
Sprelog: Log-Based Anomaly Detection
with Self-matching Networks and

Pre-trained Models

Haitian Yang1,2(B), Xuan Zhao3, Degang Sun2(B), Yan Wang1,
and Weiqing Huang1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{yanghaitian,sundegang,wangyan,huangweiqing}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 York University, Ontario, Canada
xuanzhao@eecs.yorku.ca

Abstract. With the development of software systems, log has become
more and more important in system maintenance. During the past few
years, log-based anomaly detection has attracted much attention. We
propose a novel log-based anomaly detection model, called Sprelog, which
captures “inconsistent” information during the evolution of log messages
by exploring word-word interactions features. Firstly, we compute the
interactive information of each word-word pair in the input log sequence,
constructing self-matching attention vectors. Next, we use these self-
matching attention vectors to manage the log sequence and construct
the representation vectors. Hence, the log sequence can be matched
word-by-word, adapting to the evolution of log messages. In addition,
we combine pre-trained models in our proposed network to generate the
higher-level semantic component information. More importantly, we use
a low-rank bi-linear pooling approach to connect inconsistent and com-
positional information, thus our model can reduce potential information
redundancy without weakening the discriminative ability. Experiment
results on publicly available datasets demonstrate that our model sig-
nificantly outperforms extant baselines on standard evaluation metrics,
including precision, recall, F1 score and accuracy.

Keywords: Log analysis · Anomaly detection · Self-matching
networks · Pre-trained models

1 Introduction

With the continuous development of software systems, the scale of systems
becomes larger and larger, hence it is almost impossible to detect system anoma-
lies manually. During the past decade, we witness the introduction of many
automated log-based approaches [1,2]. These methods often apply useful infor-
mation from logs to detect system anomalies. We observe that some methods
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 736–743, 2021.
https://doi.org/10.1007/978-3-030-91431-8_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_50&domain=pdf
https://doi.org/10.1007/978-3-030-91431-8_50


Sprelog 737

adopt data mining and machine learning techniques to analyze log data and
detect the occurrence of system anomalies. For example, Xu, et al. [2] treated
the log-based anomaly detection task as an unsupervised learning problem and
utilized Principal Component Analysis (PCA) to detect anomalies.

However, most of these log-based anomaly detection approaches are not suf-
ficiently robust in the real-world implementation. Therefore, in this paper, we
propose a method named Sprelog - a novel log-based anomaly detection app-
roach, which can achieve accurate and robust anomaly detection on real-world,
ever-changing, and noisy log data. More importantly, we evaluate the proposed
approach using the public log data collected from Hadoop. Specially, we reor-
ganize the injection ratios of the Hadoop log data to evaluate the effectiveness
of the proposed approach. Our experimental results demonstrate that when we
increase the injection rate from 5% to 20%, the F1-score merely decreases from
0.97 to 0.94. Hence, the experiment not only shows that our approach can effec-
tively detect anomalies of the online service system with the ever-changing and
noisy log data, but also, more importatnly, very robust.

We summarize the main contributions of this paper as follows:

(1) We aim to solve the task of unstable log anomaly detection. Specifically,
we adopt a self-matching network that captures “inconsistent” information
during the evolution of log messages by exploring word-word interaction
features. This self-matching network assists our method to manage both
the instability during the evolution of log messages and the noise in the log
data.

(2) We adopt two semantic representations, the local static-based word embed-
ding (word2vec [3] or glove [4]) and the global dynamic word embedding
(ReBERTa [5]). Also, we apply the low-rank bi-linear pooling approach to
integrate these two semantic representations effectively.

(3) We have evaluated Sprelog using two public datasets. The results confirmed
the effectiveness of our approach.

2 The Proposed Model

2.1 Task Description

In this research, the log-based anomaly detection task can be described as a
tuple of three elements (S, I, y), where S = [s1, s2, . . . , sg] represents the log
event whose length is g. I denotes the current log message task ID and y ∈ Y
conveys the anomaly detection status of the log. More detailed, Y={Yes, No}
which Yes represents that log is normal, and No means that the log is abnormal.
Generally, the function of our model Sprelog is to assign a label to each task
ID based on the conditional probability Pr(y|S, I) according to the given set of
{S, I} to solve the log-based anomaly detection task.



738 H. Yang et al.

2.2 Overview of the Proposed Model

In this section, we describe our proposed model in detail. Model architecture is
depicted in Fig. 1. First, we process the unstructured original log data into the
structured log events by log parsing, and then convert each word of log events
into a vector by word embedding. Then, to transform log events into fixed-
dimensional log sequence semantic vectors, we combine word-to-word interac-
tions vectorization with Reberta-based semantic feature vectorization. Finally, to
further synthesize the vectorized log event sequences, we use Low-rank Bi-linear
Pooling to integrate the log sequence information for the log-based anomaly
detection task.

Fig. 1. Overview of our proposed Sprelog model.

2.3 The Representation of the Local Semantic Log Sequence

In this section, we acquire the representation of the local semantic informa-
tion. Firstly, we construct word-to-word interactions features from parsed logs.
Secondly, we combine the word information with the log sequence local seman-
tic information via our self-matching networks [6]. After the above-mentioned
steps, we fix the number of the word-to-word interactions vector of the whole
log sequence.

It is worth noting that the self-matching network can generate a attended fea-
ture vector for the input log sequence: fa = S·a, where a ∈ Rn is the self-matched



Sprelog 739

attention vector. Literature [7] provides study to demonstrate the effectiveness
of semantic incongruity as a predictor for log-based anomaly detection. Hence,
attention vector a can be designed to capture log sequence incongruity.

In this paper inspired came from “co-attention” network proposed by Lu et
al. to address the Visual Question Answering (VQA) task [8]. They introduce
an affinity matrix C to attend input picture feature map V and text question
representation Q. C is calculated by:

C = tanh (Q · Wa · V) (1)

where Wa contains attention weights.
A joint activation approach (e.g. maximize by rows and columns) is adopted

to adjust attention weights for V and Q simultaneously. We modify this approach
by introducing a weight matrix between word-to-word pair to improve the ability
of capturing joint information of words.

Given a word pair (ei, ej), the the joint feature vector wi,j is computed:

wi,j = tanh
(
ei · Mi,j · eTj

)
(2)

where ei and ej are word embeddings for i and j [9], wi,j ∈ R measuring the
joint information between word i and word j , and Mi,j ∈ Rk×k is a parameter
matrix.

The self-matching information matrix W based on all joint information wi,j ,
i.j ∈ (1, 2, . . . , n) is computed:

W =

⎛

⎜
⎜
⎜
⎝

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

. . .
...

wn,1 w2,2 . . . wn,n

⎞

⎟
⎟
⎟
⎠

(3)

A maximization activation approach is applied to calculate the self-matched
attention vector a. We first calculate an intermediate vector m ∈ Rn, by maxi-
mizing elements in W by rows.

mi = max (wi,1, wi,2, . . . , wi,n) ,∀i ∈ (1, 2, · · · , n) (4)

Then, we input m into a standard softmax function to calculate a: a =
softmax(m). Softmax function is adopted for the purpose of normalization.

2.4 The Representation of the Global Semantic Log Sequence

In this section, we use Reberta to obtain global semantic features in log
sequence. Specifically, the Reberta applied contains token embeddings, segment
embeddings, position embeddings, and Transformer with multi-head attention
[5] as the encoder layer to obtain H-dimensional encoded log sequence con-
taining contextual information. To achieve these representations, we first use
S = [s1, s2, . . . , Sg] to represent the log event whose length is g. In the pre-trained



740 H. Yang et al.

method Reberta, we obtain global contextual log sequence representation fl by
applying the fixed-dimensional output vector as the semantic representation of
the entire log event. The output vector is symbolized as the [cls]. The detailed
equation is demonstrated as follows:

fl = Rebertacls(S) (5)

2.5 Low-Rank Bilinear Pooling

After the previous steps, two log sequences feature vectors are acquired: fa gen-
erated by the self-matching network and fl generated by the Reberta encoder.
Here, we concatenate these two feature vectors for the final prediction. We
employ a Low-rank Bilinear Pooling (LRBP) method based on Hadamard prod-
uct to reduce the dimension of the final input vector to control the potential
information redundancy without reducing feature vector’s discriminative power
[10].

In this work, we follow the concept of LRBP to pool information from two
input feature vectors: fa ∈ Rk and fl ∈ Rd. The final projection feature vector
for the input log sequence is calculated:

f = UT · fa ◦ V T · fl + g (6)

where ◦ represents the Hadamard product, f ∈ Rc, U ∈ Rk×c, and V ∈ Rd×c

are parameters that need to be learned. g ∈ Rc is bias, c, k and d are hyperpa-
rameters.

f is the final feature vector for the inputted log sequence. We input f into
a standard softmax classification layer to make the log-based anomaly detection
prediction:

pi = softmax(Wf · f + b) (7)

where pi ∈ R2 represents whether the input log event sequence is normal or not,
and Wf ∈ R2×c, b ∈ R2 are parameters to be learned.

2.6 Training Objective

The lost function of this Log-Based Anomaly Detection classification task is a
standard cross-entropy:

J(θ) = −
N∑

i=1

[yi · log pi + (1 − yi) · log (1 − pi)] + λ · R (8)

where N is the size of training dataset, yi is the true label for log sequence i.
θ = {Mi,j , U, V, g,Wf , b} are model parameters. R = ‖θ‖L2 regularization term,
λ is a hyperparameter measuring the weight of regularization term.



Sprelog 741

3 Experimental Setup

3.1 Dataset and Hyper Parameters

We evaluate our proposed Sprelog on two datasets, including the original HDFS
datasets [11] and the synthetic unstable HDFS datasets. To prepare for the
synthetic datasets, we randomly collect 51,000 log sequences from the original
HDFS datasets consisting of 50,000 normal and 1,000 anomaly sequences. We
inject the unstable log data into it and create two testing sets: NewTesting 1
and 2, which contain injected unstable log events and unstable log sequences,
respectively. The details of the two datasets are show Table 1:

Table 1. The synthetic HDFS datasets

Set Unstable event Unstable seq. Normal Anomaly Total

Training No No 6,000 6,000 12,000

NewTesting1 Yes No 50,000 1,000 51,000

NewTesting2 No Yes 50,000 1,000 51,000

We fix all the hyper-parameters applied to our model. Specifically, We train
our networks by stochastic gradient descent with the learning rate of 0.1, the
momentum of 0.9, the weight decay of 0.0005, the dropout ratio of 0.5, and the
gradient clipping of 0.1. The training batch size for all datasets is tuned amongst
64, 128, 256. The L2 regularization is set to 10−5 for the original HDFS datasets,
and 10−3 for synthetic unstable HDFS datasets.

3.2 Results and Analysis

To analyze the effectiveness of our model, we take some current competitive
methods as baselines on the above two datasets to compare the performance of
Sprelog with other models. The results are demonstrated as follows.

Table 2. Experiment results on synthetic HDFS dataset of untable log sequences (the
NewTesting1 set)

Injection ratio Metric LR [10] SVM [12] IM [13] PCA [11] LogAnomaly [14] PLELog [15] LogRobust [7] Sprelog

5% Precision 0.25 0.36 0.78 0.90 0.97 0.91 1.00 0.99

Recall 0.92 0.96 0.56 0.66 0.89 0.78 0.91 0.95

F1-score 0.39 0.53 0.65 0.76 0.93 0.84 0.95 0.97

10% Precision 0.18 0.11 0.88 0.90 0.86 0.82 0.89 0.92

Recall 0.95 0.89 0.40 0.64 0.94 0.89 1.00 0.96

F1-score 0.30 0.20 0.56 0.74 0.90 0.85 0.94 0.94

15% Precision 0.08 0.11 0.84 0.82 0.82 0.78 0.86 0.90

Recall 0.85 0.90 0.41 0.42 0.97 0.85 0.99 0.99

F1-score 0.14 0.20 0.55 0.55 0.89 0.81 0.92 0.94

20% Precision 0.06 0.09 0.82 0.82 0.92 0.78 0.99 0.96

Recall 0.87 0.89 0.43 0.41 0.88 0.75 0.81 0.92

F1-score 0.11 0.16 0.56 0.54 0.90 0.76 0.89 0.94



742 H. Yang et al.

(1) Experiments on the Synthetic HDFS Dataset
Our work focuses on the anomaly detection problem in unstable logs. To further
prove that the model proposed in this paper can effectively solve the anomaly
detection issue in unstable logs, we conduct two groups of experiments. First, for
the unstable log events, our model is trained on the original HDFS log datasets
and tested on the synthetic unstable log event datasets (NewTesting1). The
comparison results on the NewTesting1 set are shown in Table 2. We can note
that as the proportion of unstable log injection increases, the performance of the
five baselines continues to decline. The f1 value of our model Sprelog is around
0.94 based on different injection rates, which strongly proves that our method
has high robustness and can effectively solve the anomaly detection issue in
unstable logs. The main reason is that, during the log presentation process, our
model applies the pre-trained model and semantic vectors, projecting the logs
into higher dimensions, thus higher-level semantic information can be obtained.

Next, we conduct another group of experiments on the unstable log data.
Specifically, our model is trained on the original HDFS log datasets and tested on
the synthetic unstable log sequence datasets (NewTesting2). The experimental
results are shown in Table 3.

Table 3. Experiment results on synthetic HDFS dataset of untable log sequences (the
NewTesting2 set)

Injection ratio Metric LR [10] SVM [12] IM [13] PCA [11] LogAnomaly [14] PLELog [15] LogRobust [7] Sprelog

5% Precision 0.97 0.94 0.03 0.95 0.98 0.93 0.99 0.98

Recall 0.85 0.98 0.84 0.65 0.92 0.81 0.93 0.96

F1-score 0.96 0.96 0.06 0.77 0.95 0.87 0.96 0.97

10% Precision 0.44 0.77 0.03 0.96 0.92 0.96 0.94 0.96

Recall 0.93 0.97 0.97 0.63 0.96 0.76 0.99 0.97

F1-score 0.61 0.86 0.06 0.76 0.92 0.82 0.96 0.96

15% Precision 0.09 0.21 0.02 0.83 0.95 0.83 0.98 0.98

Recall 0.88 0.93 0.97 0.39 0.92 0.74 0.91 0.95

F1-score 0.17 0.33 0.04 0.53 0.93 0.78 0.94 0.96

20% Precision 0.07 0.07 0.01 0.87 0.90 0.76 0.92 0.95

Recall 0.82 0.86 0.98 0.37 0.96 0.68 0.97 0.98

F1-score 0.12 0.14 0.03 0.52 0.93 0.72 0.95 0.96

We can observe that LogAnomaly [14], LogRobust [7], and our proposed
Sprelog are semantic-based models. When the injection ratio of log sequences
increases, these models performance reduces slower compared to other methods.
In particular, our proposed method Sprelog still remain significant performance,
when the injection ratio of log sequences increases, log sequences suffer from
missed, duplicated, or shuffled problems. The f1 value of the model Sprelog
is basically around 0.96. The reason is that our model uses a self-matching
network in the log sequence representation. The self-matching network explores
the contextual information embedded in the log sequence and learns the different
importance of log events through the attention mechanism. Therefore, it makes
our model robust to small changes in the sequence.



Sprelog 743

4 Conclusion

Engineers can use logs (for example, system log messages) to investigate the
anomalies. However, due to the continuous evolution of log statements and the
emergence of processing log noise, the current log anomaly analysis model are
not robust enough. To overcome this issue, we propose a new log-based anomaly
detection method - Sprelog. Which can capture the inconsistency in the evolution
of log sequences and higher-level semantic component information. Experiment
results on publicly available datasets, our proposed Sprelog model achieves state-
out-of-art performance, outperforming the most advanced log-based anomaly
detection models that exist. In the future, our research group would like to
improve the computing speed of Sprelog to further level up the performance of
our solution.

References

1. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-
scale log data analysis. IEEE Trans. Dependable Secure Comput. 15(6), 931–944
(2017)

2. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, pp. 117–132 (2009)

3. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

4. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP, pp. 1532–1543 (2014)

5. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., et al.: Roberta: a robustly optimized
Bert pretraining approach. Corr abs/1907.11692 (2019)

6. Park, C., Song, H., Lee, C.: S3-net: SRU-based sentence and self-matching networks
for machine reading comprehension. TALLIP 19(3), 1–14 (2020)

7. Zhang, X., Li, Z., Chen, J., He, X., et al.: Robust log-based anomaly detection on
unstable log data, pp. 807–817, August 2019

8. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention
for visual question answering. In NIPS, pp. 289–297 (2016)

9. Tay, Y., Tuan, L.A., Hui, S., Su, J.: Reasoning with sarcasm by reading in-between.
pp. 1010–1020, January 2018

10. Kim, J.H., On, K., Kim, J., Ha, J.W., Zhang, B.T.: Hadamard product for low-rank
bilinear pooling. arXiv:1610.04325 (2016)

11. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Detecting large-scale system
problems by mining console logs, pp. 37–46, January 2010

12. Zhang, Y., Sivasubramaniam, A.: Failure prediction in ibm bluegene/l event logs.
In: ISPA, pp. 1–5 (2008)

13. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for
system problem detection (2010)

14. Meng, W., Liu, Y., Zhu, Y., et al.: Loganomaly: unsupervised detection of sequen-
tial and quantitative anomalies in unstructured logs. In: IJCAI, vol. 19, pp. 4739–
4745 (2019)

15. Yang, L., Chen, J., Wang, Z.: Semi-supervised log-based anomaly detection via
probabilistic label estimation. In: ICSE, pp. 1448–1460. IEEE (2021)

http://arxiv.org/abs/1610.04325

	Sprelog: Log-Based Anomaly Detection with Self-matching Networks and Pre-trained Models
	1 Introduction
	2 The Proposed Model
	2.1 Task Description
	2.2 Overview of the Proposed Model
	2.3 The Representation of the Local Semantic Log Sequence
	2.4 The Representation of the Global Semantic Log Sequence
	2.5 Low-Rank Bilinear Pooling
	2.6 Training Objective

	3 Experimental Setup
	3.1 Dataset and Hyper Parameters
	3.2 Results and Analysis

	4 Conclusion
	References




