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Abstract. Predictive process analytics uses advanced machine learning
techniques to accurately predict future states of running business pro-
cesses. Given the complexity of these predictive models, explainable Al
techniques are also required to enable informed decision-making. How-
ever, few studies evaluate the quality of explanations provided by exist-
ing methods to explain business process predictions. In this paper, we
attempt to evaluate the consistency of explanations produced for pro-
cess predictions by two popular explainable methods. We propose that
methods and metrics to assess feature selection algorithms can be used
to evaluate explanation stability. We use these metrics to assess expla-
nations produced by LIME and SHAP. Our findings indicate that expla-
nation stability may depend on dataset characteristics, feature construc-
tion methods and predictive model characteristics. In addition, we also
find that, though stable explanations are needed for informed decision-
making, unexpected behaviour in explanation stability can act as a diag-
nostic tool to determine model quality.

Keywords: Predictive process analytics + Explainable AI - Evaluation
metrics - Explanation stability

1 Introduction

Predictive process analytics (PPA) attempts to predict some future state of a
business process [6]. It uses event logs, which capture process execution data,
to train predictive models. As these models require advanced machine learning
algorithms to create accurate predictions, their internal workings are complex,
and thus opaque to a human audience. The research field of explainable Al
(XAI) provides methods to interpret these opaque, “black box” predictive mod-
els [3]. Recent studies in PPA have applied existing XAI methods to explain
process predictions [2,13] or evaluate process predictive models [11]. However,
few works have attempted to evaluate the quality of explanations generated by
these methods for process predictions.
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This has motivated us to conduct functionally-grounded evaluation, in which
some inherent property of the explanation is evaluated, without input from a
human user. Though such evaluations do not reveal the usefulness of the expla-
nation to humans, they are often an essential step in determining the fitness of
an explainable method to a dataset and context [1]. A key evaluation measure
is explanation stability, which is used to assess the consistency of explanations
generated for an opaque predictive model [15]. Few methods to measure stabil-
ity have been proposed in XAI literature, most of which are specific to a single
explainable method (such as in [15]), and do not enable comparison between
explainable methods. In addition, to the best of our knowledge, no studies have
attempted to evaluate explanation stability for process predictions.

In this paper, we aim to use methods and metrics from the field of feature
selection to evaluate explanation stability for business process predictions. The
evaluation focuses on the stability of local, post-hoc explanations, which are
provided to individual predictions by an explainable method after a predictive
model is trained. We apply the proposed metrics to LIME [10] and SHAP [5] in
the context of process predictions using real-life event logs.

Furthermore, since event log data is both temporal and case-based, exten-
sive feature construction methods are required to make this data machine read-
able [14]. Therefore, of particular interest in PPA are not only the dataset
and predictive model, but also feature construction techniques used. We aim to
understand how the characteristics of this pipeline affect explanation stability.
Hence, we design experiments by varying the event log datasets, feature con-
struction methods and classification algorithms used to train a business process
predictive model along the pipeline.

Thus, our contributions are two-fold. Firstly, we propose and demonstrate
that metrics to evaluate the stability of feature selection algorithms can be used
to evaluate the stability of explanations for tabular data such as event logs. Sec-
ondly, we apply these metrics to explanations of process predictions to determine
the PPA-specific characteristics that affect explanation stability, and in doing
o, derive insights into the use of explainable methods for PPA.

2 Background and Related Work

2.1 Process Execution Event Logs

Process execution event logs (or simply event logs) are a form of sequential data
in tabular format. During business process execution, information is recorded in
information systems in the form of event logs. Event log data include the activ-
ities that were undertaken (event), and the actors, systems and data involved
in each event. Events are linked to a particular execution of the process (pro-
cess instance or case) through some specific case identifier such as patient ID
or order ID. Events form the rows of an event log, in order of occurrence, and
attributes associated with an event (event attributes), such as case identifier,
actors participating in the event, event name or timestamp, form the columns.
These attributes may be static and unchanging over the course of the case, such
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as the case identifier, or dynamic, such as the timestamps of events. A trace is a
sequence of events for the same case, and prefizes are the features constructed
for each trace using both events and event attributes.

2.2 Explainable AI

The field of explainable AT (XAI) has arisen as a means to provide transparency
into otherwise opaque predictive models. Although more complex and sophis-
ticated predictive models may be more accurate, this internal complexity also
reduces the ability of human agents to understand their decision-making pro-
cesses, thus requiring interpretation [3]. In this work, we are interested in local,
post-hoc explanations — i.e. explanations provided to individual predictions or
small data neighbourhoods (local explanations) by explainable methods after
the predictive model is trained (post-hoc) [3]. A variety of explainable meth-
ods exist within this category, among which LIME and SHAP well-known and
popular. Both provide feature attribution explanations, wherein they determine
the contribution of each feature to the final outcome, though they use different
mechanisms to determine feature importance. LIME creates a surrogate model
to mimic the black box model’s behaviour within a particular data neighbour-
hood, and uses this surrogate model to determine local feature importance [10].
SHAP’s approach is based on game theory and attempts to identify the marginal
contribution of each feature to the final output of the predictive model for a sin-
gle instance [5].

2.3 Explainable Predictive Process Analytics

PPA attempts to predict a future state of process instances using prefixes. Com-
mon prediction targets in PPA include case outcome prediction, remaining time
prediction, next activity prediction and risk prediction, among others [6]. Given
the complexity of machine learning models needed for process predictions, as
well as the extensive processing required to extract algorithm-readable features
from event log data, process predictive models are highly opaque to human
agents [13]. Most attempts at explaining or refining process prediction black
boxes in literature have generally attempted to use existing post-hoc methods,
including LIME [11,13], SHAP [2,11] and Partial Dependence Plots, a method
to generate global explanations capturing the overall model behaviour [7].

2.4 Evaluating Explanation Stability

Explanation stability measures the consistency of explanations generated for
identical or similar instances in the data [15]. Since explainable methods attempt
to provide insight into otherwise “black box” models, the provided explanations
must be reliable. But, when the explainable method is subject to randomness,
there may be variations in the explanation, calling its reliability into question [4].
Though stability metrics have been proposed for post-hoc explainable methods,
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these are often specific to a particular explainable method (for example, the
metrics proposed in [15] for LIME).

We propose that measures and metrics to assess the stability of feature selec-
tion algorithms can be adapted for explainable methods. Feature selection algo-
rithms are used to reduce the dimensions of high-dimensional datasets by deter-
mining feature relevance [9]. The outputs of these algorithms — feature subsets,
feature rankings or quantification of feature relevance [8] — are similar to fea-
ture attribution explanations. Thus, we suggest that approaches and metrics to
evaluate feature selection algorithms can be applied in XAI, particularly when
evaluating feature attribution explanations.

3 Methods and Metrics

3.1 Evaluation Method

We propose an approach to evaluate the stability of explanations generated by
post-hoc explainable methods for business process predictions. Figure 1 depicts
an overview of this approach, as well as the standard workflow for building
process predictive models using machine learning algorithms [14].

data pm{:essing

[ )
| | Extract Group prefixes .| Encode featu(e
LOG prefixes into buckets | prefixes encoding

|

machine redictive Evaluate
learning P (Post-Hoc) stability of
models N .
model/ Explanations Explanations

Fig. 1. Approach for evaluating explanation stability for process predictions

Firstly, prefixes are extracted for each trace in the event log, then grouped
into buckets based on their similarities, such as length or last completed event.
The prefixes in each bucket are then encoded into algorithm-readable feature
vectors of equal length, and one model is trained per bucket. Once the predic-
tive model/s have been created, local explanations are generated using post-hoc
explainable methods for a sample of data. The sample of data for evaluating
stability are randomly chosen, primarily from the testing set, but also from the
training set when the testing set is small. Around 50 samples are chosen at each
prefix length used, though fewer were chosen for the smaller datasets.

During evaluation, we measure the stability of the subset of most important
features (stability by subset) and the stability of weights applied to each feature
(stability by weight). Ten explanations are generated for each instance in the
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sample of data used for evaluation (i.e. M = 10 for each instance, see Egs. 1
and 2 in Sect. 3.2). This follows the general approach in [15], where the stability
of variables used by LIME’s surrogate models, and the coefficients applied to
them, were measured across 10 surrogate models.

We do not specify a certain number of features to measure stability by subset.
Rather, we use the features with feature weights that fall into the top quartile
of the feature weight distribution. For example, if the feature weights in an
explanation range from 0 to 1, only features with feature weights greater than
0.75 are used to evaluate stability by subset (see Eq.1). Stability by weight is
evaluated using the weights for all features (see Eq. 2).

3.2 Evaluation Metrics

We propose two explanation stability evaluation metrics. Both are applied to test
explanation stability for a single instance, but can be averaged out to understand
stability at the dataset level.

Stability by Subset. This metric was proposed in [9] to determine the stability
of feature selection algorithms, based on the presence or absence of each feature
across a number of feature subsets. We calculate the stability of feature subsets
(¢(2)) for a single process instance in an event log as follows:

1 d 2
d Zizl St

-9

9(2) =1~ (1)

where:

— d = number of features encoded from event attributes in the log

— M = number of explanations generated for the process instance

— Z = binary matrix of size M x d. Each row of the binary matrix represents a
feature subset from a single explanation, where a 1 at the i*" position means
feature f; is among the most relevant and a 0 means it is not.

— k = number of most relevant features, where relevance or level of importance
is determined by an explanation generated for the process instance, for a
single explanation

— k = average of k across all M explanations for the process instance

- 8?2 = sample variance of the presence of feature f; across all M explanations
for the process instance (i.e. the the variance of column i in Z)

This measure is bounded between 0 and 1, where 0 indicates no similarity in the
feature subsets, and 1 indicates that all subsets are identical.

Stability by Weight. Pearson’s correlation coefficient is generally used to mea-
sure stability of feature weights in feature selection algorithms [8], but this mea-
sures the similarity of trendlines and does not calculate the degree by which a
feature’s weight may vary. As such, we specify the measure stability by weight
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— adapted from the statistical measure of relative variance — and calculate the
stability of feature weights (¢(W)) for a single process instance in an event log

as follows:
2

1 & o2,
V) =153 e
i=1 W

where:

— d = number of features encoded from event attributes in the log
— M = number of explanations generated for the process instance
— W = matrix of size M x d. Each row of the matrix records the weight of each
feature as quantified by a single explanation
— lw, = mean of the weights of feature f; across all M explanations for the
process instance (i.e. the mean of column 7 in W)
2 = variance of the weights of feature f; across all M explanations for the

-0
w;
process instance (i.e. the variance of column ¢ in W)

This measure also has an upper bound of 1 (indicating perfect stability), but no
lower bound. The suitability of these metrics will be assessed through comparison
to previous results in literature and known behaviours of the explainable methods
used.

4 Experimental Design

4.1 Predictive Models

The chosen prediction target for the experiments was the process outcome. This
is a common prediction problem in PPA and a typical example of a classifica-
tion problem. Two algorithms were used to create the predictive models. One
is XGBoost which generally produces the most accurate models for outcome-
oriented prediction [14]. Given that an aim of this work was to understand the
effects of predictive model on explanation stability, a second prediction algorithm
of different characteristics was also chosen. Logistic regression (Logit) is simpler
in comparison to the significantly more complex models created by XGBoost,
but generally produces less accurate models for outcome prediction.

Three combinations of bucketing and encoding were used to construct fea-
tures when creating the classifiers:

— Aggregate encoding for dynamic attributes with prefix-length bucketing
— Index-based encoding for dynamic attributes with prefix-length bucketing
— Aggregate encoding for dynamic attributes compiled in a single bucket

In the single bucketing method, all data is compiled as one and a single
classifier is trained on this bucket. When prefix-length bucketing is used, data is
grouped based on the number of activities that have already been completed in
a process instance (the prefix length), and one model is trained for each bucket.

Three different types of encoding are used. Static encoding, where numeric
attributes are used as-is and categorical attributes are one-hot encoded, was
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applied to static attributes in all combinations of bucketing and encoding. Aggre-
gate and index-based encoding were applied for dynamic attributes. Aggregate
encoding summarises each case, with a single feature indicating frequency of
occurrence for each categorical attribute and four features (mean, maximum,
minimum and standard deviation) for each numeric attribute. If index-based
encoding is used, numeric attributes are encoded as-is and categorical attributes
are one-hot encoded at each index (prefix in the process trace). As such, out
of the three methods used, combining prefix-length bucketing with index-based
encoding best preserves the temporal information in event logs, while using single
buckets with aggregate encoding preserves the least.

Two explainable methods are evaluated in this work. SHAP and LIME, two
popular post-hoc interpretation methods, were chosen given their relative pop-
ularity in explaining process predictions [2,11,13].

We will assess the suitability of the described metrics based on past stability
evaluation results in literature. Instability is a known issue of LIME. To generate
instances to train the surrogate model, LIME randomly samples the neighbour-
hood of the input instance to derive a set of perturbed inputs [10]. This random
sampling results in a different set of perturbed instances for every explanation,
and so the surrogate model and the resulting explanation lack stability, a problem
compounded as the length of the input increases [12]. On the other hand, SHAP
optimises the interpretation mechanism for certain categories of predictive models,
such that they examine the model directly [5]. We will use two such optimisations
(TreeSHAP and LinearSHAP). The lack of randomisation in the interpretation
mechanism should result in little to no instability in the explanation. Therefore,
the metrics can be judged to be appropriate if the following are observed:

1. LIME’s explanations will become more unstable as the length of the input
increases; and
2. SHAP’s explanations show little to no instability.

4.2 Datasets

We use three open-source, real-life event logs. Each event log is from a different
domain and has different characteristics (see Table1 for summary of the three
event logs used).

The Production dataset! is derived from a manufacturing process. This event
log has the fewest cases and the shortest traces out of the three event logs. When
using this dataset, we attempt to predict whether at least one work order in the
case will be rejected (which occurs in around 55% of cases). This dataset also
has a substantial number of attributes, more dynamic that static.

The Sepsis Cases dataset? records patients’ journeys in a hospital. Using this
dataset, we attempt to predict whether a patient returns to the ER within 14
days of discharge, which only 16% do. As such, this dataset was balanced through
down-sampling before model training. This dataset also contains a relatively

! https://doi.org/10.4121/unid:68726926-5ac5-4fab-b873-ee76ead12399.
2 https://doi.org/10.4121 /uuid:915d2bfb-Te84-49ad-a286-dc35063a460.
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Table 1. A summary of statistics of three event log datasets

Event log Production Sepsis cases BPIC2012
Description A manufacturing | Hospital event log Loan application
process showing sepsis cases process
No. of cases (before prefix extraction) 220 782 4,685
Proportion of positive cases 55.0% 16.0% 53.4%
Maximum prefix length 23 29 40
Prefix lengths used 1-20 1-20 1-20
Feature vector | Single bucket & 166 272 133
length aggregate encoding
Prefix-length buckets & | Min: 144 Min: 175 Min: 43
aggregate encoding Max: 164 Max: 212 Max: 133
Prefix-length buckets & | Min: 110 Min: 146 Min: 11
index-based encoding Max: 964 Max: 495 Max: 1257

large number of static attributes, but fewer dynamic attributes, so it produces
comparatively longer feature vectors when using aggregate encoding, but shorter
feature vectors at higher prefix lengths when using index-based encoding.

The BPIC2012 event log® follows a loan process. When using this event log,
we attempt to predict whether the loan application is accepted (roughly 53%
are rejected). This event log only has one static attribute and several dynamic
attributes for each event. As such, it will have comparatively short feature vectors
when using aggregate encoding, but comparatively long feature vectors at higher
prefix lengths when using index-based encoding.

As a summary, each combination of the above bucketing methods, encod-
ing methods, predictive models and explainable methods are evaluated for each
dataset. Only a maximum of 20 prefixes are used to train and explain a predic-
tive model. Each event log was split into training and testing sets (80-20 ratio)
prior to feature construction. The split was temporal, such that the cases that
finished the earliest were used for model training and the remaining 20% was
used as the testing set.

All relevant code associated with the experiments, including the feature con-
struction methods, hyperparamter optimisation, model training and explanation
generation and evaluation, are available at https://git.io/Jc9Az.

5 Results and Analysis

5.1 Results and Observations

For SHAP, all experiments return 1.0000 for each stability metric. It is by far the
more stable explainable method, both by subset and by weight, producing per-
fectly stable explanations regardless of the dataset, feature construction methods
or classification algorithm used. On the other hand, LIME’s stability was more
variable, and often poor (see Tables2 and 3).

3 https://doi.org/10.4121 /uuid:3926db30-f712-4394-achc-75976070e91f.


https://git.io/Jc9Az
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Evaluating Explanation Stability for Process Predictions 57

Table 2. Stability by Subset results for LIME (averaged over the dataset)

Classifier | Data encoding Production | Sepsis cases | BP1IC2012

XGBoost | Single bucket & aggregate encoding 0.3959 0.2166 0.8135
Prefix-length buckets & aggregate encoding | 0.6660 0.4067 0.3790
Prefix-length buckets & index-based encoding | 0.5010 0.3520 0.1987

Logit Single bucket & aggregate encoding 0.8417 0.7260 0.8734
Prefix-length buckets & aggregate encoding | 0.9789 0.7906 0.8155
Prefix-length buckets & index-based encoding | 0.8124 0.7977 0.6598

Table 3. Stability by Weight Results for LIME (averaged over the dataset)

Classifier | Data encoding Production | Sepsis cases | BPIC2012

XGBoost | Single bucket & aggregate encoding 0.5507 —0.2961 0.5415
Prefix-length buckets & aggregate encoding 0.5682 0.4694 0.4722
Prefix-Length buckets & index-based encoding | 0.2668 0.1595 —0.1645

Logit Single bucket & aggregate encoding —0.0825 0.6926 0.9687
Prefix-length buckets & aggregate encoding 0.9751 0.7915 0.9450
Prefix-length buckets & index-based encoding | 0.9415 0.8177 —0.1644

The combination of prefix-length bucketing and index-based encoding gen-
erally seems to produce the most unstable explanations when using LIME to
explain predictions from the BPIC2012 and Production datasets. Using single
buckets with aggregate encoding produced the least stable explanations for the
Sepsis Cases dataset. The most stable combination varied between the three
datasets. The most stable explanations were produced for the Production data
set when using prefix-length bucketing with aggregate encoding, but when using
single buckets and aggregate encoding for the BPIC2012 dataset.

5.2 Analysis and Findings

Finding 1: Causes of Instability. The returned results are as expected. SHAP
is perfectly stable, while LIME shows instability. We further unfold the results
for LIME by visualising the stability of explanations for each instance. Instability
is closely linked to prefix length and can be seen to increase as the size of the
input feature vector increases. This is apparent, both when comparing results
across different bucketing and encoding methods for the same dataset and when
comparing results between datasets.

For example, we unfold and examine explanation stability for the BPIC 2012
dataset in Fig. 2 and Fig. 3. When using single buckets with aggregate encoding,
where the input size remains consistent, stability is also consistent (Fig.2(a) and
(d)). However, in Fig.2(c) and (f), the results for prefix-length bucketing with
index-based encoding indicate a general downward trend in stability as the prefix
length increases. When considering the feature vector lengths, rather than the
prefix length (Fig.3(b) and (d)), it becomes clear that this downward trend is
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Fig. 2. The stability by subset at each prefix length for LIME using BPIC2012. Stability
seems related to prefix length when using prefix-length bucketing.

related to the length of the input. As such, the metrics used can be judged to
be suitable.
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Fig. 3. The stability by subset at different feature vector lengths for LIME using
BPIC2012. Stability generally decreases as the number of features increase.

This relationship between input length and LIME stability is also true
to some degree when using prefix-length bucketing with aggregate encoding
(Fig. 3(a) and (c)). However, there are spikes in stability at certain prefix lengths
when using this bucketing-encoding combination. This notably occurs at bucket
14 when using XGBoost (Fig.2(b)) and at buckets 2, 5, 6, and 8 when using
Logit (Fig.2(e)), where stability does not follow the described trend. This is
likely because a number of “empty” explanations with no feature attribution —
where the feature weights of all features were 0 — were produced by LIME where
these spikes occurred (see Fig.4(a) and (b)).

Finding 2: Non-attributive Explanations. Non-attributive explanations,
as described above, were seen in explanations for all datasets. They were pri-
marily produced by LIME, and were extremely rare in SHAP, and occurred only
when prefix-length bucketing and aggregate encoding were both used. When all
explanations produced for an instance were empty, explanation stability was con-
sidered to be perfect. As such, in buckets where a large proportion of consistently
empty explanations were produced, there was a noticeable spike in stability.
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Fig. 4. The number of non-attributive, “empty” explanations generated for BPIC2012
(a and b) and its relationship to accuracy (c and d).

A closer investigation of this phenomena suggests that non-attributive expla-
nations occur when model accuracy is poor. Many buckets with a high propor-
tion of empty explanations also had a predictive model with a poor F1-score. For
example, when using the BPIC2012 dataset, the XGBoost model at bucket 14
and the Logit model at bucket 2 both had F1-scores of 0, and all explanations
produced for these buckets were non-attributive (see Fig.4(c) and (d)). This
also occurred when accuracy is reasonably high, but the model predicted only
a single class for all or a majority of instances. This was the case for the Logit
models at buckets 2 and 5 for the BPIC2012 dataset.

Therefore, non-attributive explanations for these classifiers is likely due to
model underfitting. A simpler, underfit predictive model can be more easily
mimicked by LIME’s surrogate models than a more complex, well-fit model.
Moreover, in classifiers where only a single class is predicted regardless of the
input, any surrogate models produced will also disregard features. As such, when
multiple explanations are created, the resulting surrogate models are identical
or similar enough to ensure explanation stability.
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Fig.5. A large proportion of non-attributive explanations when for the Production
dataset when using Logit with using prefix-length bucketing and aggregate encoding
(a), which is not related to model accuracy (b) or prediction accuracy (c).

Finding 3: Effect of Data on Non-attributive Explanations. A notable
exception to this trend of non-attributive explanations, both when explaining
XGBoost models and when explaining Logit models, is the Production dataset.
When explaining XGBoost models, there were no non-attributive explanations
generated, though some classifiers have poor quality or predict only a single class.
However, when explaining Logit, explanations provided for around 60% of cases
are non-attributive (Fig. 5(a)), though the accuracy of the predictive models are
high (Fig. 5(b)), and no classifier predicts primarily a single class (Fig. 5(c)). This
indicates that other underlying causes for non-attributive explanations also exist,
though they are not immediately apparent. This also occurred in other datasets
to a lesser degree. For example, the Logit model for bucket 6 of the BPIC2012
dataset had an F1-Score of 0.62 and a 0.4:0.6 ratio for the predicted class, but
all explanations generated for this model were non-attributive.

It is likely that this anomalous behaviour is related to some characteristic of
the Production dataset. Out of the three event logs used, Production has fewest
events and cases, the shortest traces and a significant number of trace variants
in comparison to the number of cases. Some form of one of these may also
be present in the data used in other buckets where these exceptions occurred.
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Further investigations using other datasets in needed to fully understand the
causes of non-attributive explanations.

Finding 4: Effect of Feature Construction Methods on Non-attributive
Explanations. We deem it to be significant that empty explanations have so
far occurred only when using prefix-length bucketing with aggregate encoding.
Prefix-length bucketing aims to preserve the temporal nature of business pro-
cesses by sorting data based on the number of events that have occurred in the
process. However, aggregate encoding is more “lossy” and preserves little of the
temporal information in the event log. Firstly, although prefix-length bucketing
groups cases based on events completed, this does not imply homogeneity in the
traces within each bucket. If there are several variants of traces in each bucket,
It is possible that this and the sparsity of data in each bucket, caused by lack of
cases and use of aggregate encoding, creates poorly-fitting models.

Finding 5: Use of LIME and SHAP in PPA. It is also interesting to
note that SHAP rarely provided non-attributive explanations, even when the
predictive model did not appear to use any of the features in the input — that
is, where the predictive model always returned the same prediction regardless
of input. Given that non-attributive explanations generally appeared to indicate
some problem in the underlying predictive model, this is significant. SHAP’s
stability and consistency may make it more suited to enable end user decision-
making in PPA. However, LIME may be of more use to software engineers and
data scientists in attempting to inspect and diagnose problems in the underlying
process predictive models.

6 Limitations and Future Work

Past evaluations of bucketing and encoding methods and supervised machine
learning models for PPA have considered their effects only on prediction accu-
racy [14]. However, the findings in this work emphasise the importance of the
quality of explanations generated by explainable methods for machine learned
process predictions. Our study also suggests that predictive model design in
PPA must consider not only prediction accuracy but also compatibility with
explainable methods. To this end, more extensive benchmarks are required to
understand the effects of various configurations and methods used to design
predictive models, as well as dataset characteristics, on explanation quality in
addition to prediction accuracy.

We can be assured of the applicability of the described approach and the met-
rics in Sect. 3 for feature attribution explanations as they measure the stability
of the output, i.e. the explanation. While the interpretation mechanism may
vary across explainable methods, a feature attribution explanation will always
produce a list or ranking of features, and weights associated with features. Thus,
we measure the stability of these two outputs.
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Future work should also consider the stability of other classes of explainable
methods. The two methods evaluated in this work are both feature attribution
methods, though they use different underlying mechanisms and approaches to
generating explanations. Explainable methods of other classes, such as rule-based
explanations, also connect features to the output. Thus, we suggest that stabil-
ity by subset can also be assessed in explainable methods of classes other than
feature attribution. However, this does not necessarily cover all possible aspects
of the explanation in these classes. For example, the stability of the full predi-
cates, not just features used, in rule-based explanations. As such, other classes
of explainable methods, using different approaches and mechanisms of interpre-
tation should also be considered in future works, as should a wider range of
predictive models (e.g., those based on deep neural networks).

7 Conclusion

Post-hoc explainable methods are gaining popularity as a means of improving the
transparency of process predictive models. However, the fitness of these meth-
ods for predictive process analytics is as yet unclear. In this work, we evaluated
one aspect of explanation quality: explanation stability. We draw on research
fields outside of both PPA and XAI to derive the relevant methods and metrics
required for evaluation. Our result suggests that explanation stability is depen-
dent on the characteristics of both the datasets and predictive models. We also
find that, though stability may be important in supporting end-user decision-
making, unexpected behaviour in explanation stability can also be useful as a
diagnostic tool in determining model quality. Hence, we suggest that the choice
of feature construction methods and predictive models should consider both
prediction accuracy and explainable method compatibility, and as such, more
extensive evaluations are required to identify suitable configurations for both.
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