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Abstract. Robotic Process Automation (RPA) is an emerging technol-
ogy that relies on software (SW) robots to automate intensive and repeti-
tive tasks (i.e., routines) performed by human users on the application’s
User Interface (UI) of their computer systems. RPA tools are able to
capture in dedicated UI logs the execution of many routines of inter-
est. A UI log consists of user actions that are mixed in some order that
reflects the particular order of their execution by the user, thus poten-
tially belonging to different routines. In the RPA literature, the challenge
to understand which user actions contribute to which routines and clus-
ter them into well-bounded routine traces is known as segmentation. In
this paper, we present a novel approach to the discovery of routine traces
from unsegmented UI logs, which relies on: (i) a frequent-pattern iden-
tification technique to automatically derive the routine behaviors (a.k.a.
routine segments) as recorded into a UI log, (ii) a human-in-the-loop
interaction to filter out those segments not allowed (i.e., wrongly discov-
ered from the UI log) by any real-world routine under analysis, and (iii)
a trace alignment technique to cluster all those user actions belonging to
a specific segment into routine traces. We evaluate our approach showing
its effectiveness in terms of supported segmentation variants.

1 Introduction

Robotic Process Automation (RPA) [1] is an emerging technology in the field
of Business Process Management (BPM) that relies on software (SW) robots to
automate intensive and repetitive tasks (in the following, called routines) per-
formed by human users on the application’s User Interface (UI) of their computer
systems. Similarly to traditional BPM Systems (BPMSs), RPA tools are able to
act as effective service orchestrators, but without the need of performing the
manual configuration steps required by whatever BPMS to run a process, e.g.,
the definition of specific business rules, the association of resources to the process
activities, etc. Since many routine tasks can be implemented through scripting
or intelligent recording techniques, RPA projects typically involve comparably
little cost than traditional BPM projects [1]. Overall, the target of existing RPA
tools is to boost the productivity of organizations by reducing manual labor
while improving the operational quality and reducing user input errors.

To take full advantage of this technology, organizations leverage the support
of skilled human experts that: (i) preliminarily observe how routines are executed
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on the UI of the involved SW applications (by means of walkthroughs, etc.), (ii)
convert such observations in explicit flowchart diagrams, which are specified to
depict all the potential behaviors (i.e., segments) of the routines of interest, and
(iii) finally implement the SW robots that automate the routines enactment on
a target computer system. However, the current practice is time-consuming and
error-prone, as it strongly relies on the ability of human experts to correctly
interpret the routines to automate [14]. Consequently, if SW robots are not
designed for the appropriate scope of their work, then their implementation cost
will increase while no clear business improvement effect will be achieved [13].

To tackle this challenge, in their Robotic Process Mining framework [16],
Leno et al. propose to exploit the User Interface (UI) logs recorded by RPA tools
to automatically discover the candidate routines that can be later automated
with SW robots. UI logs are sequential data of user actions performed on the
UI of a computer system during many routines’ executions. Typical user actions
are: opening a file, selecting/copying a field in a form or a cell in a spreadsheet,
read and write from/to databases, open emails and attachments, etc.

To date, when considering state-of-the-art RPA technology, it is evident that
the RPA tools available in the market are not able to learn how to automate
routines by only interpreting the user actions stored into UI logs [3]. The main
trouble is that in a UI log there is not an exact 1:1 mapping among a recorded
user action and the specific routine segment it belongs to. In fact, the UI log
usually records information about several routines whose actions are mixed in
some order that reflects the particular order of their execution by the user. The
issue to automatically understand which user actions contribute to a particular
routine segment inside a UI log and cluster them into well-bounded routine traces
(i.e., complete execution instances of a routine) is known as segmentation [3,16].

The majority of state-of-the-art segmentation approaches are able to properly
extract routine segments (i.e., repeated routine behaviors) from unsegmented UI
logs when the routine executions are not interleaved from each others. Only few
works are able to partially untangle unsegmented UI logs consisting of many
interleaved routines executions, but with the assumption that any routine pro-
vides its own, separate universe of user actions. This is a relevant limitation, since
it is quite common that real-world routines may share the same user actions (e.g.,
copy and paste data across cells of a spreadsheet) to achieve their objectives.

In this paper, we propose a novel approach to the segmentation of UI logs
that aims to mitigate the aforementioned issue showing its effectiveness in terms
of supported segmentation variants. The approach relies on three key ingredients:

1. a frequent-pattern identification technique to automatically discover the
observed segments of the routines as recorded into the UI log. In this phase,
the risk exists that some wrong segments are discovered, i.e., not allowed from
the real-world routines that are known to be valid at the outset.

2. a human-in-the-loop interaction that enables human experts to visualize the
declarative constraints inferred by the discovered routine segments. Such con-
straints describe the temporally extended relations between user actions that
must be satisfied throughout a routine segment (e.g., an action a1 must be
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eventually followed by an action a2). In a nutshell, they collectively deter-
mine the observed behaviors of the routine segments from the UI log. This
knowledge allows human experts to identify and remove those constraints that
should not be compliant with any real-world routine behavior, thus filtering
out the not valid (i.e., wrongly discovered) routine segments;

3. a trace alignment technique to cluster all the user actions associated to a valid
routine segment into well-bounded routine traces.

We show the feasibility of our approach by employing a dataset of 144 syn-
thetic UI logs covering different segmentation cases to measure to what extent
the approach is able to (re)discover the valid routine segments from such UI logs.

The rest of the paper is organized as follows. Section 2 introduces a running
example that will be used to explain our approach, and discusses the relevant
background on the segmentation of UI logs with all its potential variants. In
Sect. 3, we present the details of our approach to the automated segmentation
of UI logs. Section 4 evaluates the feasibility of the proposed approach against
synthetic UI logs. Finally, Sect. 5 discusses the novelty of our approach against
literature works, while Sect. 6 draws conclusions, traces future works and outlines
a critical discussion about the general applicability of the approach.

2 Background

2.1 Running Example

In this section, we describe a RPA use case inspired by a real-life scenario
at Department of Computer, Control and Management Engineering (DIAG)
of Sapienza Università di Roma. The scenario concerns the filling of the travel
authorization request form made by personnel of DIAG for travel requiring prior
approval. The request applicant must fill a well-structured Excel spreadsheet (cf.
Fig. 1(a)) providing some personal information, such as her/his bio-data and the
email address, together with further information related to the travel, including
the destination, the starting/ending date/time, the means of transport to be
used, the travel purpose, and the envisioned amount of travel expenses, asso-
ciated with the possibility to request an anticipation of the expenses already
incurred (e.g., to request in advance a visa). When ready, the spreadsheet is
sent via email to an employee of the Administration Office of DIAG, which is in
charge of approving and elaborating the request. Concretely, for each row in the
spreadsheet, the employee manually copies every cell in that row and pastes that
into the corresponding text field in a dedicated Google form (cf. Fig. 1(b)), acces-
sible just by the Administration staff. Once the data transfer for a given travel
authorization request has been completed, the employee presses the “Submit”
button to submit the data into an internal database.

In addition, if the request applicant declares that s/he would like to use
her/his personal car as one of the means of transport for the travel, then s/he
has to fill a dedicated web form required for activating a special insurance for the
part of the travel that will be performed with the car. This further request will
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(a) Excel spreadsheet (b) Google form

Fig. 1. UIs involved in the use case

be delivered to the Administration staff via email, and the employee in charge of
processing it can either approve or reject such request. At the end, the applicant
will be automatically notified via email of the approval/rejection of the request.

The above procedure, which involves two main routines (in the following, we
will denote them as R1 and R2), is performed manually by an employee of the
Administration Office of DIAG, and it should be repeated for any new travel
request. Routines such as these ones are good candidates to be encoded with
executable scripts and enacted by means of a SW robot within a commercial
RPA tool. However, unless there is complete a-priori knowledge of the specific
routines that are enacted on the UI and of their concrete composition, their
automated identification from an UI log is challenging, since the associated user
actions may be scattered across the log, interleaved with other actions that are
not part of the routine under analysis, and potentially shared by many routines.

Based on the above description, it becomes clear that a proper execution of
R1 requires a path on the UI made by the following user actions:1

– loginMail, to access the client email;
– accessMail, to access the specific email with the travel request;
– downloadAttachment, to download the Excel file including the travel request;
– openWorkbook, to open the Excel spreadsheet;
– openGoogleForm, to access the Google Form to be filled;
– getCell, to select the cell in the i-th row of the Excel spreadsheet;
– copy, to copy the content of the selected cell;
– clickTextField, to select the specific text field of the Google form where the

content of the cell should be pasted;

1 Note that the user actions recorded in a UI log can have a finer granularity than the
high-level ones used here just with the purpose of describing the routine’s behavior.
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– paste, to paste the content of the cell into a text field of the Google form;
– formSubmit, to finally submit the Google form to the internal database.

Note that the user actions openWorkbook and openGoogleForm can be
performed in any order. Moreover, the sequence of actions 〈getCell, copy,
clickTextField, paste〉 will be repeated for any travel information to be moved
from the Excel spreadsheet to the Google form. On the other hand, the path of
user actions in the UI to properly enact R2 is as follows:

– loginMail, to access the client email;
– accessMail, to access the specific email with the request for travel insurance;
– clickLink, to click the link included in the email that opens the Google form

with the request to activate the travel insurance on a web browser;
– approveRequest, to approve the request on the Google form;
– rejectRequest, to reject the request on the Google form;

Note that the execution of approveRequest and rejectRequest is exclusive.
In the rest of the paper, we concisely represent the universe of user actions of

interest for R1 and R2 as follows: Z = {A,B,C,D,E, F,G,H, I, L,M,N,O},
such that: A = loginMail, B = accessMail, C = downloadAttachment, D =
openWorkbook, E = openGoogleForm, F = getCell, G = copy, H = clickTextField,
I = paste,L= formSubmit,M = clickLink,N = approveRequest,O = rejectRequest.

2.2 Segmentation of UI Logs

In this section, we provide the relevant background on UI logs and we explain
in detail the issue of segmentation of UI logs with all its potential variants.

A UI log typically consists of a long sequence of user actions recorded during
one user interaction session.2 Such actions include all the steps required to accom-
plish one or more relevant routines using the UI of one or many sw application/s.
For instance, in Fig. 2, we show a snapshot of a UI log captured using a dedicated
action logger3 during the execution of R1 and R2. The employed action logger
enables to record the events happened on the UI, enriched with several data fields
describing their “anatomy”. For a given event, such fields are useful to keep track
the name and the timestamp of the user action performed on the UI, the involved
sw application, the resource that performed the action, etc.

As shown in Fig. 2, a UI log is not specifically recorded to capture pre-identified
routines. A UI log may contain multiple and interleaved executions of one/many
routine/s (cf. in Fig. 2 the blue/red boxes that group the user actions belonging
to R1 and R2, respectively), as well as redundant behavior and noise. We consider
as redundant any user action that is unnecessary repeated during the execution of
a routine, e.g., a text value that is first pasted in a wrong field and then is moved
in the right place through a corrective action on the UI. On the other hand, we

2 We interpret a user session as a group of interactions that a single user takes within
a given time frame on the UI of a specific computer system.

3 https://github.com/bpm-diag/smartRPA.

https://github.com/bpm-diag/smartRPA


70 S. Agostinelli et al.

Fig. 2. Snapshot of a UI log captured during the executions of R1 and R2

consider as noise all those actions that do not contribute to the achievement of
any routine target, e.g., a window that is resized. In Fig. 2, the sequences of user
actions that are not surrounded by a blue/red box can be safely labeled as noise.

In this context, segmentation techniques aim first to extract from a UI log all
those user actions that are compliant with a specific routine segment, i.e., with
a repetitive routine behavior as observed in the UI log. Then, the target is to
cluster such user actions into well-bounded routine traces, which are complete
and independent execution instances of the routine within the UI log. Such traces
are finally stored in a dedicated routine-based logs, which capture all the user
actions happened during many different executions of the routine and compliant
with a specific routine segment, thus achieving the segmentation task. It is worth
noticing that a routine-based log obtained in this way can eventually be employed
by the commercial RPA tools to synthesize executable scripts in form of SW
robots that will emulate the routine behavior.

For example, an allowed routine segment of R1 is 〈A, B, C, D, E, F , G, H,
I, L〉. From the description of the use case, allowed routine segments are also
those ones where: (i) A is skipped (if the user is already logged in the client
email); (ii) the pair of actions 〈D, E〉 is performed in reverse order; (iii) the
sequence of actions 〈F , G, H, I〉 is executed several time before submitting the
Google form. On the other hand, two allowed routine segments can be observed
from R2: 〈A, B, M, N〉 and 〈A, B, M, O〉, again with the possibility to skip A,
i.e., the access to the client email. Note that A and B can be employed by both
R1 and R2 to achieve their targets. By analyzing the log, it can be noted that:
A is potentially involved in the enactment of any execution of R1 and R2, while
B is required by all executions of R1 and R2, but it is not clear the association
between the single executions of B and the routine segments they belong to.
Any observed execution of user actions in the UI log that matches with one of
the above routine segments can be considered as a valid routine trace.

According to [5], we can distinguish between three major forms of UI logs,
which can be categorized as follows:
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– Case 1. A UI log captures many not interleaved (case 1.1 ) or interleaved
(case 1.2 ) executions of the same routine.

– Case 2. A UI log captures many executions of different routines, but with the
assumption that different routines do not have any user action in common. Four
variants of this case can be identified: clear separation in the UI log between the
routines’ executions (case 2.1 ); many executions of the same routine can be
recorded in an interleaved fashion, but the executions of different routines are
separated from each others (case 2.2 ); the executions of different routines can
be recorded in an interleaved fashion, but the executions of a specific routine can
not be enacted in an interleaved way (case 2.3 ); the executions of any routine
can be always interleaved from each others (case 2.4 ).

– Case 3. Similarly to Case 2, it provides four variants (cases 3.1, 3.2, 3.3,
and 3.4 )), with the only difference that a same kind of user action can be
employed by many different routines to achieve their objectives, e.g., the UI
log associated with the running example in Sect. 2.1 belongs to Case 3.

While the literature does not provide works able to properly segment UI logs
including user actions “shared” by many routine executions, in this paper we
propose an approach that is able to relax this assumption and to achieve the
following segmentation cases: 1.1, 2.1, 2.3, 3.1 and 3.3.

3 Approach

Our approach to the segmentation of UI logs can be considered a semi-supervised
one, as it integrates the usage of automated techniques with the intervention of
human experts in some specific points of the approach. To be more precise, as
shown in Fig. 3, starting from an unsegmented UI log previously recorded by a
RPA tool, the first step is to inject into the UI log the end-delimiters of the
routines under examination. An end-delimiter is a dummy action added to the
UI log immediately after the user action that is known to complete a routine
execution. If we consider our running example in Sect. 2.1, an end-delimiter is
always required after the final action of R1, i.e., formSubmit, and after one of the
final actions or R2, i.e., approveRequest or rejectRequest. In this paper, we assume
that the knowledge of the final action(s) of a routine is given at the outset. Such
information can be obtained, for example, by interviewing the users that are in
charge to execute the routines of interest.

The second step of the approach consists of automatically extracting the
observed routines’ behaviors (i.e., the routine segments) directly from the UI log
with the end-delimiters. To this aim, we employ a frequent-pattern identification
technique [9], which has been properly customized for this purpose.

Since from the previous step there is the possibility that some (not allowed)
segments are identified as if they would be valid, the third step of the approach
involves a human-in-the-loop interaction to filter out these segments. Specifically,
we automatically infer the declarative constraints (i.e., the temporally extended
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Fig. 3. Overview of our general approach to the segmentation of UI logs

relations between user actions) that must be satisfied throughout a routine seg-
ment. In this way, we enable human experts to identify and remove those con-
straints that should not be compliant with any real-world routine behavior, thus
removing the wrongly discovered routine segments from the UI log.

Finally, starting from any of the remaining (valid) routine segments, we employ
a customized version of a trace alignment technique in Process Mining [2] to auto-
matically detect and extract the routine traces by the original UI log. Such traces
will be stored in a dedicated routine-based log. Therefore, the final outcome of our
segmentation approach will be a collection of as many routine-based logs as are
the number of valid routine segments. By identifying the routine traces, we are
also able to filter out those actions in the UI log that are not part of the routine
under observation and hence are redundant or represent noise.

In the following sections, we discuss in detail all the steps of our approach,
instantiating them over the running example of Sect. 2.1.

3.1 Segments Discovery Through Frequent-Pattern Identification

Pattern identification is a common task in data sequences analysis. As an exam-
ple, in the field of smart spaces, patterns are identified in sensor logs represent-
ing human routines [17]. These patterns are then used to learn models of human
behavior that can be used at runtime for activity recognition or anomaly detec-
tion. In such a scenario, authors in [9] proposed an approach based on minimum
description length (MDL) principle. In this paper, we have customized the tech-
nique presented in [9] for automatically identifying the routine segments from
UI logs with the end-delimiters properly converted into ad-hoc datasets.

The algorithm takes as input a dataset of a sequence of sensor events witnessing
human interactions with the environment. At each step, the algorithm looks for
patterns that best compress the dataset. A pattern consists of a specific sequence
of sensor events and all of its occurrences in the dataset. In our RPA application
scenario, the sensor events represent the user actions involved in each routine(s)
execution(s), and the frequent patterns are the discovered routine segments.

Starting from a single pattern for each different sensor event, the algorithm
at each step tries to extend patterns aiming at the best compression possible.
Every instance of the pattern, in particular, is replaced by a symbol associated
to the pattern. The compression of a dataset D given a pattern P is given
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Fig. 4. A dataset compression step in segments discovery

by the formula DL(D)
DL(D|P )+DL(P ) , where DL(D) represent the description length,

measured for example in bits of the dataset with the current patterns, DL(D|P )
represents the description length of D if all of the occurrences of P are replaced
with a symbol, and DL(P ) represents the description length of the pattern, which
must be taken into account in compression evaluation. The algorithm stops as
soon as no further compression is possible, returning all the patterns found (i.e.,
all the discovered routine segments). Figure 4 shows a compression step where
a pattern P of repeating events (for simplicity colors have been used instead
of labels) is identified and the dataset is compressed accordingly. Noteworthy,
for certain parts of the dataset, no pattern is found whose definition improve
compression (with the exception of the initial patterns of length one).

We show now how an execution instance of the above algorithm can be
applied to the following UI log (that already includes the end-delimiters) gener-
ated from the running example of Sect. 2.1: U = {A, B, C11, D11, E11, F11, G11,
H11, I11, L11, X, B, M21, N21, Z, B, C12, D12, E12, F12, G12, H12, I12, L12,
X, B, M22, O22, Z, . . . , A, B, C1(i−1), Y1, D1(i−1), E1(i−1), F1(i−1), G1(i−1),
G1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), X, B, M2(i−1), N2(i−1), Z, . . . , B,
Yn−1, C1i, D1i, E1i, Yn , F1i, G1i, H1i, I1i, I1i, I1i, L1i, X, B, M2i, O2i, Z}.
For the sake of understandability, we use a numerical subscript ji associated
to any user action to indicate that it belongs to the i − th execution of the
j− th routine under study. This information is not recorded into the UI log, and
discovering it (i.e., the identification of the subscripts) is one of the “implicit”
effects of segmentation when routine traces are built. Note that A and B are not
decorated with subscripts since they can potentially belong to executions of R1
or R2. The log contains elements of noise, i.e., user actions Yk∈{1,n} that are not
allowed by R1 and R2, and redundant actions like G and I that are unnecessary
repeated multiple times. X and Z are the end-delimiters for the executions of
R1 and R2.

The delimiters injection stage is crucial to drive the discovery of the largest
possible set of valid routine segments, otherwise the technique would detect only a
small subset of them. For example, let us suppose that the UI log includes only user
actions related to two routines A and B without the presence of any end-delimiter.
In this case, the UI log will likely include different sequences of consecutive routine
segments of the kind A*, B* or AB*. In this condition, any compression algorithm
will likely merge multiple routine segments into cumulative symbols (e.g., AAA,
BB, ABAB) rather than highlighting single routine executions. This issue becomes
less relevant when between the execution of two separate routines there are no
repetitive actions. However, while the latter assumption is reasonable in case of
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recording of human habits, it is far from being realistic in case of UI logs recording
low-level user actions performed during the interaction with a computer system.

Based on the foregoing, the output of the segments discovery stage is repre-
sented by a set of identified frequent segments (some of them may not be compliant
with the real-world routine behaviors, see the next section), as follows:

– {〈F , G〉, 〈C, D, E〉, 〈H, I, L〉, 〈C, D, E, F , G, H, I, L〉, 〈B, C, D, E, F ,
G, H, I, L〉, 〈A, B, C, D, E, F , G, H, I, L〉}

– {〈A,B〉, 〈B,M〉, 〈B,M,O〉, 〈B,M,N〉}

3.2 Human-in-the-Loop Interaction

Once the routine segments have been discovered, the possibility exists that many
of them represent not allowed routine behaviors. This happens because a UI log
combines the execution of several routines that are usually interleaved from each
others. In addition, in case of routines that make use of the same kinds of user
actions to achieve their goals, it may happen that new patterns of repeated
user actions, which represent potential not allowed routine segments, are rather
detected as valid ones within the UI log.

On the basis of the experiments performed in Sect. 4, it becomes clear that
the employed frequent-pattern identification algorithm is able to (re)discover the
allowed routine segments that are known to be recorded in the input UI logs.
However, since there is the possibility that some (not allowed) segments are
identified as if they would be valid, a human-in-the-loop interaction is required
to filter out all those routine segments representing behaviors that should not
be allowed by any real-world routine of interest. Specifically, starting from the
discovered routine segments, we invoke for any of these segments the Declare
Miner algorithm implemented in [6] to infer the declarative constraints (i.e.,
the temporally extended relations between user actions) that must be satis-
fied throughout the segments. The constraints are represented using Declare,
a well-known declarative process modeling language introduced in [10]. Declare
constraints can be divided into four main groups: existence, relation, mutual and
negative constraints. We notice that the use of declarative notations has been
already demonstrated as an effective tool to visually support expert users in the
analysis of event logs [21].

At this point, one or more human expert(s) may be involved to evaluate
the constraints derived for any routine segment and remove those ones that are
considered not compliant with any real-world routine behavior. Detecting and
removing these constraints means to filter out all the not allowed (i.e., wrongly
discovered) routine segments.

For example, if we consider the discovered segment 〈C, D, E〉, the follow-
ing (simple) Declare constraints (among the others) hold: Init(C) and End(E),
meaning that routines’ executions starting with C or ending with E have been
discovered into the UI log. An expert user that is aware of the behavior of the
real-world routines under analysis can immediately understand that the above
Declare constraints should not hold in reality, since R1 and R2 can start only
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with A or B and end with L, O or N . For this reason, the above Declare con-
straints can be considered both as wrongly representative of the routines under
analysis. As a consequence, all the discovered segments for which one of the above
Declare constraints hold can be immediately discarded. For the sake of space, we
do not show here all the Declare constraints that hold for any of the discovered
segments. However, we point out that the iterative analysis of the Declare con-
straints associated to the discovered segments will support the human experts
to easily detect and filter out those segments that must not be later emulated by
SW robots. The list of allowed segments for our running example is the following:

– {〈B, C, D, E, F , G, H, I, L〉, 〈A, B, C, D, E, F , G, H, I, L〉}
– {〈B,M,O〉, 〈B,M,N〉}

3.3 Trace Alignment

Trace alignment [2] is a conformance checking technique within Process Mining
that replays the content of any trace in a log against a process model, one
event at a time. For each trace in the log, the technique identifies the closest
corresponding trace that can be parsed by the model, i.e., an alignment.

We perform trace alignment by constructing an alignment of a UI log U
(note that we can consider the entire content of the UI log as a single trace)
and a process model W (representing a valid routine segment) as a Petri Net,
which allows us to exactly pinpoint where deviations occur. Specifically, we relate
“moves” in the log to “moves” in the model in order to establish an alignment
between U and W . However, it may be that some of the moves in the log cannot
be mimicked by the model and vice versa. In particular, we are interested in
synchronous moves between U and W . If they exist, the user actions involved in
such synchronous moves are extracted and stored into a routine-based log.

We have implemented a customized version of the above trace alignment
algorithm as a supervised segmentation technique [4] that is able to segment a
UI log and achieve all variants of cases 1, 2 and (partially) 3 except when there
are interleaved executions of shared user actions by many routines. In that case,
the risk exists that a shared user action is associated to a wrong routine execution
(i.e., case 3.3 and 3.4 are not covered). Thus, while in [4], to make the algorithm
works, it is required to know a-priori the structure (i.e., the flowchart) of the
routines to identify in the UI log (cf. [20]), the novelty of the proposed approach
is to semi-automatically discover such structures in the form of routine segments,
and then used them as input for the supervised segmentation technique in [4].

In the case of our running example, starting from the outcome of the previous
step (i.e., the valid routine segments), the output of the trace alignment will be
a set of four routine-based logs generated as follows:

– UW1 = {〈A11, B11, C11, D11, E11, F11, G11, H11, I11, L11 〉, . . . , 〈A1(i−1),
B1(i−1), C1(i−1), D1(i−1), E1(i−1), F1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), 〉}

– UW2 = {〈B12, C12, D12, E12, F12, G12, H12, I12, L12, 〉, . . . , 〈B1i , C1i, D1i, E1i,
F1i, G1i, H1i, I1i, L1i 〉}

– UW3 = {〈B21, M21, N21〉, . . . , 〈B2(i−1), M2(i−1), N2(i−1)〉}
– UW4 = {〈B22, M22, O22〉, . . . , 〈B2i , M2i, O2i〉}
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Table 1. Experiments’ results. For each segmentation case the number of actions is
28, 21 and 20 (resp.). Only logs with 20 different allowed segments are shown here, and
the number of valid routine behaviors is the 70% of the 1000 s that were introduced in
the UI logs, while the other 30% may be affected by noise.

Case 1 # discovered segments (valid/wrong)

Noise 0% 10% 20%

No repetitive actions 20/2 20/88 20/118

Repetitive actions 20/11 16/161 16/179

Case 2 # discovered segments (valid/wrong)

Noise 0% 10% 20%

No repetitive actions 20/2 20/59 20/69

Repetitive actions 20/10 20/132 20/136

Case 3 # discovered segments (valid/wrong)

Noise 0% 10% 20%

No repetitive actions 20/6 20/53 20/67

Repetitive actions 20/13 20/146 20/170

4 Evaluation

To investigate the feasibility of our approach to the automated segmentation of
UI logs, we assessed to what extent it is able to (re)discover routine segments
that are known to be recorded into the input UI logs. Specifically, we have
synthetically generated 144 different UI logs, in a way that each UI log consisted
of 1000 routine executions and was characterized by a unique configuration by
varying the following inputs:

– valid routine segments: number of different routines segments (5/10/15/20),
in terms of allowed behaviors, included in the UI log.

– alphabet size: size of the alphabet of user actions for each segmentation case:
Case 1 (13/18/23/28); Case 2 (15/16/18/21); Case 3 (13/15/17/20).

– valid traces: percentage of allowed behaviors recorded into the UI log (50%/
70%/100%). The remaining portion of the UI log (50%/30%) may be dirty,
i.e., it contains routine executions potentially affected by noise.

– percentage of noise in the remaining (dirty) portion of the UI log (10%/20%).

The synthetic UI logs generated for the test and the complete list of results
can be analyzed at: http://tinyurl.com/icsoc2021. The implementation of our
approach is available: https://github.com/bpm-diag/INTSEG. For the sake of
space, we present in Table 1 only a view of the results in one of the most complex
cases to tackle. The results indicate that the approach scales very well in case
of an increasing number of different routine segments to be discovered and with
an alphabet of user actions of growing size. The computation time is not shown,
since it ranges from milliseconds for UI logs with 5 different routine segments

http://tinyurl.com/icsoc2021
https://github.com/bpm-diag/INTSEG
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up to few seconds for UI logs with 20 segments. This result was expected, since
more segments in a UI log means more executions to analyze and interpret.

By analyzing the results, we can infer that the approach is able to discover the
same allowed routine segments that were synthetically introduced in the routine
executions recorded in the UI logs, achieving the following segmentation cases:
1.1, 2.1, 2.3, 3.1 and 3.3. On the other hand, our approach seems to lack in the
computation of valid routine segments in presence of repetitive user actions (i.e.,
user actions that are repeated in a loop), when there are several routine segments
generated by different executions of the same routine. This is due to the fact that
similar sequences of user actions tend to be compressed together, and since they
are generated from the same routine, the risk exists that different sequences are
wrongly recognized as the same and bounded together, thus leading to a number
of routine segments lower than ones that were synthetically introduced.

5 Related Work

Segmentation is currently considered as one of the “hot” key research effort to
investigate [3,16] in the RPA field. Concerning RPA-related techniques, Bosco et
al. [8] provide a method that exploits rule mining and data transformation tech-
niques, able to discover routines that are fully deterministic and thus amenable
for automation directly from UI logs. This approach is effective in case of UI
logs that keep track of well-bounded routine executions (cases 1.1 and 2.1), and
becomes inadequate when the UI log records information about several routines
whose actions are potentially interleaved. In this direction, Leno et al. [15] pro-
pose a technique to identify execution traces of a specific routine relying on the
automated synthesis of a control-flow graph, describing the observed directly-
follow relations between the user actions. This technique is able to achieve cases
1.1, 1.2 and 2.1, and (only) partially the cases 2.2, 2.3 and 2.4, losing in accu-
racy in presence of recurrent noise and interleaved routine executions. The main
limitation of the above techniques is tackled in [4], which presents a supervised
segmentation technique that is able to achieve all variants of cases 1, 2 and (par-
tially) 3 except when there are interleaved executions of shared user actions by
many routines. In this paper, we exploit the technique presented in [4] to the
discovery of routine traces given a set of input routine segments.

Even if more focused on traditional business processes in BPM rather than
on RPA routines, Fazzinga et al. [11] employ predefined behavioral models to
establish which process activities belong to which process model. The technique
works well when there are no interleaved user actions belonging to one or more
routines, since it is not able to discriminate which event instance (but just the
event type) belongs to which process model. This makes [11] effective to tackle
cases 1.1, 2.1 and 3.1. Closely related to [11], there is the work of Liu [18].
The author proposes a probabilistic approach to learn workflow models from
interleaved event logs, dealing with noises in the log data. Since each workflow
is assigned with a disjoint set of operations, the work [18] is able to achieve both
cases 1.1 and 2.1, but partially cases 2.2, 2.3 and 2.4 (the approach can lose
accuracy in assigning operations to workflows).
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There exist other approaches whose the target is not to exactly resolve the
segmentation issue. Many research works exist that analyze UI logs at different
levels of abstraction and that can be potentially useful to realize segmentation
techniques. With the term “abstraction” we mean that groups of user actions
to be interpreted as executions of high-level activities. Baier et al. [7] propose
a method to find a global one-to-one mapping between the user actions that
appear in the UI log and the high-level activities of a given model. Similarly,
Ferreira et al. [12], starting from a state-machine model describing the routine
of interest in terms of high-level activities, employ heuristic techniques to find
a mapping from a “micro-sequence” of user actions to the “macro-sequence” of
activities in the state-machine model. Finally, Mannhardt et al. [19] present a
technique that map low-level event types to multiple high-level activities (while
the event instances, i.e., with a specific timestamp in the log, can be coupled
with a single high-level activity). However, segmentation techniques in RPA must
enable to associate low-level event instances (i.e., user actions) to multiple rou-
tines, making abstractions techniques ineffective to tackle all those cases where
is the presence of interleaving user actions of many routines. As a consequence,
all abstraction techniques are effective to achieve cases 1.1 and 2.1 only.

6 Discussion and Concluding Remarks

In this paper we have presented an approach that tackles the segmentation
challenge relying on three main steps: (i) a frequent-pattern identification tech-
nique to automatically derive the observed routine behaviors from a UI log,
(ii) a human-in-the-loop interaction to filter out those behaviors not allowed by
any real-world routine execution, and (iii) a trace alignment technique in Pro-
cess Mining to cluster all user actions belonging to a specific routine behavior
into well-bounded routine traces. Our approach is based on a semi-supervised
assumption, since we know a-priori the end-delimiters to be associated to any
user action that ends a routine execution. On the other hand, the approach is not
aware of the concrete behavior of the routines of interest, which will be discov-
ered by the approach itself. For this reason, we consider this contribution as an
important step towards the development of a more complete and unsupervised
technique to the segmentation of UI logs.

The presented approach is able to extract routine traces from unsegmented
UI logs that record in an interleaved fashion many different routines but not
the routine executions, thus losing in accuracy when there is the presence of
interleaving executions of the same routine. In addition, it is also able to properly
deal with shared user actions required by all routine executions in the UI log,
thus achieving the cases 1.1, 2.1, 2.3, 3.1, and 3.3.

As a future work, we are going to perform a robust evaluation: (i) on real-
world case studies with heterogeneous UI logs, and (ii) on the impact of the
human-in-the-loop interaction to filter out wrongly discovered routine segments.
In addition, we aim at relaxing the semi-supervised assumption by employ-
ing machine learning and DNN techniques to automatically identify the end-
delimiters.
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