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Abstract. TensorFlow, a popular machine learning (ML) platform,
allows users to transparently exploit both GPUs and CPUs to run their
applications. Since GPUs are optimized for compute-intensive work-
loads (e.g., matrix calculus), they help boost executions, but introduce
resource heterogeneity. TensorFlow neither provides efficient heteroge-
neous resource management nor allows for the enforcement of user-
defined constraints on the execution time. Most of the works address
these issues in the context of creating models on existing data sets (train-
ing phase), and only focus on scheduling algorithms. This paper focuses
on the inference phase, that is, on the application of created models to
predict the outcome on new data interactively, and presents a comprehen-
sive resource management solution called ROMA (Resource Constrained
ML Applications). ROMA is an extension of TensorFlow that (a) pro-
vides means to easily deploy multiple TensorFlow models in containers
using Kubernetes b) allows users to set constraints on response times,
(c) schedules the execution of requests on GPUs and CPUs using heuris-
tics, and (d) dynamically refines the CPU core allocation by exploiting
control theory. The assessment conducted on four real-world benchmark
applications compares ROMA against four different systems and demon-
strates a significant reduction (>75%) in constraint violations and 24%
saved resources on average.

1 Introduction

TensorFlow [1] is one of the most used machine learning (ML) framework
in industry [10] and shares similar functionality with other solutions such as
PyTorch [19] or MXNet [5]. While TensorFlow supports different types of ML
applications, this paper focuses on supervised learning ones because of the two
phases that characterize their lifecycle: training and inference. In the former
case, algorithms like logistic regression, decision trees, and deep neural networks
are used to create prediction models starting from known input-output pairs
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(e.g., pictures and contained objects), called training set. In the latter case, gen-
erated prediction models are used as oracles to infer the result on new, unknown
inputs. The first phase makes these applications batch ones, while the second
phase requires that these applications be interactive.

Both phases are characterized by highly parallel operations (e.g., matrix cal-
culus) that can exploit multi-core architectures. TensorFlow eases the use of
multi-core CPUs and also of GPUs, which provide hundreds of cores and very
fast executions. Oftentimes, these applications are executed in the cloud, where
virtual machines (VMs) equipped with GPUs and dedicated execution frame-
works can easily be rented from many cloud providers.

TensorFlow (similarly to other ML frameworks) does not allow users to define
constraints on response times (Service Level Agreements or SLA) for these appli-
cations, and resource management is driven by user experience or by simple
default policies that do not take actual application needs into account. Train-
ing would call for deadlines, that is, constraints on the maximum span of batch
processing [21], while inference calls for average response times, computed on a
number of subsequent invocations over a predefined time window.

Several approaches in the literature focus on the resource management of ML
training [3,12], while the inference phase calls for new studies and approaches.
Existing solutions applied to interactive web applications [2,7] cannot be reused
since they do not consider the heterogeneity introduced by GPUs but only dif-
ferent types of virtual machines. CPUs and GPUs are interdependent resources
while different VMs are not. GPUs are faster than CPUs but they also use
CPUs to load and write data, and to be activated. Moreover, they have differ-
ent scaling capabilities: CPUs can precisely be scaled by allocating fractions of
cores to single applications; GPUs can only be time-shared among applications.
While faster GPUs alone are usually not enough to serve realistic workloads, the
coordinated use of CPUs and GPUSs becomes mandatory to offer reasonable
execution times.

On the other hand, solutions that combine the management of CPUs and
GPUs target the training phase (or long-lasting processing), they focus on
scheduling and loadbalancing algorithms, and do not consider dynamic resource
provisioning [17,18]. Finally, in inference mode the distributed heterogeneous
execution of multiple concurrent ML applications is still not completely sup-
ported in TensorFlow (as in other similar tools) and users are required to man-
ually configure their deployments.

This paper presents ROMA, an extension of TensorFlow that helps the
deployment and oversees the inference phases of multiple concurrent ML appli-
cations deployed onto a shared cluster of nodes that offer both CPUs and GPUs.
ROMA manages containerized TensorFlow models, automates their deployment
using Kubernetes1, a well known container orchestrator, and allows users to
define SLAs as constraint on the response time. ROMA enacts the control at
three different levels. A centralized component exploits heuristics to prioritize
the scheduling of application requests on GPUs or CPUs according to their needs.

1 https://kubernetes.io.

https://kubernetes.io
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Distributed control-theoretical planners allocate the amount of CPUs needed to
each application by considering the boost introduced by GPUs. An intermediate
level handles resource contentions that could happen when the system saturates.

The evaluation based on four real-world applications shows that ROMA: i)
enables the distributed concurrent execution of multiple applications on hetero-
geneous resources ii) minimizes the number of SLA violations (reduction >75%)
compared to static and rule-based solutions, and a simplified control-theoretic
approach, and iii) optimizes the use of cluster resources by avoiding unneeded
allocations (24% resource saving on average).

The rest of the paper is organized as follows. Section 2 introduces ROMA, its
architecture and deployment model. Section 3 presents how the schedulers work,
and Sect. 4 explains the employed control-theoretical planners. Section 5 shows
the empirical evaluation we carried out to assess ROMA. Section 6 discusses the
related work and Sect. 7 concludes the paper.

2 ROMA

ROMA2 is a comprehensive resource management solution that eases the deploy-
ment and operations of multiple interactive ML applications. ROMA can be
useful to both users interested in running their ML applications and service
providers. In the former case, ROMA helps the user manage resources efficiently
and meet set response times. In the latter case, ROMA allows the service provider
to allocate fewer resources to each application and offer an higher level solution
to users (ML as-a-service).

ROMA is an extension of TensorFlow but it can be easily integrated onto
other ML platforms. TensorFlow, as other similar frameworks, does not provide
any dedicated support to distribute the inference of new results on computed
trained models, neither it takes into account concurrent executions specifically.
An extension, called TensorFlow Serving3 (TF Serving for brevity) permits users
to expose a trained model by means of a built-in web server and a dedicated
REST API but the distributed deployment is not supported. ROMA wraps TF
Serving instances into containers using Docker4. Docker also provides means to
allocate and share CPU cores among multiple processes through CPU quotas.
GPUs can be mounted on Docker containers by using external tools, as the
NVIDIA Container Toolkit5.

The deployment of TF Serving containers is enacted using Kubernetes.
Kubernetes manages Pods, that are, groups of co-located containers and vol-
umes, which bind ephemeral containers to persistent data stores. Deployments
manage the deployment of pods, along with the number of needed replicas, and
how they can be upgraded and configured. Services bring communication among
related pods by adding shared networking, load-balancing, and external access.
2 Source code is available at https://github.com/deib-polimi/ROMA.
3 https://www.tensorflow.org/tfx/guide/serving.
4 https://www.docker.com.
5 https://github.com/NVIDIA/nvidia-docker.

https://github.com/deib-polimi/ROMA
https://www.tensorflow.org/tfx/guide/serving
https://www.docker.com
https://github.com/NVIDIA/nvidia-docker
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Fig. 1. ROMA.

Kubernetes also offers dedicated plugins for AMD and NVIDIA boards (the
NVIDIA Container Toolkit is then required) to exploit GPUs [15], but a single
GPU cannot be associated with more than one container, and fractions of GPUs
cannot be requested (they can only be allocated as complete units).

2.1 Architecture

Figure 1 shows the architecture of ROMA while managing three ML models.
ROMA uses a centralized node, called dispatcher, and multiple distributed nodes,
called workers. Dispatcher allows users to add trained models (applications),
receives inference (execution) requests, and uses schedulers to distribute these
executions on workers’ devices. Each worker provides one or more devices, that
is, at least one CPU and zero or more GPUs.

ROMA deploys model executables, that are containers wrapping a TF Serving
instance loaded with one or more models, as Kubernetes pods into workers. For
each managed model, multiple model executables (i.e., replicas) can be deployed
onto different workers to handle intense workloads. Each model executable can be
instructed to process a request on CPUs or GPUs. Moreover, model executables
are deployed onto workers along with a dedicated control theory-based controller
(CT Controller) in charge of the fine-grained allocation of CPU cores.

Gateway accommodates requests in dedicated execution queues, one for each
application (i.e., trained model). Requests are kept in the queues waiting for
execution, that is, waiting for a GPU or CPU to become available. Requests are
removed from the queues and assigned for execution to model executables by
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two different schedulers, one for GPUs and one for CPUs. The two schedulers
exploit different heuristics to prioritize requests and instruct model executables
to process them on either a GPU or a CPU.

GPU Scheduler extracts requests from the queue of the model with the
greatest difference between expected and measured performance (see Sect. 3)
to boost executions. CPU Scheduler works together with CT Controllers. It
removes requests from queues by using a fair round-robin policy and instructs
the proper model executables to use CPU cores to process them. CT Controllers
accelerate or decelerate these executions by continuously modifying the CPU
cores allocated to model executables. Their control period is extremely fast (i.e.,
1 s) and allocated resources are changed on the fly, without restarting model
executables (vertical scalability).

When GPU Scheduler instructs a model executable to process a request by
using a GPU, the average time needed to execute that model executable abruptly
decreases6. Distributed CT Controllers handle this sudden change and react by
decreasing the number of allocated CPU cores. Note that allocated cores could
not be lowered even when GPUs operate because of other external factors (e.g.,
workload fluctuations).

Given that multiple CT Controllers work on the same worker node, their
combined resource demand can be greater than the actual capacity of the node:
a Supervisor deployed onto each worker oversees demands and manage con-
tentions. Collected data on resource demand, contention, and execution times
can then be used to deploy new model executables and new workers, but this is
out of the scope of this paper. Both schedulers and supervisors exploit lightweight
heuristics to be reactive and manage incoming requests properly.

In the case of extremely high workloads, the dispatcher can easily be repli-
cated to accommodate a higher level of parallelism without any changes to the
underlying control strategies. In this case, clients connect either directly to one
of the available replicas or to an additional load balancer that in turn distributes
the traffic to the dispatchers. Then, each dispatcher can work independently of
the others by only scheduling the traffic portion it receives. Local CT Controllers
just need to be informed of the amount of requests executed by the GPUs without
any additional knowledge on the deployment of the other components. Workers
can be managed by a single designated dispatcher or shared among multiple
ones. In the latter case, the multiple schedulers would not interfere with one
another since their algorithms only use application-level performance data that
are locally measured by each dispatcher.

2.2 Deployment

As soon as a user submits a trained model, along with its SLA, ROMA Launcher
generates or updates required Kubernetes deployments and services to let the
system deploy and manage the model executables.

6 This average execution time is computed by considering the different executions of
the same model executable over a given time window.
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ROMA uses two strategies to deploy model executables. The user can set the
number of to-be-deployed replicas for each model. Replicas can also be added and
removed dynamically according to application needs. The placement of model
executables can either balance their number on the different nodes or deploy
them onto the same worker until a predefined number of replicas is reached.
Note that ROMA does not allow one to deploy multiple replicas of the same
model on the same worker node for the same device. If model executables need
more resources on the fly, CT Controllers takes care of it without creating new
replicas.

To exploit the different devices, each model executable is bounded to a specific
device. In particular, given m models selected to be deployed onto a worker node,
ROMA provisions: (i) m model executable containing one model each, and binds
them to the node’s CPU(s), (ii) one model executable, containing all models,
for each GPU, and (iii) one container that includes the CT Controllers of all
models, the Supervisor, and one actuator implemented as a Kubernetes volume.
This means that since we assume that the worker depicted in Fig. 1 comes with
two GPUs, and it manages three models, ROMA deploys six containers in total.

This deployment allows ROMA to exploit the means provided by Kubernetes
for using GPUs on each model and also to exploit the CPUs when needed. As
already said, the Supervisor and models’ CT Controllers manage CPU cores. As
for CPUs ROMA deploys a different container for each model because resources
can be allocated to them independently. Since GPUs cannot be shared among
multiple containers, nor can their cores be allocated to different models, a single
container per GPU with all models is enough. The GPU Scheduler is in charge of
electing the model that can exploit the GPU to serve the next inference request
(this is done by calling an internal, model-specific TensorFlow Serving endpoint).
At each control step, ROMA uses an actuator based on Docker out of Docker
(DooD) to provide on-the-fly reconfiguration of running containers. DooD is a
volume that provides means to launch Docker commands (e.g., to re-configure a
container) within another container7.

3 Schedulers and Supervisors

The goal of ROMA is to fulfill constraint over the response time. While in
the following we constrain the average response time, more conservative met-
rics (e.g., high percentiles) would only require a stricter set-point and more
used resources, and would provide additional tail-latency guarantees. However,
our evaluation (see Sect. 5) shows that even by only constraining the average

7 In December 2020, the Kubernetes team announced that the Docker runtime will
be considered deprecated in future versions [14]. Docker will not be removed from
Kubernetes at least until late 2021. While the evaluation of ROMA in Sect. 5 is based
on the described Docker-dependent implementation, we are already developing a
version of ROMA that does not require Docker and that supports other container
runtimes as, for example, containerd [6].
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response time, ROMA provides a lower maximum response time than other com-
petitor approaches (e.g., rule-based).

Given a model m, the average response time computed over a given time
window w can be formulated as follows.

τRm
=

∑G
g=1(τQg

+ τPg
) +

∑C
c=1(τQc + τPc

)
G + C

(1)

where G and C are the numbers of requests executed on the GPUs and CPUs
respectively in w, τQi

is the time spent by a request i in the queue, while τPi
is

Algorithm 1. GPU Scheduling
1: function freeGPU(gpu)
2: E = []
3: M ← getModels()
4: for m ∈ M do
5: q ← m.getQueue()
6: TE ← []
7: for n ← 0, n < q.length, n++ do
8: req ← q[n]
9: τQ = now() − req.getT imeIn()
10: TE .append(τQ + n ∗ τP Gm )
11: end for
12: comp ← m.getCompletedRequests()
13: TR ← []
14: for req ∈ comp do
15: TR.append(req.getRT ())
16: end for
17: τRm ← avg(TR)
18: τEm ← avg(TE)
19: τWm = β ∗ τEm + (1 − β) ∗ τRm
20: τ◦

Rm
← α ∗ τSLAm

21: if τWm ≤ τ◦
Rm

then

22: εm ← 0
23: else
24: εm ← (τWm − τ◦

Rm
)/τ◦

Rm

25: end if
26: E.append(εm)
27: end for
28: mS ← M[E.indexOf(max(E))]
29: req ← mS .getQueue().pop()
30: gpu.execute(req)
31: end function

Algorithm 2. Supervisor
1: cs = getControllers()
2: UC ← []
3: for c ∈ cs do
4: uC ← c.nextAllocation()
5: UC .append(uC)
6: end for
7: AC ← MC − GC
8: η ← AC/sum(UC)
9: for c ← 0, c < cs.length, c++ do
10: uC ← UC [c]
11: if η ≤ 1 then
12: u′

C ← uC ∗ η
13: else if η > 1 then
14: u′

C ← (1 − γ) ∗ uC ∗ +η ∗ γ ∗ uC

15: end if
16: cs[c].updateStateAndActuate(u′

C)
17: end for

the time spent by a GPU or a CPU to process request i. An SLA on τRm
can

state that:
τRm

<= α · τSLAm
= τ◦

Rm
(2)

where τSLAm
is the threshold on the response time defined in the SLA for

model m and α is a parameter, which ranges between 0 and 1, that defines the
set point τ◦

Rm
for model m. If α = 1 then the set point matches τSLAm

; lower
values are more conservative and let the system tolerate more imprecision.

As already said, ROMA distributes the processing of requests to the different
devices in the cluster by means of the two dedicated schedulers. Their goal is
to select both which request to execute next and on which device. The ratio-
nale is that GPU Scheduler always selects the request of the model with the
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“highest” needs (see below). To complement GPUs, requests are also scheduled
for processing onto CPUs by means of a round-robin policy where the (non-
empty) queues to serve are selected randomly. Note that CPU Scheduler could
find queues empty if the GPUs are fast enough to process all the workload alone.

GPU Scheduler is activated in an event-based fashion. Function freeGPU
(Algorithm 1) is executed as soon as a GPU (parameter gpu) becomes free, that
is, at system startup and when a GPU completes the execution of a request. In
particular, we designed a heuristic that, for each model m, takes into account a
weighted average (τWm

) of measured response times (τRm
) and of the estimated

response times of the requests that are in the queues waiting to be processed
(τEm

). The estimation is computed by using the accumulated queue time of each
request (τQ in Eq. 1) and the profiled processing time on GPUs τPGm

. Parameter
β, which ranges in interval [0, 1], defines the weight associated with τRm

and τEm
.

A higher value of β gives more importance to requests in the queue and makes
the system more responsive to workload bursts. Given the computed averaged
response time τWm

, the distance from the set point τ◦
Rm

is computed as εm (lines
21–25). The selected model mS is the one with the highest εm. The first request
in queue mS is the one that is processed by gpu using the proper model executable
(lines 28–30).

The actual allocation of CPU cores is managed by the CT Controllers asso-
ciated with the different model executables. For this reason, CPU Scheduler dis-
patches requests to CPU devices using a round robin policy. CPU Scheduler
repeatedly removes a request from a randomly selected queue and schedules it
for CPU execution on a randomly selected model executable. This way the load
sent by CPU Scheduler to each model executable is homogeneous and the bur-
den of managing CPU allocation is handled locally by CT Controllers. Each
worker is associated with a Supervisor in charge of refining the resource allo-
cation computed by CT Controllers in case of contention. At each control step
(1 s), a CT Controller computes the amount of CPU cores uC (core allocation
demand) needed by its model executable, which embeds model m, to meet set
response time τ◦

Rm
(as described in Sect. 4). Each CT Controller computes its

uC independently of the others, that is, they do not communicate.
Supervisors use the heuristic shown in Algorithm 2 to compute a feasible

core allocation u′
C for each CT Controller deployed on a worker. First, all the

core allocation demands uC are gathered in a vector UC (line 1–6). Being MC
the total number of cores provided by the worker, and GC the number of CPU
cores statically allocated to support GPU execution, the difference between MC
and GC is the actual amount of cores that can be allocated (AC) to model
executables (line 7) in a given worker. As mentioned before, GPUs and CPUs
are interdependent since the former consume the processing power of the latter to
load data in memory and to be activated. Note that if GC is set to 0, GPUs will
slow down requests running on CPUs. This is seen by CT Controller as another
disturbance that is naturally mitigated by the control logic (described in Sect. 4).
Moreover, η is the ratio between AC and the sum of all demanded cores, that is,
the sum of all uC (line 8). Given η, each u′

C is computed as follows. If η is less
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than 1, the actual demand cannot be fulfilled since demanded cores are more that
available ones (under provisioning). Each u′

C is then computed by multiplying
each uC by η (line 12). If η is equal to 1, the amount of demanded cores matches
available ones (AC), and u′

C = uC . If η is greater than 1, available cores are over
provisioned. However, we introduce parameter γ to maximize resource utilization
(line 14). The default value (γ = 0) implies that u′

C = uC . If γ is between 0 and
1, we allocate more cores and obtain more responsive models. γ = 1 means that
all AC cores are always used. Finally, the state of each CT Controller is updated
using u′

C and computed core allocation is actuated.

4 Controllers

To design the CT Controller we need a dynamic model8 for the relationship
between the CPU and GPU allocation (uC , uG) and the response time τR; uC

and uG jointly modify the output rate ro from the queue, the input rate ri being
an exogenous disturbance. CT Controllers do not require any knowledge of the
application structure (i.e., of the operations to execute on input data) and the
same dynamic model is general enough to support different kinds of compute-
and GPU-intensive interactive applications (e.g., machine learning inference, sci-
entific calculus, graph-based computations), with proper profiling. This is possi-
ble because the proposed controllers are grey-box, that is, their model does not
include all aspects of the system but just the ones that describe its physics. The
employed fast feedback-loop (control period equals to 1 s) is in charge of correct-
ing the imperfections of the model at runtime. Here we represent the compound
of the above in a simplified manner (yet adequate, as the reported tests will
show) as an additive perturbation, and we set:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τR(t) = τQ(t) + τP (t)
τQ(t) = �(t−τQ(t))

ro(t)
d�(t)

dt = ri(t) − ro(t)
ro(t) = ron

(
uC(t), uG(t)

)
+ do(t)

τP (t) = τPn

(
uC(t), uG(t)

)
+ dP (t)

(3)

where τQ the time spent on the queue, τP is the processing time downstream
of the queue depending on (uP , uG) through a nominal relationship τPn(·, ·) with
an additive disturbance dP , and ron(·, ·) is the (uC , uG) → ro relationship in some
“nominal” condition, and do(t) the combined effect of all the disturbances.

Model (3) explains the physics of the system, but is not suitable as is for
control design owing to the contextual presence of a differential equation and
an implicit one with delay. It however evidences that under the above assump-
tions, response time control boils down to queue length control. From Eq. (3) one
notices that (i) at steady state ro has to balance ri but this can happen for any
�, hence (ii) a steady-state variation of τR is obtained by transiently causing an

8 To avoid ambiguities, in this section a dynamic model is a mathematical represen-
tation of the controlled system, that is, of the ML application.
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input/output rate imbalance via uC and/or uG, and then restoring the balance
once the desired τR is achieved as the new queue length, divided – mind the
balance – by the through rate, gives the necessary τQ, hence τR.

⎧
⎪⎨

⎪⎩

d�(t)
dt = ri(t) − ro(t)

ro(t) = μCuc(t) + μGuG(t)
τR(t) = �(t)

ro(t)

(4)

where the gains μC and μG account for the processing speed of CPUs and
GPUs, respectively, and the delay is considered negligible with respect to the
control time scale. Linearised in the vicinity of an operating point described by
nominal values of the throughput and the required waiting time, ro and τR to
name them,

Overall, therefore, the compound of the above gives rise to the continuous-
time transfer function description:

ΔτR(s) = GτRC(s)ΔuC(s) + GτRG(s)ΔuG(s) (5)

where uppercase letters denote the Laplace transform of the corresponding
lowercase variables and:

GτRC(s) = −μC

ro

1 + sτR

s
, GτRG(s) = −μG

ro

1 + sτR

s
(6)

where s is the Laplace transform complex variable. Transforming (6) to dis-
crete time, we conclude that a physically grounded Z-transform model (denoting
by z the corresponding complex variable, i.e., the one-step advance operator)
takes the form:

ΔτR(z) = G∗
τRC(z)ΔuC(z) + G∗

τRG(z)ΔuG(z) (7)

where

G∗
τRC(z) = − kC

z − b

z − 1
, G∗

τRG(z) = − kG
z − b

z − 1
(8)

Parameters kC , kG, and b can be obtained online by profiling the applications
of interest and fitting measured responses to those of the dynamic model. In this
work we assume that when a GPU takes part of the work —which is represented
as a step-like behaviour of uG— the CPU attempts to restore the required τR so
as to free the GPU as soon as possible. This means requiring that the closed-loop
transfer function from uG to τR has a zero in z = 1. The said transfer function
then becomes:

Fo(z) =
z − 1
z − p

(9)

where parameter p ∈ [0, 1] governs the required response speed: p → 0 means
faster response, p → 1 slower. This gives controller
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Gc(z) =
(kC − 1)z2 + (2 − kCp − kCb)z + kGbp − 1

kC(z − 1)(z − b)
(10)

i.e., a real PID. To further reduce computational complexity, we however
decided to employ a PI controller, that is,

Gc(z) = K
z − a

z − 1
(11)

and prescribe the closed-loop poles to coincide in z = q, where q is inter-
preted as p above. This is achieved by setting:

K =
4(a − 1)(b − 1)

k(b − a)2
, a =

(2 − b)q − b

q − 2b + 1
(12)

while the presence of integral action ensures zero steady-state errors.

5 Evaluation

This section describes the experiments we carried out to evaluate the feasibility
and benefits of ROMA.

To run the experiments, we deployed ROMA on a cluster of three virtual
machines on Microsoft Azure: one VM of type HB60rs with a CPU with 60
cores and 240 GB of memory for the dispatcher, and two VMs, as worker nodes,
of type NV 6 equipped with a NVIDIA Tesla M60 GPU and a CPU with 6 cores
and 56 GB of memory. We also used an additional instance of type HB60rs for
generating the client workload.

The experiments exploited four existing ML applications: Skyline Extrac-
tion [9], ResNet [11], GoogLeNet [20], and VGG16 [22]. The first application
uses a combination of computer-vision algorithms to extrapolate the horizon
skyline from a set of images and the others perform classification tasks. In par-
ticular, ResNet exploits a residual neural network, while GoogLeNet (G.Net) and
VGG16 employ two different deep convolutional neural networks. All these four
models were trained and then used in inference mode with companion sample
images.

ROMA (α = 0.8, β = 0.5 and γ = 0) was set to use a static deploy-
ment strategy and we deployed all applications onto the two worker nodes. We
statically reserved GC = 0 cores for the GPUs, to say that the additional dis-
turbances introduced by the usage of CPUs for loading and operating GPUs are
handled by CT Controllers. These controllers were manually tuned: K = 0.15
and a = 0.11.

We compared ROMA against the four exemplar systems we implemented by
using a different heuristic for the GPU Scheduler and/or another type of con-
trollers instead of CT Controllers. All these systems used a round robin scheduler
(RR) for GPUs. In addition, system RR+rules used a rule-based controller that
allocated 1 additional CPU core to a model executable if the response time is
greater than or equal to 0.8 ∗ SLA. If the response time is equal to or less than
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Table 1. SLA and workloads.

Test Apps SLA Workload

2-Apps Skyline 0.38 20-20-80-80-20-20-20-20

G.Net 0.45 20-20-20-20-70-70-20-20

2-Apps ResNet 0.54 40-30-20-40-30-20-30-30

VGG16 0.56 20-30-40-20-40-40-30-30

AllApps Skyline 0.38 10-10-10-10-30-30-30-10

G.Net 0.45 10-30-30-30-10-10-10-10

ResNet 0.54 10-20-30-10-20-30-10-20

VGG16 0.56 10-30-20-10-30-20-10-20

Table 2. Comparison.

Test System τR τRM
τRσ V Res

2-Apps

G.Net

Skyline

ROMA 0.168 0.245 0.031 0 748

RR+CT 0.193 0.358 0.053 0 793

RR+rules 0.185 0.638 0.075 10 1165

RR+max 0.152 0.191 0.014 0 3600

RR+min 0.278 1.053 0.182 40 600

2-Apps

ResNet

VGG16

ROMA 0.266 0.553 0.068 10 1633

RR+CT 0.446 0.949 0.117 70 1750

RR+rules 0.701 3.829 0.528 120 1691

RR+max 0.337 0.711 0.092 40 3600

RR+min 1.537 4.423 0.464 180 600

AllApps ROMA 0.167 0.427 0.022 0 1767

RR+CT 0.325 1.372 0.130 90 2018

RR+rules 0.409 1.913 0.158 140 1973

RR+max 0.208 0.453 0.052 0 3600

RR+min 1.032 6.828 0.414 170 600

0.2 ∗ SLA it de-allocated a core. The control period was set to 15 s. System
RR+CT used the same CT Controllers as ROMA for managing CPU resources.
The control period was set to 1 s. System RR+max statically allocated all cores
(6 per worker) fairly distributed to applications. System RR+min statically
allocated a minimum amount of cores (1 per worker) equally distributed to
applications.

We tested the systems by running two concurrent applications at a time (test
2-Apps): i) GoogLeNet and Skyline Extraction and ii) ResNet and VGG16. We
repeated each test 3 times for a total of 60 executions (5 systems, 4 applica-
tions, and 3 executions). Table 1 shows the SLAs (in seconds) and workloads (in
incoming requests per second) used in the experiments. Each experiment lasted
300 s and the workload of each application was changed with a different step
(shown in column Workload) every 37 s (8 times). Table 2 shows the average
(τR) and maximum response times (τRM

) in seconds along with the standard
deviation (τRσ

), the number of SLA violations (V ), and the number of allocated
CPU resources (Res) measured as cores ∗ seconds.

With the first application pair, ROMA produced 0 violations and a resource
allocation equal to 748 (where the lower means the better). RR+rules allocated
1.5 times the resources used by ROMA without avoiding SLA violations and
obtained longer response times. RR+CT performed similarly to ROMA, but
ROMA allocated GPUs in a smarter way (i.e., lower average and maximum
response times) and thus relying on CPUs less frequently, which means saving
a greater amount of resources. The allocation of all cores makes RR+max the
fastest system, but by using more than 5 times the CPU resources utilized by
ROMA. Finally, RR+min consumed fewer resources than the other systems at
the cost of obtaining 40 SLA violations.

With the second application pair, ROMA obtained 10 SLA violations and
a resource allocation of 1633 cores ∗ seconds. Once again ROMA was able to
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(a) ROMA (b) RR+rules

Fig. 2. System experiments - All Apps.

outperform the other systems showing a better balance between violations and
resource usage, and lower average and maximum response times. Given the pres-
ence of VGG16, the use of GPUs was fundamental to make the system serve the
incoming workload. Results show that a round robin scheduling of GPUs was not
sufficient to avoid SLA violations even if all the CPU cores were always allocated
statically (RR+max produced 40 violations). Compared to ROMA, RR+rules
showed a higher response time and 120 SLA violations and an allocation of
almost the same amount of CPU resources. Even with a smarter allocation of
CPUs (RR+CT ) the obtained response time was almost double the one mea-
sured with ROMA and the number of SLA violations were 70. RR+min violated
the SLAs 180 times and also presented an average response time greater than
1.5 s (almost three times greater than set SLAs).

As final experiment, we ran the four applications concurrently (test All Apps)
for a total of 60 additional executions (4 applications, 5 systems, 3 repetitions
each). Table 2 presents obtained results and the charts of Fig. 2 show the response
times obtained with ROMA and with RR+rules (the best competitor) using the
workloads and SLAs reported in Table 1. ROMA was able to always keep the
response time under the SLAs (0 violations), with an overall average response
time equals to 0.167 s, a maximum response time of 0.427 s, and allocated 1767
cores ∗ seconds. In contrast, RR+rules frequently violated the SLAs while exe-
cuting VGG16 and ResNet, and resulted in slower executions (average and max-
imum response times equal to 0.409 and 1.913 s, respectively). RR+CT obtained
90 violations and higher response times than ROMA, while RR+max obtained 0
violations but allocated 3600 cores ∗ seconds. The combined use of the heuristic
that favors executions on GPUs for resource-hungry applications and its con-
trol theory-based CPU allocation made ROMA not only faster but also able to
exploit fewer resources than all the other systems (except w.r.t. RR+min that
violated the SLA 170 times).
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6 Related Work

Several solutions deal with the management of heterogeneous resources at the
node level but not GPUs. For example, the solution presented by Lakew et al. [16]
exploits control theory to provision multiple resources dynamically to satisfy
SLAs. Similarly to ROMA, they exploit containers and can reconfigure resources
dynamically. Farokhi et al. [8] present a fuzzy control approach that coordinates
the autoscaling of CPU cores and memory. They show that the coordinated
control of multiple resources outperforms the performance of the same system
with independent controllers.

These approaches manage complementary resources: CPUs uses memory
(and also disks) for completing a task, while ROMA exploits competing resources
since a request can be executed on either CPUs or GPUs. This means that
ROMA must consider both scheduling and resource provisioning while afore-
mentioned works focus only on the latter.

Different approaches focus on the management on GPUs and CPUs. For
example, Khadil et al. [13] present OSched, a resource-aware scheduler for
OpenCL jobs that aims to maximize the throughput of the hosting infrastruc-
ture. Chen et al. [4] propose a solution for improving the performance of MapRe-
duce applications by scheduling map and reduce tasks on CPUs and GPUs using
heuristics. They compared their approach with CPU-only and GPU-only versions
of the system obtaining an improvement between 20% and 110%.

Compared to these works, ROMA is different from both the control and
application domain point of views. First, the mentioned approaches focus on
the scheduling of computing tasks on GPUs and CPUs, while ROMA combines
both scheduling and fine-grained resource allocation in a comprehensive solu-
tion. ROMA’s scheduling heuristics cooperate with control-theoretical planners
in order to minimize constraint violations while optimizing resource usage. Sec-
ond, existing solutions focus on the management of GPUs in the context of long-
lasting compute intensive applications (e.g., machine learning training jobs),
while ROMA focus on interactive ML applications. To the best of our knowl-
edge ROMA is the first solution that provides an architecture, a deployment
model and a comprehensive resource management approach for ML inference.

7 Conclusions and Future Work

The paper presents ROMA, an extension of TensorFlow that eases the man-
agement and operation of ML applications executed on a cluster of heteroge-
neous resources (GPUs and CPUs) in inference mode. ROMA allows users to
constrain applications execution times and exploits scheduling heuristics and
control-theory based resource provision to run them efficiently. The assessment
of the work uses four real-world applications and shows promising results.
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