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Abstract. “Application-platform co-design” refers to the phenomenon
of new platforms being created in response to changing application needs,
followed by application design and development changing due to the
emergence (and the specifics, limitations) of the new platforms, therefore
creating, again, new application and platform requirements. This contin-
uous process of application and platform (re-)design describes an engi-
neering and management responsibility to constantly evaluate any given
platform for application fit and platform-specific application design, and
to consider a new or evolutionary platform development project due to
evolving and changing application needs.

In this paper, we study this phenomenon in the context of serverless
computing and (big) data processing needs, and thus, for application-
platform co-design for serverless data processing (SDP). We present an
analysis of the state-of-the-art of function-as-a-service (FaaS) platforms,
which reveals several configuration, deployment, execution, and measure-
ment differences between popular platforms happening at-speed. These
differences indicate already ongoing platform (re-)design processes result-
ing in more specialized serverless platforms and new, platform-specific
challenges for application design. We discuss data processing needs of
applications using the serverless model and present common initial (and
undesirable) workaround solutions on the application level, giving addi-
tional argument to the creation of new SDP platforms. We present crit-
ical SDP requirements and possible new platform augmentations, but
identify the need for engineering methods and tooling to better guide
application-platform co-design. We argue to pay appropriate attention to
the phenomenon of continuous application-platform co-design to better
anticipate and to control future platform and application developments.

Keywords: Platform design and development · Platform-specific
application design and development · Co-design · Serverless
computing · Serverless data processing

1 Introduction

Traditionally, new software platforms were created in response to new applica-
tion demands, such as specific elasticity or big data processing requirements.
Once a new platform is in place, application design and development on top of
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the platform has to take the platform features, specifics, and constraints into
account. Often, the impact of a new platform on application design and devel-
opment is significant. And in turn, new application requirements are created as
a result, which, again, may suggest the development of a new (variant of the)
software platform.

Notably, the advent of NoSQL database systems serves as an example for this
phenomenon of application-platform co-design. Originally initiated by data pro-
cessing and concurrency needs of large enterprises, system designs like, Google’s
GFS [8] and Amazon’s DynamoDB [6] fueled an explosion of numerous (ca.
over 250) new, NoSQL data storage platforms over the last decades. Today, a
developer can choose between a magnitude of managed and self-managed data
storage systems that can meet almost every niche application requirement. But
each platform, however, may provide different data consistency guarantees, shift-
ing data synchronization or conflict resolution, for example, from the platform
to the application as a new application responsibility.

Analogously, the way we run applications on cloud platforms has been evolv-
ing significantly and at-speed, too. Web services can be deployed on elastic-
ity managed VMs, with sophisticated container orchestration platforms such as
Kubernetes, or using tiny micro-VMs in a serverless setting. Modern cloud plat-
forms, thus, already support a plethora of ways a developer can deploy, scale,
and run web-serving applications.

The same application-platform co-design phenomenon can be observed, too,
within the field of serverless computing. With serverless computing, the basic
idea is to free application developers from responsibilities related to elastic-
ity, deployment, and monitoring, that is, from almost any operational task.
Current serverless platforms, specifically Function-as-a-Service (FaaS) offerings,
have rapidly changed and improved since their early introduction in 2014. The
initial one-size-fits-all model suggested with serverless computing has already,
almost in the background, started to shift, and several variants of serverless
platforms serving different application needs than just simple web-serving tasks
have emerged [11,27].

Specifically, distributed data processing [5,7,22] shows to benefit from the
serverless computing model and its extreme scalability, low operational over-
head, work-based billing model, and overall simplicity. Moreover, classical data
processing frameworks, e.g., Apache Spark, Hive, and Apache Flink, require data
analysts to deploy, configure, and operate clusters of servers and thus require
developer responsibility for operational tasks that can impose considerable and
potential disastrous entry barriers [29] to anyone that needs to analyze data.
Serverless data processing frameworks, such as Lithops [23] and Pywren [12]
aim to reduce such entry barriers by providing data processing APIs with sim-
ilar abstractions to classical frameworks without upfront cluster management
needs.

Be it NoSQL stores, cloud platforms, FaaS offerings, or data processing solu-
tions, the continuous cycle of application-platform co-design has led and is still
leading to an abundance of platforms, some of which differ only in details, and
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some of which differ significantly. This introduces the continuous need to question
the application fit of any given platform, to design applications in a platform-
specific manner, or, to develop a new general-purpose or application-specific
platform (variant). As a consequence, software engineering requires increasing
attention to be paid to the diverse phenomena of application-platform co-design.

In this paper, we study and discuss application-platform co-design for server-
less data processing. Based on an analysis of the current state of serverless
platforms, we highlight areas where current platforms are already differenti-
ating themselves from each other. Further, we discuss data processing needs of
applications using the serverless computing model and present common initial,
but undesirable workaround solutions on the application level, giving additional
argument to the creation of new serverless data processing (SDP) platforms. We
present critical SDP requirements and possible new platform augmentations, but
identify the need for engineering methods and tooling to better guide application-
platform co-design. We argue to pay appropriate attention to the phenomenon
of continuous application-platform co-design.

2 Serverless Computing Platforms

Let us first take a closer look at the current state of serverless computing plat-
forms. In this section, we specifically compare the popular FaaS offerings of the
four major cloud providers Amazon, Google, Microsoft and IBM, and highlight
both similarities and differences.

Cloud-based FaaS offerings, the most widely adopted form of serverless com-
puting, ask developers only to define applications through arbitrary function
code and triggering event definitions. The cloud provider is responsible for
deploying, running, and scaling these functions in response to arriving events.
For all cloud providers, developers can select from a set of predefined runtime
environments and only manage few additional configurations, such as setting
memory limits, maximum concurrency and environment variables. Thus, all cur-
rent FaaS offerings enable almost operations free delivery of stateless serverless
applications. However, current offerings still lack support for state management,
hardware acceleration and suitable programming abstractions [18,25] to support
any cloud-based application, although platform vendors already started to differ-
entiate themselves by addressing these and other open serverless challenges [13].

At first sight, from a developer perspective, all platforms provide a similar
programming interface and execution model. Thus, in theory, the choice of a
specific serverless computing platform should not significantly affect the appli-
cation design. However, taking a closer look, the available configuration space,
runtime isolation, platform limitations and auxiliary services can differ substan-
tially between the different platforms, and thus, careful developer consideration
is a must.
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Table 1. Configuration, deployment, execution, and measurement differences in FaaS

AWS GCF ICF ACF Source

min. Mem. [MB] 128 128 128 N.A. Docs

max. Mem. [MB] 10240 8192 2048 14336 Docs

Memory Space [#] 10112 7 1920 14336 Docs

Timeout [s] 900 540 60 600 Docs

vCPU Cores [#] 6 1 ? 4 Docs

CPU [GHz] 2.5 4.8 ? 2.4 Docs

C
o
n
fi
g
u
ra

ti
o
n

max Concurrency [#] 1000+ 1000 1000+ VM*100 Docs

Trigger [#] 8 6 3+ 4+ Docs

Supported Runtimes [#] 15+ 13 8+ 7 Docs

Dependency management Layers Files Docker/Files Files Docs

max. Size [MB] 250 500 48 −1 Docs

D
ep

lo
y
m

en
t

Host controllable No No No Yes Docs

Isolation firecracker gVisor VM+runc VM Docs

Event scheduling Push-based Unknown Push-based Pull-based [2]

Local storage [MB] 512 0 0 143360 Docs

Network Storage [Y/N] Yes No No Yes Docs

Private networking [Y/N] Yes Yes No Yes Docs

Function networking [Y/N] Unsupported Unsupported Unsupported Yes Docs

Tracing [Y/N] Yes Yes No No [4]

Function Metrics [Y/N] Yes Yes Yes Yes [4]

Cloud Logs [Y/N] Yes Yes Yes Yes [4]

Billing Interval [time] 1ms 100ms 100ms 100 ms-1 h Docs

Threads [#] 1024 unknown 1024 varies Docs

Connections [#] 1024 unknown 1024 600 Docs

Payload Size [MB] 6 10 100 Docs

E
x
ec

u
ti

o
n

Rate limit 10× 1000 /s 100MB/s 84/s unmanaged Docs

Configiruation Chages [ms] 996 36630 22 521100 [16]

Cold Start Variance [ms] 9 4900 10528 83691 [17]

M
ea

s.

Cold default throughput [trps] 120 120 120 5 [17]

Further, larger applications built as serverless systems do not consist of a
single function but a composition of functions and other services. The available
platform services for function composition and orchestration differ significantly.

2.1 Platform Comparison

Table 1 provides a comparative overview of the serverless computing platforms
from Amazon (AWS), Google (GCF), IBM (ICF) and Microsoft (ACF). We com-
pare these platforms along four general categories: First, configuration options –
all exposed “tuning knobs” a developer can control; second, deployment options
– e.g., available runtimes and deployment environments; and third, execution
criteria – important criteria for function execution and existing limits. Finally,
we also provide some basic metrics and measurements that indicate platform
qualities such as performance or elasticity.

Configuration reveals two principle models: AWS, GCF, and ICF expose devel-
opers to a singular, highly sensitive performance-related sizing parameter.
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On the other end, AWS offers over 10.000 unique settings to control perfor-
mance. GCF, in contrast, presents only seven options. This singular parameter
affects multiple resource sizes simultaneously, e.g., memory, network bandwidth,
available threads. Hiding many complex resource configurations behind a singu-
lar value leads to the need for sizing tools. With Azure, however, the ability to
select from different VM offerings as a back-end for serverless workloads exists
and so, the sizing problem is different.

Deployment options are similar for all platforms under comparison. While the
number of selectable runtimes differs, the most common programming lan-
guages are supported by all platforms. A major difference, however, relates to
dependency management. The limited allowance for deployment package sizes
(between 50-500MB) and the management of dependency versions has led some
platform provides to offer more advanced features for dependency management.
Among them, AWS allows developers to build shareable layers that multiple
functions can reuse. IBM’s OpenWhisk opened the runtime API to enable devel-
opers to define complete docker images with all dependencies built-in to address
this issue.

Execution in serverless computing platforms is based on three main factors:
Function isolation, assignment of invocations (execution guarantees), and invo-
cation triggering.

For isolation, AWS uses firecracker [1], a KVM based micro-VM. Thus, each
function is strongly isolated while removing comparably long startup times of
classical VMs. Google uses gVisor, a form of OS-level isolation that shares com-
mon roots with AWS firecracker but is also used for other Google services and
thus is less specialized. ICF and Azure use a VM per user to isolate functions.
Thus, functions might interfere with the execution of other functions of the
same user while not interfering with functions of other users. Here, the scaling
of functions depends on the time it takes to launch new VMs per customer.

Besides isolation, the assignment of events to functions is different between
these platforms. For AWS, GCF and ICF, we see a pull-based approach: free
hosts will pull available events. Azure, on the other hand, uses a push-based
approach, which can impact elasticity.

Lastly, all platforms offer means to trigger functions synchronously and asyn-
chronously. However, the number of available options to trigger functions can
differ. For instance, AWS provides triggers for most database services. At the
same time, other platforms such as ACF or ICF give developers only a few
endpoints to trigger functions synchronously or asynchronously.

2.2 Vendor Directions

The comparison shows that the current landscape of serverless platforms shares
a common programming and operations model, while at the same time, reveal-
ing notable differences with respect to limitations and configurable resources
between platforms.
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Some recent platform (re-)design efforts taken by cloud providers further
include introductions of additional platform services and features to overcome
identified shortcomings. For example, Microsoft recently introduced durable
functions, a programming model to store function states after execution. Simi-
larly, Amazon recently added the Elastic File System (EFS) for Lambda, thus
enabling functions to persist data across multiple executions, multiple function-
deployments and between parallel invocations.

Vendors are constantly differentiating their offerings and as a consequence,
the initial common programming model shared between multiple platforms
diverges into diverse, different models, making it nearly impossible to switch
platforms later on. Moreover, the larger serverless research and practitioners’
community has started to propose novel changes for FaaS platforms as well,
addressing some of the most commonly identified serverless shortcomings [10],
again resulting in diverse platform developments.

3 Serverless Data Processing

Let us now look into modern applications’ data processing needs and how these
translate into serverless data processing (SDP) requirements.

3.1 System Requirements

We conducted a series of experiments related to serverless computing and (big)
data processing, initially presented in 2018 [29] and continued with [15–17]
and [28]. From these lessons learned, we define the following serverless data
processing system (platform and application) requirements:

1. Scaleable: A serverless data processing system should use the scalability
potential of a serverless platform and adapt the resource demands of each
computation to the task. Further, the system should have comparable perfor-
mance characteristics as conventional data processing solutions (such as an
Apache Spark Cluster) of similar cost and size.

2. Fully-Serverless: The serverless data processing system should be fully
serverless, that is, the serverless data processing system should be able to
scale down to zero if no resources are needed. Thus, the system should not
incur costs or management tasks if idle (an exception can be made for stor-
ing input data). Further, the analyst should not know the inner workings of
the used services, such as avoiding cold-starts or selecting the optimal size of
AWS S3 files for Lambda.

3. Self-Contained: The system should be self-contained. Specifically, the sys-
tem should handle deployment, re-execution of faulty invocations or re-
configuration of wrongly sized execution environments.

4. Tuneable: The system should allow developers to define high-level objectives
for each computation, such as low cost or fast computation time. The sys-
tem should drive all configurations and executions based on these high-level
tunables.
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5. Integratable: Modern data processing applications need to combine multi-
ple tools, programs and algorithms for pre/post-processing to appropriately
integrate with all relevant business processes. Thus, the system should allow
for arbitrary, yet performance-aware pre/post-processing integration.

Serverless data processing platforms should be as versatile as conventional
data processing solutions such as Apache Spark or Apache Flink. However, not
all use-cases will benefit equally from the properties of serverless data process-
ing [10]. We observe that SDP is most useful for ad-hoc analytics [28], tasks such
as data cleaning, data inspections, as well as IoT scenarios such as predictive
maintenance or troubleshooting. Similarly, exploratory data analytics relevant in
pre-processing of machine learning [24] can benefit well from the ad-hoc process-
ing capabilities of SDP. Further, tasks that only require infrequent processing,
such as indexing for data lakes, also benefit from the fast deployment and re-
deployment of processing resources in the serverless model.

3.2 Common Application Workarounds

Multiple SDP frameworks have emerged in the last four years [5,12,22,23]. Nat-
urally, the complexity of available programming interfaces has increased and
different options exist to address the serverless data processing requirements
identified above.
The most common trend, however, still present in all SDP frameworks, is the
use of workarounds to overcome known platform limitations.

Serverless job orchestration involves the generation of invocations for each
task in a processing job, waiting on the completion of these invocations and the
collection or redistribution of task results. Each of these steps can be addressed in
different ways. A driver can generate events asynchronously (the most common
approach), thus, only submitting tasks to the serverless platform. In that case,
the driver now has to query the platform repeatedly to observe each task. This
design forces an extensive network and request overhead to enable drivers to
observe functions in real-time.

Alternatively, each invocation can be performed synchronously, removing the
need to constantly poll for results but, in turn, limiting the maximum number
of concurrent invocations a single driver can manage. Most platforms require
that each synchronous invocation contains a single event and thus requires a
driver to open as many connections as functions should run in parallel. With
this strategy, it is virtually impossible to reach the scalability potential of state
of the art serverless platforms.

A third option is to use a platform-specific orchestration mechanism, such as a
workflow engine, for example, AWS Step-Functions. However, current platform-
specific orchestration mechanisms are all geared for orchestrating a flow of events
through a tree of different functions rather than facilitating a highly parallel exe-
cution of few functions. On top of that, each mechanism increases management
and configuration overhead and makes migration to other platforms far more
work-intensive.
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A fourth strategy that we see is to spawn functions without specific instruc-
tions. Instead, each function connects to an external service to pull tasks from a
shared task queue [5]. This approach removes the need to observe the completion
of functions through the serverless platform and can use a lightweight mecha-
nisms to launch many functions in parallel. However, at the cost of introducing
new external dependencies that are difficult to maintain, to scale and that typi-
cally are not serverless, fundamental requirements of serverless data processing
may be broken.

Serverless state management in serverless data processing is divided into
two major sub-problems, intermediate storage and data access. Essentially, both
intermediate data storage, data ingestion and saving results involve an external
state management system. Here, frameworks commonly use an object store such
as Amazon’s S3 or a managed message queue system. However, these systems
introduce latency and network overhead for each computation. As an added com-
plication, each function has to manage the connection to the storage regardless of
the selected back end, thus, introducing added overhead per function and many
more sources for errors to occur. It is further unclear if the selected storage-
backends are well suited to transport the type of ephemeral data efficiently.

Serverless uniformity also creates a challenge for framework designers. In
most cases, a framework will deploy one function per task or sometimes even a
single function for all tasks in a processing job. Thus, the sizing of that function
must always fit the largest part of a task to ensure that a computation does not
run out of memory or takes too long. Consequently, serverless processing systems
either struggle with processing skew or otherwise heterogeneous data or waste a
significant amount of resources. The fact that platforms do not allow applications
to implement custom failure recovery mechanisms, such as temporary increasing
resource limits, to address these issues means that application developers need
to find other solutions.

Additionally, we observe that the cold-start of functions is impacted by both
memory size selection and deployment package size [21]. Thus, the design of
current SDP frameworks must take both runtime size and sizing into account
to address cold-start issues. Therefore, it should come as no surprise that most
of these frameworks target AWS Lambda, as it is the most flexible platform in
terms of runtime environments, deployment sizes, and memory sizes. However,
it remains to be seen if platform improvements can be equally or even better
provided for Azure, Google or IBM SDP platforms.

Serverless support eco-system describes the problem of selecting appropri-
ate services to augment missing features in the serverless compute platform.
Most frameworks rely on one or more additional cloud-based infrastructure ser-
vices to fully support each processing step. Thus, selecting a suitable service can
often impact the overall performance, manageability and cost of a framework.
These auxiliary services often differ significantly between vendors, making the
portability of these frameworks problematic as well. Moreover, are these aux-
iliary services are rarely designed for serverless workloads and serverless data
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processing workloads. In particular, the usage for orchestration or data trans-
fer is often inefficiently supported or could easily break if vendors decide to
change service properties without serverless workloads in mind. Consequently,
the design of serverless data processing systems is strongly dependent on the
selected cloud platform and the composition of available auxiliary services and
serverless computing resources.

3.3 Next Steps

Current SDP applications, unsurprisingly, already utilize existing FaaS platforms
and SDP frameworks quite well. However, as discussed above, there are many
specifics and platform and programming model limitations that quickly lead
to potentially significant design inefficiencies and platform lock-in. Applications
need to adapt to platform evolution and welcome desirable innovations, such
as higher-level programming abstractions. While early SDP frameworks only
supported bare-bone map-reduce, the more recent frameworks start to support
higher-level APIs and query languages. Nevertheless, the prominent presence of
many workarounds as described above, and the use of auxiliary services that were
never intended to serve as a backbone to highly parallel computations, creates
a significant risk regarding the usage of current SDP frameworks.

4 Towards Guided Co-design

We expect serverless platforms and current serverless data processing applica-
tions to continue to evolve to fully support all serverless data processing require-
ments. To this end, we envision current limitations and workarounds to be
replaced by solutions that require new platform augmentations. At the same
time, we see the need for new engineering methods and tooling to better guide
platform and application re-design and evolution.

4.1 New Platform Augmentations

We can identify function orchestration, intermediate data transfer, and strag-
gling executions as the most pressing issues in the SDP context requiring new
platform augmentations. In the following, we revisit the undesirable workarounds
presented in Sect. 3.2 and discuss how platform augmentations, or the selection
of new platform features, can remove these issues while remaining true to the
serverless data processing model.

Our discussion and recommendations are based on own prior and other
related work, including both exploratory FaaS studies [15,19,30], bench-
marks [16,21] and technical platform papers [1] as well as emerging open-source
developments [11], SDP prototype developments [29] and exploratory SDP stud-
ies [28].
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For serverless job orchestration, the different approaches discussed all
can introduce undesirable inefficiencies. Each of the presented workarounds thus
introduces a possible adaption cause.

Based on benchmarks performed in previous work [17], it appears that AWS
is the most suitable platform for using synchronous executions. Alternatively,
we can augment existing platforms to address the issue of spawning and observ-
ing multiple function invocations simultaneously. For example, platforms can
introduce new means to batch invocations with a callback on completion to
allow frameworks to spawn thousands of functions without the need to man-
age each invocation individually. Thus, this immediately removes the need to
create complicated management structures around existing platform APIs from
a developer perspective. This would also allow for more predictive scheduling
and reduce overly aggressive polling of APIs for these types of use-cases from a
platform perspective.

For serverless state management several proposals to address the inter-
mediate storage problem are already emerging. Klimov et al. [14], for example,
propose flash-based storage that can be used by serverless analytics in place
of the currently used object storage for intermediate data. However, platforms
could aid function developers by offering an intermediate storage layer on each
worker to address intermediate storage needs on a platform level. These could
hold data for a short time, thus allowing functions to batch read, write to exter-
nal data sources, or even reuse data for intermediate computations. Further,
platforms could address the problem of redundant connection to the selected
storage back-end by integrating connection pooling on the worker level.

Serverless uniformity can in part be addressed on the application level by
chaining the deployment strategy of current frameworks. Instead of deploying
a function with only one configuration, frameworks could deploy functions in
multiple sizes and switch the invocations to larger deployments in case of skewed
data. However, not all platforms allow flexible sizing of deployment packages,
and thus, developers risk oversizing and overpaying with this strategy. Here,
platforms can offer more flexible sizing options, integrate sizing aid at runtime
or enable other mechanisms to adjust deployments in case of errors.

Furthermore, the programming interface of functions could be extended to
include other life-cycle related events such as function termination and function-
creating to allow frameworks to group some common tasks on the start and
end of a function life-cycle instead of every single execution, thus reducing the
risk of timeouts during IO operations. Also, we foresee new serverless platforms
that are breaking even more with the initial one-size-fits-all model of server-
less computing to address specific application requirements, such as the support
of computation accelerators [20], edge-computing infrastructure and optimized
systems for parallel computing.

4.2 Understanding Co-design

As discussed in general in the introduction and as exemplified for serverless data
processing, software platforms will continue to evolve or be newly created in
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response to changing application demands. These platforms continue to push
the envelope of what applications can do and thus again present new demands
that motivate platform changes and, ultimately, again lead to new platforms.

This phenomenon of application platform co-design takes place both con-
sciously and unconsciously between platform and application developers. Under-
standing this phenomenon better enables application developers to anticipate
platform changes as well as new platforms, and thus allows for better manage-
ment of coming changes. Similarly, application developers can take control of the
application-platform co-design cycle and influence new platform developments
directly.

Fig. 1. Conceptual view of application platform co-design cycle

Figure 1 illustrates the continuous nature of application platform co-design.
Newly emerging application demands and requirements drive the discovery of
software platform limitations, for example, native state management in server-
less computing. Once a limitation is known, application developers start to use
workarounds, as described in Sect. 3.2. These workarounds often create a demand
for new application designs and, in turn, new application requirements, in the
case of SDP, for example, the trend towards higher-level language support. How-
ever, at some point these emerging application designs will benefit more from
new platforms that turn workarounds into supported platform features. Thus,
new platform developments may be initiated, and new platforms emerge.

For the platform route in Fig. 1, in a first step, we need to identify the
application requirements that are better addressed through platform support.
As described earlier, requirements such as the SDP requirements [29], must be
defined first. For later validation and to help with the identification of platform-
driven limitations, experimental measurements and application [9,28]- and plat-
form benchmarks [3,17,26] to evaluate against these requirements are needed.
Based on the results, developers can either adapt their applications using the
benchmarking results as a guide when designing necessary workarounds, or devel-
opers can start to implement new prototypical features in the platform and adapt
the application to utilize these features accordingly. By reusing or extending the
application and platform benchmarks, we can evaluate if the changes lead to sig-
nificant improvements for the application use case. By iteratively applying these
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steps, we ultimately create a new platform adapted to the specific application
needs or new applications that are adapted to current platform limitations.

5 Conclusion

In this paper, we described the application platform co-design phenomena and
illustrated it for serverless computing platforms and serverless data process-
ing, in particular. More specifically, we discussed concrete challenges and needs
in an SDP context and how these are initially addressed through application
workarounds, but may lead to new platform features and designs, resulting in a
continuously changing platform landscape and the continuous need for develop-
ers to re-evaluate platforms and re-design applications.

The new SDP platform augmentations discussed have been implemented as
part of the research project SMILE at TU Berlin for OpenWhisk [27]. While we
are still actively augmenting the platform to meet all the defined requirements for
serverless data processing systems, we can already see significant improvements
regarding function invocation management and processing throughput.

Through projects like SMILE and related work and observations, we expect
more and more undesirable application workarounds to be eventually replaced
by new platform features, confirming the continuous co-design phenomenon, but
at the same time making clear, how little engineering support and understanding
for such continuous co-design process exists to-date. The duality of application
and platform (re-)design challenges, the option to address identified limitations
either on the application or the platform level, the continuous nature of both,
and the need to study in depth fine-granular technical platform details, presents
a larger challenge that demands new methods and tooling to better cope with
application-platform co-design. We believe that application platform co-design
awareness is critical to modern engineering needs such as SDP, and that appro-
priate methods and tooling should become an important piece of any developers
tool-belt. Platforms will not stop evolving, and simultaneously, the choice of
what software to use or adapt will grow, correspondingly.
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