to ensure privacy while leveraging blockchain as a decentralized execution
infrastructure. Moreover, the local execution of private events leads to time and
economic gains. OQur approach works if there is no public event. Then, no pub-
lic projection is generated. Multi-instance choreographies are also possible: for
each new instance, a workflow instance is added to the smart contract. Besides,
experiments on graphs of alternative complexity (be it the number of partici-
pants or activities) should confirm preliminary results. A limitation to our app-
roach concerns the public/private exchange of information. In our setting, the
information published in the smart contract is public. Consortium or private
blockchains, coupled to off-chain oracles to exchange sensitive information with
the smart contract, could answer privacy concerns. Furthermore, we rely on
the truthfulness of participants to execute their private projections and do not
ensure the correct enforcement of private processes. This concern, inherent to
choreographies, is part of ongoing research efforts.

As future work, we plan to use side channels [22] to manage on-chain process
instances to save transaction costs and reduce task execution latency. Only two
blockchain transactions would be of need: one to instantiate the process execu-
tion channel, and one to settle it. Additionally, a need rises regarding the ability
of participants to change the global workflow at runtime. An avenue for future
work is to propose such functionality to the proposed system, building on the
declarative paradigm to define flexibly authorizations and obligations.
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