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Abstract. Process-aware Recommender systems can provide critical
decision support functionality to aid business process execution by rec-
ommending what actions to take next. Based on recent advances in the
field of deep learning, we present a novel memory-augmented neural net-
work (MANN) based approach for constructing a process-aware recom-
mender system. We propose a novel network architecture, namely Write-
Protected Dual Controller Memory-Augmented Neural Network(DCw-
MANN), for building prescriptive models. To evaluate the feasibility and
usefulness of our approach, we consider three real-world datasets and
show that our approach leads to better performance on several baselines
for the task of suffix recommendation and next task prediction.

1 Introduction

Business process management assists organizations in planning and executing
activities that collectively deliver business value, usually in the form of a prod-
uct or a service. Flexible execution of business process instances entails mul-
tiple critical decisions, involving various actors and objects, which can have a
major impact process performance and achieving desired process outcomes [32].
These decisions therefore require careful attention, as sub-optimal decisions dur-
ing process execution, can lead to cost overruns, missed deadlines and the risk
of failure [11]. While the problem of predicting the behaviour of a given process
instance has been studied extensively, using these predictions to support oper-
ational decision-making of the kinds outlined above remains a challenge [6,22].
Process-Aware Recommender Systems have been proposed to assist knowledge
workers in operational decision-making, for instance, by recommending actions
leading to process end, managing resource allocation policies and so on [1,28]. In
this work, we present a novel Process-Aware Recommender System for support-
ing organizations and process owners in operational decision-making (related to
control-flow).
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Recent advances in neural network architectures and learning algorithms have
led to the popularization of Deep Learning methods which are particularly good
at automated feature discovery and learning robust representations from large
quantities of raw data, thus significantly reducing the need to hand-craft features
which is typically required when using traditional machine learning techniques
[20]. Deep Learning based techniques such as Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRUs) have generated considerable interest recently
for tackling various Process Analytics tasks (e.g. predictive monitoring). How-
ever, LSTMs and GRU methods lack the capacity to solve complex, structured
tasks that, for example, require reasoning and planning [10,13]. To tackle such
complex tasks, two promising approaches based on neural networks have been
proposed: Memory Networks and Neural Turing Machines, both being instan-
tiations of Memory-Augmented Neural Networks (MANN) [12]. In this paper,
we investigate the applicability of MANNs for building a Process-Aware Recom-
mender System that can provide process execution decision support of the kind
discussed above.

Contributions: We propose a novel neural network architecture, namelyWrite-
Protected Dual Controller Memory-Augmented Neural Network(DCw-MANN),
for building a Process-Aware Recommender System, where we introduce sev-
eral modifications to the existing Differential Neural Computer(DNC) architec-
ture: (i) separating the encoding phase and decoding phase, resulting in dual
controllers, one for each phase; (ii) implementing a write-protected policy for
memory during the decoding phase. We evaluate the effectiveness of our app-
roach on three world datasets for the task of generating suffix recommendations
that lead to optimal outcomes.

The paper is organized as follows: In Sect. 2, we provide the necessary back-
ground on Process Analytics and Deep Learning techniques upon which our
proposed method is built. In Sect. 3, we explain the technical workings of our
Process-Aware Recommender System, designed to tackle a number of prescrip-
tive process analytics tasks. Implementation details and experimental results
are reported in Sect. 4. Finally, Sect. 5 discusses related work, followed by Sect. 6
which concludes the paper and outlines future work.

2 Preliminaries

We first briefly present the existing work upon which our method is built, includ-
ing event log presentation, recurrent neural networks, and Long Short-Term
Memory (LSTM).

2.1 Process Analytics

Process analytics involves a sophisticated layer of data analytics built over the
traditional notion of process mining [33]. Compared to Process mining, Process
analytics addresses the more general problem of leveraging data generated by, or
associated with, process execution to obtain actionable insights about business
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processes. Process analytics leverages a range of data, including, but not lim-
ited to process logs, event logs [26], provisioning logs, decision logs and process
context [29] and answers queries that have a number of real world applications
particularly related to prescriptive analytics such as resource optimisation and
instance prioritisation. In this paper we focus on event logs and assume that
when a business process instance is executed, its execution trace is recorded as
an event log. An event log is a sequence of events, naturally ordered by the
associating timestamps.

In predictive analytics, we study techniques that allow us to predict how the
future of a given process instance will unfold and the likely occurrence of future
process events [10]. It can be considered as computing (a) a set of functions and
(b) a set of computer programs that carry out computation, over a (partially
executed) process instance. An example of case (a) is computing remaining time
of a process instance, which is the sequence-to-vector setting. An example of case
(b) is a continuation of a partially executed process, which is the sequence-to-
sequence setting.

Prescriptive business process monitoring techniques and Process Aware Rec-
ommender systems are for providing decision-support to process users. Applica-
tions of such system include, offering recommendations about: (i) next activities
to execute, (ii) resource allocation support, (iii) Cost and time optimization
and (iv) risk-mitigation by raising alarms or recommending actions to prevent
undesired outcomes [8,35].

2.2 Sequence Modeling with Deep Learning

Recurrent Neural Nets(RNNs), especially the Long Short-Term Memory (LSTM)
have brought about breakthroughs in solving complex sequence modelling tasks
in various domains such as video understanding, speech recognition and natural
language processing [20,27]. Similarly, it has been shown that LSTM can con-
sistently outperform classical techniques for a number of process analytics tasks
such as predicting the next activity, time to the next activity etc. [24,31].

Recurrent neural network (RNN) is a model of dynamic processes, and to
some degree, a model of computer programs. At each time step t, a RNN
reads an input vector xt into a hidden state vector ht and predicts an out-
put vector yt. The state dynamic can be abstracted as a recurrent relation:
ht = RNN (ht−1,xt). The vanilla RNN is parameterized as follows:

ht = σ (Whht−1 + V xt + bh)
yt = Wyht + by

where (Wh,Wy, V, bh, by) are learnable parameters, and σ is a point-wise non-
linear function.

Although theoretically powerful, vanilla RNNs cannot learn from long-
sequences due to a problem known as vanishing or exploding gradients. A pow-
erful solution is Long Short-Term Memory (LSTM) [16]. LSTM introduces one
more vector called “memory” ct, which, together with the state ht, specify the
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dynamic as: (ht, ct) = LSTM (ht−1, ct−1,xt). In most implementations, this is
decomposed further as:

ct = f t ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh (ct)

where c̃t is a candidate memory computed from the input, f t, it,ot ∈ (0,1)
are gates, and ∗ denotes point-wise multiplication. f t determines how much the
previous memory is maintained; it controls how much new information is stored
into memory, and ot controls how much memory is read out. The candidate
memory and the gates are typically parameterized as:

c̃t = tanh (Wcht−1 + Vcxt + bc)⎡
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where (Wc,f,i,o, Vc,f,i,o, bc,f,i,o) are learnable parameters.

3 Approach

While LSTMs can theoretically deal with long event sequences, the long-term
dependencies between distant events in a process get diffused into the memory
vector. LSTM partly solves the gradient issue associated with the vanilla RNN
but it may not be very effective on complex process executions that contain mul-
tiple computational steps and long-range dependencies. Keeping this in mind,
we explore the application of an expressive sequential process model, that would
allow storing and retrieval of intermediate process states in a long-term mem-
ory. This is akin to the capability of a trainable Turing machine. Closest to a
Turing machine is an instantiation of MANN, known as Differential Neural Com-
puter (DCN) [13]. MANNs can be considered as a recurrent net augmented with
an external memory module [13,30]. Because of this memory module MANNs
have certain advantages over traditional LSTMs when tackling highly complex
sequence modeling problems such as question answering [30] and algorithmic
tasks [13]. The memory ct compresses the entire history into a single vector,
and thus the process structure is somewhat lost. For example, if two distant
events are highly dependent, there are no easy ways to enforce this relationship
through the forgetting gates. Another critical issue is that if a process involves
multiple intermediate results for latter use, there are no mechanism to store
these results into the flat memory vector ct. These drawbacks demand an exter-
nal memory to store temporary computational results, akin to the role of RAM
in modern computers. The key idea behind these architectures is that all mem-
ory operations, including addressing, reading and writing are differentiable. This
enables end-to-end gradient-based training. MANNs have found many applica-
tions, e.g., question answering [18,30] and simple algorithmic tasks [12]. Overall,
Encoder-decoder architectures like memory-augmented neural nets are geared to
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solve sequence to-sequence problems and are naturally a good fit for tackling the
problem of optimal path recommendation.

We adapted the most advanced variant of MANNs to date, the Differential
Neural Computer (DNC) [13]. In most popular implementations, DNC can be
considered as a LSTM augmented with an external memory module M . The
LSTM plays the role of a controller, which is akin to a CPU, where the memory
ct is akin to registers in the CPU. At each time step, the controller (i) reads
an input, (ii) updates its own internal memory and states, (iii) writes the new
information data into the external memory, and (iv) finally reads the updated
memory to produce an output. In a typically implementation, the external mem-
ory is a matrix of N slots, each slot is a vector. To interface with the external
memory, the controller computes keys kt for locating slots for reading and writ-
ing. The memory slot is found using cosine similarity between the key and the
slot content. This mechanism of locating memory slot is known as content-based
addressing. In addition, DNC also supports dynamic memory allocation and
temporal memory linkage mechanisms for computing one final write-weight and
several read-weights. The read-weights are then used to produce a read content
from the memory. Multiple reads are then combined with the controller state to
produce an output vector ot. For readability, we omit the mathematical details
here. Readers are referred to the original paper [13].

We now describe how the DNC can be adapted for prescriptive process ana-
lytic tasks, starting from event coding into the model and decoding from it, to
specific modifications of the DNC to make it suitable for solving a variety of
prescriptive tasks in business processes.

3.1 Events/Resources Coding and Decoding

Discrete events/resources in event log can be coded into MANN in several
ways. If the number of unique events/resources is large, embedding into a low-
dimensional space is typically employed, that is a → xa. Otherwise, a simple
one-hot coding will suffice, that is, a → [0, 0, ...1, ...0]. Continuous resources such
as time can be normalized as input variables. Alternatively, these continuous
variables can be discretized into symbols that represent intervals. This could
enable true end-to-end learning. However, we can also employ a certain degree
of feature engineering to enhance the input signals as in [31], which has been
shown to be highly effective.

For discrete symbol prediction at time t, we can use a softmax:

Pt (a | history) =
exp (wa · ot)∑
a′ exp (wa′ · ot)

(1)

where ot is the output vector generated by the controller, and wa is a trainable
parameter vector. The discrete output is simply: a∗ = arg maxa Pt (a | history).
Continuous prediction is through a function yt = f (ot), which can be itself a
feedforward neural net.
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Application of these decoding settings in Eq. (1) allows us to solve a variety
of predictive and prescriptive tasks like next-activity recommendation, suffix rec-
ommendation and so on. Likewise time-to-event estimation is simply continuous
prediction.

3.2 Sequence Prediction with Dual-Controllers and Write-Protected
Policy

We assume that at the decision point, we are given a partially executed process
instance, and we want to prescribe actions for the continuation of a process
instance based and optimize for KPIs based on remaining time, or the set of
resources needed for completing the instance. Under the MANN formulation,
many of those prescriptive tasks can be cast into sequence prediction, that is, we
generate a sequence of discrete symbols. For example, process continuation is a
natural case, where each symbol is an event.

In case of resources prediction, even though there may or may not natural
ordering among resources, we can still produce a sequence. Due to the availabil-
ity of the external memory which stores all the previous knowledge, the strict
ordering in the output sequence is not of a major issue, because at any point
in the prediction time, the controller can just make use of the external memory
(which can be order-free since it is read-only), and relies less on its own internal
memory (which is order-dependent). Note that this property is not possible in
LSTM, which is sequential by design.

In the DNC setting, this task can be decomposed into dual phases: the encod-
ing phase, in which the prefix is read into the memory, and the decoding phase,
in which the suffix is sequentially generated. Second, in standard DNC opera-
tions, the memory is constantly modified at each time step. In the dual-phase
setting, there is no need to update the memory since there are no real inputs.
Thus we suggest a simple modification, that is, the memory is read-only during
the decoding phase. And finally, since the two phases serve different purposes, it
might be useful to separate the encoding controller from the decoding controller.
That is, the encoding controller is specialized in keeping the best description
of the process thus far, and the decoding controller is optimized to producing
the best suffix, given the information pre-computed by the encoding controller.
We call this DNC variant DCw-MANN, which stands for Write–Protected Dual
Controller Memory–Augmented Neural Network. The proposed system learns a
highly compact low-dimensional process representation and captures all varia-
tions implicit in the given process execution log to enable near real-time decision
support for tackling multiple prescriptive monitoring tasks.

Model Operations Over Time: The operations of the modified DNC is illus-
trated in Fig. 1. There are two controllers, the encoder LSTMenc for the encod-
ing phase and the decoder LSTMdec for the decoding phase. Both share the
same external memory M . Each controller maintains their own internal memory
c and state h. In the encoding phase, the prefix is fed into the encoder one
event at a time. The external memory is updated a long the way. In decoding
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phase, the state of the encoder and the memory are passed into the decoder.
The long-range dependencies between the input prefix and the output suffix are
maintained through the memory look-up operations.

LSTMDLSTMELSTMELSTME

M

LSTMD

WE

WD
output

c,h

input

c,h

c,h

Fig. 1. Write-protected dual controller memory augmented neural network

During the sequence decoding phase, the next symbol at time t is predicted
using the information from the memory and previously generated symbols:

Pt

(
a | atpre+1, ..., at−1,history

)

as in Eq. (1), where the output ot is generated by the decoder LSTMdec.

3.3 Generating Suffix Recommendations for Decision-Support

Next, our we goal is to learn the task of generating optimal suffix recommendations
from partially executed process instances. Process-Aware Recommender Systems,
support process users in operational decision-making by continuously monitor-
ing process executions and providing automated recommendations which maxi-
mize the likelihood of achieving desired process outcomes. Machine learning based
approaches are commonly used to construct data-driven recommender systems
where the system attempts to predict the user’s interests and recommends items
based on those interests. Many of the standard industry recommender systems
build a machine learning model by leveraging the user’s past behaviour (which
is routinely logged) as well as similar actions taken by other users. This model is
then used to predict items (or ratings for items) that the users may have an interest
in. In Process Analytics, the operative notion of recommendation, can be realised
by using a machine learning based system, capable of learning from successful (or
well-performing) process instances. Weber et al. [28] have explained outcome ori-
ented recommendations based on predictions, as follows: “Recommendations can
be considered as predictions about a case, conditioned on the next step that has
not been performed yet. In order to recommend to a user what should be the next
step in a process, the recommendation service needs to know what the user’s target
(goal) is, e.g. should the user perform its tasks as soon as possible, or should s/he
optimize its outcome in terms of business value”.

We have designed our Process-Aware Recommender System to consider the
process outcomes by i) implementing task conditioning at an architectural
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level (i.e. using task specific encoders/decoders) ii) leveraging past execution
data labelled with outcomes (based on performance indicators or non-functional
attributes defined for the task). Such labelled data, contains rich knowledge cap-
turing cumulative best practices from the perspective of multiple process users.
Our system underpins operational decision support in a manner where good per-
forming instances are leveraged to train a model that can correlate actions with
the likelihood of their effectiveness. Here, labels help in differentiating between
process instances that performed well based on a pre-defined performance crite-
rion (e.g. through-put time) versus those that performed poorly.

The training examples allow our model to learn the relevant representations
from raw data. We trained our proposed machinery in a manner similar to the
task of training unsupervised language models, where sequence prediction mod-
els are trained with a simple objective: predict the next word, given all of the
previous words within some text [25]. Following this approach allows us to learn
the prescriptive tasks without the need for explicit supervision. Furthermore, this
approach allows us to build a general-purpose model that assumes no domain-
specific knowledge of the process, other than the symbolic representation of
events (or resources). We finally note that, once the model is trained, it doesn’t
simply match or repeat the same sequence(recommendations) from training logs
rather testing it on an unseen test set(as done in our experiments) shows that our
model has learned the task of recommending an optimal suffix given a partially
executed instance. Good performance on test set also shows that capability of
our model to generalise such that it can perform well on a wide variety of future
unseen process instances(that were missing from the training data).

4 Evaluation

In the following sections, we explain the experimental setup, we then describe the
datasets and pre-processing strategy used for evaluating our proposed approach
(Sect. 4.2 and 4.3). We motivate the choice of metrics and describe the baseline
methods. We finally present an explanation of model implementation (Sect. 4.4)
along with experimental results.

4.1 Datasets

We consider three datasets to evaluate our suffix recommendation engine, whose
description is as follows:

– Moodle Dataset: This dataset has been created from Moodle’s(e-learning
platform) issue tracking system. The issue tracking system collects bug
reports and allows developers to track the bug resolution process as an issue
goes through various development stages. The log contains 10,219 complete
processes in total with the number of events in each process ranging from 4 to
23. The preprocessing procedure results in about 32K training prefix/suffix
sequences and 8K prefix/suffix sequences. The number of event codes in Moo-
dle dataset is 23.
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– Financial Log: This log is based on BPI2012 challenge dataset but was pre-
processed(see description below) based on a time-based performance metric.
After pre-processing we are only left with good performing instances which
can be fed to the dataset. The Raw dataset containes about 13,087 cases. The
training and testing numbers are approximately 4.2K and 1K, respectively.
This dataset has 32 unique type of event codes.

– IT Incident Management Dataset: This is an anonymized data set
extracted from incident management system supporting an enterprise
resource planning (ERP) application. It contains 16,000 tickets(process
instances) of IT incident management processes. The log contains the life
cycle of a ticket. The ticket is opened by a customer. It is acknowledged typi-
cally by a team lead, then it gets assigned to a person working on it and after
some analysis and other changes, it gets closed. The group that solved the
ticket might not correctly resolve the issue. The log contains the name of the
last group that solved the ticket. After splitting, the Incident Mgmt. dataset
has about 26K training and 6.5K prefix/suffix sequences. This dataset has 32
unique type of event codes.

4.2 Pre-processing

We take each of these datasets and we split the logs into desirable and unde-
sirable instances (by using the performance of each instance against the stated
KPIs) and following the language modeling approach, only train our models
using desirable instances. In the Moodle dataset we filter the dataset, by apply-
ing a couple of pre-conditions such that each instance should have at least four
distinct states1 and no more than 25 state changes. An undesirable instance
examples are chosen with the assumption that bad process instances would shift
states back and forth a lot (e.g., issue being reopened multiple times is an Unde-
sirable instance). Hence if more than 25 state changes occur for a given issueID
then it would be labelled as an Undesirable instance. Similarly for BPI2012
financial log data we filter cases based on running time. Cases that started in
2012 were filtered out(about 49% because they are not likely to finish. Next,
we perform performance filtering using total time duration for each case. Cases
with a maximum duration of 1 day 19 h are considered desirable instances while
rest of them are labelled as Undesirable performing instances. Each process is
a sequence of events and each event is represented by a discrete symbol, which
is coded using the one-hot coding scheme introduced in Sect. 3.1. We randomly
divide all processes into 80% for training and 20% for testing. Then, we continue
splitting each process in the training and test sets into prefix sequence and suffix
sequence such that the minimum prefix length is 4.

4.3 Experimental Setup and Modeling

For all experiments, deep learning models are implemented in Tensorflow 1.3.0.
Optimizer is Adam [17] with learning rate of 0.001 and other default parameters.
1 https://docs.moodle.org/dev/Process.

https://docs.moodle.org/dev/Process
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Table 2 describes the hyper-parameter settings, as selected through trial and error.
To the best of our knowledge, there is no existing ML based technique for suffix rec-
ommendation that considers the problem of outcome based optimal path genera-
tion. Therefore, for comparison, we implement custom process-agnostic baselines.
For the datasets (Moodle, Financial Log and Incident Mgmt.), the baselines are
k-NN, and GRU. The k-NN presents a simple but powerful baseline for the case of
vector inputs. Thus it is of interest to see if it works well for sequence inputs as in
the case of process analytics. The LSTM, on the hand, has been the state-of-the-art
for this domain, as shown in recent work [9,31]. The GRU is a recent alternative to
LSTM, which has been shown to be equally effective in NLP tasks [4]. The k-NN
works by retrieving k most similar prefixes in the training data. Then suffix and
other desirable outcomes are computed from the same outcomes of those retrieved
cases. The recommendation is either the average of the retrieved outcomes (if con-
tinuous), or the most common outcome (if discrete).

Model Evaluation: Numerical evaluations with comparisons to baselines play
a central role when judging research for most recommender systems, therefore
we rely on baseline comparisons/benchmarks to evaluate the quality of recom-
mendations produced by our machinery. Our recommender system provides oper-
ational decision support for process users and on a higher level, performs util-
ity optimization. Gunawardana et al. [15] provide a survey of evaluation metrics
for recommender systems. They observe that the task of optimizing utilities is
by far the least explored recommendation task. Hence research/industry stan-
dard evaluation metrics do not exist for such task. Prescriptive machine learn-
ing models for such tasks are predominantly benchmarked by matching samples
against a reference solution (e.g. previously well-performing instances represent-
ing ground truth). In our case, we have picked Levenshtein distance metric because
it aptly summarizes accuracy/precision in terms of the closeness of recommended
sequences to the reference(desired) sequences in high-dimensional vector space. It
represents a degree of conformity of evaluated predictions to the true value and is
sensitive to differences in error rates, making it effective for judging the effective-
ness of our process-aware recommendation machinery. However, these distances
have a quadratic time complexity of the sequence length, which can be expensive
for long sequences. Hence we build a Trie over the training prefixes for fast retrieval.
In our experiments, we choose k to be 1 and 5. We append to the end of each com-
plete process a special token <END> signaling its termination. We train the GRU
in the same manner as training a language model [23], which is identical to next
activity prediction. After training, a test prefix will be fed to the GRU as prior con-
text and the model will continue recommending the next event step-by-step until
the <END> symbol is outputted. In our experiment, we use a hidden vector of
size 100 for both GRU and MANN methods.

4.4 Results and Discussion

For evaluation, we use the edit distance (Levenshtein distance) as it is a good indi-
cation of sequence similarity where deletion, insertion or substitution are avail-
able as in the case of business processes. To account for variable sequence lengths,
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we normalize this distance over the length of the longer sequence (between 2
sequences). Then, the final metric is calculated as the normalized edit similarity
that equals 1− normalized edit distance. Consequently, the predicted sequence is
good if its normalized edit similarity to the target sequence is high.

We observe in Table 1 that our MANN based mode outperforms the state
of the art LSTM model across all three datasets. The k-NN works surprisingly
well. However, it faces some difficulties in this problem of sequence-to-sequence
prediction. First, the prefixes can be slightly different but the suffices can differ
drastically, e.g., due to a single decisive event. Second, the k-NN does not capture
the continuation of a process, and thus suffices from similar instances do not
guarantee to be the right continuation. And third, for k > 1, there is no easy
way to combine multiple suffix sequences, which shows in the worse result than
the case k = 1.

Table 1. Suffix recommendation task: the average normalized edit similarity between
the target suffixes and the suffixes recommended by different models (higher is better).

Method Moodle fin log Inc Mgmt

5-NN 0.817 0.588 0.418

1-NN 0.840 0.631 0.432

GRU 0.875 0.559 0.454

LSTM 0.887 0.683 0.497

MANN 0.888 0.691 0.502

Table 2. MANN hyper-parameters. (*) no duplicate.

Hyper-parameters Moodle Financial log Incident Mgmt.

# memory slots 64 64 64

Memory slot size 100 64 100

Controller hidden dim 100 100 100

Since the authors in [31] shared, only public the code for the two-layer LSTMs
(one is shared-weight), we can only calculate the parameter size for this config-
uration, which is about 208K trainable parameters. It should be noted that the
best model configurations consisting of 3 or 4 layers may have even more than
that number of parameters. Our MANN, by contrast, is much simpler with two
one-layer controllers and an external memory hence has fewer parameters (less
than 125K). This suggests the ability of the external memory to compress and
capture essential information in order to perform better.

Taken together, the results achieved using MANNs demonstrate that our pro-
posed machinery is well-suited for solving both predictive and prescriptive moni-
toring tasks, with far fewer parameters. We also note that MANNs are relatively
new, and we expect that even better performance could be achieved with greater
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effort in devising encodings for process analytics problems. As well, we have been
able to position a range of process analytics problems to leverage future devel-
opments/improvements in MANNs. Our approach based on employing labelled
datasets should hopefully lead the community to ask a broader range of prescrip-
tive process analytics questions that could be solved using similar machinery as
discussed in this paper.

5 Related Work

Predictive business process monitoring is a family of techniques concerned
with predicting the future state, outcomes and behaviour of ongoing cases
of a business process [32]. Relevant to our work, the task of next activity
prediction and Process Path Prediction has been tackled by approaches like
state-transition models, hidden Markov models(HMM) and Probabilistic Finite
Automatons(PFA) models [2,3,19]. Tax et al. [31] point out that such approaches
are ’tailor-made for specific prediction tasks and not readily generalizable’.
Recently, Deep Learning methods such as LSTMs have shown an advantage
over such classical methods for making accurate predictions and solving various
predictive monitoring tasks [31]. Several survey papers have reviewed the liter-
ature on predictive process monitoring. e.g. Marquez-Chamorro et al. [22] and
Di Francescomarino et al. [7] classify the literature based on input data, clas-
sification algorithm and prediction target. Similarly, Teinemaa et al. [32] and
Verenich et al. [34] also survey the literature by covering various datasets, pro-
pose task definitions and provide benchmark comparison of recently proposed
algorithms. The output of Predictive business process monitoring techniques,
is just predictions. Predictions can be used as early warnings for taking risk
informed decisions but do not explicitly support answering of question like What
action should we take next to achieve a particular goal? and Why should we do
it? [21]. Compared to descriptive and predictive business analytics, prescrip-
tive process analytics remains less mature [8]. Marquez et al. [22] point out
that ‘little attention has been given to providing recommendations’. Instead of
providing specific action recommendations, literature on business process moni-
toring focuses on forecasting future process events(and outcomes) while leaving
the action implementation part to the subjective judgment of process users and
business decision makers [6]. Overall, prescriptive business process monitoring
techniques [5,14,28] have largely focused on recommending preventive actions
in order to support risk-informed decision making.

Eili et al. [8] provide a systematic review of Recommender Systems in Pro-
cess Mining and classify recommendation approaches as ‘pattern optimization’,
‘risk minimization’, or ‘metric-based’. They highlight the fact that compared
to descriptive and predictive business analytics, prescriptive process analytics
remains less mature [8]. Existing prescriptive business process monitoring tech-
niques [5,14,28] are used to recommend preventive actions in order to support
risk-informed decision making. To the best of our knowledge, the problem of rec-
ommending best path (representing sequence of activities leading to the process
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end), based on pre-defined KPIs hasn’t been addressed. Closely related to our
work, Weinzier et al. [35] consider problem of recommending next best actions
that lead to optimal outcomes. Their work however differs from ours, as their
technique relies on explicitly adding control-flow knowledge to their proposed
technique via formal process model and uses process simulations to verify and
filter the predictions of the trained predictive model. Similarly, Groger et al. [14]
introduce the concept of recommendation-based business process optimization
for data-driven process optimization. Their data-mining driven solution sup-
ports adaptive processes and recommends actions for next process step to take
for a given process instance in order to avoid performance deviation. Lastly,
Schobel et al. [28] propose a technique for early identification of diverging pro-
cesses that can support operational decision-making processes by for example
taking remedial actions as business processes unfold. Overall, prescriptive busi-
ness process monitoring techniques [5,14,28] are used to recommend preventive
actions in order to support risk-informed decision making. However, compared
to above mentioned work which focuses on early warning recommendations (e.g.
predicted metric deviation), our work focuses on best action recommendations
that maximize the likelihood of achieving desirable outcomes.

6 Conclusion

In this paper, we explored the application of recent advances in deep learning for
building a Process-Aware Recommender System. We investigated a specific type
of neural network known as the memory–augmented neural network (MANN) for
its applications in prescriptive process monitoring tasks. We adapted a recently
developed MANN architecture, namely the Differential Neural Computer [13]
and proposed several modifications to the default architecture. We performed
evaluations using three labelled datasets to show that our proposed approach
performs well on the task of suffix recommendation while taking cognisance of
the relevant KPIs. Our future work will involve investigating the behaviour of
MANNs on highly complex processes that involve multiple intermediate steps
and results, and devising ways to visualise how distant events are remembered
and linked together.
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