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Preface

Welcome to the proceedings of the 19th International Conference on Service-Oriented
Computing (ICSOC 2021). Following ICSOC 2020, which was held virtually due to
COVID-19, ICSOC 2021 has also become a virtual event, held in November 22–25,
2021. The conference series aims to bring together academics, industry researchers,
developers and practitioners to report and share ground-breaking work in the area of
Service Oriented Computing (SOC). The objective of ICSOC 2021 was to foster
cross-community scientific excellence by gathering experts from various existing and
emerging disciplines with the following four focus areas: (i) trends in service-oriented
technology, (ii) distributed ledger and blockchain technologies, (iii) industry 4.0
technologies and (iv) smart services and smart data, including many emerging AI
applications in SOC. This edition of ICSOC built upon a history of successful series of
previous editions in Toulouse (France), Hangzhou (China), Malaga (Spain), Banff
(Canada), Goa (India), Paris (France), Berlin (Germany), Shanghai (China), Paphos
(Cyprus), San Francisco (USA), Stockholm (Sweden), Sydney (Australia), Vienna
(Austria), Chicago (USA), Amsterdam (the Netherlands), New York (USA), and
Trento (Italy).

ICSOC 2021 introduced a new two-rounds submission and reviewing process for
both research and industry papers. In the research track, 61 papers were initially
submitted in the first round, of which 14 were suggested for “minor revision and
resubmission”, while 31 were judged as “fair paper, considerably improve and
resubmit”, and 16 were rejected. In the second submission round, we received 128
research papers and 40 resubmissions from the previous round. All the submissions
went through a rigorous review process that involved on average three reviewers and a
discussion moderated by one senior PC member. For papers resubmitted from the early
round, the letter detailing the authors’ responses to the reviewers, and the quality of the
revision results were assessed. The final outcomes were as it follows: 14 “minor
revision and resubmission” papers were finally accepted; out of the 26 “fair paper,
considerably improve and resubmit”, 12 papers were accepted and 2 were judged
worthy of acceptance as short papers; 11 papers out of the newly submitted in the
second round were accepted and other 24 were judged worthy of acceptance as short
papers. The acceptance rate is 16.2% for full papers.

For the industry track, 5 papers originally were submitted in the early round, and 14
in the second round (one of them a resubmission of the previous round). In the end, 2
papers were accepted as full papers and 2 as short papers.

This book also includes 3 papers accepted for the vision track, which underwent a
simplified review process aimed at judging futuristic ideas that can drive and guide
ongoing research efforts.

The conference program also included three keynotes from distinguished speakers:

• AI Augmented Service Enablement: Challenges and Directions, given by Boualem
Benatallah (University of New South Wales, Australia);



• Intelligent Knowledge Discovery for Reliable Cloud Operations, given by
Michael R. Lyu (Chinese University of Hong Kong, China);

• Cloud-Edge Coopetition: A Win-Win Partnership, given by Zakaria Maamar
(Zaayed University, UAE)

Finally, a PhD symposium, a demo session and different workshops completed the
program. The workshops were:

• 2nd International Workshop on Artificial Intelligence for IT Operations (AIOPS
2021)

• 3rd International Workshop on Smart daTa integRation And Processing on
Service- based environments (STRAPS 2021)

• 2nd International Workshop on AI-enabled Process Automation (AI-PA 2021)

The ICSOC 2021 Organizing Committee is also grateful to the workshop organizers
for their great efforts to help promote SOC research to broader domains.

Special thanks are due to the members of the Senior Program Committee, the
International Program Committee, and the external reviewers for a rigorous and robust
reviewing process.

We are also grateful to Zayed University for their technical and organizational
support, ensuring a successful virtual conference. We would also like to acknowledge
all the members of the Organizing Committee and who contributed to make ICSOC
2021 a successful event.

We also acknowledge the prompt and professional support from Springer, who
publishes these proceedings as part of the Lecture Notes in Computer Science series.

Most importantly, we would like to thank all authors and participants of ICSOC
2021 for their insightful work and discussions.

We expect that the ideas that have emerged in ICSOC 2021 will result in the
development of further innovations for the benefit of scientific, industrial and social
communities.

November 2021 Massimo Mecella
Naouel Moha

Hye-young Paik
Hakim Hacid

Odej Kao
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Abstract. The outcome of a process e.g., the quality of a produced part,
constitutes a key performance indicator for process analysis and moni-
toring. Process outcomes are not only affected by process data, but also
by data that is not associated with the process logic through decisions
or task input. The rising temperature in a machine, for example, might
cause deterioration of part quality. Assessing the impact of context data
on the process outcome at runtime is particularly useful to reduce the
reaction time to possible errors or deviations. However, as process models
contain loops and decisions, grouping and making context data streams
interpretable is not always straight-forward, especially under the con-
dition that describing dependencies between context data and process
data should be simple and flexible. The contribution of this paper is a
classification of context data types, how they are connected to a process
model, and how process models can be segmented into stages to group
semantically related tasks. The impact of context data on the process
outcome is then determined during runtime, i.e., as a process instance
is progressing through these segments at runtime, impact calculations
using context data can be gradually refined. The approach is prototypi-
cally implemented and applied to an artificial logistics and a real-world
manufacturing data set.

Keywords: Manufacturing intelligence · Runtime process analysis ·
Process outcomes · Process context data · Impact factors

1 Introduction

Business processes are specified in the form of process models containing nec-
essary tasks to reach a goal as well as the sequence of their execution. The
process logic typically depends on data elements (e.g., the amount of a loan
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or the decision of process actors) that are available in the process. While tasks
implementing a database access typically only receive data that can be utilised
in the process logic as a whole, tasks such as starting a machine and waiting for
the machine to finish typically receive raw machine telemetry data that is dis-
carded as it is not important for the process logic. Explicitly dealing with such
telemetry data in the business logic is often not desirable (even to implement
standardised data collection), as it complicates the process models and makes
them much harder to maintain and improve. Another category of context data,
is data that is never part of the process execution, but instead exists entirely
outside of the scope of any process model. For example a hardware tempera-
ture sensor might continuously collect data while a machine is running, but the
resulting data stream is never connected to a particular process instance.

Fig. 1. Sample process with data streams collected during process run

Figure 1 shows a sample process from the manufacturing domain, which waits
for (a) the machining of a part, (b) measurement results of a laser based optical
micrometer, and finally (c) the tactile measurement results. While (a) from the
perspective of the process is just about waiting until the task is finished, it yields
gigabytes of data from the machining process itself and additional power and
temperature measurement sensors. (b) on the other hand collects measurement
information, that could be used for early termination of the process, but addi-
tionally gathers information about the temperature of the produced part. A part
being too hot or too cold can have a serious impact on measurements, although
this is not considered in the process. With (c) finished, a machined part as well
as a detailed report about its quality is available. This is referred to as process
outcome. Individual data streams (e.g., machining, power, temperature) are
not part of the data flow, but nonetheless are important when reasoning why a
certain outcome has been reached. Hence, data streams can be considered as
impact factors for quantifying the process outcome.

Online (runtime) analysis of impact factors has the potential to predict out-
comes, thus holding the possibility for optimising production processes regard-
ing time and quality. Furthermore, analysing processes during their execution
instead of ex-post enables to utilise information from unfinished process instances
running in parallel. Another important aspect when dealing with impact factors
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is relevance. Not all impact factors might contribute equally to the quantification
of the output. In previous work [2], first ex post analysis means for impact factors
of process outcomes based on annotating the process model is provided. How-
ever, methods for determining the importance of individual impact factors at
runtime are missing. We tackle this research gap based on the following research
questions:

– How can relevant impact factors be found in an online setting where process
instances are only partly executed? How can we deal with decisions and loops?

– How does the completion of a trace including its outcome contribute to the
confirmation or contradiction of the determined impact factors?

– How does the order in which traces are completed influence the certainty of
the determined impact factors? How can this be used to reorder the traces to
achieve a higher certainty in a faster way?

To tackle the above research questions, we introduce stages as a means to
group tasks and their impact factors. Based on comparing information between
stages of different instances we present static stage clustering and dynamic stage
analysis approaches to predict the process outcome.

In order to evaluate the concepts presented in this paper, two data sets are
analysed: (1) a synthetic simple logistic data set that comprehensibly demon-
strates the main concepts, and (2) a real-world manufacturing data set with a
multitude of sensors and high velocity machining data, that shows how complex
multi-faceted data streams can be handled.

The remainder of the paper is structured as follows: Sect. 2 introduces funda-
mentals, Sect. 3 presents the approach, and Sect. 4 delves into how the clustering
of impact factors can be realised, and how forecasts can be achieved. The app-
roach is evaluated in Sect. 5 and the results are discussed in Sect. 6. Finally,
related work is shown in Sect. 7 and the paper is concluded in Sect. 8.

2 Context Data Fundamentals

In general, impact factors are determined based on data that is available in the
process. This data can stem from different data sources and ranges from data
determining the control flow of the process to independent sensors measuring
data streams that can influence the process. To handle these different types,
context data probes are introduced to abstract from the underlying type of
data when determining impact factors.

2.1 Context Data Probe Types

To track data in a process, different types of data probes can be distinguished
(cf. Fig. 2):

(1) Intrinsic Context Data Probes (cmp. a in Fig. 2) describe data col-
lected inside the process where an intrinsic motivation to obtain this data
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exists stemming from the execution semantic of the process (i.e., a data ele-
ment that is used to make a decision in the process or gives the termination
condition for a loop). In literature this is often referred to as “process data”
or “data elements”.

(2) Extrinsic Context Data Probes (cmp. b in Fig. 2) describe data pro-
vided by tasks enacted in the process, but not manifesting in data elements
of the process. Examples include tasks that interact with a machine or
worklist where data is returned to the process.

(3) Discrete Context Data Probes are directly connected to the continu-
ous stream of data from external sources not used in tasks of the process.
Examples include data from temperature sensors or twitter feeds which
might influence the execution of the process. Two different types exist:
• Instance Based Discrete Context Data Probes (cmp. c in Fig. 2)

track the continuous data stream during the whole execution time of the
instance. This allows for the collection of data streams from continuous
data streams not connected to any of the tasks in particular but possibly
being able to influence the process instance during its runtime.

• Task Based Discrete Context Data Probes (cmp. d in Fig. 2) only
track the continuous data stream during the execution of a specific task.
This enables collecting parts of data streams from autonomous sources
that only have an influence when certain operations are performed.

Fig. 2. Types of data in the process context

2.2 Impact Factors and Impact Profiles

This section explains impact factors and profiles as introduced in [2] and depicted
in Fig. 3. Data probes produce homogeneous data streams, which are then
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aggregated. This can happen either with simple (avg, median) or complex
domain specific aggregation functions depending on the use case, similarly to
calculating key performance indicators, cf. [7]. An impact factor itself can be an
aggregation, e.g., inside a machine the temperature might be taken at various
locations to account for local heat build-up. The impact factor combines the
data from all temperature sensors. Finally, different impact factors are weighted
and combined to form profiles. Profiles can either exist for individual tasks or at
the instance level.

How to derive the weights between impact factors is one of the contributions
of this paper, and will be explained in detail in the next chapters. It is assumed
that there is a notion of good or bad outcome: i.e., in a manufacturing process,
after quality control it is known if a part is good or bad. We can thus summarise
that the following domain specific input to derive impact profiles is necessary:

– A superset/list of data streams which might potentially influence outcome.
– A function how to aggregate each homogeneous data stream.
– A function how to aggregate one or more data impact values (even if the

values e.g., derive from different sensor types).
– A set of impact factors that contribute to an impact profile.
– A binary notion of process outcome: good/bad.

The weights for the impact profile function are then calculated in a way so
that good parts yield a result that tends towards 1 and bad parts 0.

Fig. 3. Impact profiles and related concepts

3 Runtime Context Data Analysis

The fundamentals of context data as used in this paper are explained in Figs. 2
and 3: (a) which data types can occur in the process context and (b) how to
handle data streams that are collected during process execution. Figure 4 shows
a concrete example of a process in the manufacturing domain where external
data is collected in some tasks. Individual data streams can then be aggregated
and combined as outlined in Fig. 3 and performed in the example in Fig. 4 where
different ways of building impact factors from data streams are shown. The
impact factors are then used in further steps of the approach.
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Fig. 4. Running example process

3.1 Comparing Process Instances - Stages

During runtime, a multitude of process instances might be active and in different
states of their execution. An execution state is defined by the set of tasks that
are currently executed. As the definition of impact factors depends on the tasks,
the different execution states result in a varying number of impact factors for
the currently active process instances. This can aggravate the comparison of the
impact factors over a set of process instances. Hence, we suggest the usage of
stages that reflect certain execution states in a process and enable to cluster
the running instances along these states. Figure 4 depicts the running example
process with three stages reflected by boxes.

Stages are especially important when process models allow different
behaviour for individual instances. For example, a manufacturing process might
skip steps or run through certain steps in a loop, e.g., for iterative refinement of
certain aspects that require constant adaptation of manufacturing parameters.
Obviously, only process instances being in the same stage can be compared as dif-
ferent control flow behaviour can affect the collected data. However, even with
different process models (e.g., different versions of a process), similar process
instances might be comparable if they share certain stages.

Stages are user defined at the process model level, and consist of one or
several tasks, based on semantic affiliation of included data (e.g., same source,
collected in same step)1. If, for example, one overall machining operation consists
of multiple tasks which represent different machining programs applied on a
single piece of raw material, and supervised by a set temperature and vibration
sensors, they can be grouped in a stage by the process designer. At the process
instance level, a stage is complete, when all tasks contained in the stage have been
completed. This constitutes a trigger point for (a) forecasting the next stage, and
(b) refining the forecasting data set for the finished stage (see Sect. 4.2).

Predicting how an upcoming stage might contribute to the outcome depends
on one or several stages that have been already finished. When analysing the
data modified in finished stages, two types of data can be identified.
1 In future work, we aim at the automatic definition of stages based on process abstrac-

tions [9] or inspired by automatic approaches such as [6].
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Static Stage Clustering: If data points in a set of stages are similar, they
can be grouped. Future stages of instances being in the same groups might also
contribute to outcome similarly. Therefore instances with such static stages are
clustered (see Sect. 4.1 on how a data stream is analysed to cluster instances).

Dynamic Stage Analysis: If a process instance has new data points compared
to instances that are in an earlier stage, the difference constitutes a potential
progression an early-stage instance might take. An outcome prediction based
on this potential progression is possible when comparing instances which are in
different stages (see Sect. 4.2).

4 Realisation

Two techniques are employed to realise the introduced concepts, i.e., clustering
and refinement of the importance of impact factors when a process instance
progresses from one stage to the next one.

4.1 Clustering

Data streams need to be grouped to find out which ones are important for the
outcome of a process instance. Without results from earlier process executions it
is necessary to identify the streams being similar for “normal” process executions
and others deviating from the norm. During clustering, points being close to
each other based on a distance metric are grouped. This grouping is utilised by
assuming that data streams that can easily be clustered are more important for
the outcome. Therefore, the following steps are performed:
p r o c e s s i n s t an c e = ( (DS,A)+,IFU) ∗) # each process instance contains a l l

impact f ac to r ( IF) d e f i n i t i on s cons i s t ing of data streams (DS) ,
aggregat ions (A) , and impact funct ions (IFU)

poss ib l e DS combinat ions = a l l p o s s i b l e combinations o f data streams

for DS set in poss ib l e DS combinat ions
a l l I F l i s t s =[ ]
for p r o c e s s i n s t an c e in a l l p r o c e s s i n s t a n c e s

I F l i s t =[ ]
for ( (DS,A)+,IFU) in p r o c e s s i n s t an c e

i f ( (DS,A)+ con t a i n s a l l DS o f DS set )
I V l i s t =[ ]
for (DS,A) in (DS,A)+

IV = aggregate (DS,A)
IV l i s t . push ( IV)

IF = c r e a t e impa c t f a c t o r ( IV l i s t , IFU)
I F l i s t . push ( IF )

a l l I F l i s t s . push ( I F l i s t )
params = dete rmine c lu s t e r ing params ( a l l I F l i s t s ) # kNN p lo t
c l u s t e r a s s i gnment = bu i l d c l u s t e r s ( a l l I F l i s t s , params ) # assign

c l u s t e r to each process ins tance using DBSCAN
for c l u s t e r in c l u s t e r a s s i gnment

c l u s t e r q u a l i t y ( a l l I F l i s t s , c l u s t e r ) # s i l h ou e t t e value
add l i s t o f a s s i gned c l u s t e r s & th e i r qua l i t y to each p r o c e s s i n s t an c e

Algorithm 1.1: Static stage clustering
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Looking at the running example (Fig. 4), two temperature based impact fac-
tors and two impact factors based on the diamater are available. Therefore, a
process instance is assigned to two clusters (one for the temperature data streams
and one for the diameter data stream). The concrete clustering technique is not
important for the general idea. However, as different techniques require different
information to perform them, two techniques are considered for this paper:

– The k-means algorithm, following the argumentation in [3], is a well explored
approach. On the flip side, it requires the number of clusters (and their ini-
tial centre points) as input. Using this clustering technique for finding similar
data streams is therefore difficult as it is not known beforehand how many
clusters should be found as stream data can show a multitude of different
behaviours. Even with methods existing for determining the number of clus-
ters, this technique is not suitable for the intended purpose.

– The DBSCAN algorithm [8] finds clusters based on the distance between data
points. These distances are used to determine which points form a cluster and
which are too far apart. Therefore, it is not necessary to provide the number
of clusters as input. However, the epsilon value needs to be provided which
defines the neighbourhood of points used for finding points being in the same
cluster. This value can be found using a k Nearest Neighbours (kNN) graph
if no value from expert knowledge is available.

Based on these considerations we opt for the DBSCAN algorithm. Concerning
a quality measure for the whole clustering as well as for individual clusters, the
silhouette value is used. The silhouette value can be calculated for each data
point and is between −1 and 1. Low values are obtained if points from other
clusters are closer than the ones of the same cluster and high values are gained if
the point is close to points from its own cluster. Therefore, the silhouette value
of a cluster or of all points gives an idea of how close data points are to other
points in the same cluster (i.e., how well clustering works).

4.2 Stage Progression

All steps described before are performed in one go where some data streams are
already available while other information is not. The final step of the approach
presented in this paper is to have individual instances progress in their execu-
tion. Two cases exist: for a stage where some instances already have impact
factors/data clusters, a forecast for the outcome of the stage can be derived.
For stages, where this is not the case, forecast is not possible. The information
about available clusters is used (as described in Algorithm 1.2) to determine
the overall score of a process instance (representing the impact profile) taking
into account the importance of different impact factors and their values for the
specific instance.
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p r o c e s s i n s t an c e = ( (DS,A)+,IFU) ∗ , c l u s t e r a s s i gnment ) #
process ins tances add i t i ona l l y contain t h e i r c l u s t e r assignment

poss ib l e DS combinat ions = a l l p o s s i b l e combinations o f data streams

for DS set in poss ib l e DS combinat ions
for c l u s t e r in c l u s t e r s

s t a t v a l u e = g e t s t a t i c v a l u e ( c l u s t e r )
i f ( c l u s t e r in c l u s t e r a s s i gnment )

dyn value = get dynamic va lue ( c l u s t e r )
upda t e o v e r a l l s c o r e ( s t a t va lue , dyn value )

Algorithm 1.2: Dynamic stage analysis

As also described in Sect. 4, the static value of stages is obtained by using
the silhouette value of the corresponding cluster based on the group of unfin-
ished process instances. The dynamic value, is based on already finished process
instances. Therefore, the share of positive outcomes of the corresponding clusters
represents the dynamic value and is combined with the static value to determine
the value added to the overall score for determining the outcome of the examined
process instance.

5 Evaluation

5.1 Settings

One evaluation scenario is a manufacturing process where a part is produced by
a machine tool and afterwards measured twice. Data about the manufacturing
process is therefore collected (1) during the manufacturing of a part, (2) during
the fast, but imprecise measurement directly after the manufacturing of a part,
and (3) during the slow, but precise measurement of the part performed indepen-
dent of the manufacturing of a part. Parts being taken out of the machine can
have a metal chip from the machining on it requiring special handling. After the
production step, process instances of the manufacturing process are in a stage
where all data (i.e., machining and the fast, but imprecise measurement data) is
already collected, but the outcome (i.e., chip occurrence or quality control test
result) is still unknown. The data streams used for the evaluation are the work-
load of the drive (aaLoad) and the axis speed (aaVactB) for the X, Y, and Z axis
together with the actual speed of the spindle (actSpeed) and the workload of the
spindle (driveLoad) from the machining of the part and the measurement values
from the fast, but imprecise measurement which measures the silhouette of the
part. For all of these values the minimum, maximum, average, and weighted aver-
age (which tries to tackle irregular machine tool measurements) are used to get
characteristic values of the timeseries for clustering. Furthermore, the weighted
average of an important segment of the fast, but imprecise measurement is used
for determining the outcome of a quality control test.

Another data set used for the evaluation is adapted from a realistic con-
tainer transportation case described in [1]. The process includes the loading of a
vehicle which afterwards moves towards its destination. During this journey, the
temperature is constantly measured. When the temperature is beyond a certain
point for a certain period of time, the vehicle has to return to its origin. Oth-
erwise it continues towards the destination where the container is unloaded. As
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this process only contains one data stream that is measured (i.e., the temper-
ature) it was decided to additionally use the temperature of each third of the
measurement interval as an individual data probe (resulting in 4 data probes)
to showcase the approach. Again, minimum, maximum, and average are chosen
for obtaining values for clustering the time series. The outcome of the process is
defined by normal cases and exceptional cases (i.e., cases where the vehicle has to
return to its origin). The process instances are in a stage where the temperature
is already measured. However, it is not known if the vehicle has to return to its
origin (negative case) or if it is able to stay on the route to its final destination
(positive case).

5.2 Evaluation Process

As described in Sects. 3 and 4, the first step of assessing the impact factors of data
streams on process outcomes during runtime is to obtain the static characteristics
by clustering traces based on the available data. This is done individually for each
data stream meaning process instances are clustered multiple times (i.e., once
per data stream). The DBSCAN clustering algorithm is used because the number
of clusters is not previously known. The epsilon value (needed for performing
DBSCAN) is determined using kNN plots and finding the elbow in the graph.

Clustering provides a silhouette score describing how close data points in one
cluster are together compared to other clusters. The silhouette value can be given
for the overall clustering result of a data stream as well as for individual clusters.
As explained in Sects. 3 and 4, clusters sticking closer together are assumed to
also be more important impact factors for the outcome of a process.

The first example from the manufacturing scenario is shown in Fig. 5. Here,
the outcome is represented by the occurrence of a chip on the part. Figure 5a
shows the development of the importance of data streams for the outcome after
the specified number of process instances have been continued (therefore con-
sidering the static characteristics as well as the change of the dynamic charac-
teristics of different data streams). Obviously, the imprecise measurement is the
most important impact factor for this outcome. The development of the overall
score of process instances based on static and dynamic characteristics is shown
in Fig. 5b. The scores of process instances with positive (i.e., no chip on the part)
and negative (i.e., chip on the part) outcomes differ from a certain point on. This
is depicted by green (positive outcome) and red (negative outcome) boxplots for
different numbers of finished process instances. Lower scores signal a negative
outcome while higher scores signal a positive outcome.

However, it is also important to get to a point where cases can be distin-
guished as fast as possible (i.e., by having to finish as few process instances as
possible). The approach presented in this paper selects the next process instance
up for continuing execution based on the clusters to which the data streams are
assigned by choosing the one having the overall highest impact. In contrast to
this strategy, continuing the execution of process instances randomly (Fig. 5c)
or always choosing the one with the lowest overall impact (Fig. 5d) leads to dif-
ferent behaviour. It can be seen that process instances with positive outcomes
can be distinguished from ones with negative ones at an earlier point in time
(approximately after 15 process instances have been finished) when choosing
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Fig. 5. Chip occurrence in parts of batch 15

process instances with high impact for execution as shown in Fig. 5b in contrast
to different ordering techniques as shown in Figs. 5c and 5d. Additionally, the
order of process instances can be chosen before any process instances are starting
to continue or it can be adapted each time another process instance finishes and
therefore more information is available. However, this difference is not discussed
due to shortage of space. If not specifically described otherwise all following fig-
ures show the approach when the most impactful process instance is chosen and
continued after the previous process instance has finished.

Using the same data set as above, but another outcome (i.e., the passing of
a specific quality control test) leads to the results shown in Fig. 6. For batch 15
positive and negative outcomes are not clearly distinguishable (see Fig. 6b) and
no data stream clearly important for the outcome can be found (see Fig. 6a).
However, for batch 14, the overall score of individual process instances can be
used to distinguish between cases with different outcomes (see Fig. 6d). Further-
more, it can be seen in Fig. 6c that even if no single important data stream
can be identified, there is a group of data streams (actSpeed, aaLoad Z, and
aaVactB X) being more important than the other ones.

Using the logistics data set for the evaluation leads to the results shown in
Fig. 7. Figure 7a shows the development of the impact factors of the data streams
that are chosen for the logistics data set as given in the scenario description. Fur-
thermore, Fig. 7b shows that the overall score of process instances with a posi-
tive outcome (i.e., normal cases) achieve higher values than ones with a negative
outcome (i.e., exceptions) after the initial information gained from clustering is
refined by executing additional traces (i.e., about half the process instances have
been executed). However, as with the last example, no single data stream can
be highlighted as most important.
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Fig. 6. Quality control test result in parts of batch 14 and 15

Fig. 7. Completion of route for logistics use case

Overall, the evaluation shows, that it is possible to identify the importance of
different impact factors for outcomes of a process at runtime. Using the identified
influence of the impact factors on the outcomes allows to calculate an overall
score. The approach is evaluated using different domains and shows its appli-
cability by making it possible to distinguish between process instances with a
positive outcome and ones with a negative outcome after the initial importance
of impact factors has been refined by finishing some initially unfinished process
instances. The evaluation also shows that the order in which traces are finished
has an effect on how early different outcomes can be identified.
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Code and data used for the evaluation along with instructions how to use
it is available on gitlab2. The manufacturing data is based on the process logs
available at cpee.org34. The logistics data is based on the case described in [1].

6 Discussion

The evaluation shows that impact factors along with their influence on the out-
come can be found. However, supposing that the order in which process instances
are continued can be freely defined, the question emerges how the determination
of impact factors can be sped up. A possibility is to reorder process instances
such that always the one for which the data streams are assigned to the most
promising clusters is continued next. As shown in the evaluation this allows
to faster distinguish between process instances having a positive/negative out-
come. The order can be set either before executing any process instances or
it can dynamically change each time new information is available (i.e., when a
process instance is continued). This also has implications for real-world applica-
tions. In the manufacturing domain it might be necessary to know the order in
which parts should be measured beforehand. For static processes this cannot be
adapted. However, more dynamic processes which allow to adapt processes based
on new insights may support changing the order during the process. An example
for a static scenario where the order in which process instances are executed has
to be known beforehand would be a robot taking parts from a conveyor belt
in the order in which they have been placed. In contrast to this, a robot which
picks parts from a tray based on the information available in the process only
needs the information which part to pick right before picking.

Concerning the data set of the manufacturing process, two batches are used
for the evaluation. One is used to evaluate the described approach for finding
impact factors and their importance for two different outcomes (i.e., occurrence
of a chip and passing of a quality control test). The other one is used to perform
the evaluation for passing a quality control test with different data and the
results are compared to each other for validation. The logistics data set is used
to show that the approach is applicable to multiple areas where data inside a
process is measured over a time period. Another area matching this description is
the medical domain where process instances correspond to the treatment of one
person and different data such as the temperature or the blood pressure of the
patient is measured multiple times. Other domains where the impact of different
data streams on the outcome should be determined could also be suitable.

As discussed, the presented approach has certain limitations regarding the
scenario. To use the knowledge gained from process instances being slightly
ahead of others it has to be possible to intervene in the latter ones. This allows to
use information gained from further advanced process instances to adapt process
2 https://gitlab.com/me33551/runtime impact factor assessment [Online; accessed

12-Aug-2021].
3 https://cpee.org/∼demo/DaSH/batch14.zip [Online; accessed 12-Aug-2021].
4 https://cpee.org/∼demo/DaSH/batch15.zip [Online; accessed 12-Aug-2021].

http://www.cpee.org
https://gitlab.com/me33551/runtime_impact_factor_assessment
https://cpee.org/~demo/DaSH/batch14.zip
https://cpee.org/~demo/DaSH/batch15.zip
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instances which are similar to improve the outcome or at least be prepared for
formerly unexpected events. However, this does not necessarily mean that pro-
cess instances influence each other, it is just about identifying similar instances
to improve prediction of the outcome. Regarding the complexity of the proposed
algorithms, Algorithm 1.1 analyses each instance for every combination of data
streams which may lead to long execution times for big data sets with many
data streams. Algorithm 1.2 is also depending on the number of possible data
stream combinations (but only once because instances progress individually).

Future work will deal with how stages are best defined and if there is a way to
identify them automatically instead of manually. Furthermore, the composition
of impact factors based on data probes needs to be developed towards the direc-
tion of finding meaningful combinations instead of needing domain knowledge.

7 Related Work

Recently, process mining and predictive process monitoring approaches have
started to consider and analyze process perspectives beyond control flow, includ-
ing process data [5]. Also external data such as time series data is exploited for
detecting concept drifts during runtime [10]. In contrast to these approaches,
this paper tries to determine how much impact data streams collected during the
process have on the outcome. The survey presented in [11] compares different
outcome-oriented predictive process monitoring techniques. However, existing
approaches do not consider the impact of continuous data streams from external
data sources on the outcome of the process. Anomaly detection for manufactur-
ing systems based on sensor data is, for example, tackled by [4]. However, the
process aspect and particularly the impact of the sensor streams on the process
outcome are not considered. [7] defines an ontology for process performance indi-
cators (PPIs), together with templates and patterns. The PPIs can be defined to
aggregate observations in the process. This constitutes valuable input for aggre-
gating impact factors after being transferred to work on external data streams.
[6] presents an approach to find stages in a process by automatically maximising
the measure of modularity which describes a high density of connections within
a stage and a low number of edges between stages. However, [6] only considers
the control flow of processes. Therefore, external data which is important for the
definition of stages, is not taken into account. The definition of stages is also
connected to process abstractions. A survey on process abstractions is provided
in [9], also discussing why, when, and how abstraction is applied. For this paper,
abstraction supports the focus on the data perspective. The abstraction is done
by identifying tasks containing data streams applying to the same abstract steps
of the process and group them together in one stage.

8 Conclusion

Knowing the outcomes of process instances while they are still executed bears
advantages for process operators. This paper presents an approach to assess the
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impact of data streams on process outcomes during runtime. Clustering individ-
ual data streams allows to determine the initial importance of different impact
factors i.e., their share in influencing the outcomes. This is initially only based
on the available data from unfinished process instances. Afterwards, process
instances being continued are used to refine the initial assessment. Furthermore,
it is shown that when the reordering of traces is possible, it is beneficial to finish
process instances where the data streams belong to clusters that are promising
candidates for important impact factors.

To answer the research questions three concepts are presented in this paper.
Firstly, in order to reduce the complexity of a high number of process instances
being executed until a certain task, stages are used to support the comparison
between different instances that are comparable regarding the collected data.
Secondly, static characteristics of impact factors for the process outcome are used
to describe their maximum impact on the outcome. Thirdly, dynamic character-
istics are used to deduce the actual impact of different factors on the outcome.
In contrast to static characteristics which are determined only with unfinished
process instances and stay the same, dynamic characteristics are adapted based
on the actual outcomes of process instances finished over time.

The approach presented in this paper is evaluated using two batches of a real-
world data set from the manufacturing domain including multiple data streams
as well as one data set from the logistics domain to show the applicability of the
approach for other domains where continuous data streams are included.
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Abstract. Process-aware Recommender systems can provide critical
decision support functionality to aid business process execution by rec-
ommending what actions to take next. Based on recent advances in the
field of deep learning, we present a novel memory-augmented neural net-
work (MANN) based approach for constructing a process-aware recom-
mender system. We propose a novel network architecture, namely Write-
Protected Dual Controller Memory-Augmented Neural Network(DCw-
MANN), for building prescriptive models. To evaluate the feasibility and
usefulness of our approach, we consider three real-world datasets and
show that our approach leads to better performance on several baselines
for the task of suffix recommendation and next task prediction.

1 Introduction

Business process management assists organizations in planning and executing
activities that collectively deliver business value, usually in the form of a prod-
uct or a service. Flexible execution of business process instances entails mul-
tiple critical decisions, involving various actors and objects, which can have a
major impact process performance and achieving desired process outcomes [32].
These decisions therefore require careful attention, as sub-optimal decisions dur-
ing process execution, can lead to cost overruns, missed deadlines and the risk
of failure [11]. While the problem of predicting the behaviour of a given process
instance has been studied extensively, using these predictions to support oper-
ational decision-making of the kinds outlined above remains a challenge [6,22].
Process-Aware Recommender Systems have been proposed to assist knowledge
workers in operational decision-making, for instance, by recommending actions
leading to process end, managing resource allocation policies and so on [1,28]. In
this work, we present a novel Process-Aware Recommender System for support-
ing organizations and process owners in operational decision-making (related to
control-flow).
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 19–33, 2021.
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Recent advances in neural network architectures and learning algorithms have
led to the popularization of Deep Learning methods which are particularly good
at automated feature discovery and learning robust representations from large
quantities of raw data, thus significantly reducing the need to hand-craft features
which is typically required when using traditional machine learning techniques
[20]. Deep Learning based techniques such as Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRUs) have generated considerable interest recently
for tackling various Process Analytics tasks (e.g. predictive monitoring). How-
ever, LSTMs and GRU methods lack the capacity to solve complex, structured
tasks that, for example, require reasoning and planning [10,13]. To tackle such
complex tasks, two promising approaches based on neural networks have been
proposed: Memory Networks and Neural Turing Machines, both being instan-
tiations of Memory-Augmented Neural Networks (MANN) [12]. In this paper,
we investigate the applicability of MANNs for building a Process-Aware Recom-
mender System that can provide process execution decision support of the kind
discussed above.

Contributions: We propose a novel neural network architecture, namelyWrite-
Protected Dual Controller Memory-Augmented Neural Network(DCw-MANN),
for building a Process-Aware Recommender System, where we introduce sev-
eral modifications to the existing Differential Neural Computer(DNC) architec-
ture: (i) separating the encoding phase and decoding phase, resulting in dual
controllers, one for each phase; (ii) implementing a write-protected policy for
memory during the decoding phase. We evaluate the effectiveness of our app-
roach on three world datasets for the task of generating suffix recommendations
that lead to optimal outcomes.

The paper is organized as follows: In Sect. 2, we provide the necessary back-
ground on Process Analytics and Deep Learning techniques upon which our
proposed method is built. In Sect. 3, we explain the technical workings of our
Process-Aware Recommender System, designed to tackle a number of prescrip-
tive process analytics tasks. Implementation details and experimental results
are reported in Sect. 4. Finally, Sect. 5 discusses related work, followed by Sect. 6
which concludes the paper and outlines future work.

2 Preliminaries

We first briefly present the existing work upon which our method is built, includ-
ing event log presentation, recurrent neural networks, and Long Short-Term
Memory (LSTM).

2.1 Process Analytics

Process analytics involves a sophisticated layer of data analytics built over the
traditional notion of process mining [33]. Compared to Process mining, Process
analytics addresses the more general problem of leveraging data generated by, or
associated with, process execution to obtain actionable insights about business
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processes. Process analytics leverages a range of data, including, but not lim-
ited to process logs, event logs [26], provisioning logs, decision logs and process
context [29] and answers queries that have a number of real world applications
particularly related to prescriptive analytics such as resource optimisation and
instance prioritisation. In this paper we focus on event logs and assume that
when a business process instance is executed, its execution trace is recorded as
an event log. An event log is a sequence of events, naturally ordered by the
associating timestamps.

In predictive analytics, we study techniques that allow us to predict how the
future of a given process instance will unfold and the likely occurrence of future
process events [10]. It can be considered as computing (a) a set of functions and
(b) a set of computer programs that carry out computation, over a (partially
executed) process instance. An example of case (a) is computing remaining time
of a process instance, which is the sequence-to-vector setting. An example of case
(b) is a continuation of a partially executed process, which is the sequence-to-
sequence setting.

Prescriptive business process monitoring techniques and Process Aware Rec-
ommender systems are for providing decision-support to process users. Applica-
tions of such system include, offering recommendations about: (i) next activities
to execute, (ii) resource allocation support, (iii) Cost and time optimization
and (iv) risk-mitigation by raising alarms or recommending actions to prevent
undesired outcomes [8,35].

2.2 Sequence Modeling with Deep Learning

Recurrent Neural Nets(RNNs), especially the Long Short-Term Memory (LSTM)
have brought about breakthroughs in solving complex sequence modelling tasks
in various domains such as video understanding, speech recognition and natural
language processing [20,27]. Similarly, it has been shown that LSTM can con-
sistently outperform classical techniques for a number of process analytics tasks
such as predicting the next activity, time to the next activity etc. [24,31].

Recurrent neural network (RNN) is a model of dynamic processes, and to
some degree, a model of computer programs. At each time step t, a RNN
reads an input vector xt into a hidden state vector ht and predicts an out-
put vector yt. The state dynamic can be abstracted as a recurrent relation:
ht = RNN (ht−1,xt). The vanilla RNN is parameterized as follows:

ht = σ (Whht−1 + V xt + bh)
yt = Wyht + by

where (Wh,Wy, V, bh, by) are learnable parameters, and σ is a point-wise non-
linear function.

Although theoretically powerful, vanilla RNNs cannot learn from long-
sequences due to a problem known as vanishing or exploding gradients. A pow-
erful solution is Long Short-Term Memory (LSTM) [16]. LSTM introduces one
more vector called “memory” ct, which, together with the state ht, specify the
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dynamic as: (ht, ct) = LSTM (ht−1, ct−1,xt). In most implementations, this is
decomposed further as:

ct = f t ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh (ct)

where c̃t is a candidate memory computed from the input, f t, it,ot ∈ (0,1)
are gates, and ∗ denotes point-wise multiplication. f t determines how much the
previous memory is maintained; it controls how much new information is stored
into memory, and ot controls how much memory is read out. The candidate
memory and the gates are typically parameterized as:

c̃t = tanh (Wcht−1 + Vcxt + bc)⎡
⎣
f t

it
ot

⎤
⎦ = sigm

⎛
⎝

⎡
⎣

Wf

Wi

Wo

⎤
⎦ ht−1 +

⎡
⎣

Vf

Vi

Vo

⎤
⎦ xt +

⎡
⎣
bf
bi
bo

⎤
⎦

⎞
⎠

where (Wc,f,i,o, Vc,f,i,o, bc,f,i,o) are learnable parameters.

3 Approach

While LSTMs can theoretically deal with long event sequences, the long-term
dependencies between distant events in a process get diffused into the memory
vector. LSTM partly solves the gradient issue associated with the vanilla RNN
but it may not be very effective on complex process executions that contain mul-
tiple computational steps and long-range dependencies. Keeping this in mind,
we explore the application of an expressive sequential process model, that would
allow storing and retrieval of intermediate process states in a long-term mem-
ory. This is akin to the capability of a trainable Turing machine. Closest to a
Turing machine is an instantiation of MANN, known as Differential Neural Com-
puter (DCN) [13]. MANNs can be considered as a recurrent net augmented with
an external memory module [13,30]. Because of this memory module MANNs
have certain advantages over traditional LSTMs when tackling highly complex
sequence modeling problems such as question answering [30] and algorithmic
tasks [13]. The memory ct compresses the entire history into a single vector,
and thus the process structure is somewhat lost. For example, if two distant
events are highly dependent, there are no easy ways to enforce this relationship
through the forgetting gates. Another critical issue is that if a process involves
multiple intermediate results for latter use, there are no mechanism to store
these results into the flat memory vector ct. These drawbacks demand an exter-
nal memory to store temporary computational results, akin to the role of RAM
in modern computers. The key idea behind these architectures is that all mem-
ory operations, including addressing, reading and writing are differentiable. This
enables end-to-end gradient-based training. MANNs have found many applica-
tions, e.g., question answering [18,30] and simple algorithmic tasks [12]. Overall,
Encoder-decoder architectures like memory-augmented neural nets are geared to
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solve sequence to-sequence problems and are naturally a good fit for tackling the
problem of optimal path recommendation.

We adapted the most advanced variant of MANNs to date, the Differential
Neural Computer (DNC) [13]. In most popular implementations, DNC can be
considered as a LSTM augmented with an external memory module M . The
LSTM plays the role of a controller, which is akin to a CPU, where the memory
ct is akin to registers in the CPU. At each time step, the controller (i) reads
an input, (ii) updates its own internal memory and states, (iii) writes the new
information data into the external memory, and (iv) finally reads the updated
memory to produce an output. In a typically implementation, the external mem-
ory is a matrix of N slots, each slot is a vector. To interface with the external
memory, the controller computes keys kt for locating slots for reading and writ-
ing. The memory slot is found using cosine similarity between the key and the
slot content. This mechanism of locating memory slot is known as content-based
addressing. In addition, DNC also supports dynamic memory allocation and
temporal memory linkage mechanisms for computing one final write-weight and
several read-weights. The read-weights are then used to produce a read content
from the memory. Multiple reads are then combined with the controller state to
produce an output vector ot. For readability, we omit the mathematical details
here. Readers are referred to the original paper [13].

We now describe how the DNC can be adapted for prescriptive process ana-
lytic tasks, starting from event coding into the model and decoding from it, to
specific modifications of the DNC to make it suitable for solving a variety of
prescriptive tasks in business processes.

3.1 Events/Resources Coding and Decoding

Discrete events/resources in event log can be coded into MANN in several
ways. If the number of unique events/resources is large, embedding into a low-
dimensional space is typically employed, that is a → xa. Otherwise, a simple
one-hot coding will suffice, that is, a → [0, 0, ...1, ...0]. Continuous resources such
as time can be normalized as input variables. Alternatively, these continuous
variables can be discretized into symbols that represent intervals. This could
enable true end-to-end learning. However, we can also employ a certain degree
of feature engineering to enhance the input signals as in [31], which has been
shown to be highly effective.

For discrete symbol prediction at time t, we can use a softmax:

Pt (a | history) =
exp (wa · ot)∑
a′ exp (wa′ · ot)

(1)

where ot is the output vector generated by the controller, and wa is a trainable
parameter vector. The discrete output is simply: a∗ = arg maxa Pt (a | history).
Continuous prediction is through a function yt = f (ot), which can be itself a
feedforward neural net.
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Application of these decoding settings in Eq. (1) allows us to solve a variety
of predictive and prescriptive tasks like next-activity recommendation, suffix rec-
ommendation and so on. Likewise time-to-event estimation is simply continuous
prediction.

3.2 Sequence Prediction with Dual-Controllers and Write-Protected
Policy

We assume that at the decision point, we are given a partially executed process
instance, and we want to prescribe actions for the continuation of a process
instance based and optimize for KPIs based on remaining time, or the set of
resources needed for completing the instance. Under the MANN formulation,
many of those prescriptive tasks can be cast into sequence prediction, that is, we
generate a sequence of discrete symbols. For example, process continuation is a
natural case, where each symbol is an event.

In case of resources prediction, even though there may or may not natural
ordering among resources, we can still produce a sequence. Due to the availabil-
ity of the external memory which stores all the previous knowledge, the strict
ordering in the output sequence is not of a major issue, because at any point
in the prediction time, the controller can just make use of the external memory
(which can be order-free since it is read-only), and relies less on its own internal
memory (which is order-dependent). Note that this property is not possible in
LSTM, which is sequential by design.

In the DNC setting, this task can be decomposed into dual phases: the encod-
ing phase, in which the prefix is read into the memory, and the decoding phase,
in which the suffix is sequentially generated. Second, in standard DNC opera-
tions, the memory is constantly modified at each time step. In the dual-phase
setting, there is no need to update the memory since there are no real inputs.
Thus we suggest a simple modification, that is, the memory is read-only during
the decoding phase. And finally, since the two phases serve different purposes, it
might be useful to separate the encoding controller from the decoding controller.
That is, the encoding controller is specialized in keeping the best description
of the process thus far, and the decoding controller is optimized to producing
the best suffix, given the information pre-computed by the encoding controller.
We call this DNC variant DCw-MANN, which stands for Write–Protected Dual
Controller Memory–Augmented Neural Network. The proposed system learns a
highly compact low-dimensional process representation and captures all varia-
tions implicit in the given process execution log to enable near real-time decision
support for tackling multiple prescriptive monitoring tasks.

Model Operations Over Time: The operations of the modified DNC is illus-
trated in Fig. 1. There are two controllers, the encoder LSTMenc for the encod-
ing phase and the decoder LSTMdec for the decoding phase. Both share the
same external memory M . Each controller maintains their own internal memory
c and state h. In the encoding phase, the prefix is fed into the encoder one
event at a time. The external memory is updated a long the way. In decoding
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phase, the state of the encoder and the memory are passed into the decoder.
The long-range dependencies between the input prefix and the output suffix are
maintained through the memory look-up operations.

LSTMDLSTMELSTMELSTME

M

LSTMD

WE

WD
output

c,h

input

c,h

c,h

Fig. 1. Write-protected dual controller memory augmented neural network

During the sequence decoding phase, the next symbol at time t is predicted
using the information from the memory and previously generated symbols:

Pt

(
a | atpre+1, ..., at−1,history

)

as in Eq. (1), where the output ot is generated by the decoder LSTMdec.

3.3 Generating Suffix Recommendations for Decision-Support

Next, our we goal is to learn the task of generating optimal suffix recommendations
from partially executed process instances. Process-Aware Recommender Systems,
support process users in operational decision-making by continuously monitor-
ing process executions and providing automated recommendations which maxi-
mize the likelihood of achieving desired process outcomes. Machine learning based
approaches are commonly used to construct data-driven recommender systems
where the system attempts to predict the user’s interests and recommends items
based on those interests. Many of the standard industry recommender systems
build a machine learning model by leveraging the user’s past behaviour (which
is routinely logged) as well as similar actions taken by other users. This model is
then used to predict items (or ratings for items) that the users may have an interest
in. In Process Analytics, the operative notion of recommendation, can be realised
by using a machine learning based system, capable of learning from successful (or
well-performing) process instances. Weber et al. [28] have explained outcome ori-
ented recommendations based on predictions, as follows: “Recommendations can
be considered as predictions about a case, conditioned on the next step that has
not been performed yet. In order to recommend to a user what should be the next
step in a process, the recommendation service needs to know what the user’s target
(goal) is, e.g. should the user perform its tasks as soon as possible, or should s/he
optimize its outcome in terms of business value”.

We have designed our Process-Aware Recommender System to consider the
process outcomes by i) implementing task conditioning at an architectural
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level (i.e. using task specific encoders/decoders) ii) leveraging past execution
data labelled with outcomes (based on performance indicators or non-functional
attributes defined for the task). Such labelled data, contains rich knowledge cap-
turing cumulative best practices from the perspective of multiple process users.
Our system underpins operational decision support in a manner where good per-
forming instances are leveraged to train a model that can correlate actions with
the likelihood of their effectiveness. Here, labels help in differentiating between
process instances that performed well based on a pre-defined performance crite-
rion (e.g. through-put time) versus those that performed poorly.

The training examples allow our model to learn the relevant representations
from raw data. We trained our proposed machinery in a manner similar to the
task of training unsupervised language models, where sequence prediction mod-
els are trained with a simple objective: predict the next word, given all of the
previous words within some text [25]. Following this approach allows us to learn
the prescriptive tasks without the need for explicit supervision. Furthermore, this
approach allows us to build a general-purpose model that assumes no domain-
specific knowledge of the process, other than the symbolic representation of
events (or resources). We finally note that, once the model is trained, it doesn’t
simply match or repeat the same sequence(recommendations) from training logs
rather testing it on an unseen test set(as done in our experiments) shows that our
model has learned the task of recommending an optimal suffix given a partially
executed instance. Good performance on test set also shows that capability of
our model to generalise such that it can perform well on a wide variety of future
unseen process instances(that were missing from the training data).

4 Evaluation

In the following sections, we explain the experimental setup, we then describe the
datasets and pre-processing strategy used for evaluating our proposed approach
(Sect. 4.2 and 4.3). We motivate the choice of metrics and describe the baseline
methods. We finally present an explanation of model implementation (Sect. 4.4)
along with experimental results.

4.1 Datasets

We consider three datasets to evaluate our suffix recommendation engine, whose
description is as follows:

– Moodle Dataset: This dataset has been created from Moodle’s(e-learning
platform) issue tracking system. The issue tracking system collects bug
reports and allows developers to track the bug resolution process as an issue
goes through various development stages. The log contains 10,219 complete
processes in total with the number of events in each process ranging from 4 to
23. The preprocessing procedure results in about 32K training prefix/suffix
sequences and 8K prefix/suffix sequences. The number of event codes in Moo-
dle dataset is 23.
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– Financial Log: This log is based on BPI2012 challenge dataset but was pre-
processed(see description below) based on a time-based performance metric.
After pre-processing we are only left with good performing instances which
can be fed to the dataset. The Raw dataset containes about 13,087 cases. The
training and testing numbers are approximately 4.2K and 1K, respectively.
This dataset has 32 unique type of event codes.

– IT Incident Management Dataset: This is an anonymized data set
extracted from incident management system supporting an enterprise
resource planning (ERP) application. It contains 16,000 tickets(process
instances) of IT incident management processes. The log contains the life
cycle of a ticket. The ticket is opened by a customer. It is acknowledged typi-
cally by a team lead, then it gets assigned to a person working on it and after
some analysis and other changes, it gets closed. The group that solved the
ticket might not correctly resolve the issue. The log contains the name of the
last group that solved the ticket. After splitting, the Incident Mgmt. dataset
has about 26K training and 6.5K prefix/suffix sequences. This dataset has 32
unique type of event codes.

4.2 Pre-processing

We take each of these datasets and we split the logs into desirable and unde-
sirable instances (by using the performance of each instance against the stated
KPIs) and following the language modeling approach, only train our models
using desirable instances. In the Moodle dataset we filter the dataset, by apply-
ing a couple of pre-conditions such that each instance should have at least four
distinct states1 and no more than 25 state changes. An undesirable instance
examples are chosen with the assumption that bad process instances would shift
states back and forth a lot (e.g., issue being reopened multiple times is an Unde-
sirable instance). Hence if more than 25 state changes occur for a given issueID
then it would be labelled as an Undesirable instance. Similarly for BPI2012
financial log data we filter cases based on running time. Cases that started in
2012 were filtered out(about 49% because they are not likely to finish. Next,
we perform performance filtering using total time duration for each case. Cases
with a maximum duration of 1 day 19 h are considered desirable instances while
rest of them are labelled as Undesirable performing instances. Each process is
a sequence of events and each event is represented by a discrete symbol, which
is coded using the one-hot coding scheme introduced in Sect. 3.1. We randomly
divide all processes into 80% for training and 20% for testing. Then, we continue
splitting each process in the training and test sets into prefix sequence and suffix
sequence such that the minimum prefix length is 4.

4.3 Experimental Setup and Modeling

For all experiments, deep learning models are implemented in Tensorflow 1.3.0.
Optimizer is Adam [17] with learning rate of 0.001 and other default parameters.
1 https://docs.moodle.org/dev/Process.

https://docs.moodle.org/dev/Process
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Table 2 describes the hyper-parameter settings, as selected through trial and error.
To the best of our knowledge, there is no existing ML based technique for suffix rec-
ommendation that considers the problem of outcome based optimal path genera-
tion. Therefore, for comparison, we implement custom process-agnostic baselines.
For the datasets (Moodle, Financial Log and Incident Mgmt.), the baselines are
k-NN, and GRU. The k-NN presents a simple but powerful baseline for the case of
vector inputs. Thus it is of interest to see if it works well for sequence inputs as in
the case of process analytics. The LSTM, on the hand, has been the state-of-the-art
for this domain, as shown in recent work [9,31]. The GRU is a recent alternative to
LSTM, which has been shown to be equally effective in NLP tasks [4]. The k-NN
works by retrieving k most similar prefixes in the training data. Then suffix and
other desirable outcomes are computed from the same outcomes of those retrieved
cases. The recommendation is either the average of the retrieved outcomes (if con-
tinuous), or the most common outcome (if discrete).

Model Evaluation: Numerical evaluations with comparisons to baselines play
a central role when judging research for most recommender systems, therefore
we rely on baseline comparisons/benchmarks to evaluate the quality of recom-
mendations produced by our machinery. Our recommender system provides oper-
ational decision support for process users and on a higher level, performs util-
ity optimization. Gunawardana et al. [15] provide a survey of evaluation metrics
for recommender systems. They observe that the task of optimizing utilities is
by far the least explored recommendation task. Hence research/industry stan-
dard evaluation metrics do not exist for such task. Prescriptive machine learn-
ing models for such tasks are predominantly benchmarked by matching samples
against a reference solution (e.g. previously well-performing instances represent-
ing ground truth). In our case, we have picked Levenshtein distance metric because
it aptly summarizes accuracy/precision in terms of the closeness of recommended
sequences to the reference(desired) sequences in high-dimensional vector space. It
represents a degree of conformity of evaluated predictions to the true value and is
sensitive to differences in error rates, making it effective for judging the effective-
ness of our process-aware recommendation machinery. However, these distances
have a quadratic time complexity of the sequence length, which can be expensive
for long sequences. Hence we build a Trie over the training prefixes for fast retrieval.
In our experiments, we choose k to be 1 and 5. We append to the end of each com-
plete process a special token <END> signaling its termination. We train the GRU
in the same manner as training a language model [23], which is identical to next
activity prediction. After training, a test prefix will be fed to the GRU as prior con-
text and the model will continue recommending the next event step-by-step until
the <END> symbol is outputted. In our experiment, we use a hidden vector of
size 100 for both GRU and MANN methods.

4.4 Results and Discussion

For evaluation, we use the edit distance (Levenshtein distance) as it is a good indi-
cation of sequence similarity where deletion, insertion or substitution are avail-
able as in the case of business processes. To account for variable sequence lengths,
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we normalize this distance over the length of the longer sequence (between 2
sequences). Then, the final metric is calculated as the normalized edit similarity
that equals 1− normalized edit distance. Consequently, the predicted sequence is
good if its normalized edit similarity to the target sequence is high.

We observe in Table 1 that our MANN based mode outperforms the state
of the art LSTM model across all three datasets. The k-NN works surprisingly
well. However, it faces some difficulties in this problem of sequence-to-sequence
prediction. First, the prefixes can be slightly different but the suffices can differ
drastically, e.g., due to a single decisive event. Second, the k-NN does not capture
the continuation of a process, and thus suffices from similar instances do not
guarantee to be the right continuation. And third, for k > 1, there is no easy
way to combine multiple suffix sequences, which shows in the worse result than
the case k = 1.

Table 1. Suffix recommendation task: the average normalized edit similarity between
the target suffixes and the suffixes recommended by different models (higher is better).

Method Moodle fin log Inc Mgmt

5-NN 0.817 0.588 0.418

1-NN 0.840 0.631 0.432

GRU 0.875 0.559 0.454

LSTM 0.887 0.683 0.497

MANN 0.888 0.691 0.502

Table 2. MANN hyper-parameters. (*) no duplicate.

Hyper-parameters Moodle Financial log Incident Mgmt.

# memory slots 64 64 64

Memory slot size 100 64 100

Controller hidden dim 100 100 100

Since the authors in [31] shared, only public the code for the two-layer LSTMs
(one is shared-weight), we can only calculate the parameter size for this config-
uration, which is about 208K trainable parameters. It should be noted that the
best model configurations consisting of 3 or 4 layers may have even more than
that number of parameters. Our MANN, by contrast, is much simpler with two
one-layer controllers and an external memory hence has fewer parameters (less
than 125K). This suggests the ability of the external memory to compress and
capture essential information in order to perform better.

Taken together, the results achieved using MANNs demonstrate that our pro-
posed machinery is well-suited for solving both predictive and prescriptive moni-
toring tasks, with far fewer parameters. We also note that MANNs are relatively
new, and we expect that even better performance could be achieved with greater
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effort in devising encodings for process analytics problems. As well, we have been
able to position a range of process analytics problems to leverage future devel-
opments/improvements in MANNs. Our approach based on employing labelled
datasets should hopefully lead the community to ask a broader range of prescrip-
tive process analytics questions that could be solved using similar machinery as
discussed in this paper.

5 Related Work

Predictive business process monitoring is a family of techniques concerned
with predicting the future state, outcomes and behaviour of ongoing cases
of a business process [32]. Relevant to our work, the task of next activity
prediction and Process Path Prediction has been tackled by approaches like
state-transition models, hidden Markov models(HMM) and Probabilistic Finite
Automatons(PFA) models [2,3,19]. Tax et al. [31] point out that such approaches
are ’tailor-made for specific prediction tasks and not readily generalizable’.
Recently, Deep Learning methods such as LSTMs have shown an advantage
over such classical methods for making accurate predictions and solving various
predictive monitoring tasks [31]. Several survey papers have reviewed the liter-
ature on predictive process monitoring. e.g. Marquez-Chamorro et al. [22] and
Di Francescomarino et al. [7] classify the literature based on input data, clas-
sification algorithm and prediction target. Similarly, Teinemaa et al. [32] and
Verenich et al. [34] also survey the literature by covering various datasets, pro-
pose task definitions and provide benchmark comparison of recently proposed
algorithms. The output of Predictive business process monitoring techniques,
is just predictions. Predictions can be used as early warnings for taking risk
informed decisions but do not explicitly support answering of question like What
action should we take next to achieve a particular goal? and Why should we do
it? [21]. Compared to descriptive and predictive business analytics, prescrip-
tive process analytics remains less mature [8]. Marquez et al. [22] point out
that ‘little attention has been given to providing recommendations’. Instead of
providing specific action recommendations, literature on business process moni-
toring focuses on forecasting future process events(and outcomes) while leaving
the action implementation part to the subjective judgment of process users and
business decision makers [6]. Overall, prescriptive business process monitoring
techniques [5,14,28] have largely focused on recommending preventive actions
in order to support risk-informed decision making.

Eili et al. [8] provide a systematic review of Recommender Systems in Pro-
cess Mining and classify recommendation approaches as ‘pattern optimization’,
‘risk minimization’, or ‘metric-based’. They highlight the fact that compared
to descriptive and predictive business analytics, prescriptive process analytics
remains less mature [8]. Existing prescriptive business process monitoring tech-
niques [5,14,28] are used to recommend preventive actions in order to support
risk-informed decision making. To the best of our knowledge, the problem of rec-
ommending best path (representing sequence of activities leading to the process
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end), based on pre-defined KPIs hasn’t been addressed. Closely related to our
work, Weinzier et al. [35] consider problem of recommending next best actions
that lead to optimal outcomes. Their work however differs from ours, as their
technique relies on explicitly adding control-flow knowledge to their proposed
technique via formal process model and uses process simulations to verify and
filter the predictions of the trained predictive model. Similarly, Groger et al. [14]
introduce the concept of recommendation-based business process optimization
for data-driven process optimization. Their data-mining driven solution sup-
ports adaptive processes and recommends actions for next process step to take
for a given process instance in order to avoid performance deviation. Lastly,
Schobel et al. [28] propose a technique for early identification of diverging pro-
cesses that can support operational decision-making processes by for example
taking remedial actions as business processes unfold. Overall, prescriptive busi-
ness process monitoring techniques [5,14,28] are used to recommend preventive
actions in order to support risk-informed decision making. However, compared
to above mentioned work which focuses on early warning recommendations (e.g.
predicted metric deviation), our work focuses on best action recommendations
that maximize the likelihood of achieving desirable outcomes.

6 Conclusion

In this paper, we explored the application of recent advances in deep learning for
building a Process-Aware Recommender System. We investigated a specific type
of neural network known as the memory–augmented neural network (MANN) for
its applications in prescriptive process monitoring tasks. We adapted a recently
developed MANN architecture, namely the Differential Neural Computer [13]
and proposed several modifications to the default architecture. We performed
evaluations using three labelled datasets to show that our proposed approach
performs well on the task of suffix recommendation while taking cognisance of
the relevant KPIs. Our future work will involve investigating the behaviour of
MANNs on highly complex processes that involve multiple intermediate steps
and results, and devising ways to visualise how distant events are remembered
and linked together.
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Abstract. Uncertainty is an unavoidable factor in predictive business
process monitoring, especially in terms of remaining time prediction.
However, existing methods only give a precise time as the result, which
fails to consider and reveal the uncertainty of ongoing processes. As a
novel attempt to add quantified uncertainty into process monitoring, this
paper proposes a model that provides comprehensive predictive informa-
tion. Specifically, an interval-based time predictor is constructed to make
both an optimistic and a pessimistic forecast of the remaining time for
business processes. In addition, a clustering-based method is used to
extract trace patterns as prior knowledge to optimize interval predic-
tion. We investigate LSTM networks as an approach to construct qual-
ifying time intervals as well as different trace embedding and clustering
methods. Our model achieves acceptable results on real-life event logs
according to the measurement of coverage-width criterion.

Keywords: Business process monitoring · Interval-based remaining
time prediction · Trace clustering and prefix classification

1 Introduction

Predictive business process monitoring is a group of analytical techniques con-
ducted during the early execution of an ongoing business process, aiming to
forecast the future states or properties of a process and assess its performance
or reduce possible violations [22]. As an important sub-field of process mining,
predictive business process monitoring derives useful insights from historical data
and makes real-time predictions in order to ameliorate business processes [17].

Recent research has introduced machine learning and deep learning tech-
niques to the field of process monitoring. While machine learning algorithms
like decision trees are often combined with filter which extracts features from
business processes, deep learning methods tend to possess end-to-end structures
[2]. As business processes take place event after event, recurrent neural networks,
particularly the ones with a long short-term memory (LSTM) architecture, have
been applied to solve process monitoring problems due to their remarkable per-
formance in sequence modeling tasks [21].

Various methods have been proposed to predict the properties of business
processes, for instance, compliance violations [4], and next activity [21]. Of these
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Fig. 1. The comparison between point prediction and interval-based prediction. The
example originates from the dataset BPIC2012. The predictions are presented as day.

different kinds of prediction objectives, remaining time prediction offers an
important indicator of a process that enables process administrators to lower the
risk of a deadline violation and notifies customers of possible delays in advance.

Although a number of remaining time prediction models are proposed, they
all try to present a single point estimation of remaining time and neglect the
uncertainty of business process executions. There are many factors that lead to
uncertainty in the executions of a business process, which results in uncertainty
in relation to the remaining time. A business process often includes multiple
alternative execution paths whose execution time may be very different. It is
impossible to precisely know which path a process instance will follow at the
early phase. Moreover, the execution time of the same paths can still vary widely
due to workload and resource differences. Therefore, the remaining time for a
business process is uncertain in nature. Fortunately, this kind of uncertainty
decreases as the execution draws closer to termination and more information is
provided.

Consequently, an ‘interval’ prediction, in contrast to a ‘point’ prediction,
makes better sense. A time interval consists of a lower bound and an upper
bound, representing how much time the process will take to finish at the earliest
and the latest. As shown in Fig. 1, the point prediction gives either a shorter or a
longer remaining time. An optimistic prediction may lead to deadline violations
as well as the impatience of the applicants of the process. A pessimistic prediction
may lead to redundant resource allocation. On the contrary, an interval-based
prediction gives all the path probabilities and the corresponding time intervals.
The midpoint of the interval is basically as accurate as the point prediction. This
offers comprehensive information to interested stakeholders and enables them to
better allocate resources and manage time.

Therefore, the main purpose of this paper is to propose a model that can
predict the remaining time with an uncertainty degree. Instead of merely giv-
ing a point value, our model offers a more informative prediction result, i.e., a
remaining time interval. The main contributions of this paper are as follows:

– An interval-based remaining time prediction model is proposed, which brings
uncertainty into process monitoring tasks.



36 C. Wang and J. Cao

– A trace-based clustering and prefix-based classifier are combined with remain-
ing time prediction.

– A penalty-based loss function is designed to optimize the model.

The rest of this paper is organized as follows. Section 2 presents a summary
of the related work on time prediction of business processes and interval pre-
diction methods. Section 3 gives formal descriptions of the problem. Section 4
describes our proposed methods and the experimental assessments of our model
are presented in Sect. 5. Section 6 concludes our work.

2 Related Work

2.1 Remaining Time Prediction

Many approaches have been proposed for remaining time prediction for busi-
ness processes. State transition systems [1] and stochastic Petri nets [19]
are two major tools for process-aware information systems. Non-process-aware
approaches rely on machine learning algorithms [25] like regression trees [6]. Gen-
erally, traces are pre-processed before prediction models are applied on them.
The typical pre-processing step is clustering [7], through which similar traces
are grouped according to their control flow similarity so that a specified model
can be trained on the traces belonging to each group. However, most clustering-
based methods create trace clusters based on full traces and they are unable to
classify small fractions of traces of a business process into a correct category [26].

The performance of traditional machine learning methods heavily depends on
the features and the encoding of a trace is often conducted by manually selecting
features like special trace patterns. On the contrary, neural networks encode
raw data into feature representations of a higher level [2]. Complex network
structures like recurrent neural networks [9] have been explored given that events
in business processes are similar to words in natural language processing. RNNs
with an LSTM structure have been applied by Niek Tax [21] to predict the next
activity and the cycle time of activities. Existing predictive methods either give a
deadline violation warning or a specific predicted remaining time. Unfortunately,
the uncertainty of predicted information is not considered.

2.2 Interval Prediction Model

Uncertainty plays a problematic but important role in many scientific and engi-
neering problems. How to represent or quantify the randomness and uncertainty
in prediction modeling problems has become a critical task in recent times.
Neural networks are an effective way to quantify uncertainty by constructing
prediction intervals (PIs). PIs have been used in numerous applications such as
economics, medical statistics and renewable energy consumption [11].

Traditional prediction interval constructions such as the delta method [10]
often rely on assumptions of normally distributed and homogeneous uncertainty.



Interval-Based Remaining Time Prediction for Business Processes 37

Direct prediction interval construction methods provide a way to build PI regard-
less of distribution [3]. The lower and upper bound estimation (LUBE) method [13]
directly predicts the bounds of the interval through the neural network. A neural
network controls the quality of the interval by controlling coverage percentage and
width. Heuristic optimization methods like annealing are used but they become
incompetent as the networks become complex. Some researchers use a penalty-
based loss function for PI to apply a gradient-based optimization strategy [20].

3 Problem Formulation

3.1 Event Logs and Traces

Business process monitoring relies on event logs that record the events during
the execution of processes [23]. An event log consists of sequences of events called
traces. A complete trace corresponds to a case of a process. Every event possesses
a set of different attributes, among which three attributes must appear, namely
activity name, timestamp and case id. An activity name refers to the activity
the event executes. A corresponding timestamp specifies when the event occurs.
The case id indicates to which case the event belongs. With other event-wise or
case-wise attributes, an event is defined in Definition 1. Events with the same
case ID form a chronological sequence called a trace as shown in Definition 2.

Definition 1. An event is defined as e = (a, c, t, (d1, v1), ..., (dm, vm)), where a
is the activity name, c is case ID and t is the timestamp. (di, vi) represents an
attribute and its corresponding value. m is the total number of attributes.

Definition 2. A trace is defined as σ = [e1 , ..., en ], ei .c = ej .c,∀i , j ∈ [1, ...,n],
where ei, ej are the i-th and j -th events in the trace and ei.c represents the case
ID of ei.

Predictive business process monitoring makes predictions for ongoing traces
in which only a few events, the prefix of a trace (Definition 3), has taken place. A
prefix log (Definition 4) can be made from the original event log L. A predictive
model can learn the relation between the attributes of the prefixes and the future
states of the process.

Definition 3. A prefix is defined as prefix (σ, l) = [e1, ..., el], l ≤ |σ|, where l is
the length of the prefix and |σ| is the length of the complete trace.

Definition 4. A prefix log is defined as L∗ = prefix (σ, k) : σ ∈ L, 1 ≤ k ≤ |σ|,
where L is the complete event log.

3.2 Predictive Business Process Monitoring

A predictive process monitoring system [16] consists of two components, i.e.,
a trace processor and a predictor. We extend this structure by adding more
components so that it can fit our requirements. As shown in Fig. 2, historical
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Fig. 2. An overview of the framework.

traces are clustered based on their similarity. We predict the cluster to which an
ongoing trace belongs using a classifier, which is trained on the historical traces.
A remaining time interval predictor is trained on each cluster.

When a prefix is given, the classifier outputs the probabilities of the prefix
falling into different clusters. It is possible that some of the probabilities are simi-
lar [24], because, according to the information obtained so far, there is no strong
evidence to decide its suffix. As a result, multiple predictors for the possible
clusters give the upper and lower bounds of the remaining time.

3.3 Performance Evaluation of Interval Predictions

While point predictions can be assessed by metrics such as mean absolute error,
prediction intervals need other indicators to measure quality. An interval must
contain the true point value with a not-too-large width. Prediction Interval Cov-
erage Probability (PICP) [12] statistically calculates the calibration of PIs.

PICP =
1
n

n∑

i=1

ci, ci =
{

1, ti ∈ [yli, yui]
0, ti �∈ [yli, yui]

(1)

ti is the ground truth of the remaining time point value. yli and yui are the
lower and upper bound. Prediction interval normalized average width (PINAW )
[14] restricts the width:

PINAW =
1

Rn

n∑

i=1

(yui − yli) (2)

where R is the value range of our target. PINAW can be combined with PICP
to construct the coverage width-based criterion (CWC ) [14].

CWC = PINAW (1 + γ(PICP )eη(μ−PICP )) (3)

where,

γ(PICP) =
{

1, P ICP < μ
0, P ICP ≥ μ

(4)

η is a weight hyper-parameter and μ is the hyper-parameter that represents
the target confidence level. In addition, to compare interval prediction with time
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point values, the midpoint of an interval is chosen to represent the point value
prediction and we use mean absolute error to measure the accuracy.

MAE =
1
n

n∑

i=1

|yui + yli

2
− ti| (5)

4 Proposed Model

4.1 Trace Clustering and Prefix Classifier

Clustering approaches often use manually selected features like frequencies and
specific patterns. Also, the clusters are based on prefixes, leading to blindness
to the suffixes. In the sense that different traces take different paths and imply
different time-related properties, we directly divide the complete traces into dif-
ferent categories based on their similarity to the event sequences.

As the execution of business processes is analogous to the word flow in natural
language processing, sentence embedding skills can be applied to trace embed-
ding. Trace2Vec [5] is a successful adoption of Doc2Vec [15], which uses adjacent
words and paragraph IDs (events and case ID in our case) to generate an embed-
ding. The embedding vectors can be used by clustering algorithms like k-means
with the measurement of cosine similarity. To incorporate our objective, the
completion time of traces are concatenated to the vectors.

The clustering model is based on the complete historical traces, so it cannot
be applied to the classification of prefixes. An LSTM network is constructed
to classify ongoing traces into different clusters. Apart from the event sequence,
other attributes are used to help the multi-class prediction problem. The classifier
gives the probabilities of the clusters after a softmax calculation.

4.2 An Interval Prediction Model

The structure of the time prediction model includes an LSTM network with
several shared and independent layers referring to the methods in [21]. The
model directly gives the upper and lower bounds. The shared layers integrate the
information obtained from the embedded features, which helps multi-objective
learning. Batch normalization is used after each LSTM layer.

PICP makes gradient descent impossible, so a loss function based on an out-
of-bound penalty is designed. The loss function penalizes the model when the
upper bound is less than or the lower bound is greater than the true value. It
also penalizes intervals that exceed width expectations.

lower loss =
1
n

n∑

i=1

ReLU(yli − ti) (6)

upper loss =
1
n

n∑

i=1

ReLU(ti − yui) (7)
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width loss =
1
n

n∑

i=1

ReLU(|yui − yli| − wexp) (8)

MAE =
1
n

n∑

i=1

|yui + yli

2
− ti| (9)

where ti is the ground truth and yli and yui are the predicted lower and upper
bounds. ReLU is an activation function which only outputs positive input, i.e.

ReLU(x) =
{

x, x > 0
0, x ≤ 0 (10)

Fig. 3. How the loss function works.

The final loss function (Eq. 11) is a weighted combination. To emphasize the
importance of coverage probability, β2 and β3 are relatively greater. Figure 3
shows how the loss function controls the bounds [12] by reducing the width and
the difference between the midpoint and the ground truth while keeping the
truth within the interval.

loss = β1 ∗ MAE + β2 ∗ upper loss + β3 ∗ lower loss + β4 ∗ width loss (11)

where β1, β2, β3 and β4 are the hyper-parameters that control the predictions.

5 Experiments

5.1 Datasets

The Business Process Intelligence Challenge 2012 BPIC20121 is an event log
from the Dutch Financial Institute characterizing the application process for per-
sonal loans. The event log incorporates three intertwined sub-processes, namely
Application state changes, Offer state changes and Workflow events. In addi-
tion to the activity name and the timestamp, a case-wise attribute indicating
the requested amount of money and the resources of events are used as features.

1 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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Helpdesk. The dataset2 records the process of a ticketing management of an
Italian software company. Each case starts with a ticket insertion and ends with a
resolved issue or a closed ticket. Only activity name and timestamp are available.

The Business Process Intelligence Challenge 2015. BPIC20153 contains five
datasets provided by Dutch municipalities concerning the building permission
applications. Case-wise attributes include the type of the case, the responsible
actor and the cost of the application. The resources of the events are given.

Credit Requirement. The dataset4 records credit requirement processes in a
bank. The automatic or manual resources are given along with the timestamps.
In this dataset, all the event sequences are identical. As a result, clustering is
based merely on completion time.

Table 1. Basic information of datasets

Name Total cases Trace length Completion time Remaining time Activity types

BPIC2012a 13087 4.64± 1.88 8.08± 11.86 7.94± 11.73 10

BPIC2012o 5015 6.23± 3.17 17.17± 11.41 12.64± 12.02 7

BPIC2012w 9658 7.50± 7.28 11.39± 12.71 10.83± 11.95 6

Helpdesk 3804 3.60± 1.19 8.80± 11.00 5.51± 9.45 9

BPIC2015 1 1199 43.55± 16.98 95.72± 121.35 53.18± 94.96 398

BPIC2015 2 830 53.44± 19.75 160.49± 168.43 104.21± 133.29 410

BPIC2015 3 1409 42.36± 16.14 62.23± 97.61 26.89± 70.07 383

BPIC2015 4 1052 44.95± 14.89 116.91± 108.16 88.42± 88.71 356

BPIC2015 5 1156 51.11± 16.03 98.34± 108.19 59.76± 88.41 389

Credit 10035 8.00± 0.00 0.95± 0.85 0.44± 0.72 8

Basic information on the datasets is given in Table 1. Several intuitive time-
related features are added into the input including the duration between two
events, the elapsed time from the beginning, the time from midnight and week-
days [8,21]. One-hot vectors are used to represent categorical attributes such as
resources and numerical attributes are normalized by min-max normalization.

As prefixes which are too long slow down the training efficiency [25], we limit
the maximum lengths of the prefixes to be tested to 20, i.e.,

L∗ = prefix (σ, k) : σ ∈ L, 1 ≤ k ≤ min(|σ| − 1, 20) (12)

where, L is the complete event log. If a trace contains less than 20 events, all
other events except the one including the last event are used because the last
event represents the completeness of the case. In all the experiments, the first
80% of traces are used to generate a prefix log as the training set (20% of which
are used as the validation set), and the rest are used as the test set.
2 https://doi.org/10.17632/39bp3vv62t.1.
3 https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.
4 https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5.

https://doi.org/10.17632/39bp3vv62t.1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:453e8ad1-4df0-4511-a916-93f46a37a1b5
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5.2 Comparative Approaches and Settings

We compare our model with the time point prediction methods based on regres-
sion tree and XGBoost. The features are encoded by last state and aggrega-
tion encoding [25]. All the time-related features and the case-wise attributes are
included in the encoding. The ‘event’ and ‘resource’ attributes are encoded as
one-hot vector for last state encoding and are encoded by the counts of their
appearances for aggregation encoding. LSTM networks with the same number
of layers are also used for comparison. We apply linear regression to obtain a pre-
diction interval. The time since the last event and the time since the beginning
are used to train a multivariate linear regression model.

Table 2. Experiment settings

Name Value

Model settings lstm units [128, 128] or [128, 128, 64]

lstm dropout rate 0.3

Training configurations Optimization Nadam

Batch size 32

Initial learning rate 0.002

Machine learning methods are implemented by sklearn and LSTM-based
models are implemented on Keras. Other experiment settings are shown in
Table 2. The lists of units mean that there are corresponding numbers of units
on the same level of LSTM or dense layers. For instance, if a network has one
shared layer and one independent layer, the shared layer has 128 units and each
independent layer has 128 units. The width expectation wexp is set to 0.5, 0.5,
10, 0 for the datasets in the order above. The experiments are conducted on
i7-10510U CPU.

5.3 Results and Analysis

We first make sure that our proposed model and our optimization strategy can
effectively influence the time intervals. According to Fig. 4, while the MAE is
similar, doubling the weights of the out-of-bounds penalty leads to a significantly
higher PICP . Though the intervals become relatively wider, the predictions are
more reliable. Moreover, generally, combining shared layers with independent
layers is helpful to obtain intervals of a higher overall quality. Only the best
configurations are discussed in the following discussions.

As shown in Table 3, the accuracy of interval prediction is generally better
than traditional machine learning methods and is comparable to LSTM-based
point prediction. The prediction with an optimistic and pessimistic estimate
can allow stakeholders to observe the process more thoroughly and reduce the
impacts of wrong predictions. The results in Fig. 5 show that as the prefixes
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Table 3. Results without clustering

Dataset Predictor type configuration PICP(%) Width(days) MAE(days) CWC

BPIC2012a XGBoost agg – – 8.55 –

Point LSTM 3 – – 6.23 –

Linear – 80.00 33.08 8.99 0.36

Interval 2 + 1 1:10:10:1 87.10 25.81 10.21 0.28

BPIC2012o Tree agg – – 7.89 –

Point LSTM 3 – – 6.15 –

Linear – 80.00 29.48 8.31 0.33

Interval 2 + 1 1:10:10:1 76.48 21.64 8.13 0.49

BPIC2012w Tree ls – – 7.20 –

Point LSTM 2 – – 6.26 –

Linear – 80.00 30.96 7.79 0.34

Interval 2 + 1 1:10:10:1 88.82 23.70 6.70 0.26

Helpdesk XGBoost agg – – 7.80 –

Point LSTM 2 – – 6.63 –

Linear – 80.00 26.57 7.99 0.48

Interval 0+2 1:10:10:1 83.29 21.17 9.02 0.38

BPIC2015 1 XGBoost ls – – 58.15 –

Point LSTM 3 – – 52.43 –

Linear – 80.00 301.38 54.10 0.20

Interval 1 + 1 1:10:10:1 78.49 115.00 48.46 0.15

BPIC2015 2 Tree agg – – 93.62 –

Point LSTM 3 – – 96.99 –

Linear – 80.00 369.59 105.10 0.27

Interval 3 + 0 1:10:10:1 83.21 226.51 94.17 0.20

BPIC2015 3 XGBoost agg – – 23.18 –

Point LSTM 3 – – 20.80 –

linear – 80.00 211.04 32.23 0.14

Interval 3 + 0 1:10:10:1 88.16 69.14 26.01 0.04

BPIC2015 4 Tree agg – – 47.55 –

Point LSTM 3 – – 58.60 –

Linear – 80.00 276.29 46.54 0.30

Interval 2 + 1 1:10:10:1 91.55 191.97 48.45 0.13

BPIC2015 5 Tree ls – – 69.91 –

Point LSTM 3 – – 63.36 –

Linear – 80.00 252.56 69.88 0.19

Interval 1 + 1 1:10:10:1 71.64 122.65 64.88 0.19

Credit XGBoost ls – – 0.08 –

Point LSTM 2 – – 0.28 –

Linear – 80.00 1.69 0.41 0.34

Interval 1 + 2 1:10:10:1 89.42 0.86 0.31 0.17

‘tree’, ‘XGBoost’, and ‘linear’ refer to regression tree, xgboost, and linear regression respec-

tively. ‘agg’ and ‘ls’ refer to the aggregation and the last state encoding. ‘Point LSTM’ refers

to the LSTM point-prediction model with its number of layers. Only the best results of the

similar approaches are presented.
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Fig. 4. The results without clustering with different settings. The settings of layers are
given in the form of n + m where n and m are the numbers of the shared layers and the
independent layers. The ratio are in the order of MAE:upper bound:lower bound:width.

grow longer and the uncertainty in traces decreases, the accuracy of interval
prediction becomes closer to that of the point prediction. The valley of MAE (a
descent followed by an increase) is due to the finish of some short traces [25].

By fixing the target confidence level at 80%, we can compare the CWC
between our proposed model and linear regression. In general, our model offers
time intervals with higher quality according to CWC . As the width of prediction
intervals are less than twice the deviation in Table 1, the predictions are convinc-
ing. As shown in Fig. 5, the widths become smaller when the prefixes become
longer except when a part of the ongoing traces ends. PICPs are generally higher
than the target confidence level. At the beginning of the traces, the predictions
easily cover the ground truth by giving a wide interval. As the prefixes grow
longer, the model narrows down the intervals, leading to some out-of-bound pre-
dictions. PICP increases as the uncertainty gradually decreases. In addition, our
model performs the best when the traces are more balanced in length and traces
patterns according to the experiment results on BPIC2012w.

We also test the clustering-based interval prediction. The number of clusters
for k-means clustering is set to 5. The LSTM-based classifier consists of two
LSTM layers with 128 units. Three approaches are used to select the predictors:
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Fig. 5. The trend of criteria along the execution of traces.

max prob: The predictor from the cluster with the maximum probability given
by the classifier is selected.
all prob: The predictors are all used and the final evaluation is based on the
expectation of all the criteria and the absolute error.
prior : The designated cluster labels are used to evaluate the predictor with
prior path knowledge to see if the clustering methods can help the prediction,

Unfortunately, as useful interpretative features are difficult to obtain for the
classification task in the early stage [27], prefix classification based on trace clus-
tering is not effective enough to boost interval-based remaining time prediction.
This is reasonable, since at the early stage, it is not possible to know which
pattern a case should follow with insufficient information [18].

If the pattern is known, the interval-based model is confident enough to com-
press the interval and provides a more accurate prediction, compared to Table 3.
The disadvantage is a relatively lower coverage probability. This indicates that
the low accuracy of classification greatly restrains the overall performance of our
approach. However, the main purpose of trace clustering is that the prediction
can incorporate more information of uncertainty, which helps process workers
and users to undertake sufficient preparation by considering the probabilities of
different path choices and the corresponding time interval predictions.

Finally, we briefly discuss the time performance. The time of one training
epoch for LSTM networks is highly related to the dimension of the input and
the settings of layers (rangeing from 4 s/epoch for ‘helpdesk 2+0’ to 80 s/epoch
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Table 4. Quality of interval prediction based on trace clustering

Dataset Acc. Top2 Acc. Evaluation
method

PICP(%) Width (days) MAE (days)

BPIC2012a 54.21 59.20 max prob 51.45 6.76 6.89

all prob 43.66 11.52 10.52

prior 61.18 6.93 4.48

BPIC2012o 24.82 95.92 max prob 64.30 14.74 6.49

all prob 59.82 15.05 8.57

prior 71.43 14.67 5.97

BPIC2012w 12.66 23.26 max prob 71.95 18.73 7.78

all prob 70.62 19.12 8.04

prior 58.36 11.41 6.60

Helpdesk 69.77 76.04 max prob 61.59 7.26 6.97

all prob 51.46 9.54 9.38

prior 70.90 7.79 4.26

BPIC2015 1 49.08 73.18 max prob 72.54 113.50 60.38

all prob 72.09 116.77 59.71

prior 77.33 118.29 55.26

BPIC2015 2 34.50 54.22 max prob 63.37 206.22 114.60

all prob 61.97 206.32 116.94

prior 65.66 203.99 109.50

BPIC2015 3 71.42 90.06 max prob 79.20 60.97 28.17

all prob 78.21 62.05 28.59

prior 82.61 62.63 26.26

BPIC2015 4 34.96 54.45 max prob 69.79 161.55 65.53

all prob 63.25 151.20 67.72

prior 79.12 185.87 62.65

BPIC2015 5 41.49 72.75 max prob 57.33 93.09 62.64

all prob 55.96 132.62 79.99

prior 59.80 113.97 59.90

Credit 76.03 97.13 max prob 84.23 0.18 0.07

all prob 83.04 0.18 0.09

prior 94.89 0.18 0.03

for ‘BPIC2012w 0+3’). The epochs until convergence are relative to the input
features (e.g., 26 epochs for BPIC2012w and 148 for helpdesk on average). The
clustering is relatively less time-consuming (less than 20 s).

6 Conclusion

Our work is novel for incorporating and quantifying uncertainty in the remaining
time prediction for business processes. We mainly consider trace patterns and
time interval as two entry points of uncertainty in business process. Through
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trace clustering and interval estimation, our LSTM-based model is able to pro-
vide remaining time prediction with possible path branches. As the first attempt
at clustering-based interval prediction in this field, there are still some limita-
tions in our work. The structures of the prediction model and the embedding
approach of the traces can be improved. The classification of prefixes is not
satisfactory enough despite the fact that trace pattern is theoretically powerful
prior knowledge for predictive monitoring. How to use the trace patterns to the
greatest extent is worthy of further study.
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Abstract. Predictive process analytics uses advanced machine learning
techniques to accurately predict future states of running business pro-
cesses. Given the complexity of these predictive models, explainable AI
techniques are also required to enable informed decision-making. How-
ever, few studies evaluate the quality of explanations provided by exist-
ing methods to explain business process predictions. In this paper, we
attempt to evaluate the consistency of explanations produced for pro-
cess predictions by two popular explainable methods. We propose that
methods and metrics to assess feature selection algorithms can be used
to evaluate explanation stability. We use these metrics to assess expla-
nations produced by LIME and SHAP. Our findings indicate that expla-
nation stability may depend on dataset characteristics, feature construc-
tion methods and predictive model characteristics. In addition, we also
find that, though stable explanations are needed for informed decision-
making, unexpected behaviour in explanation stability can act as a diag-
nostic tool to determine model quality.

Keywords: Predictive process analytics · Explainable AI · Evaluation
metrics · Explanation stability

1 Introduction

Predictive process analytics (PPA) attempts to predict some future state of a
business process [6]. It uses event logs, which capture process execution data,
to train predictive models. As these models require advanced machine learning
algorithms to create accurate predictions, their internal workings are complex,
and thus opaque to a human audience. The research field of explainable AI
(XAI) provides methods to interpret these opaque, “black box” predictive mod-
els [3]. Recent studies in PPA have applied existing XAI methods to explain
process predictions [2,13] or evaluate process predictive models [11]. However,
few works have attempted to evaluate the quality of explanations generated by
these methods for process predictions.
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This has motivated us to conduct functionally-grounded evaluation, in which
some inherent property of the explanation is evaluated, without input from a
human user. Though such evaluations do not reveal the usefulness of the expla-
nation to humans, they are often an essential step in determining the fitness of
an explainable method to a dataset and context [1]. A key evaluation measure
is explanation stability, which is used to assess the consistency of explanations
generated for an opaque predictive model [15]. Few methods to measure stabil-
ity have been proposed in XAI literature, most of which are specific to a single
explainable method (such as in [15]), and do not enable comparison between
explainable methods. In addition, to the best of our knowledge, no studies have
attempted to evaluate explanation stability for process predictions.

In this paper, we aim to use methods and metrics from the field of feature
selection to evaluate explanation stability for business process predictions. The
evaluation focuses on the stability of local, post-hoc explanations, which are
provided to individual predictions by an explainable method after a predictive
model is trained. We apply the proposed metrics to LIME [10] and SHAP [5] in
the context of process predictions using real-life event logs.

Furthermore, since event log data is both temporal and case-based, exten-
sive feature construction methods are required to make this data machine read-
able [14]. Therefore, of particular interest in PPA are not only the dataset
and predictive model, but also feature construction techniques used. We aim to
understand how the characteristics of this pipeline affect explanation stability.
Hence, we design experiments by varying the event log datasets, feature con-
struction methods and classification algorithms used to train a business process
predictive model along the pipeline.

Thus, our contributions are two-fold. Firstly, we propose and demonstrate
that metrics to evaluate the stability of feature selection algorithms can be used
to evaluate the stability of explanations for tabular data such as event logs. Sec-
ondly, we apply these metrics to explanations of process predictions to determine
the PPA-specific characteristics that affect explanation stability, and in doing
so, derive insights into the use of explainable methods for PPA.

2 Background and Related Work

2.1 Process Execution Event Logs

Process execution event logs (or simply event logs) are a form of sequential data
in tabular format. During business process execution, information is recorded in
information systems in the form of event logs. Event log data include the activ-
ities that were undertaken (event), and the actors, systems and data involved
in each event. Events are linked to a particular execution of the process (pro-
cess instance or case) through some specific case identifier such as patient ID
or order ID. Events form the rows of an event log, in order of occurrence, and
attributes associated with an event (event attributes), such as case identifier,
actors participating in the event, event name or timestamp, form the columns.
These attributes may be static and unchanging over the course of the case, such
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as the case identifier, or dynamic, such as the timestamps of events. A trace is a
sequence of events for the same case, and prefixes are the features constructed
for each trace using both events and event attributes.

2.2 Explainable AI

The field of explainable AI (XAI) has arisen as a means to provide transparency
into otherwise opaque predictive models. Although more complex and sophis-
ticated predictive models may be more accurate, this internal complexity also
reduces the ability of human agents to understand their decision-making pro-
cesses, thus requiring interpretation [3]. In this work, we are interested in local,
post-hoc explanations – i.e. explanations provided to individual predictions or
small data neighbourhoods (local explanations) by explainable methods after
the predictive model is trained (post-hoc) [3]. A variety of explainable meth-
ods exist within this category, among which LIME and SHAP well-known and
popular. Both provide feature attribution explanations, wherein they determine
the contribution of each feature to the final outcome, though they use different
mechanisms to determine feature importance. LIME creates a surrogate model
to mimic the black box model’s behaviour within a particular data neighbour-
hood, and uses this surrogate model to determine local feature importance [10].
SHAP’s approach is based on game theory and attempts to identify the marginal
contribution of each feature to the final output of the predictive model for a sin-
gle instance [5].

2.3 Explainable Predictive Process Analytics

PPA attempts to predict a future state of process instances using prefixes. Com-
mon prediction targets in PPA include case outcome prediction, remaining time
prediction, next activity prediction and risk prediction, among others [6]. Given
the complexity of machine learning models needed for process predictions, as
well as the extensive processing required to extract algorithm-readable features
from event log data, process predictive models are highly opaque to human
agents [13]. Most attempts at explaining or refining process prediction black
boxes in literature have generally attempted to use existing post-hoc methods,
including LIME [11,13], SHAP [2,11] and Partial Dependence Plots, a method
to generate global explanations capturing the overall model behaviour [7].

2.4 Evaluating Explanation Stability

Explanation stability measures the consistency of explanations generated for
identical or similar instances in the data [15]. Since explainable methods attempt
to provide insight into otherwise “black box” models, the provided explanations
must be reliable. But, when the explainable method is subject to randomness,
there may be variations in the explanation, calling its reliability into question [4].
Though stability metrics have been proposed for post-hoc explainable methods,
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these are often specific to a particular explainable method (for example, the
metrics proposed in [15] for LIME).

We propose that measures and metrics to assess the stability of feature selec-
tion algorithms can be adapted for explainable methods. Feature selection algo-
rithms are used to reduce the dimensions of high-dimensional datasets by deter-
mining feature relevance [9]. The outputs of these algorithms – feature subsets,
feature rankings or quantification of feature relevance [8] – are similar to fea-
ture attribution explanations. Thus, we suggest that approaches and metrics to
evaluate feature selection algorithms can be applied in XAI, particularly when
evaluating feature attribution explanations.

3 Methods and Metrics

3.1 Evaluation Method

We propose an approach to evaluate the stability of explanations generated by
post-hoc explainable methods for business process predictions. Figure 1 depicts
an overview of this approach, as well as the standard workflow for building
process predictive models using machine learning algorithms [14].

Fig. 1. Approach for evaluating explanation stability for process predictions

Firstly, prefixes are extracted for each trace in the event log, then grouped
into buckets based on their similarities, such as length or last completed event.
The prefixes in each bucket are then encoded into algorithm-readable feature
vectors of equal length, and one model is trained per bucket. Once the predic-
tive model/s have been created, local explanations are generated using post-hoc
explainable methods for a sample of data. The sample of data for evaluating
stability are randomly chosen, primarily from the testing set, but also from the
training set when the testing set is small. Around 50 samples are chosen at each
prefix length used, though fewer were chosen for the smaller datasets.

During evaluation, we measure the stability of the subset of most important
features (stability by subset) and the stability of weights applied to each feature
(stability by weight). Ten explanations are generated for each instance in the
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sample of data used for evaluation (i.e. M = 10 for each instance, see Eqs. 1
and 2 in Sect. 3.2). This follows the general approach in [15], where the stability
of variables used by LIME’s surrogate models, and the coefficients applied to
them, were measured across 10 surrogate models.

We do not specify a certain number of features to measure stability by subset.
Rather, we use the features with feature weights that fall into the top quartile
of the feature weight distribution. For example, if the feature weights in an
explanation range from 0 to 1, only features with feature weights greater than
0.75 are used to evaluate stability by subset (see Eq. 1). Stability by weight is
evaluated using the weights for all features (see Eq. 2).

3.2 Evaluation Metrics

We propose two explanation stability evaluation metrics. Both are applied to test
explanation stability for a single instance, but can be averaged out to understand
stability at the dataset level.

Stability by Subset. This metric was proposed in [9] to determine the stability
of feature selection algorithms, based on the presence or absence of each feature
across a number of feature subsets. We calculate the stability of feature subsets
(φ(Z)) for a single process instance in an event log as follows:

φ(Z) = 1 −
1
d

∑d
i=1 s2fi

k
d (1 − k

d )
(1)

where:

– d = number of features encoded from event attributes in the log
– M = number of explanations generated for the process instance
– Z = binary matrix of size M x d. Each row of the binary matrix represents a

feature subset from a single explanation, where a 1 at the ith position means
feature fi is among the most relevant and a 0 means it is not.

– k = number of most relevant features, where relevance or level of importance
is determined by an explanation generated for the process instance, for a
single explanation

– k = average of k across all M explanations for the process instance
– s2fi = sample variance of the presence of feature fi across all M explanations

for the process instance (i.e. the the variance of column i in Z)

This measure is bounded between 0 and 1, where 0 indicates no similarity in the
feature subsets, and 1 indicates that all subsets are identical.

Stability by Weight. Pearson’s correlation coefficient is generally used to mea-
sure stability of feature weights in feature selection algorithms [8], but this mea-
sures the similarity of trendlines and does not calculate the degree by which a
feature’s weight may vary. As such, we specify the measure stability by weight
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– adapted from the statistical measure of relative variance – and calculate the
stability of feature weights (φ(W)) for a single process instance in an event log
as follows:

φ(W) = 1 − 1
d

d∑

i=1

σ2
wi

|μwi
| (2)

where:

– d = number of features encoded from event attributes in the log
– M = number of explanations generated for the process instance
– W = matrix of size M x d. Each row of the matrix records the weight of each

feature as quantified by a single explanation
– μwi

= mean of the weights of feature fi across all M explanations for the
process instance (i.e. the mean of column i in W)

– σ2
wi

= variance of the weights of feature fi across all M explanations for the
process instance (i.e. the variance of column i in W)

This measure also has an upper bound of 1 (indicating perfect stability), but no
lower bound. The suitability of these metrics will be assessed through comparison
to previous results in literature and known behaviours of the explainable methods
used.

4 Experimental Design

4.1 Predictive Models

The chosen prediction target for the experiments was the process outcome. This
is a common prediction problem in PPA and a typical example of a classifica-
tion problem. Two algorithms were used to create the predictive models. One
is XGBoost which generally produces the most accurate models for outcome-
oriented prediction [14]. Given that an aim of this work was to understand the
effects of predictive model on explanation stability, a second prediction algorithm
of different characteristics was also chosen. Logistic regression (Logit) is simpler
in comparison to the significantly more complex models created by XGBoost,
but generally produces less accurate models for outcome prediction.

Three combinations of bucketing and encoding were used to construct fea-
tures when creating the classifiers:

– Aggregate encoding for dynamic attributes with prefix-length bucketing
– Index-based encoding for dynamic attributes with prefix-length bucketing
– Aggregate encoding for dynamic attributes compiled in a single bucket

In the single bucketing method, all data is compiled as one and a single
classifier is trained on this bucket. When prefix-length bucketing is used, data is
grouped based on the number of activities that have already been completed in
a process instance (the prefix length), and one model is trained for each bucket.

Three different types of encoding are used. Static encoding, where numeric
attributes are used as-is and categorical attributes are one-hot encoded, was
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applied to static attributes in all combinations of bucketing and encoding. Aggre-
gate and index-based encoding were applied for dynamic attributes. Aggregate
encoding summarises each case, with a single feature indicating frequency of
occurrence for each categorical attribute and four features (mean, maximum,
minimum and standard deviation) for each numeric attribute. If index-based
encoding is used, numeric attributes are encoded as-is and categorical attributes
are one-hot encoded at each index (prefix in the process trace). As such, out
of the three methods used, combining prefix-length bucketing with index-based
encoding best preserves the temporal information in event logs, while using single
buckets with aggregate encoding preserves the least.

Two explainable methods are evaluated in this work. SHAP and LIME, two
popular post-hoc interpretation methods, were chosen given their relative pop-
ularity in explaining process predictions [2,11,13].

We will assess the suitability of the described metrics based on past stability
evaluation results in literature. Instability is a known issue of LIME. To generate
instances to train the surrogate model, LIME randomly samples the neighbour-
hood of the input instance to derive a set of perturbed inputs [10]. This random
sampling results in a different set of perturbed instances for every explanation,
and so the surrogate model and the resulting explanation lack stability, a problem
compounded as the length of the input increases [12]. On the other hand, SHAP
optimises the interpretation mechanism for certain categories of predictive models,
such that they examine the model directly [5]. We will use two such optimisations
(TreeSHAP and LinearSHAP). The lack of randomisation in the interpretation
mechanism should result in little to no instability in the explanation. Therefore,
the metrics can be judged to be appropriate if the following are observed:

1. LIME’s explanations will become more unstable as the length of the input
increases; and

2. SHAP’s explanations show little to no instability.

4.2 Datasets

We use three open-source, real-life event logs. Each event log is from a different
domain and has different characteristics (see Table 1 for summary of the three
event logs used).

The Production dataset1 is derived from a manufacturing process. This event
log has the fewest cases and the shortest traces out of the three event logs. When
using this dataset, we attempt to predict whether at least one work order in the
case will be rejected (which occurs in around 55% of cases). This dataset also
has a substantial number of attributes, more dynamic that static.

The Sepsis Cases dataset2 records patients’ journeys in a hospital. Using this
dataset, we attempt to predict whether a patient returns to the ER within 14
days of discharge, which only 16% do. As such, this dataset was balanced through
down-sampling before model training. This dataset also contains a relatively

1 https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399.
2 https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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Table 1. A summary of statistics of three event log datasets

Event log Production Sepsis cases BPIC2012

Description A manufacturing
process

Hospital event log
showing sepsis cases

Loan application
process

No. of cases (before prefix extraction) 220 782 4,685

Proportion of positive cases 55.0% 16.0% 53.4%

Maximum prefix length 23 29 40

Prefix lengths used 1–20 1–20 1–20

Feature vector
length

Single bucket &
aggregate encoding

166 272 133

Prefix-length buckets &
aggregate encoding

Min: 144
Max: 164

Min: 175
Max: 212

Min: 43
Max: 133

Prefix-length buckets &
index-based encoding

Min: 110
Max: 964

Min: 146
Max: 495

Min: 11
Max: 1257

large number of static attributes, but fewer dynamic attributes, so it produces
comparatively longer feature vectors when using aggregate encoding, but shorter
feature vectors at higher prefix lengths when using index-based encoding.

The BPIC2012 event log3 follows a loan process. When using this event log,
we attempt to predict whether the loan application is accepted (roughly 53%
are rejected). This event log only has one static attribute and several dynamic
attributes for each event. As such, it will have comparatively short feature vectors
when using aggregate encoding, but comparatively long feature vectors at higher
prefix lengths when using index-based encoding.

As a summary, each combination of the above bucketing methods, encod-
ing methods, predictive models and explainable methods are evaluated for each
dataset. Only a maximum of 20 prefixes are used to train and explain a predic-
tive model. Each event log was split into training and testing sets (80-20 ratio)
prior to feature construction. The split was temporal, such that the cases that
finished the earliest were used for model training and the remaining 20% was
used as the testing set.

All relevant code associated with the experiments, including the feature con-
struction methods, hyperparamter optimisation, model training and explanation
generation and evaluation, are available at https://git.io/Jc9Az.

5 Results and Analysis

5.1 Results and Observations

For SHAP, all experiments return 1.0000 for each stability metric. It is by far the
more stable explainable method, both by subset and by weight, producing per-
fectly stable explanations regardless of the dataset, feature construction methods
or classification algorithm used. On the other hand, LIME’s stability was more
variable, and often poor (see Tables 2 and 3).
3 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

https://git.io/Jc9Az
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
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Table 2. Stability by Subset results for LIME (averaged over the dataset)

Classifier Data encoding Production Sepsis cases BPIC2012

XGBoost Single bucket & aggregate encoding 0.3959 0.2166 0.8135

Prefix-length buckets & aggregate encoding 0.6660 0.4067 0.3790

Prefix-length buckets & index-based encoding 0.5010 0.3520 0.1987

Logit Single bucket & aggregate encoding 0.8417 0.7260 0.8734

Prefix-length buckets & aggregate encoding 0.9789 0.7906 0.8155

Prefix-length buckets & index-based encoding 0.8124 0.7977 0.6598

Table 3. Stability by Weight Results for LIME (averaged over the dataset)

Classifier Data encoding Production Sepsis cases BPIC2012

XGBoost Single bucket & aggregate encoding 0.5507 −0.2961 0.5415

Prefix-length buckets & aggregate encoding 0.5682 0.4694 0.4722

Prefix-Length buckets & index-based encoding 0.2668 0.1595 −0.1645

Logit Single bucket & aggregate encoding −0.0825 0.6926 0.9687

Prefix-length buckets & aggregate encoding 0.9751 0.7915 0.9450

Prefix-length buckets & index-based encoding 0.9415 0.8177 −0.1644

The combination of prefix-length bucketing and index-based encoding gen-
erally seems to produce the most unstable explanations when using LIME to
explain predictions from the BPIC2012 and Production datasets. Using single
buckets with aggregate encoding produced the least stable explanations for the
Sepsis Cases dataset. The most stable combination varied between the three
datasets. The most stable explanations were produced for the Production data
set when using prefix-length bucketing with aggregate encoding, but when using
single buckets and aggregate encoding for the BPIC2012 dataset.

5.2 Analysis and Findings

Finding 1: Causes of Instability. The returned results are as expected. SHAP
is perfectly stable, while LIME shows instability. We further unfold the results
for LIME by visualising the stability of explanations for each instance. Instability
is closely linked to prefix length and can be seen to increase as the size of the
input feature vector increases. This is apparent, both when comparing results
across different bucketing and encoding methods for the same dataset and when
comparing results between datasets.

For example, we unfold and examine explanation stability for the BPIC 2012
dataset in Fig. 2 and Fig. 3. When using single buckets with aggregate encoding,
where the input size remains consistent, stability is also consistent (Fig. 2(a) and
(d)). However, in Fig. 2(c) and (f), the results for prefix-length bucketing with
index-based encoding indicate a general downward trend in stability as the prefix
length increases. When considering the feature vector lengths, rather than the
prefix length (Fig. 3(b) and (d)), it becomes clear that this downward trend is
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(a) Single Bucket, Aggregate
Encoding, XGBoost

(b) Prefix-Length Buckets, Aggregate
Encoding, XGBoost

(c) Prefix-Length Buckets, Index-Based
Encoding, XGBoost

(d) Single Bucket, Aggregate
Encoding, Logit

(e) Prefix-Length Buckets, Aggregate
Encoding, Logit

(f) Prefix-Length Buckets, Index-Based
Encoding, Logit

Fig. 2. The stability by subset at each prefix length for LIME using BPIC2012. Stability
seems related to prefix length when using prefix-length bucketing.

related to the length of the input. As such, the metrics used can be judged to
be suitable.
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(a) Prefix-Length Buckets, Aggregate
Encoding, XGBoost

(b) Prefix-Length Buckets, Index-Based
Encoding, XGBoost

(c) Prefix-Length Buckets, Aggregate
Encoding, Logit

(d) Prefix-Length Buckets, Index-Based
Encoding, Logit

Fig. 3. The stability by subset at different feature vector lengths for LIME using
BPIC2012. Stability generally decreases as the number of features increase.

This relationship between input length and LIME stability is also true
to some degree when using prefix-length bucketing with aggregate encoding
(Fig. 3(a) and (c)). However, there are spikes in stability at certain prefix lengths
when using this bucketing-encoding combination. This notably occurs at bucket
14 when using XGBoost (Fig. 2(b)) and at buckets 2, 5, 6, and 8 when using
Logit (Fig. 2(e)), where stability does not follow the described trend. This is
likely because a number of “empty” explanations with no feature attribution –
where the feature weights of all features were 0 – were produced by LIME where
these spikes occurred (see Fig. 4(a) and (b)).

Finding 2: Non-attributive Explanations. Non-attributive explanations,
as described above, were seen in explanations for all datasets. They were pri-
marily produced by LIME, and were extremely rare in SHAP, and occurred only
when prefix-length bucketing and aggregate encoding were both used. When all
explanations produced for an instance were empty, explanation stability was con-
sidered to be perfect. As such, in buckets where a large proportion of consistently
empty explanations were produced, there was a noticeable spike in stability.
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(a) Prefix-Length Buckets, Aggregate
Encoding, XGBoost

(b) Prefix-Length Buckets, Aggregate
Encoding, Logit

(c) Prefix-Length Buckets, Aggregate
Encoding, XGBoost

(d) Prefix-Length Buckets, Aggregate
Encoding, Logit

Fig. 4. The number of non-attributive, “empty” explanations generated for BPIC2012
(a and b) and its relationship to accuracy (c and d).

A closer investigation of this phenomena suggests that non-attributive expla-
nations occur when model accuracy is poor. Many buckets with a high propor-
tion of empty explanations also had a predictive model with a poor F1-score. For
example, when using the BPIC2012 dataset, the XGBoost model at bucket 14
and the Logit model at bucket 2 both had F1-scores of 0, and all explanations
produced for these buckets were non-attributive (see Fig. 4(c) and (d)). This
also occurred when accuracy is reasonably high, but the model predicted only
a single class for all or a majority of instances. This was the case for the Logit
models at buckets 2 and 5 for the BPIC2012 dataset.

Therefore, non-attributive explanations for these classifiers is likely due to
model underfitting. A simpler, underfit predictive model can be more easily
mimicked by LIME’s surrogate models than a more complex, well-fit model.
Moreover, in classifiers where only a single class is predicted regardless of the
input, any surrogate models produced will also disregard features. As such, when
multiple explanations are created, the resulting surrogate models are identical
or similar enough to ensure explanation stability.
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(a) Comparison to Stability by Subset (b) Comparison to Model Accuracy

(c) Comparison to Predictions Made

Fig. 5. A large proportion of non-attributive explanations when for the Production
dataset when using Logit with using prefix-length bucketing and aggregate encoding
(a), which is not related to model accuracy (b) or prediction accuracy (c).

Finding 3: Effect of Data on Non-attributive Explanations. A notable
exception to this trend of non-attributive explanations, both when explaining
XGBoost models and when explaining Logit models, is the Production dataset.
When explaining XGBoost models, there were no non-attributive explanations
generated, though some classifiers have poor quality or predict only a single class.
However, when explaining Logit, explanations provided for around 60% of cases
are non-attributive (Fig. 5(a)), though the accuracy of the predictive models are
high (Fig. 5(b)), and no classifier predicts primarily a single class (Fig. 5(c)). This
indicates that other underlying causes for non-attributive explanations also exist,
though they are not immediately apparent. This also occurred in other datasets
to a lesser degree. For example, the Logit model for bucket 6 of the BPIC2012
dataset had an F1-Score of 0.62 and a 0.4:0.6 ratio for the predicted class, but
all explanations generated for this model were non-attributive.

It is likely that this anomalous behaviour is related to some characteristic of
the Production dataset. Out of the three event logs used, Production has fewest
events and cases, the shortest traces and a significant number of trace variants
in comparison to the number of cases. Some form of one of these may also
be present in the data used in other buckets where these exceptions occurred.
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Further investigations using other datasets in needed to fully understand the
causes of non-attributive explanations.

Finding 4: Effect of Feature Construction Methods on Non-attributive
Explanations. We deem it to be significant that empty explanations have so
far occurred only when using prefix-length bucketing with aggregate encoding.
Prefix-length bucketing aims to preserve the temporal nature of business pro-
cesses by sorting data based on the number of events that have occurred in the
process. However, aggregate encoding is more “lossy” and preserves little of the
temporal information in the event log. Firstly, although prefix-length bucketing
groups cases based on events completed, this does not imply homogeneity in the
traces within each bucket. If there are several variants of traces in each bucket,
It is possible that this and the sparsity of data in each bucket, caused by lack of
cases and use of aggregate encoding, creates poorly-fitting models.

Finding 5: Use of LIME and SHAP in PPA. It is also interesting to
note that SHAP rarely provided non-attributive explanations, even when the
predictive model did not appear to use any of the features in the input – that
is, where the predictive model always returned the same prediction regardless
of input. Given that non-attributive explanations generally appeared to indicate
some problem in the underlying predictive model, this is significant. SHAP’s
stability and consistency may make it more suited to enable end user decision-
making in PPA. However, LIME may be of more use to software engineers and
data scientists in attempting to inspect and diagnose problems in the underlying
process predictive models.

6 Limitations and Future Work

Past evaluations of bucketing and encoding methods and supervised machine
learning models for PPA have considered their effects only on prediction accu-
racy [14]. However, the findings in this work emphasise the importance of the
quality of explanations generated by explainable methods for machine learned
process predictions. Our study also suggests that predictive model design in
PPA must consider not only prediction accuracy but also compatibility with
explainable methods. To this end, more extensive benchmarks are required to
understand the effects of various configurations and methods used to design
predictive models, as well as dataset characteristics, on explanation quality in
addition to prediction accuracy.

We can be assured of the applicability of the described approach and the met-
rics in Sect. 3 for feature attribution explanations as they measure the stability
of the output, i.e. the explanation. While the interpretation mechanism may
vary across explainable methods, a feature attribution explanation will always
produce a list or ranking of features, and weights associated with features. Thus,
we measure the stability of these two outputs.
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Future work should also consider the stability of other classes of explainable
methods. The two methods evaluated in this work are both feature attribution
methods, though they use different underlying mechanisms and approaches to
generating explanations. Explainable methods of other classes, such as rule-based
explanations, also connect features to the output. Thus, we suggest that stabil-
ity by subset can also be assessed in explainable methods of classes other than
feature attribution. However, this does not necessarily cover all possible aspects
of the explanation in these classes. For example, the stability of the full predi-
cates, not just features used, in rule-based explanations. As such, other classes
of explainable methods, using different approaches and mechanisms of interpre-
tation should also be considered in future works, as should a wider range of
predictive models (e.g., those based on deep neural networks).

7 Conclusion

Post-hoc explainable methods are gaining popularity as a means of improving the
transparency of process predictive models. However, the fitness of these meth-
ods for predictive process analytics is as yet unclear. In this work, we evaluated
one aspect of explanation quality: explanation stability. We draw on research
fields outside of both PPA and XAI to derive the relevant methods and metrics
required for evaluation. Our result suggests that explanation stability is depen-
dent on the characteristics of both the datasets and predictive models. We also
find that, though stability may be important in supporting end-user decision-
making, unexpected behaviour in explanation stability can also be useful as a
diagnostic tool in determining model quality. Hence, we suggest that the choice
of feature construction methods and predictive models should consider both
prediction accuracy and explainable method compatibility, and as such, more
extensive evaluations are required to identify suitable configurations for both.
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Abstract. Robotic Process Automation (RPA) is an emerging technol-
ogy that relies on software (SW) robots to automate intensive and repeti-
tive tasks (i.e., routines) performed by human users on the application’s
User Interface (UI) of their computer systems. RPA tools are able to
capture in dedicated UI logs the execution of many routines of inter-
est. A UI log consists of user actions that are mixed in some order that
reflects the particular order of their execution by the user, thus poten-
tially belonging to different routines. In the RPA literature, the challenge
to understand which user actions contribute to which routines and clus-
ter them into well-bounded routine traces is known as segmentation. In
this paper, we present a novel approach to the discovery of routine traces
from unsegmented UI logs, which relies on: (i) a frequent-pattern iden-
tification technique to automatically derive the routine behaviors (a.k.a.
routine segments) as recorded into a UI log, (ii) a human-in-the-loop
interaction to filter out those segments not allowed (i.e., wrongly discov-
ered from the UI log) by any real-world routine under analysis, and (iii)
a trace alignment technique to cluster all those user actions belonging to
a specific segment into routine traces. We evaluate our approach showing
its effectiveness in terms of supported segmentation variants.

1 Introduction

Robotic Process Automation (RPA) [1] is an emerging technology in the field
of Business Process Management (BPM) that relies on software (SW) robots to
automate intensive and repetitive tasks (in the following, called routines) per-
formed by human users on the application’s User Interface (UI) of their computer
systems. Similarly to traditional BPM Systems (BPMSs), RPA tools are able to
act as effective service orchestrators, but without the need of performing the
manual configuration steps required by whatever BPMS to run a process, e.g.,
the definition of specific business rules, the association of resources to the process
activities, etc. Since many routine tasks can be implemented through scripting
or intelligent recording techniques, RPA projects typically involve comparably
little cost than traditional BPM projects [1]. Overall, the target of existing RPA
tools is to boost the productivity of organizations by reducing manual labor
while improving the operational quality and reducing user input errors.

To take full advantage of this technology, organizations leverage the support
of skilled human experts that: (i) preliminarily observe how routines are executed
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 65–80, 2021.
https://doi.org/10.1007/978-3-030-91431-8_5
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on the UI of the involved SW applications (by means of walkthroughs, etc.), (ii)
convert such observations in explicit flowchart diagrams, which are specified to
depict all the potential behaviors (i.e., segments) of the routines of interest, and
(iii) finally implement the SW robots that automate the routines enactment on
a target computer system. However, the current practice is time-consuming and
error-prone, as it strongly relies on the ability of human experts to correctly
interpret the routines to automate [14]. Consequently, if SW robots are not
designed for the appropriate scope of their work, then their implementation cost
will increase while no clear business improvement effect will be achieved [13].

To tackle this challenge, in their Robotic Process Mining framework [16],
Leno et al. propose to exploit the User Interface (UI) logs recorded by RPA tools
to automatically discover the candidate routines that can be later automated
with SW robots. UI logs are sequential data of user actions performed on the
UI of a computer system during many routines’ executions. Typical user actions
are: opening a file, selecting/copying a field in a form or a cell in a spreadsheet,
read and write from/to databases, open emails and attachments, etc.

To date, when considering state-of-the-art RPA technology, it is evident that
the RPA tools available in the market are not able to learn how to automate
routines by only interpreting the user actions stored into UI logs [3]. The main
trouble is that in a UI log there is not an exact 1:1 mapping among a recorded
user action and the specific routine segment it belongs to. In fact, the UI log
usually records information about several routines whose actions are mixed in
some order that reflects the particular order of their execution by the user. The
issue to automatically understand which user actions contribute to a particular
routine segment inside a UI log and cluster them into well-bounded routine traces
(i.e., complete execution instances of a routine) is known as segmentation [3,16].

The majority of state-of-the-art segmentation approaches are able to properly
extract routine segments (i.e., repeated routine behaviors) from unsegmented UI
logs when the routine executions are not interleaved from each others. Only few
works are able to partially untangle unsegmented UI logs consisting of many
interleaved routines executions, but with the assumption that any routine pro-
vides its own, separate universe of user actions. This is a relevant limitation, since
it is quite common that real-world routines may share the same user actions (e.g.,
copy and paste data across cells of a spreadsheet) to achieve their objectives.

In this paper, we propose a novel approach to the segmentation of UI logs
that aims to mitigate the aforementioned issue showing its effectiveness in terms
of supported segmentation variants. The approach relies on three key ingredients:

1. a frequent-pattern identification technique to automatically discover the
observed segments of the routines as recorded into the UI log. In this phase,
the risk exists that some wrong segments are discovered, i.e., not allowed from
the real-world routines that are known to be valid at the outset.

2. a human-in-the-loop interaction that enables human experts to visualize the
declarative constraints inferred by the discovered routine segments. Such con-
straints describe the temporally extended relations between user actions that
must be satisfied throughout a routine segment (e.g., an action a1 must be
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eventually followed by an action a2). In a nutshell, they collectively deter-
mine the observed behaviors of the routine segments from the UI log. This
knowledge allows human experts to identify and remove those constraints that
should not be compliant with any real-world routine behavior, thus filtering
out the not valid (i.e., wrongly discovered) routine segments;

3. a trace alignment technique to cluster all the user actions associated to a valid
routine segment into well-bounded routine traces.

We show the feasibility of our approach by employing a dataset of 144 syn-
thetic UI logs covering different segmentation cases to measure to what extent
the approach is able to (re)discover the valid routine segments from such UI logs.

The rest of the paper is organized as follows. Section 2 introduces a running
example that will be used to explain our approach, and discusses the relevant
background on the segmentation of UI logs with all its potential variants. In
Sect. 3, we present the details of our approach to the automated segmentation
of UI logs. Section 4 evaluates the feasibility of the proposed approach against
synthetic UI logs. Finally, Sect. 5 discusses the novelty of our approach against
literature works, while Sect. 6 draws conclusions, traces future works and outlines
a critical discussion about the general applicability of the approach.

2 Background

2.1 Running Example

In this section, we describe a RPA use case inspired by a real-life scenario
at Department of Computer, Control and Management Engineering (DIAG)
of Sapienza Università di Roma. The scenario concerns the filling of the travel
authorization request form made by personnel of DIAG for travel requiring prior
approval. The request applicant must fill a well-structured Excel spreadsheet (cf.
Fig. 1(a)) providing some personal information, such as her/his bio-data and the
email address, together with further information related to the travel, including
the destination, the starting/ending date/time, the means of transport to be
used, the travel purpose, and the envisioned amount of travel expenses, asso-
ciated with the possibility to request an anticipation of the expenses already
incurred (e.g., to request in advance a visa). When ready, the spreadsheet is
sent via email to an employee of the Administration Office of DIAG, which is in
charge of approving and elaborating the request. Concretely, for each row in the
spreadsheet, the employee manually copies every cell in that row and pastes that
into the corresponding text field in a dedicated Google form (cf. Fig. 1(b)), acces-
sible just by the Administration staff. Once the data transfer for a given travel
authorization request has been completed, the employee presses the “Submit”
button to submit the data into an internal database.

In addition, if the request applicant declares that s/he would like to use
her/his personal car as one of the means of transport for the travel, then s/he
has to fill a dedicated web form required for activating a special insurance for the
part of the travel that will be performed with the car. This further request will



68 S. Agostinelli et al.

(a) Excel spreadsheet (b) Google form

Fig. 1. UIs involved in the use case

be delivered to the Administration staff via email, and the employee in charge of
processing it can either approve or reject such request. At the end, the applicant
will be automatically notified via email of the approval/rejection of the request.

The above procedure, which involves two main routines (in the following, we
will denote them as R1 and R2), is performed manually by an employee of the
Administration Office of DIAG, and it should be repeated for any new travel
request. Routines such as these ones are good candidates to be encoded with
executable scripts and enacted by means of a SW robot within a commercial
RPA tool. However, unless there is complete a-priori knowledge of the specific
routines that are enacted on the UI and of their concrete composition, their
automated identification from an UI log is challenging, since the associated user
actions may be scattered across the log, interleaved with other actions that are
not part of the routine under analysis, and potentially shared by many routines.

Based on the above description, it becomes clear that a proper execution of
R1 requires a path on the UI made by the following user actions:1

– loginMail, to access the client email;
– accessMail, to access the specific email with the travel request;
– downloadAttachment, to download the Excel file including the travel request;
– openWorkbook, to open the Excel spreadsheet;
– openGoogleForm, to access the Google Form to be filled;
– getCell, to select the cell in the i-th row of the Excel spreadsheet;
– copy, to copy the content of the selected cell;
– clickTextField, to select the specific text field of the Google form where the

content of the cell should be pasted;

1 Note that the user actions recorded in a UI log can have a finer granularity than the
high-level ones used here just with the purpose of describing the routine’s behavior.
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– paste, to paste the content of the cell into a text field of the Google form;
– formSubmit, to finally submit the Google form to the internal database.

Note that the user actions openWorkbook and openGoogleForm can be
performed in any order. Moreover, the sequence of actions 〈getCell, copy,
clickTextField, paste〉 will be repeated for any travel information to be moved
from the Excel spreadsheet to the Google form. On the other hand, the path of
user actions in the UI to properly enact R2 is as follows:

– loginMail, to access the client email;
– accessMail, to access the specific email with the request for travel insurance;
– clickLink, to click the link included in the email that opens the Google form

with the request to activate the travel insurance on a web browser;
– approveRequest, to approve the request on the Google form;
– rejectRequest, to reject the request on the Google form;

Note that the execution of approveRequest and rejectRequest is exclusive.
In the rest of the paper, we concisely represent the universe of user actions of

interest for R1 and R2 as follows: Z = {A,B,C,D,E, F,G,H, I, L,M,N,O},
such that: A = loginMail, B = accessMail, C = downloadAttachment, D =
openWorkbook, E = openGoogleForm, F = getCell, G = copy, H = clickTextField,
I = paste,L= formSubmit,M = clickLink,N = approveRequest,O = rejectRequest.

2.2 Segmentation of UI Logs

In this section, we provide the relevant background on UI logs and we explain
in detail the issue of segmentation of UI logs with all its potential variants.

A UI log typically consists of a long sequence of user actions recorded during
one user interaction session.2 Such actions include all the steps required to accom-
plish one or more relevant routines using the UI of one or many sw application/s.
For instance, in Fig. 2, we show a snapshot of a UI log captured using a dedicated
action logger3 during the execution of R1 and R2. The employed action logger
enables to record the events happened on the UI, enriched with several data fields
describing their “anatomy”. For a given event, such fields are useful to keep track
the name and the timestamp of the user action performed on the UI, the involved
sw application, the resource that performed the action, etc.

As shown in Fig. 2, a UI log is not specifically recorded to capture pre-identified
routines. A UI log may contain multiple and interleaved executions of one/many
routine/s (cf. in Fig. 2 the blue/red boxes that group the user actions belonging
to R1 and R2, respectively), as well as redundant behavior and noise. We consider
as redundant any user action that is unnecessary repeated during the execution of
a routine, e.g., a text value that is first pasted in a wrong field and then is moved
in the right place through a corrective action on the UI. On the other hand, we

2 We interpret a user session as a group of interactions that a single user takes within
a given time frame on the UI of a specific computer system.

3 https://github.com/bpm-diag/smartRPA.

https://github.com/bpm-diag/smartRPA
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Fig. 2. Snapshot of a UI log captured during the executions of R1 and R2

consider as noise all those actions that do not contribute to the achievement of
any routine target, e.g., a window that is resized. In Fig. 2, the sequences of user
actions that are not surrounded by a blue/red box can be safely labeled as noise.

In this context, segmentation techniques aim first to extract from a UI log all
those user actions that are compliant with a specific routine segment, i.e., with
a repetitive routine behavior as observed in the UI log. Then, the target is to
cluster such user actions into well-bounded routine traces, which are complete
and independent execution instances of the routine within the UI log. Such traces
are finally stored in a dedicated routine-based logs, which capture all the user
actions happened during many different executions of the routine and compliant
with a specific routine segment, thus achieving the segmentation task. It is worth
noticing that a routine-based log obtained in this way can eventually be employed
by the commercial RPA tools to synthesize executable scripts in form of SW
robots that will emulate the routine behavior.

For example, an allowed routine segment of R1 is 〈A, B, C, D, E, F , G, H,
I, L〉. From the description of the use case, allowed routine segments are also
those ones where: (i) A is skipped (if the user is already logged in the client
email); (ii) the pair of actions 〈D, E〉 is performed in reverse order; (iii) the
sequence of actions 〈F , G, H, I〉 is executed several time before submitting the
Google form. On the other hand, two allowed routine segments can be observed
from R2: 〈A, B, M, N〉 and 〈A, B, M, O〉, again with the possibility to skip A,
i.e., the access to the client email. Note that A and B can be employed by both
R1 and R2 to achieve their targets. By analyzing the log, it can be noted that:
A is potentially involved in the enactment of any execution of R1 and R2, while
B is required by all executions of R1 and R2, but it is not clear the association
between the single executions of B and the routine segments they belong to.
Any observed execution of user actions in the UI log that matches with one of
the above routine segments can be considered as a valid routine trace.

According to [5], we can distinguish between three major forms of UI logs,
which can be categorized as follows:
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– Case 1. A UI log captures many not interleaved (case 1.1 ) or interleaved
(case 1.2 ) executions of the same routine.

– Case 2. A UI log captures many executions of different routines, but with the
assumption that different routines do not have any user action in common. Four
variants of this case can be identified: clear separation in the UI log between the
routines’ executions (case 2.1 ); many executions of the same routine can be
recorded in an interleaved fashion, but the executions of different routines are
separated from each others (case 2.2 ); the executions of different routines can
be recorded in an interleaved fashion, but the executions of a specific routine can
not be enacted in an interleaved way (case 2.3 ); the executions of any routine
can be always interleaved from each others (case 2.4 ).

– Case 3. Similarly to Case 2, it provides four variants (cases 3.1, 3.2, 3.3,
and 3.4 )), with the only difference that a same kind of user action can be
employed by many different routines to achieve their objectives, e.g., the UI
log associated with the running example in Sect. 2.1 belongs to Case 3.

While the literature does not provide works able to properly segment UI logs
including user actions “shared” by many routine executions, in this paper we
propose an approach that is able to relax this assumption and to achieve the
following segmentation cases: 1.1, 2.1, 2.3, 3.1 and 3.3.

3 Approach

Our approach to the segmentation of UI logs can be considered a semi-supervised
one, as it integrates the usage of automated techniques with the intervention of
human experts in some specific points of the approach. To be more precise, as
shown in Fig. 3, starting from an unsegmented UI log previously recorded by a
RPA tool, the first step is to inject into the UI log the end-delimiters of the
routines under examination. An end-delimiter is a dummy action added to the
UI log immediately after the user action that is known to complete a routine
execution. If we consider our running example in Sect. 2.1, an end-delimiter is
always required after the final action of R1, i.e., formSubmit, and after one of the
final actions or R2, i.e., approveRequest or rejectRequest. In this paper, we assume
that the knowledge of the final action(s) of a routine is given at the outset. Such
information can be obtained, for example, by interviewing the users that are in
charge to execute the routines of interest.

The second step of the approach consists of automatically extracting the
observed routines’ behaviors (i.e., the routine segments) directly from the UI log
with the end-delimiters. To this aim, we employ a frequent-pattern identification
technique [9], which has been properly customized for this purpose.

Since from the previous step there is the possibility that some (not allowed)
segments are identified as if they would be valid, the third step of the approach
involves a human-in-the-loop interaction to filter out these segments. Specifically,
we automatically infer the declarative constraints (i.e., the temporally extended
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Fig. 3. Overview of our general approach to the segmentation of UI logs

relations between user actions) that must be satisfied throughout a routine seg-
ment. In this way, we enable human experts to identify and remove those con-
straints that should not be compliant with any real-world routine behavior, thus
removing the wrongly discovered routine segments from the UI log.

Finally, starting from any of the remaining (valid) routine segments, we employ
a customized version of a trace alignment technique in Process Mining [2] to auto-
matically detect and extract the routine traces by the original UI log. Such traces
will be stored in a dedicated routine-based log. Therefore, the final outcome of our
segmentation approach will be a collection of as many routine-based logs as are
the number of valid routine segments. By identifying the routine traces, we are
also able to filter out those actions in the UI log that are not part of the routine
under observation and hence are redundant or represent noise.

In the following sections, we discuss in detail all the steps of our approach,
instantiating them over the running example of Sect. 2.1.

3.1 Segments Discovery Through Frequent-Pattern Identification

Pattern identification is a common task in data sequences analysis. As an exam-
ple, in the field of smart spaces, patterns are identified in sensor logs represent-
ing human routines [17]. These patterns are then used to learn models of human
behavior that can be used at runtime for activity recognition or anomaly detec-
tion. In such a scenario, authors in [9] proposed an approach based on minimum
description length (MDL) principle. In this paper, we have customized the tech-
nique presented in [9] for automatically identifying the routine segments from
UI logs with the end-delimiters properly converted into ad-hoc datasets.

The algorithm takes as input a dataset of a sequence of sensor events witnessing
human interactions with the environment. At each step, the algorithm looks for
patterns that best compress the dataset. A pattern consists of a specific sequence
of sensor events and all of its occurrences in the dataset. In our RPA application
scenario, the sensor events represent the user actions involved in each routine(s)
execution(s), and the frequent patterns are the discovered routine segments.

Starting from a single pattern for each different sensor event, the algorithm
at each step tries to extend patterns aiming at the best compression possible.
Every instance of the pattern, in particular, is replaced by a symbol associated
to the pattern. The compression of a dataset D given a pattern P is given
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Fig. 4. A dataset compression step in segments discovery

by the formula DL(D)
DL(D|P )+DL(P ) , where DL(D) represent the description length,

measured for example in bits of the dataset with the current patterns, DL(D|P )
represents the description length of D if all of the occurrences of P are replaced
with a symbol, and DL(P ) represents the description length of the pattern, which
must be taken into account in compression evaluation. The algorithm stops as
soon as no further compression is possible, returning all the patterns found (i.e.,
all the discovered routine segments). Figure 4 shows a compression step where
a pattern P of repeating events (for simplicity colors have been used instead
of labels) is identified and the dataset is compressed accordingly. Noteworthy,
for certain parts of the dataset, no pattern is found whose definition improve
compression (with the exception of the initial patterns of length one).

We show now how an execution instance of the above algorithm can be
applied to the following UI log (that already includes the end-delimiters) gener-
ated from the running example of Sect. 2.1: U = {A, B, C11, D11, E11, F11, G11,
H11, I11, L11, X, B, M21, N21, Z, B, C12, D12, E12, F12, G12, H12, I12, L12,
X, B, M22, O22, Z, . . . , A, B, C1(i−1), Y1, D1(i−1), E1(i−1), F1(i−1), G1(i−1),
G1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), X, B, M2(i−1), N2(i−1), Z, . . . , B,
Yn−1, C1i, D1i, E1i, Yn , F1i, G1i, H1i, I1i, I1i, I1i, L1i, X, B, M2i, O2i, Z}.
For the sake of understandability, we use a numerical subscript ji associated
to any user action to indicate that it belongs to the i − th execution of the
j− th routine under study. This information is not recorded into the UI log, and
discovering it (i.e., the identification of the subscripts) is one of the “implicit”
effects of segmentation when routine traces are built. Note that A and B are not
decorated with subscripts since they can potentially belong to executions of R1
or R2. The log contains elements of noise, i.e., user actions Yk∈{1,n} that are not
allowed by R1 and R2, and redundant actions like G and I that are unnecessary
repeated multiple times. X and Z are the end-delimiters for the executions of
R1 and R2.

The delimiters injection stage is crucial to drive the discovery of the largest
possible set of valid routine segments, otherwise the technique would detect only a
small subset of them. For example, let us suppose that the UI log includes only user
actions related to two routines A and B without the presence of any end-delimiter.
In this case, the UI log will likely include different sequences of consecutive routine
segments of the kind A*, B* or AB*. In this condition, any compression algorithm
will likely merge multiple routine segments into cumulative symbols (e.g., AAA,
BB, ABAB) rather than highlighting single routine executions. This issue becomes
less relevant when between the execution of two separate routines there are no
repetitive actions. However, while the latter assumption is reasonable in case of
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recording of human habits, it is far from being realistic in case of UI logs recording
low-level user actions performed during the interaction with a computer system.

Based on the foregoing, the output of the segments discovery stage is repre-
sented by a set of identified frequent segments (some of them may not be compliant
with the real-world routine behaviors, see the next section), as follows:

– {〈F , G〉, 〈C, D, E〉, 〈H, I, L〉, 〈C, D, E, F , G, H, I, L〉, 〈B, C, D, E, F ,
G, H, I, L〉, 〈A, B, C, D, E, F , G, H, I, L〉}

– {〈A,B〉, 〈B,M〉, 〈B,M,O〉, 〈B,M,N〉}

3.2 Human-in-the-Loop Interaction

Once the routine segments have been discovered, the possibility exists that many
of them represent not allowed routine behaviors. This happens because a UI log
combines the execution of several routines that are usually interleaved from each
others. In addition, in case of routines that make use of the same kinds of user
actions to achieve their goals, it may happen that new patterns of repeated
user actions, which represent potential not allowed routine segments, are rather
detected as valid ones within the UI log.

On the basis of the experiments performed in Sect. 4, it becomes clear that
the employed frequent-pattern identification algorithm is able to (re)discover the
allowed routine segments that are known to be recorded in the input UI logs.
However, since there is the possibility that some (not allowed) segments are
identified as if they would be valid, a human-in-the-loop interaction is required
to filter out all those routine segments representing behaviors that should not
be allowed by any real-world routine of interest. Specifically, starting from the
discovered routine segments, we invoke for any of these segments the Declare
Miner algorithm implemented in [6] to infer the declarative constraints (i.e.,
the temporally extended relations between user actions) that must be satis-
fied throughout the segments. The constraints are represented using Declare,
a well-known declarative process modeling language introduced in [10]. Declare
constraints can be divided into four main groups: existence, relation, mutual and
negative constraints. We notice that the use of declarative notations has been
already demonstrated as an effective tool to visually support expert users in the
analysis of event logs [21].

At this point, one or more human expert(s) may be involved to evaluate
the constraints derived for any routine segment and remove those ones that are
considered not compliant with any real-world routine behavior. Detecting and
removing these constraints means to filter out all the not allowed (i.e., wrongly
discovered) routine segments.

For example, if we consider the discovered segment 〈C, D, E〉, the follow-
ing (simple) Declare constraints (among the others) hold: Init(C) and End(E),
meaning that routines’ executions starting with C or ending with E have been
discovered into the UI log. An expert user that is aware of the behavior of the
real-world routines under analysis can immediately understand that the above
Declare constraints should not hold in reality, since R1 and R2 can start only
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with A or B and end with L, O or N . For this reason, the above Declare con-
straints can be considered both as wrongly representative of the routines under
analysis. As a consequence, all the discovered segments for which one of the above
Declare constraints hold can be immediately discarded. For the sake of space, we
do not show here all the Declare constraints that hold for any of the discovered
segments. However, we point out that the iterative analysis of the Declare con-
straints associated to the discovered segments will support the human experts
to easily detect and filter out those segments that must not be later emulated by
SW robots. The list of allowed segments for our running example is the following:

– {〈B, C, D, E, F , G, H, I, L〉, 〈A, B, C, D, E, F , G, H, I, L〉}
– {〈B,M,O〉, 〈B,M,N〉}

3.3 Trace Alignment

Trace alignment [2] is a conformance checking technique within Process Mining
that replays the content of any trace in a log against a process model, one
event at a time. For each trace in the log, the technique identifies the closest
corresponding trace that can be parsed by the model, i.e., an alignment.

We perform trace alignment by constructing an alignment of a UI log U
(note that we can consider the entire content of the UI log as a single trace)
and a process model W (representing a valid routine segment) as a Petri Net,
which allows us to exactly pinpoint where deviations occur. Specifically, we relate
“moves” in the log to “moves” in the model in order to establish an alignment
between U and W . However, it may be that some of the moves in the log cannot
be mimicked by the model and vice versa. In particular, we are interested in
synchronous moves between U and W . If they exist, the user actions involved in
such synchronous moves are extracted and stored into a routine-based log.

We have implemented a customized version of the above trace alignment
algorithm as a supervised segmentation technique [4] that is able to segment a
UI log and achieve all variants of cases 1, 2 and (partially) 3 except when there
are interleaved executions of shared user actions by many routines. In that case,
the risk exists that a shared user action is associated to a wrong routine execution
(i.e., case 3.3 and 3.4 are not covered). Thus, while in [4], to make the algorithm
works, it is required to know a-priori the structure (i.e., the flowchart) of the
routines to identify in the UI log (cf. [20]), the novelty of the proposed approach
is to semi-automatically discover such structures in the form of routine segments,
and then used them as input for the supervised segmentation technique in [4].

In the case of our running example, starting from the outcome of the previous
step (i.e., the valid routine segments), the output of the trace alignment will be
a set of four routine-based logs generated as follows:

– UW1 = {〈A11, B11, C11, D11, E11, F11, G11, H11, I11, L11 〉, . . . , 〈A1(i−1),
B1(i−1), C1(i−1), D1(i−1), E1(i−1), F1(i−1), G1(i−1), H1(i−1), I1(i−1), L1(i−1), 〉}

– UW2 = {〈B12, C12, D12, E12, F12, G12, H12, I12, L12, 〉, . . . , 〈B1i , C1i, D1i, E1i,
F1i, G1i, H1i, I1i, L1i 〉}

– UW3 = {〈B21, M21, N21〉, . . . , 〈B2(i−1), M2(i−1), N2(i−1)〉}
– UW4 = {〈B22, M22, O22〉, . . . , 〈B2i , M2i, O2i〉}
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Table 1. Experiments’ results. For each segmentation case the number of actions is
28, 21 and 20 (resp.). Only logs with 20 different allowed segments are shown here, and
the number of valid routine behaviors is the 70% of the 1000 s that were introduced in
the UI logs, while the other 30% may be affected by noise.

Case 1 # discovered segments (valid/wrong)

Noise 0% 10% 20%

No repetitive actions 20/2 20/88 20/118

Repetitive actions 20/11 16/161 16/179

Case 2 # discovered segments (valid/wrong)

Noise 0% 10% 20%

No repetitive actions 20/2 20/59 20/69

Repetitive actions 20/10 20/132 20/136

Case 3 # discovered segments (valid/wrong)

Noise 0% 10% 20%

No repetitive actions 20/6 20/53 20/67

Repetitive actions 20/13 20/146 20/170

4 Evaluation

To investigate the feasibility of our approach to the automated segmentation of
UI logs, we assessed to what extent it is able to (re)discover routine segments
that are known to be recorded into the input UI logs. Specifically, we have
synthetically generated 144 different UI logs, in a way that each UI log consisted
of 1000 routine executions and was characterized by a unique configuration by
varying the following inputs:

– valid routine segments: number of different routines segments (5/10/15/20),
in terms of allowed behaviors, included in the UI log.

– alphabet size: size of the alphabet of user actions for each segmentation case:
Case 1 (13/18/23/28); Case 2 (15/16/18/21); Case 3 (13/15/17/20).

– valid traces: percentage of allowed behaviors recorded into the UI log (50%/
70%/100%). The remaining portion of the UI log (50%/30%) may be dirty,
i.e., it contains routine executions potentially affected by noise.

– percentage of noise in the remaining (dirty) portion of the UI log (10%/20%).

The synthetic UI logs generated for the test and the complete list of results
can be analyzed at: http://tinyurl.com/icsoc2021. The implementation of our
approach is available: https://github.com/bpm-diag/INTSEG. For the sake of
space, we present in Table 1 only a view of the results in one of the most complex
cases to tackle. The results indicate that the approach scales very well in case
of an increasing number of different routine segments to be discovered and with
an alphabet of user actions of growing size. The computation time is not shown,
since it ranges from milliseconds for UI logs with 5 different routine segments

http://tinyurl.com/icsoc2021
https://github.com/bpm-diag/INTSEG
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up to few seconds for UI logs with 20 segments. This result was expected, since
more segments in a UI log means more executions to analyze and interpret.

By analyzing the results, we can infer that the approach is able to discover the
same allowed routine segments that were synthetically introduced in the routine
executions recorded in the UI logs, achieving the following segmentation cases:
1.1, 2.1, 2.3, 3.1 and 3.3. On the other hand, our approach seems to lack in the
computation of valid routine segments in presence of repetitive user actions (i.e.,
user actions that are repeated in a loop), when there are several routine segments
generated by different executions of the same routine. This is due to the fact that
similar sequences of user actions tend to be compressed together, and since they
are generated from the same routine, the risk exists that different sequences are
wrongly recognized as the same and bounded together, thus leading to a number
of routine segments lower than ones that were synthetically introduced.

5 Related Work

Segmentation is currently considered as one of the “hot” key research effort to
investigate [3,16] in the RPA field. Concerning RPA-related techniques, Bosco et
al. [8] provide a method that exploits rule mining and data transformation tech-
niques, able to discover routines that are fully deterministic and thus amenable
for automation directly from UI logs. This approach is effective in case of UI
logs that keep track of well-bounded routine executions (cases 1.1 and 2.1), and
becomes inadequate when the UI log records information about several routines
whose actions are potentially interleaved. In this direction, Leno et al. [15] pro-
pose a technique to identify execution traces of a specific routine relying on the
automated synthesis of a control-flow graph, describing the observed directly-
follow relations between the user actions. This technique is able to achieve cases
1.1, 1.2 and 2.1, and (only) partially the cases 2.2, 2.3 and 2.4, losing in accu-
racy in presence of recurrent noise and interleaved routine executions. The main
limitation of the above techniques is tackled in [4], which presents a supervised
segmentation technique that is able to achieve all variants of cases 1, 2 and (par-
tially) 3 except when there are interleaved executions of shared user actions by
many routines. In this paper, we exploit the technique presented in [4] to the
discovery of routine traces given a set of input routine segments.

Even if more focused on traditional business processes in BPM rather than
on RPA routines, Fazzinga et al. [11] employ predefined behavioral models to
establish which process activities belong to which process model. The technique
works well when there are no interleaved user actions belonging to one or more
routines, since it is not able to discriminate which event instance (but just the
event type) belongs to which process model. This makes [11] effective to tackle
cases 1.1, 2.1 and 3.1. Closely related to [11], there is the work of Liu [18].
The author proposes a probabilistic approach to learn workflow models from
interleaved event logs, dealing with noises in the log data. Since each workflow
is assigned with a disjoint set of operations, the work [18] is able to achieve both
cases 1.1 and 2.1, but partially cases 2.2, 2.3 and 2.4 (the approach can lose
accuracy in assigning operations to workflows).
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There exist other approaches whose the target is not to exactly resolve the
segmentation issue. Many research works exist that analyze UI logs at different
levels of abstraction and that can be potentially useful to realize segmentation
techniques. With the term “abstraction” we mean that groups of user actions
to be interpreted as executions of high-level activities. Baier et al. [7] propose
a method to find a global one-to-one mapping between the user actions that
appear in the UI log and the high-level activities of a given model. Similarly,
Ferreira et al. [12], starting from a state-machine model describing the routine
of interest in terms of high-level activities, employ heuristic techniques to find
a mapping from a “micro-sequence” of user actions to the “macro-sequence” of
activities in the state-machine model. Finally, Mannhardt et al. [19] present a
technique that map low-level event types to multiple high-level activities (while
the event instances, i.e., with a specific timestamp in the log, can be coupled
with a single high-level activity). However, segmentation techniques in RPA must
enable to associate low-level event instances (i.e., user actions) to multiple rou-
tines, making abstractions techniques ineffective to tackle all those cases where
is the presence of interleaving user actions of many routines. As a consequence,
all abstraction techniques are effective to achieve cases 1.1 and 2.1 only.

6 Discussion and Concluding Remarks

In this paper we have presented an approach that tackles the segmentation
challenge relying on three main steps: (i) a frequent-pattern identification tech-
nique to automatically derive the observed routine behaviors from a UI log,
(ii) a human-in-the-loop interaction to filter out those behaviors not allowed by
any real-world routine execution, and (iii) a trace alignment technique in Pro-
cess Mining to cluster all user actions belonging to a specific routine behavior
into well-bounded routine traces. Our approach is based on a semi-supervised
assumption, since we know a-priori the end-delimiters to be associated to any
user action that ends a routine execution. On the other hand, the approach is not
aware of the concrete behavior of the routines of interest, which will be discov-
ered by the approach itself. For this reason, we consider this contribution as an
important step towards the development of a more complete and unsupervised
technique to the segmentation of UI logs.

The presented approach is able to extract routine traces from unsegmented
UI logs that record in an interleaved fashion many different routines but not
the routine executions, thus losing in accuracy when there is the presence of
interleaving executions of the same routine. In addition, it is also able to properly
deal with shared user actions required by all routine executions in the UI log,
thus achieving the cases 1.1, 2.1, 2.3, 3.1, and 3.3.

As a future work, we are going to perform a robust evaluation: (i) on real-
world case studies with heterogeneous UI logs, and (ii) on the impact of the
human-in-the-loop interaction to filter out wrongly discovered routine segments.
In addition, we aim at relaxing the semi-supervised assumption by employ-
ing machine learning and DNN techniques to automatically identify the end-
delimiters.
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Abstract. Business Process Management communities increasingly
adopt the blockchain technology to support trustworthy decentralized
execution of processes. In this context, the interest in business process
choreographies rises as they offer a distributed way to compose and con-
trol cross-organizational processes. In choreographies, the process view
is distributed between participants to limit privacy leakages. Hence, the
process observability (i.e., who knows what) is challenging. On one side,
partners have no insight into each other’s orchestration and communi-
cate peer-to-peer via the public view. On the other side, they have to
maintain their internal orchestrations’ states consistent with the chore-
ography’s global state. The need to ensure a privacy-preserving method
to enforce a blockchain-based execution thus rises. In the present work,
we propose a unified solution for the hybrid on/off-chain generation and
execution of business process choreographies. The public view, shared
understanding of the cross-organizational process, is triggered by the
on-chain smart contract. Participants generate their private views off-
chain using this on-chain public view. They execute afterward the pri-
vate views in their off-chain process execution engine. Our prototypical
implementation demonstrates the feasibility of the approach.

Keywords: Decentralized choreographies · Business Process
Management · Dynamic condition response graphs · Blockchain

1 Introduction

A cross-organizational process can be defined as a process scattered across dif-
ferent organizations. It comprises private processes carried out by individual
partners, where internal data such as model and execution logs should not be
visible to the other partners. It also includes a public process, where several
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partners collaborate in a coordinated way. All partners should trust the exe-
cution state of the public process. A trade-off between ensuring the privacy of
partners’ private processes and the exposure of the public process thus arises.
In cross-organizational processes, model flexibility is also at stake, as processes
are dynamic: partners should be able to change their internal processes without
impacting the public process [15]. Thus, the following question arises: (RQ) how
to carry out a separation of concerns that preserves the privacy of the private
processes, trust of the public process, and flexibility of the whole?

In the literature, business process choreographies answer the need for such
separation of concerns by clearly specifying coordination tasks [1,6]. In addi-
tion, the public process is shared between participants to limit privacy leakages.
Meanwhile, private views hold the set of (1) internal tasks of a particular partner
not disclosed to the other partners, and (2) communication tasks in which this
partner is involved, i.e., the projection of the public view over this partner [1].
However, the trustworthy execution of the public view remains challenging as it
is often managed centrally [6].

Blockchain has been leveraged in the literature as a trustworthy coordination
mechanism for collaborative business processes [5,6]. In [5], a smart contract
manages the public workflow of an orchestration. However, in this approach, the
execution of private tasks off-chain is only mentioned and the inner mechanism
has not been detailed further. Additionally, in [6], the smart contract is used to
manage the public view of a choreography, and so doing enforcing the order of
messages. Nonetheless, in this work, a private/public separation is suggested but
only the public view mechanism is implemented. Additionally, there is no on/off-
chain enforcement of projections during deployment of the process instance.
Thus, to the best of our knowledge, none of the retrieved works addresses the
trustworthy deployment of choreographies. This deployment remains challenging
as private information should not be shared between partners at design nor
runtime. Moreover, none of the retrieved works proposes a detailed mechanism
for the execution of projections using a hybrid on/off-chain mechanism.

In this paper, we contribute to the literature through a unified solution for the
design and execution of business process choreographies in a hybrid on/off-chain
fashion. The first contribution of this paper is a mechanism for the deployment
of the global process which offers trustworthiness while preserving the sepa-
ration of concerns. At deployment time, participants build incrementally the
global process from a public view stored in a smart contract. Each participant
will compute off-chain its role projection comprising public events where she is
involved, and private events are kept off-chain for privacy concerns. This way, pri-
vate control-flows remain in the participants’ process engines, while blockchain
systems ensure a tamper-proof public view. The blockchain has no access to
the private events; it is the aggregation of all role projections that will render
the global process. The second contribution is a hybrid on/off-chain mechanism
for the execution of cross-organizational choreographies. The roles execute their
internal tasks off-chain in their local process execution engine. Meanwhile, a
smart contract manages public interactions. When the smart contract receives
an interaction request initiated from one of the roles (sender or receiver(s)),
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it executes the task and communicates its state back. The roles update their
private states accordingly. Hence, we achieve a trustworthy separation of con-
cerns preserving partners’ private processes’ privacy. Most existing works use
an imperative paradigm such as BPMN. However, we chose to model choreogra-
phies with a declarative language that abstracts the control-flow through a set of
rules or constraints [3,10], namely Dynamic-Condition-Response (DCR) graphs
[11,25]. We believe that the declarative paradigm corresponds to the dynamic
nature of choreography interactions, as business modelers cannot predefine all
the execution paths of a model in constant evolution. Only essential constraints
are specified in the model. We demonstrate our approach’s feasibility through
an implemented prototype and its effectiveness via a set of experiments.

The remainder of this paper is organized as follows. Section 2 introduces key
concepts around blockchain and DCR graphs. Section 3 presents our motivating
example. Section 4 details our approach. Section 5 presents an implemented pro-
totype as a validation of our approach. Section 6 reviews the main known related
work. Finally, Sect. 7 concludes the paper.

2 Background

A blockchain [26] is a distributed ledger holding a linked list of transactions
organized in blocks. Each block contains (1) the reference to the previous block,
(2) a tamper-evident digest of the transaction history to attest the integrity
and blocks ordering, and (3) the list of the transactions to commit. Independent
peers maintain the network. Peers use dedicated consensus algorithms such as
proof-of-work or proof-of-stake to append transactions to the chain [13]. Some
blockchains host smart contracts, deterministic scripts enforcing the terms of
an agreement [14]. Business process approaches use blockchain to monitor in a
decentralized fashion an agreed-upon scheme [17].

DCR is a declarative business process modeling language whose formalism is
described in [11]. We refer to the following definition (cf [11]):

Definition 1. A DCR graph G is a tuple (E, M , L, f , −→ •, • −→, −→ �,
−→ +, −→ %), where:

– E is a set of events
– M = (In,Pe,Ex) ⊆ E × E × E is a marking
– L is a set of labels
– f : E −→ L is a labelling function
– l ⊆ E × E for l ∈ {−→ •, • −→,−→ �,−→ +,−→ %} are relations between

events.

With DCR, processes are modelled as a set of events E linked together with
relations.1 Markings M capture the graph’s state at runtime by referring to the
triplet (currently included events In, currently pending responses Pe, previously

1 A DCR event is equivalent to a BPMN activity.
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Fig. 1. DCR graph, and projections of a DCR graph chunk (in orange). (Color figure
online)

executed events Ex). Relations model in a loosely fashion the constraints linking
two events. The end-user can enact any enabled activity at any time and more
than one time during a process instance execution. DCR graphs hold five types
of relations. Two relations, condition and milestone, model pre-execution con-
straints. They restrain the enactment of an event. The condition relation implies
that a task must be launched for another to start, while milestone requires full
task completion. Three relations translate the effects of an event execution to
the remaining activity markings. Exclude and include respectively lock or unlock
the receiver task. Response sets the receiver task to pending upon completion of
the source task. A DCR choreography [11,23] models and executes DCR graphs
in a distributed way. It comprises choreography events that ease coordination
between independent entities and internal events. We reconcile the definition of
a DCR choreography proposed in [11] and formalize it as follows:

Definition 2. A DCR choreography is a triple (G, I, R) where G is a DCR
graph, I is a set of interactions and R is a set of roles. An interaction i is a
triple (e, r, r′) in which the event e is initiated by the role r and received by the
roles r′ ⊂ R \ {r}. For an event e ∈ E, e.type is the type of the event, e.type
∈ {ε, γ}, where (i) ε denotes the set of internal events in G, i.e., events having
one initiator r ∈ R and (ii) γ are the set of interactions in G (γ = I).

In Fig. 1a, Shipping is a choreography event sent by Driver and received by
Florist and Customer. GetOrder is an internal event of the role Florist.
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3 Motivating Example

Figure 1a represents a DCR choreography of a delivery process involving three
participants: Customer, Florist, and Driver. Table 1 illustrates several executions
of the graph instance. Each column corresponds to an event marking of the graph
in the form (included, pending, executed). Each line stands for an event query
triggered. For example, initially, no event is executed nor pending. The event
GetOrder is included in the execution set. Thus the initial marking of GetOrder
is (1, 0, 0). Each participant has control over the set of internal and choreography
events where she is involved. We define this set of events as her private view. For
example, the sub-graph in orange in Fig. 1a depicts the global view of a process
involving three partners: Florist, Driver, and Customer. Figure 1b and Fig. 1c
depict respectively the private views over Driver and Florist.

Requirements arise when dealing with the execution of such choreography.
The activities for which some of the participants are not interested in (e.g.,
ReturnTruck) or confidential (e.g., GetOrder) must be kept private. The pub-
lic view must express by design the information and requirements needed to
execute the workflow. Moreover, public activities must be tamper-proof, and
the execution flow fulfilled to keep on with the agreed-upon flow. The system
must offer integrity by design. If a claim occurs, the system becomes the single
source of truth. Former works on private and public views have been proposed
before blockchain emergence [15,18]. A separation of concerns is reached by sep-
arating public and private views. However, trust in the execution of the public
view is still needed. Blockchain brings two interesting properties with regards to
our research: decentralization and tamper-proof logs. Thus, the public view of
a business process could be completely decentralized by design while ensuring
trust through the tamper-proof logs property. Nonetheless, two questions arise in
this setting to preserve the separation of concerns between participants. The first
question concerns the deployment of the global process in each local BPMS. The
deployment shall not be managed by a centralized entity that would then upload
the public view on-chain. Otherwise, the trust issue would rise again. Addition-
ally, the question of how to ensure that projections are completed off-chain while
avoiding any leakage of information remains. The second question concerns the
execution of the global graph. The smart contracts acts as an entry-point to
ensure correctness of execution of the public view. The mechanism managing
the two-sided public/private execution of tasks needs to be defined to ensure
that each participant can manage its projection in a trustworthy fashion.

4 The Approach

4.1 Design Time: Generating Public and Private Views

This section presents the hybrid on/off-chain protocol developed to generate
the partners view-based projections (cf Fig. 2). A smart contract comprising (1)
DCR execution constraints rules, and (2) a list of workflows initially empty, is
used to manage workflow instances. The workflow responsible generates the new
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Table 1. Evolution of the markings of the DCR graph in Fig. 1a

Markings (included, pending, executed)

GetOrder CallDriver Shipping CheckOrder Accept Reject Deliver SettleOrder

(init) (1, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

GetOrder (1, 0, 1) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

CallDriver (1, 0, 1) (1, 0, 1) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

workflow and updates the on-chain smart contract with the new public view. For
each instance, the workflow comprises: the relation matrices and markings of the
public view (cf. Sect. 2), the role addresses linked to each activity, and the IPFS
hash of the textual input. The hash serves as a unique identifier for the workflow.
Then, each participant computes its private view by combining the public view
with its internal events. The output is a bitvectorized DCR graph. These private
views constitute the entry point for the hybrid runtime execution. Finally, once
the generation of role projections fulfilled, the smart contract unlocks the process
instances for execution.

Used Formalism. Let (G, I, R) be a DCR choreography (cf. Definition 2), we
define this DCR choreography through its public view Gγ and private views Gr,
∀ r ∈ R, which are derived from G. We formalize Gγ and Gr, ∀ r ∈ R as follows:

Definition 3. Public View Gγ is a tuple (Eγ , Mγ , Lγ , fγ , −→ •γ , • −→γ ,
−→ �γ , −→ +γ , −→ %γ), where:

1. Eγ = {e ∈ I}
2. Mγ = (Inγ , P eγ , Exγ) where Inγ = In ∩ Eγ , Peγ = Pe ∩ Eγ , and Exγ =

Ex ∩ Eγ

3. fγ(e) = f(e)
4. Lγ = img(fγ)
5. −→ •γ =−→ • ∩ ((−→ • Eγ) × Eγ)
6. • −→γ= • −→ ∩((• −→ Eγ) × Eγ)
7. −→ �γ =−→ � ∩ ((−→ � Eγ) × Eγ)
8. −→ +γ =−→ + ∩ ((−→ + Eγ) × Eγ)
9. −→ %γ =−→ % ∩ ((−→ % Eγ) × Eγ)

Hence, lγ ∈ {−→ •γ , • −→γ ,−→ �γ ,−→ +γ ,−→ %γ}

Definition 4. Private Views For a role r ∈ R, Gr = a tuple (Er, Mr, Lr, fr,
−→ •r, • −→r, −→ �r, −→ +r, −→ %r), where:

1. Er = {e ∈ E | Initiator(e) = r ∪ Receiver(e) = r}
2. Mr = (Inr, P er, Exr) where Inr = In ∩ Er, Per = Pe ∩ Er, and Exr =

Ex ∩ Er

3. fr(e) = f(e)
4. Lr = img(fr)
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Fig. 2. Sequence diagram of the hybrid on/off-chain design protocol

5. −→ •r =−→ • ∩ ((−→ • Er) × Er)
6. • −→r= • −→ ∩((• −→ Er) × Er)
7. −→ �r =−→ � ∩ ((−→ � Er) × Er)
8. −→ +r =−→ + ∩ ((−→ + Er) × Er)
9. −→ %r =−→ % ∩ ((−→ % Er) × Er)

Hence, lr ∈ {−→ •r, • −→r,−→ �r,−→ +r,−→ %r}

Translating DCR Graphs into Bitvectors. The public and private views
are initially described as a textual input following the semantics prescribed in
[16]. The reader can find input examples in the source code repository of our
prototype.2 We translate each view into a bitvector representation for execution
in the off-chain and on-chain process execution engines [5,7]. We describe in the
following paragraph the approach computing such representation.

The bitvector representation comprises (1) the five relation matrices of the
DCR graph and (2) the three markings of the graph. The five relation matri-
ces are computed out of an input view. For each relation [eventi −→ eventj ],
the item aij in the relation matrix is set to one. Besides, we generate the three
initial bit-vector markings of the graph (Algorithm 1, l.3–5). The executed and
pending initial markings are set to zero as no event has been executed yet.

2 https://anonymous.4open.science/r/hybridChoreo-1CF8/.

https://anonymous.4open.science/r/hybridChoreo-1CF8/
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Algorithm 1. Marking Vectorization of a private view
Data: Gr = (E, l)
Result: the list of included, executed, and pending marking vectors

1 Function initializeMarkings(E, l):
2 var len ← length(E);

// INITIALIZE VECTORS

3 var In ← V ector(size : len);
4 var Pen ← V ector(size : len);
5 var Ex ← V ector(size : len);

// DETECT INITIALLY INCLUDED EVENTS

6 var i=0;
7 forall the e ∈ E.ε do
8 var hasPreceedingEvent ← FALSE;
9 forall the rel ∈ l do

10 if rel.target == e then
11 hasPreceedingEvent ← TRUE;
12 break;

13 if not hasPreceedingEvent then
14 In[i] ← 1 ; // NO PRECEEDING EVENTS

15 i=i+1;

16 return [In, Pen, Ex]

17 End Function

The included state of the event is set to one if it has no pre-execution con-
dition (Algorithm 1, l.6–15). We now illustrate the Florist projection bitvec-
torisation. First, we generate the five relation matrices. In the Florist private
projection, a condition relation links CallDriver and Shipping. Thus, Condition
[idCallDriver, idShipping] = 1. The same protocol follows for each relation of the
graph. We then compute the three markings of the projection. The pending and
executed bit-vectors are filled with eleven zeros (one for each event of EFlorist).
The Florist included bit-vector is filled similarly, except for GetOrder which is
set to one (no pre-condition).

Hybrid On/Off-Chain Generation of Views. The generation of views com-
prises two steps: the on-chain public view first and private views.

The public view managed on-chain, Gγ , is the DCR graph consisting of the
set of choreography events, i.e., events having one or many receivers and their
relations, that model participants interactions. A representative of all partici-
pants first generates the approved bitvector representation of the public view
(Fig. 2, step1). The public view consists of choreography events and their rela-
tions. Each role has a public blockchain address, and choreography events are
mapped to a sender role. Moreover, the representative saves the textual public
view input to IPFS to keep track of it, and saves the hash into the smart contract.
The smart contract locks the process instance while waiting for each participant
projection (Fig. 2, step2). A variable named cnt, initially set to zero, keeps track
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of the number of projections realized. The process instance is unlocked for exe-
cution when cnt equals the number of participants. The public events of Fig. 1a
are {Shipping, CheckOrder, Accept, Reject, Pay, UnloadTruck, PayDriver}. The
smart contract stores these events and relations where at least two public events
are involved. Internal events such as {ReturnTruck} for Driver, or {GetOrder,
CallDriver, SettleOrder} for Florist are kept off-chain.

Once the public view populates the smart contract, each participant fetches
it (Fig. 2, step4). The private projection is generated by extracting all the events
of Gγ where the participant is an initiator or a receiver in a choreography event.
We conjointly extract relations connecting these events. Afterward, the partici-
pant combines off-chain the public view with its internal events (Fig. 2, step4).
The obtained projection over the role r is Gr. A dedicated smart contract func-
tion named, confirmProjection(), enables participants to update cnt after the
local projection. The function uses two mapping variables. The first mapping,
approval, records whether a participant has generated its local projection. The
second mapping, didFetch, records whether the participant did fetch the public
view (necessary condition to realize the projection). The following constraints
restrain cnt update: (i) the sender’s address must belong to the list of addresses
white-listed in the smart contract, (ii) participants can only update the variable
once, and (iii) must have fetched the public projection first. In the motivating
example, Florist asks the public projection to the smart contract. The smart
contract verifies that its address belongs to the white-list, forwards the pub-
lic view to Florist, and updates cnt to 1. Florist projects the view over her
role. She obtains a set of receive events: {Shipping, CheckOrder, Accept, Reject,
Pay, UnloadTruck}, and one send event {PayDriver}. She then adds its internal
activities {GetOrder, CallDriver, SettleOrder} to the projection. Lastly, Florist
triggers confirmProjection().

4.2 Hybrid Off/On-Chain Runtime Execution

Our approach proposes a hybrid execution at runtime: the private DCR execu-
tion engine of the involved participants manages the private projections. Mean-
while, a smart contract called S triggers the execution logic of the public tasks
on blockchain. An event execution query comprises the name of the event and its
class: internal, or choreography. The execution logic depends on the event class.
The private and public projections communicate via choreography events. Par-
ticipant executes private events off-chain (cf. Fig. 3a). For an internal event, the
private process engine looks at its private markings (see Fig. 3a). If the event is
enabled,3 we apply post-execution constraints to the bound events (i.e., events
are set to pending, included, or excluded), and update the marking accord-
ingly. For example, the execution request of GetOrder (Fig. 1a) will succeed: it
does not have any pre-execution constraint. Thus, the executed marking of the
event GetOrder will be set to one. The post-execution constraints (condition and
response) will unlock CallDriver and set its pending marking to one.
3 An event is enabled if the following preconditions are fulfilled: the event is included,

and the condition and milestone relations are executed.
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Fig. 3. The execution scheme logic of DCR choreography events

The smart contract S handles the execution of the choreography send and
receive events (cf. Fig. 3b). S holds the bitvector representation of the public
view and two functions: enableExecution() checks the enabling preconditions,
and execute() computes the enabled event and updates the marking vectors.
The execution of a choreography event follows the subsequent steps (see Fig. 3b).
First, the backend receives an execution query (step 1) and forwards it to the
smart contract API (step 2). The latter sends a transaction (Tx) to S to call
the function enableExecution() (step 3). The Tx includes the event’s name to
execute, the event initiator, the receiver (if it is a choreography event), and
the event state (enabled, included, executed). If the activation conditions are
verified, the function execute() updates the event state (the three bit-vectors)
and the public projection state (the five relation matrices). The Tx callback
containing the updated states is sent back to the smart contract API (step 4),
which forwards it to the local backend (step 5). The backend updates the public
projection (step 6). Changes are propagated to the concerned private projections
(step 7). Choreography events are by nature of interest to process participants. S
makes their execution management trustworthy as its behavior is deterministic,
and the choreography states stored into the smart contract are tamper-proof.

5 Evaluation

Our proof of concept is a hybrid on/off-chain business process engine manag-
ing declarative choreographies (code repo: cf footnote 2). We use a Ganache
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testnet to deploy the public smart contract S which manages each process. S
comprises (1) execution constraints rules, and (2) a list of workflows initially
empty. The initial cost of deployment of S is 0.06413472 ETH (i.e., 137.6$). For
each workflow, RoleAdmin (1) generates the public view bitvector representa-
tion (Sect. 4.1), (2) saves the textual public view input to IPFS, and (3) registers
the new workflow on-chain by calling the function uploadPublicView. The work-
flow is identified by the IPFS unique hash. Participants interact with the smart
contract via API calls to generate their private views. Afterwards, the process
instance is released for execution. The local process execution engine executes
internal events off-chain and forwards choreography events to the blockchain.

We instantiate three cross-organizational processes in the platform to assess
the execution cost in terms of gas fees and time. We test two workflows from the
literature: the invoice and oncology workflows [25], and the motivating example.
We run the experiments on a personal computer with an Intel i5 core CPU, 4 GB
of RAM. At the time of writing, 1ETH = 2,145.73$. We evaluate the public-to-
private projection costs of the system for the deployment of the three processes
mentioned above (cf. Table 2a). For each workflow, the public view registra-
tion cost is worth 0.068352 ETH (146.7$) for the delivery workflow, 0.040947
ETH (87.9$) for the invoice workflow, and 0.065019 ETH (139.5$) for the oncol-
ogy workflow. Afterwards, each role fetches the public view, and confirms its
projection. The delivery and invoice workflows share the same costs for fetch-
ing the public view and confirming the projection. Such cost, corresponding to
updating approval and didFetch, is proportional to the number of roles regis-
tered. The total cost for instantiating a choreography corresponds to public view
upload, and the number of roles #R times the private projection cost. It is worth
0.078534 ETH (168.5$), 0.051129 ETH (109.7$), and 0.079795 ETH (171.2$) for
the delivery, invoice, and oncology workflows respectively. The public-to-private
total projection cost depends on the number of roles and events.

We also evaluate the performance of the system at runtime: Table 2a presents
the results obtained after the enactment of one trace. The reported execution
time factors the transaction confirmation time. The average transaction fees
requested for a task execution are smaller than the process instantiation ones.
Moreover, the average execution time for a private task is one order of magnitude
smaller than the one needed for a public task. Indeed, we compute private activ-
ities off-chain. Thus the execution time of a private event corresponds comprises
checking the event nature (private or public), and updating private markings.
On the opposite, the execution of public activities comprises an interaction with
the blockchain network. Against this backdrop, the local execution of private
tasks reduces the overall execution time.

Finally, we compare the transaction costs of our approach to the BPMN-
based experiments presented in [8]. We translate into DCR choreographies the
two open-sourced BPMN choreographies presented in [5], namely supply chain
and incident management. We deploy and execute the choreography in our pro-
totype, and compare the results. Table 3 shows the instantiation and task exe-
cution average gas fees; task execution fees correspond to the average cost of
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Table 2. Hybrid on/off-chain Projection and execution costs Hybrid on/off-chain Pro-
jection and execution costs

Table 3. Gas fees comparison of BPMN [8] and DCR choreographies (our approach)
run on the Ethereum blockchain

Workflow #Tasks #Gateways Gas fees [8] (BPMN) Our approach

Supply chain [5] 10 2 Instantiation 1,100,590 1,074,178

Task exec. 566,861 478,527

Incident Mgt. [5] 9 6 Instantiation 1 119,803 930,399

Task exec. 324,420 456,887

execution of a task. A gain of 26,412 gas for the supply chain workflow, and
189,404 gas for the incident management workflow can be noticed with the DCR
approach. Thus, the DCR-based smart-contract requires less fees for instantia-
tion than the BPMN one in these workflows. Regarding task execution costs, the
modeling choice does not seem to impact gas fees: a gain can be noticed with
DCR in the supply chain workflow, but not in the incident management one.
The number of gateways (2 in the supply chain, and six in the incident manage-
ment workflow) may explain such disparity. Indeed, each exclusive gateway is
translated into an include and a response relation for each decision path in the
DCR model. Such translation may explain the gas difference.

6 Related Work

Regarding traditional view-based approaches, authors in [15,18] use process
views to build an abstracted version of each partners’ private processes in order
to hide its internal structure. In [18], authors define a SOG (Symbolic Obser-
vation Graph) for each choreography participants. A SOG is an abstraction of
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the reachability state graph of a formally modeled process (e.g., an LTS). The
nodes in the SOG are meta-states, i.e., a set of states connected by unobserved
(internal) activities, and the edges are labelled with observed (interaction) activ-
ities. The SOG of the choreography process is the product of the SOGs of the
participants. In [15], roles inter-connect via a set of virtual activities. These vir-
tual activities abstract choreography interactions, and are enacted by a trusted
third-party. In these works, partners’ privacy is reached by separating public and
private views. However, trust issues remain as shared execution logic and data
are managed in a centralized fashion, often by a third-party [6].

Blockchains have been leveraged as trusted mechanisms to ensure the public
view correctness in recent work. In the following, we classify related works man-
aging collaborative processes on-chain according to (1) the choice of paradigm
which impacts the system flexibility and scalability, (2) the public/private views
separation which impacts confidentiality, and (3) the deployment which impacts
participants trust. The paradigm criterion refers to the process modeling choice
used to represent collaborative processes on blockchain. In [4–6,19,21,24], the
imperative modeling approach is chosen: BPMN business models describe the
control flow in a sequential manner. Other works such as [2,7,9,12,20] use the
declarative modeling approach where only execution constraints are specified.
[9,12] propose LTL for smart contract parametrized pre and post-execution con-
ditions, however without including implementations. Authors in [20] use the
artifact-centric language, in [2] XML, and in [7] DCR. The view-based criterion
refers to the separate display of the global process: in a view-based setting, partic-
ipants only have access to their tasks. [2,4,5,7,9,12,20,21,24] do not consider the
public/private view separation. For example, in [5,7,19], authors handle orches-
tration schemes only. [6] considers a choreography but authors do not expand
on the participants’ private workflows execution and deployment. Though the
generation of the public and private views in [6] is suggested, projections are
not enforced in a trustworthy fashion in this work. The deployment criterion
refers to the deployment model chosen for collaborative processes. Regarding
fully on-chain schemes, a translator maps directly BPMN [5,6,19], DCR [7], or
XML [2] models into Solidity. Additionally, a custom interface binds local exe-
cution engines with blockchain in [6]. In [24], authors run choreographies with
Bitcoin instead of smart contracts. [9,12] advise the direct end-to-end deploy-
ment of public processes. [20] stores the hash of an artifact-based multi-party
process in a smart contract but no details are given on off-chain tasks. Regarding
hybrid on/off-chain schemes, [21] proposed a set of on/off-chain connectors, but
processes are intra-organizational and the system allows only monetary opera-
tions. In [4], a gateway enables interactions of an off-chain intra-organizational
BPMN process with heterogeneous blockchains.

Most blockchain-based collaborative processes cited in the literature do not
consider declarative choreographies. When they do, they do not distinguish
the partners’ internal processes and the public view of the choreography when
deployed to the chain. Consequently, the contribution of this paper is to answer
cross-organizational needs for process flexibility and trustworthy separation of
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concerns. To do so, we build a collaborative BPMS that offers modeling flexibil-
ity, as well as a trustworthy and privacy-preserving separation of concerns. We
chose a declarative language that offers collaboration flexibility, necessary due
to the dynamic nature of collaborations. We add to this design choice the pub-
lic/private view separation and a hybrid deployment to enforce in a trustworthy
fashion the separation of concerns.

7 Discussion and Conclusion

This paper leverages the management of business process choreographies using
blockchain to address the need for a trustworthy separation of concerns. Addi-
tionally, we model choreographies with a declarative language called DCR. This
language offers loosely-constrained models to meet the flexibility requirements
of cross-organizational processes. To enhance privacy at design time, the public
view of the choreography is stored in a smart contract, and participants generate
their private view off-chain. On the execution side, internal events are executed
locally for privacy concerns, while choreography events are executed on-chain for
accountability concerns.

This approach represents a first effort to separate the public and private
views of a declarative choreography and proceed with its hybrid off/on-chain
management. Results confirm the advantages of separating public from private
events to ensure privacy while leveraging blockchain as a decentralized execution
infrastructure. Moreover, the local execution of private events leads to time and
economic gains. Our approach works if there is no public event. Then, no pub-
lic projection is generated. Multi-instance choreographies are also possible: for
each new instance, a workflow instance is added to the smart contract. Besides,
experiments on graphs of alternative complexity (be it the number of partici-
pants or activities) should confirm preliminary results. A limitation to our app-
roach concerns the public/private exchange of information. In our setting, the
information published in the smart contract is public. Consortium or private
blockchains, coupled to off-chain oracles to exchange sensitive information with
the smart contract, could answer privacy concerns. Furthermore, we rely on
the truthfulness of participants to execute their private projections and do not
ensure the correct enforcement of private processes. This concern, inherent to
choreographies, is part of ongoing research efforts.

As future work, we plan to use side channels [22] to manage on-chain process
instances to save transaction costs and reduce task execution latency. Only two
blockchain transactions would be of need: one to instantiate the process execu-
tion channel, and one to settle it. Additionally, a need rises regarding the ability
of participants to change the global workflow at runtime. An avenue for future
work is to propose such functionality to the proposed system, building on the
declarative paradigm to define flexibly authorizations and obligations.
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19. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.: Dynamic role bind-
ing in blockchain-based collaborative business processes. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 399–414. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 25

20. Meroni, G., Plebani, P., Vona, F., et al.: Trusted artifact-driven process monitoring
of multi-party business processes with blockchain. In: Di Ciccio, C. (ed.) BPM 2019.
LNBIP, vol. 361, pp. 55–70. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-30429-4 5

21. Palacin, L.: Accelerate blockchain technology adoption with Bonita BPM and
Chain Core, pp. 04–08 (2018)

22. Papadis, N., Tassiulas, L.: Blockchain-based payment channel networks: challenges
and recent advances. IEEE Access 8, 227596–227609 (2020)

23. Peltz, C.: Web services orchestration and choreography. Computer 36, 46–52 (2003)
24. Prybila, C., Schulte, S., Hochreiner, C., Weber, I.: Runtime verification for business

processes utilizing the bitcoin blockchain. FGCS 107, 816–831 (2020)
25. Slaats, T., Hildebrandt, T.T., Carbone, M., Völzer, H.: Flexible process notations

for cross-organizational case management systems. ITU Copenhagen (2015)
26. Underwood, S.: Blockchain beyond bitcoin. ACM 59(11), 15–17 (2016)

https://doi.org/10.1007/978-3-642-03848-8_20
https://doi.org/10.1007/978-3-642-03848-8_20
https://doi.org/10.1007/978-3-030-21290-2_25
https://doi.org/10.1007/978-3-030-30429-4_5
https://doi.org/10.1007/978-3-030-30429-4_5


Blockchains and Smart Contracts



Blockchain-Based Result Verification
for Computation Offloading

Benjamin Körbel1,2, Marten Sigwart1,2, Philip Frauenthaler1,2,
Michael Sober1,2, and Stefan Schulte1,2(B)

1 Christian Doppler Laboratory for Blockchain Technologies for the Internet
of Things, TU Hamburg, Hamburg, Germany
{michael.sober,stefan.schulte}@tuhh.de

2 Christian Doppler Laboratory for Blockchain Technologies for the Internet
of Things, TU Wien, Vienna, Austria

https://www.cdl-bot.at

Abstract. Offloading of computation, e.g., to the cloud, is today a
major task in distributed systems. Usually, consumers which apply off-
loading have to trust that a particular functionality offered by a service
provider is delivering correct results. While redundancy (i.e., offloading
a task to more than one service provider) or (partial) reprocessing help
to identify correct results, they also lead to significantly higher cost.

Hence, within this paper, we present an approach to verify the results
of offchain computations via the blockchain. For this, we apply zero-
knowledge proofs to provide evidence that results are correct. Using our
approach, it is possible to establish trust between a service consumer
and arbitrary service providers. We evaluate our approach using a very
well-known example task, i.e., the Traveling Salesman Problem.

Keywords: Offloading · Verification · Blockchain

1 Introduction

Offloading of computational tasks has gained a lot of research attention in recent
years [18]. The basic idea of offloading is that a client device outsources resource-
intensive computational tasks to providers, often in exchange for a fee [13].
Hence, when offloading tasks, two parties are involved. Task issuers (i.e., ser-
vice consumers) potentially have limited computational capabilities and there-
fore are interested in outsourcing particular tasks. Conversely, task processors
(i.e., service providers) may have idle computational resources and offer their
CPU-cycles and further computational resources to process these tasks. Typical
examples are the offloading of data processing tasks from lightweight Internet of
Things (IoT) or mobile devices in order to decrease processing time or to save
energy [24]. For instance, machine learning, (combinatorial) optimization tasks,
or the application of heuristics (e.g., genetic algorithms) to solve a complex prob-
lem require often resources not available to a potential service consumer. Apart
from overcoming limited computational resources, scalability and fault tolerance
are also major reasons why offloading is applied [10].
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Offloading can be done to resources following the Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), or Software-as-a-Service (SaaS) models,
depending on the needs of the service consumer. Traditionally, computation off-
loading leverages the cloud, e.g., [16], but more recently, offloading to resources
at the edge of the network has also been widely discussed, e.g., [12].

Regardless of the technological setting, offloading requires a client to trust the
service provider to deliver correct results. This is a major market entry barrier,
since service consumers naturally trust well-known service providers more than
new market participants.

In order to avoid reliance on a particular provider, the usage of block-
chain technologies for task offloading has previously been discussed [23]. In such
approaches (e.g., Golem or iExec—see Sect. 2), the blockchain is a service broker,
which brings together consumers and providers, and often delivers further func-
tionalities, e.g., automated settlement after the offloading task has been carried
out. Also, the offloading results are delivered through the blockchain.

However, to the best of our knowledge, none of the existing approaches per-
forms a check of the correctness of the delivered results. Ideally, before service
consumers pay the service providers for their work, they have an assurance that
the returned results can be fully trusted. Previous studies are aware of this issue
and discuss solutions based on, e.g., redundant computing, reprocessing frac-
tions of a task locally, or reputation-based systems in order to ensure correct
results [3,6,20]. While these approaches may reduce the risk of receiving wrong
results, they cannot proof that a result is correct [23]. In other, non-blockchain
solutions, the user needs to trust a third party which provides functionalities
ensuring trust in the offloading results, e.g., [17].

Furthermore, it should be noted that many offloading tasks do not deliver a
deterministic result. For instance, if offloading machine learning tasks or heuris-
tics to solve NP-complete problems, the computation results can differ. This
further complicates checking the correctness of a result, since redundant com-
puting or partial reprocessing may lead to different results.

Within the work at hand, we address this issue by conceptualizing, imple-
menting, and evaluating a blockchain-based offloading approach that can prove
the proper execution of a particular computation task. By using a blockchain,
we dissolve the dependency on a trusted third party. Using a public blockchain
also helps to achieve transparency, since information about the off-chaining pro-
cedure is publicly available. To prove the correctness of computational results,
we apply zero-knowledge proofs (ZKPs). We evaluate our approach using the
well-known Traveling Salesman Problem (TSP), showing in which use case areas
the proposed solution is beneficial if compared to other alternative approaches,
and assessing the cost and time overhead of our approach.

In brief, we provide the following contributions in this paper:

– We assess approaches to ensure trust in results provided by service providers.
– We discuss the utilization of ZKPs and blockchain technologies in order to

verify the results for offloaded tasks.
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– We design and implement a blockchain-based solution for computation off-
loading with result verification.

– We apply the TSP as a running example and in order to evaluate the overhead
resulting from the presented approach.

The remainder of this paper is organized as follows: In Sect. 2, we discuss the
related work. In Sect. 3, we assess different approaches to verify the results of
offloaded computation tasks. Based on this, we present our design and implemen-
tation in Sect. 4. Section 5 shows the results of the evaluation of the presented
work, and Sect. 6 concludes this paper.

2 Related Work

To the best of our knowledge, the field of blockchain-based, verifiable task off-
loading is still a novel research area, and not too many approaches have been
presented so far.

Golem [20], iExec [6], and SONM [21] are three commercial solutions, aim-
ing at decentralizing offloading to the cloud [23]. Their respective primary goal
is to provide solutions to decrease market entry barriers, by allowing arbitrary
providers to offer computational resources on a blockchain, and arbitrary con-
sumers to use these resources. Notably, the intended providers of cloud resources
are not large-scale data centers, but could be anyone with idle computational
resources. Golem, iExec and SONM aim at providing marketplace and broker
functionalities, and apply a pay-per-use model, i.e., the consumer has to pay for
using computational infrastructure or for processing a particular task. Notably,
in contrast to the work at hand, which focuses on a SaaS model, these solutions
aim at providing computing power in general, i.e., on the IaaS level.

With regard to result verification, Golem supports redundant computation,
but also allows to recompute fractions of an offloaded task locally (i.e., at the
service consumer’s side), and to subsequently compare the results. Also, Golem
implements a reputation mechanism, which is based on consumer (e.g., late
payments) and provider behavior (e.g., not delivering results in time), respec-
tively [20]. iExec applies a similar approach, where the service consumer can
define the needed reliability of the results. If this value is high, a higher degree
of redundancy is applied when computing the offloading tasks, and more reliable
providers, i.e., with a high reputation, are selected. Notably, iExec also allows
to support Software Guard Extension (SGX), which is a kind of enclave-based
off-chain computations (see Sect. 3) [6]. So far, SONM does not implement a
verification mechanism, but names reputation management as a major enabler
to provide reliable computation results [21].

None of the so-far discussed approaches provides a proof that the results
of a computation are correct. Instead, redundant computations, recomputing
fractions of tasks locally, and reputation-based methods only decrease the risk
that the results are not correct. Especially redundant computations also increase
the cost by quite some degree, since all involved service providers charge a fee
for the computations. Reputation systems can be helpful, but provide market



102 B. Körbel et al.

entry barriers since new service providers need to build a reputation. Also, it
remains unclear how these solutions handle results which are not deterministic,
e.g., for machine learning or heuristic tasks.

FlopCoin [3] is a blockchain-based offloading framework with a decentralized
incentive and reputation scheme. Among other metrics, the reputation of par-
ticipants is used as input for the offloading decision, i.e., to which provider of
computational resources a particular task is offloaded. EdgeChain [14] uses a
blockchain and smart contracts to link computational resources at the edge and
IoT devices which need to offload tasks. The blockchain is used to monitor the
offloading procedure and to conduct payments. A mechanism to detect malicious
nodes based on past behavior is also introduced. Qiu et al. [15] discuss a similar
approach, but apply deep reinforcement learning to find an assignment of tasks
and available edge resources. Very recently, another approach for offloading to
the fog has been presented by Wu et al. [25]. The focus of this work is also on
the actual decision making, i.e., where to place which offloaded task. In contrast,
we aim primarily on proving that computed results are valid.

To the best of our knowledge, none of the discussed research papers directly
address offloading result verification. Hence, the work at hand complements
existing work, and could be used within existing solutions in order to proof
that an offloaded computation provides valid results.

3 Result Verification for Offloaded Tasks

As discussed above, it is the goal of the work at hand to provide mechanisms that
can verify results of offloaded computational tasks. In general, we focus on the
SaaS model, but in fact, result verification could also be done for user-deployed
services using the IaaS or PaaS model.

To achieve result verification, different schemes could be applied: Verifiable
off-chain computation entails the provisioning of cryptographic proofs that wit-
ness correct processing. After a computation is performed, a cryptographic proof
is generated and published together with the result on a blockchain by the pro-
cessor (here: the service provider). Subsequently, the validity of the computation
can be verified on-chain using a smart contract [4].

Verifiable off-chain computation can be realized using ZKPs [7]. The basic
idea behind ZKPs is to convince someone that a statement is true without reveal-
ing any underlying information needed to proof that the statement is true. This
allows to hide the input data for a proof and therefore supports data privacy.
Importantly, in the scenario at hand, this facilitates the verification that the
results delivered by a service provider are correct, without the need that the
provider reveals its applied service or algorithm. Hence, the computation per-
formed by the service provider remains a blackbox from the perspective of result
verification. This is even the case for non-deterministic computations, e.g., if a
heuristic is applied. As long as it is possible to define rules which describe if an
offloading result is valid, ZKPs can be applied successfully.
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ZKPs can be realized in the form of Zero-Knowledge Non-Interactive Succinct
Arguments of Knowledge (zk-SNARKs), Zero-Knowledge Scalable Transparent
Arguments of Knowledge (zk-STARKs), and Bulletproofs [9].

zk-SNARKs are non-interactive and provide relatively cheap verification by
their succinctness. Before generating a proof and performing the verification step,
a one-time setup must be carried out by a trusted party. Unlike zk-SNARKs,
zk-STARKs and Bulletproofs do not require a trusted one-time setup. In zk-
SNARKs and Bulletproofs, computations are abstracted with arithmetic cir-
cuits, while zk-STARKs leverage higher degree polynomials. Both zk-STARKs
and Bulletproofs feature growing proof-size and on-chain verification, while zk-
SNARKs are independent of the task complexity and provide compact proves [4].
Due to the succinctness of zk-SNARKs, very short proofs (i.e., in the range of
bytes) can be provided, which is very beneficial when blockchain technology is
involved. Therefore, we decided to apply zk-SNARKs for result verification.

We have also investigated other result verification schemes: For instance,
Secure Multiparty Computation (SMPC) protocols enable the construction of
privacy-preserving off-chain computation schemes, but are accompanied by high
overhead [4]. Enclave-based off-chain computation relies on Trusted Execution
Environments (TEEs) which enable code execution while preserving confiden-
tiality and integrity. The enclave-based scheme allows universal computations
but has potential security issues [8,19]. Incentive-driven off-chain computing
rewards nodes which are doing verification work to check if a computation is
correct. One implementation of this scheme is TrueBit [22]. A challenge when
using the described scheme is to keep nodes motivated for performing verifica-
tions continuously. Also, the throughput of completed computation tasks and
the general service can be hindered by malicious verifiers by marking each com-
putation result as faulty [4].

The selection of zk-SNARKs allows us to make use of the ZoKrates tool-
box [5], which supports the entire process of specifying, integrating and deploying
ZKPs on Ethereum-based blockchains. The toolbox consists of a Domain-specific
Language (DSL), a compiler and generators for proofs as well as smart contracts
for verification. In brief, ZoKrates can be used to execute a computational task
off-chain. Afterwards, the result of the computation (here: of an offloading task)
and the corresponding proof are written back to a blockchain. The proof that
attests correct (or incorrect) computation can then be verified on-chain. There-
fore, the computational effort on a blockchain is reduced, while privacy can be
preserved due to the usage of ZKPs.

4 Design and Implementation

4.1 Overview

After having selected zk-SNARKs as the underlying approach to provide result
verification for computation offloading, we are now able to design a solution.

As discussed before, we make use of a blockchain-based approach to offload
tasks to service providers. While this has been proposed before (see Sect. 2), there
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Fig. 1. Blockchain-based computation offloading with result verification

is lack of solutions which allow to verify the results delivered by the service pro-
viders. Due to space constraints, we focus on this particular functionality in the
work at hand. However, we have in fact designed and implemented a framework
which covers the necessary functionality stack, i.e., acts as a blockchain-based
broker for service consumers (offloaders) and service providers, and implements
an incentive structure, so that fees can be charged and are automatically paid if
a result has been verified. Notably, while the implemented solution can be used
by traditional cloud providers to offer their resources and services, it could also
be used in fog and edge settings, or by private persons who want to offer spare
computational resources.

In the case of non-deterministic results, e.g., since a heuristic is applied by
a service provider (see Sect. 1), our framework allows to obtain results from
different providers and to compare the result quality. The integration of methods
to assess the result quality is part of our future work (see Sect. 6).

Figure 1 shows the components of the software solution. As it can be seen,
the system consists of the service consumer (i.e., the client software for the
task offloader), the service provider (i.e., the according client software), the bro-
ker smart contract and the result verification smart contract. In the following
subsections, we discuss the core components with a focus on the verification
functionalities.

4.2 Blockchain-based Brokering and Result Verification

The blockchain serves two major purposes in our scenario: First, it acts as a
broker during the offloading process, i.e., facilitates the cooperation between a
service consumer and a service provider. This includes provisioning of results to
the service consumer and payment to the service provider. Second, the blockchain
delivers the result verification (see Sect. 4.4). Following the approach presented in
this work, no preexisting relationship and no position of trust between a service
consumer and potential service providers need to exist.

Brokering functionalities and result verification are implemented using smart
contracts. Within the work at hand, we use Ethereum for this, since it provides
a broad acceptance in the research community as well as industry. It should be
noted that the presented approach is per se protocol-agnostic, and could also be
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implemented using a permissioned blockchain like Hyperledger Fabric. However,
we opted to use a public blockchain in the work at hand.

4.3 Broker Smart Contract

createTaskRequest() endTask()ready running ended

retrieveSolution()
submitSolution()
getTaskRequest()

Fig. 2. Simplified state diagram of the broker smart contract

Figure 2 provides an overview of the states the broker smart contract passes
through. As it can be seen in the state diagram, the contract may be in the
states ready, running, and ended. For the transition between the states, particular
functions must be called. Before any interaction is possible, i.e., any function is
callable, the smart contract needs to be deployed on the blockchain. After the
deployment, it is in state ready. At this point, a service consumer can create a
new request for offloading, i.e., a new offloading task, using createTaskRequest().

The necessary inputs for createTaskRequest() are a stake, which is used as
a deposit for the later payment to the service provider, information about the
offloaded task, and a boolean value if the result should be verified or not. Once
this has been done, the state changes to running.

At this point of time, a potential service provider can retrieve all the neces-
sary information to process the task by calling getTaskRequest(). Notably, the
selection of the service provider could follow different patterns, e.g., based on
reputation and/or load balancing as proposed in the related work (see Sect. 2),
by applying a reverse auction so that potential service providers compete for the
requests, or other allocation techniques.

Since this is not in the focus of the work at hand, we implement a simplified
approach, i.e., once a service provider has computed a result, it can be published
using submitSolution(). When calling this function, the service provider needs
to deliver the actual solution to the request. At this point, network participants
including the service consumer can see the submitted solution due to the public
nature of the blockchain. To circumvent that a service consumer reads the result
and does not pay the provider, the stake deposited by the consumer is used.

Any network participant (here: the service consumer or the service providers)
may close the task by using endTask(), which also means that the state changes
to ended and that the payment to the service provider is triggered. Notably, this
is only possible once a minimum duration has passed, which is also defined by
the service consumer. When the task is ended, the service consumer can collect
the solution by calling the function retrieveSolution(). As written before, the
consumer could also read the result simply from the blockchain. We explicitly
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Fig. 3. High level process of the result verification

foresee retrieveSolution() as the possibility to implement a more sophisticated
function here, e.g., to encrypt and decrypt the result in order to not release the
solution publicly on the blockchain, or to provide the solution via a blockchain-
external data storage like the InterPlanetary File System (IFPS) [11], in order
to save gas cost.

4.4 Result Verification

Figure 3 gives a high level overview of result verification within our approach. As
it can be seen, solutions of verifiable tasks are written to the blockchain only if
the result verification is successful. Otherwise, the submission is discarded. The
activity verify Solution is part of the result verification while all other activities in
Fig. 3 belong to the broker smart contract discussed in Sect. 4.3. The verification
is performed within a separate smart contract generated by ZoKrates. For this,
the broker smart contract has to trigger the verification function verifyTx()
in the verification smart contract. An example implementation of verifyTx() is
discussed in Sect. 4.6.

The procedure of the result verification is illustrated in Fig. 4. First, a service
provider decides to contribute to a particular offloading task, which is the start
event for the result verification. For this, the provider retrieves all relevant input
data. Based on that, the service provider computes the task locally (and therefore
off-chain) with a service running on the provider’s computational resources. After
a solution has been found, a witness has to be computed. This means that
a program specified in DSL code is run with the service provider’s result as
input; this DSL program is providing important input for the ZoKrates toolbox
as discussed in more detail in Sect. 4.6. If the verification succeeds, the DSL
program returns a witness that proves proper computation. Otherwise, it can be
assumed that an error occurred during the computation phase or a wrong result
has been entered. In this case, the computation is repeated. If the computation
fails again, the procedure ends unsuccessfully (not shown in Fig. 4).

service provider 
decides to participate get task compute solution 

locally compute witness generate proof

submit solution
& proof verify solution submission failedsubmission sucessful

witness ok?

verification ok?

Y
N

N
Y

Fig. 4. Result verification procedure
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Based on the witness, a proof can be generated, which is needed for the on-
chain verification in the next step. Both actions, compute witness and generate
proof are performed locally on the service provider’s hardware. Afterwards, the
solution and the proof can be submitted to the broker smart contract. When a
solution is submitted, the broker smart contract calls the verification function
verifyTx() of the verification smart contract. If the verification function returns
true, we can assume that the computation has been executed honestly. As a
result, the solution is stored on-chain. Otherwise, if false is returned, the sub-
mission of the service provider is discarded entirely. In both cases, the procedure
subsequently ends.

4.5 Implementing Result Verification for Specific Use Cases

Result verification is naturally tied to specific computation problems. This means
that a certain part of the result verification, more specifically the DSL program
implemented using the ZoKrates toolbox, is not generic and must be adapted
whenever a different computation problem has to be served.

Accordingly, the DSL code contains appropriate checks to prove that a com-
putation is done correctly. The possibility of creating or adopting these programs
enables flexibility and adds universal applicability to the result verification. In
other words, new use cases can be added and thus potential demands of service
consumers for new computation problems can be met. The mandatory steps to
add a new use case are depicted in Fig. 5.

To verify results of a specific computation problem, several one-time prepa-
ration steps have to be conducted. As indicated, a program in form of DSL code
has to be written. Within the DSL program, some logic, e.g., conditions, has
to be specified, which makes the solution for a specific problem true. The DSL
program takes a number of inputs (depending on the use case) and verifies if all
specified conditions are met. Consider the offloading task of calculating the sum
of two integers. In this case, the equation a + b = c must hold and has to be
encoded in the DSL. In general, an arbitrary task can be verified, as long as it is
possible to define a rule that the result has to follow. As described in Sect. 3, for
this, the service provider does not have to disclose any information about the
applied algorithm or method.

Then, keys and the verification smart contract have to be generated. For
the keys, this means that a trusted setup is necessary. In the work at hand, we
assume that the trusted setup is performed by the developers of the smart con-
tracts presented in Sect. 4.2. Afterwards, the on-chain verification for the specific
computation problem is ready for deployment. Alternatively, a multiparty com-
putation protocol could be applied, e.g., [2], that prevents fake proofs as long as
one participant is honest.

When the result verification scheme is integrated into the broker smart con-
tract, the inputs of the function submitSolution(), as well as the storage format
for solutions of the new problem, should be kept in mind. Under certain cir-
cumstances, it can be useful to draw up a detached broker smart contract for
each use case. In this case, the basic functions of the broker smart contract,
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Fig. 5. Process for adding result verification for additional use cases

e.g., getTaskRequest() can be copied, but use case-specific data, e.g., necessary
fields for the problem instance and solutions, must be considered and adapted
as well. Furthermore, the function submitSolution() that also calls verifyTx()
of the verification smart contract has to be tailored. A separation per use case
would lead to more compact code artifacts and better maintenance. However, to
simplify the description of our solution approach, we only discuss the usage of
one broker smart contract in this paper.

When a new use case is added, the main effort consists of rewriting the DSL
program and integrating the verification smart contract into the broker smart
contract. The aforementioned trusted setup and creation of the verification smart
contract is mainly handled by the ZoKrates toolbox. The deployment of new
smart contracts is tool-supported as well. This means that merely predefined
commands have to be executed.

4.6 Example Implementation

To demonstrate how our blockchain-based offloading approach with result veri-
fication can be adopted to specific use cases, we describe the process of imple-
menting an exemplary use case based on the TSP.

The TSP is selected since it is very well-known among computer scien-
tists, and easy to understand, but actually hard to compute. In brief, the TSP
describes the problem to find the shortest path to travel a predefined number
of cities and to return back to the origin city, but visiting any other city only
once. As input, a list of cities and the distances between each pair of cities are
given [1]. Once a solution to the TSP has been found, its validity can be verified
in little time, e.g., by traversing the path of a solution. Interestingly, it is also
easy to assess the quality of the solution, i.e., by comparing the computed path
length.

The TSP is an NP-hard problem, which also opens interesting future research
direction (see Sect. 6). Notably, the TSP is merely used as an exemplary use case
in the work at hand. The presented approach explicitly allows to verify other
tasks as well. The according implementation including the broker smart contract
can be found at Github1.

There are some restrictions which have to be taken into account because of
the applied ZoKrates toolbox. First, the toolbox only supports numbers, i.e.,

1 https://github.com/ben2048/blockchainBasedComputationOffloading.

https://github.com/ben2048/blockchainBasedComputationOffloading
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Alg. 1. Main function of the DSL program

1 def main(
2 private field [10] path , private field mapnumber , field sum ,
3 private field [10] cities , field [2] hashOfCities , field [2] hashOfPath
4 ) -> (field):
5

6 1 == basicInputCheck(path , cities , mapnumber)
7 1 == checkCities(path , cities , mapnumber)
8 sum == calculateSum(path , mapnumber)
9

10 field [2] hashedPath = hash(concat(path))
11 hashOfPath [0] == hashedPath [0]
12 hashOfPath [1] == hashedPath [1]
13

14 field [2] hashedCities = hash(concat(cities))
15 hashOfCities [0] == hashedCities [0]
16 hashOfCities [1] == hashedCities [1]
17

18 return 1

cities in the TSP have to be represented by numbers, not by their names. Sec-
ond, ZoKrates does not support any dynamic fields. Accordingly, the size of
an array needs to be defined at compile time. Both constraints complicate the
implementation a little bit, but do not lead to any significant restrictions. We
discuss the impact of the fixed array sizes also in the evaluation in Sect. 5.

As described in Sect. 4.5, the result verification is based on a DSL which
proves program inputs against defined checks. With regard to the TSP, the
result verification has to verify whether a solution has been computed properly.
In other words, service providers need to prove that they have found a valid
solution for an TSP instance. To accomplish that, the produced path has to
be Hamiltonian (i.e., each city appears exactly once in the path) and the path
length must correspond to the sum of the connections between the cities on the
basis of the path and the given distances [1]. As input, the map of cities for
the TSP has to be defined, including the cities (represented by numbers) and
the distances between the cities, i.e., a complete graph made up from vertices
(cities) and edges (distances) between the vertices. This data structure can be
stored as an array within the DSL program.

In the following paragraphs, we discuss the example given in Algorithm 1.
To verify that a service provider has computed a correct result, the following
information needs to be provided (lines 2–3): (i) The computed path, consisting
of a sequence of numbers representing cities, (ii) an ID mapnumber for the map
which has been used for solving the TSP instance (this allows to use different
maps with the TSP), (iii) the computed length of the path sum, (iv) the cities
for which the minimal distance has been computed, and (v) the hashed path
hashOfPath and the hashed cities hashOfCities. As it can be seen, the example
allows a maximum of ten cities on a path, but other lengths are also possible.

The path and the map are needed to calculate the distance and to compare it
with the stated length (i.e., the result) from the service provider. Path and cities
are used to determine if all cities are covered exactly once in a path. The hashed
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Alg. 2. verifyTx()

1 function verifyTx(
2 uint [2] memory a, uint [2][2] memory b,
3 uint [2] memory c, uint [6] memory input
4 ) public returns (bool r) {
5 Proof memory proof;
6 proof.a = Pairing.G1Point(a[0], a[1]);
7 proof.b = Pairing.G2Point ([b[0][0] , b[0][1]] , [b[1][0] , b[1][1]]);
8 proof.c = Pairing.G1Point(c[0], c[1]);
9 uint[] memory inputValues = new uint []( input.length);

10 for(uint i = 0; i < input.length; i++){
11 inputValues[i] = input[i];
12 }
13 if (verify(inputValues , proof) == 0) {
14 return true;
15 } else {
16 return false;
17 }
18 }

path is necessary to prevent malicious behavior originating from the service
provider when submitting a solution. Without the hash, it would be possible to
decouple the proof from the path. In other words, if the service provider submits
a valid proof but an invalid path, it possibly cannot be detected on-chain, i.e.,
the result verification would succeed even though an incorrect path would be
stored on the blockchain. To recognize and prevent such scenarios, we compare
the hash and the path within the DSL program and in the broker smart contract.

As it can be seen, the main function first performs an input check (line 6).
This is done in order to sort out solutions with invalid indices or map numbers.
Next, it is checked if the stated path contains each city exactly once (line 7),
i.e., if the path is Hamiltonian. Afterwards, it is checked if the stated path
length (field sum in line 8) is equal to the sum resulting from the distances of
the stated path based on the distances between cities, i.e., the map. Then, it is
necessary to embed the hash of the path in the verification procedure (lines 10–
12). Therefore, the hash of the path is needed as input. Consequently, we have to
compute the hash of the stated path and compare it with the input, to prevent
the aforementioned malicious action. For this, we utilize the implementation of
SHA256 provided by ZoKrates.

As discussed before, the DSL program shown in Algorithm 1 runs off-chain,
while the verification function verifyTx() is carried out on-chain. Notably, the
number of inputs of verifyTx() is a cost factor. With regard to our use case and
the specification of the input parameters in the DSL program, the number of
cities scales with the instance size. This becomes a crucial cost factor, since the
gas cost rise linearly with the number of public inputs provided. Hence, we make
use of the hashed cities instead of the number of cities. This allows to make the
cities a private input, but also makes it necessary to check the hash of the cities
(lines 14–16), analogue to lines 10–12.

Based on the DSL program, ZoKrates is able to define verifyTx() as depicted
in Algorithm 2. The input array consists of the path length, hash values for
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the path and the cities plus the expected return value of the DSL program
(lines 2–3). Afterwards, a new proof is instantiated (line 5). Then, verifyTx()
requires three elliptic curve points in form of the arrays a, b, c (lines 6–8). These
elliptic curve points actually make the zk-SNARKs proof and are delivered via
the DSL program by the ZoKrates toolbox. Hence, the developer who integrates
verifyTx() does not have to take care of the actual proofs, which is a major
reason for using the ZoKrates toolbox.

The array input depicts the public inputs and the expected return value of
the DSL code, and is used to fill the inputValues (lines 9–12). Afterwards, the
actual verification is carried out (line 13). In the case of a successful verification,
the boolean true is returned (line 14), else, the boolean false is returned (line
16). Thus, a service consumer can be sure that a result is valid (or not), and
the broker smart contract could carry out the payment. Notably, since only the
proof is published on the blockchain, no conclusions regarding the computation
and concrete results are possible. This ensures the privacy property regarding
the proof. However, as written above, the solution is still available on the chain.
To avoid this, a solution could be encrypted (see Sect. 4.3).

5 Evaluation

5.1 Evaluation Setup

In order to evaluate the presented approach, we measure the overhead (regarding
time and cost) occurring because of result verification.

As mentioned in Sect. 4, the computation offloading consists of an on-chain
and an off-chain part. To evaluate the on-chain activities, the smart contracts
have been deployed in a local Ethereum blockchain (using Truffle), while for the
off-chain activities, ZoKrates has been installed locally in a Docker container.

5.2 Overhead Analysis

The result verification is part of the solution submission process as presented in
Sects. 4.3 and 4.4. Hence, in order to evaluate the overhead with regard to gas
cost and time, we implemented a second submitSolution() function in the broker
smart contract. However, this version of the function does not verify the sub-
mitted solution. This allows us to compare the gas and time consumption of a
benchmark with the according values of our zk-SNARKs-based verification app-
roach. As a second benchmark, we conduct an on-chain result verification, i.e., a
solution for a TSP instance is verified by a separate smart contract deployed on
the blockchain. We apply two maps with size 30 and 70, respectively, in order
to see how the map size (i.e., number of cities) influences the results. To get
a complete picture of the cost overhead, TSP instance sizes between 3 and 30
(map 30 ) respectively 3 and 60 (map 70 ) are used.

The results regarding the cost for map 70 are shown in Fig. 6. Not surpris-
ingly, the gas consumption with verification is higher than without verification. If
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no verification is done, there is no difference between the two maps. Hence, there
is only one plot for the offloading without verification. Actually, this benchmark
also indicates how big the cost become if redundant computation is used (see
Sect. 2). In that case, based on the level of redundancy, each submitted solution
leads to the same cost. In addition, some overhead for the comparison (e.g.,
majority voting) of the results needs to be taken into account. This shows that
redundant computing is not really an option with regard to the gas consumption
for the solution submission.

While not shown in the figure in order not to overload the plot, the submission
of solutions based on the smaller map (with 30 cities) is marginally cheaper than
solutions based on the larger map (with 70 cities).

It can also be seen that verifying TSP solutions on-chain (submitSolution-
onChain) is cheaper than the approach presented in this work for small instances,
but more expensive for large ones. Up to an instance size of 29, the on-chain
verification is cheaper than applying zk-SNARKs. For instances of size 30, the
zk-SNARKs-based version should be preferred, whereby on-chain verification is
at a lower price for an instance size of 31. Finally, the cost of on-chain verification
exceeds the cost of the zk-SNARKs-based variant at instance size 40. Overall,
we can clearly see which version is cheaper for instances of size up to 29 and
from 40 ascending. Around the instance size 30, three intersections with regard
to the on-chain and zk-SNARKs-based variant are visible. To determine the
exact break-even point(s) between 29 and 40, we have performed further (not-
depicted) measurements showing that the on-chain variant is more cost-efficient
for instances of size 31–34. From instance size 35, the zk-SNARKs-based variant
should be preferred.

These results show that it is necessary to discuss the line course in more
detail: It becomes clear that the gas demand of all three variants shown in
Fig. 6 increases with the instance size. It is also noticeable that the cost levels
of submit-without-ver. (map 70) and submitSolution-onChain rise continuously,
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Fig. 7. Time overhead

while the levels of submit-with-ver. (map 70) increase step-wise. This is caused
by the partitioned verification, due to the lack of dynamic fields and the sub-
sequent fixed array sizes within the DSL of ZoKrates. For solutions of size 3 to
60, separate DSL programs with a varying number of inputs (starting with an
instance size of 10, and increased by steps of 10) are provided. For example, if
a DSL solution for 11 cities is computed, the resulting path has to be padded,
according to the expected number of inputs of the DSL program. Due to the fact
that such a padding is not necessary when no verification is performed or the
verification is done on-chain, the gas consumption merely rises continuously for
these options, but for the zk-SNARKs-based approach, “jumps” in the plot can
be seen. A solution to circumvent this would be to have different smart contracts
for different TSP instance sizes.

Second, we observe the time overhead. Figure 7 depicts the time needed to
execute the compute-witness and generate-proof step for TSP instances of sizes
3 to 60. The values on the x-axis can be interpreted as follows: 3/m30 means that
the instance is of size three and belongs to map 30. As can be seen, the overall
run-time increases with the size of instances. The step generate-proof takes on
average 3.2 (standard dev.: 0.28) times longer than the compute-witness step.
Considering the increasing runtime of the proof generation and the computation
of the witness, it becomes clear that the presented result verification approach
should primarily be used in scenarios which are not very time-critical.

6 Conclusion

In order to provide solutions for fully decentralized task offloading, a number of
blockchain-based solutions have already been proposed. However, to the best of
our knowledge, none of these solutions is able to verify that an offloaded task is
computed correctly. Instead, redundant computing or trust models are applied,
which however cannot guarantee that a computation is valid.
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We have therefore presented an approach which supports the verification
of computation results, applying zk-SNARKs. Especially, this allows to com-
pute results and proofs off-chain, and to only verify the proofs on-chain. While
our solution could be integrated into existing blockchain-based offloading frame-
works, we have also provided a simplified broker solution as part of this paper.

In our future work, we want to further extend the presented approach. Espe-
cially, we want to replace the brokering functionality by a more sophisticated
one which also allows the broker to take into account quality requirements (e.g.,
a particular quality of a result), and to select based on this the best result from
a number of provided solutions. In fact, selecting the TSP as our evaluation use
case already lays the foundations for this, since service providers could deliver
different solution qualities with different algorithms and at different cost to this
NP-hard problem. In other scenarios, the assessment of the result quality is a
more complex task and therefore an interesting direction of future work.

While currently our reference implementation applies a simple pricing
scheme, i.e., the service provider is paid with the consumer’s stake, more com-
plex pricing might be useful. For instance, a dynamic pricing scheme based on
the complexity of an offloaded computational task and the number of available
service providers might be helpful. Last but not least, as has been shown in the
evaluation, an on-chain verification is sometimes cheaper to conduct than the
proposed off-chain result verification. Therefore, we will further investigate in
which cases which of these two approaches should be preferred.
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Abstract. Several features of the Blockchain technology are well aligned
with critical issues in the Business Process Management (BPM) field, and
yet adopting Blockchain for BPM should not be taken lightly. In fact,
the security of smart contracts, which are one of the main elements of
the Blockchain that make the integration with BPM possible, has proved
to be vulnerable. It is therefore crucial for the protection of the designed
business processes to prove the correctness of the smart contracts to be
deployed on a blockchain. In this paper we propose a formal approach
based on the transformation of Solidity smart contracts, with consider-
ation of the BPM context in which they are used, into a Hierarchical
Coloured Petri net. We express a set of smart contract vulnerabilities as
temporal logic formulae and use the Helena model checker to, not only
detect such vulnerabilities while discerning their exploitability, but also
check other temporal-based contract-specific properties.

Keywords: Blockchain · Business process management · Model
checking · Solidity · Smart contracts · Hierarchical coloured petri nets ·
Temporal properties

1 Introduction

Initially featured as the technology behind Bitcoin, Blockchain has soon after
escaped the box of cryptocurrencies to find its way into a multitude of applica-
tion domains, including that of Business Process Management (BPM). In fact, its
inherent characteristics, namely its decentralized nature, ability to provide trust
among trustless parties, immutability and financial transparency seem to deliver
the right tools to contrive adequate solutions for existing problems in BPM, espe-
cially for collaborations [20]. One of the promising integration possibilities of these
two fields is the design of Blockchain-based business processes (BPs). The gen-
eral preference has been to use an existing modeling language for BPs and adopt
Blockchain for different aspects of their management. For instance, Lorikeet [28] is
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a tool that leverages Blockchain as a message exchange mechanism for BP chore-
ographies. Caterpillar [16], on the other hand, is used to implement the BP model
and deploy it on the chain. This has been possible thanks to the concept of smart
contracts which allow the execution of sequences of interdependent transactions
while complying to the rules implemented within. In general, a BP can be analo-
gously viewed as a sequence of tasks linked by causal relationships with the aim of
achieving a business goal. Therefore, smart contracts seem to be ideal candidates
for the implementation and automation of BPs.

Despite the advance in the adoption of Blockchain for the BPM context, its
state is still nascent, and using smart contracts to carry on BPs cannot be con-
sidered safe. Many attacks with significant consequences on several blockchains,
exploiting hidden vulnerabilities in smart contracts and exposing the defective-
ness of the targeted applications bear witness to such a risk. In 2010, 92 billion
BTC were generated out of thin air by exploiting an integer vulnerability on
the Bitcoin blockchain [1]. The DAO attack on Ethereum exploited a reentrancy
vulnerability and resulted in 3.6M of stolen Ether [25]. A vulnerable blockchain-
based application does not have to be the target of an attack to malfunction.
For instance, the Parity multisig wallet was subject to an accident caused by a
self-destruction vulnerability in 2017 and resulting in freezing 500K of Ether [26].

Informal as well as formal methods have been proposed to ensure the cor-
rectness of smart contracts. While informal techniques can test a smart contract
under certain scenarios, they cannot be relied on to verify specific properties
defining its correctness. We note that we are interested in Ethereum smart con-
tracts as it is currently the second largest cryptocurrency platform after Bitcoin
besides being the inaugurator of smart contracts, and more particularly those
written in Solidity [2] as it is the most popular language used by Ethereum.

In this paper, we propose a model-checking-based approach for the verifi-
cation of Solidity smart contracts with a particular focus on those used in the
BPM context. Thanks to their ability to combine the analysis power of Petri
nets with the expressive power of programming languages, Coloured Petri Nets
(CPNs) [11] are suitable candidates for the modeling and verification of large
and complex systems, and therefore they are employed in our approach to model
the smart contracts execution with respect to a behavior specification defining
the workflow within which they are used. The result of this modelling step is
a hierarchical CPN (HCPN), on which we define a set of temporal properties
to express vulnerabilities as well as contract-specific properties relevant to both
data- and control-flows of the modelled smart contracts. We implement a pro-
totype that automates the generation of the HCPN model in the specification
language of Helena [9], the model checker we use for the verification of the
defined properties.

The remainder of this paper will be organized as follows: Sect. 2 provides
an overview of related studies on formal verification of Solidity smart contracts.
Prerequisites on CPN and a brief overview on the representation of BP models
are given in Sect. 3, followed by a use case in Sect. 4. An overview of our proposed
approach is given in Sects. 5 followed by its detailed steps in Sect. 6. The formal
specification of some vulnerabilities and the application on the use case are
presented in Sect. 7. Finally, Sect. 8 concludes the paper.
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2 Related Work

Existing studies on formal verification of smart contracts follow mainly two
streams [10]: The first is based on theorem proving [3,5]. Approaches based on
this technique cannot be fully automated as the user usually has to intervene to
assist the prover. The second includes studies based on model checking, which is
where our work can be situated. Most of the studies under this second category
use symbolic model checking coupled with complementary techniques such as
symbolic execution [13] and abstraction [4]. The first attempt was Oyente [17], a
tool that targets four vulnerabilities and operates at the EVM bytecode level of
the contract. It generates symbolic execution traces and analyzes them to detect
the satisfaction of certain conditions on the paths which indicates the presence
of corresponding vulnerabilities. Numerous studies followed in the footsteps of
this work, some of which exploited some of its components in their implementa-
tions like GASPER [6] which reuses Oyente’s generated control flow graph, while
others extended it with the aim of supporting the detection of other vulnerabil-
ities, like Osiris [27]. Also based on symbolic model checking, Zeus [12] operates
on the source code of the contract. VeriSolid [18] is an FSM-based approach
that aims at producing a correct-by-design contract rather than detecting bugs.
The authors propose a transformation of a contract modeled as an FSM into a
Solidity code and provide the ability to specify intended behavior in the form of
liveness, deadlock freedom and safety properties expressed using templates for
CTL properties and checked by a backend symbolic model checker. The proposed
approaches usually use under-approximation which means that critical violations
can be overlooked. This explains the presence of false negatives and/or positives
in their reported results. We note that most of the existing studies target specific
vulnerabilities in contracts, and few are those that allow expressing customizable
control flow-related properties while none target data-related properties.

More recently, other attempts using CPN have been proposed. The work
in [15] shows an example of verification of behavioural properties applied man-
ually on a CPN model for a crowdfunding smart contract. It does not, how-
ever, propose a complete approach with generic transformation rules that can
be automated and applied to any contract. Another CPN-based proposition was
presented in [8]. This approach, despite being based on CPN, cannot be used for
the verification of data-flow related properties as the generated model focuses
on the representation of the workflow extracted from the contract’s CFG.

Our proposed approach aims at overcoming the stated shortcomings by pro-
viding the means to elaborate behavioural and contract-specific properties (in
the form of temporal properties) that can depend on the data-flow in the contract
and hence is not bound to a restricted set of reported vulnerabilities. Besides,
our approach relies on explicit model checking and that our transformation algo-
rithm operates on the source code as opposed to the bytecode. Hence, we avoid
the consequences of under-approximation and contextual information loss.
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3 Preliminaries

3.1 On Coloured Petri Nets

A Petri net [22] is a formal model with mathematics-based execution semantics.
It is a directed bipartite graph with two types of nodes: places (drawn as circles)
and transitions (drawn as rectangles). Despite its efficiency in modelling and
analysing systems, a basic Petri net falls short when the system is too complex,
especially when representation of data is required. To overcome such limitations,
extensions to basic Petri nets were proposed, equipping the tokens with colours
or types and hence allowing them to hold values. A large Petri net model can
therefore be represented in a much more compact and manageable manner using
a Coloured Petri net [11]. The formal definition of a CPN is given in Definition 1
and the main concepts needed to define its dynamics are given in Definition 2.

Definition 1 (Coloured Petri net). A Coloured Petri Net is a nine-tuple
CPN = (P, T, A,Σ, V,C,G,E, I), where:

1. P is a finite set of places.
2. T is a finite set of transitions such that P ∩ T = ∅.
3. A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.
4. Σ is a finite set of non-empty colour sets.
5. V is a finite set of typed variables such that Type[v] ∈ Σ, ∀v ∈ V .
6. C : P → Σ is a colour set function that assigns a colour set to each place.
7. G : T → EXPRV , where EXPRV is the set of expressions with variables in

V , is a guard function that assigns a guard to each transition t.
8. E : A → EXPRV is an arc expression function that assigns an arc expression

to each arc a such that Type[E(a)] = C(p)MS.
9. I : P → EXPR∅ is an initialisation function that assigns an initialisation

expression to each place p such that Type[I(p)] = C(p)MS.

Definition 2 (CPN concepts). For CPN (P, T,A,Σ, V,C,G,E, I), we note:

1. A marking is a function M that maps each place into a multiset of tokens.
2. The initial marking M0 is defined by M0(p) = I(p)〈〉 for all p ∈ P .
3. The variables of a transition t are denoted by V ar(t) ⊆ V .
4. A binding of a transition t is a function b that maps each variable v ∈ V ar(t)

into a value b(v) ∈ Type[v]. It is written as 〈var1 = val1, ..., varn = valn〉.
The set of all bindings for a transition t is denoted B(t).

5. A binding element is a pair (t, b) such that t ∈ T and b ∈ B(t). The set of all
binding elements BE(t) for a transition t is defined by BE(t) = {(t, b)|b ∈
B(t)}. The set of all binding elements in a CPN model is denoted BE.

A transition is said to be enabled if a binding of the variables appearing in
the surrounding arc inscriptions exists such that the inscription on each input
arc evaluates to a multiset of token colours present on the corresponding input
place. Firing a transition consists in removing (resp. adding), from each input
(resp. to each output) place, the multiset of tokens corresponding to the input
(resp. output) arc inscription. For more details on CPN we refer readers to [11].
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3.2 On Business Process Modeling Representations

When it comes to business process modeling languages, controversy arises as to
whether imperative or declarative modeling approaches are better. An empirical
investigation [24] states that while imperative languages (e.g., Business Pro-
cess Model and Notation BPMN [23]) can be considered superior in terms of
comprehensibility by end-users, this fact’s accuracy can be influenced by the
experimental subjects’ familiarity with imperative modeling languages. On the
other hand, declarative modeling approaches (e.g. Dynamic Condition Response
DCR Graphs [21]) are considered less rigid than their counterpart and therefore
more suitable for rapidly evolving business processes. In fact, imperative models
represent how a process is executed by explicitly defining its control flow while
declarative models focus on why a process is executed in such a way by implic-
itly defining its control flow as a set of rules. Consequently, making changes
to an imperative model is more time-consuming and complex than altering a
declarative one, since the former would entail explicitly adding/deleting execu-
tion alternatives, which can call into question the correctness of the model, while
the latter could be achieved by adding/deleting constraints from the model to
discard/add execution alternatives. In our work, we do not support any claims
for the supposed superiority of any paradigm over the other.

Definition 3. A DCR graph is a tuple G = (E,M,Act,→•, •→,→+,→%,
→�, l) where M(G) =def P(E) × P(E) × P(E) is the set of all markings:

1. E is the set of events, ranged over by e.
2. M ∈ M(G) is the marking of the graph.
3. Act is the set of actions.
4. →•, •→⊆ E × E are the condition and response relations, respectively.
5. →+,→%⊆ E×E are the dynamic include and exclude relations, respectively,

satisfying that ∀e ∈ E . e →+ ∩ e →% = ∅.
6. →�⊂ E × E is the milestone relation.
7. l : E → Act is a labelling function mapping every event to an action.

A marking M = (Ex,Re, In) ∈ M(G) is a triplet of event sets where Ex rep-
resents the set of events that have previously been executed, Re the set of events
that are pending responses required to be executed or excluded, and In the set
of events that are currently included. The idea conveyed by the dynamic inclu-
sion/exclusion relations is that only the currently included events are considered
in evaluating the constraints. In other words, if e is a condition for e′ (e →•e′),
but is excluded from the graph then it no longer restricts the execution of e′.
Moreover, if e′ is the response for e (e•→e′) but is excluded from the graph, then
it is no longer required to happen for the flow to be acceptable. The inclusion
relation e →+ e′ (resp. exclusion relation e →% e′) means that, whenever e is
executed, e′ becomes included in (resp. excluded from) the graph. The milestone
relation is similar to the condition relation in that it is a blocking one. The dif-
ference is that it is based on the events in the pending response set. In other
words, if e′ is a milestone of e (e′ →� e), then e cannot be executed as long as
e′ is in Re. For more details on DCR Graphs we refer the readers to [21].
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4 Use Case: Blind Auction

Our use case is adapted from [2]. Participants in a blind auction have a bidding
window during which they can place their bids. A participant can place more
than one bid and the placed bid is blinded. The bidder has to make a deposit
along the bid with a value that is supposedly greater than the real bid. Once the
bidding window is closed, the revealing window is opened. Participants proceed
to reveal their bids by sending the actual values of the bids along with the used
keys. The system verifies whether the sent values correspond with the placed
blinded bids and potentially updates the highest bid and bidder’s values. If the
revealed value of a bid does not correspond with its blinded value, or is greater
than the deposit, the said bid is considered invalid. Once the revealing window
is closed, participants can proceed to withdraw their deposits. A deposit made
along a non-winning, invalid or unrevealed bid is wholly restored. In case of a
winning bid, the difference between the deposit and the real bid is restored. The
auction is terminated when all participants withdraw their deposits. We propose
a design for such a blind auction system using a BPMN choreography diagram
as well as a DCR graph (Fig. 1). Listing 1.1 is an excerpt of the corresponding
Solidity contract. The full Solidity example can be found in our repository1.
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Fig. 1. Blind auction workflow representations

contract BlindAuction {
struct Bid {bytes32 blindedBid; uint deposit ;}
uint public biddingEnd , revealEnd , highestBid;
mapping(address => Bid[]) public bids;
address public highestBidder ;
mapping(address => uint) pendingReturns;
modifier onlyBefore(uint _time) {require(now <_time);_;}
modifier onlyAfter(uint _time) {require(now >_time);_;}
constructor (uint _biddingTime , uint _revealTime) public {...}
function bid(bytes32 _blindedBid) public payable onlyBefore(

biddingEnd) {...}
function reveal(uint [] values , bytes32 [] secrets) public

onlyAfter(biddingEnd) onlyBefore(revealEnd) {...}
function withdraw () public onlyAfter (revealEnd) {

uint8 amount = pendingReturns[msg.sender ];
if (amount > 0) {

1 https://depot.lipn.univ-paris13.fr/garfatta/sol2cpn.

https://depot.lipn.univ-paris13.fr/garfatta/sol2cpn
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if (msg.sender != highestBidder )
msg.sender.call.value(amount)("");

else
msg.sender.call.value(amount -highestBid) ("");

pendingReturns [msg.sender] = 0;}}}

Listing 1.1. Excerpt of the Blind Auction smart contract in Solidity

5 Overview of our Formal Verification Approach

Our proposed approach for the verification of smart contracts is based on model
checking of CPN models and comprises mainly two phases:

1. A pre-verification phase: consists in transforming the smart contracts’ Solidity
code into CPN submodels corresponding to their functions.

2. A verification phase: consists in constructing a CPN model w.r.t an LTL
property that can express: (i) a vulnerability in the code or (ii) a contract-
specific property, linking it to a CPN model representing the behavior to be
considered, and feeding it the model checker to verify the targeted property.

Fig. 2. Overview of the approach

More precisely, we opt for a hierarchical CPN to represent the considered smart
contracts’ execution and interaction w.r.t the provided behavior specification.

As shown in Fig. 2, we represent each function of a smart contract by an
aggregated transition that encapsulates a submodel corresponding to the inter-
nal workflow of the former. In fact, our aim at this pre-verification phase is to get
building blocks for the hierarchical model that will be fed to the model checker.
Then, given a behavior specification and an LTL property to be verified, the
final CPN model is built by (1) linking the aggregated transition representing
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the targeted function to the behavioral model and (2) building a hierarchy by
explicitly representing function calls in the submodel in question (if the checked
property requires it). In fact, function calls are initially abstracted and there-
fore represented by aggregated transitions in the model (e.g., tfj[si] in Fig. 2)
under the assumption that they do not present behavioral problems (deadlock-
free and strong-livelock-free) which can be separately verified for each function.
Depending on the property to be verified, an aggregated transition may need to
be unfolded if any of its corresponding function’s instructions or variables are
involved in the property, hence the multi-level hierarchy in the model (e.g., in
Fig. 2, tfj[si] in Mfi[si] is hidden and replaced by its submodel Mfj[si]). It is kept
folded otherwise (e.g., tfk[si] in Mfh[si]). This abstraction leads to a reduction
in the size of the state space the model checker needs to explore.

6 Generation of the Hierarchical CPN Model

In order to implement our approach, we propose a transformation algorithm for
the generation of the final HCPN model from the provided input artifacts.

6.1 Our HCPN Model: Defining Its Elements

Transitions T . We distinguish two types of transitions in our model:

1. aggregated (TA): used at the level-0 model for the representation of functions,
as well as at higher levels for the modular representation of function calls and
can be substituted by a submodel.

2. regular (TR): simple unsubstitutable CPN transition.

For a transition t ∈ T we note:

– t.st, the Solidity code associated to transition t
– t.metaColour, the metaColour associated to the control flow places of t (if

t ∈ TA)
– t.data, the set of data places associated to transition t (if t ∈ TA)
– t.submodel, the CPN submodel associated to transition t (if t ∈ TA), with

t.submodel.inTransitions (resp. t.submodel.outTransitions) designating its
input (resp. output) transitions

– t.guard, the guard of the transition t
– •t[cf ], t • [cf ] ∈ PCF ∪ PS , the input and output control flow places of t
– •t[input] ∈ PP , the input parameters place of t
– •t[data], t • [data] ⊆ Pdata, the input and output data places of t
– t • [output] ∈ PR, the output return place of t

Places P . For level-1 submodels, we define 4 types of places:
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– Control flow places PCF are places created to implement the order of execu-
tion of the workflow. We also use them to carry data related to the state of
the smart contract which can be defined by its balance and the values of its
state variables. Such places have a metaColour defined at each aggregated
transition ta of level-0 as the concatenation of the state (i.e., the colour of
•t[cf ] ∈ PS) and the input parameters (i.e., the colour of •t[input] ∈ PP ):
[uint: contractBalance, typev1 : stateV ariable1, ..., typevn

: stateV ariablen,
typep1 : inputParameter1, ... , typepn

: inputParametern].
– Data places Pdata (for internal local variables) where each place is of a colour

corresponding to the represented variable’s type.
– Parameter places PP that convey potential inputs of function calls. Each

function call has an associated parameter place whose colour is as follows
[typep1 : inputParameter1, ..., typepn

: inputParametern].
– Return places PR that communicate potential functions’ returned data and

whose colours correspond to the return type of the called functions.

Two input places are created at the behavioral layer:

– a state place ps ∈ PS representing the state of the contract. Its colour
is as follows: [uint: contractBalance, typev1 : stateV ariable1, ..., typevn

:
stateV ariablen]

– a parameters place pp ∈ PP representing the input parameters of the function
in question.

Expressions E. Expression are constructs made up of literals, variables, func-
tion calls and operators, according to the syntax of Solidity, that evaluate to
single values:

– expressions with variables EV : they make use of at least one local variable.
In such an expression ev, the set of variables used is accessible via ev.vars.

– expressions with function calls EF : they make use of at least one function
call. In such an expression ev, the set of function calls used is accessible via
ev.fctCalls

– explicit expressions EE : they do not make use of variables nor function calls.

Statements S. A statement st ∈ S can be either a compound statement
{st[1]; st[2]; . . . ; st[N ]} (where ∀i ∈ [1..N ], st[i] ∈ S), or a simple statement
(stLHS , stRHS) (where stLHS ∈ E and stRHS ∈ E), or a control statement. A
simple statement can be:

– a function call statement, where:
• stLHS = ∅
• stRHS .vars is the set of variables used in the arguments of the call (if

stRHS ∈ EV )
– an assignment statement, where:

• stLHS ∈ EV and stLHS .vars contains the assigned variable
• stRHS .vars is the set of variables used in the assignment (if stRHS ∈ EV )
• stRHS .fctCalls is the set of function calls used in the assignment (if

stRHS ∈ EF )
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– a variable declaration statement, where:
• stLHS ∈ EV and stLHS .vars contains the declared variable
• stLHS .type designates the type of the declared variable
• stRHS .vars designates the set of variables used in the variable initializa-

tion expression (if the variable is initialized and stRHS ∈ EV )
• stRHS .fctCalls is the set of function calls used in the variable initializa-

tion (if the variable is initialized stRHS ∈ EF )
– a sending statement, where:

• stLHS designates the destination account
• stRHS .vars designates the set of variables in the expression of the value

to be sent (if stRHS ∈ EV )
• stRHS .fctCalls is the set of function calls in the value to be sent (if

stRHS ∈ EF )
– a returning statement, where:

• stLHS = ∅
• stRHS .vars is the set of variables in the returned value (if stRHS ∈ EV )
• stRHS .fctCalls is the set of function calls in the returned value (if

stRHS ∈ EF )

A control statement can be:

– a requirement statement of the form require(c)
– a selection statement of the form if(c) then stT [else stF ]
– a looping statement which can be:

• a for loop: for(init; c; inc) stT
• a while loop: while(c) stT

– where:
• c is a boolean expression
• c.vars designates the set of variables used in the condition (if c ∈ EV )
• c.fctCalls is the set of function calls used in the condition (if c ∈ EF )
• stT , stF , init and inc are statements

6.2 Solidity-to-CPN: Building Blocks for the Smart Contract Layer

The first step is to build the level-0 submodels for the aggregated transitions of
the contract’s functions. To do so, we propose the algorithm generateLevel0.

We define a CPN pattern for each Solidity statement type. Considering that
a function is a set of statements, CPN snippets are generated according to the
defined patterns and linked according to the function’s internal workflow. cre-
ateSubModel implements such correspondences. For lack of space, we only
include the transformation algorithm for a function call statement and the graph-
ical pattern (Fig. 3) and description of a compound statement. The rest of the
algorithms and descriptions are available online (See footnote 1).
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Fig. 3. Compound statement pattern

Compound statement {st[1]; st[2]; . . . ; st[N ]}. The algorithm is re-executed
on each component statement st[i], after creating N−1 control flow places (of the
metaColour colour) to interconnect the resulting CPN snippets while merging
the entering point of the snippet of st[1] with the entering point of the snippet
of st and the exiting point of st[N ] to that of the snippet of st.

The hierarchy of the CPN model depends on the LTL property to be verified.
Such a hierarchy is achieved by unfolding targeted aggregated transitions as well
as potential aggregated transitions within their submodels2.

2 We note that if a place does not exist (p = ∅) any arc creation involving it does not
take effect.
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6.3 Behavior-to-CPN: Generation of the Behavioral Layer

We consider two types of behavior specifications for smart contracts:
(1) completely-free if no information is provided on the execution context of a
contract and (2) constrained if the context in which a smart contract is used is
provided (e.g., as a DCR Graph or a BPMN model). A CPN behavioral model
is added as an additional layer and linked to the hierarchical model built using
the previously generated CPN submodels.

Modeling a Completely-Free Behavior. In case no behavior is provided with
the smart contracts to be verified, we define a behavioral model to represent their
execution in a completely-free way. In such a model (see Fig. 4a) a place S is used
to represent the global state of the blockchain environment shared by all of the
smart contracts’ functions. For each function fi a place Pi is used to represent
its input parameters. The marking of a place Pi corresponds to all the possible
calling arguments for fi.

Modeling a Constrained Behavior. The user may want to define the behav-
ior of smart contracts. This can be captured either imperatively or declaratively.
Existing BPMN-to-CPN transformations [19] could be leveraged for an imper-
ative representation. For an example of a declarative one, we propose in the
following a formal translation of DCR to CPN.

Definition 4 (CPN4DCR). Given a DCR graph G = (E,M,Act,→•, •→,
±, l), a corresponding CPN model CPN = (P, T,A,Σ, V,C,G,E, I) is defined
s.t.:

– P = {S}
– T = {ti,∀i ∈ [1, n]}, with n = |E| the number of events in G
– A = {(ti, S),∀i ∈ T} ∪ {(S, ti),∀i ∈ T}
– Σ = {CE , (CE × CE × CE)}, where CE is a colour defined as an integer type

(CE = range INT ) where each event ei ∈ E is represented in CE by its
index.

– V = {Ex,Re, In,Ex′, Re′, In′}, with Type[v] = CE ,∀v ∈ V
– C = {S → (CE × CE × CE)}
– G = {ti → guardi,∀i ∈ [1, n]}, with n = |E|
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– E = {a →< Ex,Re, In >,∀a ∈ A ∩ (P ∪ T )} ∪ {a →< Ex′, Re′, In′ >,∀a ∈
A ∩ (T ∪ P )} with (1) Ex′ = Ex ∪ ei, (2) Re′ = (Re\ei) ∪ e•→ and (3)
In′ = (In ∪ ei →+)\e →%

– I = {S →< S1, S2, S3 >} with < S1, S2, S3 > the initial marking M of G

For all ti ∈ T representing an event ei in the DCR graph, we further precise
that:

– guardi is the conjunction of the conditions defining the enabling of the corre-
sponding event (1) ei: i ∈ In, (2) (→•i∩In) ∈ Ex and (3) (→�i∩In) ∈ E\Re

– the expression < Ex′, Re′, In′ > on its output arc is defined such that: (1)
Ex′ = Ex ∪ i, (2) Re′ = (Re\i) ∪ i•→ and (3) In′ = (In ∪ i →+)\i →%

Theorem 1. Let G be a DCR graph and C the corresponding CPN model gen-
erated by following definition 4, then G and C are semantically equivalent.

We include a proof of this theorem in our repository (See footnote 1).
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Fig. 4. Behavior representations

7 Model Checking: On the Blind Auction Use Case

Given the HCPN model generated by the application of our transformation algo-
rithm on the input smart contracts along with the LTL property to check and the
behavior specification, we use Helena [9] to verify the validity of the considered
LTL property on our model. Such a property can express either a predefined
vulnerability, or a contract-specific property. In fact, many vulnerabilities have
been identified in the literature [7], and the user may want to check the presence
of certain bugs in a smart contract. To prove the ability of our approach to detect
vulnerabilities, we propose LTL formulae to express common vulnerabilities. We
then apply our approach on our use case and showcase its capability to detect
vulnerabilities as well as check contract-specific properties.
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7.1 Expressing Vulnerabilities in LTL

We consider here one of the most common vulnerabilities in Solidity smart con-
tracts. More vulnerabilities are explained and expressed in LTL in our repository
(See footnote 1). In the following, tfsi denotes the CPN aggregated transition for
function f in smart contract si.

Integer Overflow/Underflow: Due to Solidity’s lack of safeguards on
mathematical operators, errors such as overflows and underflows may occur as
a result of violation of value limitations of integer data types. For instance, the
uint8 amount variable in the BlindAuction contract can be the source of such
a vulnerability when the pendingReturns of a bidder exceeds 255. Due to Solid-
ity’s wrapping in two’s complement integer representation, amount will contain
a wrong value, causing an incorrect execution.

In our CPN model, we define correspondences between the types used in
the Solidity language and those offered by helena so that they cover the same
ranges. The model checker is therefore able to detect when the smart contract
contains an out-of-range expression. It does not, however, pinpoint the source
of the anomaly, so the user does not have much information to go on to track it
and try to correct it. To overcome this deficiency, we propose to model integer
overflows/underflows as a safety LTL property that can be verified on a specific
variable x to check:

IUOx = �¬xIsOutOfRange

where xIsOutOfRange is a proposition defining the conditions for overflow and
underflow for x w.r.t the range of its type which we delimit by defining lower
and higher thresholds:

xIsOutOfRange = (x < minThreshold) ∨ (x > maxThreshold)

7.2 Application on the Use Case

The application of our approach on the use case (Sect. 4) yields a HCPN model
whose level-0 submodels are created by the execution of createSubmodel. For
lack of space, we choose to include the submodel for withdraw in Fig. 5.
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Fig. 5. SubModel of transition withdraw

Verifying properties of the contract would come down to verifying properties
on the corresponding CPN model. For model checking, we chose Helena [9] which
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offers explicit model checking support for on-the-fly verification of state and LTL
properties over CPN models. We have generated the CPN models of our use case
in Helena’s specification language using our prototype for the transformation
algorithm, while considering a free behaviour as well as the BPMN and DCR
specifications as presented in Sect. 4. We have then written the corresponding
properties in Helena’s language for the vulnerabilities in Sect. 7.1 and were able
to detect them. We have also established other contract-specific properties that
we were able to verify on our example. Figure 6 shows the corresponding property
written in Helena for the IUO LTL property applied on the variable amount in
BlindAuction and Fig. 7 is a snippet of the result of the model checker showing
the detection of the vulnerability with a counter example.

Fig. 6. The integer overflow/underflow LTL property in Helena

Fig. 7. Model checking result

The artifacts used in this verification as well as a detailed report on the
results and the prototype implementation can be found at this repository (See
footnote 1).

8 Conclusion

The combination of the Blockchain technology and the BPMN domain has been
an evident step, especially considering the assets that the former brings to the lat-
ter. It is still crucial, however, to guarantee the correctness of the smart contracts
involved in this association to ensure its safety. Existing verification approaches
are generally designed to target specific vulnerabilities which have been reported
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to be the root of some attacks or malfunctions. Checking the absence of vulnera-
bilities in a smart contract, however necessary, does not guarantee its correctness
as a faulty behaviour may stem from a flaw specific to that contract. With our
approach we aim to bring a solution to this problem by providing a way to for-
mally verify contracts by both checking for vulnerabilities in the code and offering
the possibility to express additional contract-specific properties to check. In this
paper, we focus on extending our approach to take into account the context in
which the smart contracts to be verified are executed as a behavior specification,
while also considering the case where no such specification is provided. To fur-
ther improve the Helena’s performance, we intend to work on Helena’s model
checker by embedding it with an extension to an existing technique previously
developed to deal with the state space explosion problem in regular PNs [14]
and applying it on CPNs.
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Abstract. Prior to provisioning sensor data to smart contracts, a pre-
processing of the data on intermediate off-chain nodes is often necessary.
When doing so, originally constructed cryptographic signatures cannot
be verified on-chain anymore. This exposes an opportunity for undetected
manipulation and presents a problem for applications in the Internet of
Things where trustworthy sensor data is required on-chain.

In this paper, we propose trustworthy pre-processing as enabler for
end-to-end sensor data integrity in data on-chaining workflows. We define
requirements for trustworthy pre-processing, present a model and com-
mon workflow for data on-chaining, select off-chain computation utiliz-
ing Zero-knowledge Proofs (ZKPs) and Trusted Execution Environments
(TEEs) as promising solution approaches, and discuss both our proof-of-
concept implementations and initial experimental, comparative evalua-
tion results. The importance of trustworthy pre-processing and principle
solution approaches are presented, addressing the major problem of end-
to-end sensor data integrity in blockchain-based IoT applications.

Keywords: Pre-processing · Sensor data · IoT · Blockchain ·
Trustworthy · On-chaining · Off-chaining · TEE · zkSNARKs ·
Zokrates · SGX

1 Introduction

Blockchain technology is increasingly used in the Internet of Things (IoT) to
store and process critical sensor data originating from and shared between mul-
tiple, often mutually distrusting parties [7,12,15,16,20,23,24]. In local energy
grids with blockchain-based energy trading, for example, energy consumers and
producers depend on smart meter-generated measurement data [7,19]. In sup-
ply chains, product-related manufacturing and shipping events are written to
a blockchain to provide a single source of truth for all involved, independent
parties [23,24]. In healthcare, blockchain use cases exist for doctors, hospitals,
and emergency services to have access to patients’ health data collected by wear-
ables [12].

However, the variety and scale of connected IoT devices and the generated
data pose new challenges regarding data processing and data on-chaining. Raw
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 133–149, 2021.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-91431-8_9


134 J. Heiss et al.

sensor measurements cannot directly be used on the blockchain because of vol-
ume limitations [18] or because sensitive information may be exposed and become
accessible to unintended readers [7]. Blockchains inherently have privacy and
scalability limitations [6,17] that must be taken into account.

Consequently, the on-chain processing of sensor data is preceded by pre-
processing steps to reduce data volume and ensure that confidential information
is veiled. Such pre-processing typically is executed on intermediate, off-chain
nodes as part of multi-staged data provisioning workflows [7,12,15,16,20,24]:
data originates on constrained sensor nodes, then moves to more powerful gate-
way nodes for pre-processing, and is finally provisioned to smart contracts as
aggregated information. For example, in the healthcare use case described in [12],
data is pre-processed by personal computers or smartphones; in energy grids [7]
by workstations located within participating households; in supply chains [24]
by board computers and mobile devices.

While pre-processing has become an integral element in such data on-chaining
workflows and is necessary to mitigate scalability and privacy issues, off-chain
pre-processing also represents a security risk. Sensor devices typically sign their
measurements to provide data integrity. However, sensor data integrity is not
end-to-end: once data is pre-processed on middleboxes, signatures constructed
on the input do not apply to the output anymore. Contrary to smart contract
application logic, application stakeholders cannot validate off-chain processing as
part of the blockchain’s consensus protocol. Consequently, naive pre-processing
can be exploited for malicious data manipulation without being noticed. This
attack vector threatens data integrity in data on-chaining workflows and quickly
questions the entire blockchain-based IoT system design and data quality.

To address this problem, solutions are needed to ensure trustworthy pre-
processing, i.e., to make computational correctness verifiable on the blockchain.
Off-chain computations have been proposed [6] to outsource blockchain transac-
tion processing to off-chain nodes without compromising trust guarantees. Zero-
Knowledge (ZK) computations and Trusted Execution Environments (TEE) are
two important approaches here that are also increasingly being used in early-
adoption projects and practice [1,7,9,10]. However, using ZK computations and
TEEs for trustworthy pre-processing has not been examined so far.

In the face of the rising interest in blockchain-based sensor data management
and the need for end-to-end sensor data integrity, in this paper, we analyze the
underlying problem of trustworthy pre-processing in data on-chaining workflows,
propose a model for integrity-preserving data on-chaining, and examine its prac-
tical applicability based on ZK computations and TEEs. Thereby, we make two
individual contributions:

1. First, we propose a model for end-to-end sensor data integrity through trust-
worthy pre-processing. We characterize sensor data pre-processing in on-
chaining workflows for blockchain-based IoT applications based on relevant
literature. From our findings, we refine our problem statement and introduce
trustworthy pre-processing as a workflow element that enables application
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stakeholders through participation in the blockchain network to verify data
integrity from source to sink.

2. Second, we examine the applicability of zkSNARKs-based and Trusted Exe-
cution Environments (TEE)-based off-chain computations for our proposed
model. Based on a typical application workflow, we first conceptualize how
trustworthy pre-processing can be instantiated with ZoKrates [8], a toolkit for
zkSNARKs-based off-chain computation, and with Intel SGX [5], Intel’s real-
ization of TEEs. Then, we implement the proposed model with both technolo-
gies as a proof of concept and present preliminary experiments in a testbed.
While our results attest to the applicability of trustworthy pre-preprocessing
with both approaches, they also confirm that, in comparison, zkSNARKs pro-
vide stronger integrity guarantees (weaker trust assumptions), whereas TEEs
enable more efficient off-chain pre-processing.

2 Pre-processing

To lay the foundation for trustworthy pre-processing, in this section, we first
describe the general characteristics of pre-processing in blockchain-based IoT
applications that we observed in pertinent research papers. Next, we refine our
problem statement and define computational integrity, based on [2]. Finally,
we present a model for trustworthy pre-processing on gateway nodes for use in
data on-chaining workflows that start with sensor devices and result in smart
contracts.

2.1 Characterization

Pre-processing in blockchain-based applications shares common objectives, input
types, and functionality.

Objectives. In data on-chaining workflows, off-chain pre-processing helps to
mitigate blockchain-inherent scalability and privacy limitations. Thereby, it pur-
sues the following objectives:

– Offloading Computation: Outsource on-chain data processing to an off-chain
node that is not bound to costly consensus-based transaction processing [7].

– Reducing Storage: Reduce the volume of sensor data to minimize the storage
footprint on the blockchain [12,18].

– Enabling Confidentiality : Hide sensitive information contained in raw mea-
surements or meta-data from stakeholders that do have read permissions [7,
20,24].

Inputs. Pre-processing can be executed on different types of data. We distin-
guish between the following:
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– Measurements include all data that is generated by sensor devices. This
includes time series data collected over a longer period of time [21], for exam-
ple, temperature or location data, and event data that represents externally
triggered occurrences [24], for example, the scanning or opening of a container
in a logistics context.

– Meta-data originates from the sensor device and contains descriptive infor-
mation about the measurements, such as sensor identities, target storage
addresses, or timestamps.

– Auxiliary data is added at the gateway node. Examples are filter rules, access
control lists, or storage addresses.

Measurements and meta-data are critical for pre-processing and are referred to
in the following as sensory data. In contrast, auxiliary data is never processed
alone but optionally used to enrich pre-processing.

Types. Without claiming completeness, we identify three general types of data
pre-processing which can be observed in relevant applications [12,19,20,24] and
which represent typical functionality for operating on sequential data1.

– Mapping : Data is transformed into a target format, e.g., enumeration, encryp-
tion, decryption, hashing [20,24].

– Reducing : Data of one or multiple sensor devices is consolidated, e.g., the
arithmetic average or a total amount is calculated [19].

– Filtering : Data is filtered according to predefined rules, e.g., only values below
a predefined threshold are returned [12].

2.2 Problem Refinement

Data provisioning is often controlled by one of the stakeholders, e.g., shippers in
supply chains [15,24] or producers in energy markets [7]. Stakeholders may have
a personal, often economically motivated interest in manipulating the data, e.g.,
in cooling chains to prevent contractual penalties if perishable fright is perished
or to improve accounting positions. Given such motifs, we assume data providing
stakeholders as potential attackers.

In data on-chaining workflows, data can take three states: it is in transit
when it is transmitted from one to another component, it is at rest when it is
persisted on disk, and it is in use when it is processed in memory. During the
states in transit and at rest, data integrity and authenticity can be verified using
cryptographic signatures. However, when data is processed, it is transformed and
signatures constructed on the input do not apply for the output anymore. Fur-
thermore, off-chain pre-processing cannot be validated by stakeholders through
the consensus mechanism. An attacker could selfishly execute different functions
on the data to manipulate the output and obtain a personal benefit without
being noticed. Therefore, we assume manipulation of computation as the poten-
tial attack.
1 https://web.mit.edu/6.005/www/fa15/classes/25-map-filter-reduce/.

https://web.mit.edu/6.005/www/fa15/classes/25-map-filter-reduce/
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2.3 Computational Integrity

As a first step towards trustworthy pre-processing, we characterize computa-
tional integrity. We adopt the model proposed in [2].

A pre-processing program P is executed on input data D and some auxiliary
data A and returns output O such that P (D,A) → O.

A malicious executer may benefit from creating a manipulated program P ′

such that P ′(D,A) → O′ | O′ �= O. For example, in the supply chain use case,
a shipper executes a threshold check P on temperature measurements D using
the threshold A. If the shipper knows that the outcome O triggers a contractual
penalty, but O′ does not, it may change P to P ′ to obtain O′ instead of O. It
then reports O′ to the blockchain and is exempt from the penalty. Additionally,
the executer may leave the program P unchanged but manipulate the input data
D such that P (D′, A) → O′ |D �= D′ ∧O′ �= O or the auxiliary data A such that
P (D,A′) → O′ | A �= A′ ∧ O′ �= O

To prevent both, program and input manipulation, stakeholders should be
able to verify computational integrity which is only guaranteed if output O is
executed on the right program P and on the right input data (D,A) such that
P (D,A) → O | (P �= P ′) ∧ (D �= D′) ∧ (A �= A′). Therefore, we assume that pro-
gram P also generates an evidence E that asserts computational integrity such
that P (D,A) → (O,E). To enable third-party stakeholders to verify computa-
tional integrity, additionally, an asymmetric key pair is required: the evidence
signed with the proving key can be verified by any third party with the corre-
sponding verification key. The evidence and the evidence key pair represent the
major artefacts for trustworthy pre-processing.

2.4 End-to-End Data Integrity

Given that integrity of data can be verified while it is in use, we can define a
data on-chaining workflow where integrity is verifiable from its source on the
sensor node to its sink on the smart contract as depicted in Fig. 1. Note that
instead of a simple signature, verifiable evidence is provided to the blockchain
that allows data integrity verification with moderate computational overhead in
the blockchain network.

Fig. 1. End-to-End Data Integrity through Trustworthy Pre-Processing
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One Time Setup. During an initial one time setup, central system artifacts are
generated and deployed on the system components. Given that these artifacts
are critical to verify computational integrity, we assume a trusted setup where
each stakeholder can verify the integrity of the artifacts. It consists of three
steps:

As a first step (1. Integrity Assertion), an environment is established that
enables the gateway node to generate verifiable evidence of computational
integrity as accompanying artefacts of the pre-processing outputs. This includes
the integrity of sensory and auxiliary inputs. Examples for such environments
are mathematical constraint systems [8] or trusted execution environments [5]
as will be described in the subsequent section.

Next (2. Key Generation), two key pairs are required: an evidence key pair
consisting of a proving and verification key for signing and verifying the evidence
and a sensor key pair, represented as a cryptographic public and private key that
is used to sign and verify the sensor data on the sensor node and the gateway
node respectively.

As the last setup step (3. Deployment), all artefacts are deployed: The gate-
way node is equipped with the sensor node’s public key, the integrity-preserving
pre-processing program, the proving key, and optionally auxiliary data. The
smart contract receives the verification key that enables evidence verification.

Recurring Operations. Sensory data arrives recurringly at the gateway node
in regular intervals, e.g., batches of time series data, or in irregular intervals,
e.g., externally triggered events. Then (4. Pre-Processing), the pre-processing
program takes the signed sensory data, the sensor’s public key, and optionally
auxiliary data as inputs and executes the following steps:

(a) The sensory inputs’ signature is verified with the sensor device’s public key.
(b) Pre-processing functions are executed on the verified inputs. Examples are

provided in Sect. 2.1.
(c) An evidence is created and signed with the gateways’ proving key. The

evidence enables the smart contract to verify computational integrity.

Outputs and signed evidence are transmitted to the smart contract through
the blockchain node. The smart contract verifies the evidence using the veri-
fication key (5. Verification). Successful verification on the blockchain enables
applications stakeholders to independently verify that integrity of sensor data
has been preserved from source to sink despite intermediate pre-preprocessing.
Pre-processing outputs can be consumed through participating blockchain nodes
and used for subsequent processing.

3 Application

For trustworthy pre-processing to become easily applicable in practice, technolo-
gies are required that enable on-chain verifiability of computational integrity and
that can implement the pre-processing characteristics as described in Sect. 2.1.
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Fig. 2. Off-chain Computation Technologies according to [6]

3.1 Technologies for Trustworthy Pre-processing

Off-chain computation has been proposed to mitigate privacy and scalability
limitations of blockchains by outsourcing computation to off-chain nodes with-
out compromising core blockchain properties [6,17]. Thereby, it represents a
matching concept for trustworthy pre-processing.

However, the different approaches to off-chain computation presented in [6]
and depicted in Fig. 2 are not equally suitable. Both incentive-based and sMPC-
based approaches require multiple nodes that execute non-trivial protocols. How-
ever, in data on-chaining applications in the IoT [7,12,15,20,24], pre-processing
is typically executed on a single node with limited networking and storage capac-
ity. If such a constraint is given, the distributed computation model and interac-
tive nature of incentive- and sMPC-based approaches may be inconsistent with
use case specific requirements which restricts general applicability. In contrast,
zero-knowledge and enclave-based approaches can be executed non-interactively
on a single node and, hence, promise broader applicability for trustworthy pre-
processing.

3.2 ZkSNARKs-Based Pre-processing with ZoKrates

Zero-knowledge proofs enable a prover to convince a verifier that it has correctly
executed a computation without revealing inputs to the verifier.

zkSNARKs can be summarized as one type of a zero-knowledge protocol
that distinguishes through succinctness, i.e., resulting artefacts are small in size
and can be verified fast, non-interactivity, i.e., only one message is required to
convince the verifier, and argument of knowledge, i.e., the prover is able to prove
that she has access to the correct data.

ZoKrates [8] provides a toolbox and a higher-level language to implement a
zkSNARKs-proving system where an off-chain prover can convince an on-chain
verifier that the computation has been executed correctly.

To describe the ZoKrates-based pre-processing (compare Fig. 3), we leverage
the model presented in Sect. 2.1 and build upon the ZoKrates workflow described
in [8].

One Time Setup

1. Integrity Assertion: To guarantee integrity of auxiliary data and the sensor
public key, both are typed as public arguments in the ZoKrates program and,
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Fig. 3. Trustworthy Pre-Processing with ZoKrates

hence, are required on-chain for evidence verification. Since the verification
would fail on different public inputs, their integrity can be determined on-
chain.
Once specified, the high-level ZoKrates code is compiled into an executable
constraint system (ECS) in the ZoKrates Intermediate Representation (ZIR)
format that can be considered as an extension to a Rank-1-Constraint System
and enables assertion of computational integrity: if a variable assignment is
found that satisfies the defined constraints computational integrity can be
proven.

2. Evidence Key Generation: An evidence key pair is generated from a Common
Reference String (CRS) [8] which enables proof creation and verification.
Since the CRS allows construction of fake proofs it must be securely disposed
after key generation. The evidence key pair is cryptographically bound to the
previously generated ECS.

3. Deployment : The ECS, the evidence proving key, auxiliary data, and the
sensor public key are deployed to the gateway node which takes the role of
the off-chain prover. Verification key and the verification contract are deployed
to the blockchain.

Recurring Operations

5. Execution: The ZIR program is executed on predefined inputs, through the
ZoKrates interpreter. The output is called witness, an artefact representing
variable assignments that satisfy the specified constraints for a specific exe-
cution. In a separate step, the cryptographic proof is generated based on the
execution-specific witness and the program-specific proving key. Finally, out-
puts and evidence are forwarded to the smart contract through a blockchain
node.

6. Verification: The verification contract takes the cryptographic proof, the ver-
ification key, and public program arguments as input parameters. The verifi-
cation is only successful if the proof is executed with the right program and
on the right (public) inputs.
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Fig. 4. Trustworthy Pre-Processing with Intel SGX

3.3 Enclave-Based Pre-processing with Intel SGX

Enclave-based computation enables an enclave-external party to verify that an
output has been computed by a specific program inside a specific enclave that
protects internal integrity. Thereby, it relies on two concepts: Trusted Execution
Environments and Remote Attestation.

Trusted Execution Environments (TEE) are hardware-secured parts of a sys-
tem architecture that protect data and code from external manipulation and dis-
closure. Programs executed inside such TEEs are running in an isolated and/or
encrypted memory region that cannot even be accessed in the highest privilege
level of the system. Thus, it protects the content of the TEE from the system
owner and guarantees the integrity of computation executed inside the TEE.
Intel SGX is Intel’s concrete implementation of TEEs. We use the terms TEE
and enclave interchangeably.

Remote Attestation enables the external verification of the integrity of the
TEE’s internal state and the authenticity of messages received from inside. Thus,
ensuring that a malicious attacker cannot falsely pose as an trusted enclave.
TEE-enabled devices have a device identity key that is embedded into the device
hardware during manufacturing and can be verified by external parties through
a Public Key Infrastructure (PKI). Using this key, the device creates for each
instantiated TEE an identity certificate which can externally be verified through
the PKI. This enables evidence key generation. When remote attestation is
requested, the enclave returns signed measurements which represent a complete
snapshot of the TEEs internal state. With SGX as TEE, remote attestation and
the PKI are managed by Intel.

In the following, we describe pre-processing with Intel SGX as depicted in
Fig. 4. To achieve comparability with Zokrates-based pre-processing we use the
same workflow model as described in Sect. 2.4.

One Time Setup

1. Integrity Assertion: To guarantee integrity of auxiliary data and the sensor
public key, both must be protected through the TEEs security guarantees.
Therefore, they are specified inside the enclave during implementation.
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Once the enclave is instantiated and loaded in memory, as a first step, remote
attestation is executed to verify the enclave’s internal state. The signed mea-
surements are verified using the enclave’s public key that is previously authen-
ticated through the externally managed PKI. If the measurements match a
predefined reference value that represents the ground truth of the enclave’s
internal state, the enclave’s integrity is verified.

2. Key Generation: To verify the enclave’s integrity a unique enclave-bound key
pair is required that can be authenticated from outside the enclave. This evi-
dence key pair is used to sign program results computed inside the enclave.
Given that the enclave’s integrity guarantees hold, this signature enables ver-
ification of computational integrity on the blockchain. The evidence key is
generated inside the enclave and can be authenticated through an externally
managed PKI.

3. Deployment : The enclave’s evidence public key becomes part of the verifi-
cation contract which implements the signature verification on-chain and is
deployed to the blockchain. At this point, the enclave is already instantiated
on the gateway node.

Recurring Operations

5. Execution: Sensor data is provided through the host program which represents
the only interface to the enclave. Auxiliary data and the sensor public key are
already part of the enclave and, hence, protected. The program is executed as
defined in Sect. 2.4. The computational outputs are signed with the evidence
proving key.

6. Verification: The verification contract validates the signature with the evi-
dence verification key. A successful validation proves the outputs’ authentic-
ity, i.e., they have been signed with the right proving key that is unique to
the enclave, and integrity, i.e., the received outputs are computed by the right
pre-processing program inside the enclave.

4 Evaluation

Given the two conceptual workflow descriptions, in this section, we evaluate the
technical feasibility for each technology.

4.1 Implementation

Our proof-of-concept (PoC) implementations follow the descriptions provided
in Sect. 3.2 and 3.3 respectively. Thereby, we focus on the recurring operations
steps, execution and verification which we consider as most relevant to demon-
strate feasibility. Aspects of the setup phase are discussed in Sect. 5.

The PoC program should respect the pre-processing characteristics presented
in Sect. 2.1. Our program mimics a threshold violation check on sensory data
where the threshold represents auxiliary data. The sensory data is filtered for
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violations, then reduced by counting the violations, and mapped by scaling the fil-
tered values down. The smart contract is only provided with the violation count.
Thereby, the program fulfills all three objectives: computation is outsourced to
an off-chain node, the data footprint is reduced in size, and the potentially sen-
sitive sensor measurements are not published on-chain.

ZoKrates: For our ZoKrates-based implementation, we simulate the sensor
node with a Python script that hashes the data with SHA256 and signs it with
EDDSA-based sensor key pair, which ZoKrates support. Plain sensory data is
a private input, while the data’s hash, signature, and the sensor public key are
public inputs to the ZoKrates program. To verify integrity of sensory inputs, the
signature’s hash input is reconstructed from the plain sensor data and compared
to the hash inputs. Only if both signature verification and hash comparison are
successful integrity is guaranteed. Hashing and signature verification are imple-
mented using the ZoKrates Standard Library. Pre-processing is executed by two
commands provided by the ZoKrates CLI: compute-witness that requires the
compiled program and generate-proof that takes proving key and witness as
inputs. The outputs are written to disk.

Intel SGX: For the SGX evaluation, we have implemented two enclaves. The
first one simulates a sensor node and signs the sensory input data with an inter-
nally generated sensor key pair using the SGX-provided operations sgx create
keypair and sgx ecdsa sign. The second enclave represents the gateway node that
stores auxiliary data and the sensor public key internally. It verifies the sensor
data with the sensor public key using the SGX operation sgx ecdsa verify. Evi-
dence key pair generation and signature construction on computational outputs
are realized with the same SGX commands as the sensor enclave. The processing
result and the corresponding signature are written to disk.

Ethereum: As blockchain technology, we chose Ethereum [26], which is widely
used and finds application both as a public blockchain but also as consortium
blockchain based on Proof-of-Authority consensus and non-public deployment.
For each, respectively, a verification contract is implemented in Solidity that runs
on a locally deployed Ethereum blockchain and is accessed through a Ganache
blockchain client. To validate Intel SGX evidence, we build upon an existing
ECDSA implementation for the Ethereum blockchain2. ZoKrates proofs rely on
EdDSA (twisted Edwards curve) and are verified through a dedicated verification
contract that is generated by ZoKrates CLI support3.

4.2 Experiments

Given our proof-of-concept implementations, we can now conduct initial experi-
ments to obtain the first practical insights into trustworthy pre-processing with
zkSNARKs and TEEs. At this point, it should be noted that experimental results
strongly depend on our non-optimized PoC implementations and, hence, cannot
simply be generalized.
2 https://github.com/tdrerup/elliptic-curve-solidity.
3 https://github.com/Zokrates/ZoKrates.

https://github.com/tdrerup/elliptic-curve-solidity
https://github.com/Zokrates/ZoKrates
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Fig. 5. Pre-processing with ZoKrates

Exerimental Setup. For our experimental setup, we deploy our implementa-
tions on an Intel NUC-Kit NUC7PJYH with an SGX enabled Pentium Silver
J5005 CPU, 8 GB of Memory, and an Ubuntu 18.04.5 LTS operating system. To
construct workloads, we use smart meter measurements collected in a testbed
of an energy grid research project4 and prepare the measurements such that (1)
each measurement consists of four integer values, (2) measurements are collected
into batches of different sizes line-wise in plain text, and (3) each batch is signed
to represent the sensor’s signature.

As mentioned in Sect. 2.1, pre-processing is typically exposed to two types
of workloads: event and batch processing. To simulate that in our experimental
setup, we turn on two knobs: for events of different sizes, we change the input
data size per execution (batch size), for batch processing, we vary the number
of subsequent executions (batch count). Latter is executed on size-one-batches
which contain a single measurement.

The computational outputs of size-one-batch experiments are used for on-
chain verification, which is measured in Gas, an Ethereum-specific metric for
capturing computational complexity of on-chain transaction processing.

Results. The results summarized for ZoKrates in Fig. 5 and for Intel SGX in
Fig. 6 show the overall execution time for off-chain pre-processing in seconds
and microseconds, respectively. As expected, the execution time of zkSNARKs-
based pre-processing is orders of magnitude higher than that of enclave-based
pre-processing. With larger batch sizes, the execution time increases almost grad-
ually. This holds true for each technology individually as shown in Fig. 5a) and
Fig. 6a). Similar behaviour can be observed for increasing the batch count as
shown in Fig. 5b) and Fig. 6b). However, we can observe that for both ZoKrates
and SGX the increase is much steeper for a growing batch count than for a
growing batch size (note the different logarithmic y-scales). For this specific
implementation example, this would mean that it is preferable to increase the
number of processed data through larger batch sizes rather than counts when
possible in the actual application scenario.
4 https://blogpv.net/.

https://blogpv.net/
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Fig. 6. Pre-processing with Intel SGX

In ZoKrates-based pre-processing, the accompanying construction of crypto-
graphic proofs represents a memory-intensive computation that correlates with
the input size. The experiment for the next larger batch size of 32 measurements
in ZoKrates ran out of memory during the proof-generation on the test system.
Given that sensory data can quickly grow very large, the memory capacity of
constrained IoT or edge devices may present a limiting factor, but may not be
an issue for larger middleboxes.

In contrast, Intel SGX reduces pre-processing overhead. Even though, our
implementation was also memory limited regarding a batch size larger than
1024 measurements, this is just a limitation of the current SGX design that
might change in the future and can be mitigated, e.g., by splitting up the pro-
cesses into multiple enclaves on the same machine. Better efficiency and smaller
memory consumption distinguishes Intel SGX as a suitable technology for lower
IoT layers where computational resources are typically scarce. However, con-
trary to ZoKrates, SGX-based pre-processing requires an increased trust in the
correctness of the hardware implementation and the attestation process that
requires trusting Intel regarding a correct attestation.

In our proof-of-concept implementation, on-chain verification costs are
cheaper for ZoKrates-generated proofs (567 614 Gas) than for Intel SGX-
generated signatures (1 211 443 Gas). However, since on-chain verification costs
strongly depend on the implementation of respective signature algorithm our
results cannot be generalized, e.g., for other blockchain technologies.

5 Discussion

While in the previous section, initial insights about the performance behavior
of each technology were provided, in this section, we discuss security and trust
aspects and potential extensions for trustworthy pre-processing.

Integrity and Trust Assumptions: As described in Sect. 2.2, pre-processing
is assumed to be executed by non-trusted stakeholders who have an incentive
for data manipulation. While off-chain technologies eliminate unnoticed attacks
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during pre-processing, the setup phase still reveals an attack surface. In Zokrates,
for example, key generation must be executed in a trusted setup to guarantee
that the Common Reference String is safely disposed to prevent fake proof gener-
ation. However, establishing a trusted setup for zkSNARKs is a known problem
to which various approaches exist as referenced in [8]. In Intel SGX, the integrity
guarantee strongly relies on the internal state of the enclave and on the authen-
ticity of the evidence key pair. To preserve this guarantee, remote attestation and
key authenticity must be verified through a trusted third party or by all involved
stakeholders individually. Also, auxiliary data and the sensor’s public key must
be verified before being added to the enclave. Beyond the setup, zkSNARKs-
based pre-processing does not rely on further trust assumptions, whereas enclave-
based pre-processing heavily relies on a trustworthy manufacturer that ensures
that private keys are kept secret and certificates obtained from the PKI are
authentic to the device’s identities. This distinguishes ZoKrates as particularly
suitable for processing critical data with substantial security demands.

Further Attacks: Beyond our attack model described in Sect. 2.2, attacks
on data freshness and availability must be considered. While an attacker that
controls communication channels, e.g., between gateway and blockchain node,
cannot compromise data integrity without being noticed (Man-in-the-Middle
Attack) due to signature and evidence verification, it can, however, intercept
and replay messages in a different order to impact the overall application logic
(Replay Attack). To prevent this, secure timestamps or challenge-response pat-
terns can be applied. Furthermore, to prevent a malicious executor from compro-
mising availability by withholding messages (Denial of Service Attack), gateway
nodes can redundantly be deployed to eliminate centralization, similar to this
proposal [25].

Multi-stage Pre-processing: In multi-stage data on-chaining workflows, mul-
tiple pre-processing tasks may be executed subsequently by different non-trusted
stakeholders. To verify integrity on-chain, an evidence chain must be established
that allows any subsequent computation to validate the provided evidence of the
previous computation. This way, end-to-end integrity could be guaranteed along
arbitrarily long on-chaining workflows.

Confidential Pre-processing: While this work focuses on integrity preserva-
tion, in some use cases it might be required to keep inputs to pre-processing hid-
den from the executor. This can, for example, be achieved through Intel SGX,
where encrypted inputs can be decrypted inside the enclave, processed, and
encrypted again before being returned. Thereby, inputs and outputs would not
be accessible by the executor. However, side-channel attacks must be respected
that are known to extract confidential information from enclaves [4].

6 Related Work

In this paper, we extend trustworthy data on-chaining as presented in [14] by
considering data in use as an additional attack vector. Furthermore, we lever-
age approaches to off-chain computation presented in [6] to realize trustworthy
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pre-processing. From the proposed off-chain computation technologies in [6],
zkSNARKs and Trusted Execution Environments are increasingly adopted in
scientific literature on blockchain-based IoT applications.

Recently, many proposals leverage zkSNARKs for off-chain computations
through Zokrates; however, only a few intersect blockchain-based sensor data
management. While in [7] ZoKrates is applied for off-chain processing of sensor
data, i.e., smart meter measurements in local energy grids, other works mainly
use Zokrates for privacy-preserving authentication, e.g. in the context of smart
vehicle authentication at charging stations [11], consumer authentication for car
sharing [13], or in health care for patient authentication [22].

TEEs are leveraged in various papers to implement trustworthy oracles that
bridge data provisioning from off-chain data sources to smart contracts. For
example, in TownCrier [27], a TEE-based oracle system is proposed to authen-
ticate data provided by HTTPS-enabled off-chain data sources, or in [25], a
distributed TEE-enabled oracle system is proposed that improves availability.
Beyond scientific usage, e.g., ChainLink5 works on a solution to implement these
concepts for practical usage [3].

While the main focus of these proposals lies in data provisioning, other works
instead use TEEs for sensor data management. In [9], for example, a system is
proposed that employs TEEs for intermediate processing of sensory data before
it is forwarded to the blockchain and the cloud. The authors of [1] use TEEs for
trustworthy access management of sensor data in hybrid storage systems where
off-chain storage holds encrypted sensor data and the blockchain stores its hashes
and access logs. While these proposals do not apply pre-processing as defined
in this paper, they underline the need for a systematization of trustworthy pre-
processing that we aim to provide with our contributions.

7 Conclusion

End-to-end sensor data integrity is critical to many blockchain-based IoT appli-
cations. Data on-chaining workflows accordingly require pre-processing on off-
chain nodes to be trustworthy. In this paper, we explored the use of zkSNARKs-
and TEE-based computations for trustworthy pre-processing, first, as individual
candidate technologies that require non-trivial set-ups for integration in data on-
chaining workflows, and second, through a preliminary, comparative experimen-
tal evaluation based on two proof-of-concept implementations. We conclude that
each presents an important approach that (a) can conceptually be well-integrated
in respective workflows and (b) satisfies the requirements and primary objective
of end-to-end data integrity. Our proof-of-concept implementations use current,
state-of-the-art software, and, since both zero-knowledge proofs and TEEs are
very active areas of research, our implementations and the experimental find-
ings must be seen as preliminary. We expect rapid advances regarding the used
software stacks and current constraints regarding memory limitations, and, con-
sequently, performance numbers to change. Still, a principal performance gap
5 https://chain.link/.

https://chain.link/
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and performance advantage of TEEs over zkSNARKs is expected to remain.
However, as discussed in this paper, the choice of an approach and technology
will depend also on other, non-performance criteria like the integrity and trust
assumptions or existing attack vectors for the specific IoT application under con-
sideration. Future work will address extensions of the proposed model regarding
its computational scalability through parallel execution and its applicability for
stream processing.
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Abstract. REST APIs are nowadays the de-facto standard for Web
applications. However, as more systems and services adopt the REST
architectural style, many problems arise regularly. To avoid these repet-
itive problems, developers should follow good practices and avoid bad
practices. Thus, research on good and bad practices and how to design
a simple but effective REST API are essential. Yet, to the best of our
knowledge, there are only a few concrete solutions to recurring REST
API practices, like “API Versioning”. There are works on defining or
detecting some practices, but not on solutions to the practices. We
present the most up-to-date list of REST API practices and formalize
them in the form of REST API (anti)patterns. We validate our design
(anti)patterns with a survey and interviews of 55 developers.

1 Introduction

In the last decade, the information presented on the Internet moved from simple
static Web pages to sophisticated interactive Web applications that can be cus-
tomized by and react to user actions. Users expect to find in their Web browsers
the same applications that they run on their local computers, making these Web
applications more complicated than ever.

More and more Web applications use the REpresentational State Trans-
fer (REST) architectural style, which separates the concerns of the server
(store, process, and serve resources) with the client application (present informa-
tion). Simple Object Access Protocol (SOAP) used to be the main protocol to
expose services to clients. However, starting from the 2000s, many organizations
migrated their services from SOAP to REST to widen developers’ accessibility
to their data. For example, in 2006, Google deprecated SOAP for its Search API
and moved to REST1. The number of REST API published increased every year,
from 445 APIs in 2007 to over 24k APIs in 20212.

The word “practice”, as defined by Oxford Dictionary, is a way of doing
something. In REST API, a good practice is a good way to implement the REST
1 https://groups.google.com/g/google.public.web-apis/c/YOHPWSqcFBA.
2 https://www.programmableweb.com/apis/directory.
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API for simplicity, mutual understanding, and reusable code. On the other hand,
while resolving a problem, a bad practice is not “good” in other aspects.

As with any other architectural style, REST APIs can be more or less “well”
used and, therefore, the subjects of good and bad practices. To evaluate how
good a REST system is, Richardson proposed a maturity model for REST APIs3.
Other researchers also proposed good practices to make REST APIs more under-
standable and reusable [10,14]. The academic and gray literature report 19 prob-
lems related to REST APIs and their uses. For example, Rodŕıguez et al. [15]
found out that only a few Web services reach maturity Level 3, which is defined
as “Hypermedia as the engine of state”.

The literature has so far not systematically described these problems and
practices in the form of design (anti)patterns, which are, in general, a problem,
a recurring design with bad consequences, and an alternative solution with more
positive results [1].

Therefore, we follow the “Design Science Research Methodology”[13]
to propose three contributions: (1) we review the academic and gray literature
related to REST APIs and identify 19 common good and bad practices, (2) we
propose practical solutions to these problems and formalize them in the form of
REST API design anti-patterns, and (3) we validate our solutions via surveys
and interviews of 55 participants.

The rest of the paper is as follows. Section 2 summarises the related work.
Section 3 describes the approaches. Section 4 discusses each practices with con-
crete implementations of the solutions. Section 5 explains how we evaluated our
solutions with developers. Section 6 discusses threats to validity as well as our
observations. Section 7 conclude the paper with future work.

2 Related Work

Masse, in the book “REST API Design Rulebook” [10], defined 84 rules to
design a consistent REST API, some of which became de facto standard, e.g.,
“Amorphous URIs” or “CRUD function name should not be used in URIs” (aka
“CRUDy URIs”).

Rodriguez et al. [16] proposed the “Content negotiation” good practice:
servers should serve different formats of the same resources on request. Fredrich
[2] defined three bad practices, including “Context-less resource name”, “Non-
hierarchical nodes”, “Singularized and Pluralized Nodes”. He also gave two good
practices, which are “List pagination” and “API Versioning”.

Evdemon gave examples of bad URIs and proposed the “CRUDy URIs” bad
practice, where CRUD verbs are included in the URI4. Palma et al. [12] defined
the “Non-pertinent documentation” bad practice, where the documentation is
not matching the actual REST APIs. Tilkov defined seven REST API bad prac-
tices5, including “Breaking self-descriptiveness”, “Forgetting Hypermedia” (bad
3 http://martinfowler.com/articles/richardsonMaturityModel.html.
4 https://bit.ly/3i5CIsc.
5 https://www.infoq.com/articles/rest-anti-patterns/.

http://martinfowler.com/articles/richardsonMaturityModel.html
https://bit.ly/3i5CIsc
https://www.infoq.com/articles/rest-anti-patterns/
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practice of “Entity Linking”), “Ignoring MIME type” (bad practice of “Content
negotiation”), “Ignoring status code”, and “Misusing cookies”.

For the bad practice “Tunnel everything through GET” and “Tunnel every-
thing through POST”, we combine them with other misuses of HTTP Verbs
into “Use the wrong HTTP Verbs” for simplicity. “Breaking self-descriptiveness”
means developers ignore standardized headers, formats, protocols, and use non-
standard ones. “Ignoring status code” happens when a server does not use status
codes or use the wrong ones; “Misusing cookies” when a server store the session’s
state or cookies, breaking the statelessness of REST APIs.

In addition to these practices, we propose two new good practices: “Server
Timeout” and “POST-PUT-PATCH Return”, which we discuss in Sect. 4.

Researchers proposed solutions for some bad practices. Frameworks also pro-
vide some support to avoid some bad practices. We examine here ASP.NET
Core6 and Java Spring7 because of their popularity and community support.

For “Content negotiation”, Lemlouma et al. [7] designed “Negotiation and
adaptation core (NAC)” that works as a proxy between the media servers and
the consuming clients. Based on the client profile, the NAC converts the response
to an appropriate format. This is a general architecture and its authors do not
discuss any implementation.

For “Endpoint Redirection (URL Redirection)”, we could not find any aca-
demic solution. The gray literature only explains the concept of URL redirection
and how to set it up in some servers. Popular servers, like Microsoft IIS or Apache
Tomcat, implement URL redirection with some configuration8.

For “Entity Linking”, we could not find any academic work, blog, or technical
tutorials with concrete implementations. However, Liskin et al. [8] described a
wrapper module to convert a normal response to a response that conforms to
“Entity Linking”, which allows improving old REST systems not supporting
Entity Linking and reaching Level 3 in Richardson’s Maturity Model.

For “Server Timeout”, Eastbury et al. proposed a design9, which we extend
to maximize its benefit for REST API developers in Sect. 4.5.

“Response caching” is a common good practice. Both of the examined Web
frameworks offer multiple built-in caching techniques.

For “List Pagination”, both Google and Microsoft10 suggested that REST
APIs returning lists should use pagination. Masse [10] also stated that collections
should be returned in chunks. Murphy et al. [11] showed that pagination was
proposed in 24 over 32 REST API company guidelines. Both of the examined
Web frameworks support this good practice.

In general, previous work mostly identified and defined good and bad REST
API practices. A few authors proposed solutions to the bad practices, often
with limitations. For each practice, we discuss and compare its solutions with
our own. We also provide concrete implementations in two popular frame-

6 https://dotnet.microsoft.com/apps/aspnet.
7 https://spring.io/projects.
8 https://bit.ly/34AUbRu and https://bit.ly/3i6X8Ry.
9 https://bit.ly/2R9clXf.

10 https://bit.ly/2RY62pW and https://git.io/JGRwC.

https://dotnet.microsoft.com/apps/aspnet
https://spring.io/projects
https://bit.ly/34AUbRu
https://bit.ly/3i6X8Ry
https://bit.ly/2R9clXf
https://bit.ly/2RY62pW
https://git.io/JGRwC
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works (ASP.NET and Java Spring). We also provide sample implementations
for “Response Caching” and “List Pagination”, supported by the frameworks.

3 Categories of Good and Bad Practices of REST APIs

To categorize the REST API practices, we extensively reviewed both academic
papers and gray literature (i.e., blog posts, technical tutorials, StackOverflow,
etc.) and studied the existing open-source REST API systems. In total, we
reviewed seven papers and four gray documents (see https://git.io/JwWeh).

We identified 19 REST API practices and divided them into two categories:
technical and non-technical. The technical category includes practices that can
be solved or made conformed by an architectural solution or some Web frame-
work’s features. The non-technical category includes practices that require devel-
opers’ efforts to conform, which are usually domain- or business-specific.

For example, the URI structures should represent the relationships between
the nodes to avoid the “Non-hierarchical Nodes” bad practice. Yet, companies
disagree on using URI to show this relationship and even discourage nesting
structures. Another example, for the “Using the wrong HTTP Verbs” bad prac-
tice, IBM only mentions GET and POST while Google use GET, POST, PUT, DELETE
and invents some new verbs like LIST and MOVE [11].

For each practice in the technical category, we propose an architectural solu-
tion or good practice in Sect. 4, which should be simple but guarantee the con-
formance to the good practice with minimal effort. Practices in the non-technical
category require developers’ inputs and are not directly solvable.

Table 1 summarises the practices. The practices with (+) have built-in or
partial solutions in the examined frameworks, which we discuss and compare to
our solutions in Sect. 4. The good practices are green; the bad ones red.

Table 1. Categorizing REST API practices

Technical Non-technical

Content negotiation (+) Entity Endpoint
Endpoint redirection Contextless Resource name
Entity Linking Non-hierarchical Nodes
Response caching (+) Amorphous URIs
API Versioning CRUDy URIs
Server Timeout Singularized Pluralized Nodes
POST-PUT-PATCH Return (+) Non-pertinent Documentation
List Pagination (+) Breaking Self-descriptiveness

Ignoring status code
Using the wrong HTTP Verbs
Misusing Cookies

https://git.io/JwWeh
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Besides existing solutions, we examined 23 software design patterns for
object-oriented programming [3] to design concrete implementations for each
of the eight good practices in the technical category. For some practice, we
adapted these concrete implementations to fit with the REST API frameworks.
If no design pattern could solve a problem, we extended our search to the gray
literature.

The Web frameworks already have built-in features for “Response Caching”
and “List Pagination”. Therefore, we only present these solutions and provide
sample usages for the sake of completeness. For “Content negotiation”, we com-
pare our solutions with the built-in features. Developers can use the solutions
that fit with their projects based on their advantages and disadvantages.

4 REST API Anti-patterns

We now present each practice using the following structure: (1) Practice name,
(2) Problem statement, (3) Expected result/output, (4) Solution, and (5) Sam-
ple implementation/source code. For the sake of space, we put out implementa-
tions in a GitHub repository: https://github.com/huntertran/restapi-practices-
impl.

We exclude the “Response Caching” and “List Pagination” good practices
out of this research because they are already well supported by Web frameworks.

4.1 Content Negotiation

Problem: The client can only process and manipulate the resources in some
formats. For example, JSON is faster to parse and smaller to transport over the
Internet while XML supports namespaces, comments, and metadata. A client
may favor one over another.

Expected Result: We expect: (1) Resources of a same type should be served in
various formats (JSON and XML, image file formats, Base64 encoded, etc.); (2)
The server should set a default format if the client does not specify a requested
format; (3) The implementation of each data format should be easily modifiable
and expandable for new data formats.

Solution: Based on the request header, the server prepares the data in the
requested format, then returns the data in the response body. We could use
the Factory design pattern [3]. For each format, there could be a corresponding
concrete Factory. In the ObjectFactory class11, developers could set the default
format by using the default: clause of the switch statement. (See https://git.
io/JwW08).

Both Java Spring and ASP.NET core support content negotiation with the
default set to JSON format. Below is the feature comparison table.

11 https://git.io/JwWC6.

https://github.com/huntertran/restapi-practices-impl
https://github.com/huntertran/restapi-practices-impl
https://git.io/JwW08
https://git.io/JwW08
https://git.io/JwWC6
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Java Spring ASP.NET core Our

Common media types Yes Yes Yes
Customizable serializer No Yes Yes
Require data annotation on model Yes No No
Built-in support ignorable Yes Yes N/A

ASP.NET Core has the most flexible support for Content Negotiation. In
Java Spring, developers cannot override the serializer, but can combine multiple
approaches to achieve the desired effect. The XML format in Java requires data
annotation to be added to the model classes, which sometimes require changes
to the design of the data model.

4.2 Endpoint Redirection

Problem: Resources can be moved to new locations when the data structure
changes or developers refactor the URI structure. However, a client could request
resources using the old URIs; the server should answer these requests with HTTP
Code 3xx and the new locations.

Expected Result: Most of the REST APIs frameworks use the Model-View-
Controller pattern (MVC). The solution should be built on or integrated with
the MVC pattern. It should satisfy the following: (1) There should be a class
that handles redirection logic, separated from other classes; (2) The redirection
logic should have the same interface as the old controller class; (3) The new
controller class should extend or include the redirection logic, but still conform
to the Single Responsibility Principle [9].

Solution: There are two possible solutions for this practice. Each solution will
have advantages and disadvantages.

Solution 1: Extend a Redirector Class: In this solution, the old controller
and the redirector implement the same interface. The new controller extends
the redirector class. The methods in the new controller and the redirector are
exposed as API endpoints to the clients. (See https://git.io/JwWMn).

Solution 2: Nested Class Inside the New Controller: The redirection
logic is separated into a stand-alone class, implementing the interface of the old
controller class. The difference with the previous solution is that the redirection
logic class is a nested class inside the new controller. Thus, the redirector can
access methods and variables in the controller. (See https://git.io/JwWDo).

The new controller implements the interface of the old controller and contains
a private instance of the redirector class. The interface implementation makes
sure all the old methods are properly handled. The private instance works as a
proxy to the actual logic of the redirector class.

https://git.io/JwWMn
https://git.io/JwWDo
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Comparison Between Both Solutions

Extend Nested

Pros Redirection logic separated in classes Allows the outer class (the main class)
be inherited from another class

Easier implementation. Can be
implemented in multiple languages

The Redirector has access to
methods/variables in the controller

Cons The Redirector cannot access resources in
the controller

Redirection logic coded inside the
controller

The controller cannot inherit other
classes (w/o multiple inheritance)

Not all languages support nested
classes

4.3 Entity Linking

Problem: Developers must find programmatically links to resources related to a
current, requested resource. For example, when designing a service for a content
management system (CMS), after sending a GET request to retrieve a post, if
conforming to the Entity Linking good practice, the server should return the
post details, including links to comments and likes. The response below helps
developers to post new comments or get the likes on the post.

1 {"post": {"title": "Lorem ipsum","content": "Lorem ipsum",
2 "links":[{"rel":"comment","method":"post","uri":"/post/123/comment"},
3 {"rel":"like","method": "get","uri":"/post/123/like"}]}}

With the “Forgetting Hypermedia” bad practice, the links in the response
are not available. Therefore, developers do not know if they can post a new
comment or get the likes on a post. They must make requests to the server to
find out, possibly by trial-and-error. If they cannot, for some reason, the server
refuses their requests with HTTP Code 4xx.

Expected Result: (1) The current controller should have access to other con-
trollers to check the availability of related resources; (2) The current controller
should have access to class and method information (names, annotations, pub-
lic and private variables, etc.) because Web frameworks use naming conven-
tions/annotation to construct URIs.

Solution: The method that handles the current request has a list of related
classes containing the related resources. To loop through the list, all these classes
should implement a same interface. To access the methods provided by this
interface in different classes, we could use the Visitor design pattern [9] with
language reflection features to access data annotations.

All the controllers intended to be used for populating links for related
resources must implement a LinkedResource interface. This interface has a
method accept() that accept a Visitor instance of type ResourceVisitor. For
each logic to select the resource to be included, a separate, concrete Visitor
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is created. These visitors could share some common logic in an abstract class
CommonResourceVisitor, also a good place for the reflection logic.

A sample implementation with reflection is available for ASP.NET Core and
Java Spring. (See https://git.io/JwWjZ and https://git.io/JwleR).

4.4 API Versioning

Problem: REST API system evolves. In traditional software systems, develop-
ers can release new versions while old ones continue working. With Web appli-
cations, a new version may break the client applications. The client-application
developers may not be aware of breaking changes and may not have enough time
to adapt to the changes before changes break their application.

In addition to communicating and advertising new versions of some REST
APIs, REST API developers must support the old APIs in parallel with the new
ones for a time. This parallelisation allows the coexistence of multiple versions of
the API. To separate the old APIs from the new ones, developers can choose one
of two approaches: (1) Include the version of the API in the URI: Version the
API globally for all resources or separately for each type of the resources; (2)
Include the version in the header(s), in the accept header or a custom header
chosen by the REST API developers.

Expected Result: (1) The URIs of a version should not change over time. The
client application always receive the expected results when requesting a resource
during the lifetime of that version; (2) Client applications can access multiple
versions of the APIs simultaneously. The Web application supports multiple
versions at a same time; (3) The Web application can use a single database. If
breaking changes occur in the database, a mechanism should translate the old
and new data for any object.

Solution: Section 2 show existing solutions, which we compare to ours below.
We propose using the Proxy design pattern to redirect/convert requests to old

versions of the API. For each version of the API, there should be a corresponding
interface. The interface does not serve a purpose in the current version but is
the contract with the next version. A class contains a private instance of each
old API classes that support this next version. The versions of the API may
also have common logic that did not change over time and can be factored into
an abstract class; then, the API controllers inherit from it. (See https://git.io/
JwQKX).

One advantage of this solution is that a new version of an API only imple-
ments the interfaces of old versions if they must be supported. For example, if
there is a Version 3, which should support both Versions 1 and 2, then a con-
troller for Version 3 implements the interfaces of Versions 1 and 2 only, which
does not require a “chain of adapters” and allows developers to support versions
not ordered in time, e.g., Version 4 could support Version 1 and 3, when com-
pared to the solution proposed in [4]. In addition, this solution is implemented
in the server itself, differently from the solution proposed in [6].

https://git.io/JwWjZ
https://git.io/JwleR
https://git.io/JwQKX
https://git.io/JwQKX
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4.5 Server Timeout

Problem: When there is a long-running operation on a REST API server, the
client must wait to receive a response. In traditional software systems, the com-
munication between the running operation and the consumer of its results is
permanent. However, in a Web application, clients and servers communicate
over the Internet, which introduces some potential problems: if the client and
the server are disconnected, the operation continues to run on the server, but the
result is no longer needed/accessible. Similarly, if the client cancels or abandons
its request, wasting the server’s resources.

Expected Result: The long-running operation should have a mechanism to
cancel itself when needed, releasing resources held by its process.

Solution: Two solutions could solve the problems. The combined implementa-
tion of both solutions produces the best results but with increased complexity.

Solution 1: Timeout: The developers define a timeout for the operation. When
the time is up, the server cancels the process. However, in some cases, when
there are unpredictable factors, this solution is not practical. For example, if the
operation depends on data retrieved through the Internet, then its speed is not
stable and it is challenging to find an appropriate timeout value.

Since Java 1.5, developers can use ExecutorService to start a new single
thread in Java. Then, they can submit a long running operation wrapped in a
Callable object. Similarly, in ASP.NET Core, developers can use TimeOutAfter
or CancellationTokenSource.CancelAfter12 in .NET 5.0 or later.

Solution 2: Asynchronous Request-Reply Pattern (HTTP Polling):
This solution requires some extra work from both server and client develop-
ers. First, server developers must implement an operation status checker and a
cache system to store the operation result on the server. Then, client developers
must implement a polling mechanism that periodically polls the operation status
and, finally, gets the response from the Resource Endpoint. (See https://git.
io/Jw7fS).

Comparisons Between the Two Solutions

Timeout Async request-reply

Pros No requirement on client side Client and server can re-establish
connection after disconnection

Easier to implement Serves the same results instantly

Single system involved

Cons Risk of incorrect predefined timeout value Requires changes in both client and
server

Requires a mechanism to store results

If the client disconnects early, the server still wastes resources until timeout

12 https://git.io/JwQPs and https://bit.ly/3vDwdB1.

https://git.io/Jw7fS
https://git.io/Jw7fS
https://git.io/JwQPs
https://bit.ly/3vDwdB1
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Combination of Both Solutions

Developers can combine both solutions to maximize their benefits, especially
when following the Asynchronous Request-Reply pattern, because they only need
a little extra work to combine both solutions. There are three stages: (1) initial-
isation, (2) polling, and (3) termination. During initialisation, the client sends a
request to the server that starts the long-running operation. The server registers
the operation status. During polling, the client periodically polls for the result.
With each polling request, the server resets the timeout. In case of a disconnec-
tion between the client and server, the server timeouts and aborts the process
and releases any resources. (See https://git.io/Jw7La).

4.6 POST-PUT-PATCH Return

Problem: When a client application sends a request to modify a database (cre-
ate, update, or delete), the server usually only returns a simple result indicating
success/failure, like HTTP Code 200. The client does not know immediately the
added/modified object and whether it was correctly committed to the database
until the client makes a new request for that particular object.

When there is a mismatched datatype between the model classes and the
data posted by the client, the server may still work by simply ignoring any
mismatched data, writing everything else to the database. The server would still
signal that the writing process was successful. The client could wrongly believe
that the operation was entirely successful although its data and the data written
to the database are different.

However, sending the created/modified object in the response body could
cost transmission time and network bandwidth, i.e., some clients may not need
to know/confirm that the committed data in the database is correct.

Expected Result: The name “POST-PUT-PATCH return” of this practice is
based on the HTTP verbs POST, PUT, and PATCH. We expect: (1) A mechanism
for the client to control the response, if it only needs a HTTP Code 200; (2)
Separation of database and business logic; (3) Minimal requests to the database.

Solution: To separate the database manipulation logic from the business logic,
we use the Repository pattern. To make sure a database transaction was suc-
cessfully executed before returning its result to the client, we could use the Unit
of Work pattern13. In general, there should be a repository that handles CRUD
operations for each resource or groups of related resources. This class is injected
into controllers using Dependency Injection. In addition, each repository imple-
ments the Unit of Work pattern. (See https://git.io/Jw7q3).

Java Spring has a Repository pattern built-in with basic CRUD operations,
see details in https://bit.ly/3c6GFcs. ASP.NET Core does not have this pattern
built-in. Still, there is an instruction on how to implement them, see details in
https://bit.ly/3uCO9du. Both frameworks support Dependency Injection and

13 https://bit.ly/3uCO9du.

https://git.io/Jw7La
https://git.io/Jw7q3
https://bit.ly/3c6GFcs
https://bit.ly/3uCO9du
https://bit.ly/3uCO9du
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Unit of Work. Sample implementations exist for Java Spring at https://git.io/
Jw7md and ASP.NET Core at https://git.io/Jw73w.

5 Evaluations

Although good/bad practices come from a consensus in the academic/professional
communities, our solutions must be validated by experienced developers, who only
can confirm that our solutions (1) solve bad practices, (2) conform to good prac-
tices, and (3) are acceptable in industrial environments.

Consequently, we designed a validation survey and administrated it to 55
professional REST API developers. We now describe our methodology and the
obtained results, which show that our solutions indeed remove bad practices and
are acceptable by professional developers.

5.1 Overview

We obtained an ethics certificate from the Office of Research of our university;
university and number hidden for double-blind review. We follow the “Question-
naire Survey” empirical standard by ACM14. We divided the survey into sections.
Each section contained one practice, problem identification, a short explanation
for the good practice, and the concrete implementation in ASP.NET core and
Java Spring. To increase the response rates, we split the survey into two Parts
A and B.

5.2 Survey Design

In each section, we asked two questions: (1) Did you face this/these problem(s)
in some of your projects? (2) Is it a good design?. Each question has an “Other”
option with a text-box if the participant has comments.

Using these two questions, we can know: (1) The prevalence of the problem
in industrial environments; (2) How well received are the solutions to the bad
practices; (3) Do alternative implementations exist?

At the end of the survey, we asked for age group, education, current profes-
sion, and employment status.

5.3 Participants Selection

We selected participants who are: (1) Adult; (2) Professional developers; (3)
Use OOP languages. We recruited participants through a convenient sampling of
software developers and engineers through e-mail lists, social media (LinkedIn,
GitHub), etc.

5.4 Participants’ Demographics

Figures 1, 2, 3, 4 and 5 summarise participants’ demographic information.
14 https://acmsigsoft.github.io/EmpiricalStandards/docs/.

https://git.io/Jw7md
https://git.io/Jw7md
https://git.io/Jw73w
https://acmsigsoft.github.io/EmpiricalStandards/docs/
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Fig. 1. Participants’ age groups Fig. 2. Participants’ education

Fig. 3. Participants’ profession Fig. 4. Participants’ country of origin

5.5 Qualitative Analyses

We sent our survey to 55 professional developers. Out of 55, 51 developers com-
pleted at least one of the surveys. We received 68 complete surveys (Parts A and
B). The number of completed surveys is greater than the number of participants
because some participants completed both Parts A and B. We received 17 incom-
plete responses. Because of the randomized orders of the question, we could still
extract valuable data from these responses. Thus, the average completion rate
of both surveys is 76%.

We extracted and analyzed the completed parts of the incomplete survey,
whose questions were all answered by the participants. Table 2 shows the per-
centage of positive responses.

Some participants do not use the frameworks considered in this study but
different ones, like nodejs with JavaScript or Flask with Python. Some good
practices proposed in this study did not apply to these frameworks. Therefore,
participants answered the survey questions using the “Other” option.
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Fig. 5. Participant’s years of experience

Table 2. The positive results statistics of the survey

Face this problem Std. dev. Good solution Std. dev.

Content negotiation 52.4% 2.289 76.2% 1.952

Endpoint redirection 45% 2.225 75% 1.936

Entity linking 47.4% 2.177 57.9% 2.152

API versioning 72.2% 1.901 72.2% 1.901

Server timeout 77.8% 1.763 66.7% 1.999

POST-PUT-PATCH return 58.8% 2.029 82.4% 1.570

5.6 Quantitative Analyses

Landis et al. [5] proposed a scale for the strength of agreement, with 61%–80%
labeled as “Substantial”. We decided to use the threshold, average value of 70%,
to determine which good practices are acceptable or require further analysis.

For the Content Negotiation, Endpoint Redirection, API Versioning,
and POST-PUT-PATCH Return good practices, more than 70% developers
agreed that the proposed solutions are good. Further interviews with some of
the developers also confirm that the solution for Content Negotiation is used
in industrial environments even if not publicly published as a good practice.

Two good practices have positive answers below 70%. We interviewed five
participants who answered “No” or “Other” for these practices to understand
the reasons behind their choices. In addition, we also asked their opinions on
other practices to which they give positive responses.

For Entity Linking, there is an alternative approach that avoids the actual
problem of entity linking. In the first login, the server sends a set of allowed per-
mission to the client, including the API endpoints related to these permissions.
Therefore, the client can use this set of permissions and endpoints to know if it can
request specific resources or not. This approach frees the server from calculating
the related resources (hence linked entities) and endpoints of these resources. In
addition, it is easier to implement. Companies that allow third-parties developers
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to register which permission they need, thus avoid providing too much information
that could raise privacy concerns.

For Server Timeout, the participants used the solution that we proposed
but, due to the specific business requirements, it was still not good enough. The
tasks running on their servers could take several hours to complete and return
results. Clients did not know about this processing time, resulting in them con-
tinuously polling for results, throttling the servers. Furthermore, the endpoints
for HTTP polling were implemented in the same servers as the endpoint for
registering the long-running tasks, which was not recommended in the original
solution. Consequently, developers used WebSocket to create tunnels between
the clients and servers. These tunnels allow the servers to “send” messages to
the clients when the task are completed. Yet, this solution cannot be used when
uploading large files. Usually, a dedicated server will be used for this specific
case, with HTTP polling or job queue.

6 Discussions

6.1 Threats to Validity

While most developers agreed/somewhat agreed on our solutions, there are some
threats to validity that we would like to discuss.

Internal Validity: Our solutions assume that the developers are using object-
oriented programming languages, like C# or Java. There are other languages for
back-end programming trending in recent years. For example, JavaScript with
nodejs, Go with Gin, etc. In addition, there are other Web frameworks from
the community for C# like OpenRasta and NancyFx, although they are not as
popular as ASP.NET. For Java, besides Spring, there are multiple Web frame-
works, like Struts and Grails. These frameworks could have different approaches
to good and bad practices. We could minimize this threat by expanding the
survey and ask other framework experts.

We looked for existing solutions in both academic and gray literature, con-
forming to good practices in reviewing previous work. However, we may have
missed some solutions due to inconsistencies in vocabulary, titles and contents,
etc. We minimized this threat by using multiple related keywords to search the
academic and gray literature.

External Validity: We proposed six solutions to practically implement REST
API good practices. To evaluate these solutions, we surveyed back-end develop-
ers. Due to the number of proposed solutions, the survey was quite long. The
participants could become tired by the end of the survey and answer the ques-
tions with lower attention than those near the start. These responses could bias
our analysis. To minimize this threat, we divided the survey in two parts and
tried to be as concise as possible. We also put the questions of the “Response
Caching” and “List Pagination” good practices at the end of the survey, because
they are supported or partially supported by the web frameworks.
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Developers depend on their experiences and domain knowledge to concretely
implement good practices and avoid bad practices. Therefore, their levels of
expertise may affect the survey result. More experienced developers could see
potential problems in our solutions or evaluate these solutions more thoroughly.
Less experienced developers may favor our solutions or not have experienced the
practice problems. We tried to minimize this threat by asking and controlling
for age groups, education level, and current profession.

In general, we could minimize threats to internal validity in future work
by examining more Web frameworks and programming languages. For external
threats, we could conduct more one-on-one interviews with developers to find
out their experience and ask for their feedback and concrete solutions.

6.2 Developers’ Feedback on Solutions

As presented in Sect. 5, for “Content Negotiation”, “Endpoint Redirection”,
“API Versioning”, and “POST-PUT-PATCH return”, we received more than
70% positive responses. However, some developers commented our solutions and
proposed other solutions. We summarise and analyse each participants’ comment
in the following.

Endpoint Redirection Good Practice
Comment 1: It is better to use a proxy or a service broker

Using a proxy server or service could solve the problem but the proxy/service
would have to implement the exact resource mapping mechanism proposed by
the good practice solution. In addition, it would have to implement mechanisms
to “catch” the request that needs redirecting, making it more complex than ours.

API Versioning Good Practice
Comment 1: At least with the version in URI, I don’t have to modify my code
as long as that version is available. For the suggested design, I’ll have to modify
my code and still have to rely on the availability of the old version.

The suggested solution does not force developers to choose a specific ver-
sioning type, see Sect. 4.4. It provides a solution that helps developers to reuse
business logic. Besides, developers should apply good practices when designing
their applications, not when refactoring or introducing a new feature.

Server Timeout
Comment 1: Use http2, Web socket for request from frontend, use grpc or a
pub/sub if request from back-end

An interview with the participant helped us understand this comment: the
participant’s company uses the proposed good practice. Yet, the specific busi-
ness of the company makes the system perform poorly. Indeed, a single task
could run for hours. To address this issue, developers use multiple approaches,
including: http2: The major next revision of the HTTP network protocol that
supports a single connection from the browser to the back-end; WebSocket: A
communication protocol supporting two-way communication over a single TCP
connection; gRPC: Google Remote Procedure Calls, an open-source remote
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procedure call framework that uses http2; publisher/subscriber pattern:
A messaging pattern allowing a publisher to emit multiple events to multiple
subscribers interested in these events.

The participant’s company has the advantage of controlling both back-end
and front-end applications. Therefore, they can use new technologies that are
still in beta development or require major changes/complex implementations.

POST-PUT-PATCH Return Good Practice
Comment 1: If DB doesn’t return data for create and update operation, we need
to make an additional get operation to DB.

The focus of the good practice is on the back-end. We explained in Sect. 4.6
that there should be a mechanism to control the response if it only needs a
HTTP Code 200. Both considered Web frameworks optimise database requests
using “Lazy Loading”. Application only query databases when data is needed.

Comment 2: Depends on the type of requirement. Clean Architecture and apply-
ing CQRS is better with a solution that is complex and needs scaling.

Clean Architecture is an architectural style that splits the concerns of the
application into a central domain logic and multiple cross-cutting concerns, like
caching, authentication, authorization, rendering, etc. The concerns work with
each other via interfaces. This architectural style is not related to the issues
tackled by the good practice. CQRS stands for Command Query Responsibility
Segregation, which is a pattern stating that developers should use a different
model to update information than the model to read information. Again, this
pattern is not directly related to the issue and the good practice.

6.3 Developers and Bad Practices

All the bad practices in the non-technical category require constant review by
experienced developers. For example, the “CRUDy URIs” bad practice is not
solvable with an architectural design but by continuously watching the API
endpoints in development. Therefore, there is a need to develop tools to support
developers during development. Such tools are out of the scope of this study.

7 Conclusion

In this paper, we presented an up-to-date list of good and bad practices to
design REST API systems, divided into 8 technical and 11 non-technical prac-
tices. For each technical practice, we proposed and discussed practical solutions
and concrete implementations. For three of the four most common practices,
Content Negotiation, API Versioning, and Endpoint Redirection, we
compared/supplemented the existing solutions with new solutions and imple-
mentations that increase their benefits. To determine how acceptable our solu-
tions were and how well they could be applied in industrial environments, we
surveyed and interviewed 55 developers. Results of our survey and one-on-one
interviews showed that most of the developers agreed with our solutions. Devel-
opers also confirmed that their companies use some good practices and other
approaches that fit their specific business. Hence, we contributed by:
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1. Reviewing REST API practices usage in the academic and gray literature.
2. Providing solutions and concrete implementations to these practices.
3. Validating our solutions with professional developers.

We conclude that our solutions are relevant to developers and researchers as
a basis for implementation and future, quantitative studies (e.g., detection).

In future work, we could extend our approach to provide concrete implemen-
tation for Service Oriented Architecture (SOA). Our approach could be gener-
alized by applying it to other good/bad practices. For the practices to which we
cannot apply our approach, we could do further research to categorise them based
on other criteria, like the numbers of parties involved or the server architectural
style. We could also expand the survey and have more one-on-one interviews to
qualify more precisely our solutions.
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Abstract. REST (REpresentational State Transfer) is an architectural
style for distributed, hypermedia systems that allows communication
between clients and servers using the HTTP methods and URIs (Uni-
form Resource Identifiers). In the literature, researchers and practition-
ers defined best design practices, i.e., REST patterns, violation of which
are known as REST antipatterns. Also, clients need to understand the use
and purpose of APIs while consuming them. A set of best practices is
defined in the literature for APIs to have a better linguistic design, i.e.,
linguistic patterns, violation of which are known as linguistic antipatterns.
For API developers, it is challenging to ensure that their APIs are REST-
ful and manifest linguistic design quality. This paper investigates whether
developers are equally concerned about making their APIs RESTful while
also focus on designing APIs with better linguistic quality that may facili-
tate their comprehension and consumption. Thus, we examine the relation
between RESTful and linguistic design quality in RESTful APIs. We ana-
lyzed eight Google APIs and performed the detection of 21 patterns and
antipatterns on those APIs. Using the quantitative data, we performed a
series of statistical tests. Results suggest a negligible relationship between
RESTful and linguistic design quality. Thus, developers are unaware of
whether they conjointly lack RESTful and linguistic design quality.

Keywords: Patterns · Antipatterns · RESTful APIs · Uniform
resource identifiers · Detection · RESTful design · Linguistic quality

1 Introduction

Service-Oriented Architecture (SOA) has become the dominant architectural
choice within the industry for its ways of developing, deploying, and consuming
service-based systems [10]. One can use two major Web services standards to
build service-based systems: Simple Object Access Protocol (SOAP) and REp-
resentational State Transfer (REST). In recent years, REST has become a stan-
dard architectural style adopted by many software organizations [11]. The REST
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architectural style is based on the client-server pattern, and relies on HTTP
methods and resource URIs (Uniform Resource Identifiers) for communications
between the clients and servers [7].

A well-designed RESTful API can attract client developers to use the service
and put the service provider ahead of the competition. A RESTful API needs to
be truly RESTful, i.e., must adhere to six REST principles defined by Roy T.
Fielding [11]. These principles are explained as best design practices, i.e., REST
patterns, when violated, known as REST antipatterns. Another important aspect
that attracts and benefits client developers is the linguistic design quality of the
RESTful APIs. A resource URI that can be easily understood and reused helps
the client developers while designing and developing their services-based systems
using the RESTful APIs [20]. A set of best practices for APIs to have a better
linguistic design is known as linguistic patterns, violation of which can be referred
to as linguistic antipatterns.

Due to many constraints, it might be challenging for API developers to ensure
that their APIs are RESTful and manifest high linguistic design quality. How-
ever, there has been no evidence of whether poorly designed RESTful APIs also
have poor linguistic quality; and vice versa for well-designed APIs. Hence, this
paper aims to investigate the relation between RESTful design and linguistic
quality in RESTful APIs. We analyzed Google RESTful APIs to see whether
APIs that (1) have many REST antipatterns also manifest linguistic antipatterns;
(2) have many REST antipatterns also manifest linguistic patterns; (3) have many
REST patterns also manifest linguistic patterns; and (4) have many REST patterns
also manifest linguistic antipatterns. More specifically, we aim to answer research
question RQ1 What is the relationship between the RESTful design and lin-
guistic quality in RESTful APIs? RQ1 aims to investigate whether RESTful
APIs that suffer from antipatterns (or patterns) with respect to RESTful design
are also prone to linguistic antipatterns (or patterns). To answer RQ1, we further
answer the following research questions:
RQ1.1: What is the relationship between REST antipatterns and linguistic antipat-
terns in RESTful APIs?
RQ1.2: What is the relationship between REST antipatterns and linguistic patterns
in RESTful APIs?
RQ1.3: What is the relationship between REST patterns and linguistic patterns in
RESTful APIs?
RQ1.4: What is the relationship between REST patterns and linguistic antipatterns
in RESTful APIs?

To find the relationship between REST design quality and linguistic quality
in the RESTful APIs, we analyzed eight Google RESTful APIs. We performed
the detection of 21 patterns and antipatterns on those eight Google APIs. The
results suggest that the relationship between the RESTful design and linguistic
design quality is negligible, i.e., developers are aware of whether they conjointly
lack RESTful design and linguistic quality.

Thus, the main contributions of this study include (1) empirical evidence that
RESTful APIs concurrently lack RESTful design and linguistic design quality,
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Table 1. REST patterns and antipatterns.

REST patterns and antipatterns

Breaking Self-descriptiveness (BSD) antipattern occurs when REST developers ignore the
standardized headers, formats, or protocols [22]

Forgetting Hypermedia (FH) antipattern occurs due to the lack of proper entity linking
and hinders the state transition for REST applications [6,14,22]

Ignoring Caching (IC) antipattern occurs when due to implementation complexity, client
and server developers ignore caching capability [6,14,22]

Ignoring MIME Types (IMT) antipattern occurs when server fails to represent resources in
various formats, limiting resources reusability and accessibility [6,22]

Ignoring Status Code (ISC) antipattern occurs when API developers avoid using the
defined set of application-level status code [6,22]

Misusing Cookies (MC) antipattern occurs when a Set-cookie or a Cookie header contains
keys or tokens that supposed to be sent by other standardized means [14,22]

Content Negotiation (CN) pattern allows a service to support multiple resource
representations based on the metadata provided by the consumer [6,9,14]

Entity Linking (EL) pattern enables communication by providing hyperlinks to the service
consumers in response messages [6,9]

Response Caching (RC) pattern caches all response messages in the local client machine to
avoid sending duplicate requests or responses [6,9]

and, as a whole, RESTful APIs that are not (truly) RESTful exhibit poor linguis-
tic design quality, and vice-versa; (2) the extension of SOFA framework [20] by
integrating eight Google APIs to the framework and the detection of 21 patterns
and antipatterns on those Google APIs.

In the rest of the paper: Sect. 2 provides the background of this work. We
provide the study design in Sect. 3 and shows the results in Sect. 4. Section 5
discusses our results in detail while Sect. 6 presents the studies relevant to this
study. Finally, Sect. 7 concludes our work and outlines future work.

2 Background

This section briefly introduces REST patterns and antipatterns (Sect. 2) and the
SODA approach and SOFA framework (Sect. 2) that we rely on for the detection
of REST patterns and antipatterns in this study.

REST Patterns and Antipatterns: This study considers 21 REST and
linguistic patterns and antipatterns from the literature. Design patterns and
antipatterns in RESTful APIs are considered as best and poor design practices,
respectively. For example, Masse [15] in his book discussed numerous rules, i.e.,
patterns, to design APIs. Practitioners also emphasized many best practices and
things to avoid when it comes to designing RESTful APIs [1,6,14,22]. Table 1
introduces nine REST patterns and antipatterns, and Table 2 lists twelve lin-
guistic patterns and antipatterns.
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Table 2. Linguistic patterns and antipatterns.

Linguistic patterns and antipatterns

Contextualized vs. Contextless Resource Names: Applying Contextualized Resource
Names pattern ensures that all nodes in a URI belong to a semantically related context. The
corresponding antipattern Contextless Resource Names leads to decreased understandability of
the API [14,19]

Hierarchical vs. Non-hierarchical Nodes: The Hierarchical Nodes pattern ensures each node
in a URI is related, hierarchically, to its adjacent nodes. If not applied, the corresponding
antipattern Non-hierarchical Nodes occurs that hinders the understandability and usability of an
API [14,19]

Tidy vs. Amorphous URI: A URI is tidy when it has an appropriate lower-case resource
naming without any extensions, underscores, or trailing slashes. A URI that does not adhere to
this pattern is an Amorphous URI. This antipattern may mislead users and decrease readability
[1,19]

Verbless vs. CRUDy URI: A verbless URI does not contain any HTTP method (i.e., Get,
Post, Put, or Delete) and their synonyms, rather the action is defined using the HTTP methods.
On the other hand, a CRUDy URI uses terms, such as create, read, update, or delete, and their
synonyms as part of the URI design, which may confuse API clients and cause an overload on the
HTTP methods [1,6,14,19]

Singularised vs. Pluralised Nodes: The singular and plural nouns should be used
consistently. The last node of a PUT/DELETE request URI should be singular. The last node
should be plural in POST requests. If this pattern is not applied correctly, the Pluralised Nodes
antipattern occurs, causing unexpected server responses [1,14,19]

Versioned vs. Non-versioned URI: As API changes, API versioning is recommended to
manage the complexity of these changes. A Non-versioned URI antipattern may lead to users’
confusion regarding the API version in use and, in worst scenarios, may break existing consumers
[1,6,14]

SODA Approach and SOFA Framework: The SODA (Service Oriented
Detection of Antipatterns) is a rule-based approach proposed in [16,20] and
works in three steps for the detection of antipatterns in service-based systems:
(1) specification of rule cards, (2) generation of detection algorithms, and (3)
applying detection algorithms on service-based systems. The SOFA (Service Ori-
ented Framework for Antipatterns) implements these steps. Currently, SOFA can
detect antipatterns in three service-oriented technologies including SCA (Service
Component Architecture) systems, SOAP (Simple Object Access Protocol) Web
services, and RESTful Web services. Since the source code for the web services
is proprietary, the detection of patterns and antipatterns are at the interface
and/or specification level. SOFA performs the detection of both REST patterns
and antipatterns [20] and linguistic patterns and antipatterns [16]. In this study,
we performed the detection of 21 patterns and antipatterns on eight Google APIs
using the SOFA framework.

3 Study Design

This section presents the study design, the RESTful APIs we analyzed, and the
dependent and independent variables in this study.
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Fig. 1. Study design.

Data Collection and Processing: Figure 1 shows the steps this study adopts
to answer our research questions. The remainder of this section briefly describes
the steps.

• Step 1: Extract Google APIs: In this step, the Google APIs are extracted
from https://developers.google.com and stored in a JSON file. Additionally,
the required parameters and data-form of each URI are filled into the JSON
file. This process is done manually due to the differences among the APIs and
URIs in their presentation formats and structures.

• Step 2: Extend the SOFA framework: This step involves extending the
SOFA framework by adding the collected Google APIs data to detect patterns
and antipatterns of both linguistic and RESTful design practices in those
APIs. The detection algorithms that we apply are defined in SOFA in the
previous studies [19,20]. Thus, in this form, SOFA can be extended for new
antipatterns and APIs.

• Step 3: Detect REST Patterns and Antipatterns: In this step, the SOFA
framework automatically performs the detection of nine REST patterns and
antipatterns and export the detection results to CSVs. We further process
these CSVs to aggregate the numbers for each REST pattern and antipattern
for each Google API.

• Step 4: Detect Linguistic Patterns and Antipatterns: Similar to step
3, in this step, the SOFA framework automatically performs the detection of
twelve linguistic patterns and antipatterns and exports the detection results
to CSVs. Then, we further process the CSVs to aggregate the numbers for
each linguistic pattern and antipattern for each Google API.

• Step 5: Analyze the Data: Finally, in this last step, the data obtained
from steps 3 and 4 are analyzed. The statistical analysis is performed by
conducting two types of tests: (1) the Chi-square test of independence and
(2) the Phi-coefficient test. The Chi-square test of independence determines
if there is a significant relationship between two nominal (categorical) vari-
ables [17,21]. We perform a Chi-square test on two groups of patterns and
antipatterns at the significance level p < 0.05. The Phi-coefficient test, on
the other hand, is used to determine the relationship strength between two
binary (dichotomous) variables [4,21]. Therefore, it is used when assessing

https://developers.google.com
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individual pairs of patterns and antipatterns in this study. A Phi-coefficient
of 0 refers to no relationship; +1 and −1 refer to perfect positive and perfect
negative relationship, respectively [4,24].

RESTful APIs: To answer our research questions, we rely on eight RESTful
APIs from Google as shown in Table 3. The APIs are chosen due to their exten-
sive use and availability. Also, Google is considered one of the most popular
RESTful APIs among the practitioners1 beside Facebook, Twitter, IBM, and
Amazon.

Table 3. Google APIs and the number of resource URIs tested.

RESTful APIs Online documentations Versions Resource URIs tested

Google photos API developers.google.com/photos v1 17

Google drive API developers.google.com/drive v3 42

YouTube API developers.google.com/youtube v3 52

Google classroom API developers.google.com/classroom v1 56

Gmail API developers.google.com/gmail/api v1 74

Google calendar API developers.google.com/calendar v3 32

Google sheets API developers.google.com/sheets/api v4 17

Google blogger API developers.google.com/blogger v3 27

Variable Selection: For each of our research questions, we have a set of inde-
pendent and dependent variables, as shown in Table 4.

Table 4. Independent variables and dependent variables.

RQs Independent variables Dependent variables Measures

RQ1 REST antipatterns & patterns Linguistic antipatterns & patterns Number of
detected
instances

RQ1.1 REST antipatterns Linguistic antipatterns

RQ1.2 REST antipatterns Linguistic patterns

RQ1.3 REST patterns Linguistic patterns

RQ1.4 REST patterns Linguistic antipatterns

4 Case Study Results

This section shows the results obtained after performing the detection of 21
REST and linguistic patterns and antipatterns on eight Google APIs and the
statistical tests performed on the detection results.

1 https://www.creativebloq.com/web-design/apis-developers-need-know-121518469.

https://developers.google.com/photos
https://developers.google.com/drive
https://developers.google.com/youtube
https://developers.google.com/classroom
https://developers.google.com/gmail/api
https://developers.google.com/calendar
https://developers.google.com/sheets/api
https://developers.google.com/blogger
https://www.creativebloq.com/web-design/apis-developers-need-know-121518469
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4.1 Relationship Between Design and Linguistic Quality

Table 5 shows the contingency table of the REST patterns/antipatterns and
the linguistic patterns/antipatterns on eight Google APIs. The first column
lists nine REST antipatterns/patterns. The following columns show the num-
ber of instances detected as linguistic antipatterns and patterns. For exam-
ple, in Table 5, 227 URIs that were detected as Breaking self-descriptiveness
REST antipattern are also detected as Amorphous URI linguistic antipattern.
We answer RQ1 based on this contingency table using the Chi-squared test. To
answer RQ1, we test the null hypothesis H01: There is no statistically significant
relationship between the RESTful design and linguistic quality in RESTful APIs.

Table 5. Contingency table of REST and linguistic patterns and antipatterns.

Linguistic antipatterns Linguistic patterns

AMO CRD NV CRN NHN SPN TDY VBL VS CRN HN SP

REST antipattern BSD 227 4 0 41 0 64 88 311 315 274 275 42

FH 129 1 0 29 0 53 49 177 178 149 154 35

IMT 0 0 0 0 0 0 0 0 0 0 0 0

IC 0 0 0 0 0 0 0 0 0 0 0 0

MC 0 0 0 0 0 0 0 0 0 0 0 0

ISC 19 0 0 2 0 1 4 23 23 21 23 0

REST pattern EL 37 3 0 3 0 12 16 50 53 50 47 7

CN 228 4 0 41 0 65 89 313 317 276 277 42

RC 0 0 0 0 0 0 0 0 0 0 0 0

*AMO: Amorphous URIs, TDY: Tidy URIs, CRD: CRUDy URIs, VBL: Verbless URI,
NV: Non-versioned URI, VS: Versioned URIs, CRN: Contextless Resource Names,
CRN: Contextualized Resource Names, NHN: Non-Hierarchical Nodes, HN: Hierarchi-
cal Nodes, SPN: Pluralised Nodes, SP: Singularised Nodes.

Table 6. χ2 test of independence among REST and Linguistic Patterns/Antipatterns.

Test type p-value

χ2(ContingencyTable(REST-Patterns-Antipatterns, <2.2e−16

Linguistic-Patterns-Antipatterns))

Table 6 shows the result of the Chi-squared test of independence between
REST patterns/antipatterns and linguistic patterns/antipatterns. In order to
examine whether there is a relationship between REST and linguistic quality,
Chi-squared tests are performed on all four groups of REST and linguistic pat-
terns and antipatterns. Our tests yielded a statistically significant relationship
overall with the significance level p-value < 0.05. Therefore, the H01 is rejected,
and we can conclude that there is a likely strong relationship between RESTful
design and linguistic quality in RESTful APIs. Overall, it is possible that when
APIs have more REST antipatterns, they also have higher linguistic antipat-
terns. This also applies the REST patterns and linguistic patterns.

Summary on RQ1: Chi-squared test performed in a group finds a statistical signif-
icant relationship between RESTful design and linguistic quality in Google APIs.
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4.2 Relation Between REST and Linguistic Antipatterns

Table 7 shows the results of the Phi-coefficient test for each pair of REST antipat-
tern and linguistic antipattern. To answer RQ1.1, we test H01.1: There is no statis-
tically significant relationship between REST antipatterns and linguistic antipatterns
in RESTful APIs.

When studying the relationship between REST and linguistic antipatterns,
the Phi-coefficient test is used. All the tests, except one, ranged from −0.19 to
+0.19; this means there might be a relationship at a negligible level according to
[24]. Thus, the results lead to failure in rejecting H01.1 due to insufficient statis-
tical evidence. Therefore, it is concluded that there is no statistically significant
relation between REST antipatterns and linguistic antipatterns.

Table 7. Relation between REST and linguistic antipatterns.

Pairs of REST antipatterns and linguistic antipatterns Phi coefficient

Breaking Self-descriptiveness vs. Amorphous URI 0.03887

Breaking Self-descriptiveness vs. CRUDy URI 0.009

Breaking Self-descriptiveness vs. Non-version URI –

Breaking Self-descriptiveness vs. Contextless Resource Names 0.03071

Breaking Self-descriptiveness vs. Non-hierarchical Nodes –

Breaking Self-descriptiveness vs. Pluralised Nodes −0.05821

Forgetting Hypermedia vs. Amorphous URI 0.01379

Forgetting Hypermedia vs. CRUDy URI −0.07097

Forgetting Hypermedia vs. Non-versioned URI –

Forgetting Hypermedia vs. Contextless Resource Names 0.11325

Forgetting Hypermedia vs. Non-hierarchical Nodes –

Forgetting Hypermedia vs. Pluralised Nodes 0.25984

Ignoring MIME Types vs. Amorphous URI –

Ignoring MIME Types vs. CRUDy URI –

Ignoring MIME Types vs. Non-version URI –

Ignoring MIME Types vs. Contextless Resource Names –

Ignoring MIME Types vs. Non-hierarchical Nodes –

Ignoring MIME Types vs. Pluralised Nodes –

(continued)
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Table 7. (continued)

Pairs of REST antipatterns and linguistic antipatterns Phi coefficient

Ignoring Caching vs. Amorphous URI –

Ignoring Caching vs. CRUDy URI –

Ignoring Caching vs. Non-version URI –

Ignoring Caching vs. Contextless Resource Names –

Ignoring Caching vs. Non-hierarchical Nodes –

Ignoring Caching vs. Pluralised Nodes –

Misusing Cookies vs. Amorphous URI –

Misusing Cookies vs. CRUDy URI –

Misusing Cookies vs. Non-version URI –

Misusing Cookies vs. Contextless Resource Names –

Misusing Cookies vs. Non-hierarchical Nodes –

Misusing Cookies vs. Pluralised Nodes –

Ignoring Status Code vs. Amorphous URI 0.0665

Ignoring Status Code vs. CRUDy URI −0.03161

Ignoring Status Code vs. Non-version URI –

Ignoring Status Code vs. Contextless Resource Names −0.03532

Ignoring Status Code vs. Non-hierarchical Nodes –

Ignoring Status Code vs. Pluralised Nodes −0.11193

* The “–” symbol means Phi Coefficient is not applicable.

Summary on RQ1.1: Phi-coefficient test on each pair of REST and linguistic
antipattern finds a negligible relationship between REST and linguistic antipatterns.

4.3 Relation Between REST Antipatterns and Linguistic Patterns

Table 8 shows the results of the Phi-coefficient test for each pair of REST antipat-
tern and linguistic pattern. To answer RQ1.2, we test null hypothesis H01.2: There
is no statistically significant relationship between REST antipatterns and linguistic
patterns in RESTful APIs.

Similar to H01.1, we use the Phi-coefficient test to examine H01.2. Our
obtained results exhibit a no or negligible relationship as they ranged from −0.19
to +0.19. One value showed a weak positive relationship with a Phi-coefficient
value of 0.21, i.e., between Forgetting Hypermedia and Singularised Nodes. That
is, at times, if an API has Forgetting Hypermedia REST antipattern, it may
manifest Singularised Nodes linguistic pattern. However, the overall test results
have failed to reject H01.2 due to insufficient statistical evidence.
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Table 8. Relation between REST antipatterns and linguistic patterns.

Pairs of REST antipatterns and linguistic patterns Phi coefficient

Breaking Self-descriptiveness vs. Tidy URI −0.03887

Breaking Self-descriptiveness vs. Verbless URI 0.009

Breaking Self-descriptiveness vs. Versioned URI –

Breaking Self-descriptiveness vs. Contextualized Resource Names −0.03071

Breaking Self-descriptiveness vs. Hierarchical Nodes −0.03027

Breaking Self-descriptiveness vs. Singularised Nodes 0.03113

Forgetting Hypermedia vs. Tidy URI −0.01379

Forgetting Hypermedia vs. Verbless URI 0.07097

Forgetting Hypermedia vs. Versioned URI –

Forgetting Hypermedia vs. Contextualized Resource Names −0.11325

Forgetting Hypermedia vs. Hierarchical Nodes −0.02947

Forgetting Hypermedia vs. Singularised Nodes 0.21408

Ignoring MIME Types vs. Tidy URI –

Ignoring MIME Types vs. Verbless URI –

Ignoring MIME Types vs. Versioned URI –

Ignoring MIME Types vs. Contextualized Resource Names –

Ignoring MIME Types vs. Hierarchical Nodes –

Ignoring MIME Types vs. Singularised Nodes –

Ignoring Caching vs. Tidy URI –

Ignoring Caching vs. Verbless URI –

Ignoring Caching vs. Versioned URI –

Ignoring Caching vs. Contextualized Resource Names –

Ignoring Caching vs. Hierarchical Nodes –

Ignoring Caching vs. Singularised Nodes –

Misusing Cookies vs. Tidy URI –

Misusing Cookies vs. Verbless URI –

Misusing Cookies vs. Versioned URI –

Misusing Cookies vs. Contextualized Resource Names –

Misusing Cookies vs. Hierarchical Nodes –

Misusing Cookies vs. Singularised Nodes –

Ignoring Status Code vs. Tidy URI −0.0665

Ignoring Status Code vs. Verbless URI 0.03161

Ignoring Status Code vs. Versioned URI –

Ignoring Status Code vs. Contextualized Resource Names 0.03532

Ignoring Status Code vs. Hierarchical Nodes 0.10628

Ignoring Status Code vs. Singularised Nodes −0.1093

Summary on RQ1.2: With Phi-coefficient test performed for each pair of REST
antipattern and linguistic pattern, there is negligible relation between REST antipat-
terns and linguistic patterns.
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4.4 Relation Between REST and Linguistic Patterns

Table 9 shows the results of the Phi-coefficient test for each pair of REST pattern
and linguistic pattern. To answer RQ1.3, we test null hypothesis H01.3: There is no
statistically significant relationship between REST patterns and linguistic patterns
in RESTful APIs.

Like the two previous analyses, testing the relationship between REST pat-
terns and linguistic patterns yielded statistically insignificant results using phi-
coefficient test ranging from −0.19 to +0.19. Thus, a negligible relationship is
found between the REST pattern and linguistic pattern. The test results failed
to reject H01.3 due to insufficient statistical evidence.

Summary on RQ1.3: Phi-coefficient test on each pair of REST pattern and linguistic
pattern finds a negligible relationship between REST and linguistics patterns.

Table 9. Relation between REST pattern and linguistic pattern.

Pairs of REST patterns and linguistic patterns Phi coefficient

Entity Linking vs. Tidy URI 0.02106

Entity Linking vs. Verbless URI −0.17656

Entity Linking vs. Versioned URI –

Entity Linking vs. Contextualized Resource Names 0.09711

Entity Linking vs. Hierarchical Nodes 0.01750

Entity Linking vs. Singularised Nodes −0.00055

Content Negotiations vs. Tidy URI –

Content Negotiation vs. Verbless URI –

Content Negotiation vs. Versioned URI –

Content Negotiation vs. Contextualized Resource Names –

Content Negotiation vs. Hierarchical Nodes –

Content Negotiation vs. Singularised Nodes –

Response Caching vs. Tidy URI –

Response Caching vs. Verbless URI –

Response Caching vs. Versioned URI –

Response Caching vs. Contextualized Resource Names –

Response Caching vs. Hierarchical Nodes –

Response Caching vs. Singularised Nodes –
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Table 10. Relation between REST pattern and linguistic pattern.

Pairs of REST patterns and linguistic antipatterns Phi coefficient

Entity Linking vs. Amorphous URI −0.02106

Entity Linking vs. CRUDy URI 0.17656

Entity Linking vs. Non-versioned URI –

Entity Linking vs. Contextless Resource Names −0.09711

Entity Linking vs. Non-Hierarchical Nodes –

Entity Linking vs. Pluralised Nodes 0.02371

Content Negotiations vs. Amorphous URI –

Content Negotiation vs. CRUDy URI –

Content Negotiation vs. Non-versioned URI –

Content Negotiation vs. Contextless Resource Names –

Content Negotiation vs. Non-Hierarchical Nodes –

Content Negotiation vs. Pluralised Nodes –

Response Caching vs. Amorphous URI –

Response Caching vs. CRUDy URI –

Response Caching vs. Non-versioned URI –

Response Caching vs. Contextless Resource Names –

Response Caching vs. Non-Hierarchical Nodes –

Response Caching vs. Pluralised Nodes –

4.5 Relation Between REST Patterns and Linguistic Antipatterns

Table 10 shows the results of the Phi-coefficient test for each pair of REST
pattern and linguistic antipattern. To answer RQ1.4, we test hypothesis H01.4:
There is no statistically significant relationship between REST patterns and linguistic
antipatterns in RESTful APIs.

When comparing REST patterns and linguistics antipatterns using the Phi-
coefficient test, our obtained results exhibit a negligible relation between REST
pattern and linguistic pattern with values ranging between −0.19 and +0.19. The
results lead to failure in rejecting H01.4 for insufficient statistical evidence. Hence,
there is no relationship between REST patterns and linguistic antipatterns.

Summary on RQ1.4: With Phi-coefficient test performed for each pair of REST
pattern and linguistic antipattern, there is no or negligible relation between REST
patterns and linguistic antipatterns.

5 Discussions

The detection results for linguistic patterns and antipatterns show that very few
URIs are CRUDy and all Google APIs are versioned. Moreover, only a portion of
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the tested URIs, i.e., 41, have Contextless Resource Names antipattern, and no
URIs are found to be involved in Non-Hierarchical Nodes antipattern. However,
there is a considerably higher number of Amorphous URI antipattern detected.
Pluralized Nodes antipattern is also common to some extent, i.e., up to 65 URIs
were detected, while Singularized Nodes pattern had only 42 instances (13%)
detected out of 317 URIs tested. Thus, Google APIs are mostly well-designed in
terms of linguistic quality.

The analysis of the RESTful design quality shows that almost all URIs con-
tain Breaking Self-descriptiveness antipattern. This is mostly because Google
uses some of its non-standard request and response headers. Moreover, the For-
getting Hypermedia and Ignoring Status Code antipatterns are present in the
majority of the URIs. Although, the greater number of the Google APIs fol-
low the Content Negotiation REST patterns since Google servers can provide
resources in various formats to the clients. These show that when it comes to
RESTful design, Google APIs do not display similar RESTful design quality as
in linguistic design.

When we examine the relation between REST antipatterns and linguis-
tic antipatterns, we found that the Forgetting Hypermedia REST antipattern
weak-positively correlates with the Pluralized Nodes linguistic antipattern with
a Phi-coefficient value of 0.25984 (see Table 7). Also, the Forgetting Hypermedia
antipattern is positively (but negligible) correlated with the Contextless Resource
Names linguistic antipattern with a phi-coefficient value of 0.11325.

When we examine the relation between REST antipatterns and linguistic
patterns, we again found that the Forgetting Hypermedia REST antipattern is
weak-positively correlated with the Singularised Nodes linguistic pattern with
a Phi-coefficient value of 0.21408 (see Table 8). However, the Forgetting Hyper-
media antipattern is negatively (but negligible) correlated with the Contextual-
ized Resource Names linguistic pattern with a Phi-coefficient value of −0.11325.
Thus, when a resource URI has Forgetting Hypermedia, more often than not,
that same URI does not have Contextualized Resource Names linguistic pattern.
More specifically, when API developers design their resources, they not only miss
to include the hyperlinks, but they also design the URIs using (semantically) less
correlated nodes.

When we correlate REST patterns with linguistic patterns, we found that
Entity Linking REST pattern is negatively (but negligible) correlated with the
Verbless URI linguistic pattern with a Phi-coefficient value of −0.17656. Thus,
when API developers provide hyperlinks for their resources, they often do not
follow a good URI design practice—Verbless URI. As such, we also found a
positive but negligible correlation between Entity Linking REST pattern and
CRUDy URI linguistic antipattern when we examine the correlation between
REST patterns and linguistic antipatterns (Phi-coefficient value 0.17656, see
Table 10). These could be due to various development constraints like a shorter
release span or sprint for a large API.
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Practical Implications: Client developers who rely on the RESTful APIs to
develop their applications face challenges when APIs are not truly RESTful and
have poor linguistic design [12,19]. An empirical evidence similar to this study
informs client developers that, in practice, APIs that claim to be RESTful are
not always RESTful and may lack basic REST principles defined by Fielding [11].
API providers might not always be concerned about the linguistic design quality
of their APIs, which, in practice, hinder the comprehension and usability of the
APIs. What is more troubling, without proper understanding, client developers
may misinterpret and misrepresent a resource URI in an API, as discussed pre-
viously by Aghajani et al. [3]. In addition, when the APIs are not truly RESTful,
it is possible that client developers build and deliver a not-quite-right product to
their clients, albeit unknowingly. Our study provides examples that such prone-
ness persists, i.e., RESTful APIs at the same time are not truly RESTful and
have poor design quality and APIs that suffer from poor RESTful design quality
also tend to have poor linguistic quality. Although, the latter relation is found
to be negligible in the context of Google. Nevertheless, client developers should
be careful about impulsively relying on the RESTful APIs available in practice.

Threats to Validity: We discuss the threats to validity according to the guide-
lines by [23]. When it comes to external validity, the findings might not be gen-
eralized to other RESTful APIs. Also, selecting APIs that only belong to Google
may introduce a selection bias, adding another threat to the study. However, we
tried to minimize the threats by analyzing eight different Google APIs. To min-
imize the threats to construct validity, all the detection rules were defined and
identified according to existing literature and previous research on the REST
and linguistic patterns and antipatterns in RESTful APIs [19,20]. The inter-
nal validity threat presents in this study is the accuracy of SOFA to detect
the violations of RESTful API design pattern principles and poor linguistics
design. However, SOFA has an average precision of 89% for the detection of
REST (anti)patterns and more than 80% in detecting linguistic (anti)patterns
[20]. Moreover, the findings on the relation between REST patterns and linguis-
tic patterns might be affected by the fact that fewer REST patterns (i.e., only
three) are analyzed than the number of linguistic patterns (i.e., six). A natural
extension would be considering more REST patterns to minimize the threats
to internal validity. The threats to reliability validity concern the possibility of
replicating our study. We provided all the detection results required to replicate
the study including the raw data to compute the statistics online.2 Conclusion
validity threats refer to the relation between the treatment and the outcome. We
used the phi-coefficient test at the significance level p < 0.05. The phi-coefficient
measures and test the strength of association between two categorical variables
where each variable has only two groups.

2 https://ufile.io/fpqm4lba.

https://ufile.io/fpqm4lba
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6 Related Work

Several studies dealt with the analysis of RESTful APIs aimed at detecting pat-
terns and antipatterns towards assessing their design quality. Studies in [18,20]
concerned the RESTful design quality while other studies, e.g., [3,5,13,19]
analyzed RESTful APIs assessing their structural and linguistic quality and
employed syntactic and semantic analysis of the resource URIs. The authors
in [18] proposed the first approach for automatic detection of antipatterns in
RESTful APIs. They studied 13 patterns and antipatterns related to RESTful
design and performed the detection on twelve APIs including DropBox, Face-
book, Twitter, and YouTube. The approach performed with an average precision
of 89.42%.

Haupt et al. [13] introduced a framework for the structural analysis of REST-
ful APIs based on their descriptions. The authors validated their framework with
286 APIs available as Swagger documents and performed metrics-based (e.g.,
share of read-only resources, distribution of API size, etc.) analysis to check the
conformance with the REST architectural style. Alshraiedeh and Katuk [5] auto-
matically parsed the URIs and detect antipatterns in RESTful Web services. The
detection concerned antipatterns like Amorphous URI and Ambiguous Name
with an average accuracy of 82% of precision and 88% recall.

The SARA approach [19] performs the detection of linguistic patterns and
antipatterns in RESTful APIs. The authors studied twelve linguistic patterns
and antipatterns and performed their detection on 18 RESTful APIs with an
average precision of 81%. Brabra et al. [8] provided specification of 21 REST
and 24 OCCI (Open Cloud Computing Interface) antipatterns, and performed
their detection on five APIs providing cloud services. Abdellatif et al. [2] provided
a catalog of poor practices by android REST mobile clients and performed their
detection on 1,595 android apps downloaded from the Google Play store. Thus,
a magnitude of studies performed the detection of poor linguistic design and
consuming practices for REST APIs but did not study the possible relation
between linguistic and RESTful design quality.

Aghajani et al. [3] showed that linguistic antipatterns affect the quality of
APIs (e.g., introduce bugs) in object-oriented systems. Also, it was found that
client developers ask more questions on Stack Overflow when an API has lin-
guistic antipatterns. The authors studied 1.6k releases of 75 Maven libraries used
by more than 14k client projects. They concluded that linguistic antipatterns
in the APIs could create issues for the client developers who might misinterpret
the API and introduce bugs when using it. However, we are not aware of such
phenomenon in the domain of service-oriented systems, in particular, RESTful
APIs. Thus, we conducted a study investigating whether RESTful APIs suffer
from RESTful design quality also lack linguistic quality or vice-versa.

7 Conclusion and Future Work

A well-designed, easy to understand RESTful API attracts more clients. There-
fore, RESTful design and linguistic quality are two essential factors an API
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provider should consider. This empirical study was performed to determine
whether API developers are equally concerned about making their APIs ‘REST-
ful’ and the linguistic quality of their APIs. More specifically, we examined
whether there is a relation between RESTful design and linguistic quality in
RESTful APIs. We analyzed eight Google APIs and performed the detection
of 21 patterns and antipatterns on those APIs. Using the quantitative data, we
performed a series of statistical tests.

A chi-squared test showed there is a statistically significant relationship
between RESTful design and linguistic quality in Google RESTful APIs (RQ1).
A phi-coefficient test performed for each pair of REST antipattern and linguistic
antipattern showed that there is negligible relation between REST and linguis-
tic antipatterns (RQ1.1); a phi-coefficient test performed for each pair of REST
antipattern and linguistic pattern also showed a negligible relation between
REST antipatterns and linguistic patterns (RQ1.2); a phi-coefficient test per-
formed for each pair of REST pattern and linguistic pattern showed that there
is also a negligible relation between REST and linguistic patterns (RQ1.3); and,
finally, a phi-coefficient test performed for each pair of REST pattern and linguis-
tic antipattern showed there is also a negligible relation between REST patterns
and linguistic antipatterns (RQ1.4). Thus, developers are unaware of whether
they conjointly lack RESTful design and linguistic quality. In other words, these
could be due to various development constraints like a shorter release span or
sprint for a large API.

Further work could involve extending this study on other RESTful APIs to
increase the datasets and test our hypotheses, which may provide more statistical
significance and reliability when performing the phi-coefficient test on each pair
of pattern and antipattern. This may give better insights into why software
organizations should emphasize more on RESTful design and linguistic quality.
Moreover, other available REST and linguistic patterns and antipatterns need
to be considered part of the future study.
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É.: A multi-dimensional study on the state of the practice of REST APIs usage
in Android apps. Autom. Softw. Eng. 27(3), 187–228 (2020). https://doi.org/10.
1007/s10515-020-00272-9

3. Aghajani, E., Nagy, C., Bavota, G., Lanza, M.: A large-scale empirical study on
linguistic antipatterns affecting APIs. In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 25–35. IEEE (2018)

4. Allen, M.: The SAGE Encyclopedia of Communication Research Methods. SAGE
Publications (2017). https://books.google.se/books?id=4GFCDgAAQBAJ

5. Alshraiedeh, F.S., Katuk, N.: A URI parsing technique and algorithm for anti-
pattern detection in RESTful Web services. Int. J. Web Inf. Syst. 17, 1–17 (2020)

https://restfulapi.net/resource-naming/
https://doi.org/10.1007/s10515-020-00272-9
https://doi.org/10.1007/s10515-020-00272-9
https://books.google.se/books?id=4GFCDgAAQBAJ


RESTful APIs and Their Design Quality 187

6. Au-Yeung, J., Donovan, R.: Best Practices for REST API Design (2020). https://
stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/. Accessed 20
July 2021

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Boston (2012)

8. Brabra, H., et al.: On semantic detection of cloud API (anti)patterns. Inf. Softw.
Technol. 107, 65–82 (2019). https://doi.org/10.1016/j.infsof.2018.10.012

9. Erl, T.: SOA Design Patterns, 1st edn. Prentice Hall, Hoboken (2009)
10. Erl, T., Merson, P., Stoffers, R.: Service-oriented Architecture: Analysis and Design

for Services and Microservices. Prentice Hall Service Technology, Prentice Hall,
Service Tech Press (2016). https://books.google.se/books?id=yNmlnQAACAAJ

11. Fielding, R.T., Taylor, R.N.: Architectural styles and the design of network-based
software architectures. Ph.D. thesis. University of California, Irvine (2000)

12. Giessler, P., Gebhart, M., Sarancin, D., Steinegger, R., Abeck, S.: Best practices
for the design of RESTful web services. In: International Conferences of Software
Advances (ICSEA), pp. 392–397 (2015)

13. Haupt, F., Leymann, F., Scherer, A., Vukojevic-Haupt, K.: A framework for the
structural analysis of REST APIs. In: 2017 IEEE International Conference on
Software Architecture (ICSA), pp. 55–58. IEEE (2017)

14. Kapadnis, J.: REST: good practices for API design - design your REST API so that
it will get used (2018). https://medium.com/hashmapinc/rest-good-practices-for-
api-design-881439796dc9. Accessed 20 July 2021

15. Masse, M.: REST API Design Rulebook: Designing Consistent RESTful Web Ser-
vice Interfaces. O’Reilly Media Inc., Newton (2011)

16. Moha, N., et al.: Specification and detection of SOA antipatterns. In: Liu, C.,
Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 1–16.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34321-6 1

17. Moore, D., Notz, W., Fligner, M.: The Basic Practice of Statistics. W.H. Freeman
and Company (2013). https://books.google.se/books?id=aw61ygAACAAJ

18. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G.: Detection of REST patterns
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Abstract. Microservices are a commonly used architectural style targeting inde-
pendent development, deployment, and release of services, as well as supporting
polyglot capabilities and rapid release strategies. This depends on the presence
of certain software architecture qualities. A number of architecture patterns and
best practices that support the required qualities have been proposed in the litera-
ture, but usually in isolation of one another. Additionally, in real-world systems,
assessing conformance to these patterns and practices and detecting possible vio-
lations is a significant challenge. For small-scale systems of a few services, a
manual assessment and violation detection by an expert is probably both accu-
rate and sufficient. However, for industrial-scale systems of several hundred or
more services, manual assessment and violation detection is laborious and likely
leads to inaccurate results. Furthermore, manual assessment is impractical for
rapidly evolving and frequently released system architectures. In this work we
examine a subset of microservice-relevant patterns, and propose a method for
the semi-automatic detection and resolution of conformance violations. Our aim
is to assist the software architect by providing a set of possible fix options and
generating models of “fixed” architectures.

1 Introduction

Microservices are one of many service-based architecture decomposition approaches
(see e.g. [1–4]). The chief features of microservices are that they communicate via
message-based remote APIs in a loosely coupled fashion, and that they can be highly
polyglot; ideally, microservices should not share their data with other services. This
allows the rapid evolution of individual microservices independently of one another, and
their independent deployment in lightweight containers or other virtualized environ-
ments. These features make microservices ideal for DevOps practices (see e.g. [5,6]).

While a large body of literature has examined architectural patterns and recom-
mended “best practices” in a microservice context [3,7,8], translating these theoretical
insights into usable tools to assist the architectural evolution of actual microservice-
based systems has lagged behind. While the theoretical tenets proposed in the literature
are easy to grasp and maintain in small-scale systems, ensuring conformance in large,
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complex, as well as rapidly and independently evolving systems quickly becomes a
laborious affair requiring considerable manual work and resulting in extensive over-
head effort. Furthermore, patterns have mutual dependencies, meaning that improve-
ment in one area can result in deterioration in another. Real-world architectures are also
impacted by a number of non-microservice-specific requirements, which also can lead
to unintended violations of microservice best practices.

This work provides a set of actionable solutions to violations on different aspects
of microservice architectures, as part of a larger study on the topic. Three architec-
tural design decisions (ADDs) were selected as representing very different aspects of
architecting microservices, so as to demonstrate the wide applicability of our approach.
Other ADDs have already been covered in our prior work. More specifically, for cov-
ering the best practices of client-system communication we chose the External API
decision; for the guaranteed delivery of messages, a critical aspect of many business-
critical microservice systems, we used the Inter-Service Message Persistence decision
to examine the relevant recommended practices; finally, to cover the logging and mon-
itoring practices that ensure observability of the microservices and their complex inter-
actions, we used the End-to-End Tracing decision. In this context, we aim to study the
following research questions:

– RQ1. What are the possible architecture violations related to the above-mentioned
ADDs and how can they be automatically detected?

– RQ2. What are the possible fixes for the violations found in RQ1 and how can
architects be assisted in choosing the appropriate solutions and applying them?

We propose a novel architecture refactoring approach that uses empirically vali-
dated metrics proposed in our prior work [9] to evaluate the degree of architecture
conformance for each of the given ADDs. For every ADD design option, we define
every possible violation and propose a corresponding, automated violation detection
algorithm, as well as a set of possible fixes. For each microservice-based system, the
sets of ADD options, violations, and fixes leads to a search tree of possible architec-
ture designs that partly or entirely enforce conformance to best practices, which we can
continually assess using our metrics.

To evaluate our approach we utilized a set of 24 models of microservice-based sys-
tems from third-party practitioners (see Table 1). For each of these, we implemented the
automated violation detection and refactoring (fix) algorithms to detect the possible vio-
lations and to generate all the possible fixes for addressing each violation, resulting in
a set of models. Using our metrics, we evaluated the improvements compared with the
original version, as well as any outstanding issues. This process was iteratively repeated
until all violations were resolved. Each of the violations found in the 24 models can be
fully resolved leading to optimal metric values within at most 3 refactoring steps, usu-
ally with many suggested optimal models provided as options for architects to choose
from.

This paper is structured as follows: In Sect. 2 we analyze the ADDs examined in this
work, the associated patterns and practices, and the corresponding metrics. Section 3
discusses and compares our approach to existing studies in the literature. Our research
methods and the tools we have applied in our study are described in Sect. 4, followed
by a detailed explanation of our approach in Sect. 5. The evaluation process is given at
Sect. 6, the results are discussed in Sect. 7, and the threats to validity in Sect. 8. Finally,
in Sect. 9 we draw conclusions and discuss future work.
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2 Background: Decisions and Metrics

In this section, we briefly introduce the three ADDs and the corresponding patterns and
practices as decision options, based on our prior work. The decisions have been modeled
based on an empirical study of existing best practices and patterns by practitioners [10],
while the metrics used to assess the pattern conformance of each given system derive
from [9].

External API Decision. A fundamental decision in microservice-based systems is how
external clients are connected to the system services. This can affect aspects related to
loose coupling, releasability, independent development and deployment, and continu-
ous delivery. The simplest method, but with the highest negative impact, occurs when
the clients can call into system services directly, resulting in high coupling that impedes
releasing, developing, and deploying the clients and system services independently of
each other. Another option, that solves possible problems caused by client-service direct
connections, is the API Gateway [3], which provides a common entry point for the sys-
tem (Facade component) and all client requests are routed via this component. It is
a specialized variant of a Reverse Proxy, which covers only the routing aspects of an
API Gateway but not further API abstractions such as authentication, rate limiting, etc.
(see [7]). The Backends for Frontends pattern [3] is another variant of API Gateway
that specializes in handling different types of clients (e.g., mobile and desktop clients).
Alternatively, the API Composition pattern [3] describes a service that shields other ser-
vices from the clients by actively gathering and composing their data. In our previous
work [9], we have empirically defined two metrics that can be used to assess confor-
mance to each of the decision options:

– Client-side Communication via Facade utilization metric measures how many
unique client links are using the External API used by one of the Facade compo-
nents (i.e. offered through patterns such as API Gateway, Reverse Proxy, Backends
for Frontends) compared to the total number of unique client links.

– API Composition utilization metric measures the proportion of clients connected
services which are possibly composing an External API using API Composition.

Inter-service Message Persistence Decision. The persistence or missing persistence
of the inter-service messages is another decision with considerable impact on the qual-
ities of the system. Many real-world systems use no inter-service message persistence,
while options that support message persistence are theMessaging pattern [11], in which
persistent message queuing is used to store a producer’s messages until the consumer
receives them, or alternatively Stream Processing [8] components (e.g. Apache Kafka).
Another option is Interaction through a Shared Database, since it supports some level
of message persistence, but not the automated support of Messaging. A technique that
is more microservice-relevant and able to support a lower level of persistence to Mes-
saging or a Shared Database is the combination of the Outbox and the Transaction Log
Tailing patterns [3]. A persistence more tailored to event-driven or eventually consistent
microservice architectures can be achieved following the Event Sourcing pattern [3].
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For this decision, too, we have empirically defined three metrics that can be used to
assess conformance to each of the decision options:

– Service Messaging Persistence utilization metric measures the proportion of all ser-
vice interconnections that are made persistent through a supporting technology (i.e.
Messaging or Stream Processing).

– Shared Database utilization metric measures the proportion of all interconnections
via a Shared Database.

– Outbox/Event Sourcing utilization metricmeasures the proportion of all interconnec-
tions with Outbox/Event Sourcing.

End-to-End Tracing Decision. End-to-end tracing is an important aspect in microser-
vice architectures since they are usually highly distributed and polyglot systems with
complex interactions. One option, like in the other decisions, is to offer no tracing sup-
port. Alternatively, traces can be recorded on either the services themselves or facade
components (or both) viaDistributed Tracing [3]. A less comprehensive level of tracing
can be achieved when service communication is routed through a central component,
which stores some, but not all inter-service communication (e.g., Publish/Subscribe,
Message Broker [11], API Gateway or Event Logging [3,8]); the exception is Event
Sourcing, which temporarily stores all service events.

For this decision, too, we have empirically defined three metrics that can be used to
assess conformance to each of the decision options:

– Services and Facades Support Distributed Tracing metric measures the proportion
of all services and facades that support distributed tracing.

– Service Interaction via Central Component utilization w/o Event Sourcing metric
measures the proportion of all service interactions through a central component other
than Event Sourcing.

– Service Interaction via Central Component with Event Sourcing metricmeasures the
proportion of all service interactions through a central component viaEvent Sourcing.

3 Related Work

The fundamentals of the term “microservices” were first discussed by Fowler and Lewis
[12], and fundamental tenets by Zimmermann [5]. Richardson [3] has published a col-
lection of microservice patterns and practices, while a mapping study by Pahl and
Jamshidi [1] has summarized much of the previous literature on patterns. Skowron-
ski [8] has examined event-driven microservice architectures specifically, and microser-
vice API patterns were studied by Zimmermann et al. [7].

A number of studies have focus on techniques for detecting design or architecture
“bad smells” (violations). Taibi and Lenarduzzi [13] defined a list of microservice-
specific smells, while Neri et al. [14] have presented an extensive examination of archi-
tectural smells for independent deployability, horizontal scalability, fault isolation, and
decentralisation of microservices, as well as suggesting refactorings to resolve them.
Most similar studies are more generic, but still useful. Le et al. [15] proposed a classi-
fication of architectural smells and their impact on different quality attributes. Catalogs
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of smells have been published by Garcia et al. [16,17] and Azadi et al. [18]. Detection
strategies for smell categories related to our study are discussed by Brogi et al. [19], Le
et al. [20], Marinescu [21], and especially Neri et al. [14], along with suggested refac-
torings for resolving them. Although these works study various aspects of architecture
violations detection, and some investigate aspects related to the microservice domain,
none covers detecting and addressing violations specifically associated with the ADDs
covered in this work (external API, persistent messaging, and end-to-end tracing) in a
microservice context, which our work investigates in detail.

As a result, we expect that our work produces more accurate detection of decision-
specific violations and more targeted suggestions for fixes. On the other hand, our app-
roach requires a model in which the component and connector roles in a microservice
architecture have been modeled (as for instance done with stereotypes in the model
introduced in Fig. 2). That is, our work requires additional insight into a system’s archi-
tecture, and some effort in encoding the corresponding models; however, this knowl-
edge is at a relatively high level of abstraction and the resulting models are not impacted
by changes in service implementation. We are currently working on a semi-automatic
approach for architecture reconstruction and modelling that relies on reusable code
abstractions and is thus suitable for complex systems with short delivery cycles.

4 Research and Modeling Methods

In this section, we summarize the main research methods applied in our study. These
have been more extensively described in our previous work [22]. For reproducibility,
all the code of the algorithms’ implementation and the models produced in this study
will be made available online, as an open-access dataset in a long-term archive.1

4.1 Research Method

Figure 1 shows the structure of the research process of this study. In Sect. 2 we have
already explained in detail the architectural decisions and the model-based metrics on
which this study is based. In Sect. 5 we present precise definitions and algorithms a)
for the detection of possible violations per decision option, and b) for the possible fixes
(architecture refactorings) for each violation.

We have tested our approach by applying the algorithms to the 24 models in our data
set. First all violations present in each model were detected, and then all possible fixes
for each violation were applied in an iterative-exhaustive manner, i.e., on the resulting,
refactored models for each violation fix, we again performed all violation detection
algorithms and applied all possible refactorings, until either no more violations were
detected, or we arrived at a refactored model identical to a previous version. In the latter
case, which we did not encounter here, this would have meant that a violation could not
be entirely resolved, as its fix introduced other violations. For each of the final models
(the ‘leaves’ of the iteration tree), we assessed pattern conformance through our metrics
on microservice coupling, to judge the improvement compared to the original model.

1 https://doi.org/10.5281/zenodo.5549978.

https://doi.org/10.5281/zenodo.5549978
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Table 1. Selected models: size, details, and sources

Model ID Model size Description/source

BM1 10 components
14 connectors

Banking-related application based on CQRS and event sourcing (from https://github.
com/cer/event-sourcing-examples)

BM2 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely synchronous service
invocations instead of event-based communication

BM3 8 components
9 connectors

Variant of BM1 which uses direct RESTful completely asynchronous service
invocations instead of event-based communication

CO1 8 components
9 connectors

The common component model E-shop application implemented as microservices
directly accessed by a Web frontend (from https://github.com/cocome-community-
case-study/cocome-cloud-jee-microservices-rest)

CO2 11 components
17 connectors

Variant of CO1 using a SAGA orchestrator on the order service with a message broker.
Added support for Open Tracing. Added an API gateway

CO3 9 components
13 connectors

Variant of CO1 where the reports service does not use inter-service communication,
but a shared database for accessing product and store data. Added support for Open
Tracing

CI1 11 components
12 connectors

Cinema booking application using RESTful HTTP invocations, databases per service,
and an API gateway (from https://codeburst.io/build-a-nodejs-cinema-api-gateway-
and-deploying-it-to-docker-part-4-703c2b0dd269)

CI2 11 components
12 connectors

Variant of CI1 routing all interservice communication via the API gateway

CI3 10 components
11 connectors

Variant of CI1 using direct client to service invocations instead of the API gateway

CI4 11 components
12 connectors

Variant of CI1 with a subsystem exposing services directly to the client and another
subsystem routing all traffic via the API gateway

EC1 10 components
14 connectors

E-commerce application with a Web UI directly accessing microservices and an API
gateway for service-based API (from https://microservices.io/patterns/microservices.
html)

EC2 11 components
14 connectors

Variant of EC1 using event-based communication and event sourcing internally

EC3 8 components
11 connectors

Variant of EC1 with a shared database used to handle all but one service interactions

ES1 20 components
36 connectors

E-shop application using pub/sub communication for event-based interaction, a
middleware-triggered identity service, databases per service (4 SQL DBs, 1 Mongo
DB, and 1 Redis DB), and backends for frontends for two Web app types and one
mobile app type (from https://github.com/dotnet-architecture/eShopOnContainers)

ES2 14 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of
event-based communication and one shared SQL DB for all 6 of the services using
DBs. However, no service interaction via the shared database occurs

ES3 16 components
35 connectors

Variant of ES1 using RESTful communication via the API gateway instead of
event-based communication and one shared database for all 4 of the services using
SQL DB in ES1. However, no service interaction via the shared database occurs

FM1 15 components
24 connectors

Simple food ordering application based on entity services directly linked to a Web UI
(from https://github.com/jferrater/Tap-And-Eat-MicroServices)

FM2 14 components
21 connectors

Variant of FM1 which uses the store service as an API composition and asynchronous
interservice communication. Added Jaeger-based tracing per service

HM1 13 components
25 connectors

Hipster shop application using GRPC interservice connection and OpenCensus
monitoring & tracing for all but one services as well as on the gateway. (from https://
github.com/GoogleCloudPlatform/microservices-demo)

HM2 14 components
26 connectors

Variant of HM1 that uses publish/subscribe interaction with event sourcing, except for
one service, and realizes the tracing on all services

RM 11 components
18 connectors

Restaurant order management application based on SAGA messaging and domain
event interactions. Rudimentary tracing support (from https://github.com/
microservices-patterns/ftgo-application)

RS 18 components
29 connectors

Robot shop application with various kinds of service interconnections, data stores, and
Instana tracing on most services (from https://github.com/instana/robot-shop)

TH1 14 components
16 connectors

Taxi hailing application with multiple frontends and databases per services from
(https://www.nginx.com/blog/introduction-to-microservices/)

TH2 15 components
18 connectors

Variant of TH1 that uses publish/subscribe interaction with event sourcing for all but
one service interactions

https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://github.com/cocome-community-case-study/cocome-cloud-jee-microservices-rest
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
https://codeburst.io/build-a-nodejs-cinema-api-gateway-and-deploying-it-to-docker-part-4-703c2b0dd269
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/jferrater/Tap-And-Eat-MicroServices
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/microservices-patterns/ftgo-application
https://github.com/microservices-patterns/ftgo-application
https://github.com/instana/robot-shop
https://www.nginx.com/blog/introduction-to-microservices/
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Fig. 1. Overview diagram of the research method followed in this study

5 Architecture Refactoring Approach

From an abstract point of view, a microservice-based system is composed of compo-
nents and connectors, with distinct sets of component types and connector types. This
applies also to indirect or implicit relationships between components, such as indirect
dependencies, which can be described as a special set of connectors. For example, in
Fig. 2, two components are indirectly linked via the API gateway.

We base our definitions of the violations and fixes on the notion of an architecture
model consisting of a directed components and connectors graph. This can be expressed
formally as: A microservice architecture model M is a tuple (CP, CN, CPT, CNT,
ST ) where:

– CP is a finite set of component nodes. The operation components(M) returns all
components inM .

– CN ⊆ CP × CP is an ordered finite set of connectors. connectors(M) returns
all connectors inM .

– CPT is a set of component types. The operation services(M) returns all com-
ponents of type service in M . The operation service connectors(M) returns all
connectors of components of type service inM .

– CNT is a set of connector types.
– ST is a finite set of stereotype nodes. The operation cp stereotypes(CP ) returns

all stereotypes of component CP . The operation cn stereotypes(CN) returns all
stereotypes of connector CN . Stereotypes can be applied to components to denote
their type, such as Service, API Gateway, etc. Stereotypes can be applied to con-
nectors to denote their type, such as Read Data, RESTful HTTP, or Asynchronous.
Some are specialized with tagged values (details omitted here for space reasons).
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– cp annotations : CP → {String} is a function that maps an component to its
set of annotations. Annotations are used in our approach (in some of the fixes) to
document aspects that need further consideration or maybe manual refactoring.

– cn annotations : CN → {String} is a function that maps a connector to its set
of annotations.

Please note that we define many additional model traversal operations not detailed here
for space reasons.

5.1 Violations and Detection Algorithms

Table 2. Identified violations and violation detection algorithms

Violation Violation detection algorithm summary

D1: External API

D1.V1: Services are directly connected to clients All services in the model are traversed, and it is checked
whether services are directly connected to clients or web
UIs. If this is the case, a violation is raised. Each
service-client connector that is found is returned by the
detector operation

D2: Persistent Messaging for Inter-Service Communication

D2.V1: Services communicate without using an
intermediary component that is able to persist the
communication (e.g., Message Brokers or a persistent
Publish/Subscribe or Stream Processing or Event
Sourcing or Outbox/Transaction Log Tailing or
Database) and no persistent messaging occurs between
them

All service connectors in the model are traversed. If no
intermediary component is found, the violation is raised
and the list of all relevant connectors is returned by the
detector operation

D3: End-to-End Tracing

D3.V1: Distributed Tracing is not supported on services
and/or facades or services communicate without using a
central intermediary component (e.g., Message Brokers
or persistent Publish/Subscribe or Stream Processing or
Event Sourcing or Outbox/Transaction Log Tailing or
API Gateway)

All services, facades and the corresponding connectors
in the model are traversed, and it is checked whether
services and/or facades support tracing or whether an
intermediary component is presented. If no intermediary
component or tracing support on services/facades is
found, the violation is raised and the list of all relevant
connectors is returned by the detector operation

Table 2 summarizes the possible violations we have identified for each of the decisions.
The table also describes in detail how the algorithms that we use for detecting the vio-
lations in the models work. As a detailed example, Algorithm 1 detects the Services
communicate without using an intermediary component violation of Decision D2. It
returns a list of connected service pairs si and sj , that are not connected via an inter-
mediary component.
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5.2 Fix Options and Algorithms

Table 3 details all the fixes for each identified violation, along with a summary of the
fix algorithm. Please note that many algorithms can only be applied fully automatically
with their default values. Many of them require human review and decision by the
architect. For example, the architects can be presented with a choice of an intermediary
component to use to replace services links.

Table 3. Identified fixes and fix algorithms

Violation Fix Fix and fix algorithm summary

D1: External API

D1.V1 D1.V1.F1: Do not fix the violation The architect should have the option to not fix the
violation, e.g. because it is not critical

D1.V1.F2: Introduce a new API Gateway and connect
client to services via it

Disconnect client(s) from the services and introduce a
new API Gateway. Connect the client(s) to the API
Gateway and the API to each former client-connected
service

D1.V1.F3: Introduce API Composition service or service
with reverse proxy capabilities and connect client(s) to
the services via this component

Disconnect client(s) from the services and introduce a
new API composition service. Connect the client(s) to
the API composition service and the latter to each
former client-connected service

D2: Persistent Messaging for Inter-Service Communication

D2.V1 D2.V1.F1: Do not fix the violation The architect should have the option to not fix the
violation, e.g. because it is not critical

D2.V1.F2: Remove the non-persistent connectors
between services and replace them with persistent
messaging-based connectors

Replace non-persistent interconnections with
interactions via an intermediary component (e.g., API
Gateway, Pub/Sub, Message Broker). The architect has
to select if an existing intermediary component can be
used for the fix, or a new one has to be created. Replace
non-persistent interconnections with persistent
interconnections via this component

D2.V1.F3: Remove the non-persistent connectors
between services and replace them by writing to and
reading from a common database

The architect has to select if an existing database can be
used for the fix, or a new one has to be created For each
connector, introduce communication by writing to and
reading from this database. Delete the non-persistent
interconnections

D3: End-to-End Tracing

D3.V1 D3.V1.F1: Do not fix the violation The architect should have the option to not fix the
violation, e.g. because it is not critical

D3.V1.F2: Remove the connectors that don’t support
end-to-end tracing between services and replace them
with interactions via an intermediary component (e.g.,
API Gateway, Pub/Sub, Message Broker)

The architect has to select if an existing intermediary
component can be used for the fix, or a new one has to
be created. Replace interconnections that don’t support
end-to-end tracing with interconnections via this
component

D3.V1.F3: Connect services and facades that don’t
support end-to-end tracing with a tracing component
(e.g., Zipkin)

The architect has to select if an existing tracing
component can be used for the fix, or a new one has to
be created. Introduce interconnections from service and
facades to tracing component

The Algorithms 2 and 3 respectively present the fixes F2 and F3, for Decision D2
and its Violation V1. For explanations of each fix, please study Table 3.
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5.3 Example Application

In Fig. 2 the model CI4 from Table 1 is shown as an illustrative example to demonstrate
all three violations and possible fixes. In this model the Cinema Catalog service is
connected directly withMovie and Booking services, causing D2.V1 and D3.V1, while
Client is connected directly with Cinema Catalog service, causing D1.V1. In contrast,
Booking Payment and Notification services are connected to each other and with the
Client through the API Gateway, resulting in no violation. If we run our fix algorithms,
some of the resulting refactoring suggestions are:

– Applying Fix D1.V1.F2: The architect can choose the existing API Gateway and con-
nect Client toCinema Catalog andMovie services through it. The current connectors
are removed by this fix.

– Applying Fix D1.V1.F3: The architect can introduce an API composition service or
service with reverse proxy capabilities and connect Client to Cinema Catalog and
Movie services through it. The current connectors are removed by this fix.

– Applying Fix D2.V1.F2: All services with non-persistent connectors are discon-
nected and connected to aMessage-based persistent mechanism (all interactions will
be happening via this component). For example, this fix can introduce a new Pub-
/Sub intermediary component (alternatively Message Broker or API Gateway), to
which all involved services will be connected with publish and subscribe operations
supporting persistent communications.

– Applying Fix D2.V1.F3: All services with non-persistent connectors are discon-
nected from each other as well as from their existing databases and connected to
a new shared database with read and write operations.
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– Applying Fix D3.V1.F2: Cinema Catalog, Movie and Booking services that don’t
support end-to-end tracing will be disconnected from each other and connected to
a new (or existing) intermediary component (e.g., Pub/Sub, Message Broker or API
Gateway).

– Applying Fix D3.V1.F3: A new tracing component (e.g., Zipkin) is introduced and
connected to all services and the API Gateway.

Fig. 2. Example of an architecture component model (CI4 in Table 1): this architecture violates
all three ADDs

6 Iterative Application and Evaluation

To evaluate our work, we have fully implemented our algorithms for detecting viola-
tions and performing fixes, as well as generating the set of metrics described in Sect. 2 to
measure the improvements and the presence of remaining violations, in our model set.
In case multiple violations are present in a model, then the algorithms can be employed
iteratively, until all violations have been fully resolved.

As an example, let us illustrate this exhaustive iterative refactoring for the previ-
ously mentioned CI4 Model (see Fig. 2). CI4 violates all the three decisions as indicated
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by the corresponding decision-related measures in Table 4. The incremental refactor-
ing process is illustrated in Fig. 3. At the first iteration, there are three branches, indi-
cating the respective violations. The first refactoring step produces 6 possible model
variants, one for each fix option from Table 3. All resulting models have resolved the
respective violation, but have the other two unresolved, requiring another refactoring
step that produces 18 new model variants. In turn, 7 of the resulting models still vio-
late D1.V1 and D2.V1, requiring a third step to be resolved. At the end of the third
step, we have 29 suggested model variants (M1 1, M2 1, M2 3, M1 2 1–M1 2 2, M2 1 1–
M2 2 2, M2 4 1–M2 4 2, M3 1, M3 2 1–M3 2 2, M4 1, M4 2 1–M4 2 2, M4 3 1–M4 3 2,
M5 1–M5 2, M4 4 1–M4 4 2, M6 1 1–M6 2 2, M6 2 1–M6 2 2, M6 3 1–M6 3 2, M6 4 1–
M6 4 2) which all fully resolve the violations (i.e., scoring 1.00 in our assessment scale).
The architect can choose the refactoring sequence, and from among those final optimal
model variants, but can also choose to not apply certain fixes, e.g. due to other con-
straints that are outside of the scope of our study.

For evaluation purposes, we have performed this procedure for all 24 systemmodels
in Table 1. The resulting number of intermediary models and violation instances per
step, and the number of final suggested models with an optimal assessment of 1.00,
are given in Table 4, along with the initial violations and architecture assessment values
for each model. Please note that the metrics reported here are the ones associated with
each of the decisions in Sect. 2. Please also note that for each violation to be fixed, it

CI4 D2.V1

D3.V1

M5

M6

D1.V1

D2.V1

D1.V1

D2.V1
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M4_2

M4_3 M4_4
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M6_3 M6_4

M5_1 M5_2

M6_1 M6_2

M6_3_2

M6_4_2
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D2.V1 M2_4_2M2_4_1
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D3.V1
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Fig. 3. Example of an exhaustive iterative application of our approach in the CI4 model. Final
(i.e., fully resolved) resulting models are thickly outlined.
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is enough that at least one of the corresponding metrics is optimal (1.00). Obviously,
the number of steps required to reach optimal models depends on a) the number of
the violations present in the initial model and b) on the possible appearance of new
violations during the refactoring process, which did not occur in the present case. As
can be seen in Table 4, all models are fully resolved—i.e., all assessment metrics are
1.00—after at most three steps.

Table 4. This table shows a) the architecture assessment (per decision/violation pair) of the orig-
inal models used in our study, b) the number of models generated at each step of an iterative
application of our algorithms, and c) the number of violation instances (generated models × vio-
lations per model) still remaining, or introduced, after each iteration, plus d) the resulting number
of suggested (optimal) models at the end (cf. Fig. 3 for a detailed example).

Model ID Initial model assessments Models generated/remaining violation Resulting suggested
instances per refactoring step (optimal) Models

D1.V1 D2.V1 D3.V1 Step 1 Step 2 Step 3

BM1 1.00, 0.00 0.00, 0.00, 1.00 0.00, 0.00, 1.00 – – – –

BM2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2/0 – – 2

BM3 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2/0 – – 2

CO1 0.00, 0.00 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6/9 18/11 22/0 29

CO2 1.00, 0.00 1.00, 0.00, 0.00 1.00, 1.00, 0.00 – – – –

CO3 0.00, 0.00 0.00, 1.00, 0.00 1.00, 0.00, 0.00 2/0 – – 2

CI1 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.14, 0.00 4/2 4/0 – 6

CI2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 2/0 – – 2

CI3 0.00, 0.30 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6/9 18/11 22/0 29

CI4 0.50, 0.10 0.00, 0.00, 0.00 0.00, 0.60, 0.00 6/9 18/11 22/0 29

EC1 0.25, 0.00 0.00, 0.00, 0.00 0.00, 1.00, 0.00 4/4 8/0 – 8

EC2 0.25, 0.00 1.00, 0.00, 1.00 0.00, 0.00, 1.00 2/0 – – 2

EC3 0.25, 0.00 0.00, 1.00, 0.00 0.00, 0.00, 0.00 4/2 4/0 – 4

ES1 1.00, 0.00 0.60, 0.00, 0.60 0.00, 0.60, 0.00 4/2 4/0 – 6

ES2 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.45, 0.00 4/2 4/0 – 6

ES3 1.00, 0.00 0.00, 0.00, 0.00 0.00, 0.45, 0.00 4/2 4/0 – 6

FM1 0.00, 0.25 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6/9 18/11 22/0 29

FM2 0.00, 0.50 0.00, 0.00, 0.00 1.00, 0.00, 0.00 4/4 8/0 – 8

HM1 0.00, 0.70 0.00, 0.00, 0.00 0.90, 0.00, 0.00 6/9 18/11 22/0 29

HM2 0.00, 0.70 0.80, 0.00, 0.80 0.90, 0.00, 0.80 6/9 18/11 22/0 29

RM 1.00, 0.00 1.00, 0.00, 0.00 0.14, 1.00, 0.00 – – – –

RS 1.00, 0.00 0.11, 0.00, 0.00 0.62, 0.11, 0.00 4/2 4/0 – 6

TH1 0.25, 0.12 0.00, 0.00, 0.00 0.00, 0.00, 0.00 6/9 18/11 22/0 29

TH2 0.25, 0.04 0.66, 0.00, 0.66 0.00, 0.00, 0.66 6/9 18/11 22/0 29

7 Discussion

To answerRQ1we have systematically specified a number of decision-based violations
related to each possible decision option, summarized in Table 2. As we have empirically
shown in our prior work [9] that the metrics described in Sect. 2 can reliably distinguish
favored or less favored design options, the role of the violation detectors is to find the
precise locations in the models where the violations occur. For each systemmodel in our
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evaluation dataset it was possible to suggest fixes that bring the architecture to optimal
values, meaning that the algorithms have found the right place(s) to apply the fixes.

Regarding RQ2 we defined a number of algorithms addressing every possible vio-
lation, with multiple fix options (cf. Table 3). If all options are tried out, this results in
a search tree of possible architecture models, which can in turn be assessed, using our
metrics, to measure improvements to the initial architecture and detect any remaining
violations. We have shown (cf. Table 4) that an iterative approach results, within a few
steps, in a sufficient variety of possible architecture models that remove all detected vio-
lations and ensure pattern conformance of the system architecture. The multiple optimal
model variants that result from our approach give architects substantial levels of free-
dom in their design decisions. As detection is fully automated and human expertise is
limited to the fix process, the approach is well suited to be run in a continuous delivery
environment, which was one of our research goals.

8 Threats to Validity

The basis material of our study derives from third-party sources: the solutions we pro-
pose are gathered from the best practices recommended in the published literature, and
our evaluation dataset is a fairly representative set of systems (cf. Table 1), derived
from nine different sources and published with the express purpose of demonstrating
microservice architecture features. One possible threat to the internal validity of our
algorithms is that they depend on the particular modelling approach we have adopted.
However, our approach is by design abstract and generic, based on typical component-
and-connector models used widely in the literature. The author team, with considerable
experience in modeling methods, performed the system modeling as well as, repeatedly
and independently cross-checked all models. As the main modelling criterion was the
ability to adequately represent the context of our systems, we cannot exclude that other
teams might arrive at different interpretations, but we are confident that any resulting
models would be broadly similar and compatible with our results. Furthermore, the
algorithms we specified could easily be adapted to a different model, as they operate on
the level of basic architectural constructs.

Nevertheless, some limitations remain. In order to remove the obstacles provided by
the polyglot nature of microservice-based systems, we have chosen to apply our met-
rics and tools at a relatively high level of abstraction. We also limited our evaluation
in the present paper to the patterns, metrics, and concerns applying to the given three
ADDs, which in a real-world architecture would be insufficient. This point is addressed
in previously published and ongoing parts of our work, which extend the coverage to
additional ADDs, and aim to extend and test our approach in a larger set of patterns,
design requirements, and more granular parameters. The same concern applies as to
the lack of evaluation of the applicability of our approach on larger and more complex
systems that are commonly found in industry, but which were not accessible to us for
study. The lack of full automation is also a major obstacle to practical application, as
the process still requires considerable input by the architect. At the same time, our app-
roach can not match the ability of an experienced architect, familiar with the system,
to devise a much more optimal solution. This is a limitation of all generic architecture
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assistance approaches, and one we intend to improve on. We want to emphasize that the
present approach is a starting point from which the question of evaluating and improv-
ing microservice architectures can be examined, facilitating and building up to more
complex and nuanced methods as more systems and decisions are modelled and tested.
The generated models are also not optimal, as they are not evaluated, for example, on
the coding/refactoring effort required to implement them. Nevertheless, the existence
of a semi-automatic approach that detects and analyzes violations in an architecture
remains of great value, since practitioners often ignore best practices, systems are often
developed without a conscious effort to follow best practices, or are allowed to drift
from the original architecture specifications over time.

9 Conclusion and Future Work

In this paper we present a set of violations for three microservice-related ADDs. Build-
ing on previous work, we have defined automatic detectors, which return the location
where the violations occur, a set of possible fixes for each violation, and automatic algo-
rithms for refactoring the system in order to fix the violations. We have evaluated our
approach on a set of 24 models of various degrees of pattern violations and architecture
complexity, and have shown that our approach is capable of resolving these violations
in at most 3 refactoring steps. Both metric calculation and violation detection are fully
automated, but the choice of fixes and refactoring sequence remains with the human
architect. Thus the approach is still flexible enough to let the architect make meaningful
architectural design choices.

In our future work, we aim to broaden the set of ADDs and violations included
in our approach, enrich it with runtime metrics and other architecture aspects such as
deployment environments, and extend our model dataset to include larger and more
complex systems. In addition, we hope to experimentally validate our approach by
employing it in real-world delivery pipelines as part of a feedback loop.
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Abstract. Online software services are often designed as multi-
tenant, API-based, microservice architectures. However, sharing service
instances and storing sensitive data in a shared data store causes sig-
nificant security risks. Application-level access control plays a key role
in mitigating this risk by preventing unauthorized access to the appli-
cation and data. Moreover, a microservice architecture introduces new
challenges for access control on online services, as both the application
logic and data are highly distributed. First, unauthorized requests should
be denied as soon as possible, preferably at the facade API. Second, sen-
sitive data should stay in the context of its microservice during policy
evaluation. Third, the set of policies enforced on a single application
request should be consistent for the entire distributed control flow.

To solve these challenges, we present ThunQ, a distributed autho-
rization middleware that enforces authorization policies both early at
the facade API, as well as lazily by postponing authorization decisions
to the appropriate data context. To achieve this, ThunQ leverages two
techniques called partial evaluation and query rewriting, which support
policy enforcement both at the facade API, as well as deep in the data
tier.

We implemented and open-sourced ThunQ as a set of reusable compo-
nents for the Spring Cloud and Data ecosystem. Experimental results in
an application case study show that ThunQ can efficiently enforce autho-
rization policies in microservice applications, with acceptable increases
in latency as the number of tenants and access rules grow.

1 Introduction

Contemporary online services often provide a customer-facing API and adopt
an internal architecture based on application-level multi-tenancy and microser-
vices. Application-level multi-tenancy [10], as illustrated in Fig. 1, benefits from
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Fig. 1. Overview of application-level multi-tenancy (a) for both microservice applica-
tions (b) and applications with ThunQ (c). ThunQ’s components are shown in green.
(Color figure online)

economies of scale by sharing resources between the tenants, such as the applica-
tion and database. However, storing sensitive tenant data poses significant secu-
rity risks. Application-level access control [34] is a key security technique that
mitigates these risks by enforcing authorization policies at the application-level
to block unauthorized access to resources. Moreover, multi-tenant applications
require that both the application provider and tenants can specify these policies.
In particular, the provider specifies the basic authorization policies for the plat-
form, while the tenants can provide additional policies that further restrict access
by their end-users to comply with internal authorization policies. For example
a tenant policy may state that: “An insurance company employee can only view
insurance documents of customers that are assigned to the employee.”

Supporting tenant specific policies requires an appropriate level of modular-
ity, separation of concerns and adaptation of the related software artefacts [8].
While single-tenant applications can embed the authorization logic directly in
the database query to enforce fine-grained access control, it is no longer feasi-
ble for multi-tenant applications with custom authorization policies per tenant.
Custom policies require a more flexible approach where policies can be updated
at run-time, as new tenants are continuously added to the application.

A frequently used architectural pattern to realize multi-tenant applications
are microservices [23]. Microservice applications often adopt the API gate-
way [32] and the database-per-service [32] pattern as shown in Fig. 1b. The dis-
tribution of application logic and data in multi-tenant microservice applications
introduces the following new challenges for access control in such applications:

1. Unauthorized requests should be denied as soon as possible (ASAP), such that
unauthorized resource usage and control flows in the distributed microservice
application are minimized.

2. Sensitive data should stay in the context of its microservice during policy
evaluation, i.e. data from the data tier should not flow to the API gateway
when evaluating authorization policies.
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3. The set of policies enforced on a single application request should be con-
sistent for the entire distributed control flow, as policies are no longer only
enforced at the facade API but throughout the entire application.

Existing work on application-level access control [15,18,20,29,34] and API
gateways [29,44,46] aims to enforce authorization policies ASAP, resulting in a
permit or deny. However, these solutions require that sensitive data is brought
outside of its microservice context. Other related work focuses on enforcing access
control in application databases [3,16,24]. These solutions aim to restrict access
by enforcing fine-grained authorization policies on the data records by either
rewriting the original database query [3], defining authorization views [24] or by
filtering database records after retrieving them from the database [16]. However,
securing database access is only a part of the challenges to enforce a consistent
set of authorization policies over a large number of microservices.

To address the challenges and shortcomings above, we present ThunQ, a
distributed authorization middleware for multi-tenant microservice applications
designed to efficiently and consistently enforce a set of authorization policies on
distributed application services and data. ThunQ enforces authorization policies
early in the distributed control flow, as well as deep down in the data tier.
ThunQ achieves this by adding the gatekeeper, policy engine and query modifier
components to the generic microservice architecture as shown in Fig. 1c. The
gatekeeper and policy engine use partial policy evaluation [26] to create thunks
that are piggybacked on the application request. The thunks are then used by
the query modifier to enforce authorization policies deep in the data tier.

We implemented and open-sourced ThunQ [45] as a set of reusable com-
ponents for the Spring Cloud and Data ecosystem. Our evaluation shows that
ThunQ performs notably better than state-of-practice postfiltering approaches.
Moreover, ThunQ’s overhead is largely independent of the number of application
tenants and the complexity of the tenant specific policies.

The remainder of this text is structured as follows. Section 2 presents the
motivational use case and provides the reader with background on access control
and ThunQ’s supporting technologies. Section 3 presents the architecture and the
security model of the ThunQ middleware. Section 4 discusses the evaluation and
results. Section 5 discusses related work and Sect. 6 concludes this work.

2 Motivational Use Case and Background

This section presents the motivation and background for ThunQ. We start with
presenting e-insurance, an anonymized industrial case study of a multi-tenant
insurance brokering platform with a microservice architecture and API-based
online service offering. Next, we discuss background on access control models
and ThunQ’s enabling technologies.

The E-Insurance Case Study. In the financial industry, insurance companies or
insurers do not always sell their insurance products directly to end customers.
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Fig. 2. Participants of the e-insurance application.

Instead, they employ intermediaries, called insurance brokers, to bring their
products to the customer. Brokers negotiate insurance contracts with the cus-
tomers and take care of the paperwork related to the contract. Furthermore,
customers should have access to information regarding their insurance products,
such as the current balance of their life insurance account. As shown in Fig. 2,
e-insurance integrates insurers, brokers, and customers into a single platform
that shares their insurance documents. E-insurance is responsible for storing the
insurance contracts and their related documents, as well as offering advanced
search operations on stored documents. However, as the contents of the insur-
ance documents are sensitive, the results of the search operations should only
include the information which the user is authorized to view.

Access Control Analysis. Ensuring the confidentiality of the insurance docu-
ments is the primary security goal of e-insurance. To achieve confidentiality,
e-insurance must restrict access to only those users who are authorized to access
a given document. Whether or not a user is authorized to access a document
is determined by authorization policies. E-insurance defines two sets of policies:
platform policies which are specified by e-insurance itself, and tenant policies,
which are specified by the tenants to further restrict access by their end-users.
Next, we provide a sample of possible policies.

P1. (platform) Brokers can only view documents assigned to them.
P2. (platform) Customers can only view documents that belong to them.
P3. (broker) Only senior employees can view documents worth over $100k.
P4. (insurer) Employees can only view the documents assigned to them.
P5. (insurer) Employees can only view documents during working hours.

Challenges. Given the discussion above, we can identify the following challenges
for e-insurance. First, the application must guarantee the confidentiality of insur-
ance documents by enforcing both platform and tenant policies. Second, e-
insurance must offer the performance necessary to support numerous tenants
and documents. Searching documents should be fast even as the number of ten-
ants and documents increases. Finally, the set of policies applied to a single
application request should be consistent for the entire distributed control flow.

Background. Access control models are models that determine which subjects,
such as users and processes, are authorized to access a given object, such as
files and other resources. The choice of access control model has a significant
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impact on the kind of authorization policies that can be expressed. Examples of
access control models include Lattice Based Access Control [27] and Role Based
Access Control [28]. We focus on Attribute-Based Access Control (ABAC) [12]
in combination with Policy-Based Access Control (PBAC) [25]. ABAC models
access rights by assigning attributes to the subjects and objects. ABAC makes
authorization decisions dynamically, based on the assigned attributes and the
environment, such as location and time. PBAC, on the other hand, makes deci-
sions based on authorization policies. These policies are evaluated by a policy
engine that uses an access control model, such as the attributes and context
assigned by the ABAC model, to reach an authorization decision.

The separation of concerns between authorization policies and the mechanism
to enforce them is a key principle in secure software engineering [8]. PBAC [25]
decouples policy from mechanism by using policy engines to evaluate policies
written in authorization policy languages. The Open Policy Agent (OPA) [41] is
a policy engine that supports the Rego [40] policy language for writing policies.
Rego policies use the attributes provided by the authorization request, as well
as the access control model stored by OPA. OPA supports both full and partial
evaluation [26] of authorization policies. Partial evaluation reduces a given policy
by substituting the known variables in the policy and evaluating the involved
expressions. The result of a partial evaluation is a reduced version of the original
policy that only contains unknown variables. We further refer to the reduced
version of the policy as the residual policy.

The OASIS eXtensible Access Control Markup Language (XACML) [18] is
an industry standard for access control. XACML provides a specification for
the XACML policy language and a reference architecture for authorization sys-
tems. XACML combines PBAC and ABAC, using XML documents to specify
authorization policies. The XACML reference architecture contains the following
components: (i) a Policy Enforcement Point (PEP), which intercepts incoming
application requests, (ii) a Policy Administration Point (PAP), that manages
the system’s policies, (iii) a Policy Information Point (PIP), that stores the
access control attributes, and (iv) a Policy Decision Point (PDP), which takes
authorization decisions based on the context provided by the PAP and PIP.

3 ThunQ Middleware

This section presents ThunQ, a distributed authorization middleware for multi-
tenant microservice applications. ThunQ is designed to efficiently enforce a
consistent set of authorization policies on distributed application services and
data. ThunQ combines partial policy evaluation [26] and query rewriting [2,3]
to enforce authorization policies both early and lazily. Early enforcement denies
unauthorized requests as soon as possible, while lazy enforcement pushes access
decisions further down the distributed control flow. Next, we define ThunQ’s
security model, followed by a description of the architecture and its key ele-
ments.

Security Model. Figure 1b depicts the system model for applications supported
by ThunQ. ThunQ assumes that all application requests pass through an API
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gateway [32], which is a facade for the services in the business tier. Microservices
in the business tier execute the actual business logic of the application and can
call other microservices. Additionally, the services in the business tier rely on the
databases in the data tier for persistence. ThunQ supports dedicated databases
per service, as well as a single database that is shared between microservices.
Given this system model, ThunQ makes the following trust assumptions.

A1. All services shown in Fig. 1b are trusted and operate correctly.
A2. Policies defined by the platform’s security administrators are correct, mean-

ing that they enforce the intended security policies.
A3. Tenant policies do not impact existing security properties of the system, i.e.

policies are defined by the provider’s security consultant after a requirements
analysis of the tenant.

A4. Security administrators are trusted, i.e. there is no insider threat caused by
the security staff.

The primary security goal of ThunQ is to restrict access to the distributed appli-
cation logic and data by enforcing platform and tenant policies. First, ThunQ
should deny unauthorized requests as soon as possible. Second, ThunQ should
enable the confidentiality of application data by enforcing the authorization poli-
cies on individual data records deep in the data tier. ThunQ only achieves these
goals when the following assumptions about the attacker hold.

A5. An attacker can only interact with the system through the APIs provided
by the platform.

A6. An attacker cannot impersonate any other user.
A7. The attacker has no access to side-channels in the communication between

the system and the attacker.

ThunQ’s Overall Architecture. The authorization architecture of ThunQ is
shown in Fig. 3. ThunQ adds the following components to realize its security
goals. First, ThunQ adds the gatekeeper to the API gateway. The gatekeeper
performs authorization checks and piggybacks the thunks on the application
request. Second, ThunQ transparently adds a query modifier to the microser-
vices. The modifier intercepts database queries from the application and rewrites
them to enforce authorization policies. Next, we discuss the application request
flow with distributed policy evaluation, followed by ThunQ’s core architectural
elements.

Distributed Policy Evaluation. Policy evaluation in ThunQ is distributed, early
and lazy. Evaluation is distributed, as ThunQ evaluates policies at different
points in the microservice application, early, as unauthorized requests are denied
ASAP by partial evaluation, and lazy, as ThunQ postpones access decisions by
piggybacking the residual policies to the appropriate data context. More specif-
ically, policy evaluation in ThunQ starts at the API gateway where incoming
application requests are intercepted by the gatekeeper (1). The gatekeeper then
inspects the request and extracts any information regarding the subject. Next,
the gatekeeper selects the policies applicable to the request and calls the policy
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Fig. 3. Authorization architecture. ThunQ’s components are shown in green.
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Fig. 4. Detailed view of ThunQ’s interactions with the application components.

engine with the subject information and the selected policies as arguments (2).
The policy engine then partially evaluates the policies and returns the residual
policies to the gatekeeper (3). The gatekeeper transforms the residual policies
into a thunk and attaches the thunk to the application request. Alternatively,
the policy engine returns a deny, in which case the gateway blocks the request.

Next, the API gateway forwards the request to the relevant microservice
(4.1). The microservice then handles the request either by querying the database
(5.1–6.1) or by calling other microservices and piggybacking the thunk (4.x–7.x).
Each query made by the application gets intercepted by the query modifier,
where the query gets rewritten to enforce the authorization policies before being
passed to the database (5.1). The result of the rewritten query is then sent back
to the application (6.1). After the data is retrieved, the application can perform
other operations, eventually finishing the request and replying to the caller (7.1).
Eventually, the API gateway receives the response and forwards it to the client
(8). Note that the same rewriting procedure (5.x–6.x) is applied when the service
calls other microservices to handle the request.

We next discuss the core architectural elements of the ThunQ middleware.
The ThunQ middleware consists of two main components the gatekeeper and the
query modifier. These components and a policy engine are added transparently
to the microservice application as shown in Fig. 4.

Gatekeeper. The gatekeeper enforces the authorization policies on the requests
both early and lazily. As depicted in Fig. 4a, the gatekeeper is attached to the API
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1 allow {
2 user.tenant ==" insurer"
3 doc.tenant_id ==user.tenant_id
4 user.role ==" account_manager"
5 doc.employee_id ==user.id
6 }

allow {
doc.tenant_id ==67
doc.employee_id ==42

}

Fig. 5. Example policy (left) and the residual policy after partial evaluation (right).

gateway as a filter component that intercepts all incoming application requests.
The gatekeeper can be further broken down into the Policy Enforcement Point
or PEP, and the Request Transformation Point or RTP. The PEP is a modified
version of a XACML PEP [18] and is responsible for sending requests for partial
policy evaluation to the policy engine. The policy engine responds with either
a set of residual policies or a deny. In the case of a deny, the PEP blocks the
application request, denying the request early. Alternatively, the policy engine
responds with a residual policy, in which case the PEP sends the residual policies
to the RTP, which transforms the residual policies into Boolean expressions and
adds the expressions to the thunk. The RTP is a new component in the XACML
dataflow that is responsible for augmenting application requests, in particular
by attaching a thunk for lazy enforcement.

Figure 5 shows an example of partial policy evaluation at the gateway. The
policy consists of rules which are defined by the provider at lines 2 and 3, as well
as by the tenant at lines 4 and 5. Note that all subject attributes are available
at the gateway such that lines 2 and 4 can be evaluated and, if necessary, denied
early. This while lines 3 and 5 must be evaluated lazily in the data tier, as the
attributes of doc are not accessible from the current evaluation context.

We realized ThunQ’s gatekeeper as a gateway filter instance for Spring Cloud
Gateway [44]. The gateway filter is implemented as a stateless instance to mini-
mize ThunQ’s memory footprint. However, the concept of the gatekeeper is more
general and is not limited to this specific software implementation. The policy
engine is provided by Open Policy Agent (OPA) [41], as it supports partial pol-
icy evaluation. OPA can be deployed as either a standalone service or a sidecar
of the API gateway, depending on its memory consumption. For e-insurance we
deployed OPA as a stateless sidecar, as memory use was limited to 10 MiB.

Thunks. A thunk is the key data structure that enables lazy and consistent policy
evaluation in a distributed control flow. Thunks are created by the RTP which
transforms the residual policies forwarded by the PEP into Boolean expressions.
These expressions are added to a thunk by the RTP and piggybacked on the
request. By piggybacking the thunks, the residual policies are able to travel
together with distributed control flow, where they can be used by other ThunQ
components to enforce fine-grained authorization policies deep in the data tier.
As shown in Fig. 6, a thunk is a collection of URL path selectors mapped to a
Boolean expression. The selectors are used by the query modifier to determine
which residual policies are relevant for the intercepted database query. To ensure
loose coupling, thunks are forwarded in their entirety between microservices.
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{
"/ accountStates /*":" doc.tenant_id =67 && doc.employee_id =42",
"/ hospitalBills /*": <BoolExpr#2>,
"/*": <BoolExpr#3>

}

Fig. 6. Example of a thunk encoding the partial policy of Fig. 5 and others.

SELECT *
FROM account_states

SELECT *
FROM account_states
WHERE tenant_id =67 AND employee_id =42

AND <BoolExpr#3>

Fig. 7. Example of query rewriting by the query modifier. The original query on the
left is rewritten using the thunk in Fig. 6 with /accountStates/all as request path.

Note that each application request is processed with a consistent set of policies,
as the same thunk is re-used for the entire the distributed control flow.

Query Modifier. The query modifier rewrites database queries such that the
queries enforce authorization policies on individual data records. Note that the
query modifier only augments search queries since these operate on large result
sets. As shown in Fig. 4a, the query modifier is attached to the application as a
plugin for the Object Relational Mapper(ORM) middleware. ORMs often provide
hooks that enable third-party extensions to modify database queries through the
query meta-model (QMM).

To rewrite queries, the query modifier must first determine the relevant resid-
ual policies to enforce. These policies are encoded as Boolean expressions in the
thunks that are piggybacked on the application requests. The relevant Boolean
expressions are selected by matching the URL path selectors of the thunk against
the application request path. The matching expressions are then joined using a
conjunction to create a Boolean expression that encodes all the matched resid-
ual policies at once. This expression is then woven into the meta-model of the
database query by adding the expression to the predicate of the query’s model.
The modified query then gets further processed by the ORM middleware before
it is sent to the database. The result of the query then is sent back to the ORM
without passing through the modifier. An example of the effect of query rewriting
on a SQL query is illustrated in Fig. 7.

Figure 4b shows the flow of a database query in detail. First, the application
invokes a search method on the data model (1). Next, the data model contacts
the ORM middleware (2) which creates a query meta-model that corresponds
to the method call (3). This meta-model is an internal representation of the
query that the ORM will map later to a database specific query. Next, the
ORM passes the meta-model to the query modifier (4), which rewrites the query
as described earlier using the meta-model (5). After calling the modifier, the
ORM instantiates the actual database query using the modified meta-model (6)
and returns the result back to the data model. ThunQ’s query modifier was
realized as a component for the Spring Data [43] ORM middleware. The query
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modifier utilizes the Querydsl [35] query meta-model to rewrite database queries.
Furthermore, the query modifier is implemented as a stateless component to
minimize ThunQ’s memory footprint.

4 Evaluation

This section discusses the evaluation of the ThunQ middleware with a key focus
on the performance overhead of the middleware solution. We compare ThunQ
against two alternative approaches for fine-grained authorization in the data tier,
namely postfiltering [16] and hand-crafted queries. Postfiltering enforces autho-
rization policies on data queries by checking each record in the result set against
a policy engine. Hand-crafted queries, on the other hand, encode the autho-
rization policies directly in the application queries. Although the last approach
is impractical for multi-tenant applications, it represents the best-case scenario
for query-based approaches to enforce fine-grained authorization, as it doesn’t
have the overhead of ThunQ’s middleware components. The evaluation aims to
answer the following questions related to multi-tenancy and performance.

Q1. What is the impact of the properties of the enforced policies on the latency?
As tenants specify policies that further restrict access by their end-users, it
decreases the number of records included in the results. Also, adding policies
can increase the number of attributes required for evaluation.

Q2. What is the impact on end-to-end latency when the number of tenants
grows? As microservice applications are very sensitive to increases in latency,
the overhead of ThunQ should not put limitations on the number of tenants.

Evaluation Setup. All experiments were performed on a proof-of-concept appli-
cation (PoC) that is based on the e-insurance case study discussed in Sect. 2.
The PoC was deployed in an AKS Kubernetes cluster in the Microsoft Azure
public cloud. The Kubernetes control plane was hosted on a single Standard B2s
VM with 2 CPUs and 4GiB of memory, while the PoC runs inside a node pool
consisting of 3 Standard D4as v4 VMs with 4 CPUs and 16GiB of memory. To
simulate application users, we used the Locust [6] load generation tool.

The PoC consists of the following services: an API gateway, an account-state
service, a datastore, and an IAM system. The API gateway is an instance of
Spring Cloud Gateway [44] with an additional gatekeeper filter as discussed in
Sect. 3. The account-state service handles statements of account balances gen-
erated by life insurances. The service is realized a Spring Boot [42] application
augmented with the query modifier from Sect. 3. Furthermore, the datastore is
an instance of Azure SQL and the IAM system is provided by Keycloak [39].

Q1. We first investigate the impact of two policy properties called policy selec-
tivity and attribute count. Policy selectivity is the ratio between the number of
data records still included after applying the policy to the result set and the
size of the original result set. Policies with low values for selectivity are called
narrow , as only a small portion of the original result set is included. Policies
with high selectivity values are called broad as more records remain included.
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Fig. 8. Latency in function of policy selectivity.

The attribute count of a policy, on the other hand, defines how many attributes
are required by a policy for lazy evaluation.

We configured the experiments as follows. Clients send requests through the
API gateway to fetch data from the account-state service, which has a database
with 1 million records. Application requests are paginated and retrieve only the
first 50 accessible records that satisfy the authorization policies. The policies in
both scenarios were synthetically generated to show the impact of the different
policy properties. The policies for the experiments with varying policy selectivity
only have a single attribute, while the experiments with varying attribute count
have policies with a selectivity of 10%.

Impact of Policy Selectivity. Figure 8a shows the impact of policy selectivity
on the end-to-end latency. For ThunQ and hand-crafted queries, latencies are
largely unaffected by policy selectivity, with only a minor increase for very narrow
policies. In addition, the breakdown of the ThunQ’s request latency shown in
Fig. 8b, indicates that ThunQ’s latency is dominated by the database query. The
results for postfiltering show low latencies for policies with selectivity between 10
and 100%. This is a consequence of paged requests, as filling a page requires that
only a limited number of records have to be checked against the policy engine. In
contrast, narrow policies have high latencies. The decrease in selectivity means
that more database records need to be checked by the policy engine before a
single page can be filled, in turn increasing the overhead of the postfilter and
the overall latency. A final observation concerns the results for policies with
a selectivity of 100%. In this case, postfiltering outperforms both ThunQ and
hand-crafted queries. This is caused by the way Spring Data handles request
paging for ThunQ and hand-crafted queries.

Impact of Attribute Count. Figure 9 shows the relation between the number of
attributes used in the lazy evaluation of a policy and the end-to-end request
latency for policies with a 10% selectivity. All three fine-grained authorization
methods show a linear increase in latency for higher attribute counts. Although
postfiltering initially performs worse than the other techniques, its slope is less
steep compared to ThunQ or hand-crafted queries. Consequently it matches or
outperforms the other solutions for higher attribute counts. The steeper slope
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Fig. 9. Latency in function of policy attribute count.

Fig. 10. Latency in function of the number of tenants.

for both ThunQ and hand-crafted queries can be explained by a combination
of the extra work required to check extra attributes in the query and request
pagination in Spring Data, which generates extra count queries.

Q2. Next, we investigate the impact of the number of tenants on the end-to-end
latency. We increased the number of tenants by adding brokers that are each
assigned 1000 documents. We also enforced the policy that“A broker can only
view the documents that are assigned to the broker”. Adding new brokers impacts
two dimensions of the system. First, The size of the database increases, as each
broker is assigned a fixed number of records. Second, the authorization policy
becomes narrower, as the ratio between the records that the broker is authorized
to view and the total number of records decreases. As before, application requests
are paged with 50 records per page.

Figure 10a shows the impact of the number of brokers in the system on
the end-to-end latency. ThunQ closely follows the performance of hand-crafted
queries, with the latency of both techniques increasing for a larger number of
tenants. As shown earlier in Q1, policy selectivity only has a limited impact on
the latency of either fine-grained authorization systems. This implies that the
increase in latency can mostly be attributed to the increase in database size. The
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latency of the postfilter increases sharply once the system exceeds 10 tenants.
This increase is mostly likely caused by the increase in policy selectivity. The
behavior of the postfilter in Fig. 8a confirms this observation. The performance
breakdown of ThunQ’s end-to-end latency in Fig. 10b shows that the end-to-end
latency is dominated by the database operations of the account-state service.
This implies that relative overhead of ThunQ decreases as the number of ten-
ants increases, which makes ThunQ better suited to protect applications with
larger databases.

Discussion. Our results indicate that the impact of policy selectivity, attribute
count, and the number of tenants on the performance of ThunQ is similar to
the impact of these parameters on the performance of hand-crafted queries.
However, postfiltering outperforms both approaches in scenarios where policies
are broad and have a high attribute count. Nonetheless, ThunQ exhibits better
performance characteristics for multi-tenant applications, such as e-insurance,
that have to support numerous tenants with narrow policies, while still offering
the flexibility required by policy customization. We did not consider the use of
database indexes which might greatly enhance ThunQ’s performance.

As discussed in Sect. 3, thunks are forwarded in their entirety between
microservices to ensure loose coupling. Although this approach can cause thunks
to contain policies that are not required by downstream services, we can assume
that this overhead is relatively small for two reasons. First, thunks are composed
of residual policies, which often reduces the size of the thunks. Second, general-
izing our evaluation results, we can assume that the cost of query execution will
be the dominant source of overhead in most target systems.

5 Related Work

This section first presents work related to access control for databases, followed
by a discussion of security techniques for microservice applications.

Access Control for Databases. Enforcing access control at the level of database
records is a non trivial problem. Next, we provide an overview of some techniques
proposed by literature for fine-grained access control in database systems.

FGAC [24] enforces authorization policies on individual database records by
defining a set of authorization views that restrict access to the database. Autho-
rization views scale well to large result sets, but they break separation of concerns
between security administration and application development, as authorization
views are defined in the database’s native query language. Moreover, FGAC
scales poorly in terms of administrative overhead. FGAC represents each sub-
ject by a separate database user, which not only causes significant administrative
overhead but is also problematic for multi-tenant applications, which often inte-
grate with the IAM systems of their tenants.

Bouncer [16] aims to scale fine-grained access control with respect to large
groups of users. It does so by inserting an enforcement point between the
database and the application The enforcement point first performs an autho-
rization check when a query arrives at the database. The result set of this query
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is then passed back to Bouncer, which uses a postfilter to exclude any unautho-
rized records. However, postfiltering does not scale well for large result sets [3].

Sequoia [3] combines the strengths of FGAC and Bouncer by rewriting data-
base queries based on XACML policies. This approach results in low latency
enforcement of expressive policies, even in systems with a large number of users.
However, Sequoia does not provide an end-to-end solution for access control in
applications with distributed application logic and data, such as multi-tenant
microservice applications. Moreover, Sequoia instances receive policy updates
individually, such that there are no guarantees that multiple Sequoia instances
enforce a consistent set of policies on a single distributed control flow.

Securing Microservices. Securing microservice applications [11,19] is challeng-
ing, and it requires a holistic approach at different layers of the software stack
for in-depth defense. Next, we discuss some security techniques which are put
forward by literature to secure microservice applications.

Access control ensures that only authorized entities can interact with the pro-
tected system. Most solutions for application-level access control [9,15,20,29]
either enforce policies within a single application domain [9,29] or in a set-
ting with multiple parties [15,20]. To ensure interoperability, most solutions use
standardized technologies, such as OAuth [15,29], UMA [20] and XACML [15].
The aforementioned systems enforce access control on the level of application
requests, while ThunQ also enforces fine-grained policies at the data-record level.

Access control can also be enforced at the network level [21,31,37], either by
leveraging Software Defined Networks (SDNs) [31], application containers [37],
or a combination of both SDNs and the Host Identity Protocol (HIP) [21].

Managing authorization policies in microservice is challenging due to the
multitude of services and the complexity of their interactions. One solution is to
mine policies from historical application data [36] and install them at the appli-
cation services. AutoArmor [14] offers a more holistic approach, as it extracts
policies from the microservice code and keeps the policies up-to-date.

Application-level access control, such as ABAC, can leak sensitive informa-
tion about its users. TSAP [38] is a system that is designed to protect the users’
attributes by assigning attribute sensitivity and resource server trust levels.

Monitoring and Anomaly Detection aims to completely mediate and monitor
application requests [31]. Recent work leverages anomaly detection to detect
suspicious behavior through microservice RPC calls [7] or circumvent attacks
against auto-scaling infrastructure by identifying cyclic patterns in application
load [22].

Deception techniques aim to confuse attackers by setting up decoys and traps
in the microservice application. Sandnet [17] leverages SDNs and CRIU (Check-
point/Restore In Userspace) to create a sandboxed environment for suspicious
application containers that are possibly compromised by an attacker.

Moving Target Defense (MTD) targets to reduce an attack’s economy of scale
by introducing variation in the microservice application. The challenge of MTD
is selecting the appropriate variation technique to increase the resiliency of the
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application in a trade-off between security and performance. Recent work pro-
poses to use vulnerability rating systems such as ORRM (OWASP Risk Rating
Methodology) and CVSS (Common Vulnerability Scoring System) to select the
appropriate variations [33]. Alternatively, MTD can use custom metrics such as
betweenness centrality [13] to choose the most suitable variation technique.

A Trusted Execution Environment (TEE), such as Intel Secure Guard
Extensions (SGX), is another technique to protect microservice applications.
Squad [30] leverages TEEs for the secure delivery of application secrets and crit-
ical system configuration parameters. Vert.x Vault [4] extends the Eclipse Vert.x
framework for microservices with secure application components that protect
specific parts of the application using TEEs.

Integrity Protection aims to protect the integrity of artifacts and configura-
tion of microservice applications from insider threats. Protecting the integrity
of these systems often requires a combination of security techniques, such as
remote attestation, access control, and audit [1]. Integrity protection can be used
to ensure part of ThunQ’s trust requirements presented in Sect. 3.

The discussion above highlights some of the techniques available for securing
microservices. Even though ThunQ is able to efficiently enforce access control,
it should be used in tandem with other security techniques.

6 Conclusion and Future Work

This work presented ThunQ, a distributed authorization middleware for multi-
tenant microservice applications. ThunQ ensures data confidentiality by denying
unauthorized requests as soon as possible and enforcing authorization policies
lazily. ThunQ uses partial policy evaluation to make authorization decisions early
at the API gateway and piggybacks the resulting residual policies as a thunk on
the application request. This scheme moves the policies close to the data that
is required to evaluate them, keeping the sensitive records within their local
microservice context.

Our evaluation shows that ThunQ’s performance is suitable to support large-
scale multi-tenant microservice applications. ThunQ has limited overhead and
performs better than postfiltering at large scales. Moreover, ThunQ’s perfor-
mance is comparable to the baseline hand-crafted implementation.

As a part of future work, we want to support authorization policies that use
data from multiple data-sources for policy evaluation, for example by means of
the Command Query Responsibility Segregation [23] pattern for microservices.
Another effort can be focused on supporting obligations and HBAC policies [5].
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Abstract. The advent of cloud computing radically changed the way
organisations operate their applications and allows them to achieve high
availability of services at affordable cost. Most cloud-computing plat-
forms fostered Kubernetes for their container orchestration and service
management. The scheduler is a key component of Kubernetes, as it is
responsible for finding the placement of new service containers when they
are deployed. The default scheduler is very fast, although often subopti-
mal. This can lead to inefficient placement of services, or more severely,
inability to deploy.

We present a custom Kubernetes scheduler, dubbed Boreas, which is
designed to evaluate bursts of deployment requests concurrently. Boreas
finds the optimal placements for service containers with their deploy-
ment constraints by utilising a configuration optimiser. Results show that
Boreas is able to find placements where the default Kubernetes sched-
uler fails, wasting less computing resources, or proving that no feasible
deployment solution is possible.

Keywords: Services on the Cloud · Cloud service management ·
Kubernetes · Scheduling

1 Introduction

Kubernetes [5] has become the new standard for container orchestration and ser-
vice management. Originally proposed by Google, Kubernetes is an open source
project that provides a layer between the cluster operator and the applications
running on the cluster. Its applications are implemented as collections of services,
each developed, deployed and scaled individually.

The main components of a Kubernetes systems are the Pods, every one
of them representing an instance of a scalable (micro)service. A pod generally
hosts one or few containers which are the minimal units containing the service
source code to execute with all the code dependencies. This division proved to be
extremely useful to avoid software dependencies because when two services have
conflicting modules they can be arranged in different containers within the same
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pod. On the other hand, this flexibility is limited by the pod’s need of being
small so it can be quickly scaled to meet possibly increasing service demand.

Another central component in Kubernetes is the scheduler [14], i.e., the com-
ponent responsible for finding the placement of new service pods when they
need to be deployed. Kubernetes comes with a default scheduler that is very
fast, scales to hundreds of nodes, but it is heuristic based. This means that
dependency constraints (e.g., pod affinities) are not necessarily optimal, thus
leading to possible waste of resources, and more severely, the scheduler may be
incomplete, i.e., unable to deploy pods even when a possible schedule is available.

In general, the problem of finding the optimal pod deployment in Kubernetes
is an extension of the bin-packing problem and therefore a NP-complete prob-
lem [17]. Kubernetes developers prioritized speed over scheduler completeness
and optimality in the design of the default scheduler to allow Kubernetes to
scale up to thousands of pods and nodes. However, Kubernetes is also used for
systems that are not very dynamic and with a limited size. In such deployment
scenarios, when speed is not the main priority, one would prefer a scheduler that
can lead to more accurate and less resource consuming deployments.

In this paper, we introduce a custom Kubernetes scheduler, dubbed Boreas,
that ensures optimal pod placements with deployment constraints. Boreas
reduces the overall computing resource usage and increases the utilization of
cloud computing infrastructure managed by Kubernetes at the cost of slower
pod deployment. The core of Boreas is the optimization configuration tool
Zephyrus2 [1] that relies on the Aeolus formal model [9] for provably opti-
mal service deployment [6]. Boreas integrates Zephyrus with the architecture
of Kubernetes through a proper adapter. When new pod deployment requests
arrive, Boreas parses the deployment constraints of the new requests and, based
on the available computational resources left, encodes the deployment problem
for Zephyrus that is invoked to retrieve the optimal pods deployment solution,
if any. In this paper, we describe the design principles and the architecture of
Boreas. Moreover, we show empirically that in the presence of standard Kuber-
netes deployment constraints, Boreas is able to find a placement for the pods in
cases where the default scheduler fails, demonstrating that Boreas can be a better
alternative than the default scheduler for medium size cost-aware applications.

The rest of the paper is organized as follows. In Sect. 2 we give an intro-
duction of Kubernetes, the pod deployment strategy and the optimization tool
Zephyrus2. In Sect. 3 we introduce Boreas, its architecture, how it handles
deployment constraints and its batch scheduling. In Sect. 4 we test Boreas and
compare it with the default scheduler on some medium size deployment jobs.
Section 5 gives related work and we conclude the paper in Sect. 6.

2 Preliminaries

In this section we briefly introduce the two main tools used in our approach:
Kubernetes and Zephyrus.
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Kubernetes. Kubernetes [5] is the most widely used container orchestration
engine for the deployment and maintenance of container based applications.

Containers encapsulate the execution environments of a program, abstracting
from the details of physical and virtual machines, and the deployment infras-
tructure. Compared to virtual machines, they provide the same advantages of
virtualization but are more lightweight, offering a better scalability and main-
tainability. Containers are also portable across clouds [10], they require much
less storage, and have faster booting time than virtual machines. For all these
reasons, containers have recently been widely adopted giving rise to the need of
platforms such as Kubernetes to orchestrate them. In the following, we restrict
our attention to the main components of Kubernetes related to resource man-
agement, with a special focus on the scheduler.

Pods are the basic scheduling unit in Kubernetes. They are high-level abstrac-
tions for groups of containerized components which are usually run using a
Docker engine [26]. A pod consists of one or more containers that are guaranteed
to be co-located on the host machine and can share resources. A pod is deployed
according to its resource requirements and has its own specified resource limits.
For two or more pods to be deployed in the same node, the sum of the minimum
amounts of resources required for the pods needs to be available in the node.

Services represent components that act as basic internal load balancers and
ambassadors for pods. A service can be thought as a collection of pods that per-
form the same function and are viewed as a single entity. Kubernetes can deploy
a service, keep track of pods of the service and route all needed communica-
tions to them. Services and pods in a Kubernetes cluster are organized within
namespaces, allowing multiple applications to share the cluster resources.

Nodes are computing resource on which Kubernetes runs. One node functions
as the master node,1 and acts as a gateway and controller for the cluster by
exposing an API for developers and external traffic. The master node carries out
the scheduling and orchestrates the communication between other components.
The other nodes, called workers, host pods. The worker nodes have explicit
resource capabilities given as a set of labels that can specify its version, status,
and particular features (e.g., presence of a GPU).

Autoscalers are responsible for ensuring that the number of pods deployed
in the cluster matches the number of pods in its configuration. There is one
autoscaler for each service, managing a group of identical, replicated pods which
are created from pod templates and can be horizontally scaled by deploying or
removing pods.

Scheduler is in charge of assigning pods to specific nodes in the cluster.
The scheduler matches the operating requirements of a pod’s workload to the
resources that are available in the current infrastructure environment, and places
pods on appropriate nodes. The scheduler is responsible for monitoring the avail-
able capacity on each node to make sure that workloads are not scheduled in
excess of the available resources. The scheduler needs to know the total capacity
of each node and the resources already allocated to the nodes.
1 There can be more master nodes, but one will always be the main master node

hosting the cloud controller.
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Fig. 1. Pod scheduling orchestration in Kubernetes.

While deploying a pod, it is possible to set deployment constraints that con-
dition how it should be placed in the cluster. For example, it is possible to define
pod affinity to place the affine pods on the same nodes. Similarly, by defining
a pod anti-affinity it is possible to avoid deploying the pods on the same node.
If the pods have an anti-affinity for themselves, every pod of a service will be
deployed on a different node. Pods can also have affinities towards node types.

When a pod deployment is created, a chain of events is generated as illus-
trated in Fig. 1. When the deployment request is sent to the Kubernetes API
server 1 , the API server creates and exposes a scheduling event 2 . Schedulers
listen for such events and when an event targets them they process the request.
The scheduler first identifies a node that is suitable for deploying the pod of
the scheduling event and then sends a suggestion back to the API server in the
form of a namespace binding between the pod and node 3 . The API server, at
this point, adds the binding to its own distributed storage (i.e., an Etcd server),
allowing the local Kubernetes agent running on the selected node to instructs
its container runtime to fetch and run the pod’s container(s).

A pivotal point in this event chain is when scheduling events are processed
by schedulers. The default Kubernetes scheduler iterates unassigned pods one
at a time when assigning them to a node. It does so at an incredible speed
(i.e., scheduling throughput of more than 50 pods/sec), but its implementation
is heuristic-based, and it does not guarantee that pods are placed where they fit
best if looking at all deployments as a whole.

The default scheduler identifies the most suitable node in the cluster in two
steps [19]:

1. Filter: remove any node that lack any resources required by the pod, doesn’t
match explicit label or node name requirements, or that report memory or
disk pressure.
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2. Rank: the remaining nodes are then ranked using a set of priority functions.
The ranking is calculated by weighting properties such as highest fraction of
free resources (least requested), resource balance, service spread, pre-installed
service requirements and affinity requirements.

One consequence of the default weighting of these priority functions is that
the ranking will lean towards spread pods as much as possible.

Zephyrus2. Zephyrus2 [1] is a configuration optimizer originally designed
to find the optimal placement of applications on virtual machines. Zephyrus2
requires a declarative description as input to specify the software components,
the available virtual machines, and the deployment constraints.

The software components are specified in Aeolus [9], i.e., a component model
for the definition and reasoning of cloud deployment plans. In Aeolus, software
components are modeled as black-boxes that expose require- and provide-ports to
capture required and provided functionalities respectively. Every software com-
ponent consumes a given amount of resources. The virtual machines are modeled
instead as locations. Each location has a name, a list of resources that it can
provide, and an associated cost. The user can specify (deployment) constraints
in an ad-hoc declarative language to define the desired final configuration. The
constraints are powerful enough to express, e.g., the presence of a given number
of components, their co-installation requirements, and their conflicts.

By exploiting modern SMT and CP technologies, Zephyrus2 finds a configu-
ration distributing components on a set of locations such that: (i) the constraints
reflecting the user requirements are satisfied, (ii) every functionality required by a
deployed component is provided, (iii) in each location, the available resources are
sufficient to cover the resource needs of all components deployed on it, and (iv)
the values of some user-defined objective functions are minimized. The default
objective-function is to obtain the final configuration with lower cost, choosing
the one with the minimal amount of components in case of ties.

Zephyrus2 can be deployed as a Docker container, and it can be invoked by
HTTP requests.

3 Boreas - An Optimal Kubernetes Scheduler

In this section we present the salient features of Boreas, how it can be deployed
and how the deployment optimization problems are encoded and solved.

Boreas is a custom scheduler for Kubernetes that can replace the default
scheduler or run alongside it. The modular system architecture of Kubernetes
makes this framework highly configurable and extensible allowing to modify,
extend or replace the default scheduler [20].

A graphical representation of the deployment of the Boreas scheduler in a
Kubernetes master node is shown in Fig. 2. The Boreas scheduler and Zephyrus2
run in separate Docker containers and are arranged together in a service pod.
They run on the master node alongside other Kubernetes system services. The
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API server

Default scheduler Boreas scheduler

Zephyrus2 optimizer

Boreas

Master node

Fig. 2. Boreas from the master node perspective

Boreas scheduler communicates with the API server using the Kubernetes client
API, and to Zephyrus2 using regular HTTP requests.

Boreas’ workflow starts with collecting the pod deployment requests in
batches. The batch size is limited to a maximum amount of events (99 by
default). When this limit is reached or if a configurable number of seconds passes
(e.g., 30 s by default), the accumulated requests are processed. The Boreas sched-
uler encodes the deployment of all the pod requests into an optimization problem
for Zephyrus2 taking into account the request, the deployment constraints, and
the current configuration of the cluster. Zephyrus2 is then invoked, and after pro-
cessing the problem, it returns the optimal placement for each pod, if any. The
Boreas scheduler parses the response and applies it by sending pod deployment
instructions to the API server, like the default scheduler.

While Kubernetes is implemented in the Go programming language, any
custom component can be implemented in another programming language due
to its modular system architecture. Since we were interested in a proof-of-concept
implementation, Boreas is implemented in Python. This choice does not call for
efficiency, but since the heaviest task is the optimization of the configuration
performed by Zephyrus2, the performance of the wrapping layer does not affect
the overall scheduling performance. Boreas is constituted by about 400 lines of
code and is freely available from the project’s Github repository [3].

3.1 Deploying Boreas in Kubernetes

Boreas is deployed as a Kubernetes pod on the master node. The source code
includes a deployment script that provides the configurations and privilege
required to function as a custom scheduler. The script can be run by using
kubectl, i.e., the command-line tool to control Kubernetes. Running the deploy-
ment script will download the containers and deploy the Boreas pod to the
master node, as shown below.
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$ kubectl create -f deployments/scheduler.yaml

serviceaccount/boreas -scheduler created

clusterrolebinding.rbac.authorization.k8s.io/boreas -

↪→ scheduler -as-kube -scheduler created

deployment.apps/boreas -scheduler created

The Boreas pod will then be listed alongside the default services in the
kube-system namespace, i.e., the default namespace used to run the pods imple-
menting the core functionalities of Kubernetes.

$ kubectl get pods --namespace=kube -system

NAME READY STATUS RESTARTS AGE

boreas -scheduler -<hash > 2/2 Running 0 60s

kube -scheduler -master 1/1 Running 0 1d12h

...

3.2 Integration with Zephyrus2

Since the Zephyrus2 container is running in the same pod as the Boreas sched-
uler, their containers can communicate using HTTP. The Boreas scheduler can
therefore retrieve deployment configurations from Zephyrus2 simply by sending
an HTTP post request to its container.

The Zephyrus2 tool was originally designed to minimize the cost of applica-
tion deployment to virtual machines (VMs) [1]. While conceptually there is not a
big difference between that problem and the placement of service pods on nodes
in a Kubernetes cluster, in practice, extensive adjustments and conversions of
the data and constraints had to be made before Zephyrus2 was able to process
the placement of Kubernetes pods.

As a first operation, Boreas retrieves the status of every node in the cluster
and encodes them into a location, as defined in the Aeolus model [9]. A node
with its resources is simply seen as a location in which software components
can be deployed. The CPU and the memory available on the node are seen as
resources provided by the location. Since Zephyrus2 does not support fractional
CPU specification while Kubernetes also allows millicores for pod consumption
specification2, the CPU values had to be rescaled of a factor of 1000. As an
example, Listing 1.1 shows the JSON representation gathered for Zephyrus2 of
a computation node. Lines 3–6 specifies that there is currently a node ("num": 1)
that has a spare capacity of 3972 MB of RAM and 900 millicores.

2 E.g. One CPU equals 1000m where m stands for millicore and a Pod generally occupies
few hundreds millicores.
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Listing 1.1. Snippet of node encoding for Zephyrus2.

1 "locations ": {

2 "k8s_worker_1 ": {

3 "num": 1,

4 "resources ": {

5 "RAM": 3972,

6 "cpu": 900 }}}

In a Kubernetes cluster, services can be horizontally scaled by defining a
number of running copies of pods within the so-called replica set. The API server
creates individual scheduling events for each pod, including all the pods in a
replica set. Passing every single request to Zephyrus2 as a separate request would
greatly reduce its performance due to the increased number of components and
constraints that would need to be considered. For this reason, Boreas compresses
all requests for pods of a replica set into an equivalent unique request while
processing events from the API server. The pod requests are then encoded in
Zephyrus2 with the notion of a software component and a deployment constraint.

A pod is seen as a black box that requires a given amount of resources. As
an example, Listing 1.2 shows the JSON representation of a frontend pod that
requires 67 MB of RAM and 100 millicores.

Listing 1.2. Snippet of pod encoding for Zephyrus2.

12 "components ": {

13 "frontend ": {

14 "resources ": {

15 "RAM": 67,

16 "cpu": 100 }}}

The deployment constraint is instead a conjunction of inequality that requires
the installation of certain components in a given amount of resources and the
metric to minimize. For example the deployment constraints requiring the instal-
lation of two frontend pods as encoded in Listing 1.2 is the following.

"specification": "frontend > 1; cost; (sum ?y in components: ?y)"

Here the first constraint frontend > 1 imposes Zephyrus2 to search for con-
figurations in which there are at least 2 frontend components. What follows after
the semicolon is the definitions of the minimization metric used by Zephyrus2. In
this case, Zephyrus2 proceeds to minimize the cost of the new deployment. Since
no nodes have been defined by specifying a cost, by default, the nodes’ costs are
treated equally, and therefore this metric simply requires Zephyrus2 to minimize
the number of nodes used for the deployment. The last part of the specification
string (sum ?y in components: ?y) requires Zephyrus2 to break the possible ties
between configurations using the same amount of nodes by further minimizing
the total number of new pods deployed. In this specific case, since there are no
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pod dependencies and the frontend was required in an amount strictly greater
than 1, Zephyrus will produce a configuration using the least amount of nodes
and deploying only two frontends.

The last ingredients taken into consideration by Boreas are affinities and
anti-affinities constraints that allow to deploy pods on the same node or only in
separate nodes. These constraints were a recent addition to the 1.6 version of
Kubernetes [24], but are vital to guarantee the efficiency and reliability of the
deployed application and thus frequently used in modern complex applications.

Listing 1.3. Example of affinity and anti-affinity relationships in Kubernetes.

1 affinity:

2 podAffinity:

3 requiredDuringSchedulingIgnoredDuringExecution :

4 - labelSelector:

5 matchExpressions :

6 - key: app

7 operator: In

8 values:

9 - frontend

10 topologyKey: "kubernetes.io/hostname"

11 podAntiAffinity:

12 requiredDuringSchedulingIgnoredDuringExecution :

13 - labelSelector:

14 matchExpressions :

15 - key: app

16 operator: In

17 values:

18 - backend

19 topologyKey: "kubernetes.io/hostname"

Kubernetes allows to define two types of intra pod affinities, a “hard” one
that specifies rules that must be met for a pod to be scheduled and “soft” that
specifies preferences that the scheduler will try to enforce but will not guarantee.
Boreas, for the time being, considers the “hard” request since these are those
that can not be violated and restrict the possible admissible configurations.

In Kubernetes, intra pod affinities and anti-affinities are expressed implicitly
using labels assigned to pods, e.g., a pod can be affine to pods having a certain
label. Labels allow a certain degree of flexibility but since they are not considered
by the Aeolus formal model, Boreas has to compile all the affinity and anti-
affinity relationships between pod labels into affinity and anti-affinity between
pods. For this reason, Boreas gathers all the labels of batched pods, deployed,
pods, and worker nodes and used them to create a reverse look-up function to
represent a biunivocal relation between labels and components and nodes names,
thus allowing to convert the constraints from labels to components and nodes.
The affinity and anti-affinity constraints can thus be precisely defined in the
declarative language supported by Zephyrus2.
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As an example, Listing 1.3 presents a snippet for the definition of one affinity
and one anti-affinity constraint for a backend pod deployable in Kubernetes. This
snippet assumes that the backend has associated a label app with value backend

while the frontend pod has associated the label app with value frontend. The
requiredDuringSchedulingIgnoredDuringExecution in Lines 3 and 12 specify to
Kubernetes that the two constraints are “hard” and must be satisfied during
the scheduling. The pod affinity in Lines 4–9 states that the backend pod can
be scheduled onto a node only if that node has at least one running pod with
a label with the key app and value frontend. Similarly, the pod anti-affinity in
Lines 13–18 state that a backend pod can not be installed on a node having a
pod with a label with key app and value backend.3 Finally, the topologyKey is
used to define the domain of the application of the policy to a topology domain
like node, rack, cloud provider zone, or cloud provider region. In this context
we can abstract from these details, assuming that the policies apply to all the
nodes.

As specified with constraint in Listing 1.3, Boreas detects that there is an
affinity between the backend and the frontend, and an anti-affinity between two
backend pods. The affinity is encoded as (forall ?x in locations: (?x.backend

↪→ > 0 impl ?x.frontend > 0)) that will require Zephyrus2 to consider con-
figuration in which for all the possible locations x (i.e., for all the Kubernetes
nodes), if the number of backend pods deployed on x (represented in Zephyrus2
as ?x.backend) is greater than 0, then also on the same node the number of
frontend must be greater than 0. This universal quantification of an implication
thus excludes the possibility to have a node in which a backend is installed but no
frontend is available. Similarly, Boreas will encode the self anti-affinity constraint
as (forall ?x in locations: (?x.backend <= 1)). These constraints are added
to the specification in conjunction with the constraints specifying the minimal
amount of pods required (e.g., in conjunction with the constraint frontend > 1).

4 Evaluation

In this section we describe the experiments performed to compare Boreas w.r.t.
the default scheduler proving that Boreas can deploy applications that the
default scheduler can not.

Due to the lack of established benchmarks for deployment tasks, we set up
two kinds of synthetic tests: i) a minimal test to prove that the heuristics of the
default scheduler can prevent the full deployment of a simple application, and
ii) a more elaborate affinity test using affinity and anti-affinity constraints in
which the default scheduler behaves in a nondeterministic way, often preventing
the deployment of the application.

3 The Boreas scheduler supports hard pod affinities specified with the In operator.
The full support of the other operators, e.g., NotIn, Exists and DoesNotExist) is
trivial due to the fact that labels are finite at a given point in time and left as a
future work.
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The scheduling tests are regular Kubernetes deployment scripts, and were
initiated with a single Kubernetes command line instruction (i.e., kubectl
create). A test run is considered successful if the scheduler is able to find place-
ments on worker nodes for all pods requests. Note that the schedulers may fail
quite differently. The default scheduler processes as many service pods as pos-
sible, leaving some of them in a “Pending” state, meaning that it did not find
space to deploy them. Boreas’s holistic approach leads instead to the deploy-
ment of all the pods or, if all the requests can not be satisfied, leave all pods in
a pending state.

Due to the nondeterministic nature of the Kubernetes default scheduler, the
evaluation tests were repeated 100 times and run on a small cluster of twelve
Ubuntu 20.04 LTS servers running upstream Kubernetes 1.19. Each worker node
contributed with 1 CPU and 4 GB of computing resources to the cluster and
was built automatically using the open-source infrastructure as code software
tool Terraform [31]. The Kubernetes software and its dependencies were installed
and configured automatically using Ansible playbooks [2]. For solving the opti-
mization problem, Zephyrus2 was configured to rely to OR-Tools [28], i.e., a
state-of-the-art constraint solver. To reproduce the deployment, the scripts are
available in the project’s Github repository [3].

Minimal Test. To verify the difference between Boreas and the default sched-
uler, the two schedulers were tasked with the deployment of a new system requir-
ing the deployment of two backend pods and three frontend pods on two empty
nodes, as visually depicted in Fig. 3. This deployment was set up to require all
available CPU resources on two worker nodes.

Kubernetes nodes

900 mcores

worker x2

Deployment request

450 mcores

proxy x2

300 mcores

backend x3

Boreas configuration

Fig. 3. Minimal test requirements and Boreas configuration

In the Boreas case, the scheduling requests are batched and, as expected, the
optimal allocation was always found. On the other hand, the default scheduler
had a hard time finding a placement for all five service pods. Its one-at-a-time
approach forces it to select a placement for the first service pods without being
able to plan for the resources needed for the other service pods. The default
scheduler’s algorithm for ranking available worker nodes makes it prone to place
the first service pods where they will block later service pods in a resource-scarce
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scenario. Among all the 100 repetitions, none of the deployments were successful
when using the default scheduler.

Affinity Test. In the second and more elaborate test we tested the deployment
of an application constituted by a reverse proxy server such as Nginx [27] for
incoming HTTP requests, frontend and backend components of a web applica-
tion, and a message broker such as Redis [29] to queue long-running tasks from
the backend to separate threads. The application is an instance of the typical
web frontend with backend services and cache and is derived from the produc-
tion ready Online Boutique4 which can scale up to handle millions of users given
the proper amount of resources.

With our deployment constraints, an optimal deployment for this system
requires four worker nodes and, differently from the previous test, only 83% of
the total amount of the CPU resources are needed. As illustrated in Fig. 4, for
redundancy and load balancing purposes 3 backends, 3 frontends, and 3 message
brokers are required. Moreover, the system also requires 2 proxy services for com-
munication with the outside world. The backend and frontend have anti-affinity
to themselves, thus requiring at most one copy of each in a node. Moreover, the
frontend has an affinity to the backend requiring for performance reasons to be
deployed in the same node.

x3

Kubernetes nodes

900 mcores

worker x4

Deployment request

300 mcores

proxy x2

300 mcores

backend x3

300 mcores

frontend x3

200 mcores

broker x3

Boreas configuration

Fig. 4. Affinity test requirements and Boreas configuration

By repeating 100 times the deployment of this system starting from 4 empty
nodes, we have noticed that the default scheduler has a success rate of 34%.
As with the basic test, its failures result from the earlier placements of service
pods blocking the placement of the ones that are scheduled later.5 When the
default scheduler fails, it will not be able to deploy one or two of the pods in
the test, usually either a proxy or backend pod, due to the lack of a suitable
node. Boreas, on the other hand, succeeded each test run, giving rise to the

4 https://github.com/GoogleCloudPlatform/microservices-demo.
5 Please note that even though the request are given at once with the command
kubectl create, the default scheduler sequentializes the requests.

https://github.com/GoogleCloudPlatform/microservices-demo
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configuration depicted in Fig. 4.6 The evaluation shows that there are resource-
scarce scenarios or complex deployment constraints scenarios where the Boreas
scheduler finds placement for services that the default scheduler is unable to
find.

In the first set of minimal test, Boreas takes an average of 1.82 s to compute
the deployment and 2.15 in the affinity test. Moreover, when the number of
replicas in the affinity example is scaled to require a cluster of 8 or 12 nodes,
(thus optimizing the placement of a total 22 or 33 pods respectively), Boreas
takes 2.92 and 4.22 s in average to compute the optimal placement. For this
reason, we conjecture that the majority of the time taken by Boreas for these
simple optimization problems is spent on the exchange of messages and in the
initialization of Zephyrus2. Trying to reduce the running time by integrating
more tightly Zephyrus or an ad-hoc reasoner directly in the Boreas scheduler is
beyond the scope of this work and left as future work.

We would like to note that the deployment optimization in Boreas, being
an NP-hard problem, does not provide any time guarantee for the returning
of the result. The resource consumption of the Boreas scheduler requires less
than 50 MB and 400 millicores for scheduling up to 50 pods in 10 nodes. This
amount of resources is negligible considering that the current recommended set-
tings for a master node of Kubernetes with 11–100 nodes are 4 vCPUs and 15
GB of memory and slightly above the footprint of the default scheduler that
consumes 27 MB and 5 millicore for handling a queue of 50 scheduling events.
While the Boreas Scheduler has a low resource consumption, the NP-hardness
of the optimization problem solved by Zephyrus2 can also have an impact on
the footprint of the Zephyrus2 optimizer container that can vary depending on
the nature of the optimization problem and the backend solver used to solve it.
Based on Zephyrus2’s benchmarks [1] we conjecture that Boreas can be used to
deploy up to hundreds of pods in clusters with up to a dozen nodes in less than
a minute.7

5 Related Work

Kubernetes is a complex ecosystem that rely of a set of plugins and extensions
that improve and extend its functionalities. Aside for the scheduler, there are
plenty of other approaches that substitute and complement the default imple-
mentation. For example, plugins like Istio [18] and Linkerd [22] complement the
native handling service-to-service communication with a service mesh.

6 Note that Boreas can compute configurations that are not robust like the one pre-
sented in Figure 4 that has two proxies deployed on the same node. It is the user
responsibility to define all the constraints to make the final configuration robust
stating, e.g., all the anti-affinity constraints.

7 Additional example of bigger system requiring more computation time from
Zephyrus2 (i.e., less than a minute for clusters up to 10 nodes) can be found in
the project’s Github repository [3].
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If we restrict to consider Kubernetes schedulers, different scheduler have been
designed to exploit deployment heuristics to try to optimize some resources.
As an example, RLSK [15] is a deep Reinforcement Learning Scheduler for
Kubernetes that uses reinforcement learning for the refinement of deployment
heuristic. To improve resource distribution, Zhang [34] proposed to combine
an ant colony and particle swarm optimization algorithms. Li et al. [25] intro-
duced a dynamic Input/Output sensing scheduler for Kubernetes. The sched-
uler considers the disks pressure in the scheduling process and tries to balance
the node disk I/O usage across the cluster dynamically. Similarly, Gaia [30] is
a scheduler specifically designed to improve GPUs load distribution, treating
GPU resources in the same way Kubernetes treats CPUs. Townend et al. [32]
and Wang et al. [33] studied schedulers to reduce energy consumption and heat
waste. Poseidon-Firmament [21] is instead a scheduler designed to be faster than
the default Kubernetes scheduler on bigger clusters. Differently than Boreas, all
these approaches, are neither complete nor optimal, polynomial in the size of
the cluster and the number of pods to deploy and thus privileging speed over
optimality.

Not focusing on Kubernetes, the closest works to ours is Aeolus Blender [6,7]
that combines the first version of Zephyrus [8] with the Metis planner [23] and
the Mandriva Armonic collection into a tool chain that automates ad-hoc deploy-
ment tasks. Differently that in our approach, the application domain of Aeolus
blender was narrower and they did not combine the configuration optimizer
with an established and constraint-rich orchestration tool. Similarly, the Jolie
redeployment optimiser [11] used Zephyrus with a reconfiguration coordinator
to redeploy micro-services when they are reconfigured. In this case, the ser-
vice orchestration would be handled by the Jolie redeployment optimiser itself.
SmartDepl [13] presents instead an extension to the Abstract Behavioural Speci-
fication language (ABS) [16] allowing users to specify costs and other deployment
requirements using ABS classes and outputs a deployment configuration by using
Zephyrus2. The final configuration can be simulated or formally checked by using
the formal methods tools available for ABS.

Also relevant, is the work of Medea [12] that introduces a two-scheduler design
for clusters where long-running service containers are deployed together with
short-running batch containers. Medea, differently than us, was implemented as
an extension to the Apache Hadoop cluster scheduler and finds placement for
the long-running containers, leaving the short-running containers for the default
scheduler in order to keep scheduling latency low.

6 Conclusion

In this work, we presented an alternative scheduler that optimizes the resource
usage and costs of a Kubernetes cluster, i.e., the most used container orches-
trator. The new scheduler, Boreas, relies on a configuration optimizer and on a
formal model for the cloud deployment. We have shown that Boreas is able to
deploy applications that the default scheduler failed to deploy.
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Boreas can be used for Kubernetes clusters having only one scheduler per
cluster or one scheduler per zone in the case the cluster is divided into zones.
Our approach assumes that the components of the application have been profiled
to establish their RAM and vCPU consumption, around 50 MB of RAM in the
Kubernetes master node, and the selection of a suitable time window for the
grouping of the deployment requests and their concurrent deployment. Solving a
NP-hard problem, Boreas can not guarantee answers in a short amount of times
and therefore, it is mainly targeting clusters encompassing a limited amount of
computing nodes (e.g., dozen nodes) and applications that do not require high
variability (i.e., less than a hundred new deployment requests per minute).

Boreas is only a proof-of-concept implementation that does not support all
the deployment constraints recently introduced in Kubernetes. We plan to extend
it further to capture all the possible varieties of deployment constraints (e.g.,
affinity constraints with different matching criteria for pod labels) and also
improve the resolution of the optimization problem. Further evaluations and
tests are required to study the impact of possible backup plans for situations
in which the solver can not prove the optimality of the solution in time (e.g.,
use the best solution so far retrieved or the solution produced by the default
scheduler). In particular, we are interested in leveraging Boreas to solve the
local deployment problems created when topology spread constraints are used.
These constraints, introduced in the 1.19 recent version of Kubernetes, are used
to control how pods are spread across the cluster regions, zones, or nodes and
can split the global problem of scheduling pods into smaller sub-problems that
can be solved independently.

Aside from improving Boreas, we are also interested in providing comprehen-
sible explanations for the DevOps operators managing a Kubernetes cluster when
a system is not deployable. This can be achieved by exploiting the conflicting
constraints found by Boreas when solving the deployment problem. Moreover,
inspired by [4,13], we are also interested in introducing more complex deploy-
ment constraint directly in Kubernetes to describe dependencies between the
pods that allow the cluster operators to avoid “domino” effects due to unstruc-
tured scaling actions that may cause cascading slowdowns or outages [35].
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Abstract. TensorFlow, a popular machine learning (ML) platform,
allows users to transparently exploit both GPUs and CPUs to run their
applications. Since GPUs are optimized for compute-intensive work-
loads (e.g., matrix calculus), they help boost executions, but introduce
resource heterogeneity. TensorFlow neither provides efficient heteroge-
neous resource management nor allows for the enforcement of user-
defined constraints on the execution time. Most of the works address
these issues in the context of creating models on existing data sets (train-
ing phase), and only focus on scheduling algorithms. This paper focuses
on the inference phase, that is, on the application of created models to
predict the outcome on new data interactively, and presents a comprehen-
sive resource management solution called ROMA (Resource Constrained
ML Applications). ROMA is an extension of TensorFlow that (a) pro-
vides means to easily deploy multiple TensorFlow models in containers
using Kubernetes b) allows users to set constraints on response times,
(c) schedules the execution of requests on GPUs and CPUs using heuris-
tics, and (d) dynamically refines the CPU core allocation by exploiting
control theory. The assessment conducted on four real-world benchmark
applications compares ROMA against four different systems and demon-
strates a significant reduction (>75%) in constraint violations and 24%
saved resources on average.

1 Introduction

TensorFlow [1] is one of the most used machine learning (ML) framework
in industry [10] and shares similar functionality with other solutions such as
PyTorch [19] or MXNet [5]. While TensorFlow supports different types of ML
applications, this paper focuses on supervised learning ones because of the two
phases that characterize their lifecycle: training and inference. In the former
case, algorithms like logistic regression, decision trees, and deep neural networks
are used to create prediction models starting from known input-output pairs
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(e.g., pictures and contained objects), called training set. In the latter case, gen-
erated prediction models are used as oracles to infer the result on new, unknown
inputs. The first phase makes these applications batch ones, while the second
phase requires that these applications be interactive.

Both phases are characterized by highly parallel operations (e.g., matrix cal-
culus) that can exploit multi-core architectures. TensorFlow eases the use of
multi-core CPUs and also of GPUs, which provide hundreds of cores and very
fast executions. Oftentimes, these applications are executed in the cloud, where
virtual machines (VMs) equipped with GPUs and dedicated execution frame-
works can easily be rented from many cloud providers.

TensorFlow (similarly to other ML frameworks) does not allow users to define
constraints on response times (Service Level Agreements or SLA) for these appli-
cations, and resource management is driven by user experience or by simple
default policies that do not take actual application needs into account. Train-
ing would call for deadlines, that is, constraints on the maximum span of batch
processing [21], while inference calls for average response times, computed on a
number of subsequent invocations over a predefined time window.

Several approaches in the literature focus on the resource management of ML
training [3,12], while the inference phase calls for new studies and approaches.
Existing solutions applied to interactive web applications [2,7] cannot be reused
since they do not consider the heterogeneity introduced by GPUs but only dif-
ferent types of virtual machines. CPUs and GPUs are interdependent resources
while different VMs are not. GPUs are faster than CPUs but they also use
CPUs to load and write data, and to be activated. Moreover, they have differ-
ent scaling capabilities: CPUs can precisely be scaled by allocating fractions of
cores to single applications; GPUs can only be time-shared among applications.
While faster GPUs alone are usually not enough to serve realistic workloads, the
coordinated use of CPUs and GPUSs becomes mandatory to offer reasonable
execution times.

On the other hand, solutions that combine the management of CPUs and
GPUs target the training phase (or long-lasting processing), they focus on
scheduling and loadbalancing algorithms, and do not consider dynamic resource
provisioning [17,18]. Finally, in inference mode the distributed heterogeneous
execution of multiple concurrent ML applications is still not completely sup-
ported in TensorFlow (as in other similar tools) and users are required to man-
ually configure their deployments.

This paper presents ROMA, an extension of TensorFlow that helps the
deployment and oversees the inference phases of multiple concurrent ML appli-
cations deployed onto a shared cluster of nodes that offer both CPUs and GPUs.
ROMA manages containerized TensorFlow models, automates their deployment
using Kubernetes1, a well known container orchestrator, and allows users to
define SLAs as constraint on the response time. ROMA enacts the control at
three different levels. A centralized component exploits heuristics to prioritize
the scheduling of application requests on GPUs or CPUs according to their needs.

1 https://kubernetes.io.

https://kubernetes.io
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Distributed control-theoretical planners allocate the amount of CPUs needed to
each application by considering the boost introduced by GPUs. An intermediate
level handles resource contentions that could happen when the system saturates.

The evaluation based on four real-world applications shows that ROMA: i)
enables the distributed concurrent execution of multiple applications on hetero-
geneous resources ii) minimizes the number of SLA violations (reduction >75%)
compared to static and rule-based solutions, and a simplified control-theoretic
approach, and iii) optimizes the use of cluster resources by avoiding unneeded
allocations (24% resource saving on average).

The rest of the paper is organized as follows. Section 2 introduces ROMA, its
architecture and deployment model. Section 3 presents how the schedulers work,
and Sect. 4 explains the employed control-theoretical planners. Section 5 shows
the empirical evaluation we carried out to assess ROMA. Section 6 discusses the
related work and Sect. 7 concludes the paper.

2 ROMA

ROMA2 is a comprehensive resource management solution that eases the deploy-
ment and operations of multiple interactive ML applications. ROMA can be
useful to both users interested in running their ML applications and service
providers. In the former case, ROMA helps the user manage resources efficiently
and meet set response times. In the latter case, ROMA allows the service provider
to allocate fewer resources to each application and offer an higher level solution
to users (ML as-a-service).

ROMA is an extension of TensorFlow but it can be easily integrated onto
other ML platforms. TensorFlow, as other similar frameworks, does not provide
any dedicated support to distribute the inference of new results on computed
trained models, neither it takes into account concurrent executions specifically.
An extension, called TensorFlow Serving3 (TF Serving for brevity) permits users
to expose a trained model by means of a built-in web server and a dedicated
REST API but the distributed deployment is not supported. ROMA wraps TF
Serving instances into containers using Docker4. Docker also provides means to
allocate and share CPU cores among multiple processes through CPU quotas.
GPUs can be mounted on Docker containers by using external tools, as the
NVIDIA Container Toolkit5.

The deployment of TF Serving containers is enacted using Kubernetes.
Kubernetes manages Pods, that are, groups of co-located containers and vol-
umes, which bind ephemeral containers to persistent data stores. Deployments
manage the deployment of pods, along with the number of needed replicas, and
how they can be upgraded and configured. Services bring communication among
related pods by adding shared networking, load-balancing, and external access.
2 Source code is available at https://github.com/deib-polimi/ROMA.
3 https://www.tensorflow.org/tfx/guide/serving.
4 https://www.docker.com.
5 https://github.com/NVIDIA/nvidia-docker.

https://github.com/deib-polimi/ROMA
https://www.tensorflow.org/tfx/guide/serving
https://www.docker.com
https://github.com/NVIDIA/nvidia-docker


Resource Management for TensorFlow Inference 241

DISPATCHER

QUEUES

WORKLOAD

KUBERNETES
DEPLOYMENTS

MODEL 1 
QUEUE

MODEL 2 
QUEUE

MODEL 3 
QUEUE

GPU SCHEDULER

HEURISTIC

CPU SCHEDULER

HEURISTIC

CT
MODEL 1

SUPERVISOR

A
C
T
U
A
T
O
R

MODEL 1

TF SERVING

MODEL 2 MODEL 3

G
P
U
1

MODEL 1

TF SERVING

MODEL 2 MODEL 3

G
P
U
2

CT
MODEL 2

CT
MODEL 3

WORKERs

KUBERNETES
SERVICES

KUBERNETES CLUSTER

ROMA LAUNCHER

C
P
U

MODEL 1

TF SERVING

MODEL 2

TF SERVING

MODEL 3

TF SERVINGGATEWAY

ROMA COMPONENT DEVICE

ROMA CONTROL

USER APPLICATION

THIRD PARTY

CONTAINER

Fig. 1. ROMA.

Kubernetes also offers dedicated plugins for AMD and NVIDIA boards (the
NVIDIA Container Toolkit is then required) to exploit GPUs [15], but a single
GPU cannot be associated with more than one container, and fractions of GPUs
cannot be requested (they can only be allocated as complete units).

2.1 Architecture

Figure 1 shows the architecture of ROMA while managing three ML models.
ROMA uses a centralized node, called dispatcher, and multiple distributed nodes,
called workers. Dispatcher allows users to add trained models (applications),
receives inference (execution) requests, and uses schedulers to distribute these
executions on workers’ devices. Each worker provides one or more devices, that
is, at least one CPU and zero or more GPUs.

ROMA deploys model executables, that are containers wrapping a TF Serving
instance loaded with one or more models, as Kubernetes pods into workers. For
each managed model, multiple model executables (i.e., replicas) can be deployed
onto different workers to handle intense workloads. Each model executable can be
instructed to process a request on CPUs or GPUs. Moreover, model executables
are deployed onto workers along with a dedicated control theory-based controller
(CT Controller) in charge of the fine-grained allocation of CPU cores.

Gateway accommodates requests in dedicated execution queues, one for each
application (i.e., trained model). Requests are kept in the queues waiting for
execution, that is, waiting for a GPU or CPU to become available. Requests are
removed from the queues and assigned for execution to model executables by
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two different schedulers, one for GPUs and one for CPUs. The two schedulers
exploit different heuristics to prioritize requests and instruct model executables
to process them on either a GPU or a CPU.

GPU Scheduler extracts requests from the queue of the model with the
greatest difference between expected and measured performance (see Sect. 3)
to boost executions. CPU Scheduler works together with CT Controllers. It
removes requests from queues by using a fair round-robin policy and instructs
the proper model executables to use CPU cores to process them. CT Controllers
accelerate or decelerate these executions by continuously modifying the CPU
cores allocated to model executables. Their control period is extremely fast (i.e.,
1 s) and allocated resources are changed on the fly, without restarting model
executables (vertical scalability).

When GPU Scheduler instructs a model executable to process a request by
using a GPU, the average time needed to execute that model executable abruptly
decreases6. Distributed CT Controllers handle this sudden change and react by
decreasing the number of allocated CPU cores. Note that allocated cores could
not be lowered even when GPUs operate because of other external factors (e.g.,
workload fluctuations).

Given that multiple CT Controllers work on the same worker node, their
combined resource demand can be greater than the actual capacity of the node:
a Supervisor deployed onto each worker oversees demands and manage con-
tentions. Collected data on resource demand, contention, and execution times
can then be used to deploy new model executables and new workers, but this is
out of the scope of this paper. Both schedulers and supervisors exploit lightweight
heuristics to be reactive and manage incoming requests properly.

In the case of extremely high workloads, the dispatcher can easily be repli-
cated to accommodate a higher level of parallelism without any changes to the
underlying control strategies. In this case, clients connect either directly to one
of the available replicas or to an additional load balancer that in turn distributes
the traffic to the dispatchers. Then, each dispatcher can work independently of
the others by only scheduling the traffic portion it receives. Local CT Controllers
just need to be informed of the amount of requests executed by the GPUs without
any additional knowledge on the deployment of the other components. Workers
can be managed by a single designated dispatcher or shared among multiple
ones. In the latter case, the multiple schedulers would not interfere with one
another since their algorithms only use application-level performance data that
are locally measured by each dispatcher.

2.2 Deployment

As soon as a user submits a trained model, along with its SLA, ROMA Launcher
generates or updates required Kubernetes deployments and services to let the
system deploy and manage the model executables.

6 This average execution time is computed by considering the different executions of
the same model executable over a given time window.
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ROMA uses two strategies to deploy model executables. The user can set the
number of to-be-deployed replicas for each model. Replicas can also be added and
removed dynamically according to application needs. The placement of model
executables can either balance their number on the different nodes or deploy
them onto the same worker until a predefined number of replicas is reached.
Note that ROMA does not allow one to deploy multiple replicas of the same
model on the same worker node for the same device. If model executables need
more resources on the fly, CT Controllers takes care of it without creating new
replicas.

To exploit the different devices, each model executable is bounded to a specific
device. In particular, given m models selected to be deployed onto a worker node,
ROMA provisions: (i) m model executable containing one model each, and binds
them to the node’s CPU(s), (ii) one model executable, containing all models,
for each GPU, and (iii) one container that includes the CT Controllers of all
models, the Supervisor, and one actuator implemented as a Kubernetes volume.
This means that since we assume that the worker depicted in Fig. 1 comes with
two GPUs, and it manages three models, ROMA deploys six containers in total.

This deployment allows ROMA to exploit the means provided by Kubernetes
for using GPUs on each model and also to exploit the CPUs when needed. As
already said, the Supervisor and models’ CT Controllers manage CPU cores. As
for CPUs ROMA deploys a different container for each model because resources
can be allocated to them independently. Since GPUs cannot be shared among
multiple containers, nor can their cores be allocated to different models, a single
container per GPU with all models is enough. The GPU Scheduler is in charge of
electing the model that can exploit the GPU to serve the next inference request
(this is done by calling an internal, model-specific TensorFlow Serving endpoint).
At each control step, ROMA uses an actuator based on Docker out of Docker
(DooD) to provide on-the-fly reconfiguration of running containers. DooD is a
volume that provides means to launch Docker commands (e.g., to re-configure a
container) within another container7.

3 Schedulers and Supervisors

The goal of ROMA is to fulfill constraint over the response time. While in
the following we constrain the average response time, more conservative met-
rics (e.g., high percentiles) would only require a stricter set-point and more
used resources, and would provide additional tail-latency guarantees. However,
our evaluation (see Sect. 5) shows that even by only constraining the average

7 In December 2020, the Kubernetes team announced that the Docker runtime will
be considered deprecated in future versions [14]. Docker will not be removed from
Kubernetes at least until late 2021. While the evaluation of ROMA in Sect. 5 is based
on the described Docker-dependent implementation, we are already developing a
version of ROMA that does not require Docker and that supports other container
runtimes as, for example, containerd [6].
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response time, ROMA provides a lower maximum response time than other com-
petitor approaches (e.g., rule-based).

Given a model m, the average response time computed over a given time
window w can be formulated as follows.

τRm
=

∑G
g=1(τQg

+ τPg
) +

∑C
c=1(τQc + τPc

)
G + C

(1)

where G and C are the numbers of requests executed on the GPUs and CPUs
respectively in w, τQi

is the time spent by a request i in the queue, while τPi
is

Algorithm 1. GPU Scheduling
1: function freeGPU(gpu)
2: E = []
3: M ← getModels()
4: for m ∈ M do
5: q ← m.getQueue()
6: TE ← []
7: for n ← 0, n < q.length, n++ do
8: req ← q[n]
9: τQ = now() − req.getT imeIn()
10: TE .append(τQ + n ∗ τP Gm )
11: end for
12: comp ← m.getCompletedRequests()
13: TR ← []
14: for req ∈ comp do
15: TR.append(req.getRT ())
16: end for
17: τRm ← avg(TR)
18: τEm ← avg(TE)
19: τWm = β ∗ τEm + (1 − β) ∗ τRm
20: τ◦

Rm
← α ∗ τSLAm

21: if τWm ≤ τ◦
Rm

then

22: εm ← 0
23: else
24: εm ← (τWm − τ◦

Rm
)/τ◦

Rm

25: end if
26: E.append(εm)
27: end for
28: mS ← M[E.indexOf(max(E))]
29: req ← mS .getQueue().pop()
30: gpu.execute(req)
31: end function

Algorithm 2. Supervisor
1: cs = getControllers()
2: UC ← []
3: for c ∈ cs do
4: uC ← c.nextAllocation()
5: UC .append(uC)
6: end for
7: AC ← MC − GC
8: η ← AC/sum(UC)
9: for c ← 0, c < cs.length, c++ do
10: uC ← UC [c]
11: if η ≤ 1 then
12: u′

C ← uC ∗ η
13: else if η > 1 then
14: u′

C ← (1 − γ) ∗ uC ∗ +η ∗ γ ∗ uC

15: end if
16: cs[c].updateStateAndActuate(u′

C)
17: end for

the time spent by a GPU or a CPU to process request i. An SLA on τRm
can

state that:
τRm

<= α · τSLAm
= τ◦

Rm
(2)

where τSLAm
is the threshold on the response time defined in the SLA for

model m and α is a parameter, which ranges between 0 and 1, that defines the
set point τ◦

Rm
for model m. If α = 1 then the set point matches τSLAm

; lower
values are more conservative and let the system tolerate more imprecision.

As already said, ROMA distributes the processing of requests to the different
devices in the cluster by means of the two dedicated schedulers. Their goal is
to select both which request to execute next and on which device. The ratio-
nale is that GPU Scheduler always selects the request of the model with the
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“highest” needs (see below). To complement GPUs, requests are also scheduled
for processing onto CPUs by means of a round-robin policy where the (non-
empty) queues to serve are selected randomly. Note that CPU Scheduler could
find queues empty if the GPUs are fast enough to process all the workload alone.

GPU Scheduler is activated in an event-based fashion. Function freeGPU
(Algorithm 1) is executed as soon as a GPU (parameter gpu) becomes free, that
is, at system startup and when a GPU completes the execution of a request. In
particular, we designed a heuristic that, for each model m, takes into account a
weighted average (τWm

) of measured response times (τRm
) and of the estimated

response times of the requests that are in the queues waiting to be processed
(τEm

). The estimation is computed by using the accumulated queue time of each
request (τQ in Eq. 1) and the profiled processing time on GPUs τPGm

. Parameter
β, which ranges in interval [0, 1], defines the weight associated with τRm

and τEm
.

A higher value of β gives more importance to requests in the queue and makes
the system more responsive to workload bursts. Given the computed averaged
response time τWm

, the distance from the set point τ◦
Rm

is computed as εm (lines
21–25). The selected model mS is the one with the highest εm. The first request
in queue mS is the one that is processed by gpu using the proper model executable
(lines 28–30).

The actual allocation of CPU cores is managed by the CT Controllers asso-
ciated with the different model executables. For this reason, CPU Scheduler dis-
patches requests to CPU devices using a round robin policy. CPU Scheduler
repeatedly removes a request from a randomly selected queue and schedules it
for CPU execution on a randomly selected model executable. This way the load
sent by CPU Scheduler to each model executable is homogeneous and the bur-
den of managing CPU allocation is handled locally by CT Controllers. Each
worker is associated with a Supervisor in charge of refining the resource allo-
cation computed by CT Controllers in case of contention. At each control step
(1 s), a CT Controller computes the amount of CPU cores uC (core allocation
demand) needed by its model executable, which embeds model m, to meet set
response time τ◦

Rm
(as described in Sect. 4). Each CT Controller computes its

uC independently of the others, that is, they do not communicate.
Supervisors use the heuristic shown in Algorithm 2 to compute a feasible

core allocation u′
C for each CT Controller deployed on a worker. First, all the

core allocation demands uC are gathered in a vector UC (line 1–6). Being MC
the total number of cores provided by the worker, and GC the number of CPU
cores statically allocated to support GPU execution, the difference between MC
and GC is the actual amount of cores that can be allocated (AC) to model
executables (line 7) in a given worker. As mentioned before, GPUs and CPUs
are interdependent since the former consume the processing power of the latter to
load data in memory and to be activated. Note that if GC is set to 0, GPUs will
slow down requests running on CPUs. This is seen by CT Controller as another
disturbance that is naturally mitigated by the control logic (described in Sect. 4).
Moreover, η is the ratio between AC and the sum of all demanded cores, that is,
the sum of all uC (line 8). Given η, each u′

C is computed as follows. If η is less
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than 1, the actual demand cannot be fulfilled since demanded cores are more that
available ones (under provisioning). Each u′

C is then computed by multiplying
each uC by η (line 12). If η is equal to 1, the amount of demanded cores matches
available ones (AC), and u′

C = uC . If η is greater than 1, available cores are over
provisioned. However, we introduce parameter γ to maximize resource utilization
(line 14). The default value (γ = 0) implies that u′

C = uC . If γ is between 0 and
1, we allocate more cores and obtain more responsive models. γ = 1 means that
all AC cores are always used. Finally, the state of each CT Controller is updated
using u′

C and computed core allocation is actuated.

4 Controllers

To design the CT Controller we need a dynamic model8 for the relationship
between the CPU and GPU allocation (uC , uG) and the response time τR; uC

and uG jointly modify the output rate ro from the queue, the input rate ri being
an exogenous disturbance. CT Controllers do not require any knowledge of the
application structure (i.e., of the operations to execute on input data) and the
same dynamic model is general enough to support different kinds of compute-
and GPU-intensive interactive applications (e.g., machine learning inference, sci-
entific calculus, graph-based computations), with proper profiling. This is possi-
ble because the proposed controllers are grey-box, that is, their model does not
include all aspects of the system but just the ones that describe its physics. The
employed fast feedback-loop (control period equals to 1 s) is in charge of correct-
ing the imperfections of the model at runtime. Here we represent the compound
of the above in a simplified manner (yet adequate, as the reported tests will
show) as an additive perturbation, and we set:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τR(t) = τQ(t) + τP (t)
τQ(t) = �(t−τQ(t))

ro(t)
d�(t)

dt = ri(t) − ro(t)
ro(t) = ron

(
uC(t), uG(t)

)
+ do(t)

τP (t) = τPn

(
uC(t), uG(t)

)
+ dP (t)

(3)

where τQ the time spent on the queue, τP is the processing time downstream
of the queue depending on (uP , uG) through a nominal relationship τPn(·, ·) with
an additive disturbance dP , and ron(·, ·) is the (uC , uG) → ro relationship in some
“nominal” condition, and do(t) the combined effect of all the disturbances.

Model (3) explains the physics of the system, but is not suitable as is for
control design owing to the contextual presence of a differential equation and
an implicit one with delay. It however evidences that under the above assump-
tions, response time control boils down to queue length control. From Eq. (3) one
notices that (i) at steady state ro has to balance ri but this can happen for any
�, hence (ii) a steady-state variation of τR is obtained by transiently causing an

8 To avoid ambiguities, in this section a dynamic model is a mathematical represen-
tation of the controlled system, that is, of the ML application.
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input/output rate imbalance via uC and/or uG, and then restoring the balance
once the desired τR is achieved as the new queue length, divided – mind the
balance – by the through rate, gives the necessary τQ, hence τR.

⎧
⎪⎨

⎪⎩

d�(t)
dt = ri(t) − ro(t)

ro(t) = μCuc(t) + μGuG(t)
τR(t) = �(t)

ro(t)

(4)

where the gains μC and μG account for the processing speed of CPUs and
GPUs, respectively, and the delay is considered negligible with respect to the
control time scale. Linearised in the vicinity of an operating point described by
nominal values of the throughput and the required waiting time, ro and τR to
name them,

Overall, therefore, the compound of the above gives rise to the continuous-
time transfer function description:

ΔτR(s) = GτRC(s)ΔuC(s) + GτRG(s)ΔuG(s) (5)

where uppercase letters denote the Laplace transform of the corresponding
lowercase variables and:

GτRC(s) = −μC

ro

1 + sτR

s
, GτRG(s) = −μG

ro

1 + sτR

s
(6)

where s is the Laplace transform complex variable. Transforming (6) to dis-
crete time, we conclude that a physically grounded Z-transform model (denoting
by z the corresponding complex variable, i.e., the one-step advance operator)
takes the form:

ΔτR(z) = G∗
τRC(z)ΔuC(z) + G∗

τRG(z)ΔuG(z) (7)

where

G∗
τRC(z) = − kC

z − b

z − 1
, G∗

τRG(z) = − kG
z − b

z − 1
(8)

Parameters kC , kG, and b can be obtained online by profiling the applications
of interest and fitting measured responses to those of the dynamic model. In this
work we assume that when a GPU takes part of the work —which is represented
as a step-like behaviour of uG— the CPU attempts to restore the required τR so
as to free the GPU as soon as possible. This means requiring that the closed-loop
transfer function from uG to τR has a zero in z = 1. The said transfer function
then becomes:

Fo(z) =
z − 1
z − p

(9)

where parameter p ∈ [0, 1] governs the required response speed: p → 0 means
faster response, p → 1 slower. This gives controller
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Gc(z) =
(kC − 1)z2 + (2 − kCp − kCb)z + kGbp − 1

kC(z − 1)(z − b)
(10)

i.e., a real PID. To further reduce computational complexity, we however
decided to employ a PI controller, that is,

Gc(z) = K
z − a

z − 1
(11)

and prescribe the closed-loop poles to coincide in z = q, where q is inter-
preted as p above. This is achieved by setting:

K =
4(a − 1)(b − 1)

k(b − a)2
, a =

(2 − b)q − b

q − 2b + 1
(12)

while the presence of integral action ensures zero steady-state errors.

5 Evaluation

This section describes the experiments we carried out to evaluate the feasibility
and benefits of ROMA.

To run the experiments, we deployed ROMA on a cluster of three virtual
machines on Microsoft Azure: one VM of type HB60rs with a CPU with 60
cores and 240 GB of memory for the dispatcher, and two VMs, as worker nodes,
of type NV 6 equipped with a NVIDIA Tesla M60 GPU and a CPU with 6 cores
and 56 GB of memory. We also used an additional instance of type HB60rs for
generating the client workload.

The experiments exploited four existing ML applications: Skyline Extrac-
tion [9], ResNet [11], GoogLeNet [20], and VGG16 [22]. The first application
uses a combination of computer-vision algorithms to extrapolate the horizon
skyline from a set of images and the others perform classification tasks. In par-
ticular, ResNet exploits a residual neural network, while GoogLeNet (G.Net) and
VGG16 employ two different deep convolutional neural networks. All these four
models were trained and then used in inference mode with companion sample
images.

ROMA (α = 0.8, β = 0.5 and γ = 0) was set to use a static deploy-
ment strategy and we deployed all applications onto the two worker nodes. We
statically reserved GC = 0 cores for the GPUs, to say that the additional dis-
turbances introduced by the usage of CPUs for loading and operating GPUs are
handled by CT Controllers. These controllers were manually tuned: K = 0.15
and a = 0.11.

We compared ROMA against the four exemplar systems we implemented by
using a different heuristic for the GPU Scheduler and/or another type of con-
trollers instead of CT Controllers. All these systems used a round robin scheduler
(RR) for GPUs. In addition, system RR+rules used a rule-based controller that
allocated 1 additional CPU core to a model executable if the response time is
greater than or equal to 0.8 ∗ SLA. If the response time is equal to or less than
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Table 1. SLA and workloads.

Test Apps SLA Workload

2-Apps Skyline 0.38 20-20-80-80-20-20-20-20

G.Net 0.45 20-20-20-20-70-70-20-20

2-Apps ResNet 0.54 40-30-20-40-30-20-30-30

VGG16 0.56 20-30-40-20-40-40-30-30

AllApps Skyline 0.38 10-10-10-10-30-30-30-10

G.Net 0.45 10-30-30-30-10-10-10-10

ResNet 0.54 10-20-30-10-20-30-10-20

VGG16 0.56 10-30-20-10-30-20-10-20

Table 2. Comparison.

Test System τR τRM
τRσ V Res

2-Apps

G.Net

Skyline

ROMA 0.168 0.245 0.031 0 748

RR+CT 0.193 0.358 0.053 0 793

RR+rules 0.185 0.638 0.075 10 1165

RR+max 0.152 0.191 0.014 0 3600

RR+min 0.278 1.053 0.182 40 600

2-Apps

ResNet

VGG16

ROMA 0.266 0.553 0.068 10 1633

RR+CT 0.446 0.949 0.117 70 1750

RR+rules 0.701 3.829 0.528 120 1691

RR+max 0.337 0.711 0.092 40 3600

RR+min 1.537 4.423 0.464 180 600

AllApps ROMA 0.167 0.427 0.022 0 1767

RR+CT 0.325 1.372 0.130 90 2018

RR+rules 0.409 1.913 0.158 140 1973

RR+max 0.208 0.453 0.052 0 3600

RR+min 1.032 6.828 0.414 170 600

0.2 ∗ SLA it de-allocated a core. The control period was set to 15 s. System
RR+CT used the same CT Controllers as ROMA for managing CPU resources.
The control period was set to 1 s. System RR+max statically allocated all cores
(6 per worker) fairly distributed to applications. System RR+min statically
allocated a minimum amount of cores (1 per worker) equally distributed to
applications.

We tested the systems by running two concurrent applications at a time (test
2-Apps): i) GoogLeNet and Skyline Extraction and ii) ResNet and VGG16. We
repeated each test 3 times for a total of 60 executions (5 systems, 4 applica-
tions, and 3 executions). Table 1 shows the SLAs (in seconds) and workloads (in
incoming requests per second) used in the experiments. Each experiment lasted
300 s and the workload of each application was changed with a different step
(shown in column Workload) every 37 s (8 times). Table 2 shows the average
(τR) and maximum response times (τRM

) in seconds along with the standard
deviation (τRσ

), the number of SLA violations (V ), and the number of allocated
CPU resources (Res) measured as cores ∗ seconds.

With the first application pair, ROMA produced 0 violations and a resource
allocation equal to 748 (where the lower means the better). RR+rules allocated
1.5 times the resources used by ROMA without avoiding SLA violations and
obtained longer response times. RR+CT performed similarly to ROMA, but
ROMA allocated GPUs in a smarter way (i.e., lower average and maximum
response times) and thus relying on CPUs less frequently, which means saving
a greater amount of resources. The allocation of all cores makes RR+max the
fastest system, but by using more than 5 times the CPU resources utilized by
ROMA. Finally, RR+min consumed fewer resources than the other systems at
the cost of obtaining 40 SLA violations.

With the second application pair, ROMA obtained 10 SLA violations and
a resource allocation of 1633 cores ∗ seconds. Once again ROMA was able to
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(a) ROMA (b) RR+rules

Fig. 2. System experiments - All Apps.

outperform the other systems showing a better balance between violations and
resource usage, and lower average and maximum response times. Given the pres-
ence of VGG16, the use of GPUs was fundamental to make the system serve the
incoming workload. Results show that a round robin scheduling of GPUs was not
sufficient to avoid SLA violations even if all the CPU cores were always allocated
statically (RR+max produced 40 violations). Compared to ROMA, RR+rules
showed a higher response time and 120 SLA violations and an allocation of
almost the same amount of CPU resources. Even with a smarter allocation of
CPUs (RR+CT ) the obtained response time was almost double the one mea-
sured with ROMA and the number of SLA violations were 70. RR+min violated
the SLAs 180 times and also presented an average response time greater than
1.5 s (almost three times greater than set SLAs).

As final experiment, we ran the four applications concurrently (test All Apps)
for a total of 60 additional executions (4 applications, 5 systems, 3 repetitions
each). Table 2 presents obtained results and the charts of Fig. 2 show the response
times obtained with ROMA and with RR+rules (the best competitor) using the
workloads and SLAs reported in Table 1. ROMA was able to always keep the
response time under the SLAs (0 violations), with an overall average response
time equals to 0.167 s, a maximum response time of 0.427 s, and allocated 1767
cores ∗ seconds. In contrast, RR+rules frequently violated the SLAs while exe-
cuting VGG16 and ResNet, and resulted in slower executions (average and max-
imum response times equal to 0.409 and 1.913 s, respectively). RR+CT obtained
90 violations and higher response times than ROMA, while RR+max obtained 0
violations but allocated 3600 cores ∗ seconds. The combined use of the heuristic
that favors executions on GPUs for resource-hungry applications and its con-
trol theory-based CPU allocation made ROMA not only faster but also able to
exploit fewer resources than all the other systems (except w.r.t. RR+min that
violated the SLA 170 times).
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6 Related Work

Several solutions deal with the management of heterogeneous resources at the
node level but not GPUs. For example, the solution presented by Lakew et al. [16]
exploits control theory to provision multiple resources dynamically to satisfy
SLAs. Similarly to ROMA, they exploit containers and can reconfigure resources
dynamically. Farokhi et al. [8] present a fuzzy control approach that coordinates
the autoscaling of CPU cores and memory. They show that the coordinated
control of multiple resources outperforms the performance of the same system
with independent controllers.

These approaches manage complementary resources: CPUs uses memory
(and also disks) for completing a task, while ROMA exploits competing resources
since a request can be executed on either CPUs or GPUs. This means that
ROMA must consider both scheduling and resource provisioning while afore-
mentioned works focus only on the latter.

Different approaches focus on the management on GPUs and CPUs. For
example, Khadil et al. [13] present OSched, a resource-aware scheduler for
OpenCL jobs that aims to maximize the throughput of the hosting infrastruc-
ture. Chen et al. [4] propose a solution for improving the performance of MapRe-
duce applications by scheduling map and reduce tasks on CPUs and GPUs using
heuristics. They compared their approach with CPU-only and GPU-only versions
of the system obtaining an improvement between 20% and 110%.

Compared to these works, ROMA is different from both the control and
application domain point of views. First, the mentioned approaches focus on
the scheduling of computing tasks on GPUs and CPUs, while ROMA combines
both scheduling and fine-grained resource allocation in a comprehensive solu-
tion. ROMA’s scheduling heuristics cooperate with control-theoretical planners
in order to minimize constraint violations while optimizing resource usage. Sec-
ond, existing solutions focus on the management of GPUs in the context of long-
lasting compute intensive applications (e.g., machine learning training jobs),
while ROMA focus on interactive ML applications. To the best of our knowl-
edge ROMA is the first solution that provides an architecture, a deployment
model and a comprehensive resource management approach for ML inference.

7 Conclusions and Future Work

The paper presents ROMA, an extension of TensorFlow that eases the man-
agement and operation of ML applications executed on a cluster of heteroge-
neous resources (GPUs and CPUs) in inference mode. ROMA allows users to
constrain applications execution times and exploits scheduling heuristics and
control-theory based resource provision to run them efficiently. The assessment
of the work uses four real-world applications and shows promising results.
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Abstract. Shortest path query in road networks is of great importance
in various location-based services (LBSs). As the number of the query
grows, servers face a lot of pressure because queries are typically pro-
cessed at the server-side. Processing a larger number of simultaneous
queries efficiently has become an important research topic in recent years.
A direct solution is to deploy more servers to cope with a large number
of concurrent queries, however, this is resource-inefficient. To solve this
problem, batch shortest path (BSP) processing algorithms have been
proposed to answer a set of queries together using shareable computa-
tion. However, existing batch algorithms either assume the batch queries
are processed in advance or just use simple heuristics to decompose the
batch queries, which results in poor query efficiency. In this paper, we
design a deep learning approach to decompose the queries to improve the
performance of batch shortest path processing algorithms. Specifically,
we first propose a deep learning model to learn the representation of
queries, thus supporting accurate and efficient query similarity compu-
tation and decomposition. After that, we propose a batch shortest path
processing algorithm that provides an approximate solution with a high
cache hit ratio and low time consumption. Experiments on a large real-
world data set show that our method achieves better results than the
state-of-the-art methods.

Keywords: Batch shortest path processing · Representation learning ·
Query decomposition

1 Introduction

With the development of map-based applications and the proliferation of GPS-
enabled mobile technologies, many navigation software and car-hailing software
have emerged in recent years, such as Google Map, Didi, and Uber. These soft-
ware process different types of queries every day, e.g., finding the nearest restau-
rant, finding the shortest path to a destination. The most basic and important
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type of query among them is the shortest path query. Given an origin and a
destination in a road network, the shortest path query returns the path from the
origin to the destination that minimizes the cost between them.

Finding the shortest path between two vertexes is a fundamental research
problem and is the basis of many applications, such as road network routing [17],
knowledge graph question answering [26], and social network analysis [6,13,14].
The most used algorithms are Dijkstra’s algorithm [2] and A* algorithm [5],
but they are inefficient due to some unnecessary node visits. Therefore, a bunch
of index-based algorithms [1,3,9,10,19,20,27] have been proposed recently to
further reduce query cost. Although these algorithms can effectively improve the
efficiency of shortest path queries, they still have an obvious limitation: it costs
them a lot to maintain the index. These index-based algorithms need to construct
or update the index when the traffic condition changes. Such drawback becomes
much worse in dynamic road networks, where traffic condition is unstable and
the accident happens randomly.

Further, all the aforementioned algorithms only target at improving the effi-
ciency of answering a single shortest path query. They process queries one by
one and do not consider how to share computation among multiple concur-
rent queries. It is clear that the sub-path of a shortest path is still a short-
est path. Therefore, if a shortest path corresponding to a previous query is
〈v1, v2, · · · , v6, v7〉 and the current query’s answer is 〈v2, · · · , v7〉, then the two
queries can share the same path 〈v2, · · · , v7〉 to avoid duplicate calculation. Based
on this observation, some algorithms, such as [21], try to introduce caching tech-
nique to shortest path query processing. In particular, they store some shortest
paths in a cache so that all subsequent queries whose origin and destination lie
on the cached paths can be answered directly. However, the cache has to be
updated frequently due to low hit ratio when queries come randomly. If the con-
current queries can be decomposed with similar queries issued together, cache
hit ratio can be improved and cache refresh can be reduced.

Another type of solutions, namely batch shortest path processing algorithm
[8,15,18,24], processes a group of queries together to improve the query effi-
ciency. They adopt the path coherence [19] property of road networks to utilize
shared computation. Path coherence is a property where the shortest paths origi-
nated from spatially close set of locations S and terminated at another spatially
close set of locations T are likely to share a common path. Therefore, batch
shortest path processing algorithms attempt to decompose coherent queries into
several batches, in which the queries have a high probability to share the compu-
tation, and answer each batch within a single run, so as to minimize total query
cost. However, existing batch algorithms perform query decomposition simply
based on some heuristics such as the spatial closeness of origins and destinations,
leading to low query efficiency.

Clearly, a good query decomposition is indispensable to both cache-based
algorithms and batch shortest path processing algorithms. Therefore, in this
paper, we propose a deep learning based query decomposition approach to
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enhance the possibility of share computation and the performance of shortest
path algorithms. The major contributions of this paper are as follows:

– We propose a deep learning approach to automatically learn the representa-
tion of a shortest path query, which is the fundamental research problem of
query decomposition. The approach can learn more information from queries
than existing heuristics-based methods, and thus improves the effectiveness
of query decomposition.

– Based on the decomposed queries, we propose an efficient batch shortest path
processing algorithm to obtain an approximate shortest path. The efficiency
comes from a grid-based cache structure which can make full use of previous
computation results.

– We conduct extensive experiments on real-world road networks with real
query dataset. The results demonstrate that our approach outperforms exist-
ing methods in terms of efficiency and effectiveness.

The remainder of this paper is organized as follows: In Sect. 2, we discuss the
work related to shortest path querying. Some definitions and preliminaries are
given in Sect. 3. Section 4 formulates a model for query representation. Section 5
presents the detailed description of the batch shortest path processing algorithm.
The experimental results are presented in Sect. 6. Finally, Sect. 7 concludes the
paper.

2 Related Work

The problem of finding the shortest path from an origin to a destination on a
graph has been extensively studied in the literature. Dijkstra’s algorithm is the
most well-known approach for computing a single source shortest path with a
non-negative edge cost. But Dijkstra expands the search space until the des-
tination is reached, which costs much time. There are lots of speed-up tech-
niques proposed for shortest path querying during the past several decades [1,3–
5,7,9,10,16,19,20,22,27]. However, those algorithms only target improving the
efficiency of answering a single shortest path query. They do not consider how
to share computation among multiple queries. Several techniques have been pro-
posed to address this issue.

The batch shortest path processing algorithms adopt the path coherence phe-
nomenon in road networks to utilize shared computation. [15] first develops an
efficient clustering technique to group path queries based on similarities of Q-
lines. They find a common shortest path with respect to each group of path
queries and then compute the approximate shortest path for each path query
based on the common shortest path of the group. [18] uses the clustering tech-
nique to divide the queries into batches and proposes a group-based solution that
efficiently computes the shortest path of all the queries in a single pass. Global
Cache algorithm [21] uses a cache to store the most beneficial paths so that all
the sub-path queries of the cached paths can be answered directly. [24] introduces
a generalized A* algorithm to deal with a batch of queries with the same origin
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or destination. The state-of-the-art method [8] first uses heuristics to decompose
the query set, then uses a cache-based algorithm that takes advantage of the
previously decomposed query sets for efficient query answering.

The existing batch shortest path processing algorithms are mainly divided
into two parts. The first part is to decompose the query set into different sub-
query sets and the second part is to use a batch processing algorithm to solve
those queries in each sub-query set. The result of query decomposition directly
affects the efficiency of the batch processing algorithm. Therefore, a good query
decomposition is very important to the batch shortest path processing algorithm.

There are still some major limitations of the existing batch shortest path
processing algorithms. Firstly, query decomposition is determined based on sim-
ple heuristics such as the spatial closeness of query origins and destinations
or the angle between a reference line and the line between the origin and the
destination, which cannot generate a beneficial decomposition result sometimes.
Secondly, the most used batch processing algorithm is the cache-based algorithm,
which requires the origin and destination of the shortest path query to exactly
“hit” the cached paths to reuse the previous calculation. However, it is obvious
that queries with close origins or destinations can also share computations.

3 Definitions and Problem Statement

In this section, we present some definitions that are essential to understand the
problem to be addressed.

Road Network. A road network is a directed graph G = (V,E), where V is
a vertex set of locations and E ⊆ V × V is an edge set of road segments. A
vertex v represents a road junction or a road end, which has a spatial coordinate
(v.lon, v.lat) reflecting its longitude and latitude. An edge e = (u, v) ⊆ E repre-
sents a directed road segment and is associated with a non-negative numerical
weight w(u, v) that represents the cost to travel from vertex u to vertex v.

Trajectory. A raw trajectory is a sequence of GPS points, and each point is
denoted as 〈[xi, yi], ti〉, where g[i] = [xi, yi] denotes the spatial position and ti
denotes the timestamp. Since trajectory points should be on a road network,
we align trajectories to road segments using existing map-matching algorithm
and then use the sequences of vertexes to represent trajectories. We use the
timestamp of the GPS point closest to the vertex to represent the timestamp
of the vertex. Then a trajectory on a road network can be denoted as T =
〈〈v1, t1〉, · · · , 〈vn, tn〉〉. We regard each trajectory as the shortest path from the
origin vertex to the destination vertex.

Query. A Query consists of three parts: an origin vertex, a destination vertex,
and a departure time, which denoted as q = 〈o, d, t〉.
Shortest Path Query Set. Given an origin vertex set O and a destination
vertex set D, a shortest path query set is denoted as Q = {qi}, where qi =
〈oj , dk, ti〉(oj ∈ O, dk ∈ D) is a shortest path query. The size of Q satisfies:
max(|O|, |D|) ≤ |Q| ≤ |O| × |D|.
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Query Representation Learning. Given a collection of queries, a represen-
tation code ∈ R

n (n is the dimension of a Euclidean space) is learnt for each
query so that the representation can reflect the shortest path of the query for
computing query similarity.

Query Similarity. Given two shortest path queries qi, qj and their corre-
sponding representations codei, codej , the similarity sim(qi, qj) between qi and
qj is defined as the similarity d(codei, codej) between codei and codej , where
d(codei, codej) represents the distance between codei and codej .

Shortest Path Query Decomposition Problem. Given a shortest path
query set Q and a cost function C, the problem is to decompose Q into sev-
eral query subset Q̂ = {Qi}, such that Qi ⊆ Q,∪Qi = Q,Qi ∩ Qj = φ, and∑

Qi∈Q̂ C(Qi) is minimum.

4 Query Representation Learning

In this section, we propose a deep learning model to learn the representations
of shortest path queries. The similarity of queries is the foundation for query
decomposition. Although some works can calculate the similarity of trajectories,
such as [12,25], they cannot calculate the similarity of queries.

4.1 Model Overview

Figure 1 shows the architecture of our proposed model, which contains two mod-
ules. The first part, denoted as MQ, represents the query encoding model, aiming
to extract the hidden representation vector from the query. Here, a query con-
sists of an origin vertex o, a destination vertex d, and the departure time t.
We use road vertex embedding and time slot embedding to convert them into
fixed-length vectors. Then, we concatenate the vectors into a vector and use a
Multilayer Perceptron model (MLP) to encode the vector into a hidden rep-
resentation code. In particular, we feed the triple queries (anchor query, near
query, and far query) into the model to obtain the corresponding hidden rep-
resentations and use tripleloss to evaluate the difference between them. The
second part, denoted as MT , represents the trajectory encoding model, aiming
to extract the spatio-temporal representation for a given trajectory. Specifically,
for each element yk = 〈vk, tk〉 in trajectory, we use the same method to get its
vectors and concatenate them into a fixed-length vector. Finally, we obtain a
sequence of concatenated representations and use an LSTM model to embed it
into a fixed-length vector stcode.

Besides, we design an auxiliary task, aiming to bind anchor query to anchor
trajectory when training the model. In particular, for each input, we use MQ

and MT to learn the spatial-temporal information in the query and trajectory
and encode them into code and stcode respectively. Then we bind code and stcode
by minimizing their distance, which is denoted as auxiliaryloss. In the prediction
phase, we only use MQ to encode the anchor query and get the representation
of the query for query decomposition.
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Fig. 1. The architecture of our model

4.2 Training Sample Construction

Our model requires both near query and far query to supervise the learning.
We use the method in [23] to construct training input. First, we divide the
original trajectory evenly into k segments and average the trajectory points of
each segment as the representative point, to obtain a new trajectory of uniform
length k. Given a original trajectory T = {p1, p2, · · · , pl} of l GPS points, its
simplified trajectory T ′ is

T ′ =

{
1
c1

c1∑

i=1

pi,
1
c2

c1+c2∑

i=c1+1

pi, · · · ,
1
ck

l∑

i=1+l−ck

pi

}

(1)

Here, pi = (lati, loni) represents a point with latitude and longitude and
∑k

i=1 ci = l with ci ∈ [⌊
l
k

⌋
,
⌊
l
k

⌋
+ 1

]
. A trajectory is then represented as a

2k-dimensional vector, in the form of (T ′.lat1, T
′.lon1, · · · , T ′.latk, T

′.lonk).
Given a trajectory set T , we simplify all the trajectories in T and index them

using a 2k-dimensional k-d tree. Note, each point in the k-d tree corresponds
to the simplified trajectory of a trajectory in T . When we construct training
inputs, we select a trajectory in T as an anchor input Ia, and locate its k
nearest neighbors with the help of k-d tree. Among those k returned neighbors,
we randomly select one as near input Ine. We then randomly sample another
point in the k-d tree as far input If to complete the construction of one triplet
training sample. We find the original trajectories Ta, Tne, and Tf corresponding
to Ia, Ine, and If in T . Then we extract the queries qa, qne, and qf from Ta,
Tne, and Tf . So, the input of our model can be formalized as 〈qa, qne, qf , Ta〉.
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4.3 Model Representation

In our model, we consider the spatial-temporal information of the trajectory and
embeds it into the vector space.

Road Vertex Embedding. Each road vertex is identified by a unique id, while
the input of any machine learning method is usually a vector. One possible
solution is to use one-hot encoding to transform each road vertex id into a
|E|-dimensional vector. However, one-hot representation is too sparse and the
distance between any two one-hot codes is the same, so the distance between
different road vertexes cannot be distinguished. To address this issue, we design
a fully connected neural network to embed one-hot codes into dense vectors.
Formally, the process is represented by the formula:

[
D1,D2, · · · ,D|E|

]� =
[
O1, O2, · · · , O|E|

]�
Wv (2)

where Oi ∈ {0, 1}|E| represents the one-hot code of the i-th road vertex, Di

denotes the corresponding dense vector and Wv is the weight matrix of the fully
connected neural network.

Considering that each road vertex has influences on its linked road vertexes,
adjacent road vertexes should have similar representations. We try to use the
unsupervised graph embedding techniques node2vec to generate the initial rep-
resentation for each road vertex. Let W0

i be the embedding of the i-th road
vertex, we can thereby use the matrix W0

v = [W0
1, · · · ,W0

|E|] to initialize the
value of Wv.

Time Slot Embedding. The query departure time t is a timestamp, we need
to extract the temporal features from t. We treat the timestamp as a word
and turn it into a token in a sequence. First, we normalize the timestamps by
converting them into discrete time slots. Given a base timestamp t0 and a unit
time Δt, we can project timestamp t into a particular time slot ts as below.

ts = 	 t − t0
Δt


 (3)

Finally, the skip-gram algorithm is employed to derive the embedding sequence
with temporal information.

1
N

N∑

t=1

∑

−c≤j≤c,j �=0

logP (wt+j | wt) (4)

where wt+j stands for the neighboring slot of wt if current slot representation
wt is given.
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4.4 Loss Function

The representation is represented by code ∈ R
d. It embeds a query q into a

d-dimensional Euclidean space. Here we want to ensure that an anchor query qa
is closer to its near query qne than it is to any far query qf . Thus we use triple
loss to guide network training

tripleloss =
∑N

i
[||codeai − codenei ||22 − ||codeai − codefi ||22 + α]+ (5)

where α is a margin that is enforced between near query and far query,
||codeai − codenei ||2 is the euclidean distance between codeai and codenei . We use
the Euclidean metric

auxiliaryloss =
√∑

j
(code[j] − stcode[j])2 (6)

to evaluate the distance between code and stcode. Finally, we use the weighted
sum of tripleloss and auxiliaryloss as the final loss, the loss is computed as

loss = w × auxiliaryloss + (1 − w) × tripleloss (7)

where w is a tuning parameter.

5 Query Decomposition and Batch Processing

In this section, we present a batch shortest path processing algorithm, which
can benefit from the decomposition results. We combine Local Cache [8] with
Region-to-Region [8] batch algorithm. It is suitable to answer both long queries
and short queries.

5.1 Query Decomposition

It is usually unrealistic to achieve the optimal decomposition result because the
actual cost C(Q) cannot be obtained until the shortest path search finishes. So
we aim to decompose Q as fast as possible using query similarity while achieving
a more beneficial decomposition result than the existing heuristic approaches.

We use the generated data to train the model and use the model to learn the
representations of queries. After getting the representations of those queries, we
will decompose query set Q into different subsets {Qi} use K-Means. We use the
cosine similarity to measure the similarity of two query representations:

sim (qi, qj) =
codei · codej

‖codei‖‖codej‖ (8)

where codei and codej is the representation of qi and qj , respectively. Similar
queries will be clustered into the same group, and the batch algorithm proposed
in Sect. 5.2 will be used to find the shortest paths in each group.
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5.2 Batch Processing

Cache Structure and Query Processing. The shortest path caching tech-
nique makes use of the sub-path property of the shortest path: any sub-paths of
a cached path can be answered directly. Although a lot of improvements have
been made, the existing works still have a low cache hit ratio. In order to improve
the hit ratio, we extend the shortest path caching technique in [8], which uses a
super vertex to represent several nearby vertexes. Specifically, we first partition
the space into grids of equal size, as shown in Fig. 2(c). We aim to build cache
using grid id rather than using vertex id in query answering. In this way, a higher
hit ratio can be achieved.

Fig. 2. Cache structure

The cache structure is the foundation for the case-based algorithm. We build
an inverted list from grid id to its cached paths. When constructing the cache,
we not only save the id of the vertex but also save the id of the grid where the
vertex is located. For example, we have three cached paths p1, p2, p3 as shown
in Fig. 2(a). Path p1 consists of four vertexes, namely v1, v2, v3, v4 and the grid
id of each vertex is g5, g6, g7, g8. When path p1 is inserted into the cache, we
add its path number p1 to the inverted list of the grids g5, g6, g7, g8 respectively.
When a new query q(o, d, t) arrives, we first get the gird id of o and d. Assume
the id of the grid where o is located is go and d is gd. Then, we check whether
there exists the same path number in go’s and gd’s inverted lists. If there is no
identical path id, we process it using A* directly and cache it as long as the
current cache size does not exceed the cache limit.

If they have the same path id, we retrieve the path from the cache use
Algorithm 1. We first calculate the grid id of origin vertex o and destination
vertex d (line 2), namely go and gd respectively, and find the common path p∗

from cache (line 3). Each common path contains the path composed of grid id
p∗
grid and the path composed of vertex id p∗

vertex, as shown in Fig. 2(a). Then,
we get the positions of go and gd in p∗

grid respectively (line 4). After that, we
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intercept a path in p∗
vertex according to the positions of go and gd (line 5–8). This

path connects the two regions where the origin vertex o and the destination
vertex d are located. Finally, we computes the approximate shortest path for
the query based on the common shortest path (line 9). Suppose now there is a
new query q(v5, v4), we can get the grid id of the origin vertex and destination
vertex to be g1 and g8. The inverted lists of g1 and g8 contain the same path
number p3 and the positions of g1 and g8 in p3 are 0 and 3 respectively. So we
intercept the vertexes at positions 0 to 3 from the path p3, which is v5, v2, v3, v8.
Then we calculate the remaining part using A* directly. Finally, we can get
the approximate shortest path p(v5, v4) = sp(v5, v5) + sp(v5, v8) + sp(v8, v4) =
(v5, v2, v3, v8, v4), where sp(, ) represents the shortest path between two vertexes.

Algorithm 1: Retrieve Path
input : Cache C, origin vertex o, destination vertex d
output: Approximate shortest path p

1 p ← φ ;
2 go = getGridId(o), gd = getGridId(d);
3 p∗ ← C(go)

⋂
C(gd);

4 Io = p∗
grid.indexOf(go), Id = p∗

grid.indexOf(gd);
5 if Io < Id then
6 p = p∗

vertex[Io : Id];

7 else
8 p = reverse(p∗

vertex[Io : Id]);

9 p ← sp(s, p[0]) + p + sp(p[end], t);
10 return p

Batch Query Answering. Suppose the queries come in several batches B.
When the first batch B1 comes, we decompose it and create caches to answer its
queries. When Bi comes, the caches are destroyed and new caches are created by
the coming batch. Note that since we have considered the shortest path between
a source region and its corresponding destination region in the cache, this path
may not be the best path for every source-destination point pairs. Thus some
path queries may result in a slightly larger path than the optimal shortest path.

6 Experiments

In this section, we evaluate the performance of our proposed algorithms over a
real-world road network and a taxi trajectory dataset. The deep learning model
was implemented in PyTorch and the batch shortest path processing algorithms
were all implemented in Julia, and tested on a CentOS Server with two Xeon
E5-2650 CPUs and four GTX 1080 Ti GPUs.
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6.1 Experiment Setting

Dataset. We obtain the road network of Beijing from OpenStreetMap, which
consists of 44840 intersections and 75576 roads. We use a Beijing Taxi Trajec-
tory Dataset [11] in our experimental study. The dataset consists of one-month
trajectory data of near 8000 taxis in Beijing, China during May 2009. We aligned
the GPS points in trajectories with road networks, then used the sequence of
road vertex to represent a trajectory, as introduced in Sect. 3. The origin vertex
and destination vertex in the sequence are regarded as a shortest path query.

Hyper Parameters Setting. We split the dataset into the training set, vali-
dation set, and test set in the ratio 5:1:4. We set the length of simplified trajec-
tory T ′, the dimension of road vertex embedding and time slot embedding, the
dimension of final query representation, and the loss weight w to 5, 256, 256,
0.4, respectively. The default cell size in the experiments is 100 m × 100 m and
we decompose the query set into 3 sub-sets use K-Means.

Baselines. Our representation method is denoted as Representation Learning
Decomposition (RLD). RLD-V represents only road vertex embedding is used
for query representation and RLD-T represents only time slot embedding is used
for query representation. We consider the following baselines:

– Global Cache(GC) [21]: Global Cache uses the entire query set to build the
cache directly without query decomposition.

– Zigzag Decomposition(ZZD) [8]: Zigzag Decomposition first decomposes the
queries into several 1-N subsets based on angle/distance thresholds and then
merges the similar subsets into larger sets.

– Search Space Estimation Decomposition(SSE) [8]: This method calculates
the similarity of the query based on the estimated search space and then
decomposes the queries based on query similarity. SSE has its distance sorted
version SSE-S and random version SSE-R.

Our batch processing algorithm is denoted as Grid-based Local Cache (GLC).
It is compared with Local Cache (LC) [8] and Region-to-Region (R2R) [8].

We generate queries with the size of 10K, 100K, 500K, and 1M from the test
set. We use the first 20% queries in each query set to construct the cache, and
we use it as the size limit of each local cache. We analyze the effectiveness of our
method from three aspects: hit ratio, answering time and average error. The hit
ratio is computed as Rh =

∑
hi/|Qi|, where |hi| is the number of query hit by

each cache. The error is computed as ε =
∑ |d∗

i − di| /di, where di is the actual
distance and d∗

i is the approximate distance. The average error is computed on
all the approximate queries, excluding the accurate ones.
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6.2 Experimental Results

Effectiveness of Query Decomposition. Figure 3 shows the experimental
results of the cache hit ratio under different decomposition methods. As shown
in Fig. 3(a) and Fig. 3(b), the hit ratio increases as the query size becomes larger,
regardless of whether we use GLC or LC. The hit ratio of ZZD is always the
lowest because it decomposes the query set into too many subsets. The RLD
performs better than all heuristics methods because deep learning can learn more
spatial information than heuristic methods to have better decomposition results.
Comparing Fig. 3(a) and Fig. 3(b), we can see that GLC gets a higher hit ratio
than LC in all test sizes. In summary, our decomposition method can improve
the efficiency of the cache-based batch shortest path processing algorithm.

Fig. 3. Cache hit ratio under different decomposition methods

Fig. 4. Parameter effect

We also did ablation experiments to see the effect of different components
of the model on performance. As we can see from Fig. 3(a) and Fig. 3(b), RLD-
V has a higher hit ratio than RLD-T. This shows that the model considers
more spatial information when making decisions. If two kinds of information are
considered, the best result will be obtained.
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Since the decomposition results are consistent with different values of related
parameters, we assess the effect of these parameters on the cache hit ratio use
the 1M query set. Figure 4(a) shows the hit ratios under different dimensions of
learned representation, it can be seen that it is optimal when the value is 256,
and gradually decreases after that. As can be seen from Fig. 4(b)(c)(d), the hit
ratio is the best when the cluster number is equal to 3, the loss weight w is equal
to 0.4, and the dimension of road vertex and time slot embedding is 256.

Fig. 5. Results of different BSP algorithms

Effectiveness of Batch Processing. The cache construction time is shown in
Fig. 5(a) and the query answering time is shown in Fig. 5(b). Naturally, all of the
cache construction time increases as the query size grows. When the query size is
10K, the A* performs best. The main reason is that the cache-based algorithms
need time to check whether the query hits the caches and cache the path, but
the caches that take time to build are not used by the subsequent queries due to
the low hit ratio. RLD+GLC performs the best, except in the query size is 10K,
its answering time is 45% faster than that of A*. The time complexity of RLD is
O(n). The time complexity of the heuristics methods is O(n log n), although they
use a quadtree to speed up the process. RLD+GLC has a lower time complexity
and improves the cache hit ratio, which makes for a faster answering time. The
query answering time becomes faster as the query size grows. The reason is that
a larger number of queries are answered by the cache.
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Table 1. Average error and cache size

Average error (%) Cache size (MB)

RLD+GLC R2R RLD+GLC

10K 1.9 1.07 0.86

100K 6.6 1.58 7.1

500K 12 2.63 36

1M 14.6 3.41 72

Table 1 shows the average error and cache size in different sizes of query
sets. Cache size grows linearly as the query size increases. The average error
increases as the size of the query set increases. The reason is that as the query
set increases, the cache hit rate increases, and more paths are directly calculated
by the cache. The path calculated using the cache will cause the error to become
larger. The average error of R2R algorithm is lower than that of RLD+GLC. R2R
takes strict measures in the decomposition stage, which makes the query set to
be decomposed into many subsets. This means that most queries are processed
using A* directly and only a few queries find approximate paths through the
previous results. In RLD+GLC, more queries find approximate paths through
the caches, which leads to a larger average error. But even so, our experimental
result shows the deviation of the path returned by RLD+GLC from the optimal
path is only about 14.6% in the average case. On the contrary, the answering
time of RLD+GLC is better than that of R2R algorithm, as shown in Fig. 5(b).
Besides, we provide RLD+LC for accurate calculation, which also has a better
answering time than A*.

7 Conclusion

We study the problem of batch processing of shortest path queries in this paper.
To solve the problem of the low cache hit ratio of existing works, we use a deep
learning method to learn the representation of the query and decompose the
query set into different sub-sets based on the learned representation. Moreover,
we design a batch shortest path processing algorithm that takes advantage of
the previously decomposed sub-query sets for efficient query answering. The
performance of the methods is investigated through extensive experiments on a
real-world dataset.

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (Grant Nos. 61572336, 61632016, 62072323), the Natural Science
Foundation of Jiangsu Province (Grant Nos. BK20211307, BK20191420), the Major
Program of the Natural Science Foundation of Jiangsu Higher Education Institutions
of China (Grant Nos. 18KJA520010, 19KJA610002), and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.



Learning Based Query Decomposition for Batch Shortest Path Processing 271

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: SIGMOD 2013, pp. 349–360.
ACM (2013)

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

3. Fu, A.W., Wu, H., Cheng, J., Wong, R.C.: IS-LABEL: an independent-set based
labeling scheme for point-to-point distance querying. PVLDB 6(6), 457–468 (2013)

4. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph
theory. In: SODA 2005, pp. 156–165. SIAM (2005)

5. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

6. Jo, Y., Jang, M., Jung, H., Kim, S.: A high-performance graph engine for efficient
social network analysis. In: WWW 2018, pp. 61–62. ACM (2018)

7. Li, L., Wang, S., Zhou, X.: Time-dependent hop labeling on road network. In:
ICDE 2019, pp. 902–913. IEEE (2019)

8. Li, L., Zhang, M., Hua, W., Zhou, X.: Fast query decomposition for batch shortest
path processing in road networks. In: ICDE 2020, pp. 1189–1200. IEEE (2020)

9. Li, L., Zheng, K., Wang, S., Hua, W., Zhou, X.: Go slow to go fast: minimal on-road
time route scheduling with parking facilities using historical trajectory. VLDB J.
27(3), 321–345 (2018)

10. Li, Y., Leong Hou U, Yiu, M.L., Kou, N.M.: An experimental study on hub labeling
based shortest path algorithms. PVLDB 11(4), 445–457 (2017)

11. Lian, J., Zhang, L.: One-month Beijing taxi GPS trajectory dataset with taxi ids
and vehicle status. In: DATA@SenSys 2018, pp. 3–4. ACM (2018)

12. Liu, A., Zheng, K., Li, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity
computation on encrypted trajectory data. In: ICDE 2015, pp. 66–77. IEEE (2015)

13. Liu, G., et al.: MCS-GPM: multi-constrained simulation based graph pattern
matching in contextual social graphs. IEEE TKDE. 30(6), 1050–1064 (2018)

14. Liu, G., et al.: Multi-constrained graph pattern matching in large-scale contextual
social graphs. In: ICDE 2015, pp. 351–362. IEEE (2015)

15. Mahmud, H., Amin, A.M., Ali, M.E., Hashem, T., Nutanong, S., et al.: A group
based approach for path queries in road networks. In: Nascimento, M.A. (ed.)
SSTD 2013. LNCS, vol. 8098, pp. 367–385. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40235-7 21

16. Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets
2-hop-labeling: efficient shortest distance queries on road networks. In: SIGMOD
2018, pp. 709–724. ACM (2018)

17. Pedersen, S.A., Yang, B., Jensen, C.S.: Anytime stochastic routing with hybrid
learning. PVLDB 13(9), 1555–1567 (2020)

18. Reza, R.M., Ali, M.E., Hashem, T.: Group processing of simultaneous shortest
path queries in road networks. In: MDM 2015, pp. 128–133. IEEE (2015)

19. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: SIGMOD 2008, pp. 43–54. ACM (2008)

20. Sankaranarayanan, J., Samet, H., Alborzi, H.: Path oracles for spatial networks.
PVLDB 2(1), 1210–1221 (2009)

21. Thomsen, J.R., Yiu, M.L., Jensen, C.S.: Effective caching of shortest paths for
location-based services. In: SIGMOD 2012, pp. 313–324. ACM (2012)

https://doi.org/10.1007/978-3-642-40235-7_21
https://doi.org/10.1007/978-3-642-40235-7_21


272 N. Chen et al.

22. Wagner, D., Willhalm, T., Zaroliagis, C.D.: Geometric containers for efficient
shortest-path computation. ACM J. Exp. Algorithmics 10 (2005)

23. Zhang, H., et al.: Trajectory similarity learning with auxiliary supervision and
optimal matching. In: IJCAI 2020, pp. 3209–3215 (2020)

24. Zhang, M., Li, L., Hua, W., Zhou, X.: Batch processing of shortest path queries in
road networks. In: Chang, L., Gan, J., Cao, X. (eds.) ADC 2019. LNCS, vol. 11393,
pp. 3–16. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12079-5 1

25. Zhang, Y., Liu, A., Liu, G., Li, Z., Li, Q.: Deep representation learning of activity
trajectory similarity computation. In: ICWS 2019, pp. 312–319. IEEE (2019)

26. Zhao, C., Xiong, C., Qian, X., Boyd-Graber, J.L.: Complex factoid question
answering with a free-text knowledge graph. In: WWW 2020, pp. 1205–1216. ACM
(2020)

27. Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route
search on road networks. IEEE TKDE 29(9), 1846–1859 (2017)

https://doi.org/10.1007/978-3-030-12079-5_1


An Adaptive Charging Scheduling
for Electric Vehicles Using Multiagent

Reinforcement Learning

Xian-Long Lee1 , Hong-Tzer Yang1(B) , Wenjun Tang2 , Adel N. Toosi3 ,
and Edward Lam4

1 Department of Electrical Engineering, National Cheng Kung University,
Tainan City, Taiwan

xllee@mail.ee.ncku.edu.tw, htyang@mail.ncku.edu.tw
2 Smart Grid and Renewable Energy Lab, Tsinghua-Berkeley Shenzhen Institute,

Shenzhen 518055, China
monikatang@sz.tsinghua.edu.cn

3 Department of Software Systems and Cybersecurity, Faculty of Information
Technology, Monash University, Clayton, VIC 3800, Australia

adel.n.toosi@monash.edu
4 Department of Data Science and Artificial Intelligence, Faculty of Information

Technology, Monash University, Clayton, VIC 3800, Australia
edward.lam@monash.edu

Abstract. Scheduling when, where, and under what conditions to re-
charge an electric vehicle poses unique challenges absent in internal com-
bustion vehicles. Charging scheduling of an electric vehicle for time- and
cost-efficiency depends on many variables in a dynamic environment,
such as the time-of-use price and the availability of charging piles at a
charging station. This paper presents an adaptive charging scheduling
strategy that accounts for the uncertainty in the charging price and the
availability of charging stations. We consider the charging scheduling of
an electric vehicle in consideration of these variables. We develop a Mul-
tiagent Rainbow Deep Q Network with Imparting Preference where the
two agents select a charging station and determine the charging quan-
tity. An imparting preference technique is introduced to share experience
and learn the charging scheduling strategy for the vehicle en route. Real-
world data is used to simulate the vehicle and to learn the charging
scheduling. The performance of the model is compared against two rein-
forcement learning-based benchmarks and a human-imitative charging
scheduling strategy on four scenarios. Results indicate that the proposed
model outperforms the existing approaches in terms of charging time,
cost, and state-of-charge reserve assurance indices.
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1 Introduction

The production and sale of electric vehicles (EVs) have grown considerably in
recent years. This growth is mainly driven by stringent regulations on greenhouse
gas emissions that cannot be met by internal combustion vehicles [3]. Despite
their phenomenal growth, unresolved issues hinder their widespread adoption.
Like the fuel price for conventional vehicles, the charging price for EVs varies
in time and differs at each Charging Station (CS) due to the time-of-use (ToU)
electricity price and other factors. In contrast, the duration of recharging an EV
compared to conventional vehicles sometimes renders EVs impractical. Charging
its battery can require 20 to 30 min for fast charging and can make a CS unavail-
able to incoming vehicles [14]. Therefore, drivers of EVs must manage time- and
cost-efficient charging plans to meet their requirements (e.g., minimizing charg-
ing cost or the queuing time) and the characteristics of their EVs.

These issues raise a practical challenge to scheduling recharges en route. To
formulate the problem, we consider concepts from the Internet of Things and
Edge Computing [9]. Communication technologies, such as fifth-generation (5G)
cellular networks, have promoted the role of vehicles to an intelligent platform
that can provide a wide range of services. Connected vehicles display a variety
of applications on Edge Computing architectures [13]. Owing to the benefits of
these advanced technologies, we propose a charging scheduling service that has
the potential to use the in-vehicle infotainment system to display recommenda-
tions for charging an EV. The charging scheduling service receives data from
sensors on an EV and from nearby CSs to provide recommendations on charging
schedules in real-time. In particular, we aim to address the following questions:
1) how can the EV select CSs and determine charging schedules that meet the
driver’s requirements given limited data from nearby CSs; and 2) how much
energy to recharge at each CS in order to avoid excessive charging times while
maintaining best practice guidelines on State-of-Charge (SoC), which require
EVs to maintain a minimum SoC of 20% [15].

In this paper, we propose a multi-objective problem to solve the challenges
described above. Utilizing a Reinforcement Learning (RL) approach, the pro-
posed charging scheduling model provides an adaptive charging scheduling for
the EV en route. The RL agent receives data from its sensors and makes charg-
ing decisions in real-time. The advantage of using RL to make charging deci-
sions is that the agent is trained to maximize their long-term objectives without
supervision. The agent can avoid recharging when the charging cost or waiting
time is suboptimal in order to recharge in optimal circumstances. However, it
is challenging for a single RL agent to tackle the multi-objective problem as
the single agent faces a high-dimensional action space. We design a Multiagent
Rainbow Deep Q Network (DQN) with Imparting Preference model (MRDI) to
address the charging scheduling problem. Rainbow DQN [4] is applied as the base
agents to construct the proposed multiagent model. The proposed MRDI model
is designed with two agents to make charging decisions based on estimates of
an optimal charging price and occupancy rate while considering charging times,
and charging quantity while en route. In summary, the key contributions of this
paper are as follows:
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– Adaptive Charging Scheduling : The proposed charging scheduling estimates
the state of the environment and provides an optimal charging decision. Fur-
thermore, the system computes the least amount of energy to recharge and
maintains a minimal SoC in the battery upon arrival at the destination. The
charging scheduling adapts to the dynamic CS environment and makes charg-
ing decisions only when necessary.

– Multiagent structure with Imparting Preference: The proposed MRDI model
is developed with two Rainbow DQN agents. The agents work on different
tasks while jointly learning to perform a cooperative objective. We adopt the
imparting preference technique to share experience between the two agents.
As a result, it enhances the performance of the model to generate the charging
scheduling. The schedule considers cost and time efficiency while considering
charging times and a minimum amount of energy.

– Real Data Simulation and Evaluation: We employ realistic CS and EV data
to simulate four practical scenarios of an EV driven along the routes. The
experiment is compared with three baselines methods to explore the physical
indications behind the charging decisions. The results demonstrates that the
proposed MRDI model achieves better charging scheduling compared to the
baselines in the four scenarios.

The rest of the paper is organized as follows: In Sect. 2, we give an overview
of the related work on the charging scheduling problem. In Sect. 3, we describe
our proposed charging scheduling method. We report experimental results in
Sect. 4. Section 5 concludes the paper.

2 Related Work

An increasing number of studies have been conducted regarding the optimization
of CS charging scheduling problems for a fleet of EVs. Zhou et al. [19] proposed
a charging scheduling model to minimize the charging cost while enduring a few
uncertainties, i.e., intermittent prediction of renewable generations and inde-
terminacy of EV arrival time. Li et al. [5] proposed a model-free approach and
formulate an EV charging scheduling problem that tackles the uncertainty in the
arrival and departure times. However, these studies do not focus on the charging
scheduling problem from the perspective of the EV.

We focus on the charging scheduling problem from the EV’s point-of-view to
search through nearby CSs. Prior work have explored the optimization of EV
charging scheduling considering cost, charging time, and waiting time. Yang et al.
[17] formulated the EV charging time optimization problem by receiving global CS
information while en route. The EV’s waiting time at CSs is minimized, but they
do not consider the charging price at the CSs. Yang et al. [16] proposed a charging
scheduling that considers the dynamic charging price of CSs while the EV drives
along a planned route. However, the charging scheduling neglects the uncertainty
of charging slots. Cao et al. [1] proposed a centralized system that allows the EV
to reserve a charging pile and resolves the occupancy rate problem from the CSs.
However, EVs in this study must connect to a centralized system to communicate.
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Considering that individual drivers tend to charge their EVs at their convenience,
a centralized system could be impractical in realistic scenarios.

While en route, the EV is presumed to encounter different CSs, which forms a
dynamic environment to determine the charging schedule. The adaptive charging
scheduling aims to build a service that suggests and selects a preferable CS
to charge in the near future. A stochastic optimization problem is of interest,
in which some information is previously unknown, but can be obtained in the
query time. RL has proven to be an effective technique for handling dynamic
environments in various domains [7,12,18]. RL has been used to optimize the
charging cost of a fleet of EVs based on the perspective of CS. Da Silva et al.
[2] proposed a Multiagent Multiobjective RL method that minimizes the energy
cost for recharging. The RL model adapts by changing the charging decisions
whenever a new EV arrives at the CS. Panayiotou et al. [8] devised a charging
scheduling by applying the RL model considering the price, charging times, and
distance while driving in a planned route. However, these approaches do not
consider the occupancy rate of each CS and assume that the EV can charge
upon arrival. These studies demonstrate that RL is feasible and applicable to
the charging scheduling problem.

3 The Charging Scheduling Model

This section presents the charging scheduling problem while en route. We reduce
our charging scheduling problem to a discrete-time stochastic control process.
Then, we formulate the charging scheduling problem into a Markov Decision
Process (MDP), which is then subsequently solved using RL. Finally, we demon-
strate how the proposed MRDI structure is developed based on the Rainbow
DQN agents with imparting preference. The agents are designed with a shared
objective and produce decisions corresponding to the charging schedule.

3.1 Problem Description

Building an effective charging schedule in a dynamic environment poses many
challenges. Figure 1 illustrates the problem framework. The driver anticipates
that they will encounter CSs en route. It is challenging to determine the charg-
ing schedule under diverse CS information within a certain radius. Following
charging preferences, the driver is searching for a suitable CS based on a few
factors, e.g., time- and cost-efficiency. We consider the charging scheduling to
take charging decisions only when necessary to avoid superfluous charging times.
The charging quantity associated with each charging decision must also be opti-
mized to prevent charging excessively. Furthermore, the current best practice for
recharging a battery stipulates that it must hold between 20% and 80% SoC [15].
When the EV arrives at the destination, its SoC must maintain enough energy to
accommodate a future trip. The proposed charging scheduling problem focuses
on multiple considerations when taking charging decisions en route, i.e., selecting
optimal CSs based on time-efficient and cost-efficient indices, charging quantity,
charging times, and battery constraints.
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Fig. 1. An illustration of the charging scheduling problem.

3.2 MDP Problem Formulation

We decompose the charging scheduling problem into two individual tasks that
are jointly considered in a practical charging scheduling. We thus formulate the
charging scheduling problem as a multiagent MDP. A multiagent MDP is a
tuple 〈S,Ai,P i,Ri, γ〉, which comprises of a set of states S, action space Ai,
the transition probabilities of P i, and the reward function of Ri. i denotes the
index of the agents and γ ∈ (0, 1] represents the discount rate. S is the state
space of the joint environment. The agents observe the state and interact with
the environment by taking actions from their action space Ai. P i comprises
probabilities of transferring from the current state to the next state. Ri is the
reward received by the agents when taking the actions.

Typically, the objective of an RL model is to maximize the sum of rewards
over a sequence of time steps. At each time step t ∈ T , agent i observes the
state st and chooses the actions that produce the next state st+1 according
to the transition probability pi(st+1|st, a

i
t), where st, st+1 ∈ S, and ai

t ∈ Ai.
The agents choose actions according to their policy πi(ai

t|st) where st ∈ S and
ai

t ∈ Ai. The state st generates reward values ri
t(st, a

i
t, st+1) ∈ Ri, reflecting by

the actions ai
t at state st. Through the sequence, the agents aim to maximize

their cumulative reward ri
t(st, a

i
t, st+1) by following a policy πi. The expected

cumulative reward function is Eai∼πi,s∼T [
∑T

t=1 γtri
t(st, a

i
t, st+1)].

State: In each time step, the EV expects to encounter CSs within a defined
radius. The EV will drive to its destination over the time interval t = 1, 2, . . . , T .
Let soct be the SoC of the EV at time step t. The energy consumption et denotes
the energy consumption between the previous time step and the current time
step t and is calculated by et = (soct − soct−1) ∗ bcap, where bcap is the battery
capacity. In each time step, the EV collects data from up to ten of the nearest
CSs within a certain radius. The EV collects the charging price λz,t, where z =
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{1, 2, ..., 10} is the index of the CS at time t. Other than the price, occz,t denotes
the occupancy rate of the CS z at time t where occz,t ∈ [0, 1]. If all charging piles
at CS z are occupied at time t, the occupancy rate occz,t is equal to 1. All of
the CS charging prices λz,t and occupancy rate occz,t values are normalized with
min-max normalization, where the values represent the range from 0 to 1. Each
CS can be represented as a pair csz,t = (λz,t, occz,t). In summary when the EV
drives along a route, the EV receives the state st = [(λ, occ)z,t, (soct, et)] ∈ S.

Action: Consider the optimal charging scheduling while en route, the EV owner
requires two decisions at each time step t: 1) the decision to select a CS and 2)
the quantity of energy to charge sequentially. While two decisions need to be
made, we separate the decisions into two actions. In the multiagent settings, we
consider two agents to carry out the two actions respectively. The first agent
has 11 discrete actions to choose from regarding selecting an index z of the CS
to charge where a1

t = {0, 1, 2, ..., 10} and a1
t = 0 represents the decision of not

selecting any CS at the current time step. The second agent has to determine
a charging quantity at each time step. The second action set a2

t = {0, 1, ..., 9}
contains 10 discrete actions. The action a2

t can be interpreted as a charging ratio
of the quantities, and action 0 means no charging. We calculate the charging
amount with a charging scale function

q(a2
t ) =

a2
t (socupper − soct)

9
, (1)

where socupper is an upper bound of the battery’s SoC. It charges at different
quantities based on the current SoC.

Transition Probability: The transition probability pi(st+1|st, a
i
t) is affected

by the charging decisions and energy consumption while en route. Initially, the
model interacts with the environment, in which the transition from state st to
state st+1 is controlled by action at. The state-action pairs are stored to learn to
estimate the optimal policy, which approaches the optimal charging scheduling
decision through the episodes.

Reward: We evaluate the two decisions in terms of selecting an optimal CS
and charging quantity through the time series. The search for an optimal CS
csz,t aims to emphasize minimizing the price λz,t and occupancy rate occz,t. To
balance between the price and occupancy rate, we consider a trade-off parame-
ter ξ to calculate weighing between the price and occupancy. The first reward
function is presented as follows:

r1t =
ξ

(λz,t)
η +

(1 − ξ)
(occz,t)

η , (2)

where η is an amplification factor and acts as the incentive to amplify the differ-
ences in rewards. By powering the values of price and occupancy rate, the optimal
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selections separate from other decisions through the sequence. As a result, the
reward is amplified for the agent to learn the optimal decision of price and occu-
pancy rate. Subsequently, the decision regarding the charging amount must not
charge above an upper bound socupper of the SoC. The constraint to regulate
the charging amount can be expressed as soct + q(a2

t ) ≤ socupper. The charging
amount aims to charge as least amount as possible. Also, it is impractical to take
charging decisions frequently. We define a frequent charging penalty coefficient
ζ where ζ ∈ (0, 1] to discourage the second agent from charging excessively. On
the other hand, the ϕ reward apprises the agent when it is possibly better not to
charge frequently en route. The second reward function for the charging quantity
can be denoted as follows:

r2t=1,...,T−1 =

{
ζ

q(a2
t )

, a2
t = {1, ..., 9}

ϕ, a2
t = 0

(3)

where t = 1, 2, ..., T − 1. Conditionally, we improve the reward function for the
agent to be aware of the rule when the episode ends, that is, to save sufficient
energy at the end of the time step T − 1. The parameters α and β inform the
second agent to follow the rule of an assurance threshold. At the end of the
time horizon, the current SoC compares with an assurance threshold parameter
δ. The second agent’s reward, on the evaluation of the charging amount, is
promoted if the SoC fulfills the constraint. And discouraged if the SoC violates
the restriction. The adjusted reward function is shown as follows:

r2T−1 =

{
r2T−1 + α, socT−1 ≥ δ

r2T−1 − β, socT−1 < δ
(4)

3.3 Multiagent Framework

In this section, we present our MRDI model approach to challenge the charg-
ing scheduling problem. Hessel et al. [4] introduced the Rainbow DQN model
and achieved state-of-the-art performance on Atari games. The Rainbow DQN
is best constructed from multiple improvements from the original DQN model
[6]. The Rainbow DQN combines the DQN algorithm as a base model with Dou-
ble DQN, dueling DQN, prioritized experience replay, distributional reinforce-
ment learning, n-step learning, and noisy network for exploration. The proposed
MRDI model assembles two Rainbow DQN agents. In the multiagent setting,
the complexity grows exponentially with the action-space dimension for a single
agent to explore. We consider two agents to observe the same state and take two
actions simultaneously for the charging scheduling problem. The actions jointly
optimize the charging scheduling decisions and provide a practical solution. The
first agent’s experience is imparted to the second agent, improving the overall
charging scheduling objective. The second agent aims to choose a decisive charg-
ing quantity that is related to the preferred CS. Also, it assists the second agent
to reduce excessive charging amounts.
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SharedObjective and ImpartPreferences. On exploring with adequate iter-
ation training, theMRDImodel gains sufficient historical experience and estimates
to approach the optimal charging scheduling, namely, the ideal selection of a CS
and charging quantity. However, it seems ambiguous if one agent takes aNo action,
but the other agent chooses solution action, i.e., a1

t = 0 with a2
t �= 0 or vice versa.

We introduce an imparting preference technique to transfer the preference with an
AND logical gate. If both the two actions chooses a Yes action, i.e., a1

t �= 0 AND
a2

t �= 0, we interpret this action as a logical true state. We use the normalization
factors ν1, ν2 to normalize the rewards r1t , r2t . The discount factor ψ ∈ (0, 1] is
to discourage impractical decisions from the two agents. As a result, both agents
learn to perform charging decisions simultaneously and avoid impractical choices.
The calculated reward of r2t in each time step is defined as:

r2t =

{
ψ(ν1r1t + ν2r2t ), a1

t ∧ a2
t = 0

ν1r1t + ν2r2t , a1
t ∧ a2

t = 1
(5)

Multiagent Rainbow DQN with Imparting Preference. The proposed
MRDI model is constructed based on the Rainbow DQN [4] agents with the
imparting preference technique. Algorithm 1 describes our MRDI framework.
Given a set of states S received by the EV, T is the time slot while en route, a
batch size N to sample from the Prioritized replay buffers (B1,B2), and Rainbow
agents (I1, I2). In the training stage, the MRDI model starts from performing
through the time series T in episode E. For each time slot, the Rainbow agents
perform actions based on the current state and compute the rewards sequentially
(line 6–8). Afterward, the MRDI model imparts the first agent’s reward to the
second agent, while the model discounts the ambiguous decisions from the second
reward (line 9). The transitions (st, a

1
t , r

1
t , st+1) and (st, a

2
t , r

2
t , st+1) are stored

in the Prioritized replay buffers (B1,B2) to perform mini-batch training on the
model. Instead of sampling from the buffer uniformly, the Prioritized Replay
samples important transitions more frequently, therefore, learn more efficiently.
The n-step learning technique, introduced by [10], is adopted to sample forwardly
with multiple steps of reward instead of a single reward value. The number of
steps n is a hyper-parameter that often leads to faster learning [11]. In conclusion,
the proposed model determines the charging scheduling for the EV while en
route. Unlike Atari games, the charging scheduling problem does not consider
finding the shortest paths from all states to a goal state. The problem is required
to explore through the time slots in each episode. As a result, the complexity of
the proposed model is O(n2) based on the route’s length.

4 Performance Evaluation and Experiments

We conducted experiments in a realistic simulator by applying real-world data
from historical CSs and vehicle driving data. We used driving records from pub-
lic transportation data to derive EV energy consumption. We developed a dis-
tributed environment of CSs from historical data. We discuss the design of the
realistic simulator in the next section.
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Algorithm 1: MRDI
Input: episode number E; each episode’s step number T ; state s1, s2, ..., sT ;

batch to train N
1 Initialize Rainbow agents (I1, I2), Prioritized replay buffer (B1, B2)
2 for episode = 1, 2, ..., E do
3 Initialize state
4 for t = 1, 2, ..., T do
5 while not terminal do
6 agents chooses a1

t and a2
t based on its state st

7 process and compute action a2
t (Equation 1)

8 compute rewards r1t , r2t (Equation 2, 3, 4)
9 Imparting preference and compute r1t and r2t (Equation 5)

10 Obtain next state st+1

11 Compute N -step learning reward and store transitions
(st, a

1
t , r

1
t , st+1) and (st, a

2
t , r

2
t , st+1) in B1, B2 respectively

12 if size of B1, B2 ≥ N then
13 Sample mini-batches from prioritized buffer B1, B2

14 Compute N -step learning loss and update agents I1, I2

respectively
15 end

16 end

17 end

18 end

4.1 Simulation Setup

EV Driving Records: We derive driving records along regular routes using
historical data from the New York MTA Bus Time R©1. The timestamp records,
inferred route id, and distance are used to generate the driving records of a
particular route for a vehicle. We assume that the driver begins driving the EV
from 10 AM and arrives at the destination at 6 PM. We assume that the length of
each time step is t = 5 minutes and the total time horizon is T = 96. The velocity
is calculated with the average velocity function v̄ = Δx/Δt, where Δx is the
resultant displacement and Δt is the period. Furthermore, we consider the Tesla
Model 3 as the chosen EV. We referenced the velocity and power consumption
graph on ABetterRouteplanner.com,2 which provides the power consumption
(kW) at various constant speeds (m/s). We used the yellow dots from the velocity
and power consumption figure in the reference (the median data) and built a
quadratic function (Δp = 2(Δv̄)2/125 − Δv̄/250 + 3) to estimate the velocity-
power consumption en route. We calculate the energy consumption in kilowatt-
hour (kWh) in each time interval Δt by

Δenergy(kwh) =
Δp(kW ) ∗ Δt(s)

3600
.

1 http://web.mta.info/developers/MTA-Bus-Time-historical-data.html.
2 https://forum.abetterrouteplanner.com/blogs/entry/22-tesla-model-3-

performance-vs-rwd-consumption-real-driving-data-from-233-cars/.

http://web.mta.info/developers/MTA-Bus-Time-historical-data.html
https://forum.abetterrouteplanner.com/blogs/entry/22-tesla-model-3-performance-vs-rwd-consumption-real-driving-data-from-233-cars/
https://forum.abetterrouteplanner.com/blogs/entry/22-tesla-model-3-performance-vs-rwd-consumption-real-driving-data-from-233-cars/


282 X.-L. Lee et al.

Data Preprocessing for Charging Stations: We designed a simulated envi-
ronment with randomly distributed CSs in each time step. The dataset3 includes
the historical data of the EV charging sessions for each charging pile. We sam-
pled charging piles from the data to construct samples of CSs with different
sizes. The occupancy rate of each CS is calculated from the charging sessions in
the dataset. By organizing the charging sessions hourly, we divide the sessions
by the total sessions in the day. The occupancy rate from a particular CS varied
by the hour and is simulated and calculated by

occhour
z,t =

∑n
0 cpz,t

∑23
0

∑n
0 cpz,t

,

where cpz,t represents the charging session counts and n is the total number of
charging piles within the CS z at time t. Additionally, we referenced commercial
charging prices from open charging data.4 The samples of CSs are paired with
one charging price randomly. In different time steps, the ToU price rates are
calculated with the charging price based on the time step in semi-peak or peak
periods. We referenced the ToU price rates, semi-peak, and peak periods from
Taiwan Power Company data.5 We set the peak periods from 10 AM to 12 PM
and 1 PM to 5 PM. The semi-peak periods are from 12 PM to 1 PM and 5 PM
to 6 PM. As a result, the charging prices are calculated by

λz,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λz,t ∗ 1.55, t = 1, ..., 24
λz,t ∗ 1.002, t = 25, ..., 36
λz,t ∗ 1.55, t = 37, ..., 84
λz,t ∗ 1.002, t = 85, ..., 96

4.2 Results and Analysis

Experimental Settings: We considered four practical scenarios to demon-
strate different driving behaviors for the simulation. The trade-off parameter
ξ was tested and observed for two different situations. In the cost-efficiency
scenario (ξ = 0.9), the EV driver prefers charging at an optimal price when
searching for the charging schedule. Furthermore, the parameter is set to 0.1 to
search for a low occupancy rate, which is significantly more promising for the
EV driver who wants to charge instantly without waiting in line. Other than the
trade-off parameters, we analyzed more extreme scenarios by setting different
assurance threshold parameters δ and initial SoC soct=1 values at the beginning
of the time series. The assurance threshold and initial SoC significantly affect
the charging times and amount of the charging scheduling. Table 1 presents the
settings of the four scenarios that demonstrate different driving behaviors. The
trade-off parameter reflects the driver’s decision of selecting the CS based on
the cost or time. And the assurance threshold and initial SoC present a different
application usage of the EV.
3 https://data.dundeecity.gov.uk/dataset/ev-charging-data.
4 https://openchargemap.org/site.
5 https://www.taipower.com.tw/en/page.aspx?mid=317.

https://data.dundeecity.gov.uk/dataset/ev-charging-data
https://openchargemap.org/site
https://www.taipower.com.tw/en/page.aspx?mid=317
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Table 1. Driving behaviors for four scenarios

Description Trade-off ξ Assurance threshold δ Initial SoC soct=1

Cost-efficient (CE) 0.9 0.4 0.9

Time-efficient (TE) 0.1 0.4 0.9

Intensive Charging (IC) 0.9 0.7 0.9

Low Initial SoC (LIS) 0.9 0.4 0.5

Fig. 2. Performance comparison of the baseline models with the proposed model.
(Left) Median cumulative rewards comparison with two baseline RL models. (Right)
The cost/occupancy decisions among 4 driving scenarios in the global distribution of
charging stations’ cost/occupancy. Each gray dot represents a cost/occupancy pair of
a single charging station.

Performance Comparison: We compare our MRDI model with three other
baselines. (i) Multiagent Rainbow DQN (MRD): The same multiagent Rain-
bow DQN model without imparting preference. We evaluate the performance
without experience sharing to measure the improvements in the results of the
charging scheduling. (ii) Multiagent Double DQN (MDD): The multiagent Dou-
ble DQN model without imparting preference. We construct another multiagent
RL model to analyze the learning performance with our model. (iii) Upon Deple-
tion Charging Policy (UDP): We design the charging scheduling that imitates
human charging behavior. Like fueling conventional vehicles, drivers intend to
fill up the gas tank if the fuel is almost depleted. We emulate this fueling behav-
ior by charging the EV when the SoC is near 20% left of the battery. The driver
will search for the most affordable charging price or the lowest occupancy rate
among the CSs available in the current time step.

Figure 2 summarizes the learning performance of our proposed model and
baseline models. The left figure represents the median cumulative rewards of the
RL models. Our proposed model can impart the preference empirically from the
first agent to the second agent, in which the second agent receives the preference
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Table 2. Charging scheduling comparisons of 4 different charging scenarios with dif-
ferent baseline models. The bracket indicates the total charging times through the time
series. The underlined text symbolizes that the method did not fulfill the requirements.
CE, TE, IC, and LIS stands for Cost-Efficient, Time-Efficient, Intensive Charging, and
Low Initial SoC scenarios respectively. The C.A. stands for the charged amount in the
scenarios.

CE TE IC LIS

C.A. Cost SoC C.A. Cost SoC C.A. Cost SoC C.A. Cost SoC

(kWh) (USD) (kWh) (USD) (kWh) (USD) (kWh) (USD)

MRD 11.88 3.08 0.50 14.17 5.71 0.54 14.88 3.85 0.79 17.49(2) 4.53 0.54

MDD 12.57 3.26 0.52 14.21 6.5 0.54 13.05 3.41 0.61 18.04(2) 5.01 0.45

UDP 19.66 6.70 0.88 19.66 7.31 0.88 18.78(2) 5.34 0.83 22.68 5.87 0.52

MRDI 10.8 2.59 0.48 13.58 5.05 0.53 14.73 3.81 0.76 17.04 4.41 0.43

of the selected CS. The experiment results of the MRD and MDD baselines work
from two individual agents, in which the baseline models decide to choose CSs
and charging amounts separately. The right figure demonstrates the selected
results of charging price and occupancy pairs in the global distribution envi-
ronment. The decisions of our proposed model choose the CS to charge, which
is near the global optimal. Also, it decides to take one charging decision only
through the time series. Note that in the IC scenario, the UDP selects a bet-
ter price compared to the proposed model. However, UDP charges two times to
fulfill the required assurance amount, and the total charging cost is higher than
our proposed model.

Table 2 presents a comparison of the optimal charging schedule against the
other three baseline models. We compare the charged amount (C.A.), cost, and
the SoC at time T . Our charging scheduling aims to charge the least amount of
energy that guarantees the EV to arrive at the end of time steps. In the three
scenarios, CE, IC, and LIS aim at cost-efficient charging, in which the objective
is to minimize the charging cost. Furthermore, the SoC results are much near
the threshold value, in which the charging scheduling charges enough amount
only when arriving at the destination.

Our experiments present a charging schedule recommendation for the EV en
route to a destination. It is designed to accommodate a diverse selection of CSs in
every time step, whereas other work only consider a few CSs for the EV to select
en route [17]. The experimental results in [17] indicate that the proposed method
requires visiting the CSs multiple times, whereas our model requires one charging
time to the destination. In [16], the proposed algorithm aims at the EV route
optimization problem in a planned region. The problem considers fully charging
the battery when the EV returns to the starting point. It considers the charging
cost of both regular charging and fast charging. It is unfair to compare the
performance of charging cost since our experiment considers only fast charging en
route. Our proposed model evaluates the destination and provides the charging
decision with adequate quantity when necessary. It guarantees that the EV has
efficient energy without considering any further charging when the EV arrives
at the destination.
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5 Conclusion

In this paper, we propose a Reinforcement Learning model named Multiagent
Rainbow DQN with Imparting Preference. Leveraging concepts from Edge Com-
puting, the model provides an adaptive charging scheduling service to EV drivers.
The model manages two tasks by recommending suitable charging stations and
determining a proper charging plan that respects battery constraints and arrival
energy guarantees. Imparting experience sharing is embedded within the agents
to balance the coupling effects between the two tasks. This technique increases
the learning efficiency and thus enhances the performance of the scheme. Uti-
lizing real-world data, we compare our proposed approach against three bench-
marks (an idiomatic behavior of EV driver and two other RL-based models) in
the experiments. The results show that our model outperforms the benchmarks
in terms of charging cost, total charging times, and total charged amount. The
overall performance demonstrate the robustness and practicability of our pro-
posed method for efficient charging scheduling. In future work, the simulation can
be extended to consider multiple routes or different routines, such as weekdays
and weekends. We will further investigate the generalization and performance of
the EV charging scheduling behavior across several routes. We aim to develop
the model to operate in a highly realistic environment that considers multiple
routes, which improves the generalization of the model’s charging schedule rec-
ommendations. Another future avenue might investigate the charging scheduling
for two-way EV charging and consider the case for Vehicle-to-Grid (V2G).
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Abstract. In the context of Industry 4.0, the high-profile false data
injection (FDI) attacks are posing increasing cyber threats to the relia-
bility of smart grids. Recent studies have investigated the possibilities of
detecting FDI attacks on smart grids by using the distributed flexible AC
transmission system (D-FACTS) devices. However, few studies focus on
further locating such cyber threats using D-FACTS devices. To meet this
gap, we systematically explored such a topic and propose a graph the-
ory based scheme to locate FDI attacks by employing D-FACTS devices,
where both single-bus FDI attacks and multiple-bus FDI attacks are con-
sidered. Numerical results on the standard IEEE 14-bus system demon-
strated that the proposed scheme can achieve 100% accuracy when locat-
ing any single-bus FDI attacks and most of the independent multiple-bus
FDI attacks. Future potential solutions are also discussed to some special
cases of multiple-bus FDI attacks that the proposed scheme cannot well
handle.

Keywords: Industry 4.0 · Smart grids · D-FACTS devices · Graph
theory · Location of false data injection (FDI) attacks

1 Introduction

The Industry 4.0 framework requires more interaction and connections among
equipment, products, and operators. As the key element to Industry 4.0, the
power grid is rapidly evolving to the smart grid. Next-generation smart grid
networking technologies are required to provide high reliability and low latency
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synchrophasor communications. However, the communication capabilities of the
intelligent sensor, the measurement device, and the control center exposed the
adverse vulnerability to attackers in the context of Industry 4.0 [6]. At the same
time, the damage caused by networking attacks not only affects the information
system operations, but also destroys the security of the physical system due
to their high integration. Serious consequences may include grid paralysis or
large-scale power outages [10].

In recent years, there have been frequent incidents of penetrating into the
power grid to destroy it through cyber attacks. In December 2015, the Ukrainian
grid suffered a malicious cyberattack and caused a large-scale power outage. The
attacker also cleared the root record on the control center, which delayed the
recovery of the power grid [12]. In 2019, Venezuela had encountered a national
power outage. The official representative said that the accident was caused
by malicious attacks against the hydropower power center [4]. Such incidents
demonstrate that the safety of the power grid is much likely to remain ongoing
targets of interest shortly. In this case, it is very important to ensure the network
security of the smart grid to enhance social stability and national security.

Since the security and stability of smart grids are usually supported by reli-
able state estimation (SE), SE tends to be main target of the network attacks.
Liu et al. first proposed false data injection (FDI) attacks in 2009 [14]. In essence,
the FDI attack is designed to escape the bad data detection (BDD) in the state
estimation. Attackers need to acquire knowledge of the power grid connections
and configurations and inject pre-constructed data into the measurement data
to tamper with the SE and cause the grid failure. The recent work has illustrated
the possibility of achieving FDI detection by disturbing the impedance of the
power grid using the distributed flexible AC transmission system (D-FACTS)
devices. Morrow et al. first proposed to achieve topology perturbation using D-
FACTS devices to detect injected false data in the power grid [16]. Lately, Li
et al. proposed a framework to detect FDI attacks on smart grids by using the
D-FACTS [11]. While some research has been carried out on using D-FACTS
devices to detect FDI attacks, few studies have investigated their feasibility of
location. To meet this gap, we propose a location scheme using D-FACTS devices
to locate both single-bus FDI attacks and multiple-bus FDI attacks. The main
contributions of this paper are three-fold:

– First, we propose a graph theory based FDI location scheme for smart grids
by using D-FACTS devices, and prove that when the unknown branches cover
at least a spanning tree of the power grid graph, any single-bus FDI attacks
on smart grids can be accurately located.

– Second, an algorithm is designed to locate multiple-bus FDI attacks, given the
results of FDI detection, by which the locations of the independent multiple-
bus FDI attacks can be accurately identified in most cases.

– Third, we notice that in occasional special cases, locating multiple-bus FDI
attacks using D-FACTS devices is not always easy. The location accuracy
for multiple-bus FDI attacks decreases, as the growing interconnections of
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attacked multiple buses and the increasing number of leaf buses (with a degree
equalling one).

The remaining of this paper is organized as follows. Section 2 reviews state-of-
the-art solutions to detecting and locating FDI attacks on smart grids. Section 3
presents our system model and the threat model considered. The proposed loca-
tion scheme for two types of FDI attacks is elaborated in Sect. 4, followed by the
numerical results in Sect. 5. We conclude this paper in Sect. 6.

2 Related Work

2.1 False Data Injection Detection Using D-FACTS

A successful FDI attack is based upon the knowledge of power grid measurement,
the admittance of the power line, and topology configurations of the grid for state
estimation [2,3]. Therefore, it is possible to proactively change the configuration
of the grid system, so that the information required by the FDI attackers is
inaccurate and the attack will be detected by BDD. Morrow et al. pioneered the
idea of using distributed flexible AC transmission system (D-FACTS) devices
to achieve topology perturbation in 2012 [16]. Moving target defense (MTD) in
the power system is a promising defense strategy to detect false data injection
(FDI) attacks against state estimation using distributed flexible AC transmission
system (D-FACTS) devices. Based on this, Rahman et al. proposed the MTD
to enhance the state estimation of the power system in 2014, one of which is
to disturb the admittance of the power line by using D-FACTS devices [18]. In
2017, Tian et al. proposed a hidden MTD method to prevent attackers from cal-
culating the changes in the system [21]. In 2018, Salehghaffari et al. proposed an
optimal defense strategy by applying perturbations to the impedance of trans-
mission lines by D-FACTS devices and monitoring their effects on the system
[19]. In 2019, Lakshminarayana et al. showed that the coordinated cyber and
physical FDI attack can be detected by using game theory methods to optimize
the deployment of D-FACTS equipment [8]. In 2020, Li et al. explored the rela-
tionship between the minimum efforts and the injected data and proved that as
long as the deployment of D-FACTS devices covers at least a spanning tree can
detect the existence of all these FDI attacks [11]. In 2021, Zhang et al. revealed
the correlation between the MTD design and FDI detection and optimize MTD’s
performance in terms of detecting FDI attacks. Furthermore, a heuristic algo-
rithm is developed to compute a near-optimal solution for the deployment of
D-FACTS devices[23]. In the same year, Liu et al. investigated a depth-first-
search-based D-FACTS placement algorithm to guarantee the MTD hiddenness
while maximizing the rank of its composite matrix, i.e., an indicator of the MTD
effectiveness, and covering all necessary buses[13].

2.2 Location of False Data Injection Attacks

However, there is an increasing need for research in the stage to take the loca-
tion of FDI attacks into account. Because the system operators must take action
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and respond to attacks after the attack. Some researchers regard the attack
locational problem as another task after attack detection. For example, in 2017,
MohammadPourfard et al. used several statistical methods to obtain measure-
ment features in the attack detection phase, using conventional outlier detection
algorithms to achieve location [15]. Another part of studies can be located while
detecting the FDI attack. In 2018, Shi et al. trained fourteen extreme learning
machines (ELM) to calculated whether the bus was attacked [20]. However, when
faced with a large-scale power system, the method is too cumbersome. In 2019,
Li et al. used matrix separation to detect the FDI attack and achieved the loca-
tion of the FDI by analyzing the sparse attack matrix [9]. Its accuracy depends
on the matrix decomposition algorithm. In 2020, Wang et al. designed an app-
roach based on deep Learning-based Locational Detection architecture (DLLD)
to detect the exact locations of FDIA in real-time [22]. In 2021, Mukherjee devel-
oped a deep neural network model with conventional bad data detection (BDD)
to identify the locations. This model in association with traditional bad data
detection algorithms is capable of detecting the exact locations of both struc-
tured as well as unstructured FDI attacks [17]. However, the machine learning
method involves considerable analyses of global power grid data, which will cause
huge computation costs.

3 System Model and Threat Model

3.1 System Model

Security state estimation has real-time demand. For computational speed and
simplicity, the DC linear power flow is used to approximate the AC model in
the research and application of power system [1]. Thus, our system model is
discussed on the DC power flow model.

DC State Estimation. In the DC model, the voltage magnitudes of all buses
in the power grid are approximately equal to 1 p.u. And only is the voltage
phase angle considered as the state variable while ignoring the impedance of the
transmission line. Based on the above assumptions, the measurement data and
system states are related by

z = Hx + e, (1)

where x ∈ R
n×1 indicates system state vector composed of bus voltage phase

angles. The active power injections on each bus and active power flow on each
branch consists measurement, which is z ∈ R

m×1. e ∈ R
m×1 is measurement

error vector which follows the Gaussian distribution with zero mean and covari-
ance W ∈ R

m×m, a diagonal matrix. H ∈ R
m×n is a Jacobian matrix imply

connection information and configuration of the grid. The form of the H is given
by

H =

⎡
⎣

ATDA
DA

−DA

⎤
⎦ , (2)
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where A ∈ R
l×n indicates the branch-bus connection matrix, l indicates the

number of branches. D ∈ R
l×l denotes the diagonal matrix of admittance. Since

the impedance of the power line is ignored in the DC model, its value is negative
susceptance.

Based on the Eq. (1), weighted least squares (WLS) is used to solve estimated
state vector:

x̂ =
(
HTW−1H

)−1
HTW−1z. (3)

Thus, the estimated measurement data ẑ is given by

ẑ = Hx̂. (4)

Bad Data Detection. State estimation uses BDD to ensure the integrity and
accuracy of the data. Existing BDD methods typically use hypothesis testing to
detect bad measurement data by observing the maximum normalization residu-
als. Measurement residual r ∈ R

m×1 is the difference between measurement and
estimated measurement, which can be shown as below:

r = z − ẑ. (5)

The hypothesis testing is expressed as
{

Null hypothesis H0 : ‖r‖ > τ
Alternative hypothesis H1 : ‖r‖ <= τ

(6)

‖ · ‖ represents the Frobenius norm. This mechanism compares the number of
measurement residual to a predefined threshold τ . If ‖r‖ > τ , the null hypothesis
is accepted, indicating that there is abnormal data in the measurement, and
the BDD will alarm; otherwise (i.e., ‖r‖ < τ), null hypothesis are rejected,
and the measurement is considered as normal data by BDD. The value of τ
can be determined by a chi-squared test with a significance level of α, where
‖z − Hx̂‖2 ∼ X 2(v) and v = m − n is the degree of freedom [1].

3.2 Attack Model

To build an FDI attack, an attacker needs to design an attack vector a ∈ R
m×1,

and makes up a malicious measurement vector za = z + a. Liu et al. proposed,
assuming the original measurement can pass the BDD, if a is a linear combination
of the column of H, the malicious vector za can also can pass the BDD, a
successful FDI constructed [14]. The estimated states vector x̂a with reference
to Eq. (3) is satisfied x̂a = x̂ + c. Now, the measurement residual norm is

‖ra‖ = ‖za − Hx̂a‖
= ‖z + a − H(x̂ + c)‖
= ‖z − Hx̂ + (a − Hc)‖
= ‖z − Hx̂‖ ≤ τ

. (7)

Since ra = r, the BDD detector can’t detect abnormal data, and the FDI attack
successfully bypasses the BDD in the state estimation.
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4 The Proposed Location Scheme

In this paper, we consider two types of FDI attack location. The estimated state
vector is injected offset c. Then, the FDI can be classified according to the
number of buses affected:

Single-Bus FDI Attacks. Such FDI attacks only targets the voltage phases of a
specific single bus, such as, c = (0, 0, θa, 0, . . .)T .

Multiple-Bus FDI Attacks. This type of FDI attack can build attacks
on multiple buses at the same time and independently, such as, c =
(0, θa1, 0, . . . , θan, 0, . . .)T .

4.1 Rational of Detecting FDI Using D-FACTS

The pre-relevant work has detected FDI attack by using the D-FACTS device to
change the impedance of the power line [8,11,21]. The D-FACTS devices attach
directly to transmission lines, which can be used to dynamically control effective
line impedance and power flow to manage the congestion in the power system
[5]. Assuming that the D-FACTS device is activated, the line admittance has
changed as follows:

D′ = D + ΔD. (8)

Consequently, the Jacobian matrix are altered by:

H′ =

⎡
⎣

ATD′A
D′A

−D′A

⎤
⎦ =

⎡
⎣

AT(D + ΔD)A
(D + ΔD)A

−(D + ΔD)A

⎤
⎦ = H + ΔH. (9)

The measurement z, the injected measurement za, the estimated state vector x̂
and the injected estimated state vector x̂a will change, and the updated value
is: z′, z′

a, x̂′, x̂′
a. Re-conducting state estimation algorithm, the measurement

residual will change as follows:

‖r′
a‖ = ‖z′

a − H′x̂′
a‖

= ‖z′ + a − H′ (x̂′ + Δx)‖
= ‖z′ − H′x̂′ + a − H′Δx‖

, (10)

Δx is an injected offset on system state vector after the D-FACTS device is
activated. Now a − H′Δx = Hc − H′Δx �= 0, the resulting offset is sufficiently
large to trigger the BDD, so the FDI attack can be detected. Li et al. analyzes
the minimum efforts required for D-FACTS devices to detect the FDI attack,
and draw the following statement [11]:

Statement 1. D-FACTS devices deployed on a branch is able to help detect the
existence of effective FDI attacks targeted on either end bus(es) of this branch,
as long as the injected phase angle difference between the two end buses is larger
than the tolerance threshold cth.
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Accordingly, a theorem is further proved that the minimum branch of the D-
FACTS device needs to be deployed for successfully detecting FDI attacks.

Theorem 1. The D-FACTS is feasible to detect effective FDI attacks, if and
only if the branches deployed with D-FACTS devices cover at least a spanning
tree of the power grid graph.

Based on Statement 1 and Theorem 1, we can further analyze the location of
the FDI attack using D-FACTS devices.

For convenience, this section is now defined on buses and lines in the power
grid topology [11].

Definition 1. A branch is termed as a known branch if its susceptance (or
admittance) is unalterable and can be known to the attackers; otherwise, it is
termed as an unknown branch. A bus is termed as a protected bus if it is connected
to at least one unknown branch; and an unprotected bus otherwise.

Definition 2. If a protected bus is only connected to an unknown branch, it is
called a leaf bus; otherwise it is called a branch bus.

According to Statement 1, the D-FACTS device can detect FDI attacks for
either end bus of the branch it deployed, so the location of the FDI attack can
be determined in two buses. However, if we want to determine which end bus
of the transmission line is injected, further analyses are required. This section
uses the topology map of the grid and graph theory to feature the location of
single-bus FDI attacks and multiple-bus FDI attacks.

4.2 Location of Single-Bus FDI Attacks

Based on Statement 1 and Theorem 1, it can be given to the Corollary 1 and
proof.

Corollary 1. If the unknown branches cover at least a spanning tree of the
power grid graph, the targeted bus of the single-bus FDI attacks can be accurately
located.

Proof. Assume that there is n−1 branch deployed D-FACTS device in the power
grid, those branches and the buses connected to them constitute a spanning tree;
at this time, all buses in the power grid is protected bus. Now divide all buses of
this spanning tree into two categories, a bus with degree equal to 1 term as leaf
bus, a bus with degree greater than 1 term as branch bus. Because the number
of buses in the actual power grid is numerous, this section only considers the
number of buses greater than two. Therefore, according to the nature of the
topology, the protected bus connected to the leaf bus must be a branch bus.
Assuming that the leaf bus is nl, the branch bus connected to it is nb, and
the unknown branch between them is kl = (nl, nb). When the attacker is only
attack kl = (nl, nb), it will trigger D-FACTS device alarm of kl. For the control
center’s defender, he will suspect to nl and nb. But only kl alerts in all unknown
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transmission lines connected to nb, so nb can be excluded and defender can
successfully locate to nl. When the attacker is only attacking nb, assume that
the collection of the connected branch is Lb. Now, all branch of the Lb will alert,
the control center will suspect that all buses are connected to nb. If the other
end of the branch in Lb is the leaf bus, it can be excluded; if the other end of
the branch in Lb is the branch bus, only one branch connect to it has an alert,
so it can be excluded and successfully locate to the nb.

For example, in Fig. 1 an attacker attacked bus 3, and an FDI alert can be
observed on the branch k34, which means that there is an FDI attack in bus 3
or 4. However, since the alert is not triggered on the k24, it can be concluded
that bus 3 is the target of the FDI attack. In the case of single-bus attack, the
FDI alert can only be observed from an unknown transmission line. Then, by
observing whether the FDI alert is triggered on all unknown branch connected
to the bus, it can be eliminated one by one. Therefore, the goal of the FDI attack
can be inferred. Accordingly, the location of single-bus FDI attacks can achieve
100% accuracy by using D-FACTS devices.

Fig. 1. Location of single-bus FDI attacks.

4.3 Location of Multiple-Bus FDI Attacks

Since the location of this paper only needs to be implemented with the branch
deployed with D-FACTS, all discussions in this section only consider branches of
the spanning tree deployed with D-FACTS. For the convenience of description,
we make the following definition.

Definition 3. If both ends of an unknown branch are attacked buses, then the
branch called attacked branch.
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Algorithm 1. Location algorithm of multiple-bus FDI attacks
Input: N , L, La

Output: Sp, Sn, Sl

1: for each kmn ∈ La do
2: put bm and bn in the set Sp;
3: for each pn ∈ Sp do
4: if pn connected to k /∈ La then
5: exclude pn from Sp;

6: while locate the pn with Statement 2 do
7: put the pn in Sl;
8: exclude pn from Sp;

9: end
10: end
11: end
12: return Sp, Sn, Sl

We consider a power grid network consisting of a set N = {b1, b2, ..., bn} of
buses and a set L of branches. kmn = (bm, bn) ∈ L is the branch connecting bus
bm and bus bn. Assume that the set of normal buses is Sn, the set of Located
attack buses is Sl, and the set of branch that observes an FDI alert is La.

Based on the analysis of single-bus FDI attacks location, we can find that
when there is a branch that observes an FDI alert, two buses of both ends may
be attacked. We name these buses as possible buses and got a set of them,
say Sp = {p1, p2, ..., pn}. The location process is to determine that pn ∈ Sn

or pn ∈ Sl. Since in D-FACTS deployed spinning tree, if a branch does not
observed alert, its two end buses can be determined to be normal. Therefore,
if a pn connected to a branch without alert, then pn ∈ Sn. At this time, if a
pn1 ∈ Sp is determined to be a normal bus, the another bus pn2 ∈ Sp connected
to it must be an attacked bus, i.e., pn2 ∈ Sl. Thus, we can get Statement 2.

Statement 2. Only when at least one adjacent bus of a possible bus is connected
with branch without alert, it can be judged as a located attacked bus.

The remaining pn are called suspicious buses. In the perspective of the system
defender, it may be an attacked bus, or it is possible to be a normal bus. The
location process can be summarized as Algorithm 1.

As shown in Fig. 2(a), the attacker targets bus 3 and bus 7, respectively.
FDI alerts can be observed on branch k57 and k34, and bus 3, bus 4, bus 5, and
bus 7 are possible attacked buses. However, since the transmission line k24 and
k25 do not observe alert, bus 5 and bus 4 can be excluded. Therefore, it can
be concluded that bus 3 and bus 7 are the target of the attack. Such that we
find out the attacked buses. In most cases, due to the restricted ability of the
attacker, the attacked buses are less and unconnected. In most instances, we can
achieve 100% location accuracy.
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Fig. 2. Location of multiple-bus FDI attacks.

4.4 Discussions on Some Special Cases

However, as the attack buses become more concentrated, there will appear inac-
curate judgment and suspicious buses. As shown in Fig. 2(b), it is assumed that
the FDI attack is targeted in bus 2 and bus 4. Therefore, branch k12, k24, k25,
k26 and k34 will trigger the FDI alert. Since the alert is observed on the branch
k25, not the trigger on the k57, it can be easily concluded: bus 2 is the target of
the FDI attack. However, bus1, bus 3, bus 4, and bus 6 will be suspected. Since
they are not connected to any normal bus, it cannot be accurate conclusions.

Based on Algorithm 1 we can derive that if neighbors of an attacked bus
are leaf bus or also attacked buses, it will not be accurately located from the
system defender’s perspective. And it will eventually become a suspicious bus.
At the same time, due to the degree of its adjacent leaf bus is 1, there is no more
information to determine whether the leaf bus is attacked. Then this leaf bus will
also become a suspicious bus. That is, if the attacker’s target is concentrated
in one area, the number of attack branches will increase. With increasing of
attacked branch, the number of connections between attacked buses and normal
buses decreases. This will make it difficult to confirm the located attack bus,
and lead to more suspected buses. At the same time, as the number of leaf buses
connected to attacked buses increases, the number of suspicious buses will grow.
Thus, we have the Statement 3.

Statement 3. The number of attacked branches is directly proportional to the
number of suspicious buses and inversely proportional to the number of located
attacked buses. The number of leaf buses connected to attacked buses is propor-
tional to the number of suspicious buses.

The future potential solutions will continue to improve the location accuracy of
some special cases of multiple-bus FDI attacks based on Statement 3.
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5 Simulation Results

In this section, we conduct simulation experiments on the IEEE-14 bus system to
verify our findings. The grid topology and the deployment of D-FACTS devices
are shown in Fig. 3. All the simulations are conducted in MATLAB and the
power grid data (i.e., topological information, power grid parameters, and mea-
surements) is from MATPOWER. By analyzing the minimum efforts required
for D-FACTS devices of each power line, we can get D-FACTS deployment of
IEEE-14 bus system in Fig. 3 based on the minimum spanning tree algorithm
(Kruskal’s algorithm [7] in our simulation).

Fig. 3. The D-FACTS devices deployment on IEEE-14 bus system.

First, we simulated the FDI attacks with the number of attacked buses rang-
ing from 1 to 5. For each case, we traverse the situation of the attacked buses’
distribution in the IEEE-14 bus system. Then we simulate the location process
for each situation to count the number of located attack buses and suspicious
buses. The located attack bus here has been verified to be located correctly.
Afterward the number of located attack buses and suspicious buses after loca-
tion in all distributions is grouped according to the number of attacked branch,
and the average and standard deviation of each group of data are calculated.
Finally, the average and standard deviation are drawn into a graph in the form
of the errorbar.

As shown in Fig. 4 and Fig. 5, for each I-shaped pattern, the dot in the middle
represents the average of this set of data, and the two horizontal lines above and
below represent the standard deviation of this set of data. From Fig. 4, we can
see that in the case of a multiple-bus FDI attack, as the number of attacked
branches in the grid increases, the number of located attack buses will decrease.
In the case of single-bus FDI attacks location, the standard deviation of this
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Fig. 4. The number of located attack buses with different number of attacked branches.
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Fig. 5. The number of suspicious buses with different number of attacked branches.

group of data is 0, which means that the number of located attack buses is
always 1 in each situation, and we can accurately locate this attacked bus. As
shown in Fig. 5, as the number of attacked branches in the power grid increases,
the number of suspicious buses will increase accordingly in the case of multiple-
bus FDI attacks. For single-bus FDI attacks location, the standard deviation of
this group of data is still 0, and the account of the suspicious buses is always
0. Prove once again that we have accurately located single-bus FDI attacks and
there are no other suspicious buses.
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However, the standard deviation of the number of suspicious buses in Fig. 5
is larger than the one in Fig. 4, indicating that the number of doubts fluctuates
under the same account of attacked branches. It can be found by comparison
that in addition to the number of attacked branches, there may have more fac-
tors affecting the number of suspicious buses. Therefore, we perform simulation
experiments in the 3-bus FDI attacks to count the number of suspicious buses
with the different number of leaf buses connected to the attacked buses. The
experimental results are shown in Fig. 6. As we can see from the figure, the
number of suspicious buses is always increasing as the number of leaf buses
connected to the attacked buses increases. Prove that the number of leaf buses
connected to attacked buses is proportional to the number of suspicious buses.
While we can see the standard difference of each group of data is smaller than the
one in Fig. 5, this shows that under the same number of attacked branches and
leaf buses connected to attacked buses, the number of suspicious buses tends
to stabilize, but may still be affected by the connection structure of different
attacked buses.
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Fig. 6. The number of suspicious buses with different number of leaf buses connected
to attacked buses.

6 Conclusion

In this paper, we have recalled the method in detecting FDI attacks using D-
FACTS devices, and proposed a graph theory based scheme for locating both
single-bus FDI attacks and multiple-bus FDI attacks on smart grids using D-
FACTS devices. We proved that the proposed scheme can achieve 100% accu-
racy in locating single-bus FDI attacks, if the unknown branches cover at least
a spanning tree of the power grid graph. In addition, an algorithm was also
proposed to locate multiple-bus FDI attacks on smart grids. We proposed an
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algorithm to locate multiple-bus FDI attacks based on the given results of FDI
detection. However, we notice that locating multiple-bus FDI attacks using D-
FACTS devices is not perfect when attack buses are connected to each other.
Extensive simulation experiments on the standard IEEE-14 bus system fully
demonstrated our findings. Extending these findings to more real-world power
systems will be one important research direction.
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Abstract. With the rapid growth of spatial crowdsourcing applications,
more and more people are benefiting from it. The idea of spatial crowd-
sourcing is recruiting a set of workers to finish the spatial tasks. Existing
worker recruitment mechanisms do not consider the variety requirement,
which is easy to meet if the Spatial Crowdsourcing (SC) platform has
full knowledge of the data of each worker. Since the SC platform is not
fully trusted, workers are concerned about the privacy of their data. To
prevent information leaks, workers’ data needs to be specially processed
before it can be sent to untrusted platforms for task assignment. The
data specially processed by existing privacy-preserving processing meth-
ods cannot be used directly to complete such variety tasks with high
quality. To solve this problem, we propose a new variety optimization
method based on the classical local differential privacy (LDP) mecha-
nism. It can efficiently select the sets of workers with variety of categor-
ical attributes while providing privacy protection for workers. In addi-
tion, we also propose a two-step LDP perturbation protocol that can
improve the optimization result in the case of uneven distribution of
worker attributes. Extensive experiments on synthetic and real datasets
show that our methods can efficiently select variety worker subset with
better task quality than baseline and close to optimal selection results.

Keywords: Privacy-preserving · Local differential privacy · Spatial
crowdsourcing

1 Introduction

Spatial Crowdsourcing (SC) has grown rapidly in recent years, bringing conve-
nience to many aspects of people’s lives [12]. In this paradigm, an SC platform
recruits a set of workers and asks them to complete a set of tasks through some
kind of incentives. To realize global optimization during worker recruitment,
c© Springer Nature Switzerland AG 2021
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workers are required to submit their own information to the SC platform. For
example, workers need to send their real-time positions to the SC platform so
that every task can be assigned to its nearby worker while optimizing some global
objectives such as maximizing the total number of assigned tasks.

Existing mechanisms [6,18] of worker recruitment do not consider the vari-
ety requirement, i.e., the recruited workers should be different from each other
in terms of some attributes. However, the variety requirement is important for
many practical SC applications, as the variety of workers will affect the quality of
task completion. For example, in a data sensing task where workers are asked to
collect some kind of information in an urban area, the variety requirement means
the recruited workers should come from different sub-areas of the urban area,
making the sensed data as complete as possible. Moreover, the variety require-
ment implies the number of workers in different sub-areas should be as equal as
possible. This is because if most recruited workers come from a same sub-area,
the final sensed data will be determined by this sub-area and thus cannot reflect
the feature of the whole area. Therefore, the mechanisms of worker recruitment
should consider the variety requirement in order to ensure the quality of task
completion.

Worker recruitment under the variety requirement is easy to meet if the SC
platform has full knowledge of the data of each worker. Unfortunately, the SC
platform is not fully trusted and privacy is thus a big concern of most work-
ers. Though there has been a lot of work focusing on privacy-preserving worker
recruitment [8–11,15–17], the techniques are designed largely for the protection
of workers’ location. The challenge in these work is to calculate the distances
between workers and tasks over disguised locations. Methods based on encryp-
tion [15–17] apply homomorphic encryption schemes which allow the distance
between two encrypted locations to be calculated directly without requiring
access to the decrpytion key. Privacy is guaranteed at the expense of huge com-
putation cost. On the other hand, methods based on differential privacy [9–11]
achieve privacy protection via adding noise to locations, and allow the distance to
be calculated efficiently while keeping the error within a preset range. However,
these methods cannot be applied to the problem of worker recruitment under the
variety requirement. As shown in Fig. 1, the goal of privacy-preserving worker
recruitment with the variety guarantee is to select a subset of workers with max-
imum variety based on the disguised data of workers. As will be shown later,
the variety of a set of workers involves complicated calculations that cannot be
supported efficiently by homomorphic encryption. The direct use of differential
privacy will reduce the utility of data significantly, which makes it hard for the
SC platform to effectively determine a set of workers with maximized variety.

In this paper, we study the problem of privacy-preserving worker recruitment
under the variety requirement and propose a solution based on local differential
privacy (LDP) [4]. First we analyze the classical LDP data perturbation mecha-
nism and compute the hidden distribution of the workers’ perturbed data based
on the LDP perturbation probabilities. To better measure variety, we choose
entropy as evaluation metric. Based on the hidden distribution and evaluation
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a ribute values disguised data of workers a subset of workers with 

maximized variety

Fig. 1. Privacy-preserving worker recruitment under the variety requirement.

metric, we generalize an optimization problem with entropy as the objective func-
tion and LDP requirement as the constraints. Therefore, the optimal solution
allows the selection of a subset of maximized variety workers with high proba-
bility on the LDP perturbed data. After that, in order to solve this optimization
problem efficiently, we propose a gradient-based optimization method based on
the convex property of entropy function. The time complexity of the method is
O(kd2), where k is the number of selected workers and d is the size of the domain
of the attribute values the workers have. Lastly, since the optimization method
does not work well on uneven distributions, we propose a novel two-step LDP
perturbation protocol to filter the workers with high proportion attributes by
an additional round of perturbation. By doing this, the variety requirement can
still be meet even under the influence of uneven distributions. We prove that the
two-step perturbation protocol satisfies the LDP requirements. Our contribution
is summarized as follows:

– To our best knowledge, we are the first to consider the variety requirement
in privacy-preserving worker recruitment. We generalize the variety worker
recruitment problem to an optimization problem under LDP constraints and
propose an efficient method to solve this optimization problem.

– We propose a novel two-step perturbation protocol. Through a round of fil-
tering, this protocol can improve the variety maximization effect in the case
of uneven distribution of workers. We prove that the protocol satisfies the
LDP requirements.

– We have conducted extensive experiments on synthetic and real datasets.
The experimental results show that our method can effectively solve the LDP
variety problem and is significantly better than baseline and close to the
optimal solution.

In the rest of this paper, we review related work in Sect. 2. The problem is
defined in Sect. 3 and the solution is presented in Sect. 4. Section 5 shows the
experimental results. The paper is summarized in Sect. 6.

2 Related Work

We investigated the existing privacy protection mechanisms for spatial crowd-
sourcing, which fall into two main categories, LDP based methods and Encryp-
tion based methods.
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LDP Based Methods. Local differential privacy (LDP) is an extension of dif-
ferential privacy (DP) [5], which allows local data privacy protection. Therefore,
it is widely used for privacy protection in spatial crowdsourcing. To improve
the utility, a new privacy protection concept Geo-Indistinguishability (GI) [2] is
proposed on top of LDP. [3] proposed a perturbation method satisfying GI. It
applied linear optimization to determine the perturbation probability between
different locations, which can effectively improve the utility of geolocation data.
[10] proposed an efficient private task planning solution framework via using GI
to provide privacy protection. [11] applied GI to the hierarchically well-separated
tree index to protect worker location privacy. It should be noted that the pri-
vacy protection of GI is not equivalent to that of LDP because the requirements
of LDP are more stringent, but the proposed GI linear optimization method is
inspiring for our LDP approach.

Encryption Based Methods. These methods use special encryption to pro-
cess worker data and perform specific operations on the data. In [15], the authors
used homomorphic encryption to protect workers’ bids during the proposed
secure reverse auction process. And [16] uses attribute-based encryption to build
secure channels and ensure that task locations was delivered securely and accu-
rately by untrusted servers. [17] generalized workers’ private location data to
travel cost and protected it in a k-anonymity manner via bitwise XOR homo-
morphic cipher system. Encryption methods for worker data cannot satisfy the
computation of variety requirements, because computing the variety of a subset
of workers is more complex.

3 Problem Definition

Workers and Attributes. We assume that there is a set W = {w1, w2, . . . , wn}
of n workers. Each worker wi has an attribute value vi. The attribute value owned
by the worker is in the domain d. We use [d] to denote the set {1, 2, 3, . . . , d},
and we assume without loss of generality that the input domain is [d]. We use
the set T = {t1, t2, t3, . . . , td} to represent the distribution of worker attributes.
For a given attribute value j ∈ [d], tj denotes the number of workers who have
attribute j. Clearly we have tj ∈ [0, n] and

∑[d]
j tj = n.

Variety of Worker Attributes. We use entropy as the variety eval-
uation metric for the distribution of worker attributes. For a worker set
W = {w1, w2, . . . , wn} of n workers whose attribute distribution is T =
{t1, t2, t3, . . . , td}, its variety is denoted as

E(W ) = −
[d]∑

i

ti
n

log
ti
n

. (1)

The higher the value of E(W ), the greater the variety of W .
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Differential Privacy. An algorithm A with input domain D satisfies ε-local
differential privacy (ε-LDP), where ε ≥ 0, if and only if for any input v1, v2 ∈ D,
we have

∀z ∈ Range(A) : Pr[A(v1) = z] ≤ eε Pr[A(v2) = z],

where Range(A) denotes the set of all possible outputs of the algorithm A. ε ≥ 0
is known as the privacy budget, and smaller ε means a higher degree of privacy
protection, but also a lower utility of data. If an algorithm Ai satisfies εi-LDP
for i = 1, 2, · · · ,m, then their sequential combination (A1, A2, · · · , Am) satisfies
(
∑m

i εi)-LDP.

Variety Worker Recruitment. Given an algorithm A satisfying ε-LDP with
input domain [d] and output domain [m]. There is a worker set W of n workers
whose attributes are distributed as T = {t1, t2, . . . , td}. The attribute of worker
wi is vi ∈ [d]. vi is perturbed by algorithm A and the output is oi ∈ [m]. Counting
the output results of all workers yields the perturbation output distribution
C = {c1, c2, . . . , cm}, where cj denotes the number of workers whose perturbation
output is j ∈ [m].

Now the goal is to determine a solution that selects a worker subset Wk of
size k from W , such that the selected workers are not biased towards a particular
attribute, which means maximizing the variety E(Wk) of the attribute distribu-
tion of these k selected workers. We denote this solution by X = {x1, x2, . . . , xm},
where xj denotes the number of selected workers whose perturbation output is
j, we have xj ∈ [0, cj ] and

∑[m]
j xj = k.

There are two main challenges to this problem:

1. Due to the strong privacy protection of the LDP, the crowdsourcing platform
has very little knowledge about the true attribute of a particular worker.
The platform cannot infer the true attributes of workers with high confidence
based on the output after LDP perturbation, and thus it is also difficult to
determine the true worker attribute distribution of the selected subset of
workers based on the distribution of the perturbed output.

2. The true distribution of worker attributes has a large impact on the vari-
ety of the selected subset. If the true distribution of workers’ attributes is
uniform, i.e., the number of workers with various attributes is equal, then a
randomly selected subset of workers is sufficient to satisfy the variety require-
ment. However, when the distribution of worker attributes is uneven, in order
to maximize the variety of the selected worker subset, we should select more
workers with less attribute distribution and select fewer workers with more
attribute distribution. And this is difficult on the data perturbed by LDP.

4 Our Method

In this section, we first present our algorithm for maximizing the variety of
selected subsets of workers in Sect. 4.1, and then we present the LDP mechanism
for adding invalid perturbations and the two-step LDP perturbation mechanism
that combines this method in Sect. 4.2.
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4.1 Maximize Hidden Distribution Variety

We analyze the classical LDP perturbation methods for categorical attributes
and the corresponding frequency estimation methods, and then propose a solu-
tion for the variety problem. For illustration, Generalized Random Response
(GRR) [7] is used as an example, and other LDP methods are also applicable.

For the GRR method, a worker wi with attribute vi ∈ [d] sends the true
value vi with probability p and sends a randomly selected v′ ∈ [d] − {vi} with
probability 1 − p. The input domain is [d], and the output domain is also [d].
The perturbation probability function is formally defined as

Pr[GRR(i) = j] =

{
p = eε

eε+d−1 , if i = j

q = 1
eε+d−1 , if i �= j

(2)

This satisfies ε-LDP since p
q = eε. For subsequent illustration, we use a matrix P

to represent the perturbation probabilities, where pij = Pr[GRR(i) = j], indicat-
ing the probability of perturbing attribute i to attribute j. Suppose the number of
workers is n, and the true attribute distribution of workers is T = {t1, t2, . . . , td},
ti represents the number of workers whose true attribute is i ∈ [d]. The platform
collects the perturbed attributes of the workers and obtains perturbation out-
put distribution C = {c1, c2, . . . , cd}, where cj denotes the number of workers
whose perturbation output is j ∈ [d]. The platform can estimate the frequency,
i.e., the true attribute distribution of workers. We use T

′
= {t

′
1, t

′
2, . . . , t

′
d} to

denote the estimation of the true distribution, where t
′
i = (ci − nq)/(p − q). The

existing work [13] proves that t
′
i is the unbiased estimation of ti. Although it is

not possible to obtain T directly, we can use T
′

instead of T in the subsequent
calculation. Also, to avoid negative values in T

′
and to reduce the variance of

the estimation, we make some adjustments to T
′

using the estimation method
proposed in [14].

Next we analyze the hidden distribution in the perturbation output of the
true attribute of workers. We define a hidden distribution matrix M , where

M =

⎡

⎢
⎣

m11 · · · m1d

...
. . .

...
md1 · · · mdd

⎤

⎥
⎦ =

⎡

⎢
⎣

t
′
1

. . .
t

′
d

⎤

⎥
⎦

⎡

⎢
⎣

p11 · · · p1d

...
. . .

...
pd1 · · · pdd

⎤

⎥
⎦ (3)

mij denotes the number of workers with true attribute i and perturbation output
j, since mij = t

′
ipij . We call M the hidden distribution matrix because the ith

column in M represents the hidden true attribute distribution of workers whose
perturbation output is i. Taking T = {20, 40, 60} as an example, we assume that
the privacy budget of GRR is ln 2, which means that pij = 1

2 , if i = j, otherwise
pij = 1

4 . We have ⎡

⎣
20

40
60

⎤

⎦

⎡

⎣

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

⎤

⎦ =

⎡

⎣
10 5 5
10 20 10
15 15 30

⎤

⎦
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For the first column {10, 10, 15}, it represents that there are 10 workers with real
attribute value 1 and perturbation output value 1, 10 workers with real attribute
value 2 and perturbation output value 1, and 15 workers with real attribute
value 3 and perturbation output value 1. For these 10 + 10 + 15 = 35 workers
with perturbation output value of 1, the hidden true attribute distribution is
{10, 10, 15}.

With the hidden distributions corresponding to different perturbation out-
puts, we can calculate the hidden true attribute distribution for a worker subset
Wk. Suppose the platform needs to select k workers, where X = {x1, x2, . . . , xd}
workers are selected for each of the different perturbation outputs. We calcu-
late the hidden true attribute distribution H of these k selected workers by the
following

H =

⎡

⎢
⎣

h1

...
hd

⎤

⎥
⎦ =

⎡

⎢
⎣

m11
sum(1) · · · m1d

sum(d)

...
. . .

...
md1

sum(1) · · · mdd

sum(d)

⎤

⎥
⎦

⎡

⎢
⎣

x1

...
xd

⎤

⎥
⎦ (4)

where sum(i) =
∑[d]

j mji. From the previous, the hidden true distribution of
workers with perturbation output i is {m1i,m2i, . . . ,mdi}. Obviously, if xi work-
ers are randomly selected from those with perturbation output i, their hidden
true attribute distribution is { m1i

sum(i)xi,
m2i

sum(i)xi, · · · , mdi

sum(i)xi}. The hidden true
attribute distributions of the k selected workers H are obtained by summing up
the hidden true attribute distributions of the workers selected with different
perturbation outputs, where hi denotes the number of workers with hidden true
attribute i in the selected subset of workers.

The goal of the variety task is to maximize the true attribute distribution
of the selected worker subset Wk, i.e., to maximize the hidden true attribute
distribution H. We therefore summarize it as an optimization problem as follows

max E(Wk) = −
[d]∑

i

hi

k
log

hi

k

s.t.

{∑[d]
i xi = k

0 ≤ xi ≤ ci, i ∈ [d]

Since the solution X = {x1, x2, . . . , xd} are integers and the objective function is
convex, we design an iterative algorithm based on the gradient of the objective
function. According to Eq. 4, we have

E(Wk) = −
[d]∑

i

hi

k
log

hi

k
= −

[d]∑

i

∑[d]
j

mij

sum(j)xj

k
log

∑[d]
j

mij

sum(j)xj

k
(5)

We denote the gradient of the objective function as G = {g1, g2, · · · , gd}, where
gi = ∂E(Wk)

∂xi
, and then calculate it by the following

gi =
∂E(Wk)

∂xi
= −

[d]∑

j

mij

sum(j)k
log

hi

k
+

mij

sum(j)k
(6)
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Optimization methods using gradients have a wide range of applications, such as
stochastic gradient descent (SGD) for training neural networks. Based on a sim-
ilar idea, we can keep adjusting the integer solution X according to the gradient
until it converges to the optimal solution, since the objective function E(Wk) is
a convex entropy function. The specific algorithm is shown in Algorithm 1. First,
line 1 takes a random feasible integer solution for X. Then lines 2–9 calculate
the gradient G and find the smallest one gl in it, l ∈ [d], let xl = xl − 1, then cal-
culate the gradient again, find the largest one gh, h ∈ [d], let xh = xh + 1. Keep
repeating lines 2–9 until X converges. At this point X is the worker selection
scheme that maximizes the variety of the hidden true attribute distribution of
the selected workers. Each iteration increases the variety of the hidden distribu-
tion of the result and the value of X changes by only 1 in each iteration, so that
at most k iterations are needed to obtain the optimal solution, since

∑[d]
i xi = k.

The time complexity of computing the gradient G is O(d2). Therefore, the total
time complexity of Algorithm 1 is O(kd2).

Algorithm 1. Maximize hidden distribution variety
Input: The hidden distribution matrix M , perturbation output distribution C
Output: The solution X
1: Select a random integer solution X = {x1, x2, . . . , xd}
2: while X does not converge do
3: Calculate the gradient G = {g1, g2, · · · , gd} according to equation 6
4: find the smallest one gl in G
5: xl = xl − 1
6: Calculate the gradient G
7: find the largest one gh in G
8: xh = xh + 1
9: end while

10: return X

4.2 Two-Step LDP Perturbation Protocol

We analyze the classical LDP perturbation mechanism and design a variety max-
imization scheme based on its hidden distribution. Through some experiments
we find that the largest factor affecting the variety of the selected workers’ true
attribute distribution is the original true attribute distribution of all workers.
We still take the true attribute distribution T = {20, 40, 60} mentioned in the
previous section as an example, the hidden distribution of different perturbation
output values is {10, 10, 15}, {5, 20, 15} and {5, 10, 30}. If a worker is randomly
selected from workers with different perturbation outputs, the probability that
this worker has true attribute value 3 is 15

10+10+15 = 0.43, 15
5+20+15 = 0.5 and

30
5+10+30 = 0.67, respectively. This means that the minimum percentage of work-
ers with true attribute value 3 among the selected workers is 0.43, regardless of
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the optimal selection. One of the main reasons for this is the high proportion
of workers with attribute value 3, which is 60

20+40+60 = 0.5, so the proportion of
workers with real attribute value 3 in different hidden distribution is inevitably
high as well. This high proportion is detrimental to achieve attribute variety,
since our goal is to preserve an equal selection of different attributes even they
are unevenly distributed.

To address this issue, i.e., to reduce the impact of high proportional attributes
in the original attribute distribution on the variety of attributes in the hidden
distribution, we propose to add an invalid perturbation value to the set of LDP
perturbation outputs. In addition to the original set of perturbed outputs [d],
there is a certain probability that the worker’s true attribute is perturbed to an
invalid value vin, and workers whose output is vin will not be used as candidate
workers. Attribute with high proportion have a high probability to be perturbed
into the invalid value vin, so that fewer workers with common attribute will enter
the candidate worker set, which is beneficial for variety optimization. Conversely,
the probability that an attribute with low proportion is perturbed to the invalid
value vin should be low, so that more workers with rare attribute will enter the
candidate worker set. We have designed a new LDP perturbation mechanism φ
based on this idea.

We predetermine an invalid value perturbation probability pin, which is the
probability that the attribute with the highest proportion is perturbed to an
invalid value. The attribute with the lowest proportion should have a smaller
probability of being perturbed to the invalid value. The minimum probability
is pin

eε as limited by the LDP condition. We make the probability of different
attributes being perturbed to the invalid value proportional to their proportion,
which can be calculated by the following

Pr[φ(i) = vin] =
pin

eε
+

ti − tmin

tmax − tmin
(pin − pin

eε
) (7)

where tmax denotes the maximum value of the number of workers with different
attributes and tmin denotes the minimum value.

Before determining the probability of perturbation for other values, we pro-
pose a concept of proportional perturbation error, which is defined as

PE(P, T ) =
∑

i,j∈[d]

ti
n

pij |ti − tj |αi (8)

where αi is the weight related to the number of workers ti. For the convenience
of calculation, we take αi = 1

ti
in the later experiments. The error arises when

attribute i is perturbed to j, j �= i. Since we care about the effect of attribute
proportion, we use the absolute value |ti − tj | as a measure of the difference
between attribute i and attribute j.
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We can then determine the perturbation probabilities through a linear pro-
gramming problem. We have

min
∑

i,j∈[d]

ti
n

pij |ti − tj |αi

s.t.

⎧
⎨

⎩

piz ≤ eεpjz, i, j, z ∈ [d]
∑[d]

j pij + Pr[φ(i) = vin] = 1, i ∈ [d]
pij ≥ 0, i, j ∈ [d]

It is clear that the perturbation mechanism φ generated by the above linear
programming satisfies the eε-LDP. This linear programming problem can be
solved efficiently using existing tools such as matlab.

For the example distribution T = {20, 40, 60}, we assume pin = 0.6 and then
obtain a different perturbation matrix containing an invalid perturbation value
by linear programming. And we calculate the hidden distribution matrix by

⎡

⎣
20

40
60

⎤

⎦

⎡

⎣
0.26 0.40 0.04 0.30
0.13 0.38 0.04 0.45
0.13 0.20 0.07 0.60

⎤

⎦ =

⎡

⎣
5.2 8 0.8 6
5.2 15.2 1.6 18
7.8 12 4.2 36

⎤

⎦

Fig. 2. Workflow of our solution.

This perturbation matrix still satisfies ln 2-LDP because the ratio of any
two probability values in any column is at most 2. In the first three columns,
pij still indicates the probability of perturbing attribute i to attribute j. The
last column are the probability of perturbing attribute i to the invalid value
vin, we denote this as pid+1 = Pr[φ(i) = vin]. Similar to the previous hidden
distribution matrix, the first three columns are the hidden distributions of the
different perturbation outputs. The last column {6, 18, 36} is the numbers of
invalid workers who do not participate in the optimization, for example, there
are 60 workers with true attribute value 3, and the probability that attribute
3 is perturbed to the invalid value is 0.6. Therefore 60 × 0.6 = 36 of these
workers will not participate in the subsequent variety optimization. This hidden
distribution is better in terms of variety than the previous unprocessed hidden
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distribution. Because the minimum proportion of workers with true attribute
value 3 in the hidden distribution is now 12

8+15.2+12 = 0.34 < 0.43. This example
therefore illustrates how adding an invalid perturbation value can effectively
reduce the impact of high proportional attributes.

Algorithm 2. Two-step LDP perturb protocol
1: Workers send perturbed attributes with privacy budget βe.
2: The SC platform estimates the true distribution of workers and calculates the

perturbation probability containing the invalid value with privacy budget (1− β)e
by the linear programming approach.

3: The SC platform sends the new perturbation probability matrix to all workers.
4: Workers re-perturb their attributes and send the results.
5: The SC platform determines the optimal selection solution using Algorithm 1 on

valid worker data.
6: The SC platform selects the worker subset.

Before linear optimization we need to know the true attribute distribution
T of the workers, which can be obtained by frequency estimation of the LDP
mechanism. We therefore propose a two-step LDP protocol: (1) perturbing the
worker attributes and estimating their true distributions using the classical LDP
mechanism with privacy budget βe. (2) Determine the new perturbation prob-
ability matrix containing an invalid perturbation value by linear programming
with privacy budget (1 − β)e, where β ∈ [0, 1]. This is specified in Algorithm 2.
The overall privacy budget of this two-step protocol is e (the sum of the privacy
budgets of the two steps) according to the LDP sequential combination property
mentioned in Sect. 3. Figure 2 illustrates the flow of this protocol.

5 Experiment

5.1 Experimental Setup

Datasets. We conducted experiments on two synthetic datasets EDS, NDS
and one real dataset TDS. Synthetic dataset EDS is exponentially distributed
and NDS is normally distributed, where the number of workers is 5000 and the
number of attribute values is [5, 15]. The real dataset TDS is the census data
extracted from the Integrated Public Use Microdata Series [1], which contains
data from the 2010 China census for up to 15 randomly selected attributes. For
the privacy budget ε, it is known from relevant research that a privacy budget
less than 1 can provide reliable privacy protection, so the privacy budget of our
experiment is taken as {0.2, 0.4, 0.6, 0.8, 1.0}.

Baselines. Since no previous work has studied the variety problem based on
LDP perturbation, we then chose the random selection method and the optimal
selection method without considering privacy as the comparison methods.
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– RS: The random selection method selects a completely random subset of work-
ers from the perturbed candidate workers. The random method can achieve
good results when the true distribution of workers is even.

– OS: The optimal method for selecting workers without considering privacy.
The best selection solution can be determined without considering privacy.
Although the best result cannot be guaranteed under privacy protection, we
still use it as a comparison method that can reflect the degree of variety.

– VM: Our proposed method for selecting the subset of workers using
Algorithm 1.

– INVM: Our proposed two-step method of first adding an invalid perturbation
value and then selecting the subset of workers using Algorithm 2.

For the variety evaluation metric, we choose entropy defined by Eq. 1.

5.2 Experimental Results

For the default parameters, the total number of workers n = 5000, the number
of selected workers k = 250, the number of attributes d = 10, the differential
privacy ε = 1.0 and β = 0.5 and pin = 0.4 in the INVM method.

(a) Varying ε on NDS (b) Varying ε on EDS (c) Varying ε on TDS

Fig. 3. Results of varying ε

(a) Varying k on NDS (b) Varying k on EDS (c) Varying k on TDS

Fig. 4. Results of varying k
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(a) Varying d on NDS (b) Varying d on EDS (c) Varying d on TDS

Fig. 5. Results of varying d

Impact of Privacy Budget. Figure 3 shows the experimental results on three
datasets with different privacy budgets ε = {0.2, 0.4, 0.6, 0.8, 1.0}. From the
results, the variety of our methods VM and INVM outperforms the random
selection method on all three data sets. And the INVM method outperforms
the VM method, thus showing that adding invalid perturbation value does effec-
tively improve variety. Obviously the larger the ε, the higher the data utility, so
it can be seen that the variety increases with increasing ε on all data sets.

Impact of the Number of Selected Workers. Figure 4 shows the experimen-
tal results on three datasets with k = {50, 100, 150, 200, 250}. Obviously, when
min(T ) is less than k

d , the variety of selected workers decreases as k increases.
Since the data distribution of NDS and EDS is more uneven, where the minimum
value is less than k

d , the results of all methods become worse as k increases, while
the minimum value in TDS is still greater than k

d therefore its results change
less.

Impact of the Number of Attributes. Figure 5 shows the experimental
results on three datasets with d = [5, 15]. The increase in d means that more
distributions of attributes have to be considered when selecting workers, which
will make it more difficult to select variety of workers because more variables
need to be considered. It can be seen that as d increases, the difference between
the other methods and the optimal value increases. The INVM method is still
the closest to the optimum and outperforms the random method by about 50%
or more.

Analysis of the Parameters of INVM. The main parameters in the INVM
method are pin and β. The values of the parameters are analyzed experimentally
in Fig. 6.

pin represents the probability of invalid perturbation of the attribute with
the highest proportion. If pin is too low then the undesirable effects of high
proportion attributes cannot be eliminated, and if pin is too high then most
workers will become invalid workers who do not participate in the selection,
which will also cause a decrease in variety. Experiments show that pin = 0.5
works best for NDS, pin = 0.3 works best for EDS and TDS.
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(a) Varying pin on NDS (b) Varying pin on EDS (c) Varying pin on TDS

(d) Varying β on NDS (e) Varying β on EDS (f) Varying β on TDS

Fig. 6. Results of varying pin and β

β is the parameter that regulates the INVM two-step LDP privacy budget.
If β is large, the privacy budget of the first part is large and the privacy budget
of the second part is small, which means that the true distribution of workers
is estimated accurately in the first step while the invalid perturbation in the
second step will be less accurate. Experiments show that β = 0.5 works best for
NDS, β = 0.3 works best for EDS and β = 0.5 works best for TDS.

6 Conclusion

In this paper we generalize the variety worker recruitment problem to a LDP
optimization problem and explore an efficient method to solve this optimization
problem by maximizing the variety of worker attributes under LDP privacy pro-
tection. We further propose a novel two-step LDP protocol, which can improve
the variety maximization result in the case of uneven distribution of workers by
filtering workers through an additional round of LDP perturbations. Extensive
experiments on synthetic and real datasets show that our methods can effectively
solve the LDP variety problem and is notably better than baseline and close to
the optimal solution.
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Abstract. Mashup creation is a classic problem in service computing
and can be solved using service recommendation approaches. There are
many service recommendation studies and have achieved remarkable
results. However, there is a growing tendency for these studies to use mul-
tiplex data and more complicated models to improve the performance of
recommendations, especially after the emergence of deep learning. This
trend has led to a heavy reliance on computational resources and an
increased cost of data acquisition, which limits the practical use of these
methods, but the performance gains are still very limited. In this paper,
we improve recommendation performance by rethinking the characteris-
tics of the data in the mashup creation scenario, i.e. representation het-
erogeneity between services and mashup, rather than the use of multiplex
data and more complicated models. To achieve this, we propose a Tiny
Three Linear Layers (T2L2) model. T2L2 is a tiny model with three lin-
ear layers requiring only requires functional descriptions of services and
mashups as input. The first two linear layers are used to align the repre-
sentation space of services and mashups. The last linear layer is used to
calculate the matching scores of services and mashups. Extensive exper-
iments conducted on a real-world dataset from ProgrammableWeb show
that T2L2 outperforms existing state-of-the-art methods in commonly-
used evaluation metrics with a significant reduction in model complexity
and required data.

Keywords: Mashup creation · Service recommendation · Model
complexity

1 Introduction

With the rapid development of new technologies such as cloud, edge, and mobile
computing, the number and diversity of available services are dramatically
exploding, and services have become increasingly important to people’s daily
work and life. The increasing number and diversity of services bring significant
challenges to effective service management and reuse. Consequently, selecting
suitable services for creating new mashups has become a common but still chal-
lenging issue.

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 317–331, 2021.
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Keywords [8] and TF-IDF [27] are the first generation approaches used to
match services to satisfy mashup creation. However, these approaches have poor
performance and are difficult to use in the practical scenarios. Researchers have
started to improve the performance of service recommendations for mashup cre-
ation in different directions. Their improvement efforts can be divided into two
categories:

(1) Multiplex Data: This kind of effort improves the approach’s perfor-
mance by introducing more types and larger amounts of data. For example,
Karthikeyan et al. [11] use domain ontologies to extend keywords-based
approaches to match high-level concepts between services and mashups.
[3,5,30] introduce a wider variety of additional information, including the
invocation history between services and mashups, the quality of the services
(QoS), the tags of the services and mashups, users’ feedback, etc. While
the use of more data can indeed lead to improvements in recom-
mendation performance, the limitations of these approaches are
clear: obtaining additional complementary data in the real world
is not an easy task. For example, there is a lack of suitable domain ontolo-
gies, and the construction of ontologies requires a huge manual annotation
cost, and invocation relations are not accessible (e.g., mobile application).

(2) More complicated models: This kind of effort improves the approach’s
performance by introducing complicated models to extract better feature
representation of services and mashups. For example, [12,31] introduce
topic models to obtain semantic features of services and mashups. With the
development of deep learning, many studies [4,9,14] are using deep neural
networks (DNNs) to learn better feature representations or to fine-tune pre-
trained models [6,7] trained on a large scale of external data. Complicated
models increase performance but also bring two unavoidable problems: 1)
Complicated models that simply combine different information
with more modules cause a difficulty to explain the exact role of
the different modules in the model. 2) Complicated models lead
to a dramatic increase in the number of parameters and thus in
demand for computational resources, limiting real-world applica-
tion scenarios (e.g., edge scenarios). For example, some models have
billions of parameters for fine-tuning on pre-trained models.

In this paper, we improve recommendation performance by rethinking the
characteristics of the data in the mashup creation scenario, rather than use mul-
tiplex data and more complicated models. To achieve this, we propose a tiny
three linear layers based model called T2L2, which is simple and easy to inter-
pret model and aims to obtain better performance with as little data as possible.
T2L2 only requires functional descriptions of services and mashups as input, and
the main idea of T2L2 is to get performance improvements by aligning
the representation spaces between mashups and services. The difference
in representation space is the result of services and mashups aim at different user
groups, and their descriptions contain many domain vocabularies. Mashups are
aimed at non-expert users, and their descriptions will focus more on describing
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their functions using business-oriented language. Services are aimed at develop-
ers so their descriptions focus on their performance and input/output format in
a technical-oriented language style. For example, Tweeplers1 is a mashup whose
description is “tweeplers displays currently trending users on Twitter. With this
mashup, you can discover latest news as well as you will get idea about whom to
follow on twitter...”. While its component service Twitter2 has a more technical-
sound description “The Twitter micro-blogging service includes two RESTful
APIs. The Twitter REST API methods allow developers to access core Twitter
data ... The API presently supports the following data formats: XML, JSON,
and the RSS and Atom syndication formats, with some methods only accepting
a subset of these formats”.

As shown in Fig. 1, T2L2 addresses the differences in the representation space
of services and mashups through two linear layers. The first linear layer, called
the transformation function, is used to migrate the representation of the mashups
to the aligned representation space. While the second linear layer is used to gen-
erate message for the propagation function, which can migrate the representation
of the services to the aligned representation space. By learning these two func-
tions, the services and mashups can be placed in the same representation space,
resulting in a better performance.

Fig. 1. Illustration of representation space aligning

1 https://www.programmableweb.com/mashup/tweeplers.
2 https://www.programmableweb.com/api/twitter.

https://www.programmableweb.com/mashup/tweeplers
https://www.programmableweb.com/api/twitter
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The main contributions of this paper are summarized as follows:

1. We propose a method to eliminate representation heterogeneity between
services and mashups by aligning them to the same representation space.

2. We propose a deep learning model called T2L2, which consists of three sim-
ple linear layers and only requires the description of services and mashups
as input.

3. We conduct extensive experiments on the real-world dataset Pro-
grammableWeb, which shows that T2L2 significantly outperforms several
state-of-the-art approaches.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
the related work. In Sect. 3, we describe relevant details of the T2L2 model. In
Sect. 4, we give the details of the experiment settings. In Sect. 5, we present the
experiment results. In the final section, we present the conclusion.

2 Related Work

The use of service recommendation techniques to create new mashups that satisfy
the requirements of users has become a research hotspot. Many academic and
industrial organizations have proposed a great deal of effective approaches on
service recommendation. At first the recommendations were based on keywords
[8,27] from the service categories and names. However, these approaches are
suffering from a poor performance because of the insufficient understanding of
the semantics. To address this issue, researchers have started to take more kinds
of data into account. Based on the complexity and the data they used, their
improvement efforts can be mainly categorized as follows:

2.1 Service Recommendation Approaches Using Multiplex Data

Multiplex data such as service descriptions, user preferences, and quality of ser-
vice (QoS) are required to address the semantics shortness problem. Works
[1,11,20] annotate requirements and services with domain ontologies and use
these ontologies to match high-level concepts or calculate their semantic similar-
ities. However, such approaches are difficult to use in real-world scenarios due to
the lack of suitable domain ontologies and the huge cost of manual annotation
during the ontology construction. Chen et al. [4] propose a framework for service
recommendation whose components are extendable, for example, its embedding
layer can be adapted for different kinds of input data.

Additionally, historical usages are also helpful with following the real-world
constraints. To make full use of the historical usage data, some works apply
graph techniques to deal with the problem. For example, works [16,23] design
recommendation algorithms based on the feature learned on a knowledge graph.
Graph-based approaches usually work in conjunction with collaborative filtering
(CF). For example, Chen et al. [5,30] propose a neighborhood integrated matrix
factorization approach to predict the QoS of candidate services. Chang et al. [3]
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design a graph-based matrix factorization approach to predict QoS, and then
use the QoS to select the services. Besides, graph is also applied to find similar
users or services. For example, Maardji et al. [15] propose a frequent pair mining
method for mashup development. Qi et al. [18] adopt a hybrid random walk to
compute the similarities between users or services, and a CF model is designed
for service recommendation. [13,28] build a heterogeneous information network
using various information of services and mashups to measure the similarity
between mashups, and then use the user-based CF to rank candidate services.

It is worthy of recognition that the performance have been improved after
more data were introduced, but it is not satisfying and have the space to be
improved; for example, Chen et al.’s approach [4] that can adopt multiple type
of data for input, whose F1@5 does not exceed 20% on the ProgrammableWeb
dataset.

2.2 Service Recommendation Approaches with Complicated
Structure

Besides introducing more data, constructing a more complicated model to
extract better feature representation of services and mashups is also a common
method. For example, [12] uses topic model to explore the semantic relation-
ships between mashups and services. [31] refactors the descriptions by using
Author-Topic Model [19] to eliminate the gaps between mashups and services.
Li et al. [12] add the invocation relations between requirements and service to
a latent Dirichlet allocation (LDA) model to enable the topic model learn the
relationship between services and requirements. Jain et al. [10] combines topic
model, CF-based matrix factorization, and QoS-based ranking together to rec-
ommend satisfying services for mashup creation. Samanta et al. [21] also apply
topic models, along with neighbor interaction probabilities to calculate similar-
ity scores between services and requirements, and then multiply these scores to
rank candidate services.

With the great success of deep learning models in the NLP and pre-trained
language models (PLMs), some researchers start using PLMs and deep learning
to deal with the service recommendation problem. For example, Bai et al. [2]
designed a stacked denoising autoencoders (SADE) to extract features for rec-
ommendation. Xiong et al. [29] integrates the invocation relations between ser-
vices and requirements as well as their description similarity into a deep neural
network. Chen et al.’s extendable framework [4] is a preference-based neural col-
laborative filtering [9] recommendation model, which use multi-layer perception
to capture the non-linear user-item relationships and obtain abstract data rep-
resentation from sparse vectors. [14] utilize the powerful representation learning
abilities provided by deep learning to extract textual features and features from
various types of interactions between mashups and services. These models are
more complicated than others and some models require a great number of data
for pre-training. However, the experimental results show that the improvement
of performance from the PLMs and deep learning is still limited, possibly due
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to the inability of existing models to directly adapt to service recommendation
and negative transfer [24].

Although the complicated model is an improvement over the original meth-
ods, the current SOTA approach [14] still has an F1@5 value below 40% on the
ProgrammableWeb dataset.

3 Tiny Three Linear Layers Based Model

Fig. 2. The architecture of T2L2

As shown in Fig. 2, the proposed T2L2 model consists of three linear layers.
The first linear layer called transformation function, which active projection the
representation of the mashups to the aligned representation space. The second
linear layer is a part of propagation function, which propagate information from
aligned representation space to service representation space to make service pas-
sive migration to aligned representation space. It should be note the propagation
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function only used in training stage. The last linear layer called scoring function,
which give a score to a given mashup and service.

During the training stage, the input of T2L2 model is a mashup m that
is satisfied by a set of component services C+

m = {s1, s2, . . . , sn}. While in the
inference stage, the input of T2L2 model is a mashup m, and the output is a set of
recommended component services Ĉm = {ŝ1, ŝ2, . . . , ŝm}. T2L2 maintains a set
of service representations S ∈ RN×ds that are initialized by a PLM, where N is
the number of services and ds is the dimension of service representation. For each
mashup m we also use the pre-trained model to obtain its representation vm ∈
Rdm , where dm is the dimension of mashup representation. It is important to
note that the PLM is only used to obtain the initial representation
vector and T2L2 does not need to do fine-tune on the PLM.

3.1 Transformation Function

As we state in Sect. 1, a key problem in real-world mashup creation is to align-
ing services and mashups representation to same vector space. Transformation
function ft can be learned to active project the mashup representations into the
aligned representation space.

In this paper, we use a linear layer to implement the transformation function
ft:

va
m = ft(vm) = Wt · vm + bt (1)

where Wt ∈ Rdm×ds is a trainable weight matrix and bt ∈ Rds is bias. va
m

denotes the aligned mashup representation.

3.2 Propagation Function

Propagation function only used in the training stage and consists of
two sub-functions: propagation message generation and service representation
update.

Propagation message generation function fp is implemented by the second
linear layer:

gm = fp(va
m) = Wp · va

m + bp (2)

where Wp ∈ Rds×ds is a trainable weight matrix and bp ∈ Rds is bias. gm

denotes the generate propagation representation.
The service representation update function uses the generated propagation

information gm to update the relevant service representation so that the service
representation space migrates to the aligned representation space:

Si = σ(Si + gm) ∀i ∈ C+
m (3)

where σ is an activation function, we use sigmod function in this paper. As the
service representation update function is a hard-coded algorithm, no additional
trainable parameters are introduced.
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3.3 Scoring Function

The scoring function is used to give a score ŷm,s based on the given aligned
mashup representation va

m and service representation Ss to indicate the proba-
bility of mashup m invoking service s. Services with a high score will be recom-
mended for mashup m creation:

ŷm,s = Ws · [va
m;Ss] + bs (4)

where Ws ∈ R2ds×1 is a trainable parameters and bs ∈ R1 is bias.

3.4 Loss Function

For a given mashup r with component services C+
m = {s1, s2, . . . , sn}, we mini-

mize the following loss function:

L1 = −
∑

s∈C+
m∪C−

m

yt
m,s log ŷt

m,s + (1 − yt
m,s) log(1 − ŷt

m,s) (5)

where yt
m,s ∈ {0, 1} denotes whether s is a component service of m, and C−

denotes a set of negative samples with services that are not component services
of m. Usually, a mashup is created using a limited number of services, but the
number of candidate services is much larger than the number of services required.
So it is not appropriate to use all unselected services as negative samples, and
we select negative samples of number |C−| = 6|C+| by random sampling.

3.5 Model Complexity

In this section, we use floating point operations (FLOPs) to measure model’s
time complexity and use the number of model parameters maintained by T2L2
to denote the space complexity [22]. The FLOPs of linear layer can be calculated
as follows:

FLOPs = (2din − 1) × dout (6)

where din and dout are the input and output dimension of the linear layer. So
that the time complexity of T2L2 during training stage can be calculated as:

Time: (2dm−1)×ds+(2ds−1)×ds+(2(ds + ds)−1)×1 � O(dmds+d2s) (7)

For each linear layer the number of trainable parameters is:

NumLinearParameters = din × dout + dout (8)

Then the total trainable parameters number of T2L2 is dmds + d2s + 4ds + 1.
T2L2 also need to maintain a set of service representations of size N ×ds, so the
space complexity of T2L2 is:

Space: dmds + d2s + 4ds + 1 + N × ds � O(dmds + d2s + Nds) (9)
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4 Experiment Settings

4.1 Dataset and Metrics

We evaluate the proposed T2L2 model on real-world ProgrammableWeb dataset,
which are also the dataset used in existing mashup creation studies.

ProgrammableWeb: The dataset is the largest online Web service registry.
We collected a total of 23,520 APIs and 7,947 mashups, on Oct 10, 2020. The
mashups and services without functional description, the services that have not
been invoked, and the mashups with fewer than two component services were
removed. The experimental dataset contains 3,379 mashups, whose functional
descriptions are used as requirements, and 720 APIs. Table 1 displays some
statistical information of the dataset. We randomly select 2, 700 mashups as the
training set and the remaining 680 mashups are used as the test set.

Table 1. Some statistical information of the dataset

Description Count

Percent of mashup invokes no more than 5 services 91.2%

Percent of mashup invokes no more than 15 services 99.5%

Percent of mashup invokes no more than 30 services 99.9%

Number of mashup 3379

Number of service 720

Average number of service invoked by a mashup 3.16

We adopted the following evaluation metrics to measure the recommendation
performance:

Precision@N =
1

|M |
∑

m∈M

|Ĉm ∩ Cm|
|Ĉm| (10)

Recall@N =
1

|M |
∑

m∈M

|Ĉm ∩ Cm|
|Cm| (11)

F1@N =
1

|M |
∑

m∈M

|Ĉm ∩ Cm|
|Cm| + |Ĉm| (12)

where M is the set of mashups in the test set and |M | denotes the size of M . For
mashup m, Ĉm is the recommended services, while Cm is its actual component
services.

There are 91.2% mashups whose componential services are no more than 5,
and almost all mashups (99.9%) invoke no more than 30 services. Therefore, we
choose 5, 10, 15, 20, 25, and 30 as N , respectively to evaluate the performance
of the approaches on this dataset comprehensively.
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4.2 Implementation Details

We use bert-base-uncased provided by Transformers [25] to obtain mashup rep-
resentation with the dimension dm set to 768, and it should be noted that we do
not do fine-tune on bert-base-uncased. Service representations S are initialized
by a 128d Word2Vec [17] word embedding trained on text8 3. We use the two
different pre-trained language models to reflect the representation gap between
requirement and service.

We do not use dropout and batch size is set to 200. We use Adam optimizer
with the learning rate set to 0.0001. We conduct 5 independent experiments for
each approach to prevent serendipity, and early-stop is applied to avoid over-
fitting. All the results reported are average results.

4.3 Baselines

To evaluate the effectiveness of model, we select six state-of-the-art service rec-
ommendation approaches:

1. AFUP [10]: This approach first leverages probabilistic topic models to com-
pute relevance between a service and a given requirement. description. And
then use collaborative filtering to estimate the probability of a service being
used by existing similar requirements. Finally, the multiplies these two term
based on Baye’s theorem to rank candidates service.

2. SFTN [21]: This approach extends AFUP by using hierarchical dirichlet pro-
cess (HDP) and probabilistic matrix factorization (PMF) to tackle cold start
issues and usage history.

3. PNCF [4]: This approach uses multi-layer perceptron to capture the non-
linear user-item relationships and obtain abstract data representation from
sparse vectors. However, text features were not considered in their original
version, so we constructed two variants: PNCF-HDP using HDP adopted in
SFTN to obtain text features, and PNCF-Deep using a pre-trained language
model to obtain text features.

4. MISR [14]: This approach proposes a deep neural network that can captures
multiplex interactions between services and requirements to extract hidden
structures and features for better recommendation performance.

5. MTFM++ [26]: This approach proposes a neural framework based on multi-
model fusion and multi-task learning, which exploits a semantic component to
generate representations of requirements and introduces a feature interaction
component to model the feature interaction between mashups and services.

It should be noted that most baselines do not provide official code and we
can only reproduce them as described in their papers. In some cases we were
not able to reproduce the results they reported, possibly due to different ways
of dividing the dataset and missing important parameter values. In these cases,
we chose to directly compare the results reported in [14].

3 http://mattmahoney.net/dc/text8.zip.

http://mattmahoney.net/dc/text8.zip
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5 Results

5.1 Overview

Table 2. Performance comparison of different approaches.

Metric N MISR PNCF-Deep SFTN AFUP MTFM++ PNCF-HDP T2L2 (our)

F1@N 5 0.361 0.311 0.249 0.181 0.305 0.161 0.601

10 0.258 0.228 0.19 0.136 0.198 0.12 0.471

15 0.203 0.181 0.15 0.109 0.148 0.102 0.351

20 0.168 0.151 0.125 0.092 0.121 0.092 0.277

25 0.145 0.131 0.108 0.08 0.104 0.08 0.229

Recall@N 5 0.541 0.469 0.366 0.268 0.592 0.245 0.764

10 0.627 0.557 0.453 0.323 0.649 0.298 0.962

15 0.675 0.607 0.492 0.358 0.682 0.344 0.988

20 0.708 0.639 0.519 0.382 0.712 0.387 0.993

25 0.734 0.672 0.546 0.403 0.737 0.408 0.997

Precision@N 5 0.287 0.248 0.203 0.145 0.206 0.128 0.495

10 0.17 0.15 0.126 0.089 0.117 0.0784 0.312

15 0.124 0.111 0.092 0.066 0.083 0.0615 0.213

20 0.098 0.088 0.073 0.053 0.066 0.052 0.161

25 0.082 0.074 0.062 0.045 0.056 0.044 0.129

Table 2 shows the performance comparison of different approaches, showing that
the T2L2 outperforms all the six baselines across all evaluation metrics.

The AFUP, PNCF-HDP and SFTN performed the worst of all the baselines
with the F1@5 below 25%, which is caused by the following two main rea-
sons: 1) They use a topic model to extract service/mashup representation from
the description text, which ignores the order of words and further leads to lost
semantic information; 2) Rough handling of service historical usage information.

The PNCF-Deep, MTFM++ and MISR perform better than the other
baselines because they use PLMs to obtain better representations of the ser-
vices/mashup and do fine-tune on these PLMs. In addition, Table 3 summarises
the information used by the different approach. While MTFM++ uses the most
information, its performance is worse than MISR and PNCF-Deep, suggesting
that simply using more data does not necessarily lead to better results. MISR
performs the best of all the benchmark methods because it takes into account
multiple types of interactions between services and requirements.

T2L2 requires less information than the baselines, while its performance is
significantly better than all baselines. For example, all baselines require descrip-
tion of mashups/APIs and mashup-API graph, while T2L2 only needs descrip-
tion of mashups and APIs, and MISR (MTFM++) additionally requires the tags
(tags and QoS) of the service. Compared to the best performing baseline app-
roach MISR, T2L2 improves the Precision@5, Recall@5 and F1@5 metrics by
20.8%, 22.3% and 24.0%, respectively. The performance improvements mainly
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Table 3. The information used in different approaches.

MISR PNCF-Deep SFTN AFUP MTFM++ PNCF-HDP T2L2

Description � � � � � � �
Tag � �
QoS �
Mashup-API graph � � � � � �

benefit from transformation function and propagation function that allow the
acquisition of better representation of services and requirements in same vector
space.

Fig. 3. Comparison of F1@5 and the number of trainable parameters within DL-based
models

Figure 3 is the comparison of F1@5 and the number of trainable parameters
among DL-based approaches. The x-axis and y-axis represent the number of
trainable parameters and the F1@5, respectively. T2L2 locates at the top-left
corner and it is distinctly separated, which means that T2L2 has the fewest
parameters while keeping the best performance within the DL methods.

Comparing with the MTFM++, PNCF-Deep, and MISR that have 660K,
5100K, 20100K trainable parameters, respectively, T2L2 has 115K parameters
because the only trainable parameters in T2L2 are the weights of three linear
layers, however, the other methods need to train or fine-tune both the weights
in the structure and the features from networks or texts.
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5.2 Ablation Study

Fig. 4. Performance comparison of T2L2 and its variant T2L2-NA

In this section we design an ablation study in order to demonstrate that the per-
formance improvement of T2L2 comes from aligning the service representation
and the mashup representation. We designed a variant of T2L2 called T2L2-NA,
which turns off the transformation function and propagation function.

The comparison between T2L2 and T2L2-NA is shown in Fig. 4. T2L2 sig-
nificant outperforms T2L2-NA on all evaluation metrics and the F1@5 value
of T2L2-NA is 28.8% close to PNCF-Deep and MTFM++, indicating that the
performance improvements do come from the transformation and propagation
functions rather than from using a larger PLM (Bert) to extract the mashup
representation.

6 Conclusion

In this paper, we propose a tiny three linear layer based model called T2L2 for
mashup creation. Unlike traditional approaches, which improve recommenda-
tion performance by using complicated models or introducing new data, T2L2
dramatically improves recommendation performance by eliminating representa-
tion gaps between mashups and service through transformation and propagation
functions without introducing new data and using simple models. Experiments
on a real-world dataset demonstrated that the proposed approach significantly
outperforms several state-of-the-art approaches regarding three evaluation met-
rics.
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Abstract. Internet-of-Things (IoT) systems are becoming increasingly
complex, heterogeneous and pervasive, integrating a variety of physical
devices, virtual services, and communication protocols. Such heterogene-
ity presents an obstacle especially for interactions between devices of dif-
ferent systems that encounter each other at run time. Mediation services
have been proposed to facilitate such direct communication by translat-
ing between messaging protocols, interfacing different middlewares, etc.
However, the decision of where to place a mediation service within an IoT
topology has repercussions and is in some cases critical for satisfying sys-
tem objectives. In this paper, we propose an integer linear programming
solution to optimize the placement decision specifically in terms of energy
consumption.Our solution takes into account the energy consumedby each
interaction at each device along the data transfer paths. Through simula-
tions that use topologies of real-world IoT systems,we show the effect of our
approach on energy consumption, messaging delay, and placement deci-
sion time. Our algorithm outperforms a state-of-the-art solution in terms
of reducing energy consumption by almost a third in large-scale typologies.
We also demonstrate the feasibility of our approach in terms of overhead.

Keywords: Energy consumption · Internet of Things · Cyber physical
systems · Mediator · Middlebox · Sustainable computing

1 Introduction

The Internet of Things (IoT) and Cyber-Physical System (CPS) paradigms con-
nect a variety to devices in order to form a system that is capable of monitoring
and controlling its environment. The benefits of this paradigm span across several
areas such as smart cities [24], smart buildings [25] and environmental monitor-
ing [26], among others. These tangible benefits have given rise to the production
of vast numbers of IoT devices with an expected growth from 8.74 billion in 2020
to more than 25.4 billion by 2030 [1].

Interoperability between IoT devices is a major challenge when using device-
to-device (D2D) communication. IoT industry producers tend to develop their
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-91431-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_21&domain=pdf
http://orcid.org/0000-0002-9463-0446
http://orcid.org/0000-0003-4639-436X
https://doi.org/10.1007/978-3-030-91431-8_21


336 A. Elhabbash and Y. Elkhatib

Deployment A (Smart Tra c)

Deployment B (Smart Buildings)
Mediation 

service

Fig. 1. An example of IoT and CPS deployments sharing the same environment but not
being able to intercommunicate due to heterogeneity arising from the use of different
communication protocols, service semantics, message formats, middleware software,
etc. Deploying a mediation service (see figure on the right) enables interoperation
between different deployments.

own APIs and protocols to enable connectivity of their devices given the con-
straints of their service [33]. This has created a large space of highly heteroge-
neous devices. However, the difference of APIs, messaging models and message
formats complicates direct interaction. For example, the CoAP [32] protocol
adopts a client-server messaging model and a maximum message size of 1152
bytes whereas MQTT [7] adopts a publish-subscribe model of messages upto
≈260 Mbytes. Therefore, a device that uses CoAP protocol will not be able to
interoperate with another that uses MQTT (see illustration in Fig. 1).

Consider for example the case of a fire fighting emergency team in a smart
building. In this scenario, the rescue crew may need to install their equipment
in the site and interact with the smart building network to collect situational
awareness data. It may not be attainable or convenient to adopt a cloud-based
architecture in this case due to unavailability or high delays. In this case, direct
interaction is required to interconnect the rescue equipment with the building
devices and, thus, a mediator is inevitably necessary.

A solution to cope with the heterogeneity issue is to employ a middlebox
to bridge between devices and abstract their functional semantics. The middle-
box will reside somewhere in the network as a mediation service and translates
between the messaging models of different protocols. Examples include network
intent mediation [15], the FIESTA-IoT directory service [31], and the (Data
eXchange Mediator Synthesizer) DeXMS framework [9].

However, a notable question that the literature on mediation services does
not answer is where to place the mediator in the network. This question has
not yet been thoroughly tackled by the IoT community, though a method for
optimizing the end-to-end delay between the interacting devices has recently
been proposed [12]. We argue that energy consumption is a substantial factor
to consider in such cases for two reasons. First, efficient energy consumption is
crucial to maintain device functionality for the longest period of time possible,



Energy-Aware Placement of Mediation Services in IoT Systems 337

especially that some IoT devices have non-rechargeable power sources. Second,
efficient energy consumption contributes to the principle of designing sustainable
computing solutions.

In this paper, we develop a method that utilizes the network structure to
compute the placement of mediation services in order to minimize the energy
consumed by the interactions between IoT devices. Our method formulates the
placement problem as an integer linear programming (ILP) problem and pro-
duces the optimal placement given the interaction load and bandwidth con-
straints. In this sense, the proposed method is adaptive as it allows placement
recalculation whenever the data size and/or available bandwidth change. We
compare our proposed method to the delay-optimizing method in recent liter-
ature [12] and with a näıve baseline method of random placement. The results
show that our adaptive method achieves minimal energy consumption for differ-
ent IoT network topologies.

Overall, this paper makes the following contributions:

• We formulate the placement of a mediation service as an ILP problem (Sect.
3.1);

• We provide an energy-aware solution to the placement problem (Sect. 3.2);
and

• We carry out extensive experiments using the topologies of 4 real-world IoT
deployments from different domains, comparing our approach to the state-of-
the-art (Sect. 4.5).

2 Related Work

2.1 The Need for Mediation in IoT Systems

A fundamental challenge in designing IoT systems is to choose a communication
protocol to be used by all device types regardless of function (sensing, actuating,
processing, etc..), manufacturer, or computational capability [14]. A number of
protocols have been proposed to enable such D2D communication. A prominent
solution is the OASIS standard MQTT [7]: a simple and lightweight protocol that
adopts a publish-subscribe paradigm and runs on top of TCP. MQTT defines
a small message header, making it preferable for resource constrained networks.
An alternative proposed by the IETF is CoAP [32], which follows a client-server
paradigm, is based on the Representational State Transfer (REST) architecture,
and runs on top of UDP. Other solutions include HTTP, AMQP [3], XMPP [2],
among others.

Despite these attempts to standardize communication protocols, different
IoT vendors still use varying messaging protocols [14,27], which hampers IoT
engineers from building more complex systems (e.g., [16,28]). As such, media-
tion between devices of different vendors is a common approach. Additionally,
IoT systems designed by different teams of engineers are likely to use different
protocols. To resolve this, mediation is typically used to act as a bridge between
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different protocols. For instance, the DeX framework [9] is a recent contribu-
tion to support mediation between different IoT protocols. However, little work
has been done on how to optimize the placement of mediators in the network
considering network and application constraints. A recent proposal [12], which
we use as a baseline in our experiments, aims to do this while optimizing for
delay-sensitive applications.

2.2 Virtual Network Function Placement

A related research topic is the placement of Virtual Network Functions (VNF)
in order to optimize for certain objectives while meeting the system’s functional
requirements. Although the problem is similar at a high level, the solutions
proposed in the literature (e.g., [4,11,36,37]) are not suitable as they optimize
placement for different objectives such as link utilization and the size of the
network forwarding table. A recent example [13] that is more pertinent to our
problem presents an ILP-based model for the placement of virtual security func-
tions (VSFs). The model considers server CPU capacities, VSF processing req-
uirements, and network link capacities to calculate the optimal placement for
minimizing energy consumption.

2.3 Energy-Aware IoT

Optimizing energy consumption has been a long sought after goal in IoT systems.
This problem has been tackled from different perspectives, such as switching to
low-power communication technologies (e.g., [29,35]), being selective about what
data to aggregate/process/drop and where (e.g., [5,18,22]), forecasting overall
energy consumption [19], and so on.

Some proposals attempt to minimize the energy consumption of application
servers within an IoT system (e.g., [6]) and, as such, optimize for application
metrics such as request satisfaction. However, none has tackled the challenge
taking into consideration where to place mediation services and how this affects
the energy consumption of D2D communication.

3 Energy-Aware Placement

In this section, we present the system model and formulate the energy-aware
mediator placement problem as an integer linear programming problem.

3.1 System Model

We consider an IoT system with a set of things T = {t1, t2, . . . , tm}, a set of
access points AP = {ap1, ap2, . . . , apk}, a set of nodes N = {n1, n2, . . . , np}, and
a gateway GW . The set of things includes sensors that read environmental data,
actuators that effect actions, and external equipment that can be integrated into
the network (e.g., rescue teams equipment). The set of nodes consists of static
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machines that host mediation services to enable heterogeneous things to interact.
The access points are hubs that connect the things and nodes to the gateway. In
normal cases, the gateway connects the IoT system to the cloud where communi-
cation between devices occurs. However, when direct communication is required,
which is the focus of this paper, the communication between things and nodes
is always directed through the Gateway. Figure 2 shows an typical topology of
where things and nodes are located.

Fig. 2. Typical topology of an IoT system.

We assume that a location attribute l = {x, y, z} is associated with each of the
things, nodes, access points and the gateway where x, y and z are the coordinates
of the location. We also assume that each of the things has a protocol attribute
p(ti) that specifies the messaging protocol that defines the rules and formats
of the messages exchanged with other things. The communication between the
system things is represented as a set of interactions that occur during the lifetime
of the system. We denote an interaction as iabj where an interaction j involves
things a and b. Each interaction involves sending messages of size m(ij) for a
number of times f(ij).

The system is represented as a weighted graph G = (V,E) where V and E
denote sets of vertices and edges, respectively. Each vertex vi ∈ V represents a
thing, node, access point or gateway. Each edge eij ∈ E represents a link between
two vertices and has a weight wij that indicates the available link bandwidth.

3.2 Problem Formulation

The energy-aware mediator placement problem can be formally stated as fol-
lows: Given a set of things, nodes, interactions and links, deploy the mediation
service on a node so that the total energy consumed by the interactions is min-
imized provided that the bandwidth consumed on each link is constrained by the
link’s available bandwidth. In the following we present how the end-to-end energy
consumption is calculated and develop the objective function and constraints.

Links. In order to calculate the energy consumption of an interaction, we need
to consider the energy consumed for transmitting and receiving data on each link
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that connects each pair of devices (thing, node, access point or gateway) along
the interaction path. Consider the example given in Fig. 2. For an interaction
that involves t1 and t5 where the mediation service is deployed on n1, data will
traverse the links t1 → AP1, AP1 → n1, n1 → AP1, AP1 → GW , GW1 →
AP3, AP3 → t5 (notation: sender → receiver). On the link t1 → AP1, energy
consumed at t1 to send the interaction messages from t1 to AP1 and energy is
also consumed at AP1 to received those messages; and so on for the other links.
These links are grouped into a first-leg group of the interaction and a second-
leg group where the first-leg includes links from the sending thing to the node
hosting the mediation service and the second-leg includes links from the hosting
node to the receiving thing. This grouping is important because the messaging
protocol (and hence the message size) is different in the two legs. On the first-leg
the used messaging protocol is the messaging protocol used by the sending thing
(p(t1) in the above example) and on the second-leg the used messaging protocol
is that of the receiving device (p(t5) in the above example).

Energy Consumed Per Interaction. In order to calculate the consumed
energy, we denote εT (du) and εR(du) for each device in the system, where the
former refers to the transmission energy per bit and the latter refers to the
receiving energy per bit of device du. Note that each of the transmitting and
receiving devices can be a thing, node, access point or gateway. Now, in order
to calculate the energy consumed for an interaction iabj , we calculate the energy
consumed by each leg of the interaction using Eqs. 1, 2, and 3 where m(ij(p(ta)))
and m(ij(p(tb))) are the message sizes of the messaging protocol of the sender and
receiver things, respectively, and ε(iabj ) is the energy consumed by the interaction.

ε(first − legj) = (
∑

(εT (du)) +
∑

(εR(dv))) × m(ij(p(ta))) × f(ij) (1)

ε(second − legj) = (
∑

(εT (du)) +
∑

(εR(dv))) × m(ij(p(tb))) × f(ij) (2)

ε(iabj ) = ε(first − legj) + ε(second − legj) (3)

Objective Function. Next, we calculate the total energy that is consumed by
all the interactions so that we utilize it to reason about the selection of a node
to host the mediator. Given a number of interactions n that occur in the system,
the total consumed energy is calculated using Eq. 4 which sums up the energy
consumed by each interaction.

εtotal =
n∑

r=1

ε(iabr ) (4)

Note that we do not include the processing energy consumption of the generation
of the mediator nor the mediation because we assume these will be the same
regardless of the where the mediation service is deployed.

Mediator Host Selection Constraints. Given an interaction, the following
two constraints must be satisfied for any mediation deployment to be acceptable:
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• Bandwidth constraint. Given a host node and an interaction iabj , the interac-
tion will consume m(ij)×f(ij) bandwidth on every link along the interaction
path from the source thing a to the destination thing b. The consumed band-
width must be less than or equal to the available bandwidth on each of the
links along the path. Algorithm 1 describes how this constraint is checked:
it takes as input a potential hosting node, a graph representing the topology
and lists of things and interactions. It returns True if the bandwidth con-
straint is satisfied. It starts by extracting all the edges. Then, for each link,
the algorithm accumulates the bandwidth that would be consumed by each
interaction and checks if the total is less than the link bandwidth.

Algorithm 1. Check Bandwidth constraint
Input: A list of Things T , hosting node np, Interactions I, Graph G

Output: True: if the consumed bandwidth is less then the available, False: otherwise
1: For each edge ei in G

2: For each interaction iabj in I

3: Find a path leg1 from ta to np using the Breadth First search
4: Find a path leg2 from np to tb using the Breadth First search
5: For link (edge) elm in leg1 ∪ leg2
6: If elm == ei
7: bandwidthUsed += m(ij) × f(ij)
8: EndIf

9: EndFor

10: If bandwidthUsed > bandwidth(ei)
11: return False
12: EndIf

13: EndFor

14: EndFor

15: return True

• Allocation constraint. For each interaction iabj , there is a set of nodes N that
can host the mediation service of that interaction. However, for each inter-
action iabj , we should only select one node to host the mediation service.
We denote the selection of a node nj to host the mediation service yab

j , the
following constraint must be satisfied:

∑

n∈N

yab
j = 1 (5)

Based on this modeling, the mediator placement problem is formalized below
with wab

np
being the bandwidth of the path from ta to tb when the mediator is

hosted on node np.

minimize εtotal

subject to ∀iabj ∀np

∑
m(ij) × f(ij) ≤ wab

np

∑

n∈N

yab
j = 1

(6)
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4 Evaluation

To assess the efficiency and efficacy of our energy-aware placement algorithm, we
run a set of rigorous experiments of mediator service placement in various con-
texts based on real-world IoT scenarios (Sect. 4.2). We compare our algorithm
against three baselines: a näıve algorithm, a state-of-the-art one for delay opti-
mization [12] (Sect. 4.3) and a state-of-the-art one for bandwidth optimization.
We inspect the ability to improve different system performance metrics and the
associated overhead (Sect. 4.4).

4.1 Experimental Setup

The experiments are conducted on a PC with Intel Pentium D 3.0 GHz, 1
GB RAM, running Linux Ubuntu v18. We used Java SE v1.8.0 to implement
the placement algorithms and simulate the IoT infrastructure. We generate the
parameters values as follows:

• Interactions are generated by randomly selecting two different things provided
they have different messaging protocols so that a mediation service is required.
The size and frequency of messages are generated randomly from the ranges
[0, 100] and [0, 1000] respectively.

• Interface bandwidths of things, access points, and gateways are generated
from the ranges [11, 54], [11, 54], [54, 450] Mbps respectively according to the
specification in [21].

• The values of energy per bit transmitted/received are generated from the
ranges [5, 20] mJ/bit [34] and [13.97, 1902.11] nJ/bit [20].

• The locations of the system elements are generated within the Euclidean
space of range [0, 0]–[1000, 1000] in meters.

4.2 IoT Contexts

We use 4 real-world IoT deployments as evaluation contexts. These were chosen
to represent different scales and structures of IoT systems, as summarized in
Table 1.

Table 1. A summary of the IoT deployments used for evaluation.

Name #Things #Nodes Ref. Use

AirPollution 14 6 [8] Monitor city-wide air quality

SmartSantander 1,570 23 [30] Monitor various issues such as noise, ambient

temperature, light intensity, vehicle activity,

Carbon Monoxide levels, etc.

Sphere 1,500 500 [17] Healthcare provision in residential environments

MassiveIrrigation 15,000 1,000 [23] Manage freshwater distribution for precision

irrigation of agricultural crops
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4.3 Baseline Placement Algorithms

• Random – In this näıve algorithm, a node to host the mediation service is
selected at random from the list of potential hosting nodes, excluding those
that violate bandwidth/allocation constraints.

• Delay-optimized – The algorithm proposed in [12] is, as discussed, the only
contribution so far to address the mediation placement problem in IoT sys-
tems. The algorithm defines an objective function that aims to find a place-
ment that minimizes the delay between interacting things. Delay is calculated
as the sum of the transmission and propagation delays. The algorithm uses
the absolute locations of things and nodes in the deployment environment to
compute the propagation delay as the distance that data travel divided by the
wave propagation speed. In other words, the algorithm makes no attempt to
consider the network topology. In order to make a fair comparison with this
algorithm, we modify the way distance is calculated to include the total dis-
tance between the sending thing and the receiving thing through the hosting
node, access points and the gateway.

• Bandwidth-optimized – This algorithm determines placement such that
the overall bandwidth consumed by D2D interactions is minimized. The algo-
rithm calculates the bandwidth that interactions will consume on every link
along the interaction path. It then sums up all the estimated bandwidth con-
sumption on each link for each placement and solves the objective function
to find the optimal placement.

4.4 Evaluation Criteria

The three algorithms are compared in terms of the following criteria:

• Energy consumption – The total energy consumed to deliver messages
between things. We focus on transmitting and receiving messages, and ignore
the energy of mediation assuming the latter is the same on all nodes.

• Delay – The end-to-end time delivery time between sender and receiver.
• Execution time – The time taken by the algorithm to find a placement of

the mediation service.

4.5 Results

We presents our findings and draw comparison between the four algorithms.

Energy Consumption. The average values of energy consumption per interac-
tion are depicted in Fig. 3. The plots indicate that significant amounts of energy
could be saved using our placement algorithm. This per-interaction improve-
ment ranges between 12.9% in the case of a small topology like the air pollution
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Fig. 3. The average energy consumed on message sending between source and desti-
nation, including intermediaries, at 250 interactions.

Fig. 4. The average energy of messaging for varied scales of interaction.

scenario, to 31.6% for large deployments such as the massive irrigation one.
Energy consumption for the other placement algorithms is, overall, not better
than the random placement strategy. To further determine the scalability of the
algorithms, we plot the energy consumption versus the number of interactions in
Fig. 4. Our algorithm improves energy consumption for different levels of inter-
action. In addition, energy consumption grows as the number of interactions
grow, which is due to demand for more traffic. Energy consumption increases
linearly with the number of interactions, but with a steeper slope for all but our
algorithm.
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Fig. 5. The average end-to-end delay of message exchange at 250 interactions.

Fig. 6. The average end-to-end delay of message exchange for varied number of inter-
actions.

Delay. Figure 5 exhibits the average end-to-end messaging delay for each topol-
ogy. The delay-optimized algorithm clearly achieves lower levels of delay than
the alternatives. The amount of delay reduction is in the order of 3% in the
case of small topology to 30.6% in the case of large topology – compared to
the energy-optimized algorithm. Figure 6 plots the delay at different interaction
intensities. Unsurprisingly, the delay-optimized algorithm improves the delay for
varied number of interactions. The effect of the scale of the topology is also evi-
dent as the slope of the linear relationship between increased traffic and delay:
the larger the topology, the longer the delays.

Execution Time. The plots in Fig. 7 portray the overhead in terms of execution
time of each placement algorithm. All three non-trivial algorithms require very
equivalent execution times. This is due to their similar levels of complexity, as
all their run times scale with the number of device interfaces and interactions
involved in the deployment. The last strategy requires the least due to it being
a näıve one. With respect to scalability (Fig. 8), a linear trend with the increase
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Fig. 7. The execution times to find the optimal placement at 250 interactions.

Fig. 8. The overhead in terms of average time taken by each algorithm to find the
optimal placement.

of the number of interactions is again observed for all algorithms. This indicates
that the energy-optimized algorithm is able to find the energy-optimal placement
in a practicably acceptable runtime.

5 Discussion

We now reflect on the implications of our findings, and lay groundwork for future
work.

Trade-Off and Limitation – There is a clear advantage in terms of energy
consumption at the expense of modest algorithm execution times and reversion
to average messaging delays. In terms of making IoT deployments more sustain-
able and long-living, the latter overheads are deemed acceptable especially for
large IoT deployments. The obvious limitation is that our approach is geared
towards reducing energy consumption and not other metrics such as end-to-end
delay. We aim to address this in future work (see point below).
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Multi-objective Optimization – The results presented in the previous section
show that our proposed approach achieves lower energy consumption, but some-
times at the expense of higher end-to-end delay. Future work could build on
both this and the delay-optimize alternative by defining the placement problem
as a multi-objective optimization problem. Additionally, this can be extended by
including other non-functional service objectives such as load balance, reliabil-
ity, etc.. Simultaneous optimization of multiple objective functions would require
defining weights for each of the objectives of interest.

Adaptive Placement – The inherent dynamism of IoT environments, arising
from different factors (such as node mobility, usage patterns, failures, ephemeral
nature), make adaptive placement a crucial operational procedure. One of the
advantages of the presented approach is its reactive quality, through recalculation
of the objective function. This adaptive capability can be further enhanced to
provide proactive adaptation by utilizing techniques for change prediction.

Practicability – In the design of our optimization algorithm, there is an
assumption that the scale of interactions between devices, and the volume of
exchanged traffic is known beforehand. This is an unreasonable assumption for
most real deployments. Instead, interaction frequency and volume could be esti-
mated by analyzing historical data. This issue is similar to that of workload
estimation in the cloud, (e.g., [10]) a field that can inform interaction estima-
tion.

6 Conclusion

We propose an approach for placement of mediation services in an IoT system.
The approach targets environments where IoT devices need to directly interact
to exchange data. The approach is based on two key ideas. First, we formulate
the placement problem as an integer linear programming problem taking into
account the topology of the infrastructure. The proposed algorithm takes into
consideration the energy consumed by each interaction along the path between
source and destination things. Second, the approach devices an adaptive place-
ment of the mediation services whereby recalculating the placement based on
environmental changes. We demonstrate the feasibility of our approach through
a methodology of quantitative evaluation, comparing our approach to base-lines
from the literature. The results show that our approach provides a systematic
way of finding a placement that minimizes energy consumption with a nomi-
nal computational overhead. This novel contribution has strong implications in
IoT and CPS environments with direct device-to-device interactions and where
minimizing energy consumption is needed for sustainable deployments.

Acknowledgments. This work was supported by the Adaptive Brokerage for the
Cloud (ABC) project, UK EPSRC grant EP/R010889/1.
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Abstract. We propose a Novel Fairness-Aware framework for Crowd-
sourcing Energy Services (FACES) to efficiently provision crowdsourced
IoT energy services. Typically, efficient resource provisioning might incur
an unfair resource sharing for some requests. FACES, however, maxi-
mizes the utilization of the available energy services by maximizing fair-
ness across all requests. We conduct a set of preliminary experiments
to assess the effectiveness of the proposed framework against traditional
fairness-aware resource allocation algorithms. Results demonstrate that
the IoT energy utilization of FACES is better than FCFS and similar
to Max-min fair scheduling. Experiments also show that better fairness
is achieved among the provisioned requests using FACES compared to
FCFS and Max-min fair scheduling.

Keywords: Service provisioning · Crowdsourcing · IoT energy ·
Fairness

1 Introduction

The proliferation of the Internet of things (IoT) may give rise to a self-sustained
crowdsourced IoT ecosystem [2]. The augmented capabilities of IoT devices such
as sensing and computing resources may be leveraged for peer-to-peer sharing.
People can exchange a wide range of IoT services such as computing offloading,
hotspot proxies, energy sharing, etc. These crowdsourced IoT services present
a convenient, cost-effective, and sometimes the only possible solution for a
resource-constrained device [11]. For instance, a passenger’s smartphone with
low battery power may elect to receive energy from nearby wearables using Wifi
[22]. The focus of this paper is on crowdsourcing IoT energy services.

The concept of wireless energy crowdsharing has been recently introduced to
provide IoT users with power access, anywhere anytime, through crowdsourcing
[4,16,22]. We leverage the service paradigm to unlock the full potential of IoT
energy crowdsourcing. We define an IoT Energy Service as the abstraction of
energy wireless delivery from an IoT device (i.e., provider) to another device (i.e.,
consumer) [17]. Crowdsourcing IoT energy services has the potential of creating
a green service exchange environment by recycling the unused IoT energy or
relying on renewable energy sources. For example, an IoT device may share
c© Springer Nature Switzerland AG 2021
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Fig. 1. Crowdsourcing IoT energy services

its spare energy with another IoT device in its vicinity. Another example, a
smart shoe may harvest energy from the physical activity of its wearer [7,9].
Additionally, wireless charging allows energy crowdsharing to be a convenient
alternative as the devices do not need to be tethered to a power point, nor use
power banks. Crowdsourcing energy services can be deployed through already
existing wireless power transfer technologies such as Energous1 that can deliver
up to 3 W power within a 5-meter distance to multiple receivers.

The crowdsourced IoT energy ecosystem is a dynamic environment that
consists of providers and consumers congregating and moving across microcells
boundaries. A microcell is any confined area in a smart city where people may
gather (e.g., coffee shops, restaurants, museums, libraries), see Fig. 1. The deploy-
ment of the energy crowdsharing ecosystem depends on the willingness of the
IoT device owners to participate. Indeed, providers may share their energy altru-
istically to contribute to a green IoT environment. They may also be motivated
by egotistic purposes where participants are encouraged to share energy through
a set of incentives [28]. We assume that the IoT coordinator provides incen-
tives to encourage energy sharing in the form of credits. These would be used
to receive more energy when the providers act as consumers in the future [1,28].
The IoT coordinator is assumed to be deployed one hop away from the energy
providers and consumers (e.g., router at the edge) to minimize the communica-
tion overhead and latency while advertising energy services and requests. The
participation of IoT users in the energy crowdsharing ecosystem depends on the
security and trust of the deployed ecosystem. Novel security modules and new
privacy-preserving trust models have been developed for crowdsourced IoT envi-
ronments. These aspects are outside the scope of this paper. Our primary focus
in this work is on fairness-aware crowdsourcing of IoT energy services.

We propose a fairness-aware service provisioning framework to cater for mul-
tiple energy requests in a crowdsourced IoT market. The under-provision of
energy requests may demotivate consumers to participate in the crowdsourced
IoT energy market. In this paper, we focus on the notion of fairness in provi-
sioning IoT energy services to satisfy the maximum number of energy requests.

1 https://www.energous.com/.

https://www.energous.com/
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Fig. 2. (a) Time constraints of energy services and requests (b) Energy provisioning

Sometimes, in a crowdsourced IoT environment, the available energy services
in a microcell may not satisfy all existing requests. It is challenging to sat-
isfy consumers by fulfilling only parts of their energy requirements. An efficient
scheduler, in traditional resource allocation algorithms, aims at maximizing the
throughput (i.e., the amount of resource utilization in a unit of time) [10]. In some
embedded systems, the scheduler must also ensure meeting deadlines of multi-
ple requests [6]. Typically, maximizing the throughput and meeting requests’
deadlines might incur an unfair resource sharing for some requests (e.g., star-
vation of long requests in a short job first scheduler). In a crowdsourced IoT
energy market, however, we claim that if more energy requests are satisfied with
respect to their time intervals (i.e., fairness), more energy would be consumed.
We transform the fairness-aware service provisioning problem into an optimiza-
tion problem, i.e., maximizing the utilization of the available energy services by
maximizing fairness across all requests. The contributions of this paper are:

• A formulation of the IoT energy services provisioning problem as a time-
constrained optimization problem.

• A fairness model to accommodate multiple IoT energy requests in the crowd-
sourced IoT environment.

• A spatio-temporal framework for fairness-aware crowdsourcing of IoT energy
services (FACES).

• An experimental analysis with two implementations of the proposed fairness-
aware energy crowdsourcing framework.

2 Motivating Scenario

We will use the following scenario: Six IoT users staying at a coffee shop. Two
users are willing to provide their energy services S1 and S2. The other four IoT
users are requesting energy from their neighboring IoT devices R1, R2, R3, and
R4. The advertisement of services and requests includes various information, e.g.,
the start time, the end time, the location of the IoT device, and the provided
or requested energy amount. Figure 2 (a) illustrates the available services and
requests by their timelines. It also shows the amounts of provided and requested
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IoT energy. It is challenging to allocate energy and fulfill multiple requests’
requirements when there are limited energy services. For example, in Fig. 2 the
available energy represents only 60% of the total requested energy.

Figure 2 (b) presents the outcome of different allocation plans for the avail-
able energy to R1, R2, R3, and R4. Our goal is to fairly and efficiently allocate
energy services to all requests. The first allocation plan follows the FCFS (i.e.,
First Come First Served) scheduling strategy. Each request is provided with
energy according to its arrival (i.e., start time) and the available energy at its
time interval. For example, in Fig. 2 (a) R1 receives energy from S1. However,
when R2 arrives, it receives energy only from S2. Even S1 is also within its time
interval, S1 has been already reserved by R1. Scheduling strategies such as FCFS
and priority-based schedulers may not be a good fit to provision crowdsourced
IoT energy. These strategies fulfill the requirements of each energy request inde-
pendently and sequentially based on their arrival time. Services may fulfill the
requirements of an energy request without being fully utilized, which affects the
energy allocation efficiency. For example, all the requirements of R2 have been
fulfilled. On the other hand, R3 and R4 did not receive any energy. The FCFS-
based scheduling could fulfill only 43% of the total amount of the requested
energy and wasted 25% of the total available IoT energy.

The coordinator aggregates the provided energy by all services based on their
time intervals. The aggregated energy is then shared among all requests accord-
ing to their time constraints. The second energy allocation plan in Fig. 2 (b) is
a good illustration of the effect of a fairness-aware provisioning plan. Allocating
60% of the requirement to each energy request maximizes the consumption of
the available energy to 90% (i.e., 10% wastage). The limited provided energy
and the time constraints of requests represent critical challenges for efficient and
fairness-aware provisioning of IoT energy services. We reformulate our service
provisioning problem as a multi-objective time-constrained optimization problem,
i.e., (i) maximizing the allocated energy provided by the available services, and
(ii) maximizing the fairness for each request with respect to its time constraints.

3 Preliminaries

We first adopt the definitions of IoT energy services and requests in [16]. We
then introduce the concept of fairness among energy requests based on their
allocated energy. This work considers a provisioning framework for stationary
services and requests to focus only on the temporal constraints in allocating
energy to multiple requests in a microcell within a predefined time interval. The
goal is to ensure fairness over a predefined time while maximizing green energy
provision. In the future, we will extend the framework to fit into a dynamic
crowdsourced market by dealing with moving services and requests.

Definition 1. An energy service CES is a tuple < Eid,Eownerid, F,Q > where:

– Eid is a unique service ID,
– Eownerid is a unique ID for the owner of the IoT device,



Fairness-Aware Crowdsourcing of IoT Energy Services 355

Provisioning Energy Services 

Energy requests

Request duration Required energyConsumption
model

Energy services

Provided energy

Service duration
Temporal

slicing

Aggregation of
services

Scheduling

FACES

Allocation strategy

Fairness estimation

Fig. 3. FACES framework

– F is the set of CES functionalities offered by an IoT device D.
– Q is a tuple of < q1, q2, ..., qn > where each qi denotes a QoS property.

Definition 2. Crowdsourced IoT energy Quality of Service (QoS) Attributes
allow users to distinguish among crowdsourced IoT energy services. QoS param-
eters are defined as a tuple < l, St, Et,DEC, I, Tsr,Reli > [17] where:

– l is the location of the provider.
– St represents the start time of a crowdsourced IoT energy service.
– Et represents the end time of a crowdsourced IoT energy service respectively.
– DEC is the deliverable energy capacity.
– I is the intensity of the wirelessly transferred current.
– Tsr represents the transmission success rate.
– Reli represents the reliability QoS

The spatio-temporal features of the IoT energy services (i.e., l, St and Et)
are defined based on the pattern of time spent in regularly visited places e.g.,
coffee shops using their daily activity model in a smart city [8]. DEC and Reli
are estimated based on the energy usage model of the IoT device. I and Tsr are
defined based on the specifications of the provided energy services.

Definition 3. Crowdsourced IoT Energy request is defined as a tuple R =<
ts, te, l, RE > where:

– St refers to the timestamp when the energy request is launched.
– Et represents the end time of the period of time, an energy consumer may

wait for charging.
– l refers to the location of the energy service consumer. We assume that a

consumer’s location is fixed after launching the request.
– RE represents the required amount of energy. We also assume that the

required energy is estimated based on an energy consumption model of the
IoT device.
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Definition 4. Fairness is defined as a function that quantifies the satisfaction
among a set of requests in a predefined microcell within a predefined time frame.
The function takes as an input the available energy AE and the existing requests
R and outputs the provisioning fairness score Fp based on the satisfaction Sf
of all requests according to their allocated energy Al.

Assumptions

– All IoT energy services and requests are deterministic and stationary, i.e.,
there is an a-priori knowledge about service availability, their QoS values,
energy requests, their time constraints, and their demands [16].

– The IoT coordinator (at the edge) is responsible for batching the energy
requests from all consumers in a microcell over a predefined period of time.

– The IoT coordinator is also responsible for aggregating all available energy
from all providers in a microcell over a predefined period of time.

– The energy services may deliver energy to multiple consumers at the same
time without any loss.

4 Provisioning Energy Services

Figure 3 presents the building blocks of our proposed framework. The framework
takes as input, the advertised services and the energy requests. Service providers
use the previously defined energy service model to advertise their wireless energy
services [16]. We assume that energy consumers define their energy requirements
and their charging waiting time (i.e., request duration) based on predefined
consumption models.

In a microcell C, the fairness-aware service provisioning framework is exe-
cuted at the level of the IoT coordinator in the edge (i.e., a router within the
microcell C). Given a set of crowdsourced IoT energy services in the microcell
C, S = {S1, S2, . . . Sn} and a set of all existing requests within the same time
interval W , R = {R1, R2, . . . Rm}. The IoT coordinator aims at minimizing the
wastage Wsg while provisioning the aggregated energy to all existing requests
within the time window W by performing the following steps:

Temporal Slicing. The goal of the temporal slicing module is to segment the
requests time intervals and define the overlapping parts. We follow the temporal
chunking of energy services in [16] to define the time slices of the time window
W . We define all the possible timestamps where a preemptive scheduler may
switch to another request. Each timestamp is either the start time or the end
time of existing requests. We divide the time window W into several time slices
based on these timestamps. The time slots represent the arrival time of a new
request or the exit time of an existing request (i.e., vertical dotted lines in Fig. 4
(a)) [16]. For example, S2 in Fig. 4 may be temporally chunked into four parts of
services SiPj (i.e., part i of service j) as follows: < S2P1, S2P2, S2P3, S2P4 >.
Similarly, R1 in Fig. 4 may be temporally chunked into three parts of requests
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Fig. 4. (a) Chunking crowdsourced IoT energy services and requests (b) The bipartite
graph representation of the time-constrained allocation problem

RiPj as follows: < R1P1, R1P2, R1P3 >. At each chunk, a part of service SiPk

may provision a part of a request RiPj within the same chunk. For example, in
Fig. 4 (b), S1P2 provides energy to R1P1 since they are within the same chunk.
Each request Ri may be provisioned by a composition of parts of services SiPk

where a part of service delivers energy to a part of the request at each chunk
[17]. After scheduling the requests, it is more challenging to provide energy to
multiple requests in a fair way.

Aggregation of Services. The framework starts by aggregating all the avail-
able services within the time window W . Energy services are composed according
to their spatio-temporal features. We use the framework of composing crowd-
sourced IoT energy services proposed by Lakhdari et al. [17]. The composition
considers the time interval of each service to define a composite energy service
that includes all the available services. The IoT coordinator defines a sequence
of time intervals and the available energy at each time interval. If two or more
energy services overlap within a time interval, the IoT coordinator sums the
provided energy by all services available at that time interval.

AggE =
∑

i

DECi ∀CESi ∈ agt.

agt represents the composite energy service resulting of the spatio-temporal com-
position of available services S. AggE is a QoS of the composite energy service
agt. AggE denotes the total energy provided by the aggregated services.

Scheduling. The scheduling module takes the segmented requests and starts
by planing the provision for only the non overlapping segments for each request.
The allocated energy amount Alk to a request Rk can only be provided from
the available energy within its time interval [Stk, Etk]. [Sk, Ek] represents the
time interval when a request Rk may receive energy. Avk represents the available
energy within the time interval [Sk, Ek]. For example, in Fig. 4 the IoT coordina-
tor provides energy to R4 only from the available energy within the time chunks
C3 and C4 .
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Fairness Estimation. In energy provisioning, the fairness score Fp is calcu-
lated based on the sparsity in allocating energy to all existing requests. Intu-
itively, less allocation sparsity among requests reflects more fairness. We define
a sparsity function Sf to estimate the sparsity based on the allocated energy
Alk to each request Rk from the available energy Avk within its time interval.
The fairness estimation module initially calculates the fairness score after only
provisioning the non-overlapping requests segments. The heuristic cannot esti-
mate the fairness and allocate energy to the overlapping request segments only
if there is a prior knowledge about the allocated energy to the non-overlapping
segments.

Allocation Algorithm. The allocation algorithm aims at minimizing the
wastage of the aggregated energy and maximize the fairness among requests.
We transform the problem of fairness-aware energy provisioning into a time-
constrained resource allocation problem as follows:

Minimize wsg = AggE −
n∑

i=1

Ali

Maximize Fp = sf(Ali),∀Ri ∈ R

Subject to [Sti, Eti] = [Si, Ei],∀Ri ∈ R

Where ∀Ri ∈ R

[Sti, Eti] is the interval of the request Ri

[Si, Ei] is the interval when Ri may receive energy

The algorithm aims at solving the said multi-objective optimization by efficiently
provisioning the overlapping segments of requests. Next, the fairness estimation
module recalculates the fairness score at each optimization step. In the follow-
ing, we explain the fairness concept for energy requests in a crowdsourced IoT
energy market as we present the building blocks of the heuristic-based allocation
algorithm.

5 Fairness-Aware Crowdsourcing of Energy Services
(FACES)

In a framework for provisioning energy services, there is a dual need to, on the
one hand, maximize energy use from a consumer perspective and, on the other
hand, maximize the provisioning of energy from the providers’ point of view.
We propose a scheme whereby energy requests from all consumers in a microcell
(over a predefined time frame) are batched while all available energy from all
providers in a microcell is aggregated. Figure 5 presents a batched set of energy
services and requests from 5:00 to 6:30. A global view of all available services and
requests within a predefined time interval allows the IoT coordinator to aggregate
the provided energy by composing all services based on their availability time
intervals [17]. The coordinator aims to efficiently and fairly share the aggregated
energy among all the existing requests according to their time constraints.
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5.1 Fairness Estimation

Fairness-aware provisioning does not necessarily imply an equal allocation of the
available energy to all requests. In a crowdsourced IoT energy market, distribu-
tive fairness [19] is defined by equally provisioning requests according to their
features (i.e., requirements and time constraints). Provisioning IoT energy ser-
vices fairly aims to satisfy more consumers rather than maximizing the energy
allocation for some requests. Typically in resource allocation problems, when the
resources are limited, consumers will not be satisfied by an efficient allocation of
available resources to all requests [21]. However, in a crowdsourced IoT environ-
ment, fairness-aware provisioning of energy services is claimed to increase the
utilization of the available energy services. We rely on the satisfaction of energy
consumers to monitor the fairness of our service provisioning framework.

Satisfaction: We first define a satisfaction score Sf for energy consumers.
Intuitively, the amount of the acquired energy is directly proportional to the
satisfaction of consumers. However, consumers already realize the limited avail-
ability of energy services in the crowdsourced IoT energy market. In this work,
we consider an altruistic behavior of energy consumers. Consumers’ goal is both
to maximize their allocated energy and to contribute selflessly to fair provision-
ing. They may adjust their satisfaction score based on the market (i.e., available
energy services and existing requests).

Definition 5. The satisfaction Sfi of an energy consumer toward a request Ri

reflects their perception of the allocated energy Ali to their request. We quantify
Sfi score for a request Ri based on the allocated energy Ali and the available
energy in the crowdsourced market as follows:

Sfi =

{
Ali
REi

×
∑n

i=1 Ali∑m
j=1 DECj

, if Ali ≤ REi

1, otherwise

Where
∑n

i=1 REi represents all the requested energy in the crowdsourced
market by the set of all existing requests Ri ∈ ExR.

∑m
j=1 DECj represents all

the energy in the market provided by the available energy services Sj ∈ AvS

Fairness Score: We define a global fairness metric for energy services provision-
ing Fp based on the satisfaction of all consumers. We measure the global fairness
of the service provisioning framework by estimating the overall proximity score
among the satisfaction scores of all consumers [3]. An unfair provisioning plan is
reflected by sparse satisfaction scores among consumers (i.e., some requests have
high satisfaction score than others). Contrarily, less sparse satisfaction scores
reflect higher proximity among all requests.
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Fig. 5. Example of batched energy services and requests

Definition 6. The global fairness Fp is a metric to quantify the sparsity of the
satisfaction scores among all requests in the crowdsourced IoT energy market.
We capture the global fairness Fp using the information entropy [24]. The infor-
mation entropy measures the disorder degree of all requests Ri ∈ ExR based on
their satisfaction scoreSfi as follows:

Fp(ExR) = −
∑

Sfi log2 Sfi

5.2 Heuristic-Based Fairness-Aware Allocation Algorithm

We propose a heuristic-based allocation strategy, i.e., Fairness-Aware Crowd-
sourcing of Energy Services (FACES), which extends the traditional resource
allocation strategies by optimizing the energy allocation for overlapping requests.
Our proposed heuristic does not only consider the allocated time for each request.
It also considers sharing the available energy when two or multiple requests are
overlapping. For example, at the time segment [5:20, 5:30] in Fig. 5 when R1

and R2 overlap, FACES divides the available energy at that time segment (200
mAh) between R1 and R2. Algorithm 1 presents the pseudocode of the heuristic-
based fairness-aware provisioning. First, the energy services are aggregated by
the IoT coordinator (Line 2). Next, the time interval is chunked based on the
arrival time of energy requests (Lines 3–9). the provisioning framework starts
by the non overlapping requests. Then, for each chunk containing overlapping
requests, the available energy at that chunk would be equally split among those
chunks (Lines 10–13). Finally, all the allocated energy is aggregated per request
(Lines 14–17). Provisioning overlapping requests simultaneously improves fair-
ness among requests (i.e., σ = 8.03) and minimizes the wastage of the available
energy, i.e., 10% of the available energy. An optimal fairness-aware provisioning
plan will maximize the consumption of the available aggregated energy.

The complexity of the proposed fairness algorithm can be estimated based on
the number of available requests and the number of chunks C and the number of
overlapping requests at each chunk. The runtime complexity of FACES is O(Cn).
If we consider n as the number of available partial requests within a chunk.
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Algorithm 1. Heuristic-based fairness-aware energy allocation
Input: C, S = {S1, S2, . . . Sn}, W < St,Et >, R = {R1, R2, . . . Rm}.
Output: Al = {Al1, Al2, . . . Alm}.

// Aggregating energy services
1: for Si ∈ S do
2: AggE =

∑
i DECi ∀CESi ∈ agt

// Chunking energy requests
3: Chunk0.st ← W.St
4: for int t = W.St to W.Et do
5: if (∀ Ri ∈ R and t = Ri.st or t = Ri.et) then
6: Chunki.et ← t

// create new chunk
7: if t �= W.Et then
8: Chunki+1.st ← t
9: t ← t + 1

10: for Ri ∈ R do
// Chunk-based provisioning

11: for Ch ∈ Chunk do
// First, provision non-overlapping requests
// Second, provision overlapping requests per chunk
// Chpr is the set of partial requests within a chunk
// ChAE is the available energy within a chunk

12: for Pr ∈ Chpr do
13: pr ← ChAE/|Chpr|
14: While(pri ∈ Ri)
15: Ali ← Ali ∪ {pri}
16: End While
17: Al ← Al ∪ {Ali}
18: return Al

5.3 Assessment of Allocation Strategies

Table 1 presents different allocation plans for the aggregated energy to accom-
modate R1, R2, R3, and R4 (see Fig. 5). We calculate the amount of energy
(i.e., capacity) each request can receive energy according to different allocation
strategies. The first allocation plan follows the FCFS (First Come First Served)
scheduling strategy. Each request is provided with energy according to its arrival
(i.e., start time). Contrarily, the Round Robin (RR) is a preemptive scheduler
that allocates a fixed time interval for each request. In our example, we consider
10 min as a fixed time interval. RR reduces the provision wastage compared
to FCFS. A Preemptive implementation of FCFS (P-FCFS) extends the FCFS
strategy by considering overlapping requests. FCFS, RR, and P-FCFS strategies
are runtime efficient schedulers that consider only one request at a time. Their
goal is to allocate time to each request efficiently. We evaluate the outcome of
the different energy allocation strategies based on the energy wastage and fair-
ness among requests. We define energy wastage as the amount of lost energy
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Table 1. Allocation strategy effect on the energy provisioning

Algorithms’ results (%)

Request (Capacity) FCFS RR P-FCFS FACES

R1 (200 mAh) 100 50 100 100

R2 (300 mAh) 0 100 50 83

R3 (180 mAh) 100 67 67 85

R4 (100 mAh) 100 100 100 100

Provision wastage 48.72 26.93 20.52 10

Provision unfairness 43.30 21.60 21.60 8.03

that could not be utilized to fulfill the capacity of all requests. For example,
the Round Robin algorithm in Table 1 exhibits 26.93% wastage. For a simplistic
illustration of fairness, we use the standard deviation σ to estimate the fairness.
Intuitively, a better fairness is reflected by a lower value of σ. In the example
illustrated by Fig. 5, P-FCFS provides more fairness compared to FCFS because
the provision sparsity of P-FCFS (σ = 21.60) is less than the one of FCFS.

6 Experiments

We conduct a set of preliminary experiments to evaluate the proposed theoreti-
cal concepts of fairness-aware provisioning of crowdsourced energy services. We
essentially assess the effectiveness of different fairness strategies on maximizing
the utilization of the available energy within a microcell. We measure the ratio
of the consumed energy over the available energy across different microcells. We
monitor the changes in the fairness score and the energy utilization ratio while
varying the number of energy requests. We implement two variants of the pro-
posed approach(FACES) and compare them with traditional resource allocation
algorithms, namely, FCFS, P-FCFS, and Max-min fair scheduling [26].

6.1 Dataset and Experiment Environment

We create a crowdsourced IoT environment scenario close to reality. We mimic
the energy sharing behavior of the crowd within microcells by utilizing a dataset
published by IBM for a coffee shop chain with three branches in New York city2.
The dataset consists of transaction records of customers purchases in each coffee
shop for one month. Each coffee shop consists of, on average, 560 transnational
records per day and 16,500 transaction record in total. We use the IBM dataset
to simulate the spatio-temporal features of energy services and requests. The
dataset contains information about the crowd’s behavior in coffee shops. People
may check-in, rate, and recommend these venues. In our experiment, we only

2 https://ibm.co/2O7IvxJ.

https://ibm.co/2O7IvxJ
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focus on people’s check-ins information. We extract the crowd size for each coffee
shop at each hour (hour) of the day (weekday). We assume these people as IoT
users. They may offer energy services from their wearables while staying in the
coffee shop. We define spatio-temporal features of energy services by generating
customers’ check-in and check-out timestamps to confined areas using the previ-
ously extracted data from their transactions. For example, the start time st of an
energy service from an IoT user is the time of their check-ins into a coffee shop.
Energy request time R.st and duration R.et are also generated from check-in
and check-out times of customers. To the best of our knowledge, it is challenging
to find a dataset about the wireless energy transfer among human-centric IoT
devices. We use a random uniform distribution to generate the energy amount
for each request and the amount of provided energy for each service.

6.2 Effectiveness

We implement two variants of the FACES framework, namely, FACES and
NFACES. FACES considers only one request at a time, similar to FCFS and
P-FCFS. NFACES, however, considers multiple requests at a time similar to
max-min fair scheduler [26]. FACES and NFACES chunk the requests before
provisioning. The chunks are defined based on the overlapping between requests
[17]. We implemented a modified version of the Max-min scheduler to consider
the temporal constraints of energy requests. For each chunk, if there is more than
one request, max-min fair scheduling is performed. Contrarily, to the max-min
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fair scheduler, NFACES privileges the partial requests with the highest required
amount at each chunk. The remaining available energy at that chunk is reallo-
cated to the remaining requests in descending order. In what follows, we assess
the fairness metrics, sigma and entropy for all the algorithms along with their
performance in terms of the energy utilization.

Fairness. We evaluate the effectiveness of the proposed framework by assessing
the effect of the fairness-aware allocation strategy on energy utilization. We
first investigate fairness through different metrics, namely, the mean, standard
deviation, and entropy satisfaction score for existing requests. Figure 6 illustrates
the change of the satisfaction mean value which reflects the average of acquired
energy amount per request. Intuitively, the more requests, the less energy amount
to acquire per request for all the five allocation strategies. The following figure,
Fig. 7 presents the dispersion of the energy requests satisfaction score around the
mean. This metric reflects the variation of the satisfaction score among requests.
With a larger number of requests (more than 10 requests), the acquired energy
decreases significantly, which explains the decrease and the convergence of the
standard deviation due to the decrease of the satisfaction score among most of
the requests.

The information entropy captures the multi-modal dispersion and irregulari-
ties in the distribution of the satisfaction score of energy consumers (see Fig. 8).
We leverage the information entropy to monitor the fairness in provisioning
energy requests. A lower value of entropy means better fairness in the allocated
energy. It is worth mentioning that the entropy metric could capture the small
variations in the satisfaction score when the number of requests is larger. These
variations cannot be noticed only with a fairness metric based on the standard
deviation (see Fig. 7). In Fig. 8 FCFS exhibits a near zero score for the entropy,
which can be explained by the fact that most of the requests satisfaction score is
equal to zero. NFACES, however, demonstrates a better performance behavior in
terms of fair provisioning for energy requests. With a larger number of requests,
the entropy values for NFACES are lower than those of P-FCFS and Max-min
fair scheduler.

Energy Utilization. The fourth experiment compares the Energy Utilization
(See Fig. 9). The goal of proposing a fairness-aware provisioning framework is
to leverage fairness as a driver to increase the utilization of the available energy
services in a crowdsourced IoT environment by increasing the participation of
energy consumers. Energy utilization is the ratio of the amount of the allocated
energy services over the total amount of available energy services. Overall, all
the energy allocation techniques converge after 15 requests. FACES exhibits the
best performance behavior among the three algorithms that consider only one
request at a time (i.e., FCFS,P-FCFS, and FACES). The energy utilization ratio
is significantly higher with NFACES and Max-min fair scheduler, an expected
behavior by these two strategies as a result of considering overlapping requests,
i.e., more than one request at a time.
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In conclusion, this set of preliminary experiments confirms our claim that
fairness-aware allocation strategies would better utilize the available energy in
a crowdsourced IoT environment. It is worth mentioning that NFACES exhibits
far better fairness behavior compared to Max-min fair scheduler, nonetheless the
same performance in terms of the energy utilization.

7 Related Work

Service computing is a key enabler for wireless energy sharing. Service compo-
sition is expected to play a vital role in the crowdsourced IoT environment. A
single IoT energy service may not fulfill the requirement of a consumer due to the
limited resources of IoT devices [13]. Several service composition techniques have
been proposed. Mainly, the service composition techniques can be categorized
into a functionality-based composition or QoS-based composition. For example,
Tan et al. [25] proposed a data-driven composition approach that uses Petri-nets
to meet the application’s functional requirements. Wang et al. [27] address the
problem of service functionalities constraints by introducing a pre-processing
technique and a graph search-based algorithm to compose services.

Service selection and composition also play an important role in emerging
fields such as cloud computing, IoT-based smart systems [5,23]. In IoT, services
are mainly composed according to their spatio-temporal features [12]. They also
must fulfill consumer preferences (QoS). For example, Lakhdari et al. design and
implement a spatio-temporal service composition framework for crowdsourced
IoT services [15]. User preferences are used to define the spatial and temporal
composability models, Neiat et al. proposed a spatio-temporal service compo-
sition framework to describe and compose region services like WiFi hotspots
[20]. Existing energy service composition frameworks mainly consist of the real-
time discovery and selection of nearby energy services [14]. The focus of these
composition techniques was only on the spatio-temporal composability [17] and
addressing the challenges related to the energy fluctuation and the mobility of
the available services [18].

The current work adds a new contribution to the field of energy crowd
sharing. Indeed, existing service composition techniques address the challenges
related to one single consumer at a time. Our proposed approach considers pro-
visioning multiple consumers in a predefined time and space. To the best of our
knowledge, the work is among the first attempts to address fairness challenges
in a crowdsourcing IoT energy services.

8 Conclusion

We proposed a fairness-aware framework for provisioning IoT energy services in
a crowdsourced IoT environment. We introduced the concept of fairness to effi-
ciently provision available IoT energy services and accommodate multiple energy
requests in a microcell within a predefined time frame. The under-provision of
energy requests may demotivate consumers to participate in the crowdsourced
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IoT energy market. We investigated different allocation strategies to provision
energy services, namely, FCFS, P-FCFS, and Round Robin. We defined a fair-
ness model based on the satisfaction of consumers. Our goal is to leverage the
fairness as a means to maximize the utilization of the available energy services.
We designed and develop a fairness-aware scheduling framework to provision
IoT energy services. We conducted a set of preliminary experiments to assess
the effectiveness of the proposed framework.
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Abstract. We propose a novel conflict resolution framework for IoT ser-
vices in multi-resident smart homes. The proposed framework employs a
preference extraction model based on a temporal proximity strategy. We
design a preference aggregation model using a matrix factorization-based
approach (i.e., singular value decomposition). The concepts of current
resident item matrix and ideal resident item matrix are introduced as
key criteria to cater to the conflict resolution framework. Finally, a set
of experiments on real-world datasets are conducted to show the effec-
tiveness of the proposed approach.

Keywords: IoT service · Multi-resident smart home · Preference
extraction · Preference aggregation · Conflict resolution

1 Introduction

Internet of Things (IoT) is the umbrella term covering everyday objects (a.k.a.
things) that are connected to the Internet. These are usually equipped with ubiq-
uitous intelligence [18]. IoT technologies are the key enablers of many cutting-
edge applications such as smart cities, smart campuses, smart grids, and intelli-
gent transport systems. A particular application domain of IoT is smart homes. A
smart home is defined as a home that is fitted with IoT devices. These IoT devices
are attached to everyday “things” to monitor usage patterns. The purpose of a
smart home is to provide its residents with convenience and efficiency [11].

The concept of IoT is congruent with the service paradigm [1]. Each “thing”
has a set of functional and non-functional (a.k.a. quality of service) properties.
In this regard, we leverage the service paradigm as a framework to define the
functional and non-functional properties of smart home devices as IoT services
[4]. For instance, a light bulb in a smart home is regarded as a light service. The
functional property of the light service is to provide illumination. Examples of
non-functional properties include luminous intensity, color, connectivity.

In a multi-occupant smart home, different residents may have different ser-
vice requirements, leading to IoT service conflicts [5]. For example, a resident
may prefer the light to be “on” while watching TV, and another resident may
prefer the light to be “off”. Therefore, an IoT service conflict occurs since the
light service cannot satisfy multiple residents’ requirements at the same time
c© Springer Nature Switzerland AG 2021
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and location. In this context, detecting and resolving conflicts is paramount to
provide residents with a higher level of convenience and satisfaction.

Residents usually communicate face-to-face when co-located in a home. They
can exchange their opinion and decide the appropriate state of shared services
through this face-to-face communication. For example, family members may
decide to watch a television channel by discussing with each other. Although
this communication enables them to discuss their interest in television shows,
it is cumbersome to find a show that would be agreeable to all in a world of
thousands of available channels. This negotiation may lead to tension and stress
[24]. In addition to the ability of humans to resolve conflict, technologies may
enable them to resolve conflict automatically [25]. Some works focus on con-
flict resolution considering preference aggregation strategies, and they estimate
preferences from previous service usage history [2,5,9]. They did not take into
account the rationality of interactions and the fairness of the residents. Hence,
these aggregation strategies, which are unlikely to find out the best resolution
that most residents can accept, may lead to unsatisfying service provision.

We propose a novel conflict resolution approach that integrates current
service requirements (i.e., interactions) with preferences from previous service
usages. Integrating interactions with preference is challenging due to the dynamic
nature of the residents’ desires and requirements. For example, residents may
have different requirements at different times on different days. This is why we
design a preference extraction model using the concept of temporal proximity. We
further design a preference aggregation model using a matrix factorization-based
approach, namely, Singular Value Decomposition (SVD). When the residents’
preferences conflict heavily, we smooth their preferences by low-rank matrix
factorization to ensure fairness. The concept of current resident item matrix
and ideal resident item matrix are introduced to cater to the conflict resolution
framework. The contribution of this paper is threefold:

– A novel preference extraction model using the temporal proximity concept
that estimates preference scores based on previous service usage records.

– A novel preference aggregation model using SVD technique, current resident
item matrix, ideal resident item matrix that integrates current requirements
and previous preferences to find out the best item for conflict resolution.

– Experimental evaluation is conducted on real-world datasets to exhibit the
effectiveness of the proposed framework.

2 Motivation Scenario

We consider the following motivating scenario to demonstrate the significance of
our work. Suppose three residents (R1, R2, R3) want to watch TV between 20:00
and 20:30 in the living room. However, they have different channel requirements.
R1, R2, R3 want to watch channels Ch3, Ch2, and Ch5, respectively (Fig. 1).
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A conflict occurs since the TV cannot telecast more than one channel simultane-
ously (assuming the TV does not have multi-screen/split-screen features). Note
that, channel is a functional property of a TV service. In this case, action may
be taken to eliminate the conflict. The system may: (i) select a channel based on
priorities (i.e., residents’ can be prioritized based on age and/or role in a family)
[19], (ii) adopt the use first strategy (i.e., whoever wants to use the TV first, only
his/her preferred channel will be telecast) [15], (iii) randomly pick a channel, (iv)
inform users that they should explicitly resolve the conflict. However, the best
choice according to these selections may still leave some residents feeling dissatis-
fied and slighted. Moreover, unresolved or inadequately resolved conflicts tend to
result in tension, which may trigger or intensify posterior conflicts. The objective
of conflict resolution is to offer a smoother and more pleasant user experience. In
this regard, there is a need to have a methodology that incorporates residents’
intentions (i.e., current requirements) and preferences (i.e., prior interactions).
We aim to maximize residents’ satisfaction by providing services that may be
preferred by the majority of them. Prior interactions uncover information such
as hidden patterns, correlations, habits, and preferences.

Fig. 1. Residents’ current requirements and preferences from previous usage.

Let us assume, we know the preference scores of each channel of the residents
(table in Fig. 1). The preference scores are calculated based on the residents’ prior
service interactions. The procedures of computing preference scores are showed
in the proposed framework (Sect. 4.2.1). Preference aggregation methods such as
average (AVG), least-misery (LM), and most-pleasure (MP) can be used to select
the preferred channel [2,9]. However, these methods cannot always generate a
fair solution for each member in a group, leading to low satisfaction.
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Table 1. Results of preference aggregation methods

Methods Ch1 Ch2 Ch3 Ch4 Ch5

AVG 18.51 15.27 14.71 12.95 17.01

LM 16.08 14.12 15.20 11.04 11.04

MP 20.00 17.20 15.20 15.12 20.00

We apply these methods to the preference table mentioned in Fig. 1 and get
the results (Table 1). The AVG method selects the channels with the highest
average ratings, Ch1 and Ch5 (if we consider the top two items). LM method
selects Ch1 and Ch3 whereas MP method selects Ch1 and Ch5. We observe that
both AVG and MP selects Ch5. Though R2 and R3 have a high preference for
Ch5, R1 has a relatively low preference score. Ch5 is an unfair recommendation
for R1. Note that, all the methods select Ch1 which is not a suitable selection,
because none of the residents requests this channel in the current situation.

Hence, conflict resolution is situation-specific and dynamic. There is a need
for a conflict resolution framework that integrates current requirements with pre-
vious usage patterns to extract preferences. The objective of conflict resolution
is to enhance the residents’ overall satisfaction when a conflict occurs.

3 Preliminaries and Problem Formulation

We represent the notion of IoT service, IoT service event and IoT service request
to explain the concept of IoT service conflict. The definitions of IoT service, IoT
service event and IoT service request have been adopted from [6].

An IoT Service (S), is a tuple of
〈
Sid, Sname, F,Q

〉
where:

– Sid represents the unique service identifier (ID).
– Sname is the name of the service.
– F is a set of

{
f1, f2, ..., fn

}
where each fi is a functional attribute of a service.

The purpose of having a service is considered as the function of a service.
– Q is a set of

{
q1, q2, ..., qm

}
where qj is a non-functional attribute of a service.

An IoT Service Event (SE) records the service state along with its user,
execution time and location during the service manifestation (i.e., turn on, turn
off, increase, decrease, open, close). An IoT Service Event Sequences (SES) is a
set of

{
SE1, SE2, SE3, .......SEk

}
where each SEi is a service event. Occupants

usually interact with IoT services for various household chores and the previous
interactions are recorded as IoT service event sequences. An IoT service event is
a tuple of

〈
SEid, {Sid, F,Q}, T, L, U

〉
where:
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– SEid is the unique service event ID.
– Sid is a unique ID of the enacted service. F is a set of functional attributes.

Q is a set of non-functional attributes.
– T is the time interval of the service consumption. T is a tuple of

〈
SETs, SETe

〉

where SETs and SETe represent the start time and end time of the service.
– L is the service event location and U is user who consumed the service.

An IoT Service Request (SR), is an instantiation of a service and it
represents a resident’s current service requirement. An IoT Service Request
Sequences (SRS) is a set of

{
SR1, SR2, SR3, .......SRn

}
where each SRi is

an IoT service request. Residents’ current service requirements are recorded
as IoT service request sequences. An IoT Service Request (SR) is a tuple of〈
SRid, {Sid, F,Q}, {SRTs, SRTe}, L, U

〉
where:

– SRid is the unique service request ID.
– Sid is a unique ID of the requested service. F is a functional attribute and Q

is a non-functional attribute of the requested service.
– {SRTs, SRTe} represent the requested service’s start time and end time.
– L is the location of the service and U is the user of the service.

3.1 Formal Problem Statement

An IoT service (S) is associated with a set of functional and non-functional
properties. An IoT service event (SE) illustrates a resident’s previous service
usage, in conjunction with time and location. IoT service event sequences (SES)
record all the history of service events and preferences can be estimated from
these previous events. An IoT service request (SR) captures a resident’s current
service usage requirement. Multiple residents’ requirements are stored in service
request sequences (SRS). A conflict may emerge since different residents may
have different service requirements. Consequently, a conflict resolution (Res)
technique is required to maximize the satisfaction of the residents. Given this
information, the paper aims to identify a function F (S, SRS, SES), where Res ≈
F (S, SRS, SES). In other words, our goal is to resolve conflict using service-
related, current requirement-related and previous usage-related data.

4 Conflict Resolution Framework

The proposed conflict resolution framework has 4 modules: (i) service event
sequences (a.k.a., service usage history), (ii) service request sequences, (iii) con-
flict detection, and (iv) conflict resolution (Fig. 2). Service usage history and
service request sequences modules are described in Sect. 3. In this section, we
thoroughly describe conflict detection and conflict resolution modules.
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Fig. 2. IoT service conflict resolution framework.

4.1 Conflict Detection

Conflict detection is the pre-requisite of conflict resolution. An IoT service con-
flict occurs when a service cannot satisfy the requirements of multiple users at
the same time and location. Conflicts are defined considering the current require-
ments of occupants, and these requirements are generated from the IoT service
requests. Given two service requests (SRi, SRj), the following conditions have
to be satisfied to be considered as a conflict situation.

– LSi
� LSj

, meaning, two services (Si, Sj) are executed at the same location.
– (SRTsi , SRTei) ∩ (SRTsj , SRTej )) �= ∅, denoting that two service requests

(SRi, SRj) are invoked at the same time and there is a temporal overlap.
– USi

�= USj
, meaning, these two requests are invoked by two different users.

– ∃Qk ∈ S.Q : Si.Qk �= Sj .Qk; there exist at least one property which is
different between Si.Q and Sj .Q.

We adopt the conflict detection algorithm proposed in [6]. This component is
not the core of our contributions; however, it produces the input for the conflict
resolution module, which holds the present work’s core contributions.

4.2 Conflict Resolution

Conflict resolution is conducted in two phases: (i) preference extraction and
(ii) preference aggregation. Phase 1 mines previous service usage records and
extracts occupants’ preferences. Phase 2 aggregates all the occupants’ preferences
and selects the service that may give relatively high satisfaction to them.
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4.2.1 Preference Extraction
In this phase, we estimate users’ preferences for a service based on previous usage
records. Conflict detection module outputs the name of the conflicting services
and the overlapping time-period where a conflict occurs. These are the inputs of
this phase along with previous service usage history. It extracts residents’ service
usage patterns from the previous history. Then it computes the preference score
of frequently used services.

Value Stabilization and Statistical Binning. Some service event (SE) data
need to go through some pre-processing steps such as value stabilization and sta-
tistical binning [17]. Several values are advertised within a short period of time
for some service attributes, where only the final value is relevant. For exam-
ple, browsing through TV channels before settling down at a final channel. In
this work, we only consider the final settled down value while measuring the
service usage preference of the residents. We compute the preference score of
each attribute based on categorical values. However, there are some attributes
that have numerical values. Therefore, we apply a statistical method called data
binning. It takes the continuous numerical values and puts them into multiple
categories. We use a dynamic programming approach to get the optimal bin [17].

Finding Overlapping Service Events. This step scans the previous history
to find out all the overlapping service events (algorithm 1). The input of this
algorithm is the previous service usage dataset (DB) and the conflicting time-
period. All the previous events that have overlap with the given conflicting time
interval are the output of this algorithm. For example, a conflict related to a
TV service occurs in the living room between 20:00 and 20:30. This component
searches all the TV service events which previously occurred, either partially or
fully, between 20:00 and 20:30 in the living room; stores them into a list (OSE).
This list contains the overlapping service events along with their timestamps.

Algorithm 1. Overlapping Service Events
Input: DB, [s, e] // conflicting time-period [s, e]
Output: OSE // overlapping service events along with time interval
1: TM = ∅, OSE = ∅

// Finding overlapping service events
2: for each sei in DB do
3: for each sj in sei do
4: if sj .L == sei.L then
5: if sj .SETs or sj .SETe falls between [s, e] then
6: TM ← addT imeInterval(sj .SETs, sj .SETe)
7: OSE ← insert(sj , TM)
8: end if
9: end if

10: end for
11: end for
12: return OSE
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Weight Calculation Applying Temporal Proximity Technique. We use
temporal proximity strategy to find out weight of the relevant events. Temporal
proximity technique for evaluating the distance between time-interval data is
adopted from [23]. For each service event, SEi, we use a function fi with respect
to t to map the temporal aspect of SEi. Event start time and end time are
represented with SEist and SEiet , respectively. fi is formalized in Equation (1).

fi(t) =

{
1, t ∈ [SEist , SEiet ]
0, otherwise

(1)

We generate a set of functions f1, f2, ...fn corresponding to the service event
instances (SE). Equation (2) calculates the temporal proximity (tempprox) for
all the overlapping events.

tempprox =

∫ t2n
t1

∑n
i=1 fi(t)dt

(t2n − t1).n
(2)

Here, t1 and t2n are the first and last time information of overlapped events
from OSE, and n is the number of instances. Consider the following two events
of watching TV from a resident, R1. One Sunday, they watched TV between
20:00 and 21:00; another Sunday, they watched TV between 20:45 and 21:45.
Using Eq. 2, the temporal proximity of these two events can be calculated
as ((20:45 − 20:00)+(21:00 − 20:45) * 2 + (21:45 − 21:00))/((21:45 − 20:00) * 2 =
0.57. Consider another scenario where a resident, R2, watched TV between
18:00 and 19:00. Another day, they watched TV between 18:10 and 19:10. The
temporal proximity of these two events can be calculated as ((18:10 − 18:00) +
(19:00 − 18:10) * 2 + (19:00 − 19:10))/((19:10 − 18:00) * 2) = 0.86. Thus the latter
case has more weight while calculating the preference score of watching TV service.

EstimatePreferenceScore.We mine out the frequent service usage records and
calculate the preference score for each resident. For example, if a resident watched
Discovery 6 times and Fox 4 times between 20:00 and 20:30 (fractional overlapping
time is also considered while calculating frequency) on the last 10 days, then, the
frequency of each channel for this resident would be

〈{Fox, 4}, {Discovery, 6}〉
.

Frequency (F ) is formally defined in Eq. 3 and 4 [20].

S = (s1, s2, ....., sn) : si ∈ A (3)

F (a) =
n∑

i=1

[si = a] (4)

where the sequence S contains elements of the set A. The frequency value
F (a) for an element a is defined as the number of its occurrences in the sequence
S. Then, we compute the preference score (PS) for each element (a) by multi-
plying the frequency value and temporal proximity as follows:

PS =
n∑

i=1

(tempprox(a) × F (a)) (5)
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Let us consider the motivation scenario again. A conflict related to a TV
service occurs between 20:00 and 20:30. We calculate the preference score of
each resident for each TV channel from the previous usage record. Suppose in
the last 100 days, Resident, R1, watched channel, Ch1, 19 times (frequency = 19)
at the same time period between 20:00 and 20:30 (i.e., temporal proximity = 1).
One time (frequency = 1), they watched Ch1 at the time period which partially
overlaps with the current conflicting period (assume, temporal proximity = 0.44).
Then, R1’s preference score for Ch1 becomes (19 * 1) + (1 * 0.44) = 19.44.

4.2.2 Preference Aggregation
In this phase, we use the example from the motivation scenario 1 to illustrate
preference aggregation methodology. We first create a Historical Resident Item
Matrix (H) considering the highest preference score of each resident in a group.
Then, we do Singular Value Decomposition (SVD) on the H matrix and construct
a Current Resident Item Matrix (CRIM). CRIM deduces the features of the
ideal item in latent factor space by incorporating the current requests (current
requests are also represented in a matrix) [10]. After that, we define an Ideal
Resident Item Matrix (IRIM) based on CRIM and represent the ideal item of
the conflicting group in preference space. Finally, we can resolve conflicts by
offering the ideal items (in this case, TV channels) that are more likely to be
accepted by the residents.

Current Resident Item Matrix. At first, we introduce the notion of the
item set of each group into latent space, and then we represent the current
resident item matrix. Given a group of residents G = (R1, R2, ..., R|G|), their
item set(IS) would be IS = (I1, I2, ..., I|IS|) =

⋃|G|
i=1

⋃|N |
j=1. Here, IS represents

the group’s item set and each item belongs to at least one of the resident’s item
sets. For example, if we pick 3 items with the highest preference scores from Ch1
to Ch5 (see motivation scenario) for each resident, then, group’s item set would
be, IS = (I1 ∪ I2 ∪ I3) = {Ch1, Ch2, Ch3, Ch5} where I1 = (Ch1, Ch3, Ch2),
I2 = (Ch1, Ch5, Ch2), I3 = (Ch5, Ch1, Ch2). The union operation on I1, I2, I3
gives {Ch1, Ch2, Ch3, Ch5}. We create the H matrix using IS as follows:

H = (PS(i, j))|G|×|IS| (6)

where (PS(i, j))|G|×|IS| is the preference score of resident Ri to the j − th
item. For the example of the motivation scenario 1, using Eq. 6, we get:

H =

⎡

⎣
19.44 14.48 15.20 11.04
20.00 17.20 14.52 20.00
16.08 14.12 14.40 20.00

⎤

⎦

Preference scores of Ch1, Ch2, Ch3, and Ch5 are represented in the 1st, 2nd,
3rd and 4th columns, respectively. Ch4 is not considered since it does not belong
to any resident’s top-3 item list. We apply singular value decomposition (SVD)
to the H matrix to produce a set of vectors corresponding to features in the
matrix. We compute SVD of matrix H as follows:
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H|G|×|IS| = A|G|×|G|D|G|×|IS|V T
|IS|×|IS| (7)

where A is the resident-feature matrix, D is the diagonal weight matrix,
and V is the item-feature matrix. Additionally, dimentionality reduction can be
achieved by low-rank matrix approximation as follows:

H̃ = A|G|×|w|D|w|×|w|V T
|IS|×|w|

= ÃD̃Ṽ T (8)

where w = min

{
w|

∑w
k=1 D(k,k)

∑|G|
k=1 D(k,k)

> α

}
, w denotes the significant features’

number. Parameter α controls the degree of denoising or smoothness. When α is
smaller, the smoothness becomes heavier. This process is required when there is
a significant variance in the residents’ preferences. We apply Eq. 7 to our running
example and get the singular value decomposition of H = ADV T as:

A =

⎡

⎣
−0.5278 −0.8206 0.2194
−0.6320 0.2068 −0.7469
−0.5675 0.5328 0.6277

⎤

⎦

D =

⎡

⎣
57.1127 0 0 0

0 6.8771 0 0
0 0 1.8235 0

⎤

⎦

V =

⎡

⎢⎢
⎣

−0.5607 −0.4724 −0.3176 0.6013
−0.4644 −0.1166 −0.4422 −0.7584
−0.4442 −0.2614 0.8385 −0.1767
−0.5221 0.8336 0.0211 0.1792

⎤

⎥⎥
⎦

where A(i, k) measures the preference of resident Ri to feature Fk, Dk,k

denotes the feature’s importance, and the preference of item Ij to feature Fk is
measured by Vj,k. For the running example, we set α = 0.97 in Eq. 8 to denoise
D to D(1 : 2, 1 : 2), and we get:

Ã =

⎡
⎣

−0.5278 −0.8206
−0.6320 0.2068
−0.5675 0.5328

⎤
⎦ D̃ =

[
57.1127 0

0 6.8771

]
Ṽ =

⎡
⎢⎢⎣

−0.5607 −0.4724
−0.4644 −0.1166
−0.4442 −0.2614
−0.5221 0.8336

⎤
⎥⎥⎦

Integrating the residents’ preferences in the decomposed latent space with
current service requests (SR) is defined as the current resident item matrix
(CRIM). We formally define CRIM for each group as:

CRIM =
1

|G|
|G|∑

i=1

|IS|∑

j=1

SRi
j Ṽ (ISi

j , 1 : w) (9)

where ISi
j is the position of Ri’s preferred item Si

j in item set IS. Applying
Eq. 9 to the running example1, we get current resident item matrix as:
1 R1 requests Ch3, R2 requests Ch2, R3 requests Ch5. In the Ṽ matrix, row1, row2,

row3, and row4 represent Ch1, Ch2, Ch3, and Ch5, respectively.
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CRIM = ((1.00, 0.00, 0.00).Ṽ ([3, 2, 4], 1 : 2) + (1.00, 0.00, 0.00).Ṽ ([2, 3, 4], 1 : 2)

+ (1.00, 0.00, 0.00).Ṽ ([4, 2, 3], 1 : 2))/3
= ((−0.4442,−0.2614) + (−0.4644,−0.1166) + (−0.5221, 0.8336))/3
= (−0.48, 0.15)

Ideal Resident Item Matrix. Given CRIM, if we want to resolve conflict (i.e.,
provide group-oriented optimal services), we have to figure out the most similar
items to CRIM. To find similar items, we project CRIM to the first matrix H by
matrix multiplication. Thus, we define ideal resident item matrix (IRIM) as:

IRIM = Ã × D̃ × CRIMT (10)

IRIM is the prototype of aggregated preferences in preference space and
can be considered as ideal items. When a decision is made considering conflict-
ing requirements, each element in IRIM implies to what degree this resident’s
preference can be considered or expressed in a particular conflicting situation.
Consequently, we tend to select candidate items whose preference scores are very
close to the given group’s IRIM scores for group-oriented service. We compute
the ideal resident item distance (IRID) to measure the similarity between the
currently requested item (RIj) and IRIM . We define IRID(RIj , IRIM) as:

IRID(RIj , IRIM) = ||H(1 : |G|, RIj) − IRIM ||2 (11)

We can then choose the most preferred items with the lowest IRID values as
the final selections for conflict resolution considering residents are more likely to
agree on the items similar to the aggregated unitary preference. Applying Eq. 10
to the running example, we get ideal resident item matrix as follows:

IRIM = Ã × D̃ × CRIMT =

⎡

⎣
−0.5278 −0.8206
−0.6320 0.2068
−0.5675 0.5328

⎤

⎦ ×
[
57.11 0

0 6.88

]
×

[−0.48
0.15

]

= (13.623, 17.539, 16.107)T

IRIM is the ideal item of unitary preference in preference space for this
conflicting group. The estimated items from three residents, which are more
similar to IRIM ’s corresponding elements, are better. By using Eq. 11, we get
IRID as:

IRID(RI1, IRIM) = ||H(1 : |G|, RI1) − IRIM ||2
= ||(19.44, 20.00, 16.08) − (13.62, 17.53, 16.10)||2 = 6.32

IRID(RI2, IRIM) = 2.19 IRID(RI3, IRIM) = 3.81
IRID(RI4, IRIM) = 4.93 IRID(RI5, IRIM) = 5.28

IRID(RI2, IRIM) and IRID(RI3, IRIM) are the lowest, which means Ch2
and Ch3 are similar to the ideal resident item matrix. In other words, Ch2, Ch3
are closer to the best choice of residents. If we pick Ch2 and Ch3 as conflict
resolutions, it’s more likely that each resident has a relatively high satisfaction.
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5 Experimental Results and Discussion

5.1 Experimental Data

We use a dataset collected from the Center for Advanced Studies in Adap-
tive Systems (CASAS) to evaluate the proposed conflict resolution framework
[7]. We use four individual residents’ service interaction records (labels HH102,
HH104, HH105, HH106) and merge them to mimic the environment of multi-
resident smart homes. We select these labels as they contain activities of a similar
period (between June 15, 2011, and August 14, 2011). Descriptions of dataset
attributes are displayed in Table 2. The dataset has “Watch TV” activity label,
however, the channel information is missing. Hence, we augment the dataset
by randomly assigning channel values based on a uniform distribution. We use
another dataset, namely CAMRa2011, which has 145096 ratings for 7740 movies.
It has the rating records of 602 residents from 290 households [2]. Among these
290 households, 272 households have 2 residents, 14 households have 3 residents,
and 4 households have 4 residents. The rating scale is [1–100]. We consider the
rating score as the preference score and each movie as a TV channel to evaluate
our proposed framework. Since this dataset does not have any timestamps, we
randomly generate the timestamp records based on a uniform distribution.

Table 2. Description of the dataset attributes

Attributes Description

Date The service execution date

Time The service execution time

Sensor Name of the sensors such as motion sensors, light switch, light sensors,
door sensors, temperature sensors

Status ON, when the service starts, and OFF, when the service stops

5.2 Experimental Setup

In the experiments, we mainly evaluate the preference aggregation model. We
did not find any relevant work to compare the preference extraction model. This
paper is the first attempt to extract preferences from prior service interactions,
aiming to compute preference scores for the purpose of conflict resolution. The
evaluation of preference aggregation is not affected by preference extraction since
all the aggregating strategies are implemented in the same settings of preference
scores. The α parameter in SVD is set as 0.97 without special illustration.

5.2.1 Experimental Methods
We select three state-of-the-art preference aggregation methods used on group
recommendation as baselines. They are average (AVG) strategy, least-misery
(LM) strategy, and most-pleasure (MP) strategy.
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5.2.2 Metrics
We recommend items for conflict resolution. Here, items refer to the values of
service attributes. Two widely used group recommendation metrics are utilized
for the evaluation of the proposed model. We calculate the average value of all
our results on these metrics in all the conducted experiments.

Satisfaction Gain (SG). SG metric measures the satisfaction of a group to a
list of recommended items [21]. SG = 1

|G|
∑|G|

j=1

∑|L|
k=1 PS(j, k), where |G| repre-

sents the group, |L| denotes the recommended items, PS(j, k) is the preference
score of each member on item (Ik) and Ik is an adopted item. Adopted items
refer to the items that have been used more than 60% times by the residents.

Harmonic (H). H metric estimates the equity of the recommended items to
the group, H = |G|/(

∑|G|
j=1

1
∑|L|

k=1 R(j,k)
). If the value of harmonic metric is high,

it can be said that the recommendation is fair to all members [3].

5.3 Experimental Results

5.3.1 Efficiency Results
The efficiency results are illustrated by comparing different methods and their
running times. The average running times (in seconds) of each method on CASAS
and CAMRa2011 datasets are displayed in Table 3. These time records do not
include the runtime of the preference extraction step; they include the runtime
of the preference aggregation step and conflict resolution step. AVG, LM, and
MP are very efficient in terms of runtime. For each group, they directly calculate
item scores from the preference table. AVG, LM, and MP methods require more
time on CAMRa2011 dataset than on CASAS dataset since items are denser
on CAMRa2011. Our approach takes a long time on both datasets than these
methods because we compute matrix approximation for all the candidate items
for each conflict situation.

Table 3. Efficiency results (average running time in seconds)

Datasets AVG LM MP Our approach

CASAS 1.05 1.39 1.26 2.52

CAMRa2011 1.53 2.24 2.34 4.36

5.3.2 Effectiveness Results
The performances of various conflict resolution strategies are evaluated in this
part. The results on two metrics concerning the number of residents are shown
in Fig. 3 and Fig. 4.

On SG metric, our approach performs better than other existing approaches
with all sizes of groups (Fig. 3(a) and Fig. 4(a)). AVG does not always perform
best because only the adopted items are considered during the computation of SG
values. Items with high preference scores are defined as adopted items, meaning



Dynamic Conflict Resolution of IoT Services in Smart Homes 381

those items are frequently used previously. Some items will not be accepted by all
the members even though they have high preference scores by other members. In
this regard, AVG may lose some gains. Figure 3(b) and Fig. 4(b) report the results
of different methods based on harmonic metric. Harmonic metric decreases when
the group size becomes larger, denoting low fairness in larger groups. Almost all
methods perform better on CAMRa2011 dataset than CASAS dataset. However,
their performances worsen when the number of residents increases because it is
more difficult to aggregate preferences in larger groups.

Fig. 3. Effectiveness results on CASAS dataset.

Fig. 4. Effectiveness results on CAMRa2011 dataset.

Finally, we conduct another set of experiments to compare our approach
with an existing approach, namely, Use First (UF) proposed in [15]. For this
experiment, we consider TV channel data to measure satisfaction between resi-
dents. We undertake this experiment considering conflicts between 2 residents,
3 residents, and 4 residents, respectively. Figure 5 refers that the satisfaction
score decreases as the number of residents increases. More residents mean more
service requirements, thus creates more service conflicts—the greater number of
conflicts, the lesser satisfaction scores. On one hand, in the UF approach, the
user who starts watching TV first will be enjoying the TV without considering
other residents’ preferences. On the other hand, our approach is preemptive.
Thus, it resolves conflict by selecting the TV channel that suits most users.
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6 Related Work

The concepts of conflict detection and resolution are surveyed in the relevant lit-
erature. Conflicts are categorized based on three criteria: (i) source, (ii) interve-
nience, and (iii) solvability. Different types of sources are responsible for conflict
occurrence [12]. A conflict may occur when many users try to use a resource-
defined as a resource-level conflict [14]. A conflict may happen when several
applications utilize a resource simultaneously-regarded as an application-level
conflict [14]. A conflict may arise due to conflicting policies for a given context,
known as a policy-level conflict [16]. Conflicts may arise due to intervenience [22].
Conflict is common in multi-occupant homes, however, a conflict may happen in
single-occupant homes. For instance, a conflict may occur based on contradictory
intentions like saving energy and comfort at the same time [13].

(a) Avg. satisfaction between residents (b) Avg. satisfaction vs no. of conflicts

Fig. 5. Comparison between our approach and use first approach.

Some preference aggregation strategies such as average (AVG), least-misery
(LM), and most-pleasure (MP) are used for conflict resolution in existing
research [2,8,9]. However, they did not consider the service requirements of the
present situation. Thus, fairness and interactions are ignored in these works.
Consequently, they can not always generate a fair solution for each resident in
a conflicting situation, leading to low satisfaction. Hence, there is a need for a
framework that ensures fairness by integrating current interactions with prefer-
ences extracted from the past usage patterns. We use both previous usage data
and current interaction data to build the conflict resolution framework.

7 Conclusion and Future Work

We propose a novel approach for conflict resolution of IoT services by combining
current interactions and historical interactions. The proposed preference estima-
tion model is developed based on the temporal proximity strategy. The frame-
work employs a preference aggregation model based on singular value decompo-
sition. The effectiveness of the proposed approach is tested with other existing
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approaches. In our future work, we will improve the conflict resolution frame-
work by utilizing not only preferences, but also other contextual information
related to the residents. Factors such as interpersonal relationship can play a
vital role for conflict resolution. Meanwhile, we will test our solutions in more
complicated scenarios, e.g., more experimental settings on even larger datasets.
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Abstract. Considering the resource-hungry and capability-constraint of
Internet of Things (IoT ) nodes, their functionalities, which are encapsu-
lated as containerized IoT services, are composed to satisfy user requests.
IoT nodes are usually duty-cycled and energy-awareness. Therefore,
IoT service allocation to respective IoT nodes should be re-calibrated
on-demand through migrating certain IoT services from their hosted
IoT nodes to the others, in order to satisfy the functionally diversity
of requests. To solve this problem, this paper proposes a D istributed
M igration-based Service Allocation (DMSA) mechanism in dynamic IoT
networks, where a game-theoretic approach is adopted to achieve the Nash
equilibrium of IoT service allocation optimization. Extensive experiments
are conducted, and evaluation results demonstrate that our DMSA per-
forms better than the state of art’s techniques in reducing the response
latency of requests and improving the resource utilization efficiency.

1 Introduction

The wide-deployment of Internet of Things (IoT ) networks enables the request-
enactment at the network edge through the functional collaboration of IoT
nodes [1]. Leveraging the micro-service architecture, the functionalities of IoT
nodes are encapsulated as containerized IoT services, and their collaboration
is achieved through the composition of functionally compatible and geographi-
cally contiguous IoT services. Considering the resource-hungry and capability-
constraint of typical IoT nodes, few services can be hosted by single IoT node,
and appropriate IoT services should be deployed on-demand upon certain IoT
nodes, in order to satisfy functionally diverse requests issued at a certain time
duration. To prolong the network lifetime, an IoT node may change its state
from working to sleep when its remaining resources are scarce. In this dynamic
IoT network, the allocation of IoT services may be re-calibrated on-demand
through migrating containerized IoT services from their hosted IoT nodes to
the others. Consequently, certain requests can be satisfied properly, and the
network resources should be utilized in an optimized manner.

Service allocation in dynamic IoT networks has been attracting wide atten-
tion, where on-demand resource re-scheduling is concerned for improving energy
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 385–399, 2021.
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efficiency and supporting latency-sensitive requests. Computational tasks are
configured on the network edge or IoT nodes for optimizing task allocation
in static networks through techniques like greedy-based algorithms, heuristic
algorithms and reinforcement learning algorithms. These works aim to reduce
large-scale data transmission on the backbone network from end devices to the
remote cloud through reasonably scheduling and managing resources. However,
they may hardly be adopted in dynamic IoT networks, since the network topol-
ogy change due to the state switch of IoT nodes between working and sleep
is not considered. Some techniques guarantee service availability through aug-
menting temporary work period to reduce unnecessary latency caused by excess
waiting-time of non-working states [2]. They make some optimization of the node
activation mode for timely responding services, but they inevitably increase the
energy consumption burden of nodes and thus reduce the network lifetime. In [3],
authors complement and dispatch mobile devices to alleviate resource limitations
in IoT networks for completing multi-user offloading. All tasks are regarded as
simple computational tasks, and they do not consider the diversity of functional-
ities provided by heterogeneous IoT nodes. Therefore, how to re-calibrate service
allocation upon energy-aware and duty-cycle IoT nodes remains a challenge.

Fig. 1. The dynamic IoT network framework includes two layers: (i) the IoT node
layer contains IoT nodes stayed in the working or sleep state at tn time slot, and (ii)
the IoT service layer includes containerized IoT services, which are migrated from
hosting IoT nodes to the others on-demand, and composed to satisfy certain requests.

To address this challenge, we propose a migration-based service allocation
mechanism for achieving requests processing with optimized latency and energy
consumption as shown in Fig. 1. Our contributions are summarized as follows:

– We construct a dynamic IoT network framework, where energy-aware and
duty-cycle IoT nodes are switched over time and frequent topology varia-
tions are constructed. IoT services hosted by lightweight containers upon
collaborative IoT nodes are composed to satisfy requests.

– The service allocation in dynamic IoT networks is formulated as a multi-
objective optimization problem, which is solved by our proposed D istributed
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M igration-based Service Allocation (DMSA) mechanism, where a Nash equi-
librium solution is derived to minimize the request latency and achieve the
energy efficiency of the network.

– Extensive experiments are conducted, and evaluation results demonstrate
that our DMSA outperforms the state of art’s techniques in reducing the
response latency of service requests and improving the resource utilization
efficiency of IoT networks.

This paper is organized as follows. Section 2 presents relevant concepts and
network environment, Sect. 3 introduces computation, transmission and migra-
tion models. Section 4 formulates a service allocation game and finds a Nash
equilibrium solution. Section 5 evaluates the proposed mechanism experimen-
tally. Section 6 reviews relevant techniques, and Sect. 7 concludes this work.

2 Preliminaries

2.1 Concept Definition

Definition 1 (IoT Node). An IoT node ndIoT = (wkt, Cwrk, eng, f, bdw,
stg, SEV, N cnt), where wkt is the working state, Cwrk is a set of working
cycles, eng is the remaining energy, f is the computational capability, bdw is
the bandwidth capability, stg is the storage capability, of ndIoT , SEV is a set
of services configured, and N cnt is the maximum of instantiated containers for
hosting services, by ndIoT .

Definition 2 (IoT Service). An IoT service sevIoT = (dpt, ds, cyc, bdw,
stg, NDIoT ), where dpt is the brief text description, ds is the datasize, cyc is
the required number of CPU cycles, bdw is the required bandwidth, stg is the
required storage, of sevIoT , and NDIoT is a set of IoT nodes hosting sevIoT .

Definition 3 (Service Request). A service request srq = (SEV srq, lgD),
where SEV srq is a finite set of IoT services, and lgD is the logical dependency
relations, contained by srq.

2.2 Dynamic IoT Networks

An IoT node in dynamic IoT networks is duty-cycled, which works periodically
and has two possible states: working state and sleep state. An IoT node in
working state can implement computation, transmission and migration works,
while those IoT nodes with sleep state turn off all of their functional modules
except a timer to wake itself up. Assume that the working/sleep state switching
which is also called the working cycle, of each IoT node, is determined once the
network is deployed. For simplicity, we assume that each IoT node is in working
state within a continuous temporal period which is enough for processing at least
one successful computation, transmission or migration.
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Fig. 2. The working cycle of each IoT node is represented, and hence, the network
topology is changed continuously with the transformation of IoT nodes working state
at different time slots (e.g., t = t1 and t = t4 as shown in this figure).

Therefore, network topology is frequently changed in terms of the working
state switching of IoT nodes, where at each moment t, there exists a dynamic
IoT network which contains a set of IoT nodes with working state. Hence, the
network topology is evolved as time slot T = {t0, t1, . . . , tn, tn+1, . . . } shown
as Fig. 2. The initial service placement scheme is implemented, and this is not
the focus of our research. The service allocation can be adjusted and scheduled
by migrating certain IoT services from one IoT node to other required IoT
node for efficiently accommodating service requests. Similar to many studies of
computational scheduling [4], our problem is considered in a quasi-static scenario
where service requests remain unchanged during the service allocation process.

3 System Model

3.1 Computation Model

The computation process represents the residence and execution for completing
a certain sevIoT

i on an IoT node ndIoT
j . A binary variable Pm

i is denoted for
representing service placement decision, where Pm

i = 1, if the sevIoT
i is placed

on ndIoT
j , and Pm

i = 0, otherwise.
Note that fj is the computational capacity of the IoT node, cyci refers to

the required CPU cycles for implementing the IoT service sevIoT
i , and hence,

the computation latency is computed as follows:

Lcmp(sevIoT
i , ndIoT

j ) =
cyci

fj
(1)

The power consumption of an IoT node is modelled as P = κf2, where κ is
the effective switched capacitance depending on chip architecture. The energy
consumption for executing an IoT service is computed as follows:
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Ecmp(sevIoT
i , ndIoT

j ) = Lcmp(sevIoT
i , ndIoT

j ) × P = cyci × κf2
j (2)

3.2 Transmission Model

The transmission overhead is produced through sending and receiving data pack-
ages in the process of instantiating adjacent IoT services on physically contigu-
ous IoT nodes. A binary variable T j,j′

i for transmission model is denoted, where
T j,j′

i = 1, if the data is transmitted from ndIoT
j to ndIoT

j′ , otherwise, T j,j′
i = 0.

The transmission latency and corresponding transmission energy consump-
tion between sender and receiver IoT nodes for uploading service sevIoT

i with
data size dsjj′

i are represented as follows:

Ltrs(sevIoT
i , ndIoT

j ) =
dsjj′

i

γjj′
=

dsjj′
i

W log(1 + pjgjj′
N0

)
(3)

Etrs(sevIoT
i , ndIoT

j ) = pj × dsjj′
i

γjj′
=

pj × dsjj′
i

W log(1 + pjgjj′
N0

)
(4)

where the γjj′ is denoted as the transmission rate, W refers to the bandwidth
of the link, gjj′ represents the channel gain, between sender and receiver IoT
nodes ndIoT

j and ndIoT
j′ , pj is the transmission power, and N0 is the noise power.

3.3 Service Migration Model

Service migration represents the process of migrating container that encapsulates
certain IoT service from a source IoT node to another destination IoT node,
where physical properties of the destination IoT node planing to host the service
should be satisfied. The service migration conditions can be expressed as follows:

bdwi ≤ R(bdwj′) & stgi ≤ R(stgj′) & |Ssev
j′ | ≤ N cnt

j′ (5)

where Eq. (5) indicates the remaining bandwidth, remaining storage and hosting
capacity, of the destination IoT node, should exceed the resources occupied by
the IoT service.

We define a binary variable for service migration, where M j,j′
i = 1, if the

sevIoT
i is migrated from ndIoT

j to ndIoT
j′ , and M j,j′

i = 0, otherwise. We further
compute migration latency and energy consumption from the source IoT node
to the destination IoT node shown as follows:

Lmgt(sevIoT
i , ndIoT

j ) =
stgi

γjj′
(6)

Emgt(sevIoT
i , ndIoT

j ) = pj × stgi

γjj′
(7)



390 M. Sun et al.

4 Migration-Based Service Allocation Game

4.1 Problem Formulation

The service allocation decision for each IoT service sevIoT
i is denoted as ai ∈ {0,

1, . . . , m}. Specifically, we have ai = 0 if sevIoT
i is instantiated on an initially

placed IoT node, P j
i = 1 and M j,j′

i = 0. The ai > 0 if sevIoT
i is migrated

from an IoT node to another IoT node, P j
i = 0 and M j,j′

i = 1. The T j,j′
i is

determined by the following: (i) if no requirement of data transmission between
IoT nodes ndIoT

j and ndIoT
j′ , there is T j,j′

i = 0; and (ii) if a certain amount of

datasize is transmitted between IoT nodes ndIoT
j and ndIoT

j′ , there is T j,j′
i = 1.

Therefore, there are four Conditions including: (Condition1 ) P j
i = 1, T j,j′

i = 0,
M j,j′

i = 0; (Condition2 ) P j
i = 1, T j,j′

i = 1, M j,j′
i = 0; (Condition3 ) P j

i = 0,
T j,j′

i = 0, M j,j′
i = 1; (Condition4 ) P j

i = 0, T j,j′
i = 1, M j,j′

i = 1. The consumed
latency and energy of executing sevIoT

i are specified as follows:

ZL(ai) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cyci
fj

, (ai = 0,Condition1)
cyci
fj

+ dsjj′
i

γjj′ , (ai = 0,Condition2)
stgi

γjj′ + cyci
fj′ , (ai > 0,Condition3)

dsjj′
i

γjj′ + stgi

γjj′ + cyci
fj′ , (ai > 0,Condition4)

(8)

ZE(ai) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cyci × κf2
j , (ai = 0,Condition1)

cyci × κf2
j + pj × dsjj′

i

γjj′ , (ai = 0,Condition2)

pj × stgi

γjj′ + cyci × κf2
j′ , (ai > 0,Condition3)

pj × dsjj′
i

γjj′ + pj × stgi

γjj′ + cyci × κf2
j′ , (ai > 0,Condition4)

(9)

We denote d ∈ D = {L, E} that is concerned from two dimensions for
evaluating system overhead. The consumed latency and energy are normalized
as efficacy factors denoted as fd(ai) between 0 and 1 avoiding the operation of
different magnitudes, which is computed as follows:

fd(ai) =

{
Zd

init−Zd(ai)

Zd
init−Zd

min

, (Zd
init �= Zd

min)

1, (Zd
init = Zd

min)
(10)

where Zd
init and Zd

min describe the consumed latency (or energy) on initial placed
IoT node and the minimum latency (or energy) for all possible service allocation
decisions, respectively. Leveraging linear weighted sum method, service alloca-
tion decision ai is evaluated through considering both two dimensions, which is
presented as Z(ai) =

∑
d∈D wd · fd(ai), and wd is the weighting of Zd(ai).

Given a service allocation decision profile a = (a1, . . . , an) of all service
components, the service allocation problem can be modelled as a constrained
optimization problem, which is formally expressed as follows:
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min

n∑

i=1

Z(ai) subject to Equation (5) (11)

4.2 Game Formulation

To find a decision profile that optimizes service allocation and achieves service
requests in an overhead-efficient manner, a decentralized game-theoretic solution
is proposed leveraging the intelligence of individuals. We denote a−i = (a1, . . . ,
ai−1, ai+1, . . . , an) to represent service allocation decisions except i -th service.
For the rest services’ decisions a−i, sevIoT

i expects to select an optimal decision,
for minimizing system overhead, shown as minai∈{0,...,m}Z(ai). We formulate
this service allocation problem as a game Υ = (N , {Ai}i∈n, {Z(ai)}i∈n), where
N is the set of players, Ai is the finite set of service allocation decisions, and
Z(ai) is the system overhead function of decision ai ∈ Ai. We make efforts to
research whether the game admits at least one Nash equilibrium solution.

Definition 4 (Nash equilibrium). A service allocation decision profile a∗ =
(a∗

1, . . . , a∗
n) is a Nash equilibrium solution if no players can further reduce its

system overhead by unilaterally changing its allocation decision, i.e. Za∗
−i

(a∗
i ) ≥

Za∗
−i

(ai),∀i ∈ n, ai ∈ Ai.

4.3 Nash Equilibrium Existence Analysis

We discuss the existence of Nash equilibrium solution for the service allocation
game, where the problem is proved as a potential game [5] defined as follows:

Definition 5 (Potential Game). A game is a potential game if it exists a
potential function ψ(a), for each i ∈ n, ai, a′

i ∈ Ai and a−i ∈ Πi�=sAs, there is
Za−i

(ai) < Za−i
(a′

i) ⇒ ψa−i
(ai) < ψa−i

(a′
i).

There is at least one Nash equilibrium solution in the potential game [5]. To
conclude our service allocation game as a potential game, a property is shown:

Lemma 1. Given a service allocation decision profile a = (a1, . . . , an), for each
service consumed system overhead Zd(ai) thereinto i ∈ n, and available resource
Rd

j of IoT node ndIoT
j , ai can be allocated to ndIoT

j (denoted as ρai
= j) if all

the services that have been allocated on the same ndIoT
j , they satisfy: ξd

i (a) �
∑

k∈N\{i}:ρak
=j Zd(ak) ≤ T d

i and T d
i = Rd

j − Zd
init + fd(ai) · (Zd

init − Zd
min).

Proof. If a service sevIoT
i is allocated to ndIoT

j , available resource constraints
are followed, for each d ∈ D, there is
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∑

k∈N :ρak
=j

Zd(ak) =
∑

k∈N\{i}:ρak
=j

Zd(ak) + Zd(ai) ≤ Rd
j

=⇒
∑

k∈N\{i}:ρak
=j

Zd(ak) ≤ Rd
j − Zd(ai)

=⇒
∑

k∈N\{i}:ρak
=j

Zd(ak) ≤ Rd
j − (

Zd
init − fd(ai) · (Zd

init − Zd
min)

)

i.e.=⇒Ti =
∑

d∈D

wd · (
Rd

j − Zd
init + fd(ai) · (Zd

init − Zd
min)

)

(12)

According to Lemma 1, we know that when a service is allocated on a certain
IoT node, it is indispensable for the selected IoT node that has enough available
resources. Based on Lemma 1, we show that the service allocation game is indeed
a potential game, and a potential function is defined as follows:

ψa−i
(ai) = −

∑

i∈n

∑

d∈D

wd · fd(ai) · Ti · I{ai=0}+

1
2

∑

i∈n

∑

j �=i

∑

d∈D

wd · fd(ai) · wd · fd(aj) · I{ai=aj} · I{ai>0}
(13)

where I{... } is a boolean function, it is valued to 1 when the condition is true,
otherwise the value of I{... } is set to 0.

Theorem 1. The service allocation game is a potential game with the potential
function as given by Eq. (13), and hence there is at least one Nash equilibrium
solution.

Proof. For each sevIoT
i , two service allocation decisions ai and a′

i are compared,
we suppose that they fulfill Za−i

(ai) < Za−i
(a′

i). According to the Definition 5,
the potential function should be proven as ψa−i

(ai) < ψa−i
(a′

i). There are the
following three cases: (i) ai > 0, a′

i > 0; (ii) ai = 0, a′
i > 0; (iii) ai > 0, a′

i = 0.
For case (i) ai > 0, a′

i > 0, given Za−i
(ai) < Za−i

(a′
i), there is

∑

d∈D

wd · fd(ai) <
∑

d∈D

wd · fd(a′
i)

=⇒
∑

k �=i

∑

d∈D

wd · fd(ak) · I{ak=ai} <
∑

k �=i

∑

d∈D

wd · fd(ak) · I{ak=a′
i}

(14)



Migration-Based Service Allocation Optimization in Dynamic IoT Networks 393

We then know that:

ψa−i
(ai) − ψa−i

(a
′
i) =

1
2

∑

d∈D

wd · fd(ai) ·
∑

k �=i

∑

d∈D

wd · fd(ak) · I{ak=ai}

− 1
2

∑

d∈D

wd · fd(ai) ·
∑

k �=i

∑

d∈D

wd · fd(ak) · I{ak=a
′
i}

=
1
2

∑

d∈D

wd · fd(ai) ·
∑

k �=i

∑

d∈D

[wd · fd(ak) · I{ak=ai} − wd · fd(ak) · I{ak=a
′
i}] < 0

(15)

For case (ii) and case (iii), given Za−i
(ai) < Za−i

(a′
i), we can also know that

ψa−i
(ai) < ψa−i

(a′
i), due to the space limitation, the specific proof processes

are omitted. We can further infer that the service allocation game is a potential
game and it implies that a Nash equilibrium is guaranteed in the game.

4.4 Distributed Migration-Based Service Allocation Algorithm

We develop a DMSA algorithm to find a Nash equilibrium solution of service
allocation game. Given a set of IoT nodes with certain working cycles and initial
service placement in dynamic IoT network, service allocation is implemented
in a distributed fashion through scheduling and migrating IoT services upon
IoT nodes. As presented by Algorithm 1, for each service in service requests,
the latency upon different IoT nodes with working state in current network
topology is estimated according to Eq. (8) (lines 1–3 ). When the required latency
does not exceed the working cycle boundary of an IoT node, the IoT node is
added to the candidate set CDTi that can be selected to allocate certain service
(lines 4–6 ). The decision profile is initialized through selecting a candidate IoT
node randomly (line 8 ). Then, the total system overhead εa(s)(ndIoT

j ) for a
certain IoT node ndIoT

j in the current iteration s (s = 1, 2, . . . ) is updated
(line 10 ). The service allocation system updates constantly, and based on the
finite improvement property, each service can improve its benefit update from
the current allocation decision ai to a better decision a′

i in the iteration process.
For each required service, the system overhead is updated under a′(s) with the
change from ai to a′

i (lines 13–16 ), according to three cases as follows:

μa′(s)(ndIoT
j ) =

⎧
⎪⎨

⎪⎩

εa(s)(ndIoT
j ) +

∑
d∈D wd · fd(ai), (ρa′

i
= j)

εa(s)(ndIoT
j ) − ∑

d∈D wd · fd(ai), (ρai
= j)

εa(s)(ndIoT
j ), (otherwise)

(16)

When the non-optimal decision is replaced, μa′(s)(ndIoT
j ) is updated accord-

ingly. The optimal service allocation decision that achieves the lowest system
overhead for sevIoT

i is found in corresponding CDTi (line 17 ). If current deci-
sion ai and optimal decision a′

i are different, sevIoT
i will send a message for

contenting decision update opportunity and the i -th service sevIoT
i is inserted

into opportunity set OPT (lines 18–19 ). Items in OPT compete in constant
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Algorithm 1. DMSA: D istributed M igration-based Service Allocation
Require: M: the set of IoT nodes; Cwrk: the working cycle for each IoT node;

SEV srq: the set of required IoT services; t: the moment in dynamic IoT network.
Ensure: Xopt : an optimal service allocation decision.

1: for each sevIoT
i ∈ SEV srq do

2: for wktj = working do
3: ZL(ai) ← computed by Equation (8)
4: if [t, t + ZL(ai)] ⊆ Cwrk

j then
5: CDTi = CDTi ∪ {ndIoT

j }
6: end if
7: end for
8: ρinit(sev

IoT
i ) = Random(CDTi)

9: end for
10: εa(s)(ndIoT

j ) �
∑

d∈D

∑
ρai

=j wd · fd(ai)

11: upd = 1
12: while upd = 1 do
13: for each sevIoT

i ∈ SEV srq do
14: for ndIoT

j ∈ CDTi do
15: μa′(s)(ndIoT

j ) ← computed by Equation (16)
16: end for
17: a′

i ← find the optimal decision from CDTi

18: if ai �= a′
i then

19: OPT = OPT ∪ {a′
i}

20: if i = Random(OPT ) then
21: ai = a′

i

22: if ρai .SEV ∩ {sevIoT
i } = ∅ then

23:
⋃ {sevIoT

i → ρai}
24: end if
25: OPT = OPT - {a′

i}
26: end if
27: end if
28: if OPT = ∅ then
29: upd = 0
30: end if
31: end for
32: end while
33: Xopt = (ρa1 , . . . , ρai , . . . , ρan)

iteration process, and only one service wins and obtains the opportunity to
update its service allocation decision (lines 20–21 ). If sevIoT

i is not pre-placed
on ndIoT

j , sevIoT
i needs to be migrated for completing optimal service allocation

(lines 22–24 ). Those services that do not win the opportunity cannot update
their decisions, and the iteration process is stopped until no service would like
to update their decisions (lines 28–30 ). The optimal service allocation decision
profile as a solution is found by scheduling each required IoT service upon an
appropriate IoT node (line 33 ).
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5 Implementation and Evaluation

A prototype is implemented and network environment is constructed based on
the EdgeSim (available at https://github.com/search?q=EdgeSim). We consider
a dynamic network environment served by M IoT nodes, where each IoT node
is heterogeneous and is initially configured by different types of services. Ser-
vices are encapsulated by containers and the maximum number of containers is
limited. The working cycle of each IoT node is randomly specified by one or sev-
eral contiguous time slots. Specifically, service requests are generated based on a
typical business process model which is publicly accessible in [6]. The parameter
settings are presented at Table 1.

Table 1. Parameter settings in our experiments.

Parameter Value Parameter Value

M 20–100 fj 200–500 MHz

dsi 1–10 MB W 20 MHz

cyci 50–200 M pj 0.2 W

Ncnt 2–6 gjj′ 20−4

κ 10−11 N0 10−8 mW

In order to verify the effectiveness and efficientness, we compare our DMSA
mechanism with the following three state-of-the-art techniques:

– Random-M igration Service Allocation (RMSA) approach: An IoT service is
migrated from a source IoT node to a random IoT node that can cover the
time duration of the service and corresponding constraints are satisfied.

– Genetic Algorithm-based Service Allocation (GASA) approach [7]: An IoT
services allocation solution is optimized based on the genetic algorithm, where
IoT services are migrated from initial placed IoT node to the allocated IoT
node in terms of allocation decisions.

– N on-M igration Benchmark Service Allocation (NMBSA) approach [4]: A
benchmark service allocation game is optimized by implementing IoT ser-
vices on a current optimal IoT node based on the initial placement without
considering migrating services to other IoT nodes.

5.1 Experimental Results

Parameter Performance Comparison.

– Number of IoT Nodes: Fig. 3(a) and 3(b) show the comparison for the aver-
age energy consumption and the average latency of DMSA, RMSA, GASA
and NMBSA with IoT nodes ranging from 20 to 100, when 50 requests

https://github.com/search?q=EdgeSim
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Fig. 3. Comparison for (a) average energy consumption, (b) average latency, by differ-
ent number of IoT nodes, (c) average energy consumption, and (d) average latency, by
different number of containers upon IoT nodes, (e) average energy consumption, and
(f) average latency, by different energy-latency weighting.

are executed. To control the effect of other parameters, the number of con-
tainers upon IoT nodes and the energy-latency weighting are set to fixed
values. These two figures show that our DMSA outperforms the other three
approaches both on average energy consumption and average latency. In addi-
tion, with the increasing number of IoT nodes, available IoT nodes at working
state alleviate certain number of service migration to some extent, and thus
optimizing energy consumption and latency for processing service requests.
When the number of IoT nodes reaches a certain level (e.g. the number of
IoT nodes is set to 60 in our experiment), the average energy consumption
and the average latency are gradually stabilized, since more service requests
can be satisfied through local computation and transmission.

– Number of Containers upon IoT Nodes: Fig. 3(c) and 3(d) show the com-
parison for the average energy consumption and the average latency of four
algorithms by different number of containers upon IoT nodes. In the dimen-
sion of energy consumption, it can be observed that our DMSA helps to save
more energy of IoT nodes, and thus extending the network lifecycle. The
maximum and minimum of energy consumption are labelled in the figures
to record the performance fluctuating, and the average energy consumption
decreases with the increasing number of containers hosted by each IoT node.
Besides, our DMSA performs better than other three approaches in terms of
average latency on account of the faster response of service requests. Similarly,
the average latency presents a downward tendency when the number of con-
tainers upon IoT nodes increases. This is due to the fact that a larger number
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of hosted containers means an IoT node can configure more functional ser-
vices, where both service migration and data transmission between different
IoT nodes are optimized in the process of completing task-dependent service
requests.

– Energy-Latency Weighting: Fig. 3(e) and 3(f) show the comparison for the
average energy consumption and the average latency of DMSA, RMSA, GASA
and NMBSA by different energy-latency weightings, where the energy weight-
ing is set ranging from 0.1 to 0.9 with the increment of 0.2. The number of
IoT nodes is set to 60 and each of them hosts 4 containers. Other param-
eters are set according to Table 1. Figure 3(e) shows that, these four algo-
rithms, regardless of which one, the lines about average energy consumption
are decreasing, when the energy weighting of the objective function is increas-
ing. Besides, our DMSA performs better than other three algorithms due to
saving more energy. In contrary, more response latency is consumed with the
increasing energy weighting as shown by Fig. 3(f). A larger energy weighting
inevitably causes relatively long-time latency, since the emphasis on energy-
efficient optimization brings certain compromise of response latency when
optimal service allocation decision is selected.

Fig. 4. Comparison for (a) energy consumption and (b) latency, of algorithms DMSA,
RMSA, GASA and NMBSA, when algorithms are executed for achieving 50 requests.

Algorithm Performance Comparison. There are 50 service requests imple-
mented for evaluating the algorithm performance. The number of IoT nodes in
the network is set to 60, each of them host various number of containers ranging
from 2 to 6. The weighting between energy consumption and latency is set to 0.5.
The comparison for energy consumption and latency of four algorithms includ-
ing DMSA, RMSA, GASA and NMBSA are demonstrated as Fig. 4(a) and 4(b),
respectively. The figures demonstrate that the optimization effect of our DMSA
is more pronounced compared to other approaches, both in terms of energy con-
sumption and latency. This is due to our DMSA is optimized through the mutual
game between multiple services to generate approving service allocation decisions
for enabling each service find a close-to-optimal solution. RMSA causes a rela-
tively large deviation because of random migration without adequately measur-
ing the quality of service migration destination. Although the GASA optimizes
migration destination to some extent by the heuristic algorithm, however, as a
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result of the limitations of the genetic algorithm, the algorithm ability of explor-
ing new solution space is restricted and it is easy to converge to the local optimal
solution. The service migration of NMBSA is not considered during the imple-
mentation of service requests, so for IoT services placed on those IoT nodes at
sleep state, normal service execution is broken, inevitably increases the energy
consumption and respond latency of service requests.

6 Related Works and Comparison

Service allocation has investigated in dynamic network environments, where the
sleeping/waking up and arriving/leaving behaviours of physical facilities (e.g.
IoT nodes) are inevitable, which increases the complexity of network resource
optimization. For a typical IoT model, Yu et al. present a minimum active time
slot augmentation approach in duty-cycle wireless sensor networks for timely
responding through changing established node working cycles [2]. The approach
is not the fist-class citizen since the network load-balancing is disturbed by com-
promising the energy consumption for accelerating task processing. The mobile
edge computing is proposed for offloading computational tasks [3], through plan-
ning path of mobile nodes and scheduling network resource from global per-
spective to complement resource limitations. In [8], Wang et al. extend service
framework through migrating tasks from remote cloud to the network edge,
where an meta reinforcement learning method is proposed to adapt dynamic
task offloading environment. These existing works focus mainly on dispatching
computational tasks, where a large amount of data transmission is inevitably
generated, and migrating services to supply physically contiguous facilities is
not considered.

The emergence of virtualization technology brings a novel fashion to share
the resource of physical devices, by loading service provision and utilization of
resource into lightweight virtual machines (or containers) instead of completely
occupancy. Tang et al. implement a container migration manager prototype sys-
tem [9], where a deep reinforcement learning mechanism is developed to find
the optimal decision-making. In [10], authors propose an energy-efficient con-
tainer migration scheme based on best-fit container placement technique for
solving the overload problem in IoT -resource constrained network. However, cur-
rent researches mainly focus on optimizing service migration to support single-
structure requests, and pay little attention to complete optimal service compo-
sitions.

Consequently, we propose a migration-based service allocation mechanism
to optimize efficient service allocation. Service availability and energy efficiency
of IoT nodes is considered, IoT services are migrated on-demand to schedule
network resources, for instantiating delay-sensitive service compositions.

7 Conclusion

This paper proposes a migration-based service allocation mechanism in dynamic
IoT networks through migrating containerized IoT services from source IoT
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node to required destination, in order to re-calibrate network resource for sup-
porting optimized service composition. A game-theoretic approach is adopted to
reduce this problem as a potential game, and our DMSA algorithm is developed
to search a Nash equilibrium solution. Evaluation results show that our approach
outperforms the state-of-art’s techniques for achieving close-to-optimal service
allocation in terms of energy consumption and response latency.
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Abstract. Conversational services are emerging as a new paradigm for
accessing information by simply uttering questions in natural language,
posing a whole new set of challenges to the design and engineering of
information systems. Training conversational services to deal with the
nuances of natural language often requires collecting a high-quality and
diverse set of training samples (i.e., paraphrases). Traditional approaches
such as hiring an expert or crowdsourcing involve data collection pro-
cesses that are often costly and time-consuming. Automated paraphrase
generation is a promising cost-effective and scalable approach to gener-
ating training samples. Current automatic techniques, however, tend to
specialise in specific types of lexical or syntactic variations. As a result,
generated paraphrases may not perform well in relevant quality aspects
such as diversity and semantic relatedness. In this paper, we follow an
approach inspired by services integration to address these issues and gen-
erate paraphrases in English that are semantically relevant and diverse.
We propose an extensible and reusable pipeline that combines auto-
matic paraphrasing techniques in a two-step process that first focus on
i) leveraging the strengths of multiple techniques to generate the most
diverse (and possibly noisy) set of paraphrases, to then ii) address com-
mon quality issues in a separate step. Through empirical evaluations
we show the benefits of the two-step process design and of combining
techniques for more balancing relevance and diversity.

1 Introduction

Conversational services such as chatbots and Question/Answering (Q&A) sys-
tems are emerging as the new frontier for human-machine natural language inter-
actions [22]. Over the last few years, thousands of domain-specific bots have
been used in a variety of significant cases: office tasks, IT, healthcare, sports,
e-commerce, education, and e-government services. Users can obtain responses
by uttering requests in natural language, e.g., “which company makes the iPod”
instead of browsing a Website or reading a document. The design and engineer-
ing of such services pose a whole new set of challenges [39], now concerned with
how to interpret and deliver natural experiences in human language.
c© Springer Nature Switzerland AG 2021
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This shift in the interaction paradigm introduces crucial gaps in the engineer-
ing of conversational services. Especially in rapid deployment situations (e.g., the
COVID-19 crisis), fast acquisition of training data is a major roadblock to their
fast deployment. Requiring the acquisition of large, high-quality training sam-
ples in such situations can lead to chatbots with low-quality comprehension and
less natural interaction styles [10]. However, it is essential to have a linguisti-
cally diverse utterance set to train such systems on how to interpret different
variations of the same user utterance. A user request can be expressed in many
different ways. For our previous example, another user may ask “who manufac-
tures the iPod?”. Failing to correctly identify and process such nuances of natural
language (i.e., intent matching) can have a negative impact on the effectiveness
of the conversational services and, ultimately, on the user experience [20].

In this context, paraphrasing is an important natural language processing
task that aims to reformulate a given natural language utterance into its many
possible variations to generate additional training data [21]. Relying on experts
to provide and annotate utterance paraphrases at scale can be costly, which
has motivated research into other utterance acquisition methods [38]. These
approaches fall into three main methods: i) bot usage, referring to those rely-
ing on deployed prototypes to collect utterances directly from users, ii) crowd-
sourcing, as those leveraging crowdsourcing to collect paraphrases at scale with
non experts and iii) automated approaches, to those that generate paraphrases
systematically. All the approaches involve trade-offs between relevant quality
metrics, such as diversity, naturalness, correctness, and operational costs [38].

Automated paraphrasing offers a promising direction to address the challenge
of fast acquisition of training paraphrasing sets. As we will see, current techniques
focus on introducing specific lexical variations (e.g., synonyms substitutions)
or syntactic variations (structural changes) on the input sentence while still
maintaining semantic similarity to the original sentence [28]. Thus, important
quality dimensions for assessing these techniques are semantic relevance and
diversity of the resulting paraphrases [38]. While quality is a much involved
concept [38], in this work we focus on these dimensions as they dictate to what
extent a conversational service will interpret a relevant user request under its
plausible expressions. Existing techniques, however, still fall behind in terms of
quality, with the literature pointing to models often failing to produce sufficiently
diverse and semantically related paraphrases [21,35].

In this paper, we follow an approach inspired by services integration to
address the key challenge of automatically generating paraphrases in English
that are semantically relevant and diverse. We propose an extensible and
reusable pipeline that unifies, integrates and extends various paraphrasing ser-
vices, enabling the definition of paraphrase generation pipelines. In doing so, the
pipeline contributes with the design and evaluation of a two-step process, includ-
ing: i) paraphrase candidate over-generation, leveraging specialised techniques
that can be combined to generate a large number of diverse but (potentially)
noisy candidate paraphrases, and ii) candidate selection, with services that can
be incorporated to discard semantically irrelevant paraphrases and duplicates,
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thus filtering out low quality paraphrases. The rationale behind decoupling this
process in two steps is that we can focus first on generating the most diverse
possible set of candidate paraphrases by combining the variations introduced
by different specialised paraphrasing services (e.g., the lexical diversity in the
weak supervision technique, with the syntactical diversity of T5), to then have a
dedicated step addressing the challenge of ensuring the semantic relevance of the
outcome. Through an empirical evaluation we show the benefits of our pipeline
approach to paraphrase generation, with combinations of paraphrasing services
and automatic candidate selection leading to more balanced performance on
relevance and diversity metrics. The resulting pipeline framework offers a Web
interface, a Python SDK and REST APIs, that pushes paraphrasing as a service.

2 Problem Statement

We frame the problem in the context of fast acquisition of utterance paraphrase
sets for training the ability of conversational AI systems to interpret natural
language user requests (i.e., intent recognition task). Given an input utterance
x, we can define paraphrasing as the problem of generating a set of k utterance
paraphrases Y = {y1, y2, ..., yk} so that each y ∈ Y is generated by introducing
variations of x while keeping the same meaning [3]. Thus, the goal is to produce
a diverse set Y while preserving semantic equivalence to x.

Broadly speaking, automatic paraphrasing techniques rely on approaches
that aim at introducing lexical and syntactic variations. The quality of these
techniques is commonly measured1 in terms of the semantic relevance, denoting
the extent to which the output paraphrases are similar in meaning to the input
utterance, and diversity, as the breath and variety of paraphrases in the result-
ing corpus [38]. The literature on automatic paraphrasing (see Sect. 6) has seen
the development of a myriad of specialised techniques, but that still struggle in
addressing and balancing these important quality aspects [21,35]. For example,
the diversity of a technique might be limited by the types of variations it spe-
cialises for (e.g., only lexical), and the relevance by the noise introduced in the
generation process (e.g., semantically irrelevant paraphrases).

In this paper we explore, through design and empirical evaluations, an app-
roach to paraphrase generation that aims at addressing the above limitations.
The proposed automated paraphrase generation pipeline (see next section) con-
tributes with the design and evaluation of the following key design decisions:

– Reusing and combining existing paraphrasing techniques so as to benefit from
the diversity of variations in the state of the art

– Turning the generation in a two-step process that incorporates automated
quality control, so as to address quality issues in automatic techniques.

1 Quality aspects such as fluidity, grammatical correctness, and other dimensions
explored especially in the context of crowdsourcing [38], are not addressed in this
work.
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3 Automated Paraphrasing Pipeline

In our approach we see existing techniques as services that provide the building
blocks for defining paraphrase generation data-flow pipelines. The idea is that by
combining services we can leverage the variations introduced by specialised tech-
niques and produce better results. As seen in Fig. 1, the paraphrasing pipeline
defines a two-step process that takes an input sentence and generates a list of
semantically relevant and diverse paraphrases as output, by performing candi-
date over-generation and candidate selection. We organise the pipeline in these
two steps to make sure the process can leverage services that both expand on
paraphrase candidates while also pruning low quality ones from the final list.

Fig. 1. Automated paraphrase generation pipeline architecture

The proposed framework supports handcrafted pipelines, i.e., the definition of
data-flow pipelines as combinations of services. An expert can design the pipeline
by selecting the services to be combined, their configuration parameters and the
specific data-flow these services will describe. These complex pipelines are sup-
ported by leveraging a programmatic interface in Python, and can be enacted
from a command-line client, a Web interface and REST API. To support devel-
opers, we also provide a ready-to-use pool of predefined pipelines that mirror
combinations of techniques proposed in the literature. To support researchers,
the pipeline comes with built-in automatic metrics (see next section) that facili-
tate benchmarks and ablation studies. The community can also contribute with
new over-generation and candidate selection techniques by extending the cur-
rent pool of services. The code and documentation is available as open source.2

In the following the introduce the two main steps in the paraphrase generation
pipeline and the type of services supported.

3.1 Candidate Over-Generation Services

Candidate over-generation refers to the use of services that can be combined
to expand on the input sentence to incrementally generate a larger and more
2 https://github.com/AudayBerro/automatedParaphrase.

https://github.com/AudayBerro/automatedParaphrase
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diverse set of paraphrase candidates. The services we currently support were
implemented by taking existing techniques and models, extending them to offer
higher flexibility, as well as offer sensible defaults based on experimentation.

Weak Supervision. It is a learning approach that automatically creates its
own training data through the use of noisy data [6,24]. We rely on weak super-
vision to generate candidate paraphrases from the input utterances by replacing
individual words with their synonyms. To do so, we begin by performing part-of-
speech (POS) tagging to identify tokens (verbs and nouns) to be replaced using
SpaCy [11], to then select relevant synonyms from NLTK-Wordnet.3 Unlike pre-
vious work [20], we adopted two complementary strategies, discussed next, for
synonym selection and replacement so as to balance relatedness of the generated
candidates and exploration of diverse paraphrases.
Select Best Synonym Sentence (SBSS): This strategy generates the best pos-
sible candidate paraphrases by selecting variants with the highest semantic
relatedness. To do so, the paraphrase candidate is generated by replacing each
selected token with the WordNet synonym that has the highest cosine similarity
respecting a predefined interval threshold [α, β]. Let τ be the selected token,
S = {s1, s2, ..., sN} its list of WordNet synonyms and ψ the selected synonym.
∀s ∈ S : ψ = argmax[cos(τ, s)] and α ≤ ψ ≤ β, where τ, s are the USE sentence
embeddings using τ and s respectively. This will generate three candidate para-
phrases for each sentence, one by replacing all the tokens marked VERB, one by
replacing all the tokens marked NOUN and the last by replacing all the tokens
marked as VERB and NOUN at the same time.
Semantically Relevant Synonym Sentences (SRSS): This strategy follows a more
exploratory approach, by relaxing the selection to include all synonyms above
the threshold α. To do so, following the POS tagging phase, each selected token
is replaced by the Wordnet synonyms that have a cosine similarity greater than
a threshold α. Let τ be the selected token, S = {s1, s2, ..., sN} its list of Wordnet
synonyms. ∀s ∈ S : if cos(τ, s) ≥ α ⇒ generate a candidate by replacing τ with
s. For each sentence, three different lists of paraphrases will be generated, one
by replacing the token marked VERB, the other by replacing the token marked
NOUN and the last by replacing the token marked VERB or NOUN.

Pivot Translation. The intuition behind pivot translation is that two sen-
tences that have the same foreign translation can be assumed to have the same
meaning. Thus, paraphrases can be obtained by translating a sentence in source
language S into a foreign language F and then back-translating it into S. In
this component, we leverage multiple pivot languages and multiple translation
engines to generate more candidate paraphrases per input sentence. Below we
elaborate on two important dimensions of pivot translation:
Paraphrase System: A paraphrase system can be defined as a triple
(MT i,PL,MT j) where a Machine Translation Engine MT i translates a source
sentence S into a pivot language PL and then Machine Translation Engine MT j

3 NLTK: https://www.nltk.org/ and Wordnet: https://wordnet.princeton.edu/.

https://www.nltk.org/
https://wordnet.princeton.edu/
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translates the result back into S, thus generating the paraphrase [40]. When one
language is used as pivot, it is called a single-pivot paraphrase system, and a
multi-pivot paraphrase when it is made up of a set of single-pivot systems, each
generating one candidate paraphrase. In practical terms, it is preferable to have
different MTs in order to maximise the chances of getting more diverse para-
phrase options [40], since each engine has its own architecture and was trained
differently. In this service, we adopted a multi-pivot system as default. In terms
of implementation, the pivot translation service supports online NMT services,4

such as Google Translate, Deepl and MyMemory. The pipeline is also shipped
with pre-trained NMTs like the Huggingface Marian Machine Translator [13,32].
The type of machine translator is a parameter of the pivot translation service.

Pivot-Language Level and Selection: We informed the pivot selection on the
work by Zhao et al. [40], but observed in our trial runs that languages with sim-
ilar grammatical structure would lead to paraphrases very similar to the source
sentence, thus hurting diversity. We thus selected as sensible defaults pivot lan-
guages that are not close to the source, i.e., given the source language in English,
the system selects pivot languages such as Chinese and Arabic, instead of French
and Spanish. Our observation aligns with the recent work by [8] recommending
the pivot languages with unrelated grammar so as to improve diversity.

This service also supports different pivot-language levels, i.e., the number of
intermediate pivot languages chained to generate the paraphrases. The pipeline
can be set to work with a i) single-level pivot, including one intermediate lan-
guage (e.g., English → Italian → English), and a ii) two-level pivot, with two
intermediate pivot languages (e.g., English → Arabic → German → English).

Language-Based Models (T5). Transformers are a type of neural network
architecture developed to perform Sequence Transduction, meaning any task
that transforms an input sequence to an output sequence (e.g., machine transla-
tion, text summarization). Introduced by Vaswani et al. [29], the idea is to use
the attention mechanism to eliminate the need for Recurrent Neural Networks
(RNN), and their known issues, e.g., challenges in handling long-term dependen-
cies and the sequential nature of RNN preventing parallelisation. We include a
paraphrasing service based on T5 [23], a transformer implemented by Google to
perform sequence transduction. By default T5 does not perform paraphrasing,
so we fine-tuned it on the Quora Question Pairs dataset [25] and Para-NMT
datsets [31] to generate paraphrases, following the work of Goutham5. For each
given input sentence the T5 model will generate a list of candidate paraphrases.

3.2 Candidate Selection Services

The use of automatic paraphrasing techniques and the emphasis on diversity in the
over-generation phase can lead to potential quality issues that must be addressed.
We mentioned that generated paraphrases can be semantically different from the

4 Available at https://translate.google.com/, https://www.deepl.com/translator and
https://mymemory.translated.net/.

5 Paraphrase any question with T5 (2020), https://git.io/JEYQM.

https://translate.google.com/
https://www.deepl.com/translator
https://mymemory.translated.net/
https://git.io/JEYQM
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input phrase (e.g., selectingwrong synonyms for the context), and duplicated para-
phrases formed (e.g., techniques generating to very similar paraphrases). Hence,
given a pool of noisy candidate paraphrases at this stage, the objective of the can-
didate selection services is to address specific issues to ensure higher quality out-
comes by removing irrelevant and duplicates paraphrases. We currently support
services adapted from Parikh et al. [20] that perform filtering of semantically
unrelated paraphrases and de-duplication.

Let υ be a vector representation of the initial utterance sentence and P its
set of N-paraphrases P = {p1, p2, ..., pN}. To discard irrelevant and duplicate
paraphrase, we first obtain the embedding representation of υ and ∀p ∈ P , and
then compute the semantic similarity between the υ embedding and each para-
phrases embedding. We use cosine similarity for the semantic similarity, with
values ranging from −1 (exact opposite) to 1 (identical) with intermediate val-
ues indicating the degree of (dis)similarity. On the cosine similarity score, we
define a lower and upper thresholds for selecting semantically relevant para-
phrases, borrowing the values defined by [20]. The candidate selection services
then perform the following:

Filtering Out Irrelevant Paraphrases. Semantically irrelevant candidates
are discarded evaluating the cosine similarity between the vector representations
of the input utterance and each candidate paraphrase. We first compute the
cosine similarity of the USE [7] embeddings and, in a second pass, using the
cosine similarity of the BERT [4] embeddings. If the cosine score is below 0.5,
for any of the two embedding models, we consider the candidate paraphrase not
to be semantically related and it is filtered out. The reason for using two different
models is that some semantically irrelevant candidates are not identified when
filtering with USE or BERT. As we confirmed experimentally, a combination of
both models achieves better performance.

Filtering Out Duplicates. Duplicate paraphrases are discarded using cosine
similarity between the vector representation of the input utterance and each
generated paraphrase using BERT embeddings. If the cosine score is above 0.95,
we consider the candidate paraphrase to be a duplicate and it is filtered out.

We should note that to make BERT work with sentence embeddings, we
tested various pooling strategies [34] but observed that the concatenation of the
last four layers of each token embedding vector to be the most suitable for the
semantic similarity task. USE already supports sentence embeddings.

4 Experimental Setup

The goal of the evaluation is to assess our approach that considers automatic
paraphrase generation as a pipeline that combines specialised services in a two-
step process. In this section, we describe the experimental setup for how we:
(a) Investigate whether there are gains in terms of relevance and diversity of
resulting paraphrases when organising the generation process in over-generation
and candidate selection steps; (b) Explore the benefits of combining existing
paraphrase generation techniques for relevance and diversity.
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Dataset. We run our experiments on two relevant datasets. We used the
GraphQuestions dataset [27], a benchmark paraphrasing corpora for Q&A that
contains 5,166 pairs of crowdsourced paraphrases questions with their answers
in English. We chose this dataset as it is representative of the type of source
sentences for our paraphrasing task. For our experiments, we selected a random
sample of 237 questions. We also selected the WebQuestions dataset [2], a Q&A
dataset that uses Freebase as the knowledge base. This dataset was created by
crawling questions through the Google Suggest API to then crowdsource answers
on Amazon Mechanical Turk. In our experiment, we use the devtest dataset, con-
taining 189 questions. Notice that we only use the questions for paraphrasing.

Experimental Procedure. To test the impact of our approach, we selected
configurations of the pipeline based on two dimensions: (i) process design, with
over-generation only (OG) and over-generation with candidate selection (CS) as
alternatives, and (ii) service combination, with individual and combined services
as alternatives. We used as baseline services those reported in Sect. 3.6

To assess the impact of the process design, we first run pipeline configurations
with the individual services: weak supervision (WS), pivot translation (PT) and
T5, and for each, we generated paraphrases with the two process design alterna-
tives (OG, CS). We leveraged the evaluation metrics (presented below) to assess
the impact of candidate selection on the resulting paraphrases. The results from
these metrics were complemented with qualitative observations of the generated
paraphrases of each configuration, for a small random sample of 20 sentences.7

Next, to assess the benefits of combining automatic paraphrasing techniques,
we run the pipelines configurations that combined the services and compared
them to the individual services. We created the sequences WS → PT and WS
→ T5 to combine observed properties of the underlying services. These pipelines
used the same configurations for the underlying services as the individual service
pipelines. The resulting paraphrased were evaluated using our reference metrics.

Evaluation Metrics. The pipeline configurations were evaluated using auto-
matic evaluation metrics commonly used in assessing paraphrase quality [37]

To capture the relevance of the generated paraphrases to the input utter-
ance, we use two different metrics. This includes the Bi-Lingual Evaluation
Understudy (BLEU) [19], a widely adopted metric that measures the similarity
between two given sentences. It considers the exact match between the reference
sentence and the generated paraphrase by counting overlapping n-grams. In our
tests we consider n = 2, 3, 4. We also incorporate Google’s BLEU (GLEU) [33],
which measures sentence-level similarity by recording first all sub-sequences of
1, 2, 3 and 4 tokens in output and target sequence (n-grams), to then calculate
precision and recall based on matching n-grams. The GLEU score is then the
minimum of precision and recall. For these metrics, the score for a list of resulting
paraphrases is computed as the average of the individual sentence scores.
6 Services configured with their default values, listed here https://bit.ly/3fHFNgB.
7 Notice that the goal of the qualitative observation was to characterise the limitations

and strengths of the techniques and not to provide a full human evaluation.

https://bit.ly/3fHFNgB
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We assess the diversity of the generated paraphrases with n-grams metrics
that capture diversity at corpus level, i.e., of all the candidate paraphrases for
a reference sentence, and at sentence level, i.e., between a single candidate and
the reference sentence. The Type-Token Ration (TTR) calculates lexical diver-
sity at corpus level, as the rate of unique words in a candidate paraphrase to
the total number of words in the candidates set. Then, Paraphrase In N-gram
Changes (PINC) [5], computes diversity at sentence level as the percentage of
n-grams that appear in the candidate sentence but not in the reference sentence.
The PINC score for the candidate paraphrase set is computed as the mean of
the sentence scores. Diversity (DIV) [14] computes diversity at corpus level by
calculating n-grams changes between all the pairs in the candidate paraphrases
set, rewarding the unique n-grams between each two candidates pairs. In our
evaluation, the score for each experimental condition is the mean of the metric
scores of all reference sentences in the given dataset.

5 Results

5.1 Impact of Two-Step Process Design

The performance of the baseline configuration pipelines for process designs with
and without candidate selection is illustrated in Table 1. To properly dissect the
impact of candidate selection, we start by separately analysing the impact of
filtering out duplicates and semantically irrelevant paraphrases.

Table 1. Performance of over-generation services for a process design with over-
generation only (OG), and over-generation and candidate selection services (CS), after
removing irrelevant paraphrases (�) and removing duplicates (†)

Metric
GraphQuestions WebQuestions

WS PT T5 WS PT T5

Relevance OG CS� OG CS� OG CS� OG CS� OG CS� OG CS�

BLEU2 0.494 0.497 0.451 0.511 0.403 0.407 0.572 0.577 0.350 0.446 0.406 0.411

BLEU3 0.377 0.380 0.368 0.416 0.319 0.323 0.487 0.491 0.292 0.370 0.319 0.322

GLEU 0.409 0.412 0.389 0.444 0.338 0.342 0.474 0.479 0.275 0.365 0.320 0.324

Diversity OG CS† OG CS† OG CS† OG CS† OG CS† OG CS†

TTR 0.223 0.233 0.312 0.589 0.281 0.422 0.255 0.307 0.314 0.421 0.304 0.426

PINC 0.539 0.546 0.568 0.771 0.587 0.653 0.469 0.478 0.684 0.845 0.642 0.718

DIV 0.611 0.614 0.733 0.724 0.732 0.704 0.532 0.552 0.830 0.849 0.775 0.770

As seen in the table, for all over-generation services in both datasets, remov-
ing irrelevant paraphrases contributes to higher scores in the BLEU and GLEU
metrics (CS�), indicating more relevant paraphrases as a result. Similarly, remov-
ing duplicates (CS†) has the effect of higher diversity, in terms of more diverse
vocabulary in the resulting paraphrase corpus (TTR), as well as when comparing
the generated paraphrases at a sentence level (PINC). However, this does not
affect the overall (lexical and syntactical) diversity at the corpus level (DIV).
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Fig. 2. Example paraphrases generated for the input sentence “which company makes
the ipod?”, highlighting type of variations introduced.

A close inspection of the generated paraphrases, and those filtered out, gave
us insights into the strengths and limitations of the candidate selection services.
The duplicate filtering is effective in removing paraphrases that result from sim-
ple lexical permutations, contractions, switching plural and singular, adding and
removing articles, simple wh-question substitution, single synonym substitution
in long sentences, among other basic variations. In turn, the filtering of seman-
tically irrelevant paraphrases is good at removing those that result from signifi-
cant variations of the input sentence (e.g., “What is the reason that 9/11 attacks
occurred?” as a paraphrase for “find terrorist organizations involved in Septem-
ber 11 attacks”) but less effective in identifying semantic differences resulting
from subtle changes, such as replacing a word with the wrong synonym. This
limitation also includes cases where important entities and concepts are replaced
by synonyms (e.g., “who wrote twilight[name of book]?” as “who wrote dusk”).

The above tells us that current techniques indeed suffer from quality issues,
and that by designing a process that ensures candidate selection we can have
higher quality paraphrases. However, there is still room for improving and devel-
oping better candidate selection services.

5.2 Characterising Over-Generation Services

The results in Table 2 helps us draw comparisons between the performance of
the over-generation services (WS, PT, T5) after candidate selection8. For both
datasets, we can see WS leading with higher scores for the relevance metrics
(BLEU, GLEU) compared to PT and T5. This can be attributed to the word-
level substitutions performed by WS, which introduce variations that are still
close to the input sentence. For the same reason, this service can only provide
lexical diversity, limiting the diversity and the characteristic of the resulting
paraphrases (see Fig. 2). In terms of the type of mistakes introduced by WS,
we observed the selection of wrong synonyms (due to the lack of sentence-level
context) as the main reason leading to irrelevant paraphrases.

8 For a qualitative comparison of the paraphrases generated by the various techniques,
refer to our Appendix at https://bit.ly/3go11zU.

https://bit.ly/3go11zU
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Table 2. Performance of pipelines featuring individual and combined over-generation
services. Bold values denote best result compared to individual services, and italics
second best. Gray denotes best result among individual services.

Metric
GraphQuestions WebQuestions

WS PT T5 WS-PT WS-T5 WS PT T5 WS-PT WS-T5

BLEU2 0.490 0.275 0.294 0.356 0.458 0.580 0.216 0.267 0.372 0.446

BLEU3 0.372 0.210 0.227 0.263 0.344 0.493 0.181 0.209 0.309 0.369

GLEU 0.405 0.224 0.235 0.282 0.374 0.482 0.150 0.190 0.286 0.356

TTR 0.233 0.488 0.423 0.308 0.248 0.309 0.479 0.428 0.329 0.323

PINC 0.541 0.525 0.650 0.676 0.576 0.471 0.612 0.713 0.680 0.616

DIV 0.612 0.448 0.697 0.789 0.656 0.547 0.481 0.759 0.783 0.722

On the other hand, PT scored the lowest on the relevance metrics and on all
but one of the diversity metrics (TTR). The higher score on TTR (only) tells
us that PT can lead to a richer vocabulary but an overall lower diversity at
a corpus level. However, our observations of the resulting paraphrases showed
that it can offer not only lexical but also syntactic diversity by introducing
grammatical variations in the sentences. Among the limitations, we observed
a higher percentage of duplicate paraphrases compared to the other services,
due to the back-translation process generating paraphrases very similar to the
original sentence for some language pairs. We also observed substitution of wrong
synonyms and the meaning of questions getting lost in the translation process.

T5 shows a solid performance, coming second in terms of relevance metrics
but featuring the highest sentence and corpus level diversity scores. A close
inspection of the resulting paraphrases revealed the different ways T5 contributes
to diversity (see Fig. 2 for illustrative examples). It introduces lexical diversity
by replacing words with synonyms, although these tend to be fewer but context-
aware and therefore significantly less noisy than WS. We also observed the richest
syntactic diversity in terms of grammatical changes, summarisation of sentences
(e.g., “Who makes iPod”), generalisation and extrapolation (“..and what brand
is it from?”), and adding details (e.g., “iPod” with “iPod Touch”). In terms of
frequent types of mistakes, the higher diversity introduced candidate sentences
that, while on the same topic, are semantically different from the original.

5.3 Combining Over-Generation Services

The comparison of pipeline configurations featuring individual and combined
over-generation services is shown in Table 2. For both datasets, we can see that
the configurations with combined services yield the most balanced performances,
improving on the weaknesses of their individual services while achieving results
comparable to the best performing one. In the case of WS → PT, this resulted
into paraphrases that showed improved scores in relevance metrics (BLEU,
GLEU) compared to PT and on diversity metrics compared to WS and even
PT (PINC, DIV). We can observe a similar trend with WS → T5.
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We should note that this balanced performance was obtained with a simple
combination of the over-generation services, without optimising the parameters
to better combine the characteristics of each service. Tuning parameters to better
leverage synergies could result in better performances.

6 Related Work

Crowdsourcing is a widely used approach to paraphrase generation [30]. In
a crowdsourced process, an initial utterance, usually provided by an expert or
generated using generative models or grammars [26,30], is presented as a starting
point, and workers are asked to paraphrase the expression to new variations. It is
a popular strategy as it can help scale the paraphrases generation efforts while
reducing the costs, compared to hiring experts [15]. However, the generated
paraphrases may suffer from various quality problems (e.g., cheating, semantic
errors, spelling and linguistic errors, task misunderstanding) [36]. Thus, quality
control in this context is an important step, typically requiring quality control
tasks run with the crowd or involving experts. The costs of running such a
crowdsourcing process can still be significant, depending on the configuration of
the process and the task design [38].

Automated Paraphrases Generation. The literature on automated para-
phrases generation covers a wide range of approaches, including probabilistic,
hand-written rules and formal grammar models [9], data-driven techniques [17],
machine translation techniques [12,18], and recently approaches that take advan-
tage of contextual representations models a.k.a embeddings, BERT [7] and
USE [4]. Here we provide an overview of the most prominent approaches.

Recent work has focused on approaches based on Machine Translation (MT)
techniques. This includes the Rule-based Machine Translation (RBMT), Statisti-
cal Machine Translation (SMT) and Neural Machine Translation (NMT) [12,18].
SMT relies on statistical analysis of bilingual text corpora to generate para-
phrases. It treats translation as a machine learning problem, applying a learning
algorithm to a large parallel corpus, parallel text or bitext so that the learner is
then able to translate previously unseen sentences [16]. NMT is another promi-
nent MT approach. In its conventional form, the so called encoder-decoder app-
roach, it encodes a whole input sentence into a fixed-length vector from which a
translation will be decoded [1], enabling a sentence to be paraphrased into new
variations [38]. In this work, we take these existing automatic paraphrasing tech-
niques as the foundation, adopting three prominent techniques to conceptualise,
develop and evaluate a pipeline approach to automatic paraphrase generation.

The closest to the approach presented in this paper is the work by Parikh et
al. [20]. They proposed an ensemble of techniques and automatic filtering algo-
rithms in the context of the generation of question utterances from documents.
Their approach takes a document, applies extractive summarisation to identify
key sentences to then apply automatic paraphrasing. For the paraphrasing, they
combine the output of four over-generation techniques running in parallel that
were selected for their problem so as to produce larger number of candidate para-
phrases. They then propose a novel candidate selection algorithm that assesses
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the semantic relatedness of each resulting paraphrase to the source sentence by
computing the cosine similarity between the vector representations of the sen-
tences (USE and BERT). While this approach is very valuable and informs our
approach, we differ and contribute in distinct ways. (i) We propose a frame-
work that supports the definition, enactment and evaluation of automatic para-
phrasing pipelines, whereas [20] leverage a specific configuration of techniques
applicable to a specific problem and system. (ii) We provide and support an
extensible and configurable pool of services, instead of a static set of techniques.
We do adopt two general techniques (WS and PT), also present among the four
in [20], but implemented them with higher configurability. We propose synonym
and replacement strategies for WS, and support different paraphrasing systems,
pivot language level and selection for PT. Unlike [20], we also include a lan-
guage model based technique (T5). (iii) We add a layer of composition on top
of a pool of available techniques. The combination of techniques allows develop-
ers and researchers to chain or merge the outcomes of techniques so maximise
diversity by leveraging the variations introduced by specialised techniques – thus
not limited to a specific configuration or set of techniques. A separate quality
control step, while currently based on the algorithms by Parikh et al. [20], is
designed to incorporate a broader set of candidate selection services. (iv) In
addition to these design contributions, we also offer empirical evidence support-
ing these design decisions, and a framework for the exploration, development
and evaluation of paraphrasing pipelines and services.

Thus, our proposed framework conceptualises the automatic paraphrase gen-
eration process in a two step, adds service composition on top of an evolving pool
of services, and supports the definition, enactment and evaluation of automatic
paraphrasing pipelines.

7 Discussion and Concluding Remarks

In this paper we proposed a data-flow pipeline that unifies, integrates and
extends various paraphrasing services, in a two-step process. The experiments
provided empirical evidence in support for the pipeline design. The two-step pro-
cess enables us to first focus on leveraging the good properties of over-generation
techniques to generate the most diverse set of paraphrases – even if, as we have
seen, they might provide noisy output. Thus, in considering candidate selection
as a whole separate problem, we are able to redirect the efforts towards solving
specific quality issues, such as duplicates and semantically irrelevant paraphrases.
We showed that this approach can indeed increase the relevance and diversity
of the outcomes. However, we also pointed out limitations in, among others,
detecting semantic changes from subtle variations. This calls for a deeper inves-
tigation into specific issues arising from automatic paraphrase generation and
development of more effective candidate selection techniques to address them.

Combining over-generation services was successful in producing more bal-
anced results. We have seen that individual techniques have different strengths,
introducing distinct types of variations. We observed that combining over-
generation services could lead to paraphrases with a better balance of relevance
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and diversity compared to using individual services. These observations were
obtained even without optimising the pipelines to create better synergies between
techniques.

As part of our ongoing efforts, we are integrating more over-generation and
selection services, experimenting with novel pipelines, and exploring the integra-
tion of crowdsourcing for candidate generation and selection.
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Abstract. We propose a novel method to detect identity cloning of
social-sensor cloud service providers to prevent the detrimental outcomes
caused by identity deception. This approach leverages non-privacy-
sensitive user profile data gathered from social networks and a powerful
deep learning model to perform cloned identity detection. We evaluated
the proposed method against the state-of-the-art identity cloning detec-
tion techniques and the other popular identity deception detection mod-
els atop a real-world dataset. The results show that our method signif-
icantly outperforms these techniques/models in terms of Precision and
F1-score.

Keywords: Social-sensor cloud service provider · Identity cloning
detection · Non-privacy-sensitive user features · Deep learning

1 Introduction

Social sensing is a model that enables multiple social-sensors, such as humans,
smart phones and smart glasses, to gather data [25]. This sensed data, often
referred to as social-sensor data, can take various forms and be hosted on social-
sensor clouds (i.e. social networks, e.g. Twitter and Facebook) [2,3]. Exam-
ples for such social-sensor data include Facebook status messages and Twitter
posts. Social-sensor clouds are an important open medium that allows social-
sensors/social media users to express their views on issues and events [2]. Criti-
cal information can be posted, especially descriptions and pictures of accidents
or public activities [25]. Social-sensor clouds currently play an important role
in special events (e.g. sports, crimes, etc.). Thousands or even millions of posts
can be published by social-sensors (in text and/or in images), over social-sensor
clouds. This large amount of information can be summarised as social-sensor
cloud services (SocSen services) [2,3]. The special events can be represented
from various points of view, such as where, when and what, by using the func-
tional and non-functional properties of SocSen services [1].

The proliferation of social-sensor clouds has drawn plenty of attackers in the
recent past. These attackers often seek to exploit the identities of SocSen service
providers (i.e. social media information providers) and deceive users in a variety of
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 415–430, 2021.
https://doi.org/10.1007/978-3-030-91431-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-91431-8_26


416 A. Alharbi et al.

ways. One such method of exploiting SocSen service providers’ identities is iden-
tity cloning in which an attacker registers a fake profile using the SocSen service
provider’s identity information. Instances of identity cloning can be divided into
two types: single-site and cross-site identity cloning [7]. The former applies to cases
in which an intruder establishes a cloned persona of a SocSen service provider in
the same social-sensor cloud whereas the latter refers to cases where an intruder
steals a SocSen service provider’s identity from another cloud. Here, we primar-
ily focus on single-site identity cloning detection. Many identity cloning related
crimes have occurred in the past few years. For instance, it has been reported
that the Facebook Chief Executive Officer - Mark Zuckerberg’s Facebook account
has been cloned and used in financial fraud1. In another well-known incident, the
cloned Twitter account of Russian President Vladimir Putin has attracted over 1
million followers2.

The majority of social-sensor clouds does not support automatic detection
of identity cloning. For example, Twitter and Instagram, at present, investigate
identity cloning reports after obtaining a valid identity cloning report from end-
users. Automated methods to detect identity cloning are currently unavailable on
these platforms3,4. Meanwhile, the majority of existing research on cloned iden-
tity detection uses both privacy-sensitive and non-privacy-sensitive user profile
attributes. Due to privacy limitations, third-party applications cannot access
privacy-sensitive user profile attributes such as the user’s full name, date of
birth, or personal images available in social-sensor clouds through Application
Programming Interfaces (APIs) or other means. As a result, most current tech-
niques [13,19,20] for detecting cloned identities are potentially less applicable
to third-party applications. Suppose an intruder uses a cloned account to log
into the web or application of a third-party. Then, by using current techniques,
this third-party will have difficulty determining with certainty whether or not
the account is cloned. In contrast, non-privacy-sensitive user profile attributes,
such as the user’s screen name, profile definition, and so on, are often readily
available to third-party applications and can be directly accessed from the APIs
exposed by social networking platforms. Hence, there is an apparent need and
potential for exploring approaches to detect identity cloning by utilizing only
non-privacy-sensitive user profile attributes.

Moreover, the majority of current techniques detect cloned accounts using
simple feature similarity [13,15,19,20]. Simple feature similarity is typically cal-
culated using human-defined metrics such as TF-IDF-based cosine similarity or
Jaro-Winkler distance [13,15,18]. These metrics are incapable of encapsulating
the semantics of a wide variety of literal strings and focus only on character
distance or word frequency. For example, the above metrics cannot quantify the

1 https://www.nytimes.com/2018/04/25/technology/fake-mark-zuckerberg-facebook.
html.

2 https://www.abc.net.au/news/2018-11-29/twitter-suspends-account-imperson
ating-vladimir-putin/10569064.

3 https://help.twitter.com/en/rules-and-policies/twitter-impersonation-policy.
4 https://help.instagram.com/446663175382270.

https://www.nytimes.com/2018/04/25/technology/fake-mark-zuckerberg-facebook.html
https://www.nytimes.com/2018/04/25/technology/fake-mark-zuckerberg-facebook.html
https://www.abc.net.au/news/2018-11-29/twitter-suspends-account-impersonating-vladimir-putin/10569064
https://www.abc.net.au/news/2018-11-29/twitter-suspends-account-impersonating-vladimir-putin/10569064
https://help.twitter.com/en/rules-and-policies/twitter-impersonation-policy
https://help.instagram.com/446663175382270
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semantics of the terms king and man as a gender-based relationship. In such
a setting, deep learning (DL), as an emerging technology, has demonstrated its
overwhelming performance on executing big data processing and analytics tasks
in diverse fields [22]. Nevertheless, to the best of our knowledge, using deep
learning techniques to detect identity cloning remains to be explored. Therefore,
we intend to fill this gap by investigating how DL could potentially be applied
in the domain of identity cloning.

Though some DL models are powerful, they are not directly applica-
ble/suitable for our application on detecting identity cloning. The reasons are
two-folds. Firstly, most of the DL models require a large amount of training
data. This is required to effectively learn a representation of a phenomenon
associated with the underlying training dataset. Secondly, most DL models such
as Deep Neural Networks (DNNs) have many hyperparameters that need to be
fine-tuned as the learning performance of most DNNs depends on how well their
hyperparameters are configured. This can often be a tedious and time consum-
ing task [29]. In contrast, deep forest (DF) has a comparatively smaller number
of hyperparameters that need tuning. Furthermore, the ability of DF to adap-
tively adjust the number of cascade levels required seems particularly an enticing
feature by which the model complexity can be automatically determined. This
enables DF to perform better on smaller data [29]. DF has also been shown to
achieve competitive performance compared to DNNs in a variety of tasks [29].

To address the limitations in existing identity cloning approaches outlined
above, we formalize the identity cloning detection task as a classification prob-
lem using multiple representations of two accounts (account pair) as input. We
propose a novel approach for SocSen service provider identity cloning detection
based on non-privacy-sensitive user information and a DF framework. Our main
contributions can be summarized as follows:

– We propose a novel SocSen service provider identity cloning detection method
for third-party applications by utilizing only non-privacy-sensitive user profile
attributes accessible through social-sensor cloud APIs.

– We design multi-faceted representations to capture non-privacy-sensitive
account features for effective identity cloning detection.

– We employ an effective DL model for cloned identify prediction. This is the
first exploration on the application of DL in this problem setting.

– We conducted extensive experiments using a real-world dataset. The experi-
mental results show that our method produces higher precision and F1-score
compared to the state-of-the-art identity cloning detection techniques, the
other machine learning-based techniques and the variants of our proposed
method.

The rest of the paper is structured as follows. Section 2 reviews state-of-the-
art identity cloning detection techniques. Section 3 presents the details of our
proposed solution. Section 4 describes the evaluation of our proposed solution
and discusses the results obtained. Section 5 concludes the paper.
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2 Related Work

A significant number of techniques had been proposed in the current literature
to detect spammers or fake accounts on social networks [6]. The most com-
monly used techniques employ behavioural profiles of users that includes features
such as writing style, accounts followed, etc., to classify users as trustworthy or
untrustworthy [21,27]. However, the aforementioned features used in behavioural
profiles cannot detect cloned accounts accurately because an attacker attempting
to clone the identities can imitate those features. This demands finding features
that are able to accurately characterize account pairs to detect cloned identities.
Meanwhile, other works make use of trust relationships that exist between users
in social networks to detect identity cloning. The main assumption of these meth-
ods is that a fake/spammer account cannot build an arbitrary number of trusted
connections with legitimate accounts in social networks [4,21]. This assumption
might not hold true in the context of identity cloning since attackers can attempt
to imitate the profiles of legitimate. As a result, cloned accounts can build trust
connections with legitimate accounts easier than other types of fake identities.

A few approaches have been proposed in the context of social media to detect
identity cloning [5,6]. Kontaxis et al. [20] proposed a technique that can be
used by social medial users to determine if they have been a victim of identity
cloning. Devmane and Rana [13] devised a method to detect identity cloning in
both single-site and cross-site contexts. To detect cloned profiles, the aforemen-
tioned approach searches for similar user-profiles and then computes a similar-
ity index. Jin et al. [18], in the meantime, analysed and characterised identity
cloning attacks’ behaviours. They introduced two schemes for detecting suspi-
cious profiles based on profile similarity. Kamhoua et al. [19] overcame iden-
tity cloning attacks by comparing user profiles across different social networks.
They determined profile similarity using a hybrid string-matching similarity algo-
rithm. Goga et al. [15] proposed a method for detecting impersonation attacks.
The proposed method determines whether two accounts are being used by the
same person or an imposter. It first compares the behaviour and reputations of
impersonation accounts and then detects impersonation attacks using a binary
classifier trained using a Support Vector Machine (SVM).

The majority of existing research [13,19,20] detects identity cloning using
both privacy-sensitive and non-privacy-sensitive user profile attributes. Many
third-party applications and websites authenticate users from their social
networking profiles. They are unable to access privacy-sensitive user profile
attributes through social network APIs. Therefore, prior approaches may not
be applicable to these third parties. In addition, the majority of the existing
approaches [13,15,18–20] are built on simple feature similarity models or classic
machine learning models. DL technologies have shown their superior performance
on processing and analyzing big data in many application domains [22]. To the
best of our knowledge, there has been no attempt of applying DL technologies
for identity cloning detection.
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3 Methodology

In this section, we present a detailed overview of the proposed approach and its
key components.

3.1 Overview

The proposed methodology is presented in Fig. 1, which consists of four major
components, namely, 1) graph construction (GC) which aims to build an undi-
rected graph from a given collection of social media accounts to identify the pairs
of similar accounts; 2) an account pair feature representation, which extracts
two categories of non-privacy-sensitive user features for each paired account; 3)
a multi-view account representation, which constructs a representation for each
account in an account pair from multiple non-privacy-sensitive perspectives; 4) a
DF based prediction model, which predicts whether or not each account pair are
an account and its replica using a concatenated representation of the account
pair feature and multi-view account representations. We discuss these four com-
ponents in detail in the following sections.

1) Graph Construction

3) Multi-view Account
Representation

2) Account Pair Feature
Representation

Similarity-based features

Differences-based
features

WGCCA
(Eq. 5)

Post View

Network View

Profile Attribute View

concat

4) Prediction
Model

Fig. 1. The workflow of our proposed methodology

3.2 Graph Construction

Given a set of social media accounts and their profile information, we aim to con-
struct an undirected graph, where each pair of mutually connected nodes indi-
cate the possibility that an account is the clone of the other. A cloned account is
more likely to share the same screen name or username with the original account.
Therefore, this graph connects nodes based on the screen name and username
similarity. We connect two nodes with an edge only if the similarity score of the
screen names or usernames of the two corresponding accounts is over a thresh-
old δ. This graph can locate almost all possible account pairs (i.e. a cloned
account and its victim) in the dataset while generating fewer false positives with
an appropriate δ value. We elaborate as well as make recommendations on the
process of determining an appropriate value of δ in the forthcoming experiments.
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3.3 Account Pair Feature Representation

Once the undirected graph is constructed, we then extract non-privacy-sensitive
user features for each pair of connected accounts. The extracted features con-
sist of two categories of non-privacy-sensitive user features in the form of 1)
similarity-based features and 2) difference -based features that can differentiate
a cloned account from a legitimate account. We describe each of these feature(s)
in detail in the following subsections.

Similarity-Based Features: These features are used to analyse the textual
similarity between the non-privacy-sensitive attributes of the profiles that belong
to a pair of accounts, such as username, screen name, description and location.
Each feature is assigned a value from the range [0, 1]. For example, when the
username similarity feature is 1, this indicates the pair of accounts compared has
100% textual similarity on the corresponding feature. In contrast, 0 indicates
that the pair of accounts does not have any textual similarity on the given
feature. We introduce the semantics of calculating the aforementioned textual
similarity in more detail below.

Username, Screen Name and Location Similarity: Previous studies have shown
that the Jaro-Winkler string similarity (JS) performs best on the attributes’
named values (e.g., username, screen name, or property name) [10,11]. Thus, we
adopt JS, which is computed as the textual similarity between two strings as:

JS =

{
1
3 . m

|S1| + m
|S2| + m−t

|m| if : m > 0

0 : otherwise
(1)

where m is the number of matching characters, t is half the number of trans-
positions, and | S1 | and | S2 | are the lengths of both strings. Matching char-
acters are the same characters in the two strings with a maximum distance of
w = max(|S1|,|S2|)

2 . JS uses a prefix scale p, which provides a more specific result
when the two strings have a common prefix up to a specified maximum length l.

Jaro − Winkler = JS + p + l ∗ (1 − JS) (2)

Description Similarity: Users usually provide a short textual description of
themselves in their social media profiles, which commonly shows their asso-
ciations to organizations, occupations and interests. Therefore, we calculate
the description similarity of the account pair. We first pre-process the textual
description by converting to lowercase, removing stop words and punctuation
marks. We then use term frequency-inverse document frequency (TF-IDF) to
convert the text description into vectors. We then used the cosine similarity to
find the similarity between two account descriptions as:

cos(θ) =
A · B

||A|| · ||B|| (3)

where A and B are the TF-IDF scores of two accounts.
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Table 1. account pair feature representation and their descriptions

Feature category No. Features Description

Similarity-based
features

1 Username similarity Username similarity between the account pair

2 Screen name similarity Screen name similarity between the account pair

3 Location similarity Location similarity between the account pair

4 Description similarity Description similarity between the account pair

5 Followers Ratio The ratio of the number of followers between the account pair.

Differences-based
features

6 Followers differences The number of followers difference between the account pair

7 Friends differences The number of friends difference between the account pair

8 Tweets differences The number of tweets difference between the account pair

9 Favorite differences The number of favorite difference between the account pair

10 Account age differences The account age difference between the account pair

Differences-BasedFeatures: These features are used to analyse the differences
between the general profile attributes (e.g. the post count, friends count, etc.) that
characterize individual accounts. We assume that the differences between the gen-
eral profile attributes of a cloned account and its victim account will be higher
than the other account pair. For example, a higher degree of differences between
the number of tweets can indicate an avatar form of a pair of cloned and victim
accounts.

Altogether, an account pair feature representation consists of 10 features
across the two aforementioned categories, which are summarized in Table 1.

3.4 Multi-view Account Representation

Our objective is to construct a multi-view account representation for each account
in the account pair by joining multiple views that correspond to the account’s
non-privacy-sensitive profile attributes. We utilise the post, network, and pro-
file attribute views associated with the user account. These views can accurately
reflect a user account, which attackers are highly likely to mimic. Then, a single
embedding is learned from these views using weighted generalized canonical cor-
relation analysis (wGCCA) [17]. Each view is discussed in detail in the following
subsections.

PostView:We obtain the pre-trained language representation for each account in
the account pair to generate the post view. We use the Sentence-BERT (SBERT)
[23] to obtain the user posts’ vector-space representations. SBERT is an adjust-
ment of the pre-trained bidirectional encoder representations from the transform-
ers network (BERT) [12]. These pre-trained models are extremely efficient at
extracting the text representation associated with any given task such as ques-
tion answering, classification, etc. [12]. SBERT generates semantically meaningful
sentence representations using Siamese and Triplet network structures. Similar to
BERT models, SBERT models are also based on transformer networks [12]. Addi-
tionally, SBERT performs a pooling operation on the output of BERT in order
to obtain a sentence representation with a fixed length. Typically, the sentence
representation is computed by calculating the mean of all output vectors. We col-
lect n posts that are publicly accessible for a given user account u, denoted as
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T = (t1, ..., tn). Each post ti(i ∈ 1, .., n) is represented by the language repre-
sentation that is pre-trained. Each post ti is tokenized into a single word wi and
then marked with special tokens called [CLS] and [SEP] to indicate the start and
the end of a sentence, respectively. Then, a set of tokenized words is passed through
BERT to embed fixed-sized sentences. Then, in the pooling layer, the t represen-
tations are generated using mean aggregation. The mean aggregation is known to
perform better than max aggregation or CLS aggregation [23]. Each post’s out-
put is 768 dimensions, which is BERT’s default setting. Finally, we aggregate all
posts representation for the user account by computing the mean of all the posts’
representation T .

Network View: A network of accounts is a collection of users who interact
in a variety of ways, such as friending, retweeting, and so on, within a social
network, which can be represented as a graph. If one of the users in the social
network interacts (i.e. follow, retweet, etc.) with another, an edge between them
will appear in the graph. We consider two types of interaction networks: follower
and friend networks. In the follower network, two users will be connected when a
user follows a specific user (e.g. a friend or celebrity). In the friend network, two
users will be connected when a user gets followed by another user. Inspired by the
graph representation’s success, we use the Node2Vec [16] to learn the network
representation, or, in other words, the network view of an account. Node2vec is
a widely used unsupervised graph representational learning technique. It utilises
a biased random walk method to maximise the log-probability between a node’s
neighbours, or in other words, accounts with an edge between them.

Profile Attribute View: We obtain 12 non-privacy-sensitive user attributes
to create an attribute vector to construct the profile attribute view of an
account. These non-privacy-sensitive user attributes can be used to categorise
an account’s actions and credibility. For instance, the number of tweets may
indicate a user’s activity, while the number of followers may indicate a user’s
credibility. Table 2 shows the 12 non-privacy-sensitive user attributes.

3.4.1 Embedding Learning Model
The proposed views in the previous section can include some helpful information
that can be used to detect cloned accounts. Using each view separately can cause
a loss of valuable knowledge in comparison to using them in tandem. A simple
and naive technique is to concatenate all the proposed views together. However,
this concatenation might cause over-fitting on small training datasets because of
the resulting larger account representation or possibility of the resulting model
ignoring the meaningful knowledge contained in the proposed views, as each view
has unique statistical properties. Therefore, we employ generalized canonical
correlation analysis (GCCA) which is a technique to learn single embedding
from multiple views. GCCA has many variants, for example, [9,24,26]. In our
proposed approach, we use Carroll [9]’s GCCA as it is based on a computationally
simple and efficient eigenequation. The GCCA objective can be formulated as
follows:
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Table 2. Features that profile attribute view contains and their descriptions

No. Features Description

1 Friend (following) count The number of accounts that the user follows

2 Follower count The number of followers that the account has

3 Favorite count The number of tweets liked by the account

4 Tweet count The number of tweets (including retweets) posted by the account

5 List count The number of public lists of which the account is a member

6 Account age The account’s lifetime to date, measured in months from the date of

registration

7 Profile background A binary value indicating whether or not the account has changed the

background or theme of their profile

8 Profile image A binary value indicating whether the account has not uploaded a

profile image and instead uses the default image

9 Has profile description A binary value indicating whether or not the account has added a

description to their profile

10 Profile URL A binary value indicating whether or not the account has added a

URL to their profile

11 Screen name length The length of the screen name of the account

12 Description length The length of the description of the account

arg min
Gi,Ui

∑
i

‖ G − XiUi ‖2F s.t.G′G = I (4)

where Xi ∈ R
n×di corresponds to the data matrix of the ith view, G ∈ R

n×k

contains all learned account embedding and Ui ∈ R
di×k maps from the latent

space to the observed view i. However, each view might have more or less knowl-
edge for detecting identity cloning. As a result, we employ weighted GCCA
(wGCCA). wGCCA adds weight wi for each view i in Eq. 4 as follows:

arg min
Gi,Ui

wi

∑
i

‖ G − XiUi ‖2F s.t.G′G = I, wi ≥ 0 (5)

where wi represents the weight of a view and this weight shows the view’s impor-
tance. The columns of G are the eigenvectors of

∑
i wiXi(Xi

′Xi)−1Xi
′ and the

solution for Ui = (Xi
′Xi)−1Xi

′G.

3.5 Prediction Model

The final accounts pair representation Ai is the concatenation of the account
pair feature representation and the multi-view account representation.

y = classifer(concat(F,wgcca) (6)

where F is represented as a feature vector F (∈ R
10) where each feature Fi in F is

indicative of an augmented feature derived based on the similarity or difference of
a non-privacy-sensitive user profile feature and wgcca is the embeddings learned
from the multi-view account representation.

We employ DF to learn whether or not the account pair contains a cloned
account and its corresponding victim account. The DF is a decision tree ensem-
ble framework that can perform well even with relatively fewer data, and more
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Fig. 2. The architecture of the proposed deep forest model

importantly, has much fewer hyperparameters. The DF employs a cascade struc-
ture where each level of the cascade takes in a feature vector concatenated by
its previous level and outputs its generating result to the next level of the cas-
cade [29].

Diversity is highly recommended for ensemble construction [28]. Therefore,
the proposed DF model uses two types of random forests (RF), extremely ran-
domized trees (ERT) and logistic regression (LR). Figure 2 shows the overall
architecture of the proposed DF, which is of self-adapting depth with multiple
levels. The RF model is an ensemble classifier which utilizes multiple decision
trees at training time and uses averaging to get better prediction performance
[8]. The ERT is similar to the RF model; however, they differ in the way splits
are computed. The RF splits on trees while the ERT splits randomly [14].

In the first level of the DF architecture, each model will take the
concat(F,wgcca) feature vector as an input and produce a class vector as out-
put. This class vector is then concatenated with the concat(F,wgcca) feature
vector to be fed into the next level of the cascade. Herein, we aim to predict
a binary value y indicating whether an account pair contains a cloned account
and its victim. Therefore, each of the four models (2 RFs, ERT, LR) produces
a binary output. Thus, the input of the next level of the cascade is composed
of 8 (= 2 × 4) augmented features. k-fold cross-validation (k = 5) is applied to
generate the class vector. This will result in k − 1 class vectors that are then
averaged to produce the final class vector as augmented features for the next
level of the cascade. After expanding one more level, the prediction performance
of the whole cascade is estimated by the validation set. The cascade growth is
automatically terminated if there is no significant increase in the performance
of class prediction. Therefore, the number of cascade levels is said to be self-
determined [29].

4 Evaluation

A set of experiments was performed to evaluate and analyse the effectiveness of
our proposed solution against existing state-of-the-art identity cloning detection
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approaches. In addition, we also evaluated several candidate machine learning
models to assess their performance in this particular problem context and justify
the use of DF as the cloned identity predictor. All machine learning models were
run for 10 rounds with different random permutations of the data. The results
were presented as an average computed across the all rounds of experiments,
together with standard deviation.

4.1 Dataset

To the best of our knowledge, there are no readily available and publicly acces-
sible datasets for evaluating identity cloning detection in the context of social
networks. Most existing works, albeit limited, have used simulated data to evalu-
ate their proposed techniques. We, therefore, developed a dataset via authorised
non-privacy sensitive user profile attributes fetched out of Twitter APIs5 in order
to evaluate our proposed method. We collected 4,030 public Twitter accounts
(2,015 cloned accounts and their corresponding victim accounts) from6. We also
randomly collected 20,152 public Twitter accounts to add noises to the dataset.
Finally, we have 35,122 public Twitter accounts in total. The resulting dataset
was randomly split with an 80:20 training-to-split ratio in order to derive training
and test datasets.

4.2 Other Approaches Evaluated

We compared and evaluated our proposed approach against the following exist-
ing state-of-the-art identity cloning detection approaches [6] and variants of the
proposed approach.

Basic Profile Similarity (BPS) [18]: This technique determines the degree
to which a given user profile and its suspected cloned account share public
attributes and common friends.

Devmane and Rana [13]: This technique compares names, education, profile
photos, places lived, birthdate, workplace, gender, photos added to the profile,
and number of friends/connections.

Goga et al. [15]: This method compares profile similarity, social neighbourhood
overlap, time overlap accounts, and account differences. It then trains an SVM
classifier using a linear kernel to determine whether or not a given account has
been impersonated.

Kamhoua et al. [19]: This method compares friend list similarity and calcu-
lates attribute similarity using a modified similarity metric called Fuzzy-Sim. To
calculate the attribute similarity, it considers the following attributes: name, edu-
cation, city, age, workplace, gender, and friend list. We used the same threshold
values recommended by the original work (0.565 and 0.575) for the Fuzzy-Sim.

5 https://developer.twitter.com/en/docs.
6 https://impersonation.mpi-sws.org/.

https://developer.twitter.com/en/docs
https://impersonation.mpi-sws.org/
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Table 3. Hyperparameter values used for the candidate machine learning and DL
algorithms

Model Parameter

ADA Estimators = 50

CNN 10 layers, filters = 64, kernel size = 2, pool size = 2

DNN 5 layers (250, 200, 50, 1)

KNN Neighbors = 5

MLP Solver = adam, activation = relu

RF Estimators = 50

Zheng et al. [27]: This is a typical model for detecting spammers. It makes use
of 18 features, some of which are profile-related, such as the number of followers,
and others of which are content-related, such as the average number of hashtags.
It then trains an SVM classifier using a Radial Basis Function (RBF) kernel to
determine whether an account belongs to a spammer or not.

GC (δ = 0.8): This is a variant of our proposed solution that only feeds the
results of the graph construction into the DF model.

Account: This is also a variant of our proposed solution that only feeds the
account pair feature representation into the DF model.

WGCCA: This is also a variant of our proposed solution that only feeds the
multi-view account representation into the DF model.

We further compared our proposed DF model against the following machine
learning and DL models in order to justify the use of the DF as the identity
cloning predictor. These models are broadly applied in the context of social media
identity deception detection [6]. These models are, namely, Adaboost (ADA),
Convolutional Neural Network (CNN), Deep Neural Network (DNN), K nearest
neighbours (KNN), LR, Multi-layer Perceptron (MLP) and RF. In addition, we
compared the proposed DF model with the other types of DF models (RF-based
DF (DFRF ), ERT-based DF (DFERT ) and LR-based DF (DFLR)) to further
justify the performance of the model.

4.3 Hyperparameter Tuning

All the hyperparameters of the supervised machine learning models were prop-
erly tuned to obtain their optimal performance. Table 3 shows the hyperparame-
ter values used for the machine learning configured and (or) tuned the parameters
as recommended in their respective original works. We also only used the non-
privacy-sensitive user attributes provisioned by Twitter APIs. For our proposed
solution, we find the optimal δ value of the GC is 0.8 according to the exper-
imental results. We used ‘paraphrase-distilroberta-base-v1’7 as the pre-trained
7 https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1.

https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
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Table 4. Comparison with the state of the art identity cloning approaches. Standard
deviation (σ) is provided to the KPIs of our proposed solution and Goga et al.’s algo-
rithm that were evaluated over 10 iterations.

Model Precision (σ) Recall (σ) F1-score (σ)

BSP [18] 76.8 75.1 76.9

Devmane and Rana [13] 66.3 68.1 67.2

Goga et al. [15] 65.4 (1.1) 85.9 (1.5) 74.3 (0.7)

Kamhoua et al. [19] 68.2 70.1 69.1

Zheng et al. [27] 68.15 73.34 70.64

Our proposed solution 90.08 (3.42) 77.95 (1.69) 83.52 (0.94)

model for SBERT. This pre-trained model was trained on millions of paraphrase
sentences. SBERT by default uses 768 as the dimension of its post representa-
tion. The default dimension of the Node2vec for both the follower and friend
network is 128. We also used the probability of moving away from source node
q = 2, the probability of returning to source node p = 0.5, the number of random
walks per root node n = 10 and the maximum length of a random walk as 15.
All the profile attribute views were normalized to [0, 1]. The weights w of the
wGCCA were set as [0.25, 0.5, 0.5, 0.25] via experiments.

4.4 Results and Discussion

Overall performance: The performance comparison results are shown in
Table 4. Our proposed solution yielded the best amongst the models compared
against Precision and F1-Score. BSP [18] achieved the second best performance
against Precision and F1-Score. Meanwhile, Goga et al. [15]’s proposed tech-
nique yielded the best-performing result on Recall. BSB [18] only employs pro-
file attribute similarities and shared friends between account pairs. Goga et al.
[15]’s proposed technique compares an account pair using only a traditional sim-
ilarity technique and does not consider a filtering method for the account pair
similar to our GC. The methods introduced by Kamhoua et al. [19] and Dev-
mane and Rana [13] use a simple method to calculate profile attribute similarity.
These techniques do not take into account the impact of the account’s posts and
the account’s network information representation. Zheng et al. [27]’s proposed
technique only takes into account a subset of features that compares spammer
behaviour patterns. The obtained results indicate that our proposed solution
is more suitable to a setting where only the non-privacy-sensitive user profile
attributes are used for identity cloning detection in social media.

The comparison of results among the proposed DF model as well as other
machine learning and DL models revealed that our DF model significantly out-
performed all the other candidate models (see Table 5). We attribute this supe-
rior performance to two reasons. First, our DF model generates an ensemble of
its base learners (i.e. RF, ERT, and LR) with a cascading structure where each
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cascade is an ensemble of the aforementioned base learners. Consequently, such
a behaviour encourages diversity thereby improving its generalization perfor-
mance eventually contributing to the significant increase in performance of our
proposed solution. Further, the ability of DF to adaptively determine the best
model complexity required for the problem context at hand also allows gener-
ating comparatively simpler models compared to the other approaches such as
DNNs. This also helps improve the generalization performance of DF [29].

Table 5. Comparison with the baseline machine and DL models evaluated as the pre-
dictor of our proposed solution. Each KPI is presented as an average over 10 iterations
together with standard deviation (σ).

Model Precision (σ) Recall (σ) F1-score (σ)

ADA 84.63 (1.49) 78.15 (1.49) 81.26 (0)

CNN 83.54 (0.41) 77.67 (1.87) 80.49 (1.20)

DNN 85.66 (2.38) 76.68 (2.12) 80.88 (0.42)

KNN 78.30 (1.49) 78.52 (0) 78.41 (1.49)

LR 84.64 (0) 78.15 (1.49) 81.27 (1.49)

MLP 86.55 (3.81) 72.55 (3.69) 78.83 (2.37)

RF 83.84 (0.27) 78.56 (0.12) 81.12 (0.12)

DFRF 84.16 (0.49) 78.82 (0.25) 81.41 (0.34)

DFERT 83.98 (0.16) 78.44 (0.25) 81.11 (0.06)

DFLR 80.42 (0.433) 77.64 (1.32) 79.01 (0.77)

DF 90.08 (3.42) 77.95 (1.69) 83.52 (0.94)

5 Conclusion and Future Work

We propose a novel SocSen service provider identity cloning detection approach
based on non-privacy-sensitive user attributes. In the proposed approach, an
undirected graph is first constructed to identify the pairs of similar SocSen ser-
vice providers’ identities. We then extract an account pair feature representation.
Afterwards, we also extract a multi-view account representation for each account.
Then, these two representations are concatenated and fed into a DF classifier
to predict whether or not a given account pair contains a cloned account. Our
proposed solution was evaluated on a real-world Twitter dataset against other
state-of-the-art cloned identity detection techniques and machine learning mod-
els. The results show that the proposed approach significantly outperformed the
other models.

In the future, we plan to develop more effective identity cloning detection
techniques and conduct experiments on large-scale datasets.
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Abstract. Influence Maximization (IM), an NP combinatorial opti-
mization problem, has been broadly studied in the past decades. Existing
algorithms for IM are still limited by accuracy, scalability and generaliza-
tion. Moreover, they solve the influence overlapping problem implicitly.
This paper proposes Multiple Agents Influence Maximization (MAIM)
scheme, a novel Machine Learning based method for IM problem. We
focus on explicitly solving the influence overlapping hidden in IM. MAIM
first generates a list of sorted nodes as seed candidates in a descending
order of overall influence, and drops those with serious influence overlap-
ping based on multiple reinforcement learning (RL) agents in different
rounds. We make full use of the characteristics of RL agents: continu-
ous interaction with the environment, quick decision on whether a node
should be accepted or dropped and better generalization. We also pro-
pose Memory Separated Deep Q-Network to improve training efficiency.
Experiments on eight real-world social networks validate the effectiveness
and efficiency of our algorithm compared to state-of-the-art algorithms.

Keywords: Social network services · Influence maximization ·
Influence overlapping · Reinforcement learning · Deep Q-Network

1 Introduction

The dramatically rapid development of social network services makes informa-
tion dissemination faster and wider, and has a huge practical importance in viral
marketing [2]. Influence Maximization (IM) was proposed to serve for those ser-
vices. IM was firstly abstracted as an algorithmic problem by Kempe et al. [6].
In IM, a social network is represented as a graph G = (V,E), where V is the set
of nodes in graph G, and E is the set of edges. A diffusion model M illustrates
how influence spreads through the network and converts abstract connections
between people into definite edge lengths between nodes, such as Independent
Cascade (IC) model, Linear Threshold (LT) model. The objective of IM is to
find a set S of k seed nodes to influence nodes in the social network as many as
possible. It is NP-hard under IC and LT models.
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The IM problem has been well studied and triggered many researches in-
depth. Traditional IM algorithms are often based on simulations, and adopt a
greedy algorithm according to the submodularity of influence function σG,M (·),
but always suffer from unbearable computational efficiency problem. Proxy-
based methods such as shortest path [7] use a proxy model instead of running a
heavy MC simulation to estimate the influence spread, which can improve practi-
cal efficiency. Nevertheless, they lack theoretical guarantees and may give unsta-
ble results. Sketched-based methods such as IMM [14], SSA [12] were proposed
to devise theoretically efficient solutions that guarantee a certain approximation
ratio, but they have weak generalization capacity. Some learning-based methods
aims to learn a group of parameters and use them to calculate the marginal gain,
such as DISCO [9]. However, the training process may cost much time and the
models may perform unpleasantly in generalization. Moreover, all the previous
methods consider and tackle the influence overlapping problem implicitly, as is
shown and explained in Fig. 1.

Fig. 1. The illustration of IM and influence overlapping problem in a directed graph
with k = 2. Here we only consider a single-round activation. We should choose two
nodes v1 and v14 to maximize the neighbors. First, obviously, we choose v1 in our seed
set because it is the most influential node with 7 neighbors. v2 is the second most
influential node with 6 neighbors, but we drop it because it has 4 same neighbors
(v3, v4, v5, v6) as v1. If we select v2 as the seed, most of its influence would be wasted,
and it could not activate as many inactivated nodes as v14 could.

To tackle the above problem, we implement a Reinforcement Learning (RL)
Framework to explicitly solve influence overlapping hiding in IM problem. We
design Multiple Agents Influence Maximization algorithm, a novel machine
learning based method for IM problem. MAIM simulates pseudo submodularity
to hold a approximation ratio bound and drop nodes with severe overlapping
problems. First it neglects submodularity, and sorts the nodes by their individual
Overall Influence. And then, based on the characteristics of RL agents that can
continuously interact with the environment, it estimates approximate influence
overlapping, and decides whether a node should be accepted or dropped in this
order with the help of multiple RL agents. Our method is also distinguished
with simulation-based methods, as we consider each candidate node only once.
If this candidate suffers an unbearable influence overlapping, we will just drop
it without reconsideration. Our contributions can be summarized as follows:
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– We introduce RL to better solve the potential influence overlapping in IM
problem explicitly. Our model adopts a series of Deep Q-Network as agents
in the seed node selecting an dropping process. To the best of our knowledge,
it is the first time that influence overlapping is explicitly considered.

– We propose Memory Separated Deep Q-Network (MSDQN), to boost and
stabilize the training process of multiple agents, and theoretically prove the
lower bound of approximation ratio for MAIM under ideal circumstances.

– Experiments based on eight real-world social networks demonstrate that
MAIM overperforms the state-of-the-art models on influence spread and effec-
tiveness.

2 Related Works

In 2003, Kempe et al. [6] proposed GeneralGreedy method, the first simulation-
based approach to solve IM problem. This model originated from basic Monte-
Carlo (MC) simulation. Leskovec et al. [8] proposed CELF to decrease simu-
lations wasted by “lazy-forward” strategy. Following this direction, other algo-
rithms like CELF++, NewGreedy and MixedGreedy were proposed in the next
decade [4,5]. Although they performed well in optimizing MC simulations, gen-
erality and accuracy, and maintained a bounded approximation ratio, their com-
putational cost were still too heavy and infeasible in practical usage.

To improve algorithm scalability in modern huge social network, some proxy-
based approaches were specifically designed for certain diffusion models. In
proxy-based solutions, ranking methods such as DEGDIS [3], provided efficient
approaches to estimate spread of nodes’ influence. However, two critical draw-
backs existed among proxy-based methods. i) Due to the structure of the proxy
model, their influence estimation might diverge from actual influence spread; ii)
all those ranking proxies ignored the existence of influence overlappings [10].

Recently, algorithms including StaticGreedy [4] and TIM+ [15] were pro-
posed to guarantee both scalability and accuracy in the IM problem. Together
with IMM [14], SSA [12], RIS [3], etc., they could be classified as sketched-based
approach [10]. In order to reduce the MC simulations needed in seed selections,
those methods pre-computed several snapshots based on specific diffusion mod-
els, and used those sketches to evaluate influence spread among nodes. However,
this quick estimation was actually at the expense of computation and memory
cost in an unbalanced way, as a result of putting too much pressure on memory
when analyzing huge networks.

Many researchers are also trying to apply Machine Learning methods in
IM problem such as SCSS [1] and DISCO [9]. Those methods aims to learn
a group of parameters and use them to calculate the marginal gain, showing
machine learning a potential approach for IM problem. Moreover, Reinforcement
Learning methods have been used in IM problem, such as a LinUCB-based bandit
algorithm [16] focusing on regret bound, NSQ to solve competitive IM problem
and IMGER [17] focusing on graph embedding. However, most of the training
process of ML-based methods may cost much time and the models performs
unpleasantly in generalization.
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3 Preliminaries

3.1 Problem Statement

In this paper, we use Independent Cascade (IC) as the diffusion model M . The
definition of IC model and IM problem is shown as follows:

Definition 1. (Independent Cascade Model) Given a graph G and a user
u, when node u becomes active, it has a single chance of activating each currently
inactive neighbor v. The activation attempt succeeds with probability pu,v.

Definition 2. (Influence Maximization) Given a graph G = (V,E), an
information diffusion model M , a positive integer k, the influence maximiza-
tion problem aims to select a set S (S ⊆ V ) with k nodes under the diffusion
model M , to maximize influence spread σG,M (S). The problem can be modeled
as:

argmaxS⊆V,|S|=k σG,M (S) (1)

Note that our approach aims to solve the IM problem by tackle the influence
overlapping problem explicitly. Here we formally define influence overlapping.

Definition 3. (Influence Overlapping) Given a node v, it has potential to
activate a set of nodes called P . However, most of nodes in P have been activated
by previous active nodes, denoted as set A. If we choose v into the seed set, its
influence would be wasted, namely there are few newly activated nodes by v. This
is the influence overlapping problem for v with overlapping ratio β = |A|

|P | .

3.2 Submodularity: The Starting Point

Kempe [6] proved that influence spread function under IC Model has two prop-
erties: submodularity and monotonicity. Here we define submodularity:

Definition 4. (Submodularity) An influence spread function σ(·) is submod-
ular iff σ(S ∪ {v}) − σ(S) ≥ σ (S∗ ∪ {v}) − σ (S∗) for any S ⊆ S∗ ⊆ V and
v ∈ V \S∗.

Let X denote a possible influence spread process in an IC model, σX(S) be
the influence of S under X and R(v,X) as the set of nodes with a path activated
to node v under X. Now, we can get

σX(S) = | ∪v∈S R(v,X)| (2)

Similarly, the Overall Influence of a node u under X can be represented as:

Ou,X = |R(u,X)| (3)

Due to the existence of submodularity, influence overlapping happens between
seed nodes. To illustrate the situation with better clarity, we introduce two new
concepts: Wasted Influence W and Valued Influence V :

Wu,S,X = | ∪v∈S R(v,X) ∩ R(u,X)|, Vu,S,X = Ou,X − Wu,S,X (4)
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Under the influence spread process X and the current seed set S, for a node
u, the Overall Influence Ou,S,X is influence spread of a node ignoring influence
overlapping, irrelevant to S. The Wasted Influence Wu,S,X is the influence spread
wasted of node u due to influence overlapping, and the Valued Influence Vu,S,X

could be obtained according to Ou,S,X and Wu,S,X , equivalent to a individual
node u’s marginal gain.

4 Methodologies

4.1 MAIM Algorithm

To tackle the above difficulties, and explicitly consider influence overlapping
problem, we design Multiple Agents Influence Maximization (MAIM) scheme,
to provide an alternative to reduce the cost of adding a new node to the seed
set. The overall structure of our model is shown in Fig. 2.

Fig. 2. The illustration of MAIM model. First, it constructs a node list by the indi-
vidual Overall Influence in a descending order. Next, based on different relax factors,
multiple DQN agents are trained in order to detect the influence overlapping problem
among candidate nodes. Particularly, in node list Q, from up to down, the agents will
drop the nodes that have strong influence but suffer serious influences overlapping with
the seed set. Meanwhile, if a node is accepted as a seed by the agents, its influence
spread will be recorded on the graph.

Different from previous methods that strictly hold submodularity, MAIM
ignores submodularity and sort all the nodes in a descending order by Overall
Influence. With the help of multiple reinforcement agents, it can estimate approx-
imate influence overlapping, and decide whether a node should be accepted or
dropped. The entire MAIM algorithm could be divided into two stages:
Stage 1: Preparation. First, the model calculates the Overall Influence of each
individual node, sorts nodes by Overall Influences in the descending order and
returns the largest Overall Influence. This stage only runs once.
Stage 2: Dropping. Algorithm 1 shows the whole process of dropping stage.
This stage runs on the basis of preparation stage and a series of Deep Q-
learning agents trained by Memory Separated Deep Q-Network (MSDQN) in
Algorithm 3.
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Algorithm 1: Dropping Advanced (SOT,Omax, k, λ)
Input: Sorted node list SOT , Largest Overall influence Omax, Seed size k, Relax factors

λ0, λ1, ...λj

Output: Seed Set S
1 step ← 1, i ← 0
2 λ ← λ0 The tightest Relax factor
3 for v in V do
4 G.v.hit = 0 � Times node v get activated

5 while |S| ≤ k do
6 G− ← DeepCopy(G) � Duplicate Graph G
7 u ← SOT [step]

8 uf ← Collision(G−,u)

9 Action ← Aλ(G−,uf ) � If accept, G− is updated
10 step ← step + 1
11 if Action is accepted then
12 S ← S ∪ {u}
13 G ← G− � Update the graph

14 else
15 if u.O ≤ Omax · λ or step = |SOT | then
16 i ← i + 1
17 Switch to agent Aλi+1 with looser relax factor

18 step ← 1, Restart and check nodes not in S

19 else
20 Skip node u

21 return S

After preparation stage, nodes in G are sorted by their Overall Influence.
However, an influential node will be less valuable if its Overall Influence is mostly
made up by Wasted Influence. Therefore, when adding a node, we are looking
for higher marginal gain, namely higher Valued influence:

Vu,S = σ(S ∪ u) − σ(S) =
∑

Outcomes X

Prob[X] · Vu,S,X (5)

Nevertheless, estimating the accurate Valued Influence requires heavy Monte-
Carlo simulations where the model traverses all the left nodes in each round. To
tackle this problem, we explicitly consider the influence overlapping problem.

As we have mentioned, a series of agents with different relax factors are
trained for dropping stage. In Algorithm 1, the model starts with the strictest
agent and with relax factor λ0, denoted as Aλ0 (Line 4). With the help of trained
RL Agents, it only accepts node u such that Vu/Ou ≥ λ, where λ ∈ (0, 1) is the
relax factor (Line 6–13). Agents should be switched when Overall influence of
current node is already lower than λ0 · Omax or when the node list is went over
and |S| < k (Line 15–20). In those situations, the model switches to a looser
agent Aλ1 , such that 0 < λ0 < λ1 < 1. The model starts with the strictest
agent with relax factor λ0, denoted as Aλ0 , and switches to a looser agent Aλ1

when the current agent Aλ0 is “useless”, instead of traversing all the nodes in
the list. And so on, it will continue the switching until |S| = k. This strategy
also helps to build an ideal theoretical lower bound of approximation ratio for
the algorithm, and we will discuss it in Sect. 4.3.
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Collision Algorithm in Algorithm 1 (Line 8) inspects and records the degree
of influence overlapping between a node u and current seed set S, which serves
as an evidence of dropping. It performs in two stages. First, on G, it simulates
influence spread by node u and records the total times that each node w is
activated during the activation in an IC model. G.w.hit record the times node
w has been activated. This process runs H times where H denotes the running
episode (Line 1–3). After that, we check nodes activated by influence spread
of u and classify them into three states: T (Touched), I (Influenced) and C
(Collided). Note that α ∈ (0, 1) is a hyperparameter here. If the times that a
node is activated is larger than H, it means that other nodes also have high
chances to activate it, so we classify it into C. A large C serves as an evidence
for high Wasted Influence. Reversely, a large T is an evidence for high Valued
Influence since the nodes are hardly touched before (Line 4–10).

Algorithm 2: Collision (G, u)
Input: Social network G, Node u
Output: T (Touched), I (Influenced) and C (Collided)

1 for i ← 1 to H do
2 for each w activated by u’s influence spread do
3 G.w.hit ← G.w.hit +1

4 foreach w activated by u’s influence spread do
5 if G.w.hit > H then
6 C ← C +1
7 else if G.w.hit ∈ [α · H, H] then
8 I ← I + 1
9 else if G.w.hit ∈ [0, α · H) then

10 T ← T + 1

11 return [ C
H , I

H , T
H ]

4.2 Q-Learning

To decide whether a node should be accepted or dropped, we train a series of
model-free RL agents to help. They are trained to learn evaluation function Q,
the long-term gain from taking actions.

First, we clarify the formulation of the RL framework with top priority:

– State: A State (S, u) consists of two components: current seed set S and
current node u waiting for consideration.

– Action: Action ∈ {0, 1} is defined as either accepting current node and add
it into seed set (denoted as 0) or dropping it (denoted as 1).

– Rewards: The reward function r(S, u) at State (S, u) for accepting a node
u is used to evaluate the transition reward of an action. It is defined as:

r(S, u) = (σ(S ∪ u) − σ(S)) − λ · σ(u) (6)

It indicts whether a serious influence overlapping will take place if we add
current node to the seed set. λ is the relax factor indicting how strict we are
for influence overlapping. The reward for dropping a node is 0.
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– Policy: The agent will always make the decision to maximize Q value, the
long time benefit:

π(u | S) = arg max
0,1

Q(uf , a; θ) (7)

Algorithm 3: Training-MSDQN(G,SOT, λk)
Input: Social network G, Sorted nodes SOT , Relax factor λ
Output: Trained θ

1 Initialize Replay Buffer D with capacity N, function Q with parameter set θ and Q̂ with

parameter set θ̂
2 for episode ← 1 to M do
3 for t ← 1 to T do
4 G− ← DeepCopy(G) � Duplicate Graph G
5 u ← SOT [t]

6 uf ← Collision(G−,u)

7 at ←
{

x ∈ {0, 1} randomly w.p. ε
arg max0,1 Q(uf , a; θ) otherwise

8 if Action is accept then
9 S ← S ∪ {u}

10 G ← G− � Update the graph

11 else
12 Skip node u

13 rt ← σ(S ∪ u) − σ(S)) − λ · σ(u)
14 vf ← Collision(G, SOT [t + 1])
15 Save {uf , at, rt, vf } into DA or DD

16 Mix DA and DD as D
17 From D sample random batch B
18 Update θ by SGD over Equation 9

19 Every C turns, θ̂ ← θ

20 return θ

In DQN, Mnih designed a new module called Replay Buffer [11] to save
actions and rewards in buffer D as [state, action, reward, nextstate] tuple and
apply random sampling to generate training batch. Unfortunately, original
Replay Buffer does not fit our training requirement. At the beginning of training,
since the agent is quite tolerant and the seed set is empty, it will accept most
nodes into the seed set, and the replay buffer will be full of acceptance records
with positive reward and only a few negative dropping records generated by
random actions with regard to ε (Line 7). Similarly, due to serious overlapping
problem and the strict agent, replay buffer will be filled with droppings records
at the end of node list. This happens in each episode and makes training uncon-
trollable. To solve this problem, we design Memory Seperated Deep Q-Network
(MSDQN) to balance the training process. We separate the memory buffer into
dropping buffer DD and acceptance buffer DA, shown in Fig. 3. MSDQN pre-
vents agent from a misconception that dropping is better than acceptance overall
and vice versa, and makes the training more efficient and stable.

In each step, we use standard (1-step) Q-learning to update parameters, in
which v = Q[t + 1], and we learn previous parameters in order to minimize the
loss of samples in B:
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Acceptance Record 1
Acceptance Record 2
Acceptance Record 3

Acceptance Record 4
Dropping Record 1

Acceptance Record 5

Acceptance Record 17

Dropping Record 20
Dropping Record 21

Dropping Record 22
Dropping Record 23
Dropping Record 24

Acceptance Record 15
Acceptance Record 16

Acceptance Record 3
Acceptance Record 4
Acceptance Record 5
Dropping Record 1

Acceptance Record 17
Dropping Record 22
Dropping Record 23
Dropping Record 24

Beginning Stage Ending Stage

Fig. 3. Replay buffer in MSDQN (DD and DA). Assume the size of replay buffer D is
6. I.e., in the beginning stage, even if we have 5 acceptance records, we only add the 3
latest records in DA, because the space in DA is only 3. Similarly, in the ending stage,
we discard dropping record 20 and 21, because the size of DD is only 3.

Lt (θt) = E(uf ,at,rt,vf )[(rt + γ · arg max
0,1

Q(vf ; θ̂t) − Q(uf , at; θt))2] (8)

where Lt (θt) is the loss function. Next, we can update θt in step t by SGD
method, we can calculate the gradient of Eq. 8 as:

∂Li (θi)

∂θi
=E(uf ,at,rt,vf )[(rt + γ · arg max

0,1
Q(vf ; θ̂t) − Q(uf , at; θt))∇θtQ(uf , at; θt)]

(9)
In the algorithm structure, we also install two sub-networks: behavior net-

work Q and target network Q̂. By “freezing” the target network in a period
of time, we improve the stability of the learning algorithm [11]. The algorithm
terminates when |S| = k.

4.3 Approximation Ratio Analysis

Assumption 1. If Deep Q-Network agents are well trained and provides correct
judgement, for each node ui that is accepted in the seed set, Λui

= Vui
/Oui

≥ λ.

Theorem 1. The approximation ratio of MAIM will be at least (1 − 1/eλ∗
),

where λ∗ is the relax factor for the loosest agent we used in seed selection.

Proof. We call the seed set generate by Greedy method [6] as SG, the seed set
generated by MAIM as SD and the optimal seed set as S∗. Assume the initial
relax factor is λ0 and seed set size is k. Obviously, both Greedy and MAIM
method will choose the node with largest Overall influence as the first node, so
it is clear that: σ(SD

1 ) ≥ λ0 ·σ(SG
1 ). For simplicity, we assume that k nodes have

already been selected by Aλ0 . Then, if the (k + 1)th node is also found, we set
vi, the ith node in the list, as uD

k+1, the (k + 1)th seed found by MAIM, and set
vj , the jth node in the list, as uG

k+1, the (k +1)th seed found by Greedy method.
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There are three cases to be considered: i ≤ j, i > j, and Aλ0 fails to accept a
new node and switch to a looser relax factor.

(1) For the case: [ i ≤ j ]
In this case, a node with larger or equal Overall influence is accepted by MAIM
instead of the node with maximum marginal gain.

VuD
k+1,S

VuG
k+1,S

=

V
uD

k+1,S

O
uD

k+1

· OuD
k+1

V
uG

k+1,S

O
uG

k+1

· OuG
k+1

=
ΛuD

k+1
· OuD

k+1

ΛuG
k+1

· OuG
k+1

(10)

It’s obvious that OuD
k+1

≥ OuG
k+1

, since they are sorted by Overall Influence in the
list. According to Assumption 1, we have ΛuD

k+1
≥ λ0 and ΛuG

k+1
≤ 1. Therefore,

VuD
k+1,S

VuG
k+1,S

≥
ΛuD

k+1

ΛuG
k+1

≥ λ0 (11)

(2) For the case: [ i > j ]
In this case, a node with less Overall Influence is accepted by MAIM while the
node with maximum marginal gain is ignored. In MAIM, OuD

k+1
≥ λ0 · Omax.

Furthermore, based on the Assumption 1, we have ΛuG
k+1

≤ λ0 or uG
k+1 shouldn’t

be dropped. Inversely, ΛuD
k+1

≥ λ0 since uD
k+1 is accepted. Now we can get:

OuD
k+1

OuG
k+1

≥
OuG

k+1

Omax
·
OuD

k+1

OuG
k+1

=
OuD

k+1

Omax
≥ λ0 (12)

which means,

VuD
k+1,S

VuG
k+1,S

=
ΛuD

k+1
· OuD

k+1

ΛuG
k+1

· OuG
k+1

≥ λ0 (13)

(3) For the case: [Switch to a looser relax factor]
If there’s no node left satisfying OuD

k+1
≥ λ0 · Omax, we have to switch to an

agent trained with looser relax factor until a new node is accepted. Assume a
new node is found with λp, then we go back to either case 1 or case 2 and we can

prove that:
V

uD
k+1,S

V
uG

k+1,S
≥ λp This process may happen several times in the iteration.

Assume λ∗ is the loosest relax factor we use, assume we replace all the λ0 and
λp in previous part by λ∗.

Based on those three cases, we have:

σ(SD
k + {uD

k+1}) − σ(SD
k ) ≥ λ∗(σ(SD

k + {uG
k+1}) − σ(SD

k )) (14)
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Assume S∗ = {u∗
0, .., u

∗
k−1} is the optimal seed set, which brings largest influence

spread. Since the IC model is both monotone and submodular, we have:

σ(S∗ ∪ SD
k ) = σ(S∗ ∪ SD

k ) − σ({u∗
0, .., u

∗
k−1} ∪ SD

k ) + σ({u∗
0, .., u

∗
k−1} ∪ SD

k )

= σ(SD
k ) +

k∑

j=1

(σ(SD
k ∪ {u∗

0, ..., u
∗
j}) − σ(SD

k ∪ {u∗
0, ..., u

∗
j−1}))

≤ σ(SD
k ) +

∑

u∈S∗
σ(SD

k ∪ {u}) − σ(SD
k )

(15)
uG

k+1 is chosen to maximize the marginal gain in choosing the (k+1)th node.
Note that the marginal gain by adding uG

k+1 in the seed set is larger than or
equal to that gaining by adding the seed node in S∗. Based on this fact and
Eq. 14, we can further write the inequality as:

σ(SD
k ) +

∑

u∈S∗
σ(SD

k ∪ {u}) − σ(SD
k ) ≤ σ(SD

k ) + k(σ(SD
k ∪ {uG

k+1}) − σ(SD
k )))

≤ σ(SD
k ) +

k

λ∗ (σ(SD
k ∪ {uD

k+1}) − σ(SD
k ))) ≤ σ(SD

k ) +
k

λ∗ (σ(SD
k+1) − σ(SD

k )))

(16)
By setting ak = σ(S∗) − σ(SD

k ), it is straight forward to derive that ak+1 ≤
ak − λ∗

k ak, which leads to ak ≤ (1 − λ∗
k )ka0. Combine it with the common

inequality 1 − x ≤ e−x where x ∈ (0, 1) and a0 ≤ σ(S∗), we will have:

σ(SD
k ) ≥ (1 − 1/eλ∗

)σ(S∗)

In conclusion, the lower bound of approximation ratio is (1 − 1/eλ∗
), if rein-

forcement agents are perfectly trained. Even if the approximation ratio is ideal,
our model still achieves better influence spread and reduces simulation time and
memory cost in large scale social networks, as is shown in Sect. 5.

5 Experiments

5.1 Experiment Setup

Datasets. During the experiments, we use eight real-life datasets from websites,
as is shown in Table 1. Two of them, HEP and PHY, are academic collaborations
extracted from different sections in arXiv, which also serves as data in Chen’s
study [3]. Others could be found at Stanford Large Network Dataset Collection
website. Note that W is the edge weight, denoting the probability that an active
node can activate each of its inactivated neighbor.

Baselines. We select six baselines in total. Random randomly selects nodes in
the network. Naive Greedy sorts all nodes by individual influence spread indi-
vidually and accept first k nodes as seeds. DEGDIS [3] is proxy-based algorithm
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Table 1. Eight datasets used in experiment

Dataset Nodes Edges Directed? W Dataset Nodes Edges Directed? W

HEP 15 K 58 K Directed 0.1 Wiki-topcats 1.8 M 28.5 M Directed 0.001

PHY 37 K 37 K Directed 0.1 Wiki-topcats 2.4 M 5 M Directed 0.001

Cit-HepPh 34 K 421 K Directed 0.01 Gemsec-deezer 143 K 846 K Undirected 0.01

Cit-HepTh 27 K 352 K Directed 0.01 Com-Amazon 335 K 925 K Undirected 0.01

introduced by Chen et al., which consider nodes with high discounted-degree is
influential. It works well on IC Model and has time complexity o(klog(n) + m).
CELF [8] is a kind of well-accepted simulation-based algorithm. In the exper-
iment, we choose r = 300 in order to make run time receivable. TIM+ [15]
is sketched-based algorithmn. Here we set ε (a hyperparameter in TIM+) as
0.1 unless otherwise specified. TSIM [13] is a state-of-the-art algorithm which
applies discount-degree descending technology and lazy-forward technology in
order to balance accuracy and time cost.

We implement multiple algorithms on eight large networks extracted from
real life, on a machine with an Intel(R) Core(TM) i7-8700 K, 3.7 GHz CPU and
32 GB memory. All the experiments are based on Independent Cascade (IC)
Model. In MAIM, we set H = 10 and α = 0.5 in Algorithm 2. In Algorithm 3,
two agents networks are trained with λ0 = 0.5 and λ1 = 0.4. In the agents, both
Behavior Network Q and Target Network Q̂ have two dense (fully connected)
layers. Agents are only leveraged to detect serious influence overlapping, and
it shows outstanding robustness. We use multiple agents trained in HEP with
W = 0.05. We set training episode M = 15 and seed set size k = 50. This
process only costs 40min. The whole experiments are based on the
multiple agents we trained in this stage, which is time-saving.

5.2 Experiment Results

Naive Greedy v.s. MAIM. The MAIM without dropping stage is technically
the same as Naive Greedy. To show the good generalization capacity of agents,
we not only test its performance on trained network, but also test it on a totally
different network PHY. From Fig. 4, we can find that estimating pseudo sub-
modularity, dropping stage can help to predict the possible overlapping problem
in seed selection process and improve the performance of influence spread.

Spread Comparison. We run tests on eight large scale social networks. The
size of seed sets are selected ranging from 10 to 50. From Fig. 5, it is obvious that
MAIM outperforms all the comparision algorithms on Cit-HepTh, Cit-HepPh,
WikiTalk, Wiki-topcats, Gemsec-deezer on influence spread. We can find that
CELF was finished only on three of the networks, since we set a upper bound
for running time as 10,000 s. TIM+ is a quite efficient and influential algorithm,
among all the data sets except Gemsec-deezer, it performs only 2% to 3% worse
than MAIM. However, its high efficiency and influence spread are at a cost of
unbearable memory consumption.
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Fig. 4. Naive vs MAIM (W = 0.1)

Fig. 5. Multiple algo on different large social networks

On Cit-HepTh, MAIM performs 15.07%, 63.75% and 125.27% better than
CELF, TSIM and DRGDIS with seed size k = 50. In terms of Cit-HepPh, MAIM
is 6.90%, 47.7% and 89.4% better than CELF, TSIM and DRGDIS with seed
size k = 50. Since those two networks are relatively small, both CELF and TSIM
finish the whole seed selection.

On huge networks like Wiki-topcats and WikiTalk, TSIM fails to finish the
whole seed selection within 10,000 s, and the memory cost of TIM+ is too heavy
and exceeds 32 GB. To tackle this problem, we relax ε to 0.5. By this way, TIM+
keeps the same influence spread with MAIM but with heavy memory cost. MAIM
is 152.26% and 140.32% better than TSIM and DEGDIS on influence spread
with k = 30. TSIM and DegreeDiscount do a great job, and this is because
Wiki-topcats is a graph with very high average degree, and algorithms related
to degree-discount descending technology will perform better.

On undirected networks like Gemsec-deezer, MAIM performs sightly better
than TIM+ and TSIM on influence spread, and 25.58% and 266.10% better
than CELF and Degree Discount. On Com-amazon, a huge undirected network,
MAIM performs worse than other algorithms. It is 8.96% and 9.28% worse than
TSIM and TIM+. We guess it is because agents of MAIM was trained in a small
directed network and fail to fully handle a large undirected network. Further-
more, the improvement of MAIM tends to increase with growth of seed size.
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Time and Memory Cost. Running time and memory cost of selecting 50
nodes on all the networks are represented in Fig. 6. Since the difference between
them is too large, we utilize log10 to present time and memory cost.

Fig. 6. Time and memory cost

Degree Discount spends less time than any other algorithms due to its simple
implementation, but this doesn’t cover its drawback on influence spread. Run-
ning times of CELF and TSIM on Amazon, WikiTalk and Wiki-topcats exceed
10,000 s, and are recorded as 10,000+. TSIM does reduce part of unnecessary
computation by its two-stage filtering strategy, and runs 5 to 10 times faster
than CELF most of times. However, on networks like Cit-HepPh, it fails to filter
enough candidate nodes and runs even more slowly than CELF. TIM+ shows
both high influence spread and good efficiency during the experiment. However,
its memory cost is too heavy, as is shown in Fig. 6. We can see the memory cost
of TIM+ is thousand times heavier than MAIM.

6 Conclusion

In this paper, we introduce MAIM, a novel machine-learning based IM method.
Instead of keeping strict submordularity, MAIM estimates influence overlapping
and drops nodes by multiple RL agents in different rounds. We also propose
MSDQN to guarantee agents’ training speed and generalization. Moreover, we
also theoretically prove the ideal lower bound of approximation ratio is (1−1/eλ∗

)
with well trained agents. This algorithm is hundreds of times faster Greedy algo-
rithm, use hundreds times less memory than TIM+ and has stronger robustness
to large network size and seed set size. In conclusion, MAIM’s memory cost and
influence spread fluctuation is less sensitive to network size, seed size and edge
weight, which makes it practical on large scale social network services.
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Abstract. One of the current challenges in the context of service-oriented
applications is the generation of composition plans for applications that
optimize their QoS attributes by taking advantage of the resources offered
by different providers, and generate them as efficiently as possible. Scal-
ability is indeed a major issue, and the problem becomes a real challenge
for applications with big numbers of services. In this work, we propose
a divide-and-conquer algorithm that exploits the architecture of applica-
tions, to reduce the size of the search space. With it, we are able to recom-
pose the solution for the global problem, with a significant gain in exe-
cution time. A variant of the algorithm—in which, when a sub-problem
cannot be further divided without loosing information, a solver is used
to find the optimal solution for it—allows us to trade execution time and
precision. We report on the extensive experimentation carried out, where
applications with up to 2 000 services are considered, and which includes
a comparison with the results delivered by GA solvers.

1 Introduction

Nowadays, web services, micro-services and IoT services are being widely
employed in many fields and play an important role in practical applications.
Awareness of the quality of service (QoS) in these environments aims at obtain-
ing a deployment plan using available resources with an optimal composition
that satisfies user requirements. In large-scale scenarios, like those we typically
found in micro-services or IoT applications, for a given request, the composition
can have a significant number of alternatives.

Research Problem. The complexity of QoS-aware services composition lies in
many factors that must simultaneously be accounted for. First, services combine
their input and outputs as dictated by the architecture of the application, which
has a direct impact on its quality attributes. This becomes more complicated
when, in addition to sequential patterns, the architecture includes conditional,
iterative or parallel patterns. The second factor is the optimization problem: the
result combination must achieve the best overall QoS. The bigger the search
space the more expensive the resolution of the optimization problem, and how
the computation time grows becomes key for scalability. For example, an appli-
cation with 100 components and 4 alternative providers for each component,

c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-91431-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-91431-8_28


450 N. Pozas and F. Durán

Fig. 1. Sample typical application composition

has 4100 = 1.606938e + 60 possible combinations, and although this number
may be reduced by applying structural constraints (components that need to be
deployed at the same provider or that cannot be hosted by some providers), the
amount of alternatives to be analysed is too high when only a few of them will
satisfy the user’s requirements.

In composition problems, one can find different approaches to how to work
with compositions. One of them is to see each service as an abstract service (e.g.,
a search service) for which a concrete service (e.g., Algolia, CloudSearch, etc.),
with specific metrics for the QoS attributes, must be selected. An alternative
problem is to see services as specific services, that need to be deployed on specific
providers (PaaS services by different providers, different virtual machines by
different providers, a local linux box, an Arduino device, etc.), which again offer
specific QoS metrics. Although they both pose a very similar problem, we will
focus on the second one throughout this work. The specific problem we address is
exemplified by the application depicted in Fig. 1. In it, we can see the architecture
of an application in which Service 1 can be deployed in both Provider 1 and
Provider 2, Service 2 can be deployed in Provider 1 and Provider 5, etc.

There is a certain consensus on the use of genetic algorithms (GA) as the
best option for the composition problem. In general, GA-based solutions are able
to find a good-enough solution rather quickly, although it may take a longer
time to find an optimal solution for huge search spaces like the ones at hand.
Figure 2 shows results on some experiments that illustrate how GA-based solu-
tions behave when the size of the composition grows.1 Fig. 2a shows the average
execution time of finding an appropriate deployment for applications with up to
1 000 services and different numbers of providers when no timeout is given.2

1 The GA solver used in this paper is implemented using the Jenetics library
(https://jenetics.io/). The hyper-parameters used in our experiments can be found
in Appendix A. The Jenetics library offers two stop conditions: a hard timeout can
be given, but also a convergence criteria can be provided so that the evolution stops
when the fitness is deemed as converged.

2 Each of the experiments in this paper has been executed 10 times, and averages are
shown to make the graphs smoother.

https://jenetics.io/
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(a) Exec. times by services, for
different numbers of providers

(b) Exec. times and best fitnesses by services

Fig. 2. Scalability of the solution based on genetic algorithms

We can observe that the execution time increases exponentially as the number
of services grows. We can also observe how the time, as the search space size,
grows with the number of providers. Of course, by setting a timeout, we will stop
the algorithm before a local optimum is reached. But there is a tradeoff between
the time and the quality of the found solution. First, it would not make sense to
have a fix timeout, since then the bigger the search space the worst the quality of
the solution. To overcome this problem, let us consider a timeout that depends
on the number of services. In Fig. 2b, e.g., GA - 20/30 represents the function
with slope 20 and shift 30. The charts in this figure illustrate how this timeout
is related to the quality of the solution. We can see at the top of Fig. 2b different
functions defining the timeouts used, and the corresponding best fitnesses of the
corresponding solutions at its bottom. Please note the colour correspondence
between an execution time and its best fitness. Although we will explain our
fitness function in the coming sections, we can observe in these charts that the
smaller the timeout, the bigger the lost in the precision of the solution. Indeed,
setting a timeout too low may lead to unacceptable solutions.

Contribution of the Paper. The main goal of this paper is to improve the scal-
ability of the current solutions, and reduce the execution time to solve them
without losing the quality of the global composition. To do this, we propose
exploiting the information that the architecture of the application at hand has
to offer us. We propose a divide-and-conquer (D&C) algorithm that allows us
to de-compose the global problem into sub-problems. Our claim is that given
any of these sub-problems, in most cases they can be solved in isolation using
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the desired composition algorithm—either based on exact methods, GA, ant
colonies, or recursively invoking our D&C algorithm. The resolution of each of
these sub-problems will return a composition, which will then be used to provide
a global composition to return it to the user.

To grasp an idea of the reduction in the complexity of the solution, let us con-
sider an application with 10 services, where each service can have 2 providers, not
necessary the same providers for each service. In this case, the search space has a
total of 210 = 1024 possible combinations. If we pass from 10 to 20 services, with
the same number of providers, we have a total of 220 = 1048 576 combinations.
Now, assume we have an application with 2 000 services with 15 alternative
providers each of them. This gives a total of 152 000 possible combinations, a
nowhere negligible number that can lead to excessive resource consumption. If
we were able to divide the 2 000-services problem into, e.g., 200 problems of 10
services each, we would have a search space of 200 ∗ 1510 combinations, a signifi-
cantly smaller number. Of course, this must be done without losing information,
or losing as little information as possible.

In this work we consider the two QoS attributes most widely used in the
related literature, namely cost and response time, and application architectures
made up of the four most common architectural patterns, namely sequential,
iterative, conditional and parallel. Although different solvers can be invoked to
solve base-case sub-problems, all results presented in this paper use a GA-based
solver for sub-problems of size greater than 1, to facilitate presentation and
comparison. Single-service sub-problems are solved using an exhaustive method.

Outline. The organization of the rest of the paper is as follows: Sect. 2 reviews
some related work. Section 3 introduces some basic notation and terminology to
better understand our proposal. Section 4 presents in detail the proposed solu-
tion. Section 5 shows some experimental results. Finally, Sect. 6 presents some
conclusions, discusses on some limitations of our approach, and presents some
open lines for future improvement.

2 Some Related Work

The problem of deployment-plan discovery has been approached from different
perspectives by different authors. We can find different alternative solutions for
composition in the existing literature, among which the most prominent ones
propose the use of exact methods [8], ant colonies [11] or genetic algorithms [2].
In [4], Deshpande and Sharm propose the use of a machine-learning classifier to
choose between these three alternative solutions depending on the complexity of
the problem. Although the decision depends on multiple factors, in general, for
problems with few services, the classifier recommended the exact methods, while
for more complex problems the classifier recommended the use of the solution
based on genetic algorithms. Indeed, genetic algorithms are widely accepted to
solve composition problems, since they obtain good-enough results in the short-
est possible time. However, even though they are the best current alternative,
they present serious scalability problems.
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In [3], Cardoso et al. propose some aggregation functions to calculate the
value of the QoS attributes for some specific patterns within an architecture,
and to be able to calculate the global value of these attributes. Different authors,
e.g., [1,2,10] have proposed to use genetic algorithms to solve the composition
problem on architectures that use the same patterns used in [3]. Although these
solutions tackle the general problem from different perspectives, they are not
concerned about the scalability of the problem, solve the problem as a whole,
and all the cases they consider are rather small, with applications of 10–15
services in the most complicated cases.

In [7], a constraints-based approach is used to remove user-specified con-
straints that may be redundant, reducing the complexity of the composition plan
and improving it. Several authors [5,6,9] have tried to reduce the search space
by minimizing the services within the composition plan. Although the problem
and the solution are very different, they focus, like us, on the complexity of the
problem for applications with huge numbers of services.

These papers have contributed to the solution of the problem, and have tried
to, in one way or another, finding a composition plan in the most efficient way
possible. However, in most cases, architectures mentioned in these papers tend
to be small, with few services or a relatively small search space.

3 Preliminaries

This section presents some preliminaries on the problem at hand and the pro-
posed solution. Specifically, we present the fitness function and architectural
patterns that we consider, the application encoding, and the normalization used.

3.1 Fitness Function and Architectural Patterns

When we talk about genetic algorithms, the notion of fitness function comes
to mind. Fitness functions is the method used to evaluate the individuals in
a population, granting them a score that allows us to compare the individuals
with each other. We are not going to go into this area, as it is not the goal of
our work, but it is necessary to show the fitness function we have used for our
experiments, since this is the function we use as criterion to compare alternative
solutions. Equation 1 shows the usual fitness function in this type of problems.

fi = Wc × (1 − Ci) + Wt × (1 − Ri) (1)

In Eq. (1), Ci and Ri are the aggregated costs and the response times, respec-
tively, for a particular solution. Both measures are to be minimized. Then, Wc

and Wt are weights that indicate the user’s preferences for cost and response
time attributes, respectively. For example, if we want both attributes to have
the same relevance within the composition, they should both take value 0.5. This
fitness function is defined in the range of [0, 1], and we will take the individual
(composition) with the highest fi value.
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Fig. 3. Architectural patterns considered

Table 1. Aggregation functions

QoS Attr. Sequential Conditional Parallel Iterative

Time (T)
∑n

i=1 T (ti)
∑n

i=1 pi ∗ T (ti) Max{T (ti)i∈{1...n}} T (t)/(1 − p)

Cost (C)
∑n

i=1 C(ti)
∑n

i=1 pi ∗ C(ti)
∑n

i=1 C(ti) C(t)/(1 − p)

The architectural patterns that we consider are shown in Fig. 3. Table 1 then
shows the aggregation functions used to calculate the cost and response time tak-
ing into account the different architectural patterns—as proposed in [3]. Note
that in the architectural patterns, probabilities represent the likelihood of exe-
cuting a branch or another in a conditional pattern, or making another iteration
on the loop of services or getting out of it. Note also that these probabilities
are also used in the aggregation functions. As usual, these probabilities can be
learnt from actual executions of the application or being estimated by architec-
tural experts.

Sequential. In this pattern, each component must wait for the previous compo-
nent to perform its task. That is, the output from a component is the input
of the next component in the sequence. The goal is for each component to
carry out its work as efficiently as possible, since the provider that offers us
the highest quality in isolation will be the best provider globally (for accu-
mulative QoS attributes).

Conditional. This pattern has several branches, each of which has a probability
pi, with 0 ≤ pi ≤ 1 and

∑n
i=0 pi = 1, to be selected. Thus, to calculate the

fitness function of each branch, we simply have to calculate the value for that
branch, and multiply it by its probability.

Parallel. In a parallel structure, all branches are executed concurrently. The
services being executed in parallel must synchronize once completed, and,
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Fig. 4. Encoding of an application as chromosomes

therefore, its response time is given by the response time of the slowest branch.
As we will see below, this is key, since, in this pattern, faster services may relax
its response-time requirement in favour of improving other attributes. E.g., we
may have cases in which we decide to take a cheaper provider for a service
because a faster, more-expensive one is possibly not going to improve the global
fitness value.

Iterative. This pattern represents a loop that have a probability p of repeating
its execution, where 0 < p < 1. Notice that p = 0 would mean that the body
of the loop will never execute, and p = 1 an infinite loop.

As we will see below, the same architectural patterns shown in Table 1 for
the aggregation of functions, will serve as guide to carry out the decomposition
of the architecture in our proposal.

3.2 Application Encoding

A GA needs, in addition to a fitness function, a chromosome representation of
the problem at hand. In the case of a composition problem, we must provide an
encoding of the application (or fragment of the considered application at each
step of the process).

Figure 4 depicts a graphic representation of this encoding, where S1...Sn are
chromosomes that represent the services, and Pi,0...Pi,mi

represent the providers
available for a particular service Si. An application is then represented as a geno-
type of n chromosomes, each one representing a service. Each of these chromo-
somes has a single gene, a value x ∈ Z in the range [0,mi −1], for chromosome i,
where x will be the selected provider, and mi is the total number of providers
available for that service i.

Notice that with this encoding, chromosomes can have different sizes, since
each service may have a different number of providers. If all services had the same
number of providers, it would have been possible to use a single chromosome
with n genes. Notice also that this encoding does not have information about
the architecture of the application that we are going to solve. The architecture,
however, is available for the calculation of the fitness function. While finding the
optimal composition, the genetic algorithm must have the necessary information
on how services are connected to each other.
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3.3 A Word on Normalization and Re-Scaling

For all attributes to have the same relevance in the composition, independently
of their scale, they are normalized. Our procedure implements two ways to scale
or normalize data using the usual scaling and normalizing functions:

scaling(xi, �x,minimize) =

⎧
⎪⎨

⎪⎩

1 − xi

max(�x)
, if minimize is True

xi

max(�x)
, otherwise

(2)

normalize(xi, �x,minimize) =

⎧
⎪⎪⎨

⎪⎪⎩

max(�x) − xi

max(�x) − min(�x)
, if minimize is True

xi − min(�x)
max(�x) − min(�x)

, otherwise
(3)

where, �x is the list of values to scale, xi is a specific value within that list, and,
respectively, max(�x) �= 0, and (max(�x) − min(�x)) �= 0.

Both functions transform the values of numeric variables so that the trans-
formed data ranges between 0 and 1. The difference is that, when re-scaling we
are just changing the range of your data, whilst when normalizing we also change
the shape of the distribution of the data. For example, values [6, 7, 8, 8, 5] are
re-scaled as [0.75, 0.875, 1.0, 1.0, 0.625] and normalized as [0.33, 0.66, 1.0, 1.0, 0.0].

In the literature, some authors propose normalizing and others re-scaling.
Since, depending on the input data, one transformation may work better than
the other, we leave the choice of which one to use to the user. However, in the
experiments presented in the rest of the paper, to normalize the QoS attributes
of the architecture, we have taken the maximum and minimum value for each
provider QoS attribute and calculated the fitness function score of this deploy-
ment as the maximum and minimum reference. Although this deployment may
be impossible, we only need these values as a reference to normalize.

4 Divide, When Possible, and Conquer

As already explained, our algorithm proceeds by breaking down the problem of
finding the optimal composition for an application by breaking it into subprob-
lems with fewer services. This section presents the details of the algorithm and
provides some details on its complexity.

4.1 Decomposing Architectures

We have seen that by decomposing an architecture into sub-architectures with
fewer services, we get an execution time gain. However, each pattern has its own
features and aggregation functions, and they cannot be handled in the same
way without information lost. Of course, if our problem has only one service, we
directly solve the assignment by taking the best provider. Assuming a description
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Fig. 5. Conditional architecture decomposition

of the architecture of our service-based application, using a tree-like representa-
tion like in BPEL-WS or BPMN, we proceed recursively depending on the type
of operator at the root of the subproblem being considered. In the following, we
explain the way to decompose and recompose each of these patterns.

Sequential Pattern. Since the values of all the considered QoS attributes get
added in the sequential pattern, we can split any sequence, independently solve
the subproblems, and then get the total cost and response time just by summing
them. Whenever a part of the problem is solved, we get a piece of the composition
that is stored in memory to compose the complete composition, the number of
generations that have been made to solve each part, and the number of sub-
architectures generated.

The algorithm proceeds by solving the subproblem corresponding to the first
service in the sequence, and, recursively, the rest of the architecture. There-
fore, each sub-architecture will be solved in isolation, and the sub-architecture
get replaced by a fake service with the corresponding QoS attributes. The re-
composition process will then combine these partial solutions into a solution to
the original global architecture.

The complexity of solving the composition of a sequence of subproblems is
linear with respect to the number of subproblems.

Iterative Pattern. The decomposition of this pattern is quite similar to the
sequential pattern. Since an iterative pattern can be seen as a sequential pat-
tern that has an associated probability p of repeating itself, the same method
is applied on the pattern, returning a result to the composition problem. The
value of this composition will be multiplied by the probability associated to the
pattern to complete the re-composition.

Conditional Pattern. We can work with conditional sub-architectures like a
sequential pattern in which each component (or branch) has an associated prob-
ability that needs to be considered for the decomposition. Each branch is solved
on its own. For example, Fig. 5 shows an example in which we see that to solve
one of the branches of a conditional sub-architecture, we proceed recursively, by
solving, in this case, the corresponding sequential sub-architecture.

The complexity of solving the composition of a conditional pattern is there-
fore linear with respect to the number of its branches.
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Parallel Pattern. As we can see in Table 1, the aggregation function for the
response time attribute for the parallel pattern takes the maximum of the
response times of its branches. This basically means that changes can be made
at different points of the architecture, initially unrelated, which may provide
a better composition plan. This prevents from solving each of the branches in
isolation, if we do not want to miss precision in our results. We propose two alter-
native ways to handle this pattern. In the first case, these patterns are solved as a
whole, without attempting their decomposition. That is, when a sub-architecture
is reached with a parallel operator at its top, an external solver is invoked—in
our experiments, a GA solver. As we will see in the coming sections, this will lead
to a potentially better solution. However, since we may have a big problem to
solve, we will have to trade time and precision. In the second alternative, given
a parallel architecture, we solve the optimization problem for each branch, fix
the best one, and then we solve the problem without considering the response
times for the rest of the branches. In this way, we may be loosing some good
combinations, since we may be missing suboptimal local solutions that might
lead to optimal global ones. However, giving n branches, the complexity of this
solution is linear, since we have to solve 2n − 1 problems. With this solution the
speed up is dramatic, as we will see in Sect. 5, where some experimental results
comparing these two alternatives are provided.

Nested Patterns. Any architecture of interest will present patterns nested inside
other patterns. In the above examples we have seen how once a subproblem is
solved, the sub-architecture is replaced by an equivalent component with cor-
responding QoS values and size. Indeed, throughout the paper we have talked
about ‘components’ as something abstract, avoiding only referring to services.
In our work, we treat both services and sub-architectures uniformly, what allows
us to proceed recursively.

4.2 Divide-and-Conquer Algorithm

As already explained, the procedure is implemented by a recursive algorithm
following the standard divide-and-conquer strategy. Every architecture is seem
as a tree with one of the above patterns at the top. Depending on this pattern the
problem is decomposed as already explained. The algorithm proceeds by dividing
the problem until a subproblem of size one is found. The only exception is the
parallel pattern, for which, as we have just seem, the algorithm may proceed by
either invoking the GA solver or by computing a number of alternative problems.
Once all the subproblems are solved, the solution is composed and its fitness
function calculated.

The complexity of the algorithm depends on the alternative chosen to solve
parallel patterns. If the external solver is invoked, the complexity of the algorithm
is given by the complexity of the solver. The execution time will greatly depend
on the position of the parallel patterns in the specific application. With the
second alternative the algorithm is linear.
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5 Experiments

This section presents results on some experiments conducted to illustrate the
performance of our D&C algorithm. The analysis has been carried out on ran-
domly generated architectures. The procedure to generate architectures takes
as argument the number of services to have in the generated application, a flag
that indicates whether all services have the same providers or not, the number of
alternative providers each service will have, and the probabilities of picking each
of the architectural patterns. If we choose to have different providers for each
service, we need to provide the total number of providers in the application’s
catalog, and the minimum and maximum number of providers that a service can
have. This will randomly pick providers for each service in that range within the
catalog. Providers, and their QoS attributes, have also been generated randomly.
The generation procedure creates architectures of all kinds in a completely ran-
dom way. In all the experiments presented here the patterns in the generated
problems were equiprobable

In what follows, we will show results of the composition of random problems
using the GA solver and our D&C algorithm, both handling parallel patterns by
invoking the same GA solver (D&C-parallels) and by the decomposition strategy
explained in Sect. 4 (D&C).

As pointed out in the introduction, our GA solver is implemented using the
Jenetics library, and the hyper-parameters used in our experiments can be found
in Appendix A. As also highlighted in Sect. 1, the quality of the solution provided
by the GA-solver depends on the stopping conditions. Let us begin by comparing
the execution time and quality of the solutions provided GA solver on the global
problem and the D&C-parallels algorithm. As we did for Fig. 2b, the execution
of the GA-solver is limited by a timeout defined by some slope and shift values.
Since problems with parallel patterns are solved by invoking the same solver,
their execution is limited using the same function.

Figure 6 compares execution times and best fitnesses of the GA solver on
the global problem and the D&C-parallels algorithm on problems of up to 2 000
services. In both cases, timeouts are given by functions with slopes/shifts of
10/30, 20/30, 30/30, 40/30 and 50/30. Whilst for the GA case the execution
time is dictated by the timeout function, applied on the global problem, for
the D&C algorithm the timeout is applied only on subproblems with a parallel
pattern at top. Observe that even though the D&C-parallels is around a 20–25%
faster, it always provides better best fitness values.

Figure 7 includes in the comparison the execution of the GA and D&C-pa-
rallels solutions with no timeouts, and the D&C algorithm with the alternative
way of handling parallel patterns explained in Sect. 4. First, notice that the GA
solver with no timeout takes a significant amount of time, much bigger than the
rest of the alternatives. Although the execution times for the D&C-parallels with
no timeout is smaller, it is however still quite big. These curves are interesting
though. The results for GA - no timeout gives a good reference for the best
fitness values, which are shown in the chart at the bottom. Even though as
already said, all problems where solved 10 times, and averages are shown, the
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Fig. 6. Genetic algorithm vs. D&C, with and without stopping on parallels, with
slope/shift timeouts (between 7 and 12 providers out of 15 for each service)

execution times for the D&C-parallels - no timeout show a significant variability.
It is due to the impact on the execution time that has the position at which the
parallel patterns are located. If the pattern is found high in the tree structure,
the problem to be solved using the GA-solver takes a significant amount of time.
In this case, we only show results for the D&C-parallels and GA with timeouts
given by slopes/shifts 30/30 and 40/30, just to have then as a reference. The
interesting part, of course, is on the values obtained for the D&C algorithm. The
D&C algorithm executes at a time very close to zero, insignificant if compared
to the times shown by any of the other solvers.

Let us focus now on the chart in the lower part of Fig. 7. Taking the best
fitness of the GA - no timeout execution as a reference, there are several observa-
tions we may take from the chart: (1) the D&C-parallels - no timeout algorithm
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Fig. 7. Genetic algorithm vs. D&C, with and without stopping on parallels, and with
and without timeouts (between 7 and 12 providers out of 15 for each service)

gets the same fitness values as the GA - no timeout in all cases, which means
that it is not loosing quality, even though it runs faster, (2) the D&C algorithm
shows almost as good values as these in almost all cases, i.e., low precision lost
even though its small execution time, and (3) the D&C algorithm is better than
the GA with timeouts, which are also behind the results for the D&C algorithm
with timeouts.

6 Conclusions

This papers presents a divide-and-conquer algorithm for the generation of
deployment plans that allows decomposing huge architectures to improve scaling
issues without loosing precision.
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Even though the D&C algorithms execution times include the de-composition
and re-composition time of the different sub-problems, its execution times
remains close to zero even when architectures of thousands of services are con-
sidered. In general, we claim that the D&C algorithm works without losing qual-
ity for patterns whose aggregation functions are summative (or multiplicative).
However, as we have seen, this is not the case for aggregation functions that take
a maximum or minimum value, as for the parallel pattern.

Although the proposal presents significant improvements with respect to
existing solutions, we plan to address many pending issues that may lead to
a more general solution and better results. First, we have several ideas to make
the solver more efficient and versatile. We will study the possibility of different
ways of decomposing parallel patterns while maintaining global information, so
that we can lower its execution time without losing quality.

We would like to make a more accurate experimentation by considering real
applications, so that instead of considering equiprobable patterns we may have
a more precise distribution of probabilities in real environments.

In the performed experiments, we have considered only two QoS attributes,
which are cost and response time. In addition to these attributes, we would
also like to find a way to consider attributes such as reliability and availability.
However, these attributes are usually represented by values in the range [0, 1],
which represents the percentage of reliability or availability that a provider has.
For applications with a huge number of services such as those we have worked
on, even having a very high value of any of these attributes such a 0.999, if this
value is multiplied with itself up to 1 000 times, the value is practically reduced
to 0. Whereas in doing so, in decomposed sub-architectures, these usually give
higher values and therefore distort the composition.

Taking into account constraints also poses an interesting challenge. We plan
to study how to take them into account.

Acknowledgements. This work has been partially supported by projects UMA-
CEIATECH-09 (Andalućıa TECH/J. Andalućıa/FEDER), UMA18-FEDERJA-180 (J.
Andalućıa/FEDER), PGC2018-094905-B-I00 (Spanish MINECO/FEDER).

A GA settings

Hyper-parameters. The hyper-parameters with which experiments in this
paper have been performed are as follows:

– Population: 100.
– Probability to mutate any chromosome: 13%.
– Crossover probability: 70%, which can affect a total of 5 different chromo-

somes at once (Multi-point crossover of 5 used).
– Survivor selector: Elitist of 2 individuals. This feature assumes some risk, as

it is possible to drag individuals which are local minimums during the GA
execution.
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– OffSpring selector: The individuals chosen to create offspring will use the
RouletteWheelSelector method, meaning that the probability that an indi-
vidual will be chosen to generate offspring will be P (i) = fi∑N−1

j=0 fj
, where N

is the total population.
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Abstract. Pre-trained models have shown their significant values on
a number of natural language processing (NLP) tasks. However, there
is still a lack of corresponding work in the field of service computing
to effectively utilize the rich knowledge accumulated in the Web ser-
vice ecosystem. In this paper, we propose ServiceBERT, which learns
domain knowledge of Web service ecosystem aiming to support service
intelligence tasks, such as Web API tagging and Mashup-oriented API
recommendation. The ServiceBERT is developed with the Transformer-
based neural architecture. In addition to using the objective of masked
language modeling (MLM), we also introduce the replaced token detec-
tion (RTD) objective for efficiently learning pre-trained model. Finally,
we also implement the contrastive learning to learn noise-invariant rep-
resentations at the sentence level in pre-training stage. Comprehensive
experiments on two service-related tasks successfully demonstrate the
better performance of ServiceBERT through the comparison with a vari-
ety of representative methods.

Keywords: Pre-trained model · Web service ecosystem · Domain
knowledge · Web API · Contrastive learning

1 Introduction

With the flourishing development of service computing, an increasing number
of accessible Web services are developed to automatically and interactively con-
nect business processes between heterogeneous applications [13,21]. The rapid
growth of Web services provides a backbone for the formation of a Web service
ecosystem (a logical collection of Web services) [1]. According to the data from
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ProgrammableWeb1, which is the largest online API registry, the number of Web
APIs was about 12,000 in 2015 [27], and this number has grown to 24,145 by
May 1, 2021. The rapid growth of Web APIs makes it extremely difficult for
software developers to effectively search and select the most suitable Web APIs
satisfying their requirements [17,29]. Especially for those newly created APIs,
there are often no tags. Many existing works [19,20,26] attempt to automati-
cally assign appropriate tags to Web APIs (namely Web API tagging task),
thereby effectively promoting the discovery of Web APIs and greatly reducing
the search space of Web APIs. Nevertheless, in the face of a large number of
complex business scenarios, it becomes increasingly impossible for individual
Web API to meet the full user requirements. As a result, Mashup has become
a promising technology by combining multiple APIs with different functionali-
ties to meet user requirements. Recommending suitable APIs according to the
Mashup development requirements has attracted more and more attention [21].
Numerous existing works [15,25,30] have been proposed to recommend appro-
priate Web APIs for Mashup developments (namely Mashup-oriented API
recommendation task).

However, despite that these methods work well when applied to respective
tasks, we argue that they still suffer from two following major limitations:

1. Limitation 1: These methods often need to design task-specific model archi-
tectures and cannot be directly utilized on other service-related tasks. This
limits the generality of these methods.

2. Limitation 2: These methods are difficult to make full use of the rich domain
knowledge accumulated in the Web service ecosystem, such as API news,
SDKs, Libraries, Frameworks, Source Codes and Changelogs, etc.

In recent years, pre-trained models have received widespread attentions. The
model is first pre-trained on large unsupervised data, then it can be fine-tuned
using only one additional output layer to produce excellent results on a wide
range of downstream tasks without the need of designing task-specific model
architectures. Many pre-trained models such as ELMo [11], BERT [5], RoBERTa
[10] and GPT [12] have achieved significant performance improvements on var-
ious natural language processing (NLP) tasks. These pre-trained models can
learn effective contextual representations from large amounts of unlabeled data
optimized by self-supervised objectives.

So far, Web service ecosystem still lacks a pre-trained model suitable for ser-
vice discovery and recommendation. How to leverage domain knowledge of Web
service ecosystem to promote the development of service-related tasks is still
a challenging issue. Inspired by the success of pre-trained models in NLP, we
propose ServiceBERT, a pre-trained model for Web service tagging and recom-
mendation. Specifically, we firstly crawl all important information about Web
services from the ProgrammableWeb as the corpora for pre-training. Afterwards,
in addition to employing the objective of masked language modeling (MLM) [5],
we also introduce the replaced token detection (RTD) [4] objective for efficient
1 https://www.programmableweb.com/.

https://www.programmableweb.com/
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learning of pre-trained model. Finally, we introduce contrastive learning (CL) in
pre-training process to learn noise-invariant representations at the sentence-level
without requiring specialized architectures or a memory bank.

The main contributions of this paper can be summarized as follows:

– We propose a new pre-trained model, named ServiceBERT. To the best of our
knowledge, this is the first pre-trained model in the field of service computing.
It can make full use of the rich domain knowledge accumulated in the Web
service ecosystem, and can act on numerous downstream tasks without the
need of designing specific model architectures.

– We introduce a replaced token detection objective to detect replaced tokens
for efficient learning of the model. In addition, we also introduce contrastive
learning at the pre-training stage to learn noise-invariant representations at
the sentence-level by contrasting positive pairs against negative pairs.

– We conduct comprehensive experiments on two service-related downstream
tasks, which successfully demonstrate that ServiceBERT can obtain signifi-
cant improvements over representative methods.

The remainder of this paper is organized as follows. Section 2 reviews some
recent related works. Section 3 presents the details of ServiceBERT. Section 4
demonstrates the experimental results. Finally, Sect. 5 concludes our paper and
points out the future work.

2 Related Work

In this section, we first introduce some studies about pre-trained models and con-
trastive learning, then we review some related works about Web service tagging
and recommendation.

2.1 Pre-trained Model

A pre-trained model is usually first pre-trained on large-scale unlabeled data,
aiming to provide excellent model initialization to obtain satisfactory perfor-
mance for downstream tasks [22]. BERT [5] and GPT [12] are two early repre-
sentative works in the field of pre-training language models. GPT uses a left-to-
right Transformer [18] and performs well on lots of natural language generation
(NLG) tasks. BERT exploits a bidirectional Transformer and performs well on
various natural language understanding (NLU) tasks. In the pre-training pro-
cess, different pre-training objectives are designed to speed up the efficiency of
pre-training. For instance, GPT adopts the Causal Language Modeling (CLM)
objective, which predicts the target token according to the input context tokens.
BERT utilizes the Masked Language Modeling (MLM) objective, which pre-
dicts the masked tokens in a randomly masked token sequence given surround-
ing contexts. ELECTRA [4] presents the objective of Replaced Token Detection
(RTD), which predicts whether each token in the corrupted input was replaced
by a generator sample or not to efficiently train the model.



ServiceBERT 467

2.2 Contrastive Learning

Recently, contrastive learning has received increasing attentions due to its great
success in various computer vision tasks [3]. Some researchers use the spa-
tial/geometric transformations (such as cropping and resizing, rotation [9] and
cutout [6]) or the appearance transformations (such as color distortion [16],
Gaussian blur, etc.) of the same image to make the image agree with each other.
The key of contrastive learning is to augment positive samples through data aug-
mentation. Then, the positive pairs and negative pairs are contrasted to learn
noise invariant representations of samples during the training process. For tex-
tual data, the way of data augmentation is different from that of images. EDA
[23] presents four simple but powerful operations for textual data: synonym
replacement, random insertion, random swap, and random deletion. CERT [7]
regards the reverse-translated sentence and the original sentence as a pair of
positive examples. CLEAR [24] exploits various data augmentation strategies
to generate positive pairs, including word and span deletion, reordering, and
substitution.

2.3 Web API Tagging and Recommendation

Accurate Web service tagging can greatly reduce the search space, thus effec-
tively promoting the discovery of Web services. Wang et al. [20] proposed a
spatial and sequential combined method for Web service classification. They
integrated the Graph Convolutional Network (GCN) with Bidirectional Long
Short-Term Memory (Bi-LSTM) to capture the Web service representations.
Yang et al. [26] proposed ServeNeT to automatically abstract low-level represen-
tation of both service name and service description to high-level merged features
for Web service classification. Cao et al. [2] proposed a topical attention based
Bi-LSTM for Web API classification, They utilized the offline training to obtain
the topic vector of Web service and performs the topic attention strengthening
processing for feature representations. Wang et al. [19] presented a dual-graph
convolutional network combining functional description documents and Mashup-
API co-invocation patterns for Web service classification.

In order to help developers quickly select appropriate Web APIs covering
multiple functions for mashup development, researchers have contributed a lot
of effort. Shi et al. [15] presented a tag attention-based neural network for API
recommendation. They fuse tags and description documents together, and then
jointly learn representations of APIs and Mashups through two siamese LSTM
networks. Xiong et al. [25] proposed a deep learning based hybrid method for
Web API recommendation by combining collaborative filtering and textual con-
tent. Zhong et al. [30] jointly modeled Mashup descriptions and used APIs using
author topic model (ATM) to reconstruct service profiles for Mashup-oriented
API recommendation. Shi et al. [14] proposed a text expansion and deep model-
based approach for service recommendation by expanding the description of
services at sentence level based on a probabilistic topic model.
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3 ServiceBERT

In this section, we describe the details about ServiceBERT, including the model
architecture, pre-training objectives and the contrastive learning framework.

3.1 Model Architecture

We follow BERT and utilize the multi-layer bidirectional Transformer [18] as
the model backbone. Given a Web service document w = {w1, w2, ..., w|w|},
the input of the pre-trained model is defined as x = {[CLS], w, [SEP]}, where
[CLS] is a special token in front of every input example, the final hidden state
corresponding to this token is used as the aggregate sequence representation.
The [SEP] is also a special token that marks the end of the previous sequence.

The embedding of each token in x is the sum of corresponding token and
position embeddings. We utilize L-layer bidirectional Transformer [18] to encode
the input vectors into contextual representations Hl = Transformerl(Hl−1), l ∈
[1, L]. The output of each Transformer layer is drived as follows:

Sl = LN(MHA(Hl−1) + Hl−1) (1)

Hl = LN(FFN(Sl) + Sl) (2)

where MHA denotes a multi-headed self-attention operator, LN represents a
layer normalization, and FFN is a two layer feed forward network.

The process of a multi-headed self-attention (MHA) in the l-th Transformer
layer is drived by:

Qi = Hl−1W
Q
i , Ki = Hl−1W

K
i , Vi = Hl−1W

V
i (3)

headi = Softmax(
QiK

T
i√

dk
)Vi (4)

Šl = Concat(head1, head2, ..., headn)WO
l (5)

The query (Q), key (K) and value (V ) matrices are computed by project-
ing the output Hl−1 of previous layer using three learnable weight matrices
WQ

i ,WK
i ,WV

i ∈ R
dh×dk , respectively. dh denotes the hidden size and dk refers

to the dimension of a head. n is the number of heads and WO
l ∈ R

dh×dh . Šl is
the output of a multi-headed self-attention in the l-th Transformer layer after
concatenating of all heads.

3.2 Pre-training Data

We train ServiceBERT with Web service data crawled from the largest online
API registry, ProgrammableWeb, which contains 128,536 samples across differ-
ent types of information, including Web API, Mashup, API news, SDK, Library,
Changelog, Framework, Glossary and Sample Source Code. Table 1 shows the
basic statistics of the pre-training data, and each sample is an individual descrip-
tion document. We use a set of constraints and rules to filter the data. For
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instance, (1) each document shorter than 10 tokens is removed. (2) We trun-
cated each API news document into many sequence of block size (512). (3) We
concatenate all Changelogs into one sequence and then phase it into many sub-
sequences of block size because they are all very short. (4) For other samples,
we discard the tokens that exceed the block size, and pad samples whose lengths
are less than the block size.

Table 1. Statistics of the pre-training data.

Item type Statistics

Web API documents 22, 144

Mashup documents 6, 438

API news 12, 089

SDKs 19, 381

Libraries 1, 665

Sample Source Code 12, 377

Changelogs 50, 737

Frameworks 554

Glossaries 161

All 128, 536

3.3 Pre-training Objectives

To train ServiceBERT, we adopt two pre-training objectives. The first one is the
masked language modeling (MLM) objective, which has been proved effective in
many existing works. The second one is replaced token detection (RTD) objec-
tive, which is used to detect whether the token generated by the generator is
consistent with the original token. Figure 1 illustrates the examples of these two
pre-training objectives.

Masked Language Modeling (MLM). Given a input sequence x, we ran-
domly select 15% of tokens from the sequence. We replace 80% of them with
[MASK] tokens, 10% with random tokens, and the remaining 10% unchanged,
which is following the same setting as [5]. Finally, the MLM loss function is
defined as follows:

LMLM = −
V∑ M∑

i

yMLM
i lnpMLM

i (6)

where M represents a random set of masked tokens, V denotes the vocabulary
size, yMLM

i is the label of the masked token i and pMLM
i denotes the predicted

result of the token i.
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Replaced Token Detection (RTD). We adopt a random simpler as the
generator G to generate a new token according to the masked token. Then a dis-
criminator (ServiceBERT) is trained to determine whether the generated token
is the original one or not. The RTD loss function is drived by the following
equations:

î ∼ G(i) for i ∈ M (7)

LRTD = −
∑

î

[yRTD
î

lnpRTD
î

+ (1 − yRTD
î

)ln(1 − pRTD
î

)] (8)

where î refers to the new token generated by the masked token i ∈ M . yRTD
î

denotes the label of the new token (̂i) indicating whether it is consistent with
the original token (i). pRTD

î
represents the predicted result, original or replaced.
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develop
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Fig. 1. Examples of two pre-training objectives: mask language modeling (MLM) and
replaced token detection (RTD). The generator is a language model, which can be
any model that produces an output distribution over tokens. The discriminator is the
targeted pre-trained model, which is trained via detecting plausible alternatives tokens
sampled from the generator. The generator is thrown away during the fine-tuning stage.
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3.4 Contrastive Learning in ServiceBERT

Inspired by the success of contrastive learning in computer vision, we introduce
the contrastive learning to learn noise-invariant representations at the sentence-
level by contrasting positive pairs against negative pairs. Figure 2 illustrates the
structure of our contrastive learning framework, which consists of three stages:

– Firstly, we need to generate the positive pairs. For a given sequence (xi) in
the pre-training data, we randomly choose and perform a data augmentation
strategy, including synonym replacement, random insertion, random swap,
and random deletion [23]. Then we achieve the augmented sequence (x+

i ).
Then we exploit a random mask operator to mask different tokens with dif-
ferent random seeds. xi = MASK(xi, seed1) and x+

i = MASK(x+
i , seed2).

The sample xi and its noisy sample x+
i are a pair of positive samples.

– Secondly, we input all these samples into ServiceBERT to obtain the final
representations. Next, we adopt the feature vectors of their [CLS] tokens
h[CLS] as final representations of sequences. Then, an extra neural network
(MLP) layer f(.) acting on h[CLS]. Through the nonlinear transformation,
more information can be maintained in h[CLS] [3]. vi = f(ServiceBERT(xi)),
v+
i = f(ServiceBERT(x+

i )).

E[CLS]

Original sequence   xi Augmented sequence xi
+

xi = MASK( xi , seed1 ) xi
+ = MASK( xi

+, seed2 )

E1 Emask ... En

ServiceBERT

h[CLS] h1 h2 hn...

E[CLS] Emask E2 ... En

ServiceBERT

h[CLS] h1 h2 hn...

f (.) f (.)

vi vi
+Maximize Aggrement

...

...

...

...

...

...

vi vi
+

minibatch b1 noisy minibatch b2

The view of final representations in two parallel minibatches

positive negative

The view in  a pair of positive samples

Fig. 2. Our contrastive learning framework.
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– For an input xi with representation vi, we apply the in-batch and the cross-
batch negative sampling. In this way, we can obtain a set X− of 2N − 2 neg-
ative samples for each xi. We denote the set of representations for samples
in X− as V− = {v−

1 , . . . ,v−
2N−2}. We use the contrastive learning to max-

imize the representation similarity between positive samples, and minimize
the representation similarity between negative samples. The noise contrastive
learning loss for a positive pair (xi, x

+
i ) in two parallel minibatch is defined

as:

l(xi, x
+
i ) = −ln

exp(vi · v+
i )

exp(vi · v+
i ) +

∑2N−2
k=1 exp(vi · v−

k )
, (9)

where the similarity of a pair of samples is defined by the dot product of
their representations as: vi ·v+

i . We calculate the loss for the same pair twice
with order switched, i.e., (xi, x

+
i ) changes to (x+

i , xi) as the dot product with
negative samples for xi and x+

i are different. The final contrastive loss is
defined as follows:

LCL =
N∑

i

[
l(xi, x

+
i ) + l(x+

i , xi)
]
, (10)

We let ServiceBERT judge whether a pair of samples are positive or negative,
so that it can learn a more even decision boundary, which is useful for matching-
related task. In addition, most pre-training objectives in pre-trained models are
token-level, such MLM and RTD. There is a gap between these objectives and
sentence-level downstream tasks. We introduce contrastive learning to better
learn sentence-level representations to bridge this gap.

Overview, the final loss function in ServiceBERT is defined as follows:

L = LMLM + LRTD + LCL + λ‖Θ‖2 (11)

where Θ contains all learnable parameters in our pre-trained model. λ is the L2

regularization coefficient using to prevent overfitting.

4 Experiments

In this section, we firstly show the details of pre-training. Then we evaluate our
pre-trained model on two representative service-related tasks, including Web
API tagging and Mashup-oriented API recommendation. Many methods using
different information have been proposed to solve these two tasks. In this paper,
we explore the use of textual information for these two tasks.

4.1 Pre-training Settings

ServiceBERT is trained adopting the Transformer encoder architecture with 12
layers, 12 self-attention heads and 768 dimensional hidden size same as BERT-
base. We train ServiceBERT using 8 NVIDIA Tesla V100 with 32GB memory.
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We set the length of input sequences to 512 containing special tokens. We set the
following hyper-parameters to train the model: batch size is 96 and the learning
rate is 1e-4. An Adam optimizer is adopted to optimize the parameters of the
model. To accelerate the training process, we use parameters of BERT-base to
initialize our model. Finally, we train ServiceBERT for 30 epochs and evaluate
it on downstream tasks. We conduct all experiments using the deep learning
library PyTorch2.

4.2 Evaluation Metrics

We evaluate our proposed model versus other methods in terms of two commonly
used metrics: Recall@N (N ∈ {3, 5, 10}) and NDCG@N (N ∈ {3, 5, 10}). For both
of these metrics, bigger values indicate better performance.

Recall@N concentrates on the number of items both in the recommendation
list and the GroundTruth:

Recall@N =
|{GroundTruth} ∩ {Top-N items}|

|{GroundTruth}| (12)

DCG@N will assign more weights to high ranking items. One of the commonly
used descriptions is:

DCG@N =
N∑

i=1

2rel(i) − 1
log2(i + 1)

(13)

Here, rel(i) denotes whether a candidate item in the GroundTruth or not. If it
is true, rel(i) = 1; otherwise, rel(i) = 0. NDCG@N is obtained by normalizing
DCG@N with the ideal DCG: NDCG@N = DCG@N

IDCG@N , where IDCG@N is pre-
calculated by GroundTruth.

4.3 Web API Tagging Task

Web API tagging task is to automatically assign tags for Web APIs, effec-
tively promoting the discovery of Web services. We collect a Web API dataset
(until May 1 2021) from ProgrammableWeb. The problem of data imbalance
is widespread in the web service ecosystem, so we remove tags that are used
less than 50 times, which is a common practice. We remove Web APIs whose
description document length is less than 20. Finally, the dataset contains 20,958
Web APIs and 276 tags. The number of tags in each Web API is 3.15 in average.
We randomly select 90% of APIs for training, and the remaining 10% of APIs
for testing. We adopt Recall and NDCG as our evaluation metrics and report
results of representative methods in the Table 2. We use the binary cross entropy
as the loss function to optimize all models. For the methods in the first group, we
remove stop words, punctuations, and restore all words to their root forms using

2 https://pytorch.org/.

https://pytorch.org/
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the NLTK toolkit3, which are common operators effectively improving perfor-
mance in literature [21,26]. We exploit 300-dimensional GloVe4 word vectors for
word embedding.

Figure 3 shows the process of fine-tuning ServiceBERT on Web API tagging
task. Specifically, we input the description document of each Web API into
ServiceBERT, and use the final hidden state of [CLS] token as the aggregate
sequence representation. Then we input it into an extra MLP layer to obtain the
probability distribution on all candidate tags.

API description 
document [CLS] API tokens [SEP] ServiceBERT ...

Input Fine-tuning for API tagging

Tag
Prediction

[CLS] feature vector

M
LP

Fig. 3. The process of fine-tuning on the Web API tagging task.

Table 2. Results on API tagging task.

Methods Recall NDCG

Top-3 Top-5 Top-10 Top-3 Top-5 Top-10

BLSTM-Att 0.4712 0.5676 0.6846 0.5084 0.5656 0.6196

LAB-BiLSTM 0.4895 0.5803 0.6925 0.5229 0.5767 0.6291

WSC-GCN 0.5247 0.6012 0.7285 0.5531 0.5978 0.6591

SSWC 0.5598 0.6479 0.7412 0.5771 0.6039 0.6723

ServeNet 0.5701 0.6588 0.7532 0.6042 0.6433 0.7035

BERT-base 0.6090 0.7068 0.7830 0.6524 0.7126 0.7497

ServiceBERT 0.6207 0.7256 0.8056 0.6655 0.7301 0.7688

BLSTM-Att [8] proposes a hierarchical attention network at word-level and
sentence-level to capture service description features. LAB-BiLSTM [2] incor-
porates topic modeling into the Bi-LSTM to learn representation of Web service.
WSC-GCN [28] uses the graph convolutional neural network to learn Web
APIs representations by capturing word relationships. ServeNet [26] adopts
the stacked 2-D CNN and Bi-LSTM for feature extraction of service description.
SSWC [20] uses a spatial and sequential combined method for Web service clas-
sification. The second group is the results of pre-trained models. We use BERT-
base to fine-tune on Web service dataset. We can see that ServiceBERT that
incorporates domain knowledge of Web services for pre-training outperforms all
other methods, which demonstrates the effectiveness of our pre-trained model.
3 http://www.nltk.org/.
4 https://nlp.stanford.edu/projects/glove/.

http://www.nltk.org/
https://nlp.stanford.edu/projects/glove/
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4.4 Mashup-Oriented API Recommendation Task

Mashup-oriented API recommendation task is to recommend appropriate Web
APIs to developers for Mashup creations. Many Web APIs are not involved
in Mashup developments, we only care about the Web APIs invoked at least
one time, so many Web APIs are removed from the candidate set. We do the
same data preprocessing the same as Web API tagging task. The refined dataset
contains 5,413 Mashups and 1,193 candidate Web APIs.

Figure 4 shows the process of fine-tuning ServiceBERT on Mashup-oriented
API recommendation task. We input the descriptions of APIs and Mashups into
ServiceBERT, and use their final hidden state of [CLS] token as feature vectors
of them, respectively. Then we calculate dot product of feature vectors as the
relevance score of them. The experimental results are shown in Table 3.

API description 
document [CLS] API tokens [SEP] ServiceBERT ...

Input Fine-tuning for API Recommendation

Dot
Product

[CLS] feature vector

Mashup requirement 
document [CLS] Mashup tokens [SEP] ServiceBERT ...

[CLS] feature vector

Fig. 4. The process of fine-tuning on the Mashup-oriented API recommendation task.

Table 3. Results on API recommendation task.

Methods Recall NDCG

Top-3 Top-5 Top-10 Top-3 Top-5 Top-10

SPR 0.3627 0.4326 0.5098 0.3098 0.3477 0.3890

DHSR 0.3840 0.4587 0.5355 0.3385 0.3733 0.4010

TA-BLSTM 0.4018 0.4729 0.5687 0.3671 0.4012 0.4309

FC-LSTM 0.4211 0.4874 0.5786 0.3725 0.4153 0.4527

BERT-base 0.4822 0.5592 0.6543 0.4461 0.4822 0.5165

ServiceBERT 0.5270 0.5968 0.6770 0.4816 0.5149 0.5450

SPR [30] jointly models Mashup descriptions and used APIs using author
topic model (ATM) to reconstruct service profiles for API recommendation.
DHSR [25] integrates collaborative filtering with textual content within a
deep neural network for API recommendation. TA-BLSTM [15] trains a tag
attention-aware long short-term memory network to learn representations for
descriptions. FC-LSTM [14] proposes a functional and contextual attention-
based method for API recommendation. Results show that our ServiceBERT
achieves better performance than other methods, which proves the effectiveness
of our model.
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4.5 Ablation Study

In order to understand how each designed component contributes to the overall
performance gain of our model, we perform an ablation study on the API recom-
mendation task as shown in Table 4. In (2), ServiceBERT(domain) refers to that
we continue to train the BERT-base using Web service data listed in Table 1.
In (3), we introduce the RTD objective into the pre-training process. In (4), we
introduce the contrastive learning to learn noise-invariant representations at the
sentence-level. In (5), we combine all designed components.

From the results reported in Table 4, we can have some observations. Com-
pared with (1), the introduction of Web service domain data brings significant
performance improvement as shown in (2). In (3), by integrating RTD objective
into the pre-training process, the performance is further improved. In(4), when
adding contrastive learning to the pre-training stage, the performance obtains
further improvements on both evaluation metrics, which reveals the importance
of learning noise-invariant sentence representations, especially for matching task
in this case. In addition, most pre-training objectives are token-level, such MLM
and RTD. There is a gap between these objectives and sentence-level down-
stream tasks. The introduction of contrastive learning makes the model better
learn sentence-level representations, bridging the gap between pre-training and
fine-tuning. Finally, when we combine all proposed designs into the pre-training
stage, ServiceBERT achieves further performance improvements.

Table 4. Ablation study on Mashup-oriented API recommendation task.

Methods Recall NDCG

Top-3 Top-5 Top-10 Top-3 Top-5 Top-10

(1) BERT-base 0.4822 0.5592 0.6543 0.4461 0.4822 0.5165

(2) ServiceBERT (domain) 0.5034 0.5742 0.6637 0.4613 0.4934 0.5247

(3) ServiceBERT (domain+RTD) 0.5081 0.5797 0.6684 0.4689 0.4977 0.5303

(4) ServiceBERT (domain+CL) 0.5203 0.5886 0.6721 0.4753 0.5078 0.5379

(5) ServiceBERT (All) 0.5270 0.5968 0.6770 0.4816 0.5149 0.5450

5 Conclusion

This paper presented a novel pre-trained model for Web API tagging and rec-
ommendation, called ServiceBERT. Specifically, we incorporate rich knowledge
of Web service ecosystem crawled from ProgrammableWeb into the pre-training
process, so as to enable effective learning of the model on domain knowledge.
In addition to employing the objective of masked language modeling (MLM),
we also introduce the replaced token detection objective for efficient learning of
the pre-trained model. Finally, we also introduce contrastive learning to learn
noise-invariant representations at the sentence-level by contrasting positive pairs
against negative pairs. Comprehensive experiments on two service-related tasks
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have successfully demonstrated the overall performance improvement of Ser-
viceBERT over a variety of representative methods for API tagging and API
recommendation.
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Abstract. We propose a novel top-k service composition framework for
drone services under a dynamic environment. We develop a system model
for formal modeling of drone services in a skyway network. The composi-
tion process is accomplished in two phases, i.e., computing top-k compo-
sitions and extending and ranking top-k compositions using probabilistic
wait and recharge times under congestion conditions. We propose a top-
k composition algorithm to compute the best service composition plan
meeting user’s requirements. A set of experiments with a real dataset is
conducted to demonstrate the effectiveness of the proposed approach.

Keywords: Drone delivery · Drone service · Service composition ·
Top-k · Skyway network

1 Introduction

Drones have gained significant attention in recent years due to their potential
benefits for a multitude of civilian applications [1]. The use of drones will play
a paramount role in enabling new services in various domains such as disaster
management, remote sensing, and delivery of goods [2]. Drones provide safe, con-
tactless, and more resilient alternatives to deliver goods in remote locations [3].
Many start-up companies such as FlyTrex and large companies such as Amazon
and Google are investing in the use of drones for delivery services [4].

The service paradigm [5] offers a powerful mechanism to abstract the capa-
bilities of a drone as drone services. As any other service, a drone service is
defined by its functional and non-functional properties [6]. In this instance,
the functional property represents the transport of a package from a node (e.g.,
warehouse rooftop) to another node (e.g., customer’s building rooftop) in a sky-
way network. The non-functional (i.e., Quality of Service (QoS)) properties of
a drone service represent such attributes as the payload capacity, flight range,
battery capacity, etc. A skyway network is defined as a set of connected nodes
representing take-off and landing stations [7]. Each node may concurrently act
as a recharging station. The transport/delivery of a package by a drone along
a line segment that directly connects two nodes represents an atomic service
abstraction. An instantiation of this service abstraction is the transport of a

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 479–495, 2021.
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package by a specific drone between two named nodes that are connected by a
direct segment, operating under a set of requirements/constraints.

A single drone service may not guarantee the direct delivery of a package
from a warehouse to a customer’s desired location due to flight range limita-
tions, flight regulations, battery life, etc. Therefore, drone service composition is
required to ensure successful package delivery. An optimal drone service compo-
sition is defined as the selection of the best drone services in a skyway network
from a given source to a destination [8]. The composition of services creates a
value-added service [9–11]. We compose drone services to deliver packages while
considering customer’s QoS requirements. We assume that no handover of pack-
ages occurs among drones at intermediate stations as each drone has its own
delivery plan, i.e., the same drone delivers a package from source to destination.

A key challenge in drone service composition is the uncertainty in congestion
behaviour at recharging stations. This uncertainty is caused by the stochastic
arrival of drones at particular stations. The arrival of a drone is greatly influenced
by the payload weight, drone speed, and weather conditions [12]. For example,
several drones may be scheduled to arrive at a certain recharging station. If
drones arrive earlier or later than the scheduled time, this may cause congestion
at this station. A congested station is defined as a recharging station where all
pads are occupied and the drone may have to wait for the availability of pads [13].
Each drone that operates in a multi-drone environment has its own delivery plan.
Therefore, an accurate prediction of congestion at stations may not be possible
for long-term periods [14]. This uncertainty in congestion behaviour makes the
composition problem significantly complex compared to a static skyway network
where all drone services are deterministic.

The existing drone service composition approaches do not consider the uncer-
tainty in congestion behaviour at recharging stations [15,16]. We propose a top-k
drone service composition framework that can effectively deal with the uncer-
tain nature of the environment. We assume that drones are partially recharged
at intermediate recharging stations. This assumption helps drones delivering
packages faster. First, we compute top-k drone service compositions based on
the service time of each drone service without considering congestion conditions.
Then, we rank the compositions based on the shortest service time to support the
faster package delivery from a given source to a destination. For example, top-3
compositions are computed and ranked in ascending order based on the service
time for each composition. We consider the probabilistic availability of pads to
estimate the waiting and recharging times at each station under congestion con-
ditions. Then, we compute a new delivery time for each composition in top-k
compositions which is a sum of service time, waiting time, and recharging time
for each drone service. We rerank the compositions using the new delivery times
and select the best service composition plan. Finally, we compare the results
of top-k composition approach with exhaustive drone service composition app-
roach to analyze its performance in terms of execution time, delivery time, and
delivery cost. We summarize the main contributions of this paper as follows:
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• Designing a system model for the provisioning of drone services.
• Proposing a top-k drone service composition framework under recharging

constraints.
• Developing a heuristic-based approach for the composition of drone services

and ranking the drone service composition.
• Conducting experiments using a real drone dataset to demonstrate the per-

formance of the proposed composition approach.
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Fig. 1. Drone service composition for package delivery in a skyway network

2 Motivating Scenario

Drones can be used for safe and contactless delivery of packages such as parcel,
mail, medication, and meal. Let multiple delivery service providers offer package
delivery services using drones in Texas, USA. Suppose Robert requests a fast
package delivery service using a drone from San Marcos to San Antonio (92 km).
The flight range of a typical delivery drone varies from 3 to 33 km [13]. The
weather conditions, the payload weight, and the drone speed influence the drone’s
flight range. Therefore, multiple times of recharge is required to meet the delivery
request. In this regard, it is of paramount importance to avoid bad weather and
congestion conditions at the recharging stations.

We construct a skyway network following the drone flying regulations such as
avoiding flying in restricted areas (e.g., airport and military). The skyway net-
work is divided into predefined skyway segments where each segment is a skyway
path between two nodes. The nodes are the rooftops of the buildings which are
assumed to be a recharging station and/or a delivery target. Each recharging
station has a fixed set of pads for drones to land and recharge. Each skyway
segment is a drone service which is served by a drone. The nodes in the skyway
network are considered as hubs where dynamic congestion of drones occurs, i.e.,
all recharging pads are occupied. An optimal drone service composition avoids
hub nodes and provides fast and cost-efficient delivery. Figure 1 depicts a drone
service composition scenario for package delivery from point A to point B.
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3 Related Work

The existing research on drone-based deliveries can be divided into two cate-
gories: (1) Data-driven Approaches (2) Service-driven Approaches.

Data-driven Approaches. Data-driven approaches focus on point-to-point
deliveries using drones [17]. A parcel delivery system using drones is designed
considering the impact of payload on the energy consumption of the drones [18].
The energy consumption of the drone is approximated as a linear function of the
payload weight to schedule a reliable drone-based parcel delivery. It is assumed
that the flying speed of drones is fixed. Strategic and operational planning is pro-
posed for a given area based on a linear regression model. It is concluded that
60% of flight paths fail to complete the delivery if the energy consumption is
not considered. The proposed study focuses only on the flight time and payload
weight as the factors affecting drone energy consumption. The proposed system
does not consider the congestion conditions at recharging stations for drones.

An energy consumption model is presented for automated drone delivery
in [19]. It is assumed that drones can perform multi-package deliveries in a
predefined service area. The drone fleet size is optimized by analyzing the impact
of payload weight and flight range considering battery capacity. They explore
the relationship between four variables (working period, drone speed, demand
density of service area, and battery capacity) to minimize the total costs of the
drone delivery system. The study indicated that the long hours of operation
would benefit both service providers and customers. They found that drone
deliveries are more cost-effective in areas with high demand densities. This study
does not take into account the recharging requirements of drones and the impact
of congestion conditions on drone deliveries.

A drone routing problem in a distribution network is studied considering the
wind effects on power consumption [20]. It is assumed that the drone speed, wind
speed, and wind direction remain constant during the delivery operation. It is
also assumed that the payload weight of a drone remains fixed during a trip. As
all influencing factors are deterministic, energy consumption becomes a constant
number. All the deliveries are time-constrained, which requires the completion of
the delivery operation in a given time window. Thus, energy constraints are ulti-
mately transformed into generalized resource constraints. The proposed approach
does not consider the real-world changing weather and congestion conditions at
recharging stations in the drone delivery network.

A modular optimization method is proposed for the drone delivery system in
[21]. The proposed method is beneficial in increasing the readiness of the drone
fleet and decreasing the overall drone fleet size. A module in the proposed system
lends more flexibility in drone operations with its interchangeable components:
propellers, replaceable batteries, carriers, and motors. A forward-looking strat-
egy is applied to enhance the performance of drone-based delivery. The modular
delivery drones are compared to non-modular delivery drones using the proposed
approach. The simulation results demonstrate that the modular optimization
method is more efficient at reducing the power consumption and delivery time
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of a drone. The proposed model does not consider the weather conditions and
congestion conditions caused by other drones in the same delivery system.

Service-driven Approaches. Service-driven approaches ensure congruent and
effective provisioning of drone-based deliveries [16,22–24]. There is a paucity
of literature focusing on service-driven approaches that consider drone-based
deliveries in complex and dynamic environments. A formal drone service model
is designed considering the spatio-temporal features of the drone services in [16].
The spatio-temporal features represent the location and time of the drone service.
A formal QoS model is also designed to incorporate the non-functional properties
of a drone service. The QoS properties include the service flight time and the
delivery cost of a drone service. A heuristic-based algorithm is developed to select
and compose the right drone services taking into account the QoS properties.
The proposed approach focuses only on the deterministic properties of services
which is not realistic.

A prototype for drone service provision is presented that includes a drone, a
controller, and a client [23]. Each drone is embedded with a server to answer the
service requests of clients made through a smartphone application. The simula-
tion experiments are performed to analyze the factors that affect drone service
delivery. The main factors include the number of drones, frequency of client
requests, and relative localization of control stations. In addition, the scheduling
strategies for distributing the service load among different drones are found more
effective compared to a simple queue strategy. However, the different recharging
requirements of drones and uncertain wind conditions are not considered.

A deterministic drone service composition approach is proposed to incorpo-
rate the recharging constraints at stations in [22]. The drone service selection
and composition problem is formulated as a multi-armed bandit tree explo-
ration problem. A skyline approach is proposed to reduce the search space for
optimal selection of candidate drone services. A lookahead heuristic-based algo-
rithm is presented for the selection and composition of optimal services. However,
the uncertain weather conditions over different skyway segments and dynamic
recharging constraints are not considered in the proposed composition approach.

A drone service system is presented to provide long-distance delivery services
considering refueling and maintenance of drones in [24]. The objective of this
system is to minimize the travel distance of a drone and the number of landing
depots during the delivery operation. An ant colony algorithm with the A*
algorithm is proposed to solve the problem of long-distance delivery services. The
proposed system does not take into account the factors affecting the flight range
of a drone such as a payload and wind conditions. Additionally, the congestion
conditions at recharging stations are not considered in the proposed system. To
the best of our knowledge, this paper is the first attempt to present a top-k drone
service composition that considers congestion conditions at recharging stations.

4 Drone Service System Model

We propose a drone service system model for the provisioning of drone delivery
services. The proposed model consists of four components: (1) Skyway Network,
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(2) Drone Service Model, (3) No-Congestion Drone Service Model, and (4) Con-
gestion Drone Service Model.

4.1 Skyway Network

We describe our multi-drone skyway network in which drone services operate
to deliver packages. Let D is a set of drones where D = {d1, d2, . . . , dn}. The
skyway network is modelled as an undirected graph G = (N,E). N is a set
of nodes, each of which represents a delivery target (i.e., customer’s location)
or recharging station. E is a set of edges, each of which represents a skyway
segment drone service joining a pair of nodes. Each node has a fixed number of
recharging pads. B is a set of battery capacities for all drones in D. The battery
consumption and cost to travel from a node i to j are represented by bij and
cij respectively. The battery consumption of the drone increases as the payload
weight and the travelling distance increase.

4.2 Drone Service Model

The drone service, drone service query, and drone service composition problem
are defined as follows.

Definition 1: Drone Service (DS). A drone service is a tuple of < DS id,
DSf ,DSq >, where

• DS.id is a unique drone service ID,
• DSf represents the delivery function of a drone over a skyway segment. The

location and time of a drone service are tuples of < locs, loce > and < ts, te >,
where

• locs and loce represent the start location and the end location of a drone
service,

• ts and te represent the start time and the end time of a drone service,
• DSq is a tuple of < q1, q2, . . . , qn >, where each qi represents a quality param-

eter of a drone service, e.g., flight range and payload capacity.

Definition 2: Drone Service Query (DSQ). A drone service query is defined
as a service request for package delivery from a source location (i.e., warehouse
rooftop) to a destination location (customer’s building rooftop). A drone service
query is a tuple < ζ, ξ, qts, w >, where ζ is the source, ξ is the destination, qts
is the query start time, and w is the weight of the package.

Definition 3: Drone Service Composition Problem. Given a set of drone
services SDS = {DS1,DS2, ...,DSn} and drone service query < ζ, ξ, qts, w >,
the drone service composition problem is to compose the services for delivering
a package from the source to the destination in minimum time.
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4.3 No-Congestion Drone Service Model

We propose a no-congestion model for drone services where the congestion con-
ditions at recharging stations are ignored. We assume that a recharging pad is
always available when a drone reaches a station, i.e., the recharging pads at each
station are infinite. We use this assumption to compute top-k compositions that
consider only the service time of a drone service to select a service in the com-
position process. This is motivated by the fact that the service time is always
higher than the recharging time when a partial recharge policy is followed. The
delivery time for a customer Cn (n ∈ N) is the sum of service times for each com-
ponent drone service. Figure 2 represents top-K compositions in a no-congestion
drone service model. The total delivery time for each composition is calculated
by adding the sum of deterministic service times for all component drone ser-
vices. For example, the service time for a drone service from node 1 to node 2 is
30 min. The total delivery time is the sum of services leading from source node
1 to destination node 12 which is 95 min in case of service composition 1.
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Fig. 2. Top-k compositions in no-congestion drone service model

4.4 Congestion Drone Service Model

Congestion is a natural phenomenon in a resource-constrained dynamic network
[25]. The effect of congestion is primarily that the waiting time on a congested
recharging station increases as more drones approach the same congested station.
In a deterministic skyway network, each drone service has perfect knowledge of
all other incoming and outgoing drones at a particular station and their sched-
uled arrival times. Each drone service then chooses the recharging station with
the lowest waiting time. In this regard, the delivery time for a customer Cn

(n ∈ N) can simply be modelled as follows:

Tn = Sn + Rn + Wn (1)
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where Tn is the deterministic delivery time, Sn is the service time of all
component drone services in the skyway path from source to destination, and
Rn and Wn are the sums of recharging and waiting times at each intermediate
station, respectively.

In a dynamic skyway network, the drones do not have perfect knowledge
about the availability of pads at a recharging station. Therefore, we consider
the likelihood of pad’s availability at a recharging station, i.e., probability of
availability. We compute the delivery time considering the probabilities of the
pad’s availability and its duration of availability for recharging. We use the
following equation to calculate the delivery time for a customer Cn (n ∈ N):

Tn = Sn +
n∑

i=0

Pri ∗ (Ri + Wi) (2)

where Tn is the stochastic delivery time, Sn is the service time of all compo-
nent drone services in the skyway path from source to destination, Ri and Wi

are the recharging and waiting times at a station i, and Pri is the probability
of recharging and waiting times for a station i.

The probabilistic availability of recharging stations varies with time. There-
fore, we compute probabilities incrementally for neighbour recharging stations
corresponding to the current station during the delivery operation. This process
continues until the package is delivered to its desired destination. We incorporate
the recharging and waiting times with their probabilities in precomputed top-k
compositions as shown in Fig. 3.
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5 Top-k Drone Service Composition Framework

A single drone service usually cannot satisfy a user’s end-to-end delivery require-
ments. We often need to use drone service composition, which aggregates a set
of drone services in order to serve a long-distance delivery request. In this paper,
we propose a top-k drone service composition approach to support long-distance
package deliveries using drones. We initially compute and rank top-k compo-
sitions considering service times of each component drone service. The service
time represents the time to travel from one end to another end of a drone service.

In real-world situations, drone service compositions are influenced by the
stochastic arrival of drones at intermediate stations and the changes in weather
conditions. As a result, the established composition plans may become non-
optimal. We, therefore, consider uncertainties involved in weather and congestion
conditions at stations to provide an efficient and reliable drone service compo-
sition. We use the probabilistic arrival of drones at recharging stations that are
a part of the top-k compositions. In addition, we also compute their effects on
waiting and recharging times. As the congestion conditions are time-variant,
we compute probabilities at each recharging station incrementally. We then cal-
culate the stochastic delivery time using Eq. 2 in the congestion drone service
model to incorporate the effects of dynamic congestion conditions in top-k com-
positions. We rerank the extended composition plans based on the delivery times
with higher probabilities.

5.1 Algorithm

This section describes the top-k drone service composition algorithm for drone-
based delivery services. The drone service composition process is accomplished in
two phases. In the first phase, we compute, select, and rank top-k compositions
considering the delivery time in no-congestion drone service model. In the second
phase, we incorporate dynamism in top-k compositions considering congestion
conditions described in congestion drone service model and rerank the extended
composition plans. The details of the algorithm are described in Algorithm 1.

In Algorithm 1, the output DSComp is a set of top-k drone service com-
position plans from a source location to a destination location. The input is
the skyway network represented by graph G, the set of delivery drones D, the
source ζ, the destination ξ, the package weight w, the query start time qts,
and the number of top compositions to be selected k. Each skyway segment
drone service in graph G is served by a drone selected from the drone set D.
We consider the start location, end location, and the distance between the two
ends of each skyway segment drone service in graph G. We create empty lists for
DSComp, DSBase, topKComp, TDSComp, and TDSBase (Lines 1–5). We use the
Block Nested Loop (BNL) [26] algorithm to select an optimal set of drones from
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Algorithm 1. Top-k Drone Service Composition
Input: G, D, ζ, ξ, w, qts, k
Output: DSComp
1: DSComp ← φ
2: DSBase ← φ
3: topKComp ← φ
4: TDSComp ← φ
5: TDSBase ← φ
6: dsel ← block nested loop (D, w)

Phase 1. Initial top-k compositions
7: topKComp, TDSBase ← base comps (G, ζ, ξ, k, dsel, w)
8: DSBase ← rank comps (topKComp, TDSBase)

Phase 2. Extend top-k compositions considering congestion conditions
9: for DSi ∈ DSBase do

10: curT ime ← qts
11: Ti ← 0
12: for dsj ∈ DSi do
13: Prj , Wj , Rj ← probability wait recharge (dsj .loce, curT ime)
14: Ti ← Ti + Sj + Prj ∗ (Rj + Wj)
15: curT ime ← curT ime + Ti

16: end for
17: TDSComp.append(Ti)
18: end for
19: DSComp ← rank comps (DSBase, TDSComp)
20: return DSComp

a large set of delivery drones D given the payload weight (Line 6). Algorithm
2 provides the details of the BNL algorithm. Multiple drone service providers
offer package delivery services. Each provider has several drones with different
quality attributes. The BNL approach supports the selection of an optimal drone
set determined to be a good fit for the delivery request. First, we filter the large
set of delivery drones D based on the package weight w to select the candi-
date drones in Algorithm 2 (Lines 2–6). Then, we select a set of non-dominated
drones based on the best QoS properties for each candidate drone. We use the
negative and positive parameters to select drones, such as recharging time and
travel distance, respectively (Lines 8–9). We obtain the better and worse values
of quality parameters for each drone using Algorithm 3. The range of a drone is
of paramount importance to serve long-distance areas. Therefore, we prefer the
flight range parameter for selecting a drone from the optimal drone set to serve
the delivery request in Algorithm 2 (Line 31).
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Algorithm 2. block nested loop (D, w)
1: candidateDrone ← φ
2: for each drone ∈ D do
3: if drone.pl ≥ w then
4: candidateDrone.append(drone)
5: end if
6: end for
7: rows ← candidateDrone.to dict()
8: to min ← negative parameters, e.g., recharging time
9: to max ← positive parameters, e.g., travel distance

10: to sel ← important parameter for drone selection, e.g., range
11: selDrone ← candidateDrone[0]
12: for each drone ∈ candidateDrone[1 : n] do
13: is dominated ← False
14: to drop ← set()
15: for each qi ∈ selDrone do
16: better, worse ← count diff (rows[drone.qi], rows[qi], to min, to max)
17: if worse > 0 and better = 0 then
18: is dominated ← True
19: break
20: end if
21: if better > 0 and worse = 0 then
22: to drop.add(qi)
23: end if
24: if is dominated then
25: continue
26: end if
27: selDrone ← selDrone.difference(to drop)
28: selDrone.add(drone)
29: end for
30: end for
31: return selDrone[to sel]

In phase 1, we compute top-k compositions and their delivery times using the
selected drone and payload weight. Each drone service composition constitutes
a skyway path based on the shortest delivery time leading the package w from
the source ζ to the destination ξ (Line 7). We perform a straightforward ranking
of compositions considering the respective delivery times (Line 8). In phase 2,
we calculate the wait and recharge times and their corresponding probabilities
at certain timestamps using a black-box approach for each component service
and its intermediate station. We repeat the process for all top-k compositions
and estimate the updated times considering weather and congestion conditions
(Lines 9–18). We rerank the composition plans based on their extended delivery
times and finally return a list of top-k drone service compositions (Lines 19–20).
The reranking is essential as an initial optimal composition plan may become
non-optimal due to changing weather and congestion conditions.
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Algorithm 3. count diff (paramA, paramB, to min, to max)
1: better ← 0, worse ← 0
2: for each f ∈ to min do
3: better ← better + (paramA[f ] < paramB[f ])
4: worse ← worse + (paramA[f ] > paramB[f ])
5: end for
6: for each f ∈ to max do
7: better ← better + (paramA[f ] > paramB[f ])
8: worse ← worse + (paramA[f ] < paramB[f ])
9: end for

10: return better, worse

6 Performance Evaluation

We evaluate the performance of our proposed drone service composition app-
roach using the following evaluation settings:

• Performance Metrics: The delivery time and cost are paramount in drone
delivery services. We use the drone travelling distance as a function of delivery
cost. Therefore, we use (1) execution time, (2) delivery time, and (3) distance
travelled as performance metrics. The execution time is used to evaluate the
runtime complexity of the algorithms.

• Baseline: To evaluate our proposed approach, we compare the top-k drone
service composition algorithm with an exhaustive drone service composition
approach. The exhaustive composition approach takes exponential time for
the increasing number of nodes.

6.1 Experiment Settings with Real-World Datasets

We develop a top-k drone service composition framework for delivery services to
evaluate the performance of our proposed approach. The modules of the frame-
work are shown in Fig. 4. We build a skyway network using the NetworkX python
library, where each node can be a delivery target or a recharging station. We
model multiple drone services from different drone service providers operating
in the same network. The drone set consists of quality parameters of each drone
operating in the skyway network, e.g., flight range and payload capacity. The
experiments are conducted for an average of 50% times the total number of
nodes. For example, if there are 40 nodes in the network, the experiment is per-
formed 20 times. We select a random source and a random destination point for
each experiment. The delivery request module is used for initiating drone-based
delivery services. The Block Nested Loop implements Algorithm 2 which is used
to select the right drone. We use a real urban road network dataset for the Tokyo
city, including data for coordinates, nodes, and length of each edge between two
nodes [27]. We extract a sub-network of 5000 connected nodes to construct a
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skyway network. We augment a dataset for different types of drones consider-
ing the payload, speed, flight range, recharging time, and battery capacity. The
experimental variables are described in Table 1.

Fig. 4. Top-k drone service composition framework for delivery services

Table 1. Experimental variables

Variable Values

Drone model DJI M200 V2

Maximum payload capacity 1.45 Kg

Maximum drone flight time 24 min

Maximum drone flight range 32.4 km

Maximum drone speed 81 km/h

Recharging time from 0% to 100% 2.24 h

Maximum nodes in the skyway network 40

No. of pads at each recharging station 3

Experiment run the total number of nodes 50%

6.2 Results and Discussion

The proposed top-k approach performs the composition of the right drone ser-
vices to deliver the package faster. We rank the top-k compositions and select the
best composition plan for comparison with the baseline approach. For example,
the top-3 compositions in the results show the best extended composition plan
among 3 compositions with the least delivery time that is computed after incor-
porating the probabilistic recharging and waiting times. A similar approach is
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considered for top-4 and top-5 compositions that constitute initial 4 and 5 sky-
way paths from a given source to a destination with minimum delivery time.

Average Execution Time. The time complexity is an important parameter
to evaluate the performance of an algorithm. The exhaustive composition app-
roach is computationally expensive compared to the proposed top-k composition
approach. The execution time increases as the number of possible drone service
compositions increase. The average execution times for exhaustive, top-3, top-4,
and top-5 compositions are presented in Fig. 5. The execution times for all top-
k compositions are approximately similar because of avoiding exhaustive drone
service compositions. As expected, the average execution time for the exhaustive
grows exponentially for an increasing number of nodes. The experiments indicate
that when the nodes are above 40, the results’ trends are similar. As a result, we
set the maximum number of nodes at 40. It shows that the use of the baseline
approach is not practical in real-world scenarios for large-scale problems because
of its exhaustive nature. We observe that our proposed approach outperforms
the exhaustive composition approach to compute an optimal composition plan.

Average Delivery Time. The delivery time of a drone is a summation of
recharging, waiting, and service times. The delivery time is mainly affected by
the occupancy of certain recharging stations for long periods of time. Figure 6
shows the delivery times of exhaustive, top-3, top-4, and top-5 compositions. The
exhaustive approach always computes all possible drone service compositions,
which in turn provides exact solutions. The top-k compositions provide delivery
solutions close to the exhaustive composition approach. We observe that the
delivery time is 5% higher for the top-3 compositions and 4% higher for the top-
4 and top-5 compositions compared to the exhaustive composition approach.
This increase in delivery time is because the top-k compositions do not initially
anticipate the arrival of other drones and congestion conditions at recharging
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stations. However, the top-k composition approach is significantly faster than
the exhaustive composition approach, as shown in Fig. 5.

Average Distance Travelled. The cost of drone-based delivery services is
estimated to be $0.1 for a 2 kg package delivery within a range of 10 km [28].
We define the cost function of the drone delivery as its travelling distance. Due
to the uncertain nature of the environment, the initially attractive services may
lead to congested stations. The average distances travelled by exhaustive, top-3,
top-4, and top-5 compositions are shown in Fig. 7. The least distance services
selected by the top-k composition approach may result in higher delivery time
because of the uncertainty involved in the composition process. We observe that
the distance travelled by the exhaustive composition approach is slightly higher
than our proposed top-k composition approach. This is because the exhaustive
composition approach always selects the optimal delivery time services. It shows
that the delivery cost for the top-k composition approach is slightly less than
the exhaustive composition approach.
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7 Conclusion

We propose a novel framework for drone service composition considering the
stochastic congestion constraints at recharging stations. A Block Nested Loop
algorithm is used for the selection of the right drone at the source location. The
proposed approach initially computes top-k compositions with minimum service
times from the source to the destination. Then, we incorporate the probabilistic
impact of recharging time and waiting time at stations. We rank the top-k com-
positions based on their delivery times and select the best composition plan. We
run a set of experiments to evaluate the efficiency of our approach compared to
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the exhaustive composition approach. The experimental results prove that the
proposed approach is computationally efficient and cost-effective to deliver the
packages compared to the exhaustive composition approach. Moreover, our pro-
posed approach is a practical solution for real-world scenarios of drone delivery
services due to its stable and computationally efficient solutions. In future, we
plan to include other types of environmental uncertainties such as temperature
and their impact on drone delivery.
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Abstract. Mobile edge computing (MEC) extends cloud computing by
deploying edge servers with computing and storage resources at base sta-
tions within users’ geographic proximity. The networked edge servers in
an area constitute an edge storage system (ESS), where edge servers coop-
erate to provide services for the users in the area. However, the potential
of ESSs is challenged by edge servers’ constrained storage resources due
to their limited physical sizes. A straightforward method to tackle this
challenge is to reduce data redundancy in the ESS. The unique char-
acteristics and constraints in the MEC environment, e.g., edge servers’
geographic coverage and distribution, render conventional data dedupli-
cation techniques designed for cloud storage systems obsolete. In this
paper, we make the first attempt to study this novel Edge Data Dedupli-
cation (EDDE) problem. First, we model it as a constrained optimization
problem with the aim to maximize data deduplication ratio under latency
constraint by taking advantage of the collaboration between edge servers.
Then, we prove that the EDDE problem is NP-hard and propose an app-
roach named EDDE-O for solving the EDDE problem optimally based
on integer programming. To accommodate large-scale EDDE scenarios,
we propose a lnα+1-approximation algorithm, namely EDDE-A, to find
sub-optimal EDDE solutions efficiently. The results of extensive exper-
iments conducted on a widely-used dataset demonstrate that EDDE-O
and EDDE-A can solve the EDDE problem effectively and efficiently,
outperforming four representative approaches significantly.

Keywords: Mobile edge computing · Edge data storage · Data
deduplication · Integer programming · Approximation algorithm

1 Introduction

In recent years, the world has witnessed an exponential growth of network traffic
produced by mobile and internet-of-things (IoT) services [12]. The transmission
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of massive mobile and IoT data incurs heavy network traffic and consumes exces-
sive network resources. In the meantime, the cloud computing paradigm is failing
to fulfill various services’ demand for low latency [5]. To tackle these challenges,
mobile edge computing (MEC) as a new computing paradigm has emerged, which
extends the cloud’s computing and storage capabilities to the network edge in
close proximity to mobile and IoT devices.

In the MEC environment, edge servers with computing and storage resources
are deployed at base stations. The networked edge servers in an area constitute
an edge storage system (ESS). Service providers like Facebook and YouTube can
cache popular data on edge servers to enable low-latency data retrieval for their
users [13,15]. Data produced by mobile and IoT devices can also be stored on
the edge storage system to be shared or processed in real time. However, unlike
cloud servers, edge servers’ storage resources are highly constrained due to their
limited physical sizes [5]. This unique capacity constraint sets an upper bound
on the performance of an ESS and the services deployed on the system. It is
a major challenge that service providers have never encountered before in the
cloud computing environment. Many approaches have been proposed in recent
years to explore the potentials of ESSs under this constraint [6,14,19].

Reducing data redundancy in the ESS is an effective way to alleviate the
capacity constraint. Shared by various application vendors, as well as mobile
and IoT devices, an ESS is often subject to data redundancy. For example,
the real-time communication between vehicles and edge servers can lead to a
large number of duplicate video frames on the same or different edge servers
in an ESS. Reducing data redundancy in the ESS by removing duplicate data
can effectively save on the storage resources on the system. A similar problem
named data deduplication has been investigated intensively in the context of
cloud storage systems with the aim to maximize data redundancy reduction [11,
18]. However, this cloud data deduplication (CDDE) problem is fundamentally
different from the edge data deduplication (EDDE) problem. To reduce data
redundancy, most CDDE approaches first split the data stored on all the storage
nodes in the system into multiple fine-grained chunks of a specific size, e.g., 4KB
and 8KB. Then, they identify and remove duplicate data chunks across all those
storage nodes. A user requesting a data can, from a metadata server, retrieve
the locations of all the required data chunks for building the data. In the MEC
environment, a user can only access its nearby edge servers directly, i.e., edge
servers that cover the user [5]. This proximity constraint disables all the CDDE
approaches because they commonly assume that a user can access any of the
storage nodes in the system. In addition, the extra time taken to build a data
from data chunks undermines MEC’s pursuit of low data retrieval latency. Thus,
unlike CDDE that reduces data redundancy at the data chunk level, EDDE aims
to reduce data redundancy at the file level by removing duplicate data across
edge servers in the system.

In recent years, researchers are beginning to investigate data deduplication
in the MEC environment [8,9]. However, existing studies have followed the same
idea and design as CDDE approaches. Making the same assumptions as CDDE
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approaches, the approaches proposed in [8,9] cannot solve the EDDE problem
in the real-world MEC environment for the same reasons discussed above. In
addition, these approaches have failed to leverage the ability of edge servers to
communicate and transmit data over the edge server network connecting the
edge servers in the ESS, which has been widely acknowledged as a promising
way to enable collaboration among edge servers [6,16,19]. To serve a user’s data
request, the requested data can be delivered to the user from an edge server
multiple hops away over the edge server network under the latency constraint.
Thus, an EDDE approach is urgently needed that reduces data redundancy in an
ESS at the file level under the proximity constraint and the latency constraint.

This paper makes the first attempt to study the Edge Data Deduplication
(EDDE) problem in realistic MEC environments, with the aim to maximize
data deduplication ratio while fulfilling the proximity constraint and the latency
constraint. Its major contributions include:

– We motivate the EDDE problem and present its fundamental differences from
the traditional data deduplication problem in cloud storage systems.

– We formulate the EDDE problem as a constrained optimization problem and
prove that it is NP-hard.

– We propose an optimal approach named EDDE-O for solving small-scale
EDDE problems based on integer programming, and an approximation app-
roach named EDDE-A for solving large-scale EDDE problems efficiently with
a proven lnα + 1-approximation ratio.

– We comprehensively evaluate the effectiveness and efficiency of EDDE-O and
EDDE-A against four representative approaches through experiments con-
ducted on a real-world dataset.

The remainder of this paper is organized as follows. Section 2 motivates the
EDDE problem with an example. Section 3 formulates the EDDE problem and
theoretically analyze its NP-hardness. Section 4 presents EDDE-O and EDDE-
A in detail. Section 5 shows the experimental results of EDDE-O and EDDE-A.
Section 6 reviews the related work. Section 7 summarizes this paper and points
out the future work.

2 Motivating Example

Video streaming services accounted for 75% of the total internet traffic in 2017,
and this proportion is expected to increase to 82% by 2022 [10]. This emphasizes
the importance of data deduplication for ESSs. Figure 1(a) presents an ESS
comprised of 13 edge servers {s1, s2, ..., s13} deployed in a specific area, e.g.,
Melbourne CBD. Assuming that a popular video d1 is stored on edge servers s1,
s2, s4, s5, s11, and s13 to serve the users within the area marked by the yellow
line. This area is referred to as the data coverage hereafter. In this example,
we assume that the application-specific latency constraint is two hops - the

1 Multiple data can be deduplicated individually and independently.
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video can be delivered to a user from an edge server within two hops over the
edge server network. In real-world EDDE scenarios, the latency constraint is
application-specific and and the communication latency between edge servers
may not always be the same. To study the EDDE problem in a generic manner,
the latency constraint is measured by the number of hops over the edge server
network, similar to [6,16]. Our approaches can easily handle latency constraints
measured in milliseconds easily.

Fig. 1. Example EDDE scenario. In this example, data replicas are removed from s1, s4,
and s13. The data coverages before and after deduplication, as shown in (a) and (b),
respectively, are the same.

As shown in Fig. 1(a), from the perspective of the edge infrastructure
provider, e.g., T-Mobile or Amazon, this ESS does not need all the six video
replicas to serve all the users within the data coverage. Some video replicas
can be removed to save on system storage resources. Based on the data storage
information collected from the system, an EDDE strategy can be formulated
that indicates which video replicas can be removed. It will be sent to the edge
servers for implementation. This process is edge data deduplication (EDDE). The
latency constraint must not be violated - the system must still be able to deliver
the video to all the users within the data coverage within 2 hops. For example, if
we retain only one video replica on the system, say the one on s1, and remove all
the other video replicas, most of the users in the original data coverage will not
able to retrieve the video within 2 hops. Specifically, the video can be delivered to
serve only the users covered by s1, s2, s3, and s6. This EDDE solution is appar-
ently not feasible. Figure 1(b) presents another EDDE solution that removes the
data replicas on edge servers s1, s4, and s13 while keeping those on s2, s5, and
s11. As presented in Fig. 1(b), this solution offers the same data coverage as
Fig. 1(a). The users within the data coverage can retrieve the video under the
latency constraint. Compared with Fig. 1, the EDDE solution stores only three
video replicas in the ESS, 50% fewer than Fig. 1(a). Apparently, EDDE can save
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on system storage resources significantly. In the real world, the sizes of ESSs
may be much larger, and there may be many possible EDDE solutions. Finding
the optimal EDDE solution can save on the most system storage resources but
may not be easy. An effective and efficient EDDE approach is needed.

3 Problem Statement

In this section, we formulate the EDDE problem and prove its hardness theo-
retically.

3.1 Problem Formulation

Let us model the n connected edge servers in an ESS as an undirected graph
G(S,E), where each edge server si ∈ S is represented by a vertex in G and the
link between two edge servers si and sj is represented by an edge ei,j in G.

Let Sd ⊆ S denote the set of edge servers where data d is stored and ai is
the binary variable indicating whether d is stored on edge server si:

ai =

{
0 if d is not stored on si, si ∈ S

1 if d is stored on si , si ∈ S
(1)

Sd = {si| ai = 1, si ∈ S} (2)

Let h denote the latency constraint, representing the maximum number of
hops that data can be delivered from an edge server to a user over G. It is
application-specific. A low h value indicates that a low latency is required. Let
N(si) denote the set of si’ neighbor edge servers, i.e., those within h hops over
G, and Ŝd (Sd ⊆ Ŝd ⊆ S) denote the set of edge servers2 that can retrieve d
from Sd under the latency constraint:

N(si) = {sj | hij ≤ h, sj ∈ S} (3)

Ŝd = {N(si) | si ∈ Sd} (4)

Equation (3) is employed to identify si’s neighbor edge servers when h is
measured by the number of hops. If the latency constraint is measured in mil-
liseconds, say 20 ms, Eq. (3) can be replaced with N(si) = {sj | latencyj

i ≤
20, sj ∈ S}, where latencyj

i is the communication latency between si and sj .
To represent an EDDE strategy B, let binary variable bi denote whether d

is removed from edge server si ∈ Sd by B (Table 1):

bi =

{
0 d not removed from si, si ∈ Sd

1 d removed from si, si ∈ Sd

(5)

2 The edge server covering a user will retrieve a data from other edge servers if it does
not have the data requested by the user. Thus, we refer to edge servers instead of
users here for ease of exposition.
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Table 1. Summary of notations

Notation Description

ai Binary variable representing whether si has d

B EDDE strategy

bi EDDE decision representing whether d is removed from si

d Data to be deduplicated

E Set of connections between edge servers

G Graph representing connected edge servers in ESS

hij Minimum hops from si to sj

h Latency constraint

N(si) Set of neighbor edge servers of si under latency constraint

n Number of edge servers in ESS

R Deduplication ratio

S Set of edge servers in ESS

Sd Set of edge servers with d before deduplication

Sd+ Set of edge servers with d after deduplication

Sd− Set of edge servers not with d after deduplication

Ŝd set of edge servers covered by Sd under latency constraint

Ŝd+ Set of edge servers covered by Sd+ under latency constraint

si ith edge server in ESS

Let Sd+ ⊆ Sd denote the set of edge servers with d after d is deduplicated
from Sd:

Sd+ = {si| bi = 0, si ∈ Sd} (6)

Similar to Sd+, we employ Sd− ⊆ Sd (Sd+ ∪ Sd− = Sd) to denote the set of
edge servers where d is removed.

As illustrated and discussed in Sect. 2, over-deduplication will reduce the
coverage area of Sd and stop some users from being able to retrieve d under
the latency constraint. To ensure the same data coverage, the users that could
retrieve data before data deduplication must also be able to retrieve it after data
deduplication. This coverage constraint is defined below:

Ŝd = Ŝd+ (7)

The deduplication ratio produced by an EDDE strategy B, denoted by R, is
calculated as follows:

R = 1 −
∑n

i=1 bi∑n
i=1 ai

(8)

The optimization objective of the EDDE problem, i.e., to maximize the data
deduplication ratio under the latency constraint (3) and the coverage constraint
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(7), can be expressed as follows:

maximize R (9)

3.2 Problem Hardness

In this section, we prove the NP-hardness of the EDDE problem by reducing
it from the classical NP-hard uncapacitated facility location (UFL) problem [3].
Given a weighted bipartite graph G < F,C,E,W >, where F represents the
candidate locations for opening facilities, C represents the clients that need to
be served by facilities, E represents the connections from clients to facilities, and
W is the connection cost matrix from C to F . The UFL problem aims to find
a set of locations, denoted as F ′ ⊆ F , for opening facilities with the minimum
overall cost, including the cost of opening all the facilities in F ′ and the cost
of connecting clients to F ′, while ensuring that all clients can be served. Let
cost(f) denote the cost of opening up a facility f . The formulation of this UFL
problem can be expressed as follows:

min(
∑
f∈F ′

cost(f) +
∑

c∈C,f∈F ′
xc,fwc,f ) (10)

s.t.
∑
f∈F ′

wc,fxc,f ≥ 1 (11)

xc,f ∈ {0, 1} (12)

where xc,f is the connection decision from client c to opened facility f and wc,f

is the cost of connecting client c to facility f .
Now we reduce the EDDE problem to the UFL problem: 1) removing edge

servers not in Sd and the corresponding edges; 2) connecting each edge server
and its neighbor edge servers within h hops; 3) setting the same cost of storing
d on individual edge servers. This reduced EDDE problem can now be equally
converted to minimize the storage cost, i.e., the cost of storing d in the system,
while ensuring that all the edge servers can retrieve d within 1 hop. Since the
cost of each edge is 0, the objective to maximize the data deduplication ratio
in the EDDE problem is equivalent to selecting the fewest edge servers in Sd

to minimize the storage cost, the same as Objective (10) in the UFL problem.
Moreover, Constraint (7) is converted to cover all the edge servers in the reduced
EDDE problem, equivalent to Constraint (11). Constraint (12) denotes whether
client c can connect to the opened facility f . Thus, it is obvious that constraint
(12) is equal to constraint (1).

In conclusion, any solution that satisfies the UFL problem can be reduced
to the corresponding EDDE problem after the above discussion in polynomial
time. Thus, the EDDE problem is NP-hard.

4 EDDE Approaches

In this section, two approaches are proposed to solve the different scales of EDDE
problem correspondingly.
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4.1 Optimal Approach

The optimal solution to the EDDE problem must maximize the data deduplica-
tion ratio while fulfilling the same data coverage before and after deduplication
under the latency constraint. As introduced in Sect. 3.1, Sd donates the set of
edge servers that have data d before deduplication, and bi ∈ {0, 1} denotes
whether d is removed from si ∈ Sd. Thus, this EDDE problem can be modeled
as a constrained optimization problem (COP) as follows:

max (1 −
∑

si∈Sd

bi/|Sd|) (13)

hi,j ≤ h,∀si ∈ Sd, sj ∈ N(Sd) (14a)
∪{bi=0|si∈Sd} N(si) = N(Sd) (14b)

where constraint (14a) ensures the latency constraint and Constraint (14b)
ensures the coverage constraint.

EDDE-O can be implemented by employing some classic integer program-
ming solvers such as CPLEX3 and Gurobi4 for solving the COP presented above.
The solution is an assignment of 0 or 1 to each bi, where si ∈ Sd, that maximizes
the data deduplication ratio (13) while fulfilling the latency constraint (14a) and
the coverage constraint (14b). According to the solution, the data replicas are
removed from the edge servers whose corresponding bi values are 1.

4.2 Approximation Approach

Due to the NP-hardness of the EDDE problem proven in Sect. 3.2, it is unre-
alistic to find the optimal solutions of large-scale EDDE problems. In such sce-
narios, it takes EDDE-O a lot of time to explore the possible solutions and find
the optimal one. This can easily incur a significant delay in the implementation
of edge data deduplication and lower the utilization of ESSs. Thus, this section
introduces EDDE-A, an efficient approximation approach for finding sub-optimal
solutions to large-scale EDDE problems efficiently. The pseudo-code of EDDE-A
is presented in Algorithm 1.

In this algorithm, it first initializes the value of Sd−, S′
d−, the former for saving

the EDDE solution and the latter for saving the set of candidate edge servers
(Line 2). Then, it sets R

′
, R = 0 to record the new deduplication ratio and the

final deduplication ratio, respectively (Line 3). Next, the neighbor edge servers of
si(si ∈ Sd) can be obtained based on the latency constraint h, i.e., Eq. (3). Then,
the algorithm sorts the edge servers in Sd by the number of their neighbor edge
servers within h hops (Line 7). For all edge servers with the fewest neighbors, the
algorithm obtains the one, denoted as smax, with maximum distance(sj), i.e.,
the total distance from sj to each of its neighbor edge servers in N(sj) (Lines

3 https://www.ibm.com/analytics/cplex-optimizer.
4 https://www.gurobi.com/products/gurobi-optimizer/.

https://www.ibm.com/analytics/cplex-optimizer
https://www.gurobi.com/products/gurobi-optimizer/
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Algorithm 1. EDDE-A
Input: G(S, E), Sd, h
Output: EDDE solution Sd−;
1: Initialization:
2: Sd−, S

′
d− ← ∅

3: R
′
, R ← 0

4: End of initialization
5: while Ŝd+ �= Ŝd do
6: identify si’s neighbor edge servers N(si) with Eq. 3, for every si ∈ Sd

7: sort edge servers in Sd by |N(si)| high to low;
8: for sj ∈ arg minsi∈Sd |N(si)| do
9: for each edge server sk ∈ N(sj) do

10: distance(sj , N(sj)) ← distance(sj , N(sj)) + dk,j

11: end for
12: end for
13: smax ← arg max{distance(sj , N(sj)), sj ∈ arg minsi∈Sd |N(si)| }
14: S

′
d− ← S

′
d− ∪ {smax}

15: Sd ← Sd − smax

16: calculate R
′

with Eq. 8
17: if R

′
> R then

18: R ← R
′

19: Sd− ← S
′
d−

20: end if
21: end while
22: return Sd−

8–13). After that, smax can be included into the set of candidate edge servers
S′

d− and removed from Sd (Lines 14–15). Then, the new data deduplication ratio
R′ obtained by including smax in Sd− can be calculated with Eq.(8) (Line 16).
It will then be compared with the current data deduplication ratio R. If it is
higher, it will replace R and Sd− is updated accordingly (Lines 18–21). The
above process iterates until the coverage constraint is fulfilled, i.e., the set of
edge servers covered by Sd+ is equal to the set of edge servers covered by Sd

(Line 5). Finally, Sd− is returned as the final EDDE solution. According to Sd−,
an EDDE strategy B can be formulated by setting the corresponding bi = 1 (if
∃si ∈ Sd−) or bi = 0 otherwise.

Approximation Ratio. Now we analyze the approximation ratio and time
complexity of EDDE-A theoretically. Let S

′
d−(t) denote the set of candidate

edge servers obtained by EDDE-A in the tth iteration. According to Algorithm
1, whether an edge server sj is included in S

′
d− depends on |N(sj)|, i.e., the

number of its neighbor edge servers, and distance(sj , N(sj)), i.e., their distance
from sj . Thus, let us define βt = |N(S

′
d−(t))|/|S′

d−(t)| to represent the average
number of neighbor edge servers covered by each selected edge server in the
tth iteration. Let S∗

d− denote the optimal EDDE solution found by EDDE-O.
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Compared with S∗
d−, the EDDE solution obtained by EDDE-A, denoted with

Sd−, will not be able to remove more data replicas:

1
βt

≤ |S′
d−(1)|

|N(S′
d−(t))| ≤ |S′

d−(t)|
|N(S′

d−(t))| ≤ |S∗
d−|

|N(S′
d−(t))| (15)

Let |Sd−| denote the number of data replicas removed by EDDE-A. After the
final iteration of Algorithm 1, the number of data replicas removed by EDDE-A
follows:

|Sd−| ≤ 1
β1

(|N(S
′
d−(1))| − |N(S

′
d−(0))|) +

1
β2

(|N(S
′
d−(2))| − |N(S

′
d−(1))|)

+ ... +
1
βα

(|N(S
′
d−(t))| − |N(S

′
d−(t − 1))|)

(16)
Based on Eq. (15) and Eq. (16), we can infer the following:

|Sd−| ≤|N(S
′
d−(1))| − |N(S

′
d−(0))|

|N(S′
d−(1))| |S∗

d−| +
|N(S

′
d−(2))| − |N(S

′
d−(1))|

|N(S′
d−(2))| |S∗

d−|

+ ... +
|N(S

′
d−(t))| − |N(S

′
d−(t − 1))|

|N(S′
d−(t))| |S∗

d−|
(17)

Let α denote the maximum number of iteration, i.e., α = |Sd|. Based on
mathematical induction, we can obtain Eq. (18):

|Sd−| ≤ (ln α + 1)|S∗
d−| (18)

Based on Eq. (18), we can find the approximation ratio of EDDE-A as follows:

R

R∗ =
|Sd−|/|Sd|
|S∗

d−|/|Sd| ≤ (ln α + 1)|S∗
d−|

|S∗
d−| ≤ ln α + 1 (19)

Therefore, the approximation ratio of EDDE-A is lnα + 1.

Computation Complexity. Given an EDDE scenario with n edge servers
S = {s1, s2, ..., sn}, Algorithm 1 takes at most O(n) time to find the edge servers
with minimum |N(si)| in Line 6. Then, in Lines 7–12, the algorithm selects an
edge server from these edge servers based on their distance from their neighbor
edge servers. The distance calculation in Line 8–9 takes O(n2) time in the worst
case because the maximum number of edge servers in any N(sj) (sj ∈ Sd) is
n − 1. Thus, the overall computation complexity of EDDE-A is O(n2).

5 Evaluation

In this section, the experiments are conducted to comprehensively evaluate our
proposed two approaches, i.e., EDDE-O and EDDE-A.
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5.1 Experimental Settings

Dataset. To evaluate the approaches realistically, we conduct the experiments
on a widely-used real-world dataset5 [7], which contains 1,464 edge servers with
their geographic coordinates in Melbourne, Australia.

Competing Approaches. EDDE-O and EDDE-A are evaluated against the
following four approaches:

– Random: This approach randomly removes data replicas from edge servers,
one after another, until no more data replicas can be removed without vio-
lating the latency constraint or the coverage constraint.

– Greedy: This greedy-based approach always removes data replicas from edge
servers with the fewest neighbor edge servers, one after another, until no more
data replicas can be removed without violating the latency constraint or the
coverage constraint.

– EF-dedup [9]: This approach originates from [9] and is adapted in the con-
text of EDDE to remove data replicas instead of duplicate data chunks. It
first creates |Sd| clusters, each comprised of the neighbor edge servers of an
edge server in Sd within h hops. Then, it removes data replicas within those
clusters until there is one data replica within each of the clusters.

– TSC21 [14]: The edge data caching (EDC) problem studied in [14] is slightly
similar to the EDDE problem. This approach finds edge servers for storing
data replicas, aiming to minimize the number of data replicas for fulfilling
the latency constraint under the capacity constraint.

Parameter Settings. A set of small-scale experiments (Set #1) and a set of
large-scale experiments (Set #2) are conducted. The parameter settings in the
experiments are summarized in Table 2. All the experiments are conducted on
a machine equipped with Intel Core i5-8400 processor (8 cores, 8 threads) and
8 GB RAM, running Windows-10. When the value of each of the following four
setting parameters varies, the experiments are repeated for 200 times and the
averaged value is reported.

– Data redundancy rate (θ): This parameter is the redundancy of data d
in the ESS. Studies find that the redundancy of IoT data, e.g., multimedia
and traffic video sequences is generally up to 70% [17,20]. Thus, the value of
θ varies from 30% to 80% in both Set #1 and Set #2.

– Number of edge servers (n): This parameter decides the scale of the ESS,
increasing from 10 to 30 in steps of 5 in Set#1.2, from 50 to 250 in steps of
50 in Set #2.2.

– Edge server density (ds): Defined as ds = |E|/n, this parameter is the
density of the graph that represents the edge servers in the ESS. It varies
from 1.0 to 2.5 in steps of 0.3 in Set #1.3, from 2.0 to 5.0 in steps of 0.6 in
Set #2.3.

5 https://github.com/swinedge/eua-dataset.

https://github.com/swinedge/eua-dataset
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– Latency constraint (h): This parameter enforces the latency constraint,
increasing from 1 to 5 in steps of 1 in both Set #1 and Set #2.

Table 2. Parameter settings

θ n ds h

Set # 1.1 30%, 40%, ..., 80% 20 1.0 1

Set # 1.2 60% 10, 15, ..., 30 1.0 1

Set # 1.3 60% 20 1.0, 1.3, ..., 2.5 1

Set # 1.4 60% 20 1.0 1, 2, ..., 5

Set # 2.1 30%, 40%, ..., 80% 150 2.0 1

Set # 2.2 60% 50, 100, ...,250 2.0 1

Set # 2.3 60% 150 2.0, 2.6, ..., 5.0 1

Set # 2.4 60% 150 2.0 1, 2, ..., 5

Performance Metrics

– Data deduplication ratio (R), calculated with (8), the higher the better.
– Computation time, measured by the CPU computation time that taken to

find the EDDE solution by an approach, the lower the better.

5.2 Experimental Results

Effectiveness. Figures 2 and 3 show the effectiveness of the approaches in
Set #1 and Set #2, respectively. Figure 2 shows that EDDE-O and EDDE-A
achieve the highest and the second highest data deduplication ratios among all
six approaches. Second to only EDDE-O with an average performance gap of
only 8.68% across all the experiments in Set #1, EDDE-A outperforms EF-
dedup, Greedy, TSC21, and Random by an average of 7.82%, 10.33%, 16.24%,
and 24.87% in maximizing the data deduplication ratio. Figure 3 demonstrates
EDDE-A’s superior performance in maximizing data deduplication ratios in Set
#2, which is 9.47%, 16.71%, 20.34%, and 32.03% higher on average than EF-
dedup, Greedy, TSC21, and Random, respectively.

Figures 2(a) and 3(a) demonstrate the impact of data redundancy (θ) on
data deduplication ratio in Set #1.1 and Set #2.1. Given a fixed number of edge
servers in the ESS, a larger θ grows the number of data replicas on the ESS
and the data density measured by the ratio of edge servers in the system with
data replicas. This immediately increases the number of data replicas that can
be removed without violating the latency constraint or the coverage constraint.
For example, if any adjacent edge servers have duplicate data, one of them
can be removed. Thus, the data deduplication ratios achieved by all approaches
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increases. Figures 2(b) and 3(b) demonstrate the impact of the number of edge
servers (n) on data deduplication ratio in Set #1.2 and Set #2.2. Given a fixed
data redundancy rate, a larger n will further distribute data replicas across the
edge servers in the ESS. This decreases the data density in the system, making
it harder to remove data replicas without violating some constraints, i.e., the
latency constraint and the coverage constraint. For example, data replicas are
less likely to be found on adjacent edge servers. Thus, the data deduplication
ratios of all approaches decrease when n increases, opposite to the impact of θ
shown in Figs. 2(a) and 3(a). Figures 2(c) and 3(c) depict the results in Set #1.3
and Set #2.3 where edge server density ds varies. When the edge server den-
sity ds increases, the data deduplication ratios produced by the six approaches
increase. A larger ds connects each individual edge server to connect to more
other edge servers in the system. The data stored on an edge server can be
delivered to users over the edge server network under the latency constraint.
This indicates the importance of leveraging edge servers’ ability to communicate
and collaborate. Figures 2(d) and 3(d) show the impact of latency constraint
(h) on data deduplication ratio in Set #1.4 and Set #2.4. As h increases, the
latency constraint is relaxed. Users can retrieve data from edge servers further
away. This reduces the number of data replicas needed in the system to accom-
modate all the users within the data coverage. Thus, more data replicas can
be removed, and the average deduplication ratios produced by all approaches
increase accordingly.

(a) Set # 1.1 (b) Set # 1.2 (c) Set # 1.3 (d) Set # 1.4

Fig. 2. Effectiveness evaluation in Set #1

(a) Set # 2.1 (b) Set # 2.2 (c) Set # 2.3 (d) Set # 2.4

Fig. 3. Effectiveness evaluation in Set #1
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Efficiency. Figures 4 and 5 demonstrate the efficiency of all approaches in
Set #1 and Set #2, respectively. Figure 4 illustrates the high computation time
obtained by EDDE-O in Set #1 that renders those of other approaches negligible.
This high computational overheads validate the EDDE’s NP-hardness proved in
Sect. 3.2. This tells us that EDDE-O is indeed not suitable for solving large-scale
EDDE scenarios. Compared with EDDE-O, EDDE-A is much more efficient in
solving large-scale EDDE problems. In Set #1, it takes only 1.27 ms on average
to find a solution, only 0.16% of what EDDE-O takes. Please note that EDDE-O
is excluded from Set #2 because it cannot find a solution within a reasonable
amount of time in such large-scale EDDE scenarios. In Fig. 5, EDDE-A always
takes more computation time for finding an EDDE solution than the other four
competing approaches, specifically, 14.67 ms, 19.72 ms, 24.29 ms, and 28.43
ms more than EF-dedup, Greedy, TSC21, and Random, respectively. Overall,
EDDE-A scales with θ and n, taking no more than 125 ms to find a solution
in Set #2. Given its outstanding advantages in maximizing data deduplication
ratios over EF-dedup, Greedy, TSC21, and Random, its extra computational
overhead is worthwhile in most large-scale EDDE scenarios.

(a) Set # 1.1 (b) Set # 1.2 (c) Set # 1.3 (d) Set # 1.4

Fig. 4. Efficiency evaluation in Set #1

(a) Set # 2.1 (b) Set # 2.2 (c) Set # 2.3 (d) Set # 2.4

Fig. 5. Efficiency evaluation in Set #1

6 Releated Work

A large amount of data are being produced by mobile and IoT devices at the
network edge, e.g., images, video frames, and locality data [12]. It has become
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a trend for application vendors to cache popular data on edge servers to reduce
the cost and latency incurred by transmitting data from the cloud to the net-
work edge [16]. However, the constrained storage resources on edge servers are
a major challenge to explore the potentials of edge storage systems comprised
of networked edge servers [6,14,19]. Reducing data redundancy within an edge
storage system can save up to 70% storage resources overall [8,17]. This can be
achieved through data deduplication.

Cloud Data Deduplication. (CDDE) has been extensively studied for cloud
storage systems [4,11,18]. To name a few, Dubnicki et al. [4] proposed a CDDE
approach capable of deduplicating data at the data chunk level across multi-
ple data centers based on an improved distributed hash table. Yan et al. [18]
proposed a novel data deduplication approach named Z-Dedup. Z-Dedup can
monitor and remove redundancy at chunk-level in compressed back-up data by
exploiting some invariant information contained in the metadata compressed
data. Unlike most data deduplication studies that focus on back-up data, Meis-
ter et al. [11] proposed to deduplicate data for online file systems in HPC centers
with chunking strategies specifically designed based on HPC applications’ data
characteristics. Based on research on data deduplication, cloud service providers
like Amazon and Microsoft have offered and deployed data deduplication services
for their cloud storage servers [1,2].

However, specifically designed for conventional cloud storage systems, these
cloud data deduplication (CDDE) techniques are not suitable to directly employ
in edge storage systems due to the unique characteristics of the MEC environ-
ment, particularly, edge servers’ geographic distribution, limited coverage, and
constrained resources. In recent years, researchers are starting to investigate data
deduplication in edge storage systems [8,9]. Specifically, Li et al. [9] formulated
the data deduplication problem at the network edge as a clustering optimization
problem. They proposed an approximate algorithm for partitioning edge servers
into disjoint clusters so that CDDE approaches can be employed to deduplicate
data within individual clusters. In their subsequent study [8], another approxi-
mation algorithm was proposed to take data popularity into account. However,
these studies have followed the same idea of CDDE and failed to consider the
unique characteristics that differ edge storage systems from cloud storage sys-
tems fundamentally, in particular, the capacity constraint, proximity constraint,
and latency constraint discussed in Sect. 1 and widely acknowledged in state-of-
the-art studies of MEC [5,7,16]. To facilitate EDDE, this paper makes the first
attempt to motivate, model, and solve the EDDE problem with consideration of
the unique characteristics of the MEC environment.

7 Conclusion and Future Work

In this paper, we formulated the novel edge data deduplication (EDDE) prob-
lem in the MEC environment as a constrained optimization problem. We proved
that it is NP-hard and proposed two EDDE approaches. The first one is named
EDDE-O and finds optimal solutions to small-scale EDDE problems based on
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integer programming. The other one is named EDDE-A and finds approximate
solutions to large-scale EDDE problems efficiently. The results of extensive
experiments conducted on a widely-used real-world dataset demonstrate that
EDDE-O and EDDE-A can solve the EDDE problem effectively and efficiently,
outperforming four representative approaches significantly.

This research has first motivated the importance to deduplicate redundancy
in ESSs by fully exploring the characteristic of the MEC environment. As for
further works, we will attempt to devise lightweight mechanisms for detecting
data duplication and dynamic data deduplication.
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Abstract. We propose a novel framework to detect changes in the per-
formance behavior of an IaaS service. The proposed framework leverages
the concept of the IaaS signature to represent an IaaS service’s long-
term performance behavior. A new type of performance signature called
categorical IaaS signature is introduced to represent the performance
behavior more accurately. A novel performance noise model is proposed
to accurately identify IaaS performance noise and accurate changes in
the performance behavior of an IaaS service. A set of experiments based
on real-world datasets is carried out to evaluate the effectiveness of the
proposed framework.

Keywords: IaaS performance · Performance signatures · Change
detection · Performance noise

1 Introduction

Infrastructure-as-a-Service (IaaS) models offer various computational resources
such as CPU, memory, storage, and network are offered as Virtual Machines
(VMs) [3]. Large organizations tend to utilize IaaS cloud services on a long-
term basis (e.g., 1–3 years). Most leading IaaS cloud providers such as Ama-
zon, Google, and Microsoft offer significant discounts on long-term subscriptions.
Selecting a service for a long-term period is a key decision for many consumers.
Committing to a service for a long-term period that may perform poorly, may
cause loss of revenue. Therefore, it is important for a consumer to know the
performance of an IaaS service.

IaaS providers typically reveal limited performance information in their
advertisements due to market competition and business secrecy [16]. For exam-
ple, most IaaS advertisements do not contain actual vCPU (virtual CPU) speed,
memory bandwidth, or VM startup time information. The performance of a VM
may change over time due to the dynamic nature of the cloud [9]. Therefore,
advertised performance information may not reflect the true service performance
for a certain time.

An effective way to deal with the limited performance information is to lever-
age free trials [15]. Most IaaS providers promote free short-term trials and invite
potential consumers to test their application in the cloud. Therefore, a consumer
may run its application workload on different IaaS cloud services and compare
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 516–530, 2021.
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their performance. Free trial experiences, however, do not provide sufficient infor-
mation to make a long-term commitment [6]. The performance of IaaS services
changes periodically due to the multi-tenant nature of the cloud [9]. The observed
performance in a trial in one month may change if the trial is performed in a
different month. Therefore, making a long-term commitment based on only short
trials may lead to a poor selection.

IaaS performance signatures provide an effective alternative to deal with the
unknown service performance variability for the long-term selection [6,11]. The
performance signature of an IaaS service represents its expected performance
behavior over a long period of time. For instance, a signature of a VM may
indicate that its response time is expected to increase by 10% in January than
the response time in December. A consumer’s trial experience of a service and its
corresponding signature can be utilized together to make a better selection for
the long-term period. A signature-based IaaS selection approach is proposed that
generates IaaS signatures using the experience of past trial users over different
periods of a year [6]. However, most existing selection approaches do not consider
the long-term changes in IaaS performance behavior where the signature may
need to be re-evaluated periodically. The focus of this work is to detect changes
in long-term IaaS performance behavior.

An IaaS service’s performance behavior may change over time due to a num-
ber of reasons [4,11]. For instance, a provider may upgrade its infrastructure
or change its multi-tenant management policy resulting in the change of service
performance [10]. Therefore, detecting the change of IaaS performance is impor-
tant to ensure that its signature reflects the current performance behavior of the
service. We focus on the detection of changes in IaaS performance behavior as
represented by its signature. In this case, the IaaS performance signature may
need to be updated to be representative of the new performance profile of the
service.

There are two key challenges in IaaS performance Signature change detec-
tion. The first challenge is detecting the point in time where the signature needs
to be re-evaluated. A change may occur at any point in time. Therefore, it
is required to identify change points in time where there is a high probabil-
ity of performance change occurrence. This is typically known as the Change
Point Detection problem [1]. The second challenge is to differentiate between
the noise and true changes in performance. Noise typically indicates the irregu-
lar or anomalous behavior in service performance that may not be the long-term
performance changes [12]. For instance, a major power failure may impact the
service performance at a time without necessarily indicating a long-term perfor-
mance change. Noise in IaaS performance is very common due to the dynamic
nature of the cloud.

To the best of our knowledge, existing research has not given enough attention
to the long-term IaaS performance change detection problem [6]. An IaaS per-
formance change detection framework is proposed that utilizes an ECA model
to detect changes in IaaS performance [5]. However, it does not consider noise in
IaaS performance during the change detection. Therefore, the focus of this paper
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is to distinguish the true changes in IaaS performance from the changes that are
caused by performance noise.

Noise in signal processing generally represents the unwanted disturbance in
electrical signals, which is usually generated during the capture, storage, trans-
mission, processing, or conversion of the signal. In the case of IaaS cloud, noise
can be generated from co-tenants, system upgrade, or temporary service disrup-
tions [14]. We propose a novel framework to detect changes in IaaS performance
signature by accurately detecting noise and true changes in IaaS performance.
The proposed framework introduces a new type of IaaS performance signature
called categorical IaaS signature. The categorical IaaS signature models perfor-
mance behavior more accurately than the general IaaS signature introduced in
[6] as the general IaaS signature does not consider the effect of different categories
of workloads, i.e., CPU-intensive, I/O-intensive, and memory-intensive on IaaS
performance. The proposed framework utilizes a heuristic-based approach to
determine noise in IaaS performance. In this approach, the categorical signature
and the general signature are utilized to define performance noise bandwidth.
The performance noise bandwidth is updated over time to detect performance
changes more accurately. The key contributions are summarized as follows:

– A new type of IaaS performance signature called Categorical IaaS Signature
that models an IaaS service’s long-term performance behavior based on dif-
ferent categories of workloads.

– A novel performance noise model that defines the noise bandwidth based on
the categorical and general IaaS signatures.

– A performance change detection model that leverages the proposed perfor-
mance noise model to detect changes in IaaS performance.

2 IaaS Performance Signatures

We overview the general and categorical IaaS performance signatures, their rep-
resentations, and generation techniques.

2.1 General IaaS Performance Signatures

The general IaaS performance signature is first introduced in [6]. The general sig-
nature of an IaaS service is represented based on its relative performance changes
over time, i.e., how much a service’s performance may increase or decrease in one
time compared to another time. For example, the general signature of a VM may
inform that its response time is expected to increase by 5% on weekend nights
than regular weekdays. The general signature mainly focuses on the effect of
seasonality on IaaS performance. It assumes that the effect of different types of
workload on the observed performance is not substantial compared to the effect
of seasonal performance variability. Therefore, this signature is called general
signature as it considers all types of workloads equally. Note that the signature
does not tell the exact performance of a service. Therefore, a consumer is unable
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Fig. 1. IaaS performance signature generation

to select a service based on only its signature. Instead, the consumer needs to
perform the trial with its application workloads and utilize the trial experience
and the IaaS signature to estimate the long-term service performance [6].

Definition 1. General IaaS Performance Signature: An IaaS performance sig-
nature is a temporal representation of relative performance changes of an IaaS
service over a long period.

The general IaaS performance signature is represented by a set of QoS param-
eters that are relevant to the service. The relevant QoS attributes are defined
by the most important QoS attributes to measure the performance of a partic-
ular type of IaaS service [6]. For example, data read/write throughput and disk
latency are the key QoS attributes for virtual storage services.

We denote the general signature of a service as S = {S1, S2, ...Sn}, where
n is the number of QoS attributes in the signature. Each Si corresponds to a
QoS attribute. Each Si denotes a time series for t period which is represented
as Si = {si1, si2, ......sit}. Here, sit is the relative performance of the provider at
the time t for a particular QoS attribute. We use the following representation to
denote a signature:

S =

⎡
⎢⎢⎢⎣

s11 s12 .. s1t
s21 s22 .. s2t
s31 s13 .. s3t
.. .. ...

sn1 sn2 .. snt

⎤
⎥⎥⎥⎦ (1)

where each row corresponds to the QoS signature of Si and each column
represents a timestamp t. From the Eq. 1, we see that a signature may include
several QoS attributes. However, we describe the proposed approach using only
one QoS attribute in this work, i.e., throughput of an IaaS service for simplicity.
However, the proposed approach is applicable for more than one QoS attribute
of IaaS performance signatures.

2.2 General IaaS Performance Signature Generation

It is important to note that, the past trial users may not want to share their expe-
rience publicly to protect their privacy, security, and the conflict of interests with
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the provider [17]. However, they may share their trial experience with a Trusted
Non-Profit Organization (TNPO) for a limited period to help new consumers in
the selection [2]. Examples of such TNPOs are available in public sectors where
privacy-sensitive information about individuals needs to be shared to deliver
better services. For instance, health research institutes often collect data about
individual patients to improve health services. TNPOs are responsible for data
integration and distribution of collective knowledge without revealing individ-
ual’s privacy-sensitive information.

We Assume that the Past Trial Users Who Have Utilized Some IaaS Services
Share Their Experience with a TNPO for a Limited Period of Time. The TNPO
generates IaaS performance signatures based on the aggregated experience of
past trial users and deletes the users’ data afterward. Let us assume that there
are three IaaS providers (A, B, and C) who offer three VMs (V Ma, V Mb, and
V Mc) with similar configurations (e.g., resource capacity, location) for free short-
term trials as shown in Fig. 1. There are past users who utilized the VMs to find
the performance over different periods of time. The trial users do not want to
share their trial experience publicly. However, each trial user shares its experience
with a TNPO for a short period. The TNPO generates the signature to identify
the long-term performance variability of each VM. The TNPO has to delete
users’ experience once the signatures are computed. A signature provides an
aggregated view of a VM’s long-term performance variability. It is not possible
to derive individual trial experience from the signature. As a result, the TNPO
does not violate the privacy of past trial users.

We create IaaS performance signatures in a way that requires less detailed
performance information about the service performance and the past trial users
and yet useful enough to make a long-term selection. Let us assume that k
number of past trial users share their observed trial performance Qk over the
period T for a service. Here, Qk refers to the performance observed by the kth
consumer for the QoS attribute Q over the period T . We denote Qk as Qk =
{q1k, q2k, .., qtk}. The following steps are performed to generate the signature for
the QoS attribute Q:

1. For a QoS attribute Q, the performance observed by the trial users is collected
over time T .

2. At each timestamp t ∈ T , the average performance observed by k number of
consumers is measured for Q. The average performance is denoted by Qk.

The value of snt at any t represents the average QoS performance compare
to any other time t′ in Eq. 1. This representation of the signature offers two
benefits. First, the use of signature becomes easier once a consumer has utilized
free trials based on its workloads. The performance for any other time can be
found by comparing the ratio between the trial month and other times. Second,
signatures can be stored and updated easily over time as it does not require
storing detailed information about consumers’ trial.
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2.3 Categorical IaaS Performance Signatures

In this subsection, we introduce a new type of signature called categorical IaaS
performance signature. For simplicity, we refer to the categorical IaaS perfor-
mance signature as the categorical signature and the general IaaS performance
signature as the general signature. The motivation behind creating the categor-
ical signature is to produce a more accurate signature that captures the effect
of different types of workloads on IaaS performance behavior. The performance
of an IaaS service may depend on the workload it runs [7]. Therefore, IaaS
providers often advertise CPU-intensive, memory-intensive, or network-intensive
VMs. For instance, Amazon EC2 offers a wide range of compute-optimized,
storage-optimized, and memory-optimized instances.

IaaS workloads can be categorized based on several workload parameters
such as resource requirements, request arrival rates, and workload distribution.
Without loss of generality, we only consider resource requirements as workload
parameters for categorization in this work. Therefore, workload categories will
be CPU-intensive, memory-intensive, and I/O intensive. The proposed workload
categorization is applicable for any other workload parameters. Let us assume
there are Nc types of workload based on resource requirements of consumer
requests. Therefore, we create Nc number of categorical signatures. A categorical
signature is represented as:

Sc =

⎡
⎢⎢⎢⎣

s11 s12 .. s1t
s21 s22 .. s2t
s31 s13 .. s3t
.. .. ...

sn1 sn2 .. snt

⎤
⎥⎥⎥⎦ (2)

where Sc represents the signature for c categories of workloads. Here, c is one
of the categories in Nc. Rest of the attributes of Eq. 2 are same as the general
signature in Eq. 1.

2.4 Categorical IaaS Performance Signature Generation

The key difference between the categorical signature generation and the general
signature generation is the consideration of different workload categories. First,
we define a set of categories (C) based on the resource requirements where
C = {1, 2, 3, ...Nc}. For each category, we define the criteria that determine the
category of each request (workload). Let us assume that a consumer’s request
has R number of attributes where each attribute denotes a resource in the VM
such as vCPU, storage, or memory. For each attribute (a), we define a minimum
resource requirement Ma. If a request has more than Ma amount of resource
requirement for the attribute a, we consider that request as a-intensive request.
For example, if a request has 80% of CPU usage requests, then we consider that
request as a CPU-intensive request. According to this approach, a request can be
in multiple categories of workloads. The minimum resource requirement for each
attribute is defined experimentally by the TNPO for each cloud provider, i.e.,
the different threshold is considered as the minimum resource requirement for



522 S. M. M. Fattah and A. Bouguettaya

IaaS Performance
Monitoring

General IaaS
Signatures

Categorical
IaaS Signatures

IaaS Performance
Noise

IaaS Performance
Change Detection

New IaaS
Signatures

Update
Noise

Update
Signature

Fig. 2. IaaS performance change detection framework

each category to find the most effective threshold. Once we define the category
for each workload, we create the categorical signature as follows:

1. For a QoS attribute Q, the performance observed by the trial users is collected
over time T .

2. For each category a at each trial length δT , we identify k number of a-intensive
requests. The average performance (Qk) is measured for each QoS attribute.

We computed the average performance of a QoS attribute to obtain the
IaaS signature. The signature should reflect performance behavior of the service
for all types of workloads. However, the performance of a service may depend
on its workload. Therefore, we introduced the categorical signature to represent
signature for similar categories of workloads. It is not practical to define signature
for every workload. Therefore, we utilized the average performance as it is a
good approximation of the performance behavior. We improve the accuracy of
the signature by adjusting the noise bandwidth over time.

3 Proposed Change Detection Framework

In this section, we discuss the proposed change detection framework as shown in
Fig. 2. The proposed framework consists of two key components: a) IaaS perfor-
mance noise and b) IaaS performance change detection. The performance noise is
initially defined by the general signature and the categorical signature. The per-
formance noise is then updated dynamically based on the observed performance
of the free trial users. The change detection framework utilizes the knowledge
of IaaS performance noise and the categorical IaaS signature to detect changes
in the categorical signature based on the observed performance by the free trial
users. The change detection framework updates the knowledge about the per-
formance noise based on the observed performance over time.

3.1 IaaS Performance Noise

A key step in identifying changes in IaaS performance is to accurately determine
the noise in IaaS performance. We define the noise in IaaS performance as the
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deviation from the expected performance behavior as represented by the signa-
ture of an IaaS service. The key challenge in defining the performance noise is
to determine the amount of performance fluctuation from the expected perfor-
mance behavior. A boundary must be defined, which will determine whether the
observed performance fluctuations can be considered as the noise or a permanent
change in the performance behavior. In signal processing, image processing, and
other domains, there are many approaches to define and detect different types
of noises such as White noise, Gaussian noise, and Salt and pepper noise. To
the best of our knowledge, there is no definitive way of defining noise in the case
of IaaS performance behavior. Therefore, we propose a heuristic-based approach
using the general signature and the categorical signature to define the initial per-
formance noise boundary of an IaaS service. We call it IaaS performance noise
bandwidth. The noise bandwidth is updated over time based on the observed
performance behavior of an IaaS service. The performance noise bandwidth is
defined as follows:

Definition 2. IaaS Performance Noise Bandwidth: The surrounding area cre-
ated by the acceptable fluctuation from the expected performance of an IaaS ser-
vice is the IaaS performance noise bandwidth of that service.

The amount of acceptable fluctuation is initially defined by the general signa-
ture and the categorical signature as shown in Fig. 3. The distance between the
general signature and the categorical signature D is computed for each times-
tamp by the following equation:

D = dist(S, Sc) = ∀(Si, Sci) abs(Si, Sci) (3)

where S is the general signature, Sc is the categorical signature, Si is the
value of the general signature at ith timestamp, and Sci is the value of the cate-
gorical signature at ith timestamp. The dist function is computed based on the
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absolute distance between Si and Sci. D is then considered as the acceptable
deviation from the expected performance as represented by the categorical sig-
nature. Therefore, any observed performance that has the maximum deviation
D from the categorical signature is considered noisy performance. The data for
Fig. 3 are obtained synthetically to demonstrate the performance noise.

3.2 IaaS Performance Change Detection

Detecting changes in performance requires monitoring the current performance
behavior of an IaaS service. We assume that the TNPO continues to monitor
the experience of free trial users after creating the signatures. When most of the
users’ experience does not match with the corresponding categorical signature,
the existing signature needs to be re-computed. We represent the signatures and
the trial experience as time series. Therefore, the matching of trial experience and
signature has two parts: a) distance and b) shape. The distance D′ is computed
based on the absolute distance between the categorical signature and the trial
experience for a given trial period T using the following equation:

D′ = ∀i∈T abs(Sci, Ei) (4)

where Sci and Ei are the value of the categorical signature and observed
performance at timestamp i. We utilize the pearson correlation coefficient to
measure the shape based similarity using the following equation:

S(E,Sc)PCC =
∑T

i=1(Sci − S̄)(Ei − Ē)
√

(Sci − S̄c)2
√

(Ei − Ē)2
(5)

where Ē and S̄c are the average of E and Sc in period T . When the observed
performance of a user has a distance from the categorical signature within the
performance noise bandwidth, and the shape of the observed performance is
similar to the categorical signature, we assume that there is no change in perfor-
mance. We identify the following cases during the matching based on the shape
and the distance:

1. Case 1: Most of the users’ observed performance is within the noise band-
width, and the shape of the performance is similar to the corresponding cat-
egorical signatures. In this case, no action is taken.

2. Case 2: Most of the users’ observed performance is outside the noise band-
width, and the shape of the performance is not similar to the corresponding
categorical signatures. In this case, signatures are required to be recomputed.

3. Case 3: Most of the users’ observed performance is within the noise band-
width, and the shape of the performance is not similar to the corresponding
signatures. In this case, we reduce the size of the performance noise band-
width.

4. Case 4: Most of the users’ observed performance is outside but adjacent to the
noise bandwidth, and the performance shape is similar to the corresponding
categorical signatures. In this case, we increase the size of the performance
noise bandwidth.
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Let us assume that the noise bandwidth at timestamp t is defined by d+ and
d− where d+ is the distance from the categorical signature to the noise bound-
ary on the upper side of the Y-axis, and d− is the distance from the categorical
signature to the noise boundary on the downside of Y-axis. Therefore, we need
to measure whether the observed performance d is in between d+ and d− at each
timestamp. The first two cases are straightforward. We define a threshold Th.
When Th percentage of the users’ observed performance matches with case 1
or case 2, we either take no action or update the signature. The value of Th is
set experimentally. In case 3, if Th percentage of users’ performance is within
the noise bandwidth and their shape does not match then we reduce the per-
formance noise bandwidth. We experimentally define a similarity threshold Ts,
which determines the minimum acceptable similarity between observed perfor-
mance and the categorical signature. After reducing the bandwidth, we apply
the change detection process again for each user’s observed performance. In case
4, we increase the size of the noise bandwidth based on the observed performance
and apply the change detection process again. We define a threshold δd, which
determines how much noise bandwidth needs to be increased or decreased in
cases 3 and 4. Value of δd is set based on trials on the experiment.

4 Experiment

A series of experiments are conducted to evaluate the proposed change detection
approach. We identify two key attributes: a) average delay and b) ability to
detect changes or detection accuracy to evaluate the proposed approach. The
proposed approach is compared with the existing IaaS performance changed
detection approach proposed in [5].

4.1 Experiment Setup

The focus of this paper is to detect changes in IaaS performance behavior to keep
the signature up to date. To evaluate the proposed framework’s ability to detect
changes, we require an environment where a set of consumers performs free trials
on different services based on their workloads over different periods and observe
service performance over a long period of time. We then require a scenario where
service performance changes and impacts the experience of the trial users. Find-
ing such real-world workload-performance dataset is challenging. To the best of
our knowledge, there is no existing long-term workload-performance datasets of
IaaS services available publicly. Therefore, we leverage existing short-term avail-
able datasets to synthesize datasets for our experiments. We use the Eucalyptus
IaaS workload to generate the trial workloads of different consumers1. It con-
tains six workload traces of a production cloud environment. We select a trace
that contains 34 days of workloads of a large company with 50,000 to 100,000
employees. We partition the data into 360 parts and consider each partition

1 https://www.cs.ucsb.edu/∼rich/workload/.

https://www.cs.ucsb.edu/~rich/workload/
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Table 1. Experiment variables

Variable name Values

Total provisioning period 360 days

Trial length of each consumer 30 days

Total number of IaaS performance signatures 5

Total number of Consumers 18

Similarity thresholds .6 to 0.9

Anomaly thresholds 60% to 90%

an average workload of day to create a 1-year workload data. The long-term
performance of 5 IaaS providers is generated from the benchmark results pub-
lished SPEC Cloud IaaS 2016 [6]. We augment the workload traces with the
performance data to generate a long-term workload-performance dataset of five
IaaS providers. We create the signature of each provider using the approach
in Sect. 2.2. The experiment variables are shown in Table 1. We conduct the
experiments by changing the signatures randomly to create new signatures. We
have developed the experiment using Matlab on a computer with Intel Core i7
(2.80 GHz and 8 Gb ram). We have made our dataset and source code publicly
available to make this experiment reproducible2

We identify the following two key variable in the experiment that drives the
performance of the proposed approach:

– Similarity Threshold: The similarity threshold indicates the minimum simi-
larity between the shape of the observed performance in the trial of a con-
sumer and the corresponding signature. The similarity threshold is utilized
to determine shape-based similarity.

– Anomaly Threshold: The proposed change detection framework relies on the
trial experience of the majority of the users. Based on the observation of
the majority of the users, we either confirm change on update performance
noise. The anomaly threshold defines the minimum number of users that are
considered as the majority of the users.

4.2 Evaluation and Discussion

We evaluate the proposed approach in terms of the average delay to detect signa-
ture changes and its ability to detect true changes in signature. The expectation
is to reduce the average delay to detect the change in performance and increase
the accuracy of detecting changes. Here, accuracy refers to the true positives, i.e.,
how many changes the proposed approach is able to detect. Figure 4 depicts the
results of experiments. Figure 4(a) and (b) show the average delay in detecting
changes. Figure 4(a) shows the average delay for different similarity thresholds.

2 https://github.com/sm-fattah/IaaS-Signature-Change-Detection-Experiment.

https://github.com/sm-fattah/IaaS-Signature-Change-Detection-Experiment
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Fig. 4. (a) Average delay for variable similarity thresholds (b) Average delay for vari-
able anomaly thresholds (c) Accuracy for variable similarity thresholds (d) Accuracy
for variable anomaly thresholds

There is no trend visible that indicates that there is a linear relationship between
the similarity threshold and average change detection delay. The figure shows
that the average delay is minimum when the similarity threshold is about 90%.
However, the average also depends on the anomaly threshold. When the anomaly
threshold is about 70%, the average delay is minimum in most cases in Fig. 4(a).
Similarly, Fig. 4(b) shows the average delay for different anomaly thresholds. It
also shows no common trend in the average detection delay based on the anomaly
threshold. The average delay is minimum when the anomaly threshold is about
70%, and the similarity threshold is about 80%.

The average delay is not the only attribute to measure the performance. We
consider the accuracy of the proposed approach in terms of its ability to identify
true changes correctly. Figure 4(c) and (d) show the accuracy of the proposed
approach. In Fig. 4(c), the accuracy is illustrated with respect to the different
similarity thresholds. The accuracy of the proposed approach is about 80% when
the similarity threshold is 90%. The effect of different anomaly thresholds is not
very substantial on the accuracy according to the figure. Figure 4(d) illustrates
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Fig. 5. Performance of the ECA approach (a) Average delay (b) Accuracy

the accuracy with respect to the anomaly threshold. When the anomaly thresh-
old is about 90%, that means 90% of the users’ experience does not match the
corresponding signature, and the similarity threshold is about 90%, the accuracy
of the proposed approach is about 80%. The proposed approach finds the changes
in IaaS performance based on an iterative approach that conditionally updates
the performance noise. Therefore, the change detection process stops when the
suitable performance noise bandwidth is measured, confirming whether there is
a change in the signature.

4.3 Comparison with Existing Work

We have implemented the proposed ECA approach in [5] and applied it to our
dataset. The result of the ECA approach is illustrated in Fig. 5. Figure 5(a) shows
the average delay for different similarity thresholds and anomaly thresholds in
the ECA approach. The average delay in this approach can be 55 days to 35
days, depending on the similarity and anomaly thresholds. The average delay in
our approach can be from 2 days to 110 days, depending on the similarity and
the anomaly thresholds. Choosing the right similarity and anomaly threshold
provides a better result than the ECA approach in terms of average change
detection delay. The detection accuracy in Fig. 5 shows that the ECA approach
provides accuracy from 60% to 90%, depending on the similarity and the anomaly
threshold. The proposed approach in this work has an accuracy of about 60% to
80%. However, it does not produce any false positives where the proposed ECA
approach in [5] produces a significant number of false positives.

5 Related Work

Performance is one of the most important criteria during cloud service selec-
tion [9]. The performance of IaaS services has been studied in numerous stud-
ies [6,8,10,15]. An IaaS cloud service’s performance is typically measured for
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different applications based on short-trials in IaaS cloud [6,15]. Most existing
approaches do not consider the long-term performance variability of IaaS cloud
services. IaaS performance has been extensively studied in [10]. The study sug-
gests that cloud performance is a “moving target” and requires re-evaluation
periodically. A signature-based IaaS cloud service selection approach is proposed
in [6]. The proposed approach represents the long-term IaaS performance vari-
ability using the concept of the IaaS performance signature. The performance
signature of an IaaS service is generated from the experience of the past trial
users who share their data with a trusted third party. The trusted third party
analyzes the periodic performance behavior of an IaaS service to generate its cor-
responding performance signature. However, the proposed work does not con-
sider the changes in the signature over a long period of time or the effect of
different types of workload in the performance of an IaaS service [6].

To the best of our knowledge, there is no prior work that addresses the long-
term IaaS performance change detection problem [6]. The proposed approach in
[5] mainly focuses on the change point detection (CPD) in IaaS performance.
The CPD is a pre-requisite of IaaS performance change detection [1]. In the
CPD problem, the distribution of data before and after the change is often con-
sidered known. The proposed work in [5] introduces an ECA model to detect
change points in IaaS performance behavior. The ECA approach is an effec-
tive CPD technique. Other change point detection techniques include Bayesian
change point detection, Shapelet, Model fitting, and Gaussian process. The work
in [5] utilizes the CUSUM control chart to detect changes in IaaS performance.
CUSUM relies on the mean and standard deviation of a time series to detect
changes. However, CUSUM is unable to differentiate between noise and change
in IaaS performance [13]. Change detection in time series data is usually per-
formed using different similarity measure techniques. However, most of these
approaches do not consider the noise that may appear in the data. Therefore,
we introduce a change detection framework that identifies noise in IaaS perfor-
mance by leveraging the concept of categorical signature and noise bandwidth.

6 Conclusion

We propose a novel framework to detect long-term changes in IaaS performance
behavior. The long-term performance behavior of an IaaS is represented by its
performance signature. A new type of IaaS performance signature called cate-
gorical IaaS performance signature is introduced to capture the effect of different
types of workload in the IaaS signature. The proposed framework introduces a
signature change detection approach with performance noise. The key challenge
in performance change detection is to differentiate between noise and accurate
changes in IaaS performance. We introduce a new IaaS performance noise model
to identify performance change accurately. The experiment results show that
the proposed framework detects changes in IaaS performance effectively. We aim
to investigate IaaS performance noise in more detail to develop more accurate
change detection approaches in future work.
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Abstract. Of the main challenges to keep the edge computing dream
alive is to efficiently manage the energy consumption of highly resource-
limited nodes. Past studies have limited or often simplistic focus on
energy consumption factors considering computation or communication-
only solutions, questioned by either costly hardware instrumentation or
inaccurate software-specific limitations. With this gap in mind and the
wide adoption of single-board computers (SBCs) such as Raspberry Pis in
edge, in this paper, we propose a novel holistic and accurate energy mea-
surement approach in edge computing. Exploring a Test and Learn strat-
egy, (1) we firstly perform a comprehensive analysis of identifying factors
affecting energy consumption of edge nodes; (2) we develop and utilize
WattEdge, a standard framework to evaluate the identified factors; (3) we
conduct extensive empirical experiments on Raspberry Pis to thoroughly
and uniformly assess the significance of each factor, thereby proposing an
all-inclusive energy model. Wattedge is able to measure energy consump-
tion factors such as CPU, memory, storage, a combination of them, connec-
tivity, bandwidth usage, and communication protocols, as well as energy
sources such as batteries. The results specifically warn us of the necessity
of considering previously underestimated factors such as connectivity. A
Smart Agriculture use case is implemented to validate the performance of
the energy model, demonstrating a 95% accuracy.

Keywords: Edge computing · Energy consumption · Measurement ·
Raspberry Pi · Internet of Things (IoT) · Performance evaluation

1 Introduction

With the ever-increasing growth of the Internet of Things (IoT), Cisco believes
that “the number of connected devices will exceed three times the global popula-
tion by 2023 [1].” Edge (or Fog) Computing can bring the compute, storage and
network resources closer to IoT devices to address low latency requirements of IoT
applications [5]. Low power and small sized devices are intended to bring those
capabilities at the edge. Recently, Single-Board Computers (SBCs) have attracted
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 531–547, 2021.
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special attention and are entitled to realize the presumed edge nodes [22]. SBCs
such as Raspberry Pis (Pis) or Odroids are highly power-constraint [12].

The problem of efficient energy utilization for ultra low power edge nodes
appears urgent [4,20,21,24]. On the demand side, this is urgent because while
edge nodes struggle with their energy management for running heavy tasks
(e.g., AI tasks) [13,15,16], they are also expected to share their resources with
peers [6,19], known as task offloading. On the supply side also, the challenge of
harvesting energy from the environment (solar, wind, or thermoelectric) became
a challenging issue. This, however, does not exclude line-powered edge platforms
from pressing environmental and economical side effects of high energy usage.

Given the exponential growth of IoT, a myriad of connected devices in indus-
try, including agriculture, automobile, telecommunication, etc., will co-exist in the
near future which will increase energy consumption and the demand for power sup-
ply. Such concerns warn the importance of intelligence about the energy consump-
tion of IoT and its underlying platforms, so that optimization actions become fea-
sible. Basically, this intelligence cannot be achieved without the knowledge of the
major energy consumers and their impact on these platforms.

The key questions to optimise the energy consumption on the edge devices is
what are the factors contributing to energy consumption? How significant each
factor could be? And more essentially, how to develop a practical holistic app-
roach for accurate estimation and measurements of these factors? With the cur-
rent state of the art literature [7,14,22,23], however, answering these questions
appears difficult since each work only measures an in-comprehensive list of fac-
tors. Moreover, accumulating partial measurements from different studies such
as [3,8,11] that employ dissimilar system under tests, cannot guarantee a reliable
outcome. More critically, they either perform software-based measurements that
present a restricted coverage to specific applications, or perform hardware-based
measurements that require costly hardware instrumentation [16]. Rigorous coun-
termeasures are required to first identify potential factors. Also, the significance
of each factor needs to be assessed under a similar setting and for a reasonable
duration so that accurate and reliable energy models can be built [4,12,20,24].

Motivated by this gap in knowledge, we believe that a systematic and thor-
ough study is required to identify energy consumption factors and the degree
at which these factors affect energy consumption. To achieve this, the following
key contributions are made:

– Identifying potential factors impacting energy consumption of edge nodes;
– Proposing WattEdge, a standard framework for measuring energy consump-

tion of SBCs; WattEdge does not require costly hardware instrumentation
such as sensors, shunt, analog-to-digital converter, etc.

– Empirically evaluating various edge-related energy consumption factors using
WattEdge, supplemented by an all-inclusive energy model; and

– Validating the model’s performance in Smart Agriculture domain using a
practical application and demonstrating a 95% accuracy.

The remainder of this paper is structured as follows. Section 2 discusses our
proposed holistic approach to identify major energy consumption factors for edge
nodes. Then, we propose “WattEdge”, a standard framework for our empirical
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experiments in Sect. 3. In Sect. 4, the factors are empirically studied under the
same settings to provide the basis for (a) accurate comparison, (b) acquiring the
significance thereof, and (c) an energy model. In Sect. 5, we validate the energy
model generated by WattEdge using a practical application in Smart Agriculture
domain on a cluster of Raspberry Pis Finally, we discuss the key findings of this
research in Sect. 6 and conclude in Sect. 7.

2 Related Work and Energy Consumption Factors

Identifying potential factors impacting energy consumption of edge computing
devices, the literature on measuring and modelling the energy consumption fac-
tors of edge computing is thoroughly reviewed. Our study uncovers nine factors
impacting the energy consumption of the edge nodes. A summary of the degree at
which those factors are considered in related work is provided in Fig. 1 (numbers
in Fig. 1 correspond to references).

Fig. 1. Related work on energy mea-
surement and modelling: red=major,
yellow=moderate and gray=minor effort.
(Color figure online)

To begin with, a baseline for mea-
surements is considered as an essential
factor. Hence, measuring energy con-
sumption when the device is in idle
state 1 seems unavoidable as per-
ceived by several studies [8,10,22,23,
25]. Edge nodes host the IoT applica-
tions, demanding them to utilize com-
putational resources. Among them, of
course, CPU 2 is fairly dominant [14],
but other resources such as memory 3
and storage 4 are also worth consider-
ing for two reasons: firstly, edge nodes
are highly power-constrained and hence
sensitive to minor factors; secondly, cer-
tain IoT applications (e.g. AI applications) heavily rely on such resources. To
the best of our knowledge, only one work considers the memory [20], and none
paid attention to the storage in edge. Hence, we also included cloud-specific
efforts [10,25] in Fig. 1. Despite individual CPU, memory and storage, the energy
usage due to a bundle of resources 5 is a matter of concern as well which is
neglected to a large extent. However, calculating energy consumption for individ-
ual resources and then accumulating them may not give an accurate estimation,
as their combination also alters the energy usage.

Connectivity is critical for edge nodes [18], where short-range connectivity
means 6 such as WiFi, Bluetooth, ZigBee, USB, HDMI, VNC, etc. play essential
role in Edge-IoT domain. Therefore, their effects on energy consumption have to
be considered. Notably, WiFi as a widely-used means of connectivity has already
gained a lot of attention [4,12,23,24]. By connectivity, the communication comes
into the play. The degree at which communication influences energy consump-
tion may vary which makes it worthy of consideration [2]. Industrial IoT (IIoT)
applications tend to send and receive continuous messages containing single-
data points such as temperature and humidity, for instance, while images sent
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by Traffic Control Cameras in a Smart City application utilize much more net-
work bandwidth [5]. Considering this, the network bandwidth utilization 7 and
its impact on energy usage under different levels of data transmission must be
investigated [12,23,24]. Communications rely on underlying protocols 8 that
function in either a request/reply (e.g., HTTP or CoAP) or a publish/subscribe
(e.g., MQTT or DDS) fashion, whose impact is missed in the related work.

On the supply side, however, it is essential to understand the energy supply
limitations. Edge nodes have to rely on only limited capacity batteries or renew-
able energy sources harvested locally, other than or along with the grid. Given
that, the estimation of energy consumption would be practical only when the
behaviours of energy source and storage 9 such as battery are well understood.

Our proposed approach differs from the existing solutions as specified in the
following. Firstly, the works mentioned above tend to consider a selective list
of factors from only one [2,6] to four [10,17]. In contrast, our approach holis-
tically covers the nine identified factors to provide a fine-grained measurement.
Secondly, the accuracy in [4,6,24,25] is doubted by not validating the proposal
using real use cases or by merely relying on simulations; hence, in addition
to extensive empirical studies, we validate our proposal in a realistic scenario.
Thirdly, to achieve reasonable accuracy, cutting-edge hardware instrumentation
used by [2,3,6,10,13,20,24] would not always be feasible due to its complexity
and cost. We try to avoid this by encouraging a lightweight and low-cost Test and
Learn strategy. Moreover, the lightness of the proposed framework for resource-
limited edge nodes appears critical, which is compromised in [11,15,19,20,22].
Finally, our proposed approach is accompanied with a framework for repro-
ducibility and extensibility, similar to [8] which provides an open-source frame-
work, while [2,6,11,17,19–21,24] lack such features.

3 WattEdge: The Evaluation Framework

The WattEdge framework, open-sourced on GitHub1, is designed and imple-
mented on a real SBC-based testbed to measure the significance of all identified
factors (see Fig. 2). In brief (see Fig. 2), 1 an SBC edge node is prepared. 2
Simultaneously, a Stress Worker and System Monitor Agent on the main edge
node and 3 a Power Monitor Agent on the secondary Pi is invoked. 4 The
Stress Worker invokes the Stress Function 5 which triggers stress tools. 6 Sup-
plementary services and scripts are executed on the edge nodes. Finally, 7 the
Logger function collects and reports the monitored data.

Edge Device: Emerging in 2012, Raspberry Pis have gained the momentum
in the race of IoT devices [4]. They are recently employed as a perfect option
for adopting edge computing, whether as standalone or even clusters of edge
nodes [22]. In Pi family, we find Raspberry Pi 3 Model B+ to be one of the
most utilized ones [3,6,17,22]. This Pi features a 1.4Ghz Quad-Core Proces-
sor, a 1GB LPDDR2 SDRAM, a 40-pin GPIO header, 5v USB power adaptor

1 https://github.com/aslanpour/wattedge.

https://github.com/aslanpour/wattedge
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Fig. 2. WattEdge: The proposed edge energy measurement framework.

with a 1200 mA current, and connectivity options such as WiFi, Bluetooth,
HDMI, and USB, all in an ARM architecture standing on a Raspberry Pi OS
platform. Comparative quad-core SBCs include: AML-S805X-AC (La Frite),2

UDOO BOLT V8,3 ASUS Tinker Board,4 and Odroid-C2.5 To obtain sufficiently
accurate measurements: (a) Pis are configured headless; (b) connectivity ports
such as USB and HDMI are disabled; (c) communication means such as WiFi
and Bluetooth are turned off (unless specified otherwise); (d) Pis are not re-
positioned to avoid environmental conditions; (e) reasonable cool-down times
are considered between each test; (f) tests last long enough and are repeated
several times, and average and standard errors are reported for reliability; (g)
certain tests are conducted at night to minimize network interference; and (h)
the Raspberry Pi OS is updated with minimal installations.

Testbed: Two Pis are needed to emulate edge nodes (see Fig. 2). The main
Pi runs the stress test program, i.e., Stress Worker, and the System Monitor
Agent in concurrent threads. While stressing the Pi, a fine-grained monitoring
agent continuously monitors and logs the whole system under test (e.g., CPU
usage). To obtain accurate measurements, a hardware-level approach is adopted
by employing a USB power meter model UM25C, which is highly accurate as
shown in [22]. The meter reports the power and energy data in millisecond
granularity via Bluetooth connection. Obtaining these measurements demands
Bluetooth connection which influences the actual energy consumed on the Pi
under test. Hence, the Power Monitor Agent, collecting the power and energy
data, lives on a secondary Pi and is invoked remotely. The agent is connected to
the power meter and reads the measurements during the stress tests.
2 https://libre.computer/products/boards/aml-s805x-ac/.
3 https://www.udoo.org/docs-bolt/Introduction/Introduction.html.
4 https://www.asus.com/au/Single-Board-Computer/Tinker-Board/.
5 https://wiki.odroid.com/odroid-c2/odroid-c2.

https://libre.computer/products/boards/aml-s805x-ac/
https://www.udoo.org/docs-bolt/Introduction/Introduction.html
https://www.asus.com/au/Single-Board-Computer/Tinker-Board/
https://wiki.odroid.com/odroid-c2/odroid-c2
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Node Preparation: 1 prepares the edge node for a new stress test wherein
no interference exists. Actions include disabling services such as MQTT broker
which may have been employed for certain tests, disconnecting the Pi’s battery
and freeing up the memory, cache and swap. Disabling interfaces such as WiFi
and Bluetooth, USB chip, and HDMI output are confirmed as well. A hot CPU
can significantly influence the results, so a reasonable cool-down time is imposed.

Stress Worker: 2 is written in Python and lives on a thread on the main Pi.
It can run the specified test, e.g., CPU stress, for specific levels depending on
the test plan by invoking the Stress Function.

System Monitor Agent: 2 is run on a concurrent thread. It collects the
monitored data every single second and, at the end of test, saves it on the stor-
age (a 32GB micro SanDisk SDHC UHS-I card). The lightness, i.e., low over-
head, will be confirmed in our empirical studies. Measured metrics include: times-
tamp, battery charge, CPU (usage, temperature, frequency, context switching and
interrupts), memory usage, disk (usage, I/O read/writes) and bandwidth (packet
sent/received). The psutils python module is employed to measure those metrics,
except for the battery charge level which is measured by the pijuice module. The
data is kept in memory until the end of test to avoid disk operations.

Power Monitor Agent: 3 is remotely invoked on the secondary Pi by Stress
Worker. It gets connected to the power meter through Bluetooth and reads the
power and energy data such as the wattage, current, volts, watt-hours etc. The
data is finally saved on a local file.

Stress Function: 4 executes the specified test to stress a resource by 5 eval-
uating the test plan. It interacts with the secondary Pi depending on the test
plan to run required services as well 6 . Such interactions happen for running
iperf server/client, HTTP server/client or MQTT publisher/subscriber.

Logger: 7 collects, merges and stores the data monitored by the two monitors.

4 Empirical Study

We use WattEdge to empirically analyze the 9 identified factors with a Test
and Learn strategy. Note that all tests are conducted for 15 min and repeated
3 times, and average and standard errors are reported. We believe that 15 min
is large enough for the purpose of building energy model and provides stable
results. In reporting energy consumption results, we present all the y-axes at the
same range, i.e., 0-1000 mWh for the sake of easy comparison. We firstly obtain
energy usage in idle state as a baseline for drawing an analogy between the
impact of different factors. Then, each factor is analyzed by first reporting the
overall energy consumption of that stress test, then subtracting already identified
factors to obtain the actual energy consumption of the investigated factor.

Idle State Stress. To establish a baseline, a series of non-stress tests are
performed wherein the Pi is idle. The measurements are labeled as “idle” in
figures. The energy consumption, denoted as Eidle, was measured as a total
of 179.33 mWh on average. The average CPU usage was observed at 1.56%,
confirming the lightness of WattEdge.
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CPU Stress. The Stress Function employs the widely used stress tool to stress
test the CPU [9] at full capacity and meanwhile it runs the cpulimit tool to
throttle the usage at certain percentages (see Fig. 3). Results show increasing
energy usage, starting from 179 to 699 mWh (see Fig. 3). The upward slope
appears constant for CPU usages up to 50% while it gradually reaches a flat
plateau for usages above 70%. The reason for such behavior was found in the
CPU temperature. The temperature throttling for Pi 3 is capped at 60C◦ upon
which the CPU frequency is reduced automatically to avoid overheating. CPU
usage below 70% never reached this threshold. This also warns us that (a) the
long-running benchmark tests are more reliable and the accuracy of performance
evaluations that last for only a few seconds/minutes as in [4] is questionable; and
(b) the CPU frequency tends to be driven by the temperature in certain IoT use
cases such as Smart Farming wherein devices are exposed to the sunshine.

Energy Model: By fitting the collected data to a linear regression, we can model
the energy consumption driven by CPU usage as follows: Ecpu(u) = (22.9u +
107.6) × t where Ecpu stands for energy consumption in mW due to the CPU
usage percentage u and t is the duration of the experiment in hours (if 15 min, t =
0.25). Given the interference of power management mechanism on the device, for
a pure CPU-dominant model, we use a sub-model as ̂Ecpu(u) = (26.9u+24.6)×t,
measured by only considering CPU usages below 70% that gives the R2 value
of 99.7%. With the pure CPU model, a total energy model (E) is modelled as
E = Eidle + ̂Ecpu.
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Memory Stress. To stress test the memory, the advanced version of stress tool,
stress-ng, is employed. This allows the workers to stress on specific percentage
of unused memory. A sample command is: stress-ng --vm 1 --vm-bytes 25%
−t 900s. That is, spawning 1 worker spinning on 25% of unused memory. Four
different tests stressing on 25, 50, 75 and 100% of unused memory are performed.

The true impact of memory load on energy consumption appears rather sim-
ilar for all memory loads (Fig. 4). Noticeably, a slight increase in energy con-
sumption for lower memory loads is observed. This is due to the overhead on
CPU context switching and interrupts. Technically, the stress-ng tool is con-
tinuously calling mmap(2)/munamp(2) and writing to the allocated memory. If
the allocated memory is smaller (e.g., the 25% stress), the writing process is
finished sooner and since the experiment lasts for minutes, this happens more
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often. Such context switching and interrupts appeared to be less for memory
stress on higher loads. Further analysis shows an average 26% CPU usage in
all memory experiments. The sole CPU stress at 26% constitutes for the energy
consumption of 369 mWh, which is 5% lower than the average energy consump-
tion of 388 mWh obtained in memory experiment. In other words, the memory
can impose 11% more energy consumption (added to the idle) when under load
which appears serious for highly power-constrained edge devices, while neglected
in related works.

Energy Model: A memory-bound energy usage, Ememory(m), here is equivalent
to Eidle × m

100 , where m is the memory impact and for a Pi 3 B+ m = 11.
Memory impact should be involved in the ̂Ecpu sub-model when the edge node
is executing both CPU- and memory-bound IoT applications. This leads to an
aggregated formula as: E(u,m) = Eidle + ̂Ecpu(u) + Ememory(m).

Storage Stress. The aim of this stress is to evaluate if there exists any dif-
ference in energy consumption of (a) read and write, as well as (b) combined
operations on storage and to what extent. This is evaluated using stress-ng tool.
Observations for storage stress in terms of individual read and write operations
for 15 min confirm that write operations (264 mWh) consume more energy than
reads (235 mWh). A 11% difference in energy usage between read and write oper-
ations is seen. The main dichotomy in their performance can be attributed to
the 79% more context switching occurrences by write operations. The question,
however, is whether the increased energy usage is only due to the disk opera-
tions or the impact of memory and CPU, i.e., over-fitting? If so, how much?
Given the 5% observed CPU usage, we ran a CPU stress at 5% to measure the
net energy usage. The WattEdge framework reported 218 mWh energy usage
that means individual read and write operations can impose an extra energy
usage of 9% and 26%. This gives an energy model as: Estorager = Eidle × 9%
and Estoragew = Eidle × 26%, respectively. Having that, the Etotal(u,m) can be
updated to Etotal(u,m) = Eidle + ̂Ecpu(u)+Ememory(m)+Estorager +Estoragew .

In practice, the read and write operations are highly likely to exist simulta-
neously, whose energy usage pattern may be different. We ran the storage stress
by continuously writing, reading and removing files of different sizes of 1, 2, 4,
and 8 MB (the experiments at KB scale are done by [10]). Simplistically, such file
sizes can resemble media files, ranging from image, to voice and video streams.
Figure 5 confirms that combined operations’ energy usage will always be higher
than that of read-only operations (i.e., 235 mWh) and also higher (file sizes >
2M) than write-only operations (i.e., 264 mWh). The CPU usage again remains
similar to individual operations (u = 5%, equivalent to 218 mWh energy usage).
At maximum, combined operations showed 278 mWh energy usage. Excluding
the impact of CPU (218 mWh) and memory (20 mWh), the net value increases
due to storage is 278 − 218 − 20 = 40mWh, equivalent to 22% imposed energy
usage (added to the idle state) only due to combined storage operations which is
considerable. We also evaluated larger file sizes, but the usage would not increase
much further due to the SD card and CPU performance used in our testbed.
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Energy Model: Involving CPU usage along with combined read and write oper-
ations of storage, i.e., Estoragerw (at high intensity), we can estimate that
Estoragerw = Eidle × 22%. More precisely, the energy usage observed in Fig. 5
shows a linear pattern that can be formulated as: Estoragerw(l) = (42.2l−17.9)×t,
where l stands for stress level: l = {1, 2, 4, 8}, and the accuracy is approxi-
mated at R2 = 92%. This insight leads the total energy model to E(u,m, l) =
Eidle + ̂Ecpu(u) + Ememory(m) +

[
[Estorager + Estoragew ] ∨ [Estoragerw(l)]

]
.

Resources Bundle Stress. The stress-ng tool is able to stress all resources
simultaneously. Four different levels of stress are imposed to the edge devices.
The stress levels for CPU and memory are considered at 25%, 50%, 75% and
100% while the storage is undergoing simultaneous read and write operations at
the size of 1, 2, 4, and 8 MB. This also could be deemed a realistic application
which is not necessarily single-resource-bound.

Observations are shown in Fig. 6. The energy usage presents a considerable
increase over the idle mode. The slight decrease for the fourth level, compared
to the third level, once again has the root in the energy management mech-
anism on Pi devices. In this series, the mechanism is automatically activated
for all levels, but at different points. It is also important to note that this
mechanism was not activated for CPU usages below 70% in CPU-only stress
while in combined resources this happened for even 25% stress. The exact
impact of resource bundle needs further investigations. Take 25% stress as an
example. According to the obtained energy model, we expect a total energy
usage of E(53.85,m, 1) = Eidle + ̂Ecpu(53.85) + Ememory(m) + Estoragerw(1) =
179.33 + 368.6 + 20 + 6.83 = 574.76. This estimation is less than the observed
energy usage in Fig. 6 (i.e., 627 mWh). Analysing all four stress levels, an average
extra usage of 8.4% for a resource bundle energy usage is obtained which may
have the root in increased context switching due to resource (CPU, memory and
storage operation) interference which causes this overhead.

Energy Model: The revised energy model, considering the impact of resource
bundle energy usage, i.e., Ebundle, can be equal to a constant (i.e., β, here
β = 8.4) value which is added to the total expected energy usage. This gives
Ebundle(u,m, l, β) =

(
̂Ecpu(u) + Ememory(m) + Estorage(l)

) × ( β
100 ). The follow-

ing aggregated formula including the impact of resource bundle is hence gained:
E(u,m, l, β) = Eidle + ̂Ecpu(u) + Ememory(m) + Estorage(l) + Ebundle(u,m, l, β).

idle 25% 50% 75% 100%
0

200

400

600

800

1000

En
er

gy
 C

on
su

m
p.

 (m
W

h)

Resource Bundle Stress Level

179.3

727.3 768 790 778.7

Fig. 6. Resources bundle
stress

idle 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000
WiFi OFF
WiFi ON

En
er

gy
 C

on
su

m
p.

 (m
W

h)

CPU Usage (%)

Fig. 7. Connectivity stress
(no comm.)

OFF ON 2 4 6 8 10 12 14 16
0

200

400

600

800

1000
Upload
Download

En
er

gy
 C

on
su

m
p.

 (m
W

h)

Bandwidth Utilization (Mbps)

Fig. 8. Bandwidth utiliza-
tion stress



540 M. S. Aslanpour et al.

Connectivity Stress. In the literature [12,13], WiFi and Ethernet connectivity
have gained more attraction due to highly adaptability to IoT domain. However,
the limitations of employing the Ethernet in many wide-area IoT use cases makes
it less worthy of consideration [18]. We redo experiments on CPU tests wherein
WiFi is enabled, but no data transmission is occurred. The results for when
WiFi is off is used as a baseline for comparison. This study is essential since idle
state for edge nodes is highly likely, yet the consequences are left unattended,
particularly for connectivity impacts [13,14,17,19].

Results in Fig. 7 reveal that the WiFi connectivity impact exists most of the
times even though insignificant overall. In details, the lower the resource uti-
lization, the higher the impact of the idle WiFi activities will be. Activities can
be seen as responding to the beacon signals sent by a router or peers. A slight
CPU temperature increase due to such activities was also reported by the Sys-
tem Monitor Agent. Precisely, an extra energy usage of between 0 and 17.38%
for idle state is observed. Not a linear trend is seen, hence the average impact
of WiFi enabled is considered here (7.82%). Further investigation is conducted
for connectivity means such as Bluetooth, USB, HDMI and VNC which unex-
pectedly showed 18, 128, 6 and 18% extra energy usage, respectively. This and
WiFi observations means that connectivity, at least for investigated means, can
impose a sum of 178% extra energy usage.

Energy Model: A constant c representing the influence of connectivity, i.e., sum
of WiFi-enabled (but idle), Bluetooth,USB, HDMI and VNC, can be involved as
Econnectivity(c) = Eidle × ( c

100 ). This finding leads the aggregated energy model
to the following: E(u,m, l, β, c) = Eidle + ̂Ecpu(u) + Ememory(m) + Estorage(l) +
Ebundle(u,m, l, β) + Econnectivity(c).

Network Bandwidth Stress. Communications between edge nodes can be
categorized in upload and download actions, regardless of the data type. How-
ever, one cannot ignore the importance of data transfer rate. To study it, an
iperf3 client is invoked on the main Pi and an iperf3 server is invoked on the
secondary Pi. Then, the client sends data in TCP mode at different rates to the
server: {2, 4, 6, 8, 10, 12, 14, and 16 Mbps}. WattEdge measures the upload
impact on energy usage. Similarly, the opposite roles are given to the Pis also to
measure the impact of download operations.

Results, in Fig. 8, show the energy consumption due to upload and download
at particular transmission rates. It is obvious that the more the bandwidth is
utilized, the more the energy is consumed. Moreover, the upload (generating
and sending data) appears more influential than the download (receiving data).
There exists certain CPU usage, however, which needs to be taken into consid-
eration to discover the real impact of bandwidth utilization. The CPU usage
grows from 1.53% in idle state to 5% for the highest bandwidth utilization, i.e.,
16 Mbps. Excluding the idle state and CPU usage, a maximum of 58% and
26% increase in energy usage due to bandwidth utilisation for upload and down-
load operations, respectively, is observed. This understanding will help making
a reasonable decision for establishing or preventing communication in edge.
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Energy Model: The bandwidth net effect, excluding CPU, is involved in the
Etotal, as the CPU effect is independently considered by Ecpu. It presents a lin-
ear pattern which in Pi 3 B+ is measured as: Ebandwidthu(r) = (14.8r + 173) × t
for upload with R2 = 99% and Ebandwidthd(r) = (−0.9r + 172.2) × t for down-
load with R2 = 92%, respectively, where r = {2, 4, 6, 8, 10, 12, 14, 16} stands for
the rate of data transmission in Mbps. This eliminates the need for calculat-
ing the connectivity solely, i.e., Econnectivity(c) as WiFi is under use. Involving
bandwidth in E, we have: E(u,m, l, β, r) = Eidle + ̂Ecpu(u) + Ememory(m) +
Estorage(l) + Ebundle(u,m, l, β) +

[
Ebandwidthu(r) ∨ Ebandwidthd(r)

]
.

Communication Protocols Stress. In practice, as we observed in storage
analyses, the communication operations as upload and download are expected
to co-exist. Hence, this study evaluates the energy consumption due to commu-
nication protocol families: request/reply and publish/subscribe in a full cycle of
transmission. The WattEdge picks up the most popular ones from each cate-
gory in IoT domain, i.e., HTTP and MQTT, respectively. The test scenario for
HTTP is to send simple HTTP GET requests from a client to a server which
is a Python Flask HTTP server echoing the message. For MQTT, a publisher
sends messages to a subscriber on another node through a Mosquitto MQTT
broker. The subscriber receives messages and publishes its response to the origi-
nal publisher, similar to the HTTP study design for consistency. Note that in the
request/reply family only client and server live and consume the energy while in
the publish/subscribe there are publisher, subscriber and broker. The WattEdge
framework comprehends such differences and assigns each role to the main Pi
and the auxiliaries on the secondary Pi, depending on the test plan.

Tools such as Jmeter can be used as a client generating the load. Jmeter,
however, is unreasonably heavy for SBCs such as Pi 3 B+. Since we aim at both
considering the client and server impact of protocols, the WattEdge framework
benefits from a lightweight customized python script for load generations. For
the MQTT load test, the paho Python module is employed which efficiently
generates and publishes messages with imposing negligible overhead. The load
generator will concurrently send 10 to 90 requests/messages per second (in 9
tests) to the server in HTTP tests and to the subscriber in MQTT tests. This
is the maximum load a Pi 3B+ could generate according to our configurations.

HTTP: The difference between client and server’s impact appears insignificant
(Fig. 9). Energy consumption increases from 179 mWh in idle mode to 192 mWh
in WiFi-enabled and to 443 and 430 mWh for maximum client and server stress,
respectively. To reveal the net value for energy usage, we exclude the idle state
and CPU usage obtained by the System Monitor Agent. More CPU usage was
seen for the client than server. The net value is as 22% and 35% additional
energy usage due to the HTTP client (Ehttpc) and server (Ehttps), respectively, at
maximum. The range of energy usage for different rates of concurrently, e.g., 10–
90, is narrow and no linear pattern with a reasonable accuracy is observed. Hence,
an average energy usage satisfies the inclusion of this factor which is observed
at 18% (cl) and 30% (se) energy usage for client, Ehttpc(cl) = Eidle × cl

100 , and
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server, Ehttps(se) = Eidle × se
100 , respectively. The cl and se stands for client and

server’s impact which for Pi 3 B+ will be 18 and 30, respectively.

MQTT: The energy usage depends on three entities: publisher, broker and sub-
scriber. Figure 10 shows that the MQTT mechanism adds to the energy usage,
but insignificant differences exist between entities. The slight difference is seen,
mostly for heavy loads (e.g., 80 and 90 messages), where the subscriber was dom-
inant and the broker consumed relatively less energy than others. Excluding the
idle state and CPU usage (observed at < 5% for entities), the net energy usage
for publisher (Emqttp), subscriber (Emqtts) and broker (Emqttb) at maximum load
is measured as 28, 32 and 23% additional energy usage, respectively. Similar to
HTTP, the range of energy usage is narrow, and the interest of simplicity, an aver-
age energy usage of 23 (pu), 26 (su) and 22% (br) for publisher, subscriber and
broker is considered. This gives the following formulas: Emqttp(pu) = Eidle × pu

100 ,
Emqtts(su) = Eidle × su

100 and Emqttb(br) = Eidle × br
100 .

HTTP vs. MQTT: Overall, entities in HTTP consume much more CPU and
energy than in MQTT. However, excluding CPU usage, the MQTT is imposing
further energy usage. It should not be neglected that a third-party entity as bro-
ker exists in MQTT scenario whose energy usage must be considered. With this
in mind, if we exclude the broker, the energy usage for both HTTP and MQTT
becomes comparable. Moreover, this considerable usage due to communication
raises the following question: “Is the task or data offloading, which requires com-
munication between nodes, in edge computing always affordable?” With this
insight, the total energy usage can consider finer-grained measurements based
on entities performance in each protocol as follows:

E(u,m, l, β, cl, se, pu, su, br) = Eidle + ̂Ecpu(u)+Ememory(m)+Estorage(l)+

Ebundle(u,m, l, β) +
[
[
Ehttpc(cl) + Ehttps(se)

] ∨ [
Emqttp(pu) + Emqtts(su) +

Emqttb(br)
]
]
.

Energy Sources Stress. With the widespread usage of the Lithium-ion batter-
ies as energy storage, WattEdge employs a PiJuice HAT (i.e., Hardware Attached
on Top–HAT) installed on the Pi to supply battery power. The PiJuice HAT
features an on-board 1820mAh battery, original battery from Motorola Droid
2 (A955), and communicates with the Pi through GPIO Pins. A remotely con-
trolled 5V Single Channel Relay Module handles the connection and disconnec-
tion of the charger.

The studies on the battery are to find out two behaviors: charging and dis-
charging. For the former, we keep charging the battery from 10% to 98% and
babysit the powering behavior. Figure 11 shows energy usage during three hours.
Starting from 10% charge, the PiJuice software asked the battery to get higher
wattage. The wattage is reduced by reaching at the moderate charge level around
30–50%, increased at charge levels between 50–80% and then gradually decreased
the powering until fully charged (163 min). After that, the incoming wattage is
significantly reduced. This is evidencing that the battery software system con-
siderably influences the powering which is worth considering.
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On the discharge side, we are concerned about the efficiency of batteries.
Hence, we drained a certain amount of the battery storage and measured how
much energy it needs to obtain same amount of energy again. This revealed that
the battery is returning 20% less energy. This is due to the internal resistance
of the batteries. Also, the aging issue in Lithium-ion batteries deteriorates per-
formance and increases internal resistance, all warning us of the energy sources
considerations as well as energy consumers.
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The Test and Learn strategy provides us with an understanding of energy
consumption factors in a practical measurement including: (1) idle state; (2)
computation such as CPU, memory, storage and resource bundle (the storage
is ignored for non-data-intensive applications); (3) connectivity if connectivity
means are enabled; and (4) communication if data need to be transferred between
the edge nodes using connectivity technology e.g. Wifi. For communication, if
merely data transmission is of interest, bandwidth usage is included, otherwise
only communication factors are included where specific protocols such as http or
mqtt are used. If one wants to use the proposed model in practice, parameters
of the model such as u, m, l, β, c, r, cl, se, pu, su, and br should be set based
on the specifications of the edge nodes and running applications. In the next
section, we validate the proposed energy model for an edge platform hosting a
real-world application from agricultural domain.

5 Validation

Fig. 12. A pest bird deterrent applica-
tion’s workflow

An edge computing platform for Smart
Agriculture—A Bird Deterrent System—
is practically implemented, that under the
hood is a cluster of Pis. In this use case, a
bird deterrent device utilizing motion and
camera sensors is equipped with a Pi to
act as an edge node (see Fig. 12). The edge
nodes reside in a local network and are
connected to each other using a wireless
router. The IoT application works as fol-
lows (Fig. 12): (1) a motion sensor continuously senses the environment. (2) If a
motion is perceived, the camera sensor is activated to take a photo. A trigger is
pulled to call an object detection application on the device, for processing. (3)
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We utilized a YOLO6 (Real-Time Object Detection) function running as a web
service using Flask (Python web framework) deployed on Docker containers for
such processing. (4) If a bird is detected in the image, the deterrent device is
activated for a certain time duration.

In a cluster of nodes, we assume nodes can share resources for computation
offloading (scheduling the YOLO object detection container on peers) to save
energy since fake owls are intended to be powered by batteries and solar panels.
The edge nodes form a Kubernetes (K3s) cluster (see Fig. 13). Given the event-
driven nature of the application, a Serverless platform, OpenFaaS, is employed
for deploying the core YOLO object detection function. Upon a photo taken
by the camera, the function’s endpoint is triggered and a request is sent to
OpenFaaS gateway on the master node. The gateway invokes the function, and
requests the photo from the Pi, generating the task.

Experiments are conducted in (A) local execution and (B) computation
offloading scenarios to validate the energy model. We deploy the System Mon-
itor Agent of WattEdge on each Pi to monitor the actual energy consumption.
Using profiling, we obtain parameters that the energy model requires, i.e., u and
l for estimations. Then we compare the energy consumption estimated by our
energy model to the actual usage measured by the WattEdge. A Poisson distri-
bution is used to generate task. Two Pis are involved in experiments: Worker 1
(task generator in both scenarios and task executor in scenario A) and Worker 2
(idle in scenario A and task executor in scenario B). A Master node (OpenFaaS
gateway) also exists that is not involved in task generation and executions and
only performs orchestration. Thus we do not discuss its energy consumption.
The monitor reads energy consumption from the USB Meter locally. Hence, for
accuracy, we include the Bluetooth-related energy usage in the model. Also, for
consistency, our experiments last for 15 min and are repeated 3 times.

Fig. 13. A cluster of Pis with Kuber-
netes, OpenFaaS and WattEdge.

(A) For local execution, the actual
energy usage of Worker 1 for the dura-
tion of test is reported at 573 by the
USB Meter (see Fig. 13). This scenario
involves computation: CPU (u), mem-
ory (m), storage (l) and resource bun-
dle (β). Since the energy data is read
locally, the Bluetooth connection energy
usage (c) is considered in connectivity. In
terms of communication, although Worker
1 is both task generator and executor,
it still needs communication with Master
node. This communication in Kubernetes
is based on a request/reply protocol, so
the client (cl) and server (se) roles must
be considered for Worker 1. Hence, the
total energy usage will be E(u,m, l, c, cl, se). The variables such as u = 41.43
and l = 1 are obtained through profiling and constants are already known for

6 https://pjreddie.com/darknet/yolo/.

https://pjreddie.com/darknet/yolo/
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Pi 3 (see Sect. 4). These two variables and other constants are used to estimate
energy consumption using our proposed energy model. The estimation using the
energy model results in total of 612.64 mWh which demonstrates 93% accuracy
compared to the actual energy consumption. Using the same method for Worker
2, which was almost idle in this scenario, an accuracy of 91% is observed.

(B) For offloading execution, the actual energy consumption of Worker 1 is
reported at 316 mWh (less than previous scenario). Applying the energy model
on the observed CPU utilization, storage and constant values, and comparing
the estimated value with the actual one, a 97% and 98% accuracy in energy
consumption estimation is obtained for Worker 1 and 2, respectively.

6 Discussion

Our findings show the significance of various factors in energy consumption of
power constrained edge devices.

– Major factors: Connectivity prompts to be a major factor, neglected to a
large extent by the literature. Confirming findings from previous studies (see
Fig. 1), our findings pinpoint that the CPU and idle state are also major
energy consumption factors.

– Moderate factors: Communication protocols and resource bundle are found
to be moderate factors. The request/reply protocols are shown to be more
power hungry compared to publish/subscribe models. The network band-
width utilization and energy sources factors have moderate impact on the
energy consumption.

– Minor factors: Impact of the memory and storage utilization appeared to be
less significant.

We believe that the novel Test and Learn strategy in WattEdge significantly
contributes to the literature by providing an accurate, low-cost, lightweight,
fine-grained/holistic, and extensible framework. The WattEdge approach pro-
vides accurate enough measurements missed in software-based approaches while
avoiding high-cost hardware instrumentation in hardware-based solutions. The
high accuracy was ensured by running a diverse workflow (CPU-, memory- and
storage-intensive as well as communication). The energy model developed based
on WattEdge framework measurements. Two use cases were evaluated to validate
the accuracy of energy models. An average accuracy of 95% are obtained in val-
idation tests. The WattEdge framework is designed to be sufficiently lightweight
as in practice it would not consume CPU usage of more than 1% as observed in
our empirical studies. It is sufficiently fine-grained to allow a realistic and accu-
rate measurement of a wide range of energy consumption factors: CPU, memory,
storage etc. Finally, while the obtained power model is dependent on Pis, the
WattEdge framework can be applied to other SCBs such as NVIDIA Jetson or
Odroid [6] to obtain hardware-specific power models. In other words, SBCs con-
siderably feature the same potential power factors but in different capacities.
The modular design of WattEdge allows simple extensions for such resources.
Besides, edge candidates other than SBCs can extrapolate the WattEdge idea.
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7 Conclusions and Future Work
In this work, we conducted a comprehensive review to identify factors impact-
ing energy consumption of edge devices first. Then, a framework called Wat-
tEdge was proposed to evaluate energy consumption of edge devices through
a 9-step assessment using identified factors. These factors include: node’s idle
state, CPU, memory, storage, resource bundle, connectivity, network bandwidth,
communication protocols and energy storage. WattEdge was implemented on
a real SBC-based edge computing testbed while several empirical experiments
were conducted. Based on the empirical analysis, an evolutionary all-inclusive
energy model was developed. Our findings confirms that, in addition to major
energy consumption factors such as CPU and idle state, connectivity uses signif-
icant energy in edge devices. This highlights the need for low power connection
technologies and energy efficient communication protocols for the edge. Using
real-world application in the smart agricultural domain, we validated our pro-
posed energy model demonstrating a 95% accuracy of the model. In future, we
will extend WattEdge to support a wider range of edge computing’s require-
ments. This involves the study of: (a) renewable energy sources such as solar,
(b) connectivity means such as Lora, and (c) communications protocols such as
DDS.
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Abstract. Load balancing is one of the most significant concerns for data
center (DC) management, and the basic method is reassigning applica-
tions from overloaded servers to underloaded servers. However, to ensure
the service availability, during the reassignment of an application, some
resources (i.e., transient resources) are consumed simultaneously on its ini-
tial server and its target server, which imposes a challenge for load balanc-
ing. The latest research has proposed a concept called resource equivalence
class (REC: a set of resource configurations such that a latency-critical
(LC) application running with any one of them can meet the QoS target).
In this paper, we use the REC to improve the load balancing for a DC
where multiple LC applications have already been co-located on servers
with the service availability and QoS requirements. We formulate the pro-
posed load rebalancing problem as a multi-objective constrained program-
ming model. To solve the proposed problem, we propose to use a machine
learning-based classification model to construct the RECs for applications,
and we develop a local search (LS) algorithm to approximate the optimal
solution. We evaluate the proposed algorithm via simulated experiments
using real LC applications. To our knowledge, it is the first time to use REC
for improving load balancing.

Keywords: Load rebalancing · Resource equivalence class · Local
search

1 Introduction

The load balancing in DC management has been brought to the forefront with
the booming development of cloud computing. Load balancing is one of the most
significant concerns for DC management in that it is beneficial to reduce ser-
vices’ response time and makespan [22,26], to avoid network bottlenecks [9,20],
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to boost energy-efficiency [24,26], availability [26], throughput [19,22], and scal-
ability [13]. Modern cloud service providers have deployed various load balancers
in their data centers to meet load balancing requirements at different levels [1].

The basic method to achieve load balance is through judiciously reassigning
tasks from overloaded servers to underloaded ones. To avoid service interrupt,
when we reassign an application from its initial server to a target server, a copy
of that application is constructed on the target server and begins to consume
resources on that server; then the requests (i.e., workload) are redirected from
that application to the newly constructed copy; finally, the original application
is terminated. During the reassignment, some resources (i.e., transient resources)
are consumed simultaneously on the initial and the target server.

The transient resource imposes a challenge for load balancing because an
application might not be reassigned to its target server if the capacities for tran-
sient resources are insufficient. Furthermore, co-located applications will contend
for shared resources and thus may suffer from performance interference. To min-
imize the impact of performance interference, partitioning shared resources for
co-located LC applications is necessary [7,11,23,28,30–32,38–40]. In this case,
achieving load balance is more challenging because we must partition sufficient
resources for LC applications to meet their QoS targets.

Previous works [7,32] proposed the REC: the set of all resource configurations
such that an LC application running with any one of these configurations can
meet the QoS target. For example, configuration 〈2 cores, 16 LLC ways〉 (LLC:
last level cache) and 〈4 cores, 4 LLC ways〉 may both satisfy an LC application’s
QoS target, and so would both be included in its REC. Using the RECs can
facilitate the load balancing in two ways: (a) simply adjust the configurations
of LC applications may lead to a more balanced load among servers; and (b)
LC applications can switch to a configuration with lower demands for transient
resources, and thereby make the reassignment operation easier.

Despite the advantages of utilizing the REC as mentioned above, using the
REC imposes several challenges for load balancing. First, the REC of an LC
application is difficult to construct, because it varies for different workloads while
measuring all the resource configurations for every possible workload is impracti-
cal. Second, when the REC is considered, the search space for the load balancing
problem is dramatically expanded and the complexity is greatly increased. Third,
using the REC to improve load balancing may increase the total resource usage
of a DC, so we need to trade-off between load balancing and cost-efficiency.

In this paper, we use the REC to improve load balancing in DCs with co-
located LC applications. The main contributions are as follows. First, we formu-
late the proposed problem as a multi-objective constrained programming model,
which jointly improves the load balancing and cost-efficiency for a DC while
maintaining the service availability and QoS guarantee for LC applications. Sec-
ond, we propose using a machine learning-based approach to construct the REC
for each LC application and design an efficient LS algorithm to approximate the
optimal solution of the proposed problem. Third, we conduct extensive exper-
iments to evaluate the effectiveness of the proposed solution. The results show
that using the REC improves load balancing and cost-efficiency for DCs.
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Table 1. Configuration of the platform

Cores and LLC 8 Xeon E5-2609 v4 cores, 20 MB 20-way set-associative

Memory and storage 56 GB DDR4, 2TB HDD and 2 × 128 GB SSD

OS and virtualization Centos 7, kernel 5.8.10, Linux Container 1.0.11

2 Motivation

Resource Equivalence Classes. We consider the REC for five real-world LC
applications from the TailBench suite [21]. They are Sphinx, Img-dnn, Moses,
Xapian, and Masstree, and are used for speech recognition, handwriting recog-
nition, machine translation, search engine, key-value database respectively.

Figure 1 displays the REC of Img-dnn and Xapian running on a server (spec-
ification listed in Table 1) under various resource configurations (cores and LLC
ways) and workload (measured in requests per seconds, RPS), where the x-axis
and y-axis respectively denote the number of LLC ways and cores, and the color
of the grid denotes the tail latency (i.e., the 95th percentile of response delays,
which is measured in milliseconds). As shown in the color bar, darker colors indi-
cate lower delays, and the colored cells represent the configurations that satisfy
the QoS target, constituting the REC of an application, while the white cells
are the configurations that violate the QoS target. The QoS target (the number
on the rightmost side of each color bar) is the tail latency of an application run-
ning under the maximum workload (denoted by maxRPS) using all cores and
LLC ways, exceeding the maximum workload will cause a significant increase of
latency. The REC of other LC applications is omitted due to the length limit.

Img-dnn with 750 RPS Xapian with 2250 RPS

Fig. 1. The REC of each application under given RPS

We have several observations from the results in Fig. 1. First, the RECs vary
across applications. This is because the properties, such as the functionality,
resource demand, and contention features, vary across applications. Second, a
higher workload results in a smaller REC (i.e., with fewer valid resource config-
urations). This is because a higher workload generally requires more resources,
which reduces the number of configurations that meet the QoS target.
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(a) The initial status of Case 1 (c) The initial status of Case 2

(b)
configurations on m2

Only adjust applications’
(d)

and then reassign Masstree
Adjust Sphinx’s configurations

Fig. 2. Using the REC makes the reassignment operation easier

How RECs Improve Load Balancing. We use two examples to show how
RECs improve load balancing. The first example is shown in Fig. 2(a) and (b),
there are two servers m1 and m2 with identical configurations as shown in
Table 1. Initially (Fig. 2(a)) Xapian and Moses are co-located on server m1 and
have the same resource configuration 〈2 cores, 5 LLC ways〉, while img-dnn and
masstree are co-located on server m2 and have the same resource configuration 〈1
core, 10 LLC ways〉. Suppose we can swap Xapian with Img-dnn (or swap Moses
with Masstree), the load of m1 and m2 would be balanced. However, performing
such a swap is unacceptable because it will violate the transient resource capac-
ity of m2 for LLC. The previous load rebalancing methods do not use RECs, and
they may fail in reassigning applications in this case. If the REC is used, we can
switch the configuration of img-dnn and Masstree to 〈2 cores, 5 LLC ways〉, as
shown in Fig. 2(b), the load of m1 and m2 becomes balanced. In this case, load
balancing is improved by changing the configurations according to the REC.

The second example is shown in Fig. 2(c) and (d), sphinx runs on m1 with
resource configuration 〈8 cores, 20 LLC ways〉, while Img-dnn and Masstree are
co-located on m2, with resource configurations 〈3 cores, 15 LLC ways〉 and 〈1
core, 5 LLC ways〉 respectively. Transient resource constraint prevents us from
reassigning any application between m1 and m2 because m1 does not have any
available cores and LLC ways to accommodate new applications. Therefore, the
previous load rebalancing methods fail in reassigning applications in this case. If
the REC is used, we can switch the configuration of Sphinx to 〈2 cores, 10 LLC
ways〉. If so, there is enough capacity on m1 for accommodating Masstree, and
the load between m1 and m2 becomes more balanced after reassigning Masstree
to m1 (in Fig. 2(d)). The resources used by Masstree on m2 will be returned after
the reassignments are completed. In this case, we reduce the demand for transient
resources by using different configurations and thus facilitate the reassignment.

3 Problem Formulation

In this section, we formally define the load rebalancing problem that uses REC
to achieve a more balanced load among servers. Let S and A respectively denote
a set of servers (with identical specifications) and a set of LC applications. Each
application a∈A has a given workload (i.e., RPS) and is deployed on its initial
server s∗

a (s∗
a ∈ S), and we use the set Pa to denote its REC, where each resource
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configuration p∈Pa is represented by a vector, with the rth element (denoted by
p[r]) representing the resource demand of resource r∈R. Let p∗

a denote the initial
resource configuration for an application a, which is included in its REC. Let
capr

s denote the capacity of a server s for resource r.
We aim to achieve load rebalance and minimize the total resource usage by

adjusting the applications’ resource configurations and reassigning the appli-
cations among servers while meeting the QoS target and service availability.
We define two matrices XA,S (XA,S = {Xa,s|a∈A, s∈S}) and XA,P (XA,P =
{Xa,p|a∈A, p∈Pa}) to respectively denote the assignment of applications to
servers and the configuration of applications: Xa,s = 1 (binary) indicates appli-
cation a is assigned to server s; Xa,p = 1 (binary) indicates application a selects
the configuration p.

We define the load of a server s for resource r (denoted by Ur
s ) as the total

resource demand of resource r of all applications on server s, and use ur to
quantify the ideal usage of resource r per server.

Ur
s =

∑

∀a∈A

∑

∀p∈Pa

Xa,s · Xa,p · p[r], ur =

∑
∀a∈A

∑
∀p∈Pa

Xa,p · p[r]
∑

∀s∈S

capr
s

.

If it were possible to perfectly reassign applications and partition resources,
then we would have Ur

s = ur for all servers s. Based on the above definitions,
the objective function of the load balancing problem is defined as

min ω

load imbalance︷ ︸︸ ︷∑

∀r∈R

∑

s∈S

(|Ur
s − ur|) + (1−ω)

resource usage︷ ︸︸ ︷∑

∀r∈R

∑

s∈S

Ur
s , (1)

where the first item denotes the load imbalance, the second one denotes the total
resource usage, and the weight ω adjusts the importance of the two objectives.

We have several hard constraints. The single configuration constraint : each
application should be assigned one configuration from its REC.

∑

∀p∈Pa

Xa,p = 1.

During each reassignment operation, transient resources such as cores, LLC,
and memory are consumed simultaneously on the applications’ initial servers
and their target servers. The transient resources used by applications are not
returned to their initial servers until the reassignments are physically complete
in the DC. Therefore, we develop the transient resource constraint : there should
be enough transient resource capacity to accommodate an application a on its
initial server s∗

a and its target server, which is defined as

part1︷ ︸︸ ︷∑

a∈A
s∗
a=s

∑

∀p∈Pa

(1−Xa,s)·p∗
a[r]+Xa,s·Xa,p·p[r] +

part2︷ ︸︸ ︷∑

a∈A
s∗
a �=s

∑

∀p∈Pa

Xa,s·Xa,p·p[r] ≤ capr
s.
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This constraint calculates the resource usage of server s as follows. If s is the
initial server of a, then the constraint is dominated by part 1: if a is placed on
s, then we take one of its resource configurations p into account; otherwise, we
take its initial configuration p∗

a into account. If s is not the initial server of a,
then the constraint is dominated by part 2, where the p is taken into account.

Note that all configuration adjustments and reassignments are theoretically
simulated rather than physically operated. We cannot adjust the initial configu-
rations of applications because of service availability. In addition, the objective
function represents a final state where all reassignments and configuration adjust-
ments are supposed to be physically complete, and all the transient resources on
initial servers are released. The ur varies as we change configurations.

4 Solution

In this section, we complete two tasks: construct the RECs for applications and
compute the optimal solution for the problem.

Construct the REC. As shown in Fig. 1, the REC varies with workloads.
Therefore, measuring the tail latency for all resource configurations under every
workload to construct the REC is implausible due to the large profiling overhead.

To address this issue, we train an XGBoost binary classifier [2] for each type
of application, which predicts if a given resource configuration can make an
application running under a fixed RPS meet its QoS target. The input features
include a resource configuration and a given RPS; the output is a binary label
indicating whether the given QoS target is satisfied. Based on the classifier, we
enumerate all possible configurations and RPSs to predict their QoS results, and
then filter the inputs that violate QoS target out to construct the RECs.

Search for the Optimal Solution. The load rebalancing problem is NP-
hard [3,5,12]. Thus, we design an LS algorithm to approximate the optimal
solution within a time limit. The workflow of the LS is presented in Algorithm
1. The XA,P and XA,S follow their definitions in Sect. 3, and are initialized by
applications’ initial configuration and server. The weighted cost Ω is denoted
by f(XA,P ,XA,S), i.e., the value of objective function. The Quick Shrinking
adjusts applications’ configurations, Quick Balancing reassigns applications on
the overloaded servers to the underloaded ones, and Greedy Reassign creates
subproblems and iteratively reduces the cost by optimally solving them.

Algorithm 1: Local Search
1: (XA,P ,XA,S) ← initial solution pair of configuration and assignment
2: Ω ← f(XA,P ,XA,S)
3: Quick Shrinking(XA,P ,XA,S , A)
4: Quick Balancing(XA,P ,XA,S , S)
5: Greedy Reassign(XA,P ,XA,S , S)

The details of Quick Shrinking are presented in Algorithm 2. We sort all
servers in descending order according to the product of the server’s usage for each
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resource (line 1). Then, we set each application’s current resource configuration
to the configuration p− that has the minimal product of demands for all resources
(line 5). If any constraint is violated or the weighted cost Ω is increased, we roll
back to a backup pair (X∗

A,P ,X∗
A,S); otherwise, we accept the (XA,P ,XA,S).

Algorithm 2: Quick Shrinking(XA,P ,XA,S , S)
1: Sort all servers in S in descending order according to

∏
∀r∈R Ur

s

2: for each server s in S do
3: for each application a on s do
4: Ω←f(XA,P , XA,S), (X∗

A,P , X∗
A,S)←(XA,S , XA,P )

5: p−← arg minp∈Pa

∏
∀r∈R p[r]

6: try to set the resource configuration of a to p− without any violations
7: if Ω is increased, revert to (X∗

A,P , X∗
A,S); otherwise, use (XA,P , XA,S)

Algorithm 3: Quick Balancing(XA,P ,XA,S , S)
1: Sort all servers in S in descending order according to

∏
∀r∈R Ur

s

2: for each i in {0, . . . , K} do
3: for each application a on si do
4: for each j in {K, . . . , 0} do
5: Ω←f(XA,P ,XA,S), (X∗

A,P ,X∗
A,S)←(XA,S ,XA,P )

6: try to shift a to sj without any violations
7: if Ω is increased, then revert; otherwise use (XA,P ,XA,S), break

The details of Quick Balancing are presented in Algorithm 3. We first sort
all servers in descending order. Next, we try to shift applications from the top K
(a parameter) overloaded servers to the top K underloaded servers, satisfying all
constraints (lines 2–7). If the weighted cost Ω is reduced after shifting applica-
tions, we accept the (XA,P ,XA,S) and continue to next application; otherwise,
we revert to (X∗

A,P ,X∗
A,S). The parameter K leads to a trade-off between per-

formance and efficiency. A larger K corresponds to a larger problem scale, which
aids in reducing the weighted cost since more servers are involved. However, the
computational overhead increases as K grows. So the K should be carefully set.

Algorithm 4: Greedy Reassignment(XA,P ,XA,S , S)
1: repeat
2: S′ ← a set of K/10 randomly selected servers
3: Sort all servers in S′ in descending order according to

∏
∀r∈R Ur

s

4: for each i in {0, . . . , |S′| − 1} do
5: for each application a on si in the set S′ do
6: for each j in {|S′| − 1, . . . , 0} do
7: Ω←f(XA,P ,XA,S), (X∗

A,P ,X∗
A,S)←(XA,S ,XA,P )

8: flag ← Super Shift(XA,P ,XA,S , a, sj , Ω)
9: if flag=false, then revert; otherwise, use (XA,P ,XA,S), break

10: until time limit
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The details of Greedy Reassignment are presented in Algorithm 4. We first
create each subproblem by randomly selecting a smaller set of servers (denoted
by S′). Then we sort servers in S′ in descending order, shifting applications
on the overloaded servers to the underloaded ones via Super Shift (lines 4–9).
Based on the return value of Super Shift, we either accept (XA,P ,XA,S) and
continue to next application or revert to (X∗

A,P ,X∗
A,S).

The Super Shift method is presented in Algorithm 5. Given an application
a and a target server s, we try to directly shift a to s (line 1). If s cannot
accommodate a or the weighted cost Ω is not reduced, we adjust the resource
configuration of a to reduce its resources demand (lines 4–5). After that, if the Ω
is reduced, then return true. Or if s can accommodate a with the new resource
configuration, we try to shift a to s again (line 7). Finally, if the Ω is reduced,
then return true; otherwise, return false (line 8).

Algorithm 5: Super Shift(XA,P ,XA,S , a, s,Ω)
1: if shifting a to s succeeds and Ω is reduced then
2: return true
3: else
4: for each resource configuration p in Pa do
5: try to set the configuration of a to p
6: if Ω is reduced, return true
7: try to shift a to s without any violations
8: if Ω is reduced, return true; otherwise, return false

Time Complexity. Let |A|/|S| denote the number of applications on each
server, and let |P | denote the number of resource configurations of each appli-
cation. Let T denote the number of calls of Algorithm 4. The complexity
of Quick Shrinking, Quick Balancing, Super Shift, and Greedy Reassign
approximate O(|S| log |S| + |A||P |), O(K2|A|/|S| + |S| log |S|), O(|P |), and
O(T (K log(K/10)/10 + K2|A||P |/100|S|)) respectively.

5 Evaluations

5.1 Experimental Settings and Implementation

We consider a DC with homogeneous servers whose specifications are listed in
Table 1 and there are three types of transient resources: CPU cores, memory,
and LLC, where memory is not included in the REC (since the memory allo-
cation of each application is set to a maximum value). We adopt the Linux’s
cpuset [10] and Intel’s CAT [27] to partition cores and LLC ways among the
colocated applications. In simulated experiments, the demands and capacities
for each resource are min-max normalized to (0,1]. We assume load imbalance
and resource usage are equally important, i.e., the parameter ω is set to 0.5.

We use five types of LC applications mentioned in Sect. 2. The QoS target
of each application is determined as described in Sect. 2. For each application,
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Table 2. Information of synthetic scenarios

C1 C2 C3 C4 C5 C6 C7 C8

Application workload Small Small Small Small Large Large Large Large

Balancing level Good Bad Good Bad Good Gad Good Gad

Server load Light Light Heavy Heavy Light Light Heavy Heavy

Imbalance cost 282.83 367.89 173.71 196.2 286.55 355.9 221.13 240.46

Usage cost 696.13 696.13 883.88 883.88 580.5 580.5 747.13 747.13

we follow the steps below to collect enough samples: first, we randomly select
various resource configurations and loads, and then run that application under
the selected configurations and loads to measure the tail latencies, and finally
determine if the QoS target is met and output the label. Given that the samples
have fewer features, the main parameters of the XGBoost model such as the
number of boosting rounds, the boosting learning rate, and the maximum tree
depth for base learners are respectively set to 150, 0.15, and 2 for avoiding the
over-fitting and achieving good performance. Other parameters are set to the
default. We use 70% of the samples for training and the rest for testing.

For the proposed LS algorithm, we find that K = 50 work well for most of
the problem input scenarios. If the number of servers is smaller than 100, K is
set as the smaller value between |S| (the number of servers) and 20.

We simulate two application workload patterns: large and small. For the small
(resp. large) workload pattern, the RPS of an application is randomly selected
from (0, maxRPS/2] (resp. [maxRPS/2, maxRPS]). We simulate two load bal-
ancing patterns: roughly-balanced (good) and poorly-balanced (bad). To gener-
ate a roughly-balanced load distribution pattern, we use the Worst-Fit method
to place as many applications on each server as possible. The poorly-balanced
pattern is generated based on the roughly-balanced pattern by randomly reas-
signing applications from a part of the servers to the other servers. We simulate
two server load patterns: light and heavy. To generate the former (resp. latter),
we randomly delete 30% (resp. 10%) of the applications from each server.

We simulate 8 different input scenarios with different resource demand pat-
terns, load balancing patterns, and server workload patterns (as shown in Table 2).
By default, we simulate 1000 servers for each scenario and the corresponding appli-
cations, whose resource configurations and RPSs are generated according to the
related patterns. We also list the initial cost of load imbalance and resource usage
for these scenarios with 1000 servers. For each experiment in this section, we repeat
5 times for each algorithm and compute the average result, and the time limit is set
to 5 min. The numbers displayed in Fig. 3 and Fig. 4 indicate the optimal weighted
cost achieved by the baseline algorithms and LS.

5.2 Baseline Algorithms

We compare the proposed LS algorithm with two baselines. The first baseline is
a greedy algorithm (denoted by Greedy), which focuses on only adjusting appli-
cations’ resource configurations to reduce the weighted cost without reassigning
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any applications. In detail, we first invoke the Global Resource Shrink method
(Algorithm 3) to reduce the demands of all applications for resources. Next, we
iterate for multiple rounds: in each round, we randomly select a server s, and
try to change the resource configuration of each application on s by selecting the
resource configuration that maximizes the reduction in the weighted cost.

The second baseline (denoted by NLS1) is the state-of-the-art algorithm for
the machine reassignment problem [33] (which is similar to the proposed prob-
lem) without considering REC, which is ranked first among other load rebalanc-
ing methods [15]. The NLS adopts the large process reassignment, sorting-based
swap method, and multiple restarts to reassign processes among servers itera-
tively. The large process reassignment method reassigns the process with the
largest resource demand to a server with low resource usage, and reassign other
processes from that server to other servers. To escape from the local optima and
improve the quality of the solution, the NLS adopts a noisy strategy with various
random seeds, restarting multiple times according to the seeds.

5.3 Results

Accuracy of the Classification Model. The sample sizes of the classifiers
of Sphinx, Img-dnn, Moses, Xapian, and Masstree are 480, 2410, 3214, 2408,
and 3040, respectively. The AUCs of these classifier respectively are 0.94, 0.98,
0.96, 0.96, and 0.97; and the F1-scores respectively are 0.94, 0.98, 0.95, 0.97, and
0.96. The overhead for these classifiers respectively are 202 ms, 258 ms, 262 ms,
256 ms, and 261 ms. For each application, our classifier has high AUC and f1
scores, indicating that our model can efficiently and accurately predict whether
an application meets its QoS target under a given configuration and RPS.

Overall Performance. Figure 3 shows the weighted cost produced by LS and
the two baselines for different scenarios, where darker (resp. light) colors denote
the resource usage (resp. load imbalance) cost. We have several observations.
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Fig. 3. The load imbalance cost and resource usage cost produced by the algorithms

First, LS outperforms NLS and Greedy for all scenarios, with an average
advantage of 26% and 11% respectively, confirming that jointly use REC and
reassignment scheme is much better than using one of them alone. The maxi-
mum advantage of LS over NLS and Greedy is 38% (on C1) and 18% (on C2)
respectively, indicating that LS is best suited for scenarios with small application
1 https://github.com/harisgavranovic/roadef-challenge2012-S41.

https://github.com/harisgavranovic/roadef-challenge2012-S41
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workload and light server load because these scenarios contain fewer applications,
and instances’ RECs have more resource configurations, causing easier reassign-
ments of applications and more flexible adjustments of configurations. These
factors make the two baselines work well, but LS benefits more from them.

Second, in terms of load imbalance cost, LS achieves the lowest ones for
these scenarios, comparing with the two baselines, because it jointly uses the
REC and reassignment to improve the load balancing; NLS outperforms Greedy
for all scenarios, indicating that only adjusting the resource configuration to
achieve load balancing is not a good choice. In terms of resource usage cost,
Greedy outperforms LS for all scenarios because of its functionality; NLS does
not consider the REC, therefore, it cannot reduce the resource usage cost.

Third, Greedy and LS produce relatively higher weighted costs when sce-
narios contain applications with large workloads (C5 to C8 vs. C1 to C4). The
reason is that applications with large workloads need more resources to meet the
QoS target, causing a high resource usage cost. Moreover, the three algorithms
produce higher weighted cost when handling scenarios with heavy server load
(C3, C4, C7, and C8 vs. C1, C2, C5, and C6), because these scenarios contain
more applications than others, leading to higher resource usage costs.

Fourth, interestingly, NLS produces higher weighted costs when handling
scenarios with small application workload (C1 to C4 vs. C5 to C8), because
these scenarios initially have higher resource usage costs than others (according
to Table 2), and the NLS is incapable of adjusting applications’ configurations
to reduce the resource usage cost. Furthermore, for the scenarios that contain
applications with a large workload and servers with a heavy load (C7 and C8),
the NLS produces the highest imbalance cost because the remaining capacity of
each server is stringent, hindering NLS from reassigning applications.

Fifth, the Greedy and LS both produce slightly lower weighted costs when
handling the roughly-balanced scenarios (C1, C3, C5, and C7 vs. C2, C4, C6,
and C8), because when the initial load among servers is roughly-balanced,
Greedy and LS are likely to produce lower load imbalance costs. The NLS pro-
duces almost the same weighted costs on the roughly/poorly balanced scenarios,
demonstrating that NLS is immune to the initial load balancing status.
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Fig. 4. The weighted cost by the three algorithms as the problem scale grows

Scalability. We investigate how the algorithms perform as the problem scale
grows. We simulate 2000 and 3000 servers and let each algorithm run for 10 min
to ensure that they can converge. The results are displayed in Fig. 4.
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Fig. 5. Comparing the weighted cost produced by the algorithms with the optimal one

In addition to the phenomena mentioned in the Overall Performance exper-
iment, we observe that the weighted cost produced by each algorithm increases
as the problem scale grows. The reason is twofold: first, achieving load balanc-
ing for a larger DC is more difficult because the search space is exponentially
growing as the number of servers increases; second, the resource usage grows
as the number of applications increases, causing a higher initial weighted cost.
Although the LS outperforms the two baselines for all scenarios, its advantage
slightly decreases as the problem scale grows. We attribute this to that finding
the optimal solution to a larger problem scale efficiently is more difficult.

Compared to the Optimal Solution. Since the load rebalancing problem
is NP-hard, it is implausible to optimally solve the proposed problem within
an acceptable time limit. To evaluate the optimality of the LS, we consider a
small problem scale with 20 servers. We use the optimization solver Gurobi [17]
to compute the optimal solution. The results are plotted in Fig. 5, where the
Optimal denotes the Gurobi solver. We observe that the weighted cost produced
by LS is close to the optimal solution generated by Gurobi, with an average gap
of 4% for all scenarios, demonstrating that LS can find near-optimal solutions
efficiently. Again, using the configuration adjustments or reassignments alone
cannot produce near-optimal solutions, hence we need to jointly use the two
schemes to facilitate load balancing.

Overhead. Figure 6 shows the real-time weighted cost produced by each algo-
rithm during the running period of 5 min for scenario C3. We observe that all
the algorithms converge in 5 min. The NLS has the fastest converging speed (in
2 min) but achieves the highest weighted cost. The Greedy converges as fast as
LS (in 3 min), but produces a higher imbalance cost than that of LS, indicating
that reassigning applications is necessary to further improve the load balanc-
ing. There is a trade-off between overhead and performance: the NLS is more
computationally efficient while the LS is more powerful.
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Fig. 6. The weighted cost changes over time (s)
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6 Related Work

Recent studies have pointed out that resource partitioning is the key to min-
imize the performance interference between co-located microservices in DCs
[7,11,23,28,30–32,38–40]. Specifically, Chen et al. [7] and Patel et al. [32] use
REC to find the optimal resource configurations. Chen et al. [7] designed an
online resource-wheel-based partition algorithm (i.e., PARTIES) and co-located
multiple LC applications with batch jobs. Patel et al. [32] implemented a
Bayesian Optimization-based partition algorithm, which improved PARTIES in
terms of maximizing the throughput of batch jobs. Nishtala et al. [28] proposed
using a deep reinforcement learning framework and it outperformed PARTIES in
terms of saving energy. However, these works did not consider the load balancing.

Well-designed load balancing strategies are beneficial to reduce services’
response time and makespan [22,26], to boost energy-efficiency [24,26], avail-
ability [26], throughput[19,22], and scalability [13]. Generally, there are two cat-
egories of load balancing algorithms: static [36] and dynamic [8]. The static
schemes require the load balancer to make a set of assumptions on the tasks
and servers according to prior knowledge, and most of them are deemed as
offline scheduling methods such as Round Robin [35] and Randomized Algo-
rithm [4]. The dynamic schemes apply profiling technology to measure real-time
performance metrics (e.g., Cycles per instruction, CPI), yielding better balancing
status but at the cost of the efficiency and simplicity of design and implemen-
tation. The representative ones such as Central Queue [16], average imbalance
level based on multi-resources [37], Honey Bee Algorithm [22], and Throttled
Algorithm [29].

The proposed problem naturally is the load rebalancing problem, which is
proved to be NP-hard [3,5,12]. The latest proposed machine reassignment prob-
lem [33] also considered improving load rebalancing for DCs, where a group of
processes has already been placed on a group of machines and a balancer needs
to re-schedule processes to machines under hard constraints for minimizing a
weighted cost. The researchers proposed various methods, such as mixed-integer
programming and constraint programming [25], variable neighborhood search
[6], large neighborhood search [18], hybrid search [14], genetic algorithm [34]
and efficient LS algorithms [15]. Unfortunately, these methods neither use REC
to improve load rebalancing nor optimize resource efficiency at the same time.

7 Conclusions

In this paper, we present a novel multi-objective optimization problem that
improves the load rebalancing and cost-efficiency for a DC with the service
availability and QoS guarantees. We propose jointly using the REC and reassign-
ment scheme to optimally achieve the two objectives. The results demonstrate
the effectiveness, optimality, and scalability of the proposed solution. However,
due to the hardware limitation, we consider only partitioning two resources (the
cores and LLC) among the colocated applications, while other shared resources,
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e.g., memory bandwidth, are not partitioned. We would like to claim that the
impact is insignificant because the LC applications are basically CPU intensive
and partitioning LLC is deemed as an indirect way to mitigate the competition
for memory bandwidth. Furthermore, we do not evaluate the proposed algorithm
on real DCs. Moreover, the proposed algorithm is suitable for some dedicated
DCs, e.g., search engines DCs, where most applications will run for a long time.
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1 Introduction

With the rapid development of 5G, the ubiquitous mobile devices like smart
phones, tablets, and wearable devices are driving the advancements of the Inter-
net of Things (IoT) [1]. Meanwhile, the emergence of various mobile applica-
tions is also advancing the employment of the IoT in real life. As the complexity
of mobile applications continues to increase, in particular, computing-intensive
applications such as virtual reality (VR), augmented reality (AR) and speech
recognition, the local computing demand for mobile devices is increasing rapidly
[2]. However, the computing resources possessed by the mobile device cannot
meet the demand of the computing-intensive application. Moreover, the execu-
tion of the application locally will bring huge energy consumption. Therefore,
the implementation of computation-intensive applications on mobile devices with
limited computing resources and limited battery life faces great challenges [3].

Currently, mobile edge computing is a split-new computing paradigm that
brings computing resources from remote cloud data centers to the edge of networks
[4]. The computing tasks of the computation-intensive applications are offloaded
to edge servers, which ensures ultra-low completion delay of computation tasks,
and provides high quality and reliable services for the mobile users. The offload-
ing of computing tasks to the edge servers significantly supplements the com-
puting resources of the mobile devices and reduces the energy consumption of
mobile devices, but there are still some problems that need to be addressed dur-
ing the computation offloading and resource management under a dynamic edge
environment for the mobile devices [5]. On one hand, as the computing demands
of the mobile devices increase sharply, unreasonable computing offloading and
resource management strategies will cause the queuing delay of computing tasks
to be extended without limit, which in turn leads to performance degradation [6].
On the other hand, the information of the edge environment (e.g., the number
of mobile devices, the queuing status of local or edge servers, etc.) is constantly
changing, mobile devices need to continuously realize computation offloading and
resource management decisions based on changing edge environment, which is
inefficient and highly complex. Therefore, how to implement computation offload-
ing and resource management to realize the trade-off between completion delay
and energy consumption without knowing the prior knowledge of the edge envi-
ronment is still facing great challenges.

Reinforcement Learning (RL), as an important branch of artificial intelli-
gence, is a method of learning how to get the maximum reward through the
continuous trial and error of the agent in the interaction with the environment,
which can solve complex optimization problems [7]. Moreover, with the rapid
development of RL, the combination of RL and deep neural network (DNN)
gives rise to deep reinforcement learning (DRL) [8]. The emergence of DRL
allows high-dimensional state space and action space of the environment to be
represented, which improves the performance of RL to solve complex optimiza-
tion problems [9]. By utilizing DRL, the agent obtains computing offloading and
resource management decisions by observing the state of the current mobile edge
computing environment, thereby ensuring the quality of service (QoS) for users.
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However, how to achieve effective computation offloading and resource manage-
ment when the queuing status of mobile devices and edge servers is unknown,
thus ensuring the trade-off between the completion delay and the energy con-
sumption is a huge challenge [10].

To address this challenge, a proximal policy optimization (PPO)-based com-
putation offloading and resource management method (PCORA) that considers
the queuing delay under the dynamic edge network is discussed in this paper.
Specifically, the key contributions of this paper are listed as the following:

– The dynamic computation offloading and resource management problem con-
sidering the queuing delay of the task is established as a Markov decision
process (MDP).

– The Proximal Policy Optimization (PPO) [11] is leveraged to realize dynamic
computation offloading and resource management without knowing the prior
knowledge of the edge environment, which in turn realizes the joint optimiza-
tion of average queuing delay, average completion delay, and average energy
consumption.

– Comprehensive simulation experiments are implemented to evaluate PCORA.
A large number of numerical results are analyzed to illustrate the performance
of PCORA.

The rest of this paper is structured as follows. Initially, the related work is
discussed in Sect. 2. Subsequently, the system model and problem formulation
are described in Sect. 3. Then, the design of PCORA is described in Section. Fur-
thermore, experimental evaluation is described in Sect. 5. Eventually, conclusion
and future work of this paper are drawn in Sect. 6.

2 Related Work

Nowadays, with the rapid growth of the number of the mobile devices, the
demand for computing resources at the edge is raising [12]. Mobile edge com-
puting has emerged as a computing paradigm to achieve efficient execution of
end-user computing demands [13]. However, how to implement edge systems for
efficient computing offloading and resource management for end-users is facing
great challenges.

In [14], Chen et al. established computation offloading as an optimization
problem to reduce costs while meeting performance requirements with a stochas-
tic optimization-based algorithm. Chen et al. [15] studied the task offloading
problem of edge computing based on software-defined network (SDN) to mini-
mize delay and save the battery life of user devices.

However, the environment of the edge system is constantly changing, it is dif-
ficult to obtain accurate network environment information such as communica-
tion and computing resources. Therefore, the optimization algorithms discussed
above may not be effective in actual mobile edge computing environments.

To cope with the challenges of computation offloading caused by the different
states of the edge servers, Huang et al. [16] proposed a DRL-based method to



566 R. Mo et al.

solve the problem of joint task offloading and resource allocation for each user,
realizing optimizing energy consumption and delay. Tong et al. [17] considered
the mobility of mobile users and proposed an adaptive computation offloading
algorithm, optimizing the average delay and energy consumption. Dai et al. [18]
leveraged DRL to implement computation offloading that takes into account
wireless channel status, and computing resources, thereby minimizing the energy
consumption.

In the above research, DRL is leveraged to implement the computation
offloading and resource allocation under dynamic edge networks, but these stud-
ies lacked analysis of queuing delays for tasks performed locally or on the edge.
Furthermore, the completion delay of the tasks and energy consumption as
important indicators also need to be considered jointly. Therefore, a dynamic
computation offloading and resource management algorithm based on PPO is
proposed in this paper.

3 System Model and Problem Formulation

3.1 System Overview

We consider a wireless network with D mobile devices and N edge servers,
represented by D = {1, 2, ...d, ...,D} and N = {1, 2, ...n, ..., N}, repectively. In
time slot t ∈ T , mobile device d generates M tasks to be executed, denoted
by Md = {1, 2, ...,m, ...,M}. Meanwhile, a binary computation offloading is
considered, that is, the task can only be performed locally or on the edge server.
Furthermore, assuming that the edge server has a better computing performance
than the mobile devices so that the tasks that can not be satisfied locally will
be offloaded to the edge for effectively processing.

As illustrated in Fig. 1, the computing task generated by d within t will make
the offloading decisions. The mobile device will make the offloading decisions for
the tasks generated in t. Let an indicator variable xm

d,n(t) ∈ {0, n} represent the
offloading strategy of the task m, xm

d,n(t) = 0 represents the tasks generated
by d will be performed locally. Otherwise, xm

d,n(t) = n represents that the task
generated by d will be offloaded to the edge server n for processing. Furthermore,
the tasks will be sent to the waiting queue of the local or edge server according
to the offloading decisions, and the tasks will be executed in a First-In, First-Out
(FIFO) order.

3.2 Communication Model

Assuming that the computation offloading among the mobile devices and edge
servers is realized through the wireless network. Therefore, the data transmission
rate is interfered by the transmission power, the interference, and the bandwidth
of the communication channel. Meanwhile, we considered the mutual interference
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Fig. 1. An illustration of computation offloading and resource management in mobile
edge computing.

caused by other devices during the transmission. Therefore, the data transmis-
sion rate between d and n is measured by

Rd,n(t) = wd,n(t) · log2(1 +
Pd,n · Gd,n

Id,n
), (1)

where wd,n(t) is the bandwidth between d and n. Besides, Pd,n represents the
transmission power. Gd,n denotes the wireless channel gain, Id,n represents the
average interference power.

3.3 Local Computing Model

In the time slot t ∈ T , if xm
d,n(t) = 0, the task m ∈ Md(t) will be put in

the computation queue at the local device d. When the computation queue at
the local device is empty, the queueing delay of the task m is 0. Otherwise, let
WLd(t) denote the total computation workload queued on the mobile device d
within t. Therefore, the queuing delay of m is measured by

Qqueue
d,m (t) =

WLd(t)
f l

d(t)
, (2)

where f l
d(t) represents the computing capacity within t.

Meanwhile, the execution delay of m is measured by

P exe
d,m(t) =

Cm

f l
d(t)

, (3)
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where Cm is the required computing resource for m.
Furthermore, the completion delay of m is measured by

TL(t) = Qqueue
d,m (t) + P exe

d,m(t). (4)

Besides, the average energy consumption of d for processing m is measured
by

EL(t) = ϕd · Cm · f l
d(t)

2, (5)

where ϕd denotes the energy consumption factor of d.

3.4 Edge Computing Model

For edge computing, when xm
d,n(t) = n, the device d will offload its task m to

n ∈ N for execution. In general, the processing of the task m in n includes three
stages. Firstly, the task m will be transmitted to n. Then, n will allocate the
computing resource according to the demand of m for execution. Finally, the
results of m will return to the n, due to the small size of the processed results,
the system cost in the return process are ignored in this paper.

Based on the communication model illustrated above, the delay and the
energy consumption for offloading m is measured, respectively, by

T trans
n,m (t) = Cm · Rd,n(t)−1, (6)

and
Etrans

n,m (t) = Pd,n · T trans
n,m (t). (7)

Furthermore, we consider the scenario that the task will be sent to the com-
putation queue on the edge server waiting to be executing. Same to the local
device, when the computation queue on n is empty, the queuing delay of m will
be 0. Otherwise, the queuing delay of m on n is calculated by

Qqueue
n,m (t) =

WEn(t)
fe

n(t)
, (8)

where WEn(t) denotes the total computation workload of the computation queue
on n. Besides, fe

n(t) represents CPU computing capability which n allocates to
m.

The average execution delay of m and average energy consumption of n are
calculated, respectively, by

P exe
n,m(t) =

Cm

fe
n(t)

, (9)

and
Eexe

n,m(t) = βn · Cm · fe
n(t)2. (10)

where βn denotes the energy consumption factor of n within t.
Then, we calculate the completion delay of m and energy consumption of n,

respectively, by
TS(t) = Qqueue

n,m (t) + P exe
n,m(t), (11)

and
ES(t) = Etrans

n,m (t) + Eexe
n,m(t). (12)
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3.5 Problem Formulation

In the time slot t, the N mobile devices in the edge system generate tasks that
need to be executed, it can either offload them to the edge server or perform
them locally. Thus, for any task of the N devices, the average completion delay
is calculated by

ACT (t) =
1
D

· 1
M

·

⎧
⎨

⎩

∑

d∈D

∑

m∈Md(t)

(1 −
⌈

xm
d,n(t)
N

⌉

) · TL(t) +
⌈

xm
d,n(t)
N

⌉

· TS(t)

⎫
⎬

⎭

(13)
where �•� is the ceiling function.

Furthermore, the average enerage consumption for any task of the N devices
within time slot t is measured by

AET (t) =
1
D

· 1
M

·

⎧
⎨

⎩

∑

d∈D

∑

m∈Md(t)

(1 −
⌈

xm
d,n(t)
N

⌉

) · EL(t) +
⌈

xm
d,n(t)
N

⌉

· ES(t)

⎫
⎬

⎭
.

(14)
The objective of the dynamic computation offloading and resource manage-

ment problem is to optimize the average completion delay and average energy
consumption within t, which is erected as the following optimization problem:

min ACT (t), AET (t). (15)

s.t. 0 ≤ f l
d(t) ≤ F l

d, ∀d ∈ D, (16a)

0 ≤ fe
n(t) ≤ F e

n, ∀n ∈ N , (16b)

0 ≤ wd,n(t) ≤ Wn, ∀d ∈ D, ∀n ∈ N , (16c)

xm
d,n(t) ∈ {0, n},∀m ∈ Md(t). (16d)

Constraints (16a) and (16b) indicate that the number of computing resources
allocated by d and edge server n within t cannot exceed the total number of
computing resources owned by d and n. Moreover, constraint (16c) represents
that the communication resource allocated to the d cannot exceed the total
communication resources. Constraint (16d) indicates that the offloading strategy
of the task m of the device d is either locally or to edge servers n.

4 The Design of PCORA

In this section, a computation offloading and resource management method,
named PCORA, is proposed. Specifically, the objective of PCORA is to optimize
the average completion delay and average energy consumption.
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Generally, considering the time-varying characteristics of task queues in
both mobile devices and edge servers, the dynamic computation offloading
and resource management problem is constructed as a Markov decision process
(MDP). Then, the proximal policy optimization (PPO) is employed to obtain
the optimal computation offloading and resource management strategy, thereby
optimizing the completion delay and energy consumption. The structure of the
PCORA is illustrated in Fig. 2.

4.1 MDP Model

The problem to be solved in this paper is established as a MDP, which is rep-
resented as a 3-tuple < S,A,R >. S is the state space of the environment, and
A represents the action. Besides, the R(A|S) indicates the immediate reward
earned by executing A.

State. The state s(t) ∈ S of the mobile edge computing system environment
observed by the mobile device d within t is denoted as

s(t) Δ=< M(t),DQ(t), SQ(t),DC(t), SC(t), SR(t) >, (17)

where M(t) = {m1(t),m2(t), ...,mD(t)} represents the task set generated
by the mobile devices within t. The DQ(t) = {dq1(t), dq2(t), ..., dqD(t)} and
SQ(t) = {sq1(t), sq2(t), ..., sqN (t)} are the queuing status of the mobile devices
and edge servers within t, respectively. DC(t) = {dc1(t), dc2(t), ..., dcD(t)} and
sc(t) = {sc1(t), sc2(t), ..., scN (t)} indicate the remaining computing resources
of the mobile devices and edge servers, respectively. Besides, SR(t) = {sr1(t),
sr2(t), ..., srN (t) } represents the remaining communication resources of the edge
servers within t.

Action. Based on the observations of the system state within t, the agent takes
appropriate actions to ensure that the immediate reward is maximized. Gen-
erally, mobile devices make computation offloading and resource management
decisions by observing the state of the system environment within t, thereby
ensuring that the completion delay and energy consumption of tasks are mini-
mized. The action a(t) of the edge system is denoted as

a(t) Δ=< x(t), f l(t), fe(t), w(t) >, (18)

where x(t) = {x1
1,1(t), x

2
1,1(t), ..., x

m
d,n(t), ..., xM

D,N (t)} represents the offloading
decision of the task generated by mobile device within t. f l(t) = { f l

1(t), ...,
f l

d(t) , ..., f l
D(t) } and fe(t) = {fe

1 (t), ..., fe
n(t), ..., fe

N (t) represent the computing
resource management strategy within t. Besides, w(t) represents the communi-
cation resource allcation strategy in the t. When a task is executed locally, the
local device will allocate computing resources for the task, instead of allocating
computing resources of the edge server and communication resources.
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Fig. 2. The structure of the PCORA.

Reward Function. At the beginning of t, d will get an immediate reward
Rt(a(t)|s(t)) ∈ R after taking action a(t) according to s(t). In this paper, the
objective of the problem to be solved is to minimize completion delay and energy
consumption. Thus, the immediate reward is denoted as

Rt(a(t)|s(t)) = −E [ACT (t) + AET (t)] . (19)

Furthermore, the cumulative reward of T time slot is measured by

R = lim
T →∞

1
T

T∑

t=1

λtRt(a(t)|s(t)), (20)

where λt ∈ [0, 1] is the discount factor.

4.2 PPO-based Computation Offloading and Resource Management
Algorithm

PPO is an upgrade version of the trust region policy optimization (TRPO).
The main feature of TRPO is that when the policy parameters are updated in
each episode, the policy is optimized in a better direction, to avoid problems
such as oscillation when the policy gradient descent and worse performance of
the policy. Compared with TRPO, PPO only needs the first-order optimization
to maintain the data efficiency and reliability of TRPO, but it can greatly sim-
plify the complexity of implementation. Therefore, PPO is utilized to implement
PCORA.

In the training step, the objective function of PPO is denoted as

L(θ) = Ẽ(t)(Ã(t)), (21)

where Ã(t) represents the estimate of the advantage function within t. Ã(t) is
denoted as

Ã(t) = min(rt(θ)Ã(t), clip(rt(θ), 1 − ε, 1 + ε)Ã(t)), (22)
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Algorithm 1: The training of the PCORA.
Initialize πnew

θ (a(t)|s(t)), πold
θ (a(t)|s(t)), replay buffer;

for each episode do
for each t = 1 to T do

a(t) is selected according to πold
θ (a(t)|s(t)) ;

Perform a(t) based on Eq.(19) ;
Obtain the reward Rt(a(t)|s(t)) given by the environment and update
the environment state to s(t + 1) ;

Store < s(t), a(t), Rt(a(t)|s(t)), s(t + 1) > into the replay buffer ;
for each update episode do

K tuples are sampled from the replay buffer as a mini-batch;
Calculate the empirical estimate of the PPO advantage function
Ã(t);

Calculate the empirical average of the PPO advantage function
Ẽ(Ã(t));

Calculate the derivative of L with respect to θ;
Update actor network parameters through gradient ascent θold =
θnew;

end

end

end

where rt(θ) represents the probability ratio between the old and new policy.

rt(θ) =
πnew

θ (a(t)|s(t))
πold

θ (a(t)|s(t)) . (23)

In (21), when Ãt > 0, the larger the advantage function means that the
policy is updating in a better direction, and the clip item will cut off this part
of the change. Otherwise, when Ãt < 0, the smaller the advantage function, it
is considered that the policy is updated in the worse direction. Meanwhile, the
clip function will retain the minimum degradation effect, and will not ignore the
degradation of the PPO advantage function due to the reduction of the policy
update ratio. Compared with other policy gradient algorithms without the clip,
PPO with the clip ensures the stability of the algorithm during policy updates.
The pseudocode for training the PCORA is shown in Algorithm 1.

5 Experimental Evaluation

5.1 Parameter Settings

We implement PCORA and analyze its performance in this section. The PCORA
is implemented on a server with Intel Core i5-10600K 4.10 GHz, NVIDIA
GeForce GTX 3090, 64 GB RAM, and Manjaro 5.9.16-1. Besides, we consider
an edge network with N = 10 edge servers, D= {5, 10, 15, 20, 25, 30} devices.
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Fig. 3. Comparison of converagence performance with different learning rate.

The computation capabilities of mobile device F l
d and edge server F e

n are 1Ghz
and 5Ghz, respectively. The bandwidth wd,n is set as [1,4] Gb. In addition, the
batchsize is set as 128. The number of training episode is set as 10000, and the
capacity of the replay buffer is set as 2000. The discount factor λt is set as 0.99,
and the ε is set as 0.2 [11].

5.2 Comparison Algorithms

To illustrate the performance of PCORA, four algorithms are selected in this
paper for comparison.

– Local computing [18]: The computing task will be processed locally, and the
local device will randonmly allocate the computing resources for the task.

– Edge computing : The computing tasks are randomly offloaded to any edge
server for processing. The edge network will randomly allocate communication
resources for the task, and the edge server will allocate computing resources
for the task in a randomly manner.

– Random-based [15]: The computing tasks first randomly generate offload-
ing decisions. When the offloading strategy of the computing task is executed
locally, the local device will also allocate computing resources according to
the size of the task. Otherwise, the edge will randomly allocate communica-
tion resource for the task, and edge server will randomly allocate computing
resources.

– DQN-based [13]: In the DQN-based algorithm, the DQN agent interacts
with the edge environment to produce computation offloading and resource
allocation decisions within t. Besides, the rewards obtained after the DQN
agent performs the action are utilized to train the agent, which is composed
of task completion delay and energy consumption.
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Fig. 4. Comparison of the average task queuing time with different number of mobile
devices.

5.3 Performance Evaluation

Coveragence Analysis. Figure 3 shows the convergence performance of
PCORA and DQN with different learning rates. When the learning rate is set to
0.009 and 0.0009 respectively, the reward value of POCRA and DQN gradually
begins to converge after training. As shown in the figure, the performance of
DQN and PCORA is better than that of 0.009 when the learning rate is 0.0009.
In addition, although PCORA has a large oscillation in the training process,
the reward obtained by PCORA for implementing computation offloading and
resource management is better than that of DQN-based on the whole.

Comparison of Average Queuing Delay. To implement the dynamic anal-
ysis of the network environment of the edge, the queuing delay of the tasks on
the local device or the edge device after offloading is evaluated. Figure 4 illus-
trates the performance of average queuing delay with the different number of
mobile devices. It can be seen from the experimental results that as the num-
ber of mobile devices increases, the average queuing delay of tasks gradually
increases. Compared with the other algorithms, the strategy found by PCORA
makes the tasks queuing delay of the task generated by the mobile device sig-
nificantly shorter than other methods in the case of mobile devices of different
scales.

Comparison of Average Completion Delay. Furthermore, the average com-
pletion delay is calculated by averaging the completion delay of all computing
tasks in an episode. Figure 5 illustrates the results of the average completion
delay of PCORA and four comparison algorithms with different amount of mobile
devices, the average completion delay raises as the amount of mobile devices
increases. Moreover, the PCORA achieves the shortest average completion delay
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Fig. 5. Comparison of the average completion delay with different number of mobile
devices.

compared to the comparison algorithms. PCORA performs better performance
on average completion delay because PCORA guarantees the shortest queuing
delay of tasks, and PCORA performs reasonable computing and communica-
tion resource management for the tasks, thereby ensuring the shortest average
completion delay.

Comparison of Average Energy Consumption. Finally, the average energy
consumption for processing the tasks is evaluated. In Fig. 6, with the increase in
the number of mobile devices, the number of resources allocated to the devices

Fig. 6. Comparison of the average energy consumption with different number of mobile
devices.
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is also increasing, so the energy consumption is rising. Compared with Local
computing, Edge computing, and Random-based, the computation offloading and
resource management implemented by PCORA and DQN-based make the aver-
age energy consumption of task execution rise more slowly. Moreover, PCORA is
better than DQN-based in the optimization of the energy consumption indicator.

6 Conclusion and Future Work

Due to the mobility of mobile devices and the stochastic of the edge environ-
ment, computation offloading without considering the prior knowledge of the
edge system is still facing great challenges, as well as resource allocation. For
addressing this challenge, a scenario considering the time-varying characteristics
of task queues in both local devices and edge servers is modeled and the com-
putation offloading problem is constructed as a MDP. Furthermore, we propose
the PCORA which is based on PPO to obtain optimal offloading and resource
allocation decision to optimize the cost. Fianlly, comprehensive experiments are
implemented to illustrate the performance of PCORA.

Regarding future work, we will further optimize PCORA so that it can be
deployed in scenarios with a large number of mobile devices. Moreover, we will
also consider using historical data for queueing delay prediction to further opti-
mize the decision performance of computation offloading.
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Abstract. Mobile edge computing has become a new paradigm for efficient com-
puting, which allows users to offload computing tasks to edge servers to accom-
plish the tasks. However, in the real world, users usually keep moving, and the
edge servers may dynamically change the offered service prices in order to maxi-
mize their own profits. At this moment, we need a highly efficient task offloading
strategy for users. In this paper, we design a task offloading strategywhen users are
on the movement and edge servers dynamically change the service prices based
on the deep reinforcement learning algorithm, which is named as DUTO. Further-
more, we run extensive experiments to evaluate our offloading strategy against
four benchmark offloading strategies. The experimental results show that DUTO
task offloading strategy can effectively improve the long-term profits of users in
the dynamic environment with different experimental settings.

Keywords: Mobile edge computing · Dynamic pricing · Task offloading · Deep
reinforcement learning

1 Introduction

According to the Cisco report [1], mobile devices (such as smart phones, mobile sensors)
are becoming increasingly popular in current life.However, the limited computingpower,
storage resource and battery capacity of mobile devices cannot meet the low latency and
high computing intensity requirements of mobile applications. At this moment, mobile
edge computing [2], as a new and efficient computing paradigm, is proposed to solve
these problems.

In the mobile edge computing, how users with mobile devices offloading computing
tasks is one of the key issues. Specifically, edge servers are usually run by self-interested
enterprises, and they may provide paid services to users to make profits. At this moment,
they may dynamically change the prices according to the computing environment to
make more profits (e.g., when there exist sufficient computing resource, the edge server
may decrease the price to encouragemore users to perform the task offloading to increase
the profit). The dynamic pricingmay affect users’ task offloading decisions. For example,
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when the price of the edge server is low, users will offload as many tasks as possible to
the edge server, which causes server resources to be consumed quickly. In contrast, when
the price of the edge server is high, users may give up offloading tasks. Furthermore,
users may keep moving, and therefore they may be covered by different edge servers
during their movements, which will affect their offloading decisions. In this paper, we
will analyze how users offload tasks to edge servers when they are on the movement and
the service prices are dynamically changed. To the best of our knowledge, we are the
first to consider dynamic pricing of edge server in the user’s task offloading strategy.

Specifically, we consider the scenario where users are on the movement and edge
servers dynamically change the prices, and propose an efficient task offloading strategy
to maximize the long-term profits of users1. Users’ offloading decisions at the current
time are affected by the decisions at the last time, and edge servers’ prices and users’ task
offloading decisions are affected by each other. Therefore, this is a sequential decision
problem. We model the task offloading problem as a Markov decision process and use
reinforcement learning to address it. Since edge servers’ prices at the current time are
affected by users’ offloading decisions at the last time, we assume that edge servers will
also adopt reinforcement learning to determine the prices to maximize their own prof-
its. Furthermore, we run extensive experiments to evaluate our task offloading strategy
against four typical strategies. In the experiment, we show how the dynamic pricing can
affect users’ task offloading decisions. Furthermore, the experimental results show that
in the environment with dynamic pricing and moving users, our task offloading strategy
can outperform four benchmarks strategies.

The structure of this paper is as follows. In Sect. 2, we discuss the related work.
In Sect. 3, we introduce the basic settings. In Sect. 4, we describe how to use a deep
reinforcement learning algorithm to design the task offloading strategy. We evaluate the
task offloading strategy in Sect. 5. Finally, we conclude in Sect. 6.

2 Related Work

In recent years, edge computing has been widely studied, such as the research about
the security of edge computing [3], edge server collaboration [4], data integrity on edge
computing [5] and so on. How users offloading tasks is one of the most important issues
among them [6]. There exist plenty of works analyzing the task offloading problem in the
edge computing. Someworks focus onminimizing the time delay in offloading tasks. For
example, Peng et al. [7]model the task offloading problem as an onlinemultidimensional
integer linear programming problem, and propose a decentralized reactive approach to
solve it. Zhao et al. [8] propose a cross-edge computation offloading framework for
partitionable applications based on Lyapunov optimization. Cao et al. [9] propose a
multi-agent deep reinforcement learning scheme for edge servers to cooperate with each
other. Du et al. [10] propose an online algorithm based on Lyapunov optimization to
solve the task offloading problem.

There also exist some works focusing onminimizing the energy consumption during
the task offloading. Shen et al. [11] propose a dynamic task offloading approach in the

1 In the task offloading, the profit of user is defined as the difference between the cost of local
execution and the cost of offloading to edge server for execution, i.e. the saved cost.
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edge computing based on the reinforcement learning algorithm. Chen et al. [12] use
centralized and distributed greedy scheduling algorithms to minimize energy consump-
tion. Fang et al. [13] propose a joint optimization method for task offloading and content
caching based on traffic flow prediction.

Some works focus on maximizing the profits of edge servers or minimize the costs
of users during the task offloading. Li et al. [14] propose an optimization framework
based on reinforcement learning to minimize the total costs of all users. Zhang et al. [15]
define the process of vehicle computing offloading as a Stackelberg game and propose
a distributed algorithm to solve it. Du et al. [16] model computational task offloading
as a random optimization problem with multiple optimization goals, and propose an
online joint task offloading and resource allocation algorithm. Xia et al. [17] model the
edge data caching problem as a constrained optimization problem, and use Lyapunov
optimization to minimize the system costs.

However, these works usually assume that users with mobile devices are stationary
[11, 19, 20]. In the real world, users may change their positions over time, which make
users are covered by different edge servers. Furthermore, these works usually consider
that edge servers adopt static service prices and ignore the fact that edge servers may
change their prices to maximize the profits. In this paper, we will consider these factors
when designing the task offloading strategy.

3 Basic Settings

In this section, we describe the basic settings, which include the task offloading process
for users, profits and costs of users and edge servers. The notations used in this paper
are shown in Table 1.

Table 1. Notations

Notation Description

N The number of edge servers

M The number of users

T The number of time periods

Ln The position of edge server n

Rad The service coverage radius of edge server

F The task processing capacity of edge server

ptn The resource price of edge server n at time period t

ltm The position of user m at time period t

OT t
m Computing tasks of user m at time period t

(continued)
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Table 1. (continued)

Notation Description

otm,n The task offloading decision of user m at time period t, which chooses whether to
offload to server n

τotm,n The total time required for OTt
m to be offloaded to server n for processing

uotm,n The profit of user m when OTt
m is offloaded to server n

cltm The cost of user m when OTt
m is executed locally

cotm,n The cost of user m when OTt
m is offloaded to server n for processing

ustm,n The profit of server n when OTt
m is offloaded to server n for processing

cstm,n The cost of server n when OTt
m is offloaded to server n for processing

3.1 Task Offloading Process

In the edge computing environment, edge servers will first set prices for resources. If
the user accepts the price and makes a payment, the task will be offloaded to an edge
server. Otherwise, the user will not offload the task but execute the task locally.

In this process, we assume that the user is on the movement. At this moment, the
user may be covered by different edge servers, and the option for offloading is changing.
As shown in Fig. 1(a), at time period t, user 2 is covered by edge servers 1 and 2. At
this time, the user can choose to offload the computing task to server 1, 2 or execute it
locally. At time period t + 1, as shown in Fig. 1(b), user 2 is only within the service
range of server 2. At this time, the user can only choose to offload the take to service 2
or execute it locally.

Furthermore, edge servers may dynamically change the resource prices in order to
maximize their own profits. This means that even if the user is covered by the same edge
servers, user may change its offloading decision because of the changed resource price.
For example, in Fig. 1(a), user 3 can offload the task to server 2 where the resource price
is set to $1. In Fig. 1(b), user 3 may choose to offload the task to server 3, where the
price is set to $0.8.

Note that in the task offloading process, the user’s offloading decision will affect
remaining resource capacity of edge server, which will affect the server’s resource price
at the next time period. At the same time, the server’s resource price will affect the user’s
task offloading decision. Therefore, the server’s dynamic pricing strategy and the user’s
offloading strategy will be affected by each other.

In this process, we assume that there are N edge servers and M users. Two-
dimensional Euclidean Coordinates are used to represent the positions of the edge
servers, where the position of edge server n is denoted as Ln = (Xn,Yn). The ser-
vice coverage radius of edge server is denoted as Rad. The task processing capacity
of edge server is denoted as F. The set of edge servers is defined as E = {e1, · · · , eN }
where en = (Ln,Rad ,F).

At the same time, considering that the user is moving, we divide the entire time into
several time periods, 1, 2, · · · ,T . The set of users is defined asU ={u1, · · · , uM }. Then
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(a). The time period t (b). The time period t+1

User 1

User 2

User 3

Edge Server 1 Edge Server 2

Edge Server 3

User 1

User 2

User 3

Edge Server 1 Edge Server 2

Edge Server 3
User 1

User 2

User 3

Fig. 1. Users’ movement over time

the moving trajectory of the userm can be expressed as ltm = (
xtm, ytm

)
, where

(
xtm, ytm

)
is

the position of user m at time period t. Therefore, we can calculate the distance between

the user and edge server as distm,n =
√(

Xn − xtm
)2 + (Yn − ytm)2. For the computing task

of user m at time period t, we define it as a two-tuple: OTt
m = (

dt
m, f tm

)
, where dt

m is the
size of data to be transferred when OTt

m is offloaded to edge server, f tm is the computing
resources required to completeOTt

m, such as the number of CPU cycles required.We use
otm,n ∈ {0, 1} to represent the offloading decision of user m at time period t. If otm,n = 1,
it means that user m chooses to offload OTt

m to edge server n. If otm,n = 0, it means that
user m executes OTt

m locally.

3.2 Task Offloading Settings

For computing task, users can choose local execution or offload tasks to edge servers.
In the local execution, we assume that all mobile devices have same task processing
capability φ, which is quantified by CPU frequency. At the same time, we set Pd as the
data transmission power of mobile device.

At time period t, the energy required to execute OTt
m locally is:

eltm = Pl · f
t
m

φ
(1)

In general, the power consumption of CPU can be modeled as a super-linear function of
its own frequency [23], which is: Pl = κu(φ)ζ , where κu and ζ are model parameters
according to the chip structure of mobile device CPU.

At time period t, when computing task is offloaded to edge server, the channel power
gain between edge server n and userm can be modeled as htm,n = h0/(dis

t
m,n)

2, where h0
is the received power when reference distance d0 is 1 m [22]. Therefore, we can calculate
the transmission rate when user m transmits the data of OTt

m to edge server n, which is
vtm,n(t) = Blog2

(
1 + Pd · htm,n/σ

2
)
, where B is the bandwidth of transmission channel

betweenmobile device and edge server, σ 2 is the noise power between themobile device
and edge server [9, 23]. Therefore, the wireless transmission energy consumed when
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OTt
m is offloaded to edge server n is:

eotm,n = Pd · dt
m

vtm,n
(2)

When edge server processes computing tasks, it consumes a certain amount of energy.

We set the power consumption of edge server as: Ps = κs(F)ζ
′
, where κs and ζ

′
are

model parameters according to the chip structure of edge server CPU. Therefore, when
OTt

m is offloaded to edge server n, the energy consumption of edge server n is:

estm,n = Ps · f
t
m

F
(3)

Finally, the total time it takes for OTt
m to be offloaded to edge server n is:

τotm,n = dt
m

vtm,n
+ f tm

F
(4)

3.3 User’s Profit

We set the unit energy consumption cost of mobile device as cu. At time period t, the
resource price of edge server n is denoted as ptn. If OT

t
m is executed locally, the cost of

user m is cltm = cu · eltm. When OTt
m is offloaded to edge server for processing, the cost

of user m is:

cotm,n = cu · eotm,n + ptn·τotm,n (5)

where cu · eotm,n is cost of energy, p
t
n·τotm,n is the price charged by the edge server.

WhenOTt
m is offloaded to edge server n for processing, the profit of userm is defined

as the difference between the cost of local execution and the cost of offloading to edge
server n, i.e. the saved cost:

uotm,n = cltm − cotm,n (6)

Note that when OTt
m is executed locally, the profit of user m is 0.

3.4 Edge Server’s Profit

WhenOTt
m is offloaded to edge server n for processing, the cost incurred by edge server

is:

cstm,n = cs · estm,n (7)

where cs is the unit energy consumption cost of the edge server.
When OTt

m is offloaded to edge server n for processing, the profit of edge server n
is the payment received from user minus the cost:

ustm,n = ptn · τotm,n − cstm,n (8)
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4 Deep Reinforcement Learning Based Task Offloading Strategy

As we have discussed in the above, the task offloading decisions made by users will
affect the resource prices of edge servers, which will affect the task offloading decisions
of users at the next time period. Therefore, the problem of user task offloading under the
dynamic resource prices of edge servers is a sequential decision-making problem. We
model this problem as a Markov decision process (MDP). Furthermore, this problem
involves a huge state space and a discrete action space, and therefore we adopt a typical
deep reinforcement learning DQN to solve it.

4.1 Markov Decision Process

Aswe have discussed in the above, wemodel the task offloading problem in the dynamic
environment as aMarkov decision process. MDP is defined as a tuple< S,A,T , r, γ >,
where S is a set of states, A is a set of actions, T is a transition probability function, r is
the immediate reward made in the process and γ is a discount factor that decreases the
impact of the past rewards. In the following, we describe these notations in details. The
state st ∈ S is defined as:

st = (rct, dt, ft, (xt, yt), pt), st ∈ S, t ∈ T (9)

In the state st , rct = (rct1, · · · , rctN ), where rctn is the remaining loading capacity of edge
server n at time period t, dt = (dt

1, · · · , dt
M ), where dt

m is the data size that needs to be
transmitted when OTt

m is offloaded to edge server at time period t, ft = (f t1 , · · · , f tM ),
where f tm is the computing resources required to processOTt

m at time period t, (xt, yt) ={(
xt1, y

t
1

)
, · · · ,

(
xtM , ytM

)}
, where

(
xtm, ytm

)
is the coordinates of user m at time period t,

and pt = (pt1, · · · , ptN ), where ptn is the unit price of computing resource of edge server
n at time period t. The task offloading action at ∈ A is:

at =
(
a1t , · · · , aMt

)
, at ∈ A, t ∈ T (10)

where amt indicates the offloading decision of user m for OTt
m at time period t, which

means whetherOTt
m is executed locally on the mobile device or offloaded to one of edge

servers for processing. The immediate reward rt made by users is:

rt =
∑m=M

m=1
uotm,n (11)

where uotm,n is the profit made by usermwhenOTt
m is offloaded to edge server n for exe-

cution. The transition probability function is defined as T (st, at, st+1) = Pr(st+1|st, at)
where st, st+1 ∈ S and at ∈ A.
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4.2 Task Offloading Strategy Under Dynamic Pricing

In the task offloading process, we can see that the server prices will affect users’ offload-
ing decisions. Therefore, a dynamic pricing strategy for edge servers is needed. In the
following, we first introduce the dynamic pricing strategy of edge servers.

Dynamic Pricing Strategy
The servers’ resource prices will affect users’ offloading decisions. At the same time,

the users’ offloadingdecisionswill affect the loadof servers,whichwill affect the servers’
resource prices at the next time period. Edge servers need to adapt their prices efficiently
to maximize their own profits. Therefore, how edge servers dynamically adapting their
prices is also a sequential decision problem, which can be modeled as a MDP as well. It
is defined as a tuple< S

′
,A

′
,T

′
, r

′
, γ

′
>, where S

′
is a set of states, A

′
is a set of actions,

T
′
is a transition probability function, r

′
is the immediate reward and γ

′
is a discount

factor that decreases the impact of the past rewards. In the following, we describe these
notations in details. The state s

′
t ∈ S

′
is defined as:

s
′
t = (rct, lrt−1, ct−1, pt−1, numt−1), s

′
t ∈ S

′
, t ∈ T (12)

In the state s
′
t , rct = (

rct1, · · · , rctN
)
, where rctn is the remaining loading capacity.

of edge server n at time period t, lrt−1 =
(
lrt−1
1 , · · · , lrt−1

N

)
, where lrt−1

n is the

profit obtained by edge server n at time period t − 1, ct−1 =
(
ct−1
1 , · · · , ct−1

N

)
, where

ct−1
n is the cost of edge server n at time period t − 1, pt−1 =

(
pt−1
1 , · · · , pt−1

N

)
, where

pt−1
n is the resource price set by edge server n at time period t − 1, and numt−1 =

(numt−1
1 , · · · , numt−1

N ), where numt−1
n is the number of tasks offloaded to edge server n

at time period t − 1. The dynamic pricing action a
′
t ∈ A

′
is defined as:

a
′
t =

(
a1t

′
, · · · , aNt

′)
, a

′
t ∈ A

′
, t ∈ T (13)

where ant
′
is the resource price set by edge server n at time period t. The immediate

reward r
′
t made by edge servers is:

r
′
t =

∑n=N

n=1
ustm,n (14)

where ustm,n is the profit made by edge server n at time period t when OTt
m is offloaded.

The transition probability function defined as T
′(
s
′
t, a

′
t, s

′
t+1

)
= Pr

(
s
′
t+1

∣
∣∣s

′
t, a

′
t) where

s
′
t, s

′
t+1 ∈ S

′
anda

′
t ∈ A

′
.
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The server’s resource price can be regarded as a continuous value. Therefore, we
use a typical deep reinforcement learning algorithm DDPG to design a dynamic pric-
ing strategy for server resources, which is named as DESRP. DESRP dynamic pricing
strategy is described in Algorithm 1.

Task Offloading Strategy
We now describe how to design a task offloading strategy when users are on the

movement and edge servers use DESRP strategy to set price.
As we have discussed previously, the task offloading process is a Markov decision

process, and we intend to use a deep reinforcement learning algorithm to solve it. Since
this problem involves a huge state space and a discrete action space, we use DQN
algorithm to design the task offloading strategy under dynamic pricing.

Users intend to maximize their long-term profits. At time period t, the users’
accumulative reward Rt (i.e. the long-term profit) is:

Rt = rt + γ rt+1 + γ 2rt+2 + · · · + γ T−trT =
T∑

k=t

γ k−trk (15)
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where γ is the discount factor. When users know that under all possible actions
at+1, the optimal value of the next state st+1 is Q∗(st+1, at+1), and then the opti-
mal offloading strategy can be obtained by choosing action a

′
to maximize the

expected value rt + γQ∗(st+1, at+1). The optimal action value function is Q∗(st, at) =
Est+1

[
rt + γQ∗(st+1, at+1) | st, at

]
.

However, given the huge state and action space, we have to use a function approx-
imator to estimate the action value function, which is Q(st, at; θ) ≈ Q∗(st, at). In
the task offloading strategy based on DQN algorithm, Q network is a neural network
function approximator with weight θ . By continuously adjusting parameter θi during
iteration to train Q network, we use the approximate target value of parameter θ−

i in
the previous iteration yt = rt + γmax

a
Q

(
st, at; θ−

i

)
to replace the optimal target value

rt + γmax
a

Q∗(st, at).
Therefore, the loss function Li(θi) that changes in each iteration can be obtained:

Li(θi) = E
[
(yt − Q(st, at; θi))

2
]

+ E
[
Vst+1 [yt]

]
(16)

We keep parameter θ−
i in the previous iteration unchanged, and then minimize the

loss function Li(θi) in the iteration i. The last part of Li(θi) is the variance of optimization
target, which does not depend on parameter θi currently being optimized. Therefore, this
part can be ignored. Finally, Li(θi) is differentiated according to weight, and the gradient
of task offloading strategy is:

∇θi L(θi) = E[(rt + γmax
a

Q
(
st+1, at+1; θ−

i

) − Q(st, at; θi))∇θiQ(st, at; θi)] (17)

The task offloading strategy in the dynamic pricing environment, which is called
DUTO, as shown in Algorithm 2. In Algorithm 2, lines 1–3 represent the initialization
of the experience pool D and two neural networks ( Q, Q

′
). Line 7 indicates that after

edge servers change the prices, users observe the environment and get state st , and then
generate and execute the offloading action at according to E –greedy strategy. Users
get reward rt and enter the next state st+1. Lines 8–12 indicate that users store the state
transition tuple (st, at, rt, st+1) into the experience pool D, randomly take out a certain
number of samples for training. Users constantly updateQ network, and then update the
target network every J generation. Line 13 means algorithm enters the next state.
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5 Experimental Evaluation

5.1 Experimental Settings

In this section, we run simulation to experimentally evaluate our strategy. In the experi-
mental environment, the area size is set to 200 m × 200 m. For users, considering that
the Random Waypoint (RWP) [24] model is widely used in the simulation of mobile
networks, we use RWP model to generate the movement trajectory of users. We assume
that OTt

m of user m follows a Poisson distribution [25], which is dt
m ∼ P(5), f tm ∼ P(5).

At the same time, we assume that the unit energy consumption cost cu is 8, the mobile
device transmission power Pd is 500 mw, the mobile device CPU chip model parameters
κu and ζ are 10–27 and 3 respectively, and the computing power φ of mobile devices is
0.5 GHz.

For edge servers, we assume that coordinates of edge servers in the environment are
L1 = (50, 150), L2 = (150, 150), L3 = (50, 50) and L4 = (150, 50), the edge server
CPU chip model parameters κs and ζ

′
are 10–29 and 3 respectively, and the unit energy

consumption cost cs is 4.
For the edge computing environment, the entire time is divided into 100 time periods,

i.e. T = 100. We assume that the received power h0 is −30 dB when reference distance
is 1 m, the channel bandwidth B is 20 MHz, and the noise power σ 2 between the mobile
device and the edge server is −60 dBm/Hz. The experimental parameters are shown in
Table 2.
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Table 2. Experimental parameters

Parameter Description

N = 4 Number of edge servers

κs = 10−29, ζ
′ = 3 Edge server CPU chip model parameter

cs = 4 Edge server unit energy consumption cost

T = 100 Total time period

dtm ∼ P(5) Data size of OTt
m

f tm ∼ P(5) Computing resources required for OTt
m

φ = 0.5 GHz Computing power of mobile devices

κu = 10−27, ζ = 3 Mobile device CPU chip model parameter

Pd = 500 mw Mobile device transmission power

cu = 8 Unit energy consumption cost of mobile device

h0 = −30 dB The received power when the reference distance is 1 m

B = 20 MHz Channel bandwidth

σ 2 = −60 dBm/Hz Noise power between mobile device and edge server

We now introduce the benchmark approaches used in the evaluation. In the realistic
edge computing environment, the Nearest Offloading strategy (NO, users choose to
offload each computing task to the nearest edge server) and the Greedy Offloading
strategy (GO, users choose the edge server that can generate the most profit to offload)
are often used, and they are also widely used as benchmark approaches in the related
work, such as [9, 18, 26, 27]. In addition to evaluating against NO and GO, we also
evaluate our strategy against two state of the art approaches. One is an online user
allocation strategy based on mobility-aware and migration-enabled (MobMig), where
the user selects the edge server with the aim at maximizing the profit. When the edge
server is overloaded, it may migrate computing tasks [21]. The other is a dynamic
task offloading strategy based on SARSA (DOM), where users use games to choose
edge servers that maximize the profits of users [11]. Note that we need to analyze the
performance of these benchmark approaches when the edge servers dynamically change
prices based on DESRP pricing strategy. Therefore, we first need to train the pricing
strategy against the above benchmark approaches respectively.

In this paper, we intend to maximize the long-term profits of users and analyze the
impact of dynamic pricing on users’ offloading decisions. Therefore, we consider the
following four metrics for evaluation, which are total profits of users, total costs of users,
total profits of edge servers and total costs of edge servers.
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5.2 Experimental Analysis

In each experiment, users’ trajectory is different when RWPmodel is adopted. The initial
prices of the edge servers are dynamically set when DESRP dynamic pricing strategy
is adopted. Therefore, we repeat the experiments for 10000 times to show the average
performance of our algorithm.

Firstly, we show how the dynamical pricing can affect users’ task offloading deci-
sions. For illustrative purpose, we set M = 6, Rad = 100 m, F = 3 GHz, and the
experimental results are shown in Fig. 2. We find that when the price of edge server is
decreased,more userswill be attracted to offload tasks. For example, we choose time step
17–19 and 49–51 to show the dynamics of the price. Figure 2(a) shows the price changes
of each server under different task offloading strategy. Note that MobMig strategy will
migrate tasks, which may cause the prices to fluctuate greatly. NO strategy will select
the nearest server to offload tasks, making the server’s load unbalanced, and will also
cause the server’s price to fluctuate greatly. When step = 18, we can see that the price
of server 4 in DUTO is lower, our strategy will select server 4 while users withMobMig
and NO strategies select server 1. Although users withDOM andGO strategies will also
choose server 4, the price of server 4 under DUTO strategy is lower. Therefore, the total
profits of users are higher than other four strategies, as shown in Fig. 2(b). Furthermore,
we find that when step = 50, the price of each server in DUTO is relatively high, but
the total profits of users are still the highest. This is because DUTO strategy will reserve
server capacity in advance for high-value offloading tasks through continuous learning,
so as to avoid these tasks being discarded, which improve users’ profits, as shown in
Fig. 2(b).

(a) Edge server prices (b) Total profits of users

Fig. 2. The impacts of dynamic pricing on task offloading with step 17–19 and 49–51

We now run experiment with different number of users when Rad = 100 m and F =
3 GHz. The experimental results are shown in Fig. 3. We find that DUTO strategy can
outperform other strategies. When the number of users increases, DUTO can perform
better (e.g.whenM =6,DUTO is 5.59%higher thanDOM, 13.20%higher thanMobMig,
16.78%higher thanGO, and 21.09%higher thanNO in terms of the total profits of users).
This is because by sensing the prices and capacities of edge servers, DUTO can make
reasonable offloading decisions in the dynamic environment. In terms of total costs of
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users, DUTO always outperforms MobMig, GO and NO (e.g. when M = 6, DUTO is
47.38% lower thanMobMig, 44.49% lower than GO and 44.59% lower than NO). This
is because DUTO can make reasonable decisions in the dynamic environment. When
the price is too high, users will give up offloading and do the local execution, reducing
the costs of users.

In terms of the total profits of edge servers, with the increased number of users, we
find that the edge servers make less profits when users adopt DUTO strategy. This is
because when users use DUTO strategy, DESRP dynamic pricing strategy cannot take
advantage on users to make more profits. At the same time, in terms of the total costs
of edge servers, with the increased number of users, DUTO can help edge servers to
reduce the costs. This is becauseDUTO can make effective decisions with respect to the
dynamic prices of edge servers. When edge server increases its price, resulting in fewer
tasks offloaded, and thus reduces the cost.

(a). Total profits of      
users

(b). Total costs of       
users

(c). Total profits  
of edge servers

(d). Total costs  
of edge servers

Fig. 3. Experimental results with different number of users when Rad = 100 m and F = 3 GHz

Furthermore, in addition to analyzing the impact of dynamic pricing on task offload-
ing decisions, we run experiments with different values of coverage radius Rad and task
processing capacity F for edge servers, in order to analyze how different characteristics
of edge servers can affect the task offloading strategy. Because of the page limits, for
illustrative purpose, we show the results of the key evaluation metric (the average value
of total profits of users and its standard deviation) with 6 users in Table 3. We find
that our strategy can still outperform other strategies. Furthermore, we find that when F
increases, edge server can provide more computing resources, resulting in more tasks
offloaded, which can increase users’ profits. When Rad increases, users’ profits may not
increase. This is because when the coverage radius is not changed too much, i.e. Rad =
80 m compared with Rad = 100 m, the number of users covered by each edge server is
not changed too much. Therefore, edge servers that users can choose to offload the tasks
are roughly the same, which may result in similar users’ profits.
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Table 3. The experimental results with different Rad and F when M = 6

Strategy Rad = 80 m, F =
2 GHz

Rad = 80 m, F = 3
GHz

Rad = 100 m, F =
2 GHz

Rad = 100 m, F =
3 GHz

Users’ profits Std Users’ profits Std Users’ profits Std Users’ profits Std

DUTO 1580.3 9.4 1854.8 8.5 1573.7 9.1 1938.3 14.4

DOM 1558.1 6.6 1810.2 13.3 1411.4 6.7 1867.4 10.6

MobMig 1314.3 2.9 1741.0 3.4 1300.8 6.3 1743.9 7.4

GO 1202.1 1.6 1688.6 1.8 1203.5 3.4 1688.6 3.5

NO 1122.1 1.8 1628.5 1.3 1122.2 2.9 1628.5 1.6

6 Conclusion

In this paper, we consider how to design a task offloading strategy in the edge computing
when the edge servers dynamically change the resource prices andusers are inmovement,
in order tomaximize the long-termprofits of users.Wemodel the task offloading problem
as anMDP.We then propose a DDPG based dynamical pricing strategy for edge servers.
Under this dynamicpricing strategy andusers’movements,wepropose aDQNbased task
offloading strategy, named DUTO. We also conduct extensive experiments to evaluate
the proposed strategy. The experimental results show thatDUTO strategy can outperform
other strategies in terms of users’ profits, and DUTO strategy can also reduce the users’
costs. We also run the experiments with different coverage radiuses and task processing
capabilities of edge servers. We find that by improving task processing capabilities of
edge servers, users’ profits are increased. The experimental analysis can provide useful
insights for designing the practical task offloading strategy.
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Abstract. We envisage that BPM and IoT Big Data will be the two
pillars of next-generation Process-Aware Information Systems (PAIS).
While IoT enables BPM to perceive and react to realtime events in the
physical world, BPM can equip IoT with a well-developed modelling and
implementation platform. However, the integration of BPM and IoT is
facing paradigm misalignment challenges including mismatch of program-
ming mechanisms, mismatch of resource management mechanisms, and
mismatch of adaptation mechanisms. In this paper, we present the vision
and architectural solution of the recently funded NSFC-DFG coopera-
tion research project BRIBOT, which aims to develop novel service-based
approaches and techniques for these challenges. The paper presents the
BRIBOT methodology that comprises four parts: abstraction and servi-
tization of IoT data, resource space that handles service and data assets,
modelling and transformation of IoT and business events, and IoT-event-
driven process awareness and adaptation.
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1 Introduction

The Internet of Things (IoT) has gained huge momentum and is becoming
the new infrastructure for next-generation distributed computer systems. IoT
enables the inter-connectivity of sensors, actuators, everyday electronics and
vehicles, and heralds a new era in which people, physical objects and virtual
objects are naturally integrated and can interact with each other in a conve-
nient and efficient way [1,2]. Meanwhile, Business Process Management (BPM),
as the cornerstone for modern Process-Aware Information Systems (PAIS), has
established itself as a powerful technology in the design, analysis, configuration,
enactment, and evolution of cooperative processes [3]. BPM and related tech-
nologies have been widely used in retailing, logistics, manufacturing, and many
other service industries for decades.

We anticipate that by integrating IoT capabilities to sense realtime situations
of the physical environment, traditional PAIS will potentially have enhanced
situation-awareness and become more proactive, leading to increased usability
and a wider range of possible applications. The ever growing amount of data
generated by IoT, which holds great economic potential for future applications,
can also be better leveraged and handled by means of BPM, as the latter gives
domain experts direct control over business processes.

However, the integration of BPM and IoT is facing paradigm misalignment
challenges. For example, IoT-enabled PAIS require programming mechanisms
for creating situation-awareness that the traditional predefined process models
of BPM cannot cope with [4]. The mismatch between the volume and velocity
of IoT Big Data with the structured data models of traditional BPM poses
challenges as well [5]. Furthermore, IoT applications may be highly dynamic
and change on short notice (e.g. due to the mobility of users and systems),
whereas existing approaches to business process modelling follow a more static
approach.

The joint research project “Service-based Abstraction and Programming
Mechanisms for Bridging Business Processes and IoT Big Data (BRIBOT)”
aims to tackle these challenges. In particular, service-based technologies can be a
major enabler in the given context. With service-based modelling and transfor-
mation serving as the core foundation, the project aims to make breakthroughs
in the abstraction and servitization of IoT data, accretion and management of
service and data assets, modelling and transformation of IoT events, and IoT-
service-enabled process awareness and adaptation. In order to promote discus-
sions and interests within the service community to BPM and IoT integration,
we report the BRIBOT methodology in this paper.

2 Motivation and Vision

In this section, we first discuss the main challenges of integrating IoT and BPM
that motivate the proposal of the project, and then we present the vision and
goal that BRIBOT aims to achieve.
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As discussed in Sect. 1, IoT can upgrade traditional BPM to proactive BPM
systems with realtime situation-awareness capability. However, we argue that
several paradigm alignment issues must be resolved in the first place to enable the
smooth integration of BPM and IoT. We have identified three major paradigm
mismatch issues:

1) Mismatch of programming mechanisms
Sensors are one of the major components of an IoT system, and event streams

generated by sensors flow continuously in the system, which necessitates proper
abstraction and related programming mechanisms to define and manage event
streams. Although events are also a key concept in the traditional BPM sys-
tems (for example message and error events in BPMN), they are, in general,
asynchronous and discrete, and are thus not appropriate for modelling event
streams. Some early works on extending BPMN with elements for modelling
IoT event steams have been carried out. For example, Appel et al. [6,7] encap-
sulated IoT event streams into Stream Processing Units (SPU), a special type
of BPMN tasks. Yousfi et al. [8] proposed uBPMN, which introduces additional
task stereotypes for, e.g., audio and video streams. While some IoT event stream
models have been proposed, how to program such models is still a research issue
to be further investigated.

On the other hand, an IoT environment is in general not structured and
highly dynamic. Unstructuredness is the principal characteristic of the IoT as
most of the communication between loosely-coupled objects is accomplished in
an ad-hoc and situative manner [4,9]. IoT devices exist in the physical world
and, thus, they have geographical/spatial properties. Furthermore, IoT devices
are highly dynamic, e.g., they can move in space or change their states over
time. Traditional BPM approaches with monolithic process models have trou-
ble dealing with such situation as both orchestration and choreography, which
are the two main mechanisms of BPM for organizing and coordinating busi-
ness flows, require knowledge about the structure and interactions of participat-
ing processes. Moreover, the traditional process modelling methods are geared
towards routine and deterministic processes, whereas PAIS running in an IoT
environment are expected to be situation-aware [4] and make decisions upon
the occurrence of non-routine and non-deterministic events. Such characteris-
tics require a programming mechanism that is situation-aware, which can be
considered as a new challenge to the traditional BPM systems.

2) Mismatch of resource management mechanisms
Due to the huge complex network introduced by IoT, more sophisticated

resource management mechanisms become necessary than the traditional batch
or centralized cloud-based services utilized by BPM systems. The recently flour-
ishing research area of “Edge computing” (or “Fog computing”) conveniently
meets this demand with a paradigm bringing resource management and process-
ing closer to the location where it is needed to improve response times and to
save bandwidth [10]. To cater for the IoT environment, it becomes necessary
for BPM systems to optimise the execution of business processes through ratio-
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nalizing stream-batch data processing, data placement and caching, and task
scheduling strategies in the collaborative cloud and edge environment [11,12].

The exploding number of IoT objects/resources poses additional challenges
to resource discovery and selection of BPM processes. Such over-choice issue
becomes even more apparent with the rapidly expanding IoT network. Recom-
mender systems as an effective method to deal with the exploding information
recently are gaining increasing attentions by the community due to the advances
in deep learning [13,14]. The dynamic nature of IoT, together with its huge size,
requires improved recommendation mechanisms, which then will be an effective
tool to bridge BPM process tasks with IoT resources.

3) Mismatch of adaptation mechanisms
In the highly dynamic IoT environment, PAIS are required to react to chang-

ing environmental conditions and business requirements more frequently and in
a more agile manner. Reichert et al. [15], and Song et al. [16] have studied
many issues and proposed practical solutions to process adaptation that enable
either static adaptation or dynamic adaptation. However, when integrating IoT
into BPM, another big gap hardly noticed so far concerns the long-tail business
process adaptation requirements induced by scarce yet significant asynchronous
events due to the five V’s of IoT Big Data (volume in size, variety in type,
velocity in time, veracity in quality, and value sparsity [17]). No matter what
technologies are employed, these long-tailed events can be the blind-spot for IoT
Big Data enabled BPM approaches, making it difficult to react to these events
timely, effectively, and efficiently.

Bearing the above challenges in mind, BRIBOT aims to investigate mecha-
nisms for the modelling, automatic provisioning and execution of next-generation
PAIS that accommodate IoT streaming data and events. BRIBOT adopts the
Everything-as-a-Service (XaaS) model and abstracts IoT physical things and
digital data sources, IoT Big Data processing capabilities (including data acqui-
sition, transformation, integration, query, storage, analysis, and visualization
both at the edge and the cloud), and application logic in terms of services. As
illustrated by Fig. 1, the supposed effect of BRIBOT is that the BPM modellers
and power users (power users are the business users who have the skills and
knowledge to use the advanced features) can ‘see’, ‘bind’, and ‘control’ certain
IoT data and service assets at both modelling and run time. For BPM modellers,
they can navigate and select suitable service assets and visualize data assets at
modelling time. For power users, at run time, they can 1) navigate, select and
bind IoT business events to business process elements; 2) monitor the physical
environment continuously and track the data provenance of business events; 3)
respond to IoT events and control the IoT resources.

3 Methodology and Approaches

An overview of the BRIBOT methodology is shown in Fig. 2. From the bottom
up, at the IoT resource layer, physical sensor devices, IoT gateways and IoT
applications continuously sense the physical environment and produce raw data
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Fig. 1. Supposed effect of BRIBOT

streams. Raw sensor data are then aggregated, linked and abstracted as higher-
level business events that can be bound to business process elements.

Fig. 2. BRIBOT methodology overview

At the middle bridging layer, raw event streams are modelled as IoT services
and transformed to service events that can be utilized by micro processes. This
layer hosts two communities: a service space and a data space. It further hosts
IoT-aware micro processes that transform service events into business events,
which can then be used and interpreted at the business process level [18].

At the business process layer, three types of process awareness/adaptation
are considered: 1) stepwise refinement. This type of flexibility leaves the over-
all business process model structure untouched, and allows for refinement at task
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level, while keeping consistency with the overall business process logic. 2) pro-
cess adaptation. This type of flexibility allows ad hoc adjustments of business
process at runtime through user-enabled decision-making and replacement, and
enables late-binding/spontaneous reaction of certain model elements. 3) decen-
tralized choreography. In case of cross-domain collaboration or cloud-edge
topologies, decentralized choreography could be enabled to coordinate process
segments and sub-processes through IoT business events.

3.1 Abstraction and Servitization of IoT Data

In this section, we introduce the notion of IoT Service, which is a service-based
abstraction model for bridging IoT Big Data. As shown in Fig. 2, IoT Service is
at the bottom of the bridging layer that interfaces with the IoT resource layer.
It maps raw IoT data to service events, sets up links to the data space, and
supports formalized event calculus. Based on service behavior patterns, more
coarse-grained IoT services can be formed.

In recent years, some researchers have investigated on related open research
problems of IoT services for both enhancing event based IoT systems and bridg-
ing the gap between IoT systems and BPM (e.g., [19–21]). In this paper, three
fundamental requirements have been identified for IoT service:

– We treat various physical devices, including sensors, tags and actuators, as
‘IoT objects’. IoT services correspond to their twin representation in the
digital world and provide capabilities to access them. We also denote such
IoT services as ‘soft-sensors’ or ‘software-defined sensors’. The communication
protocols and data formats need to be adapted in the first place so that the
physical devices can be accessed in a uniform manner.

– IoT services should encapsulate the capabilities to read/write attributes of
IoT objects as well as to manage their lifecycles. The micro process model
needs to be adopted here. We will introduce it in detail in Sect. 3.3.

– IoT services should provide the necessary functionality to process raw sensor
data as well as to generate events for the upper layer. By doing so, a large vol-
ume of raw data streams with low value density is transformed to meaningful
information to be used by micro processes.

To satisfy the aforementioned requirements, we define five characteristics for
IoT services:

– calculable. Although raw IoT data may appear in massive volume, the value
density is often low, thus raw data need to be processed and further analyzed,
e.g. filtered, aggregated or mined in order to generate events being of interest
to the upper layer of BRIBOT. IoT services should be able to describe event
streams and compound events, to recognize and detect meaningful events
from raw data streams, to define, learn and validate complex event processing
rules, and to reason on the behaviors of the IoT objects.

– composable. The upper layer often needs events that are interrelated with
multiple cross-organizational IoT objects instead of a single IoT object; thus,
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IoT services are designed to be composable into larger-granularity IoT ser-
vices that encapsulate read/write and lifecyle management operations for a
collection of interrelated IoT objects.

– bindable. After generating IoT service, the mapping needs to be established
between the IoT service and the business process model elements, either at
modelling time or later during execution. With IoT services, the business pro-
cess instances could read service events or write control commands from/to
IoT devices and/or IoT applications. Both the mapping relationship at mod-
elling time, and the association between service events and process elements
during execution lifecycle of IoT services and business processes are covered.
Such mapping needs to be considered when deploying, instantiating, starting,
stopping, resuming, and completing services and the associated business pro-
cesses. We call this process for building up such mapping relationship both
at modelling time and run time as binding process, and call this capability
bindable.

– fault-tolerant. Most IoT devices such as wearable devices and internet of
vehicles are highly dynamic, and some devices are deployed in harsh envi-
ronments. Although the underlying technological framework such as wireless
sensor network (WSN) copes with issues related to network failures, power
shortage or node failures, the data collected from sensors are prone to be
damaged due to the IoT environment’s intrinsic issues such as sensor errors,
exceptional events from the open real-world scenarios, and IoT objects join-
ing and leaving. Therefore, IoT services need to be fault-tolerant to ensure
the quality of output events.

– proactive. Proactivity refers to the ability to mitigate or eliminate unde-
sired future events, or to identify and take advantage of future opportunities,
by applying prediction and automated decision making techniques [22]. The
growing availability of IoT Big Data as well as the development in predictive
data analysis open the door for IoT services to become proactive, i.e., on
one side to sense the IoT situation based on IoT services such that specific
services can be dynamically selected and bound to the predefined elements
of a business process instance according to its IoT physical environment; and
on the other to predict and output events and to make decisions before these
events actually occur.

Based on the above analysis, a high-level design of IoT Services is shown
in Fig. 3. For each IoT object, an IoT service with standard operation APIs for
accessing its attributes and generating service events is generated. The input and
output of service operations are specified by subscriptions and advertisements of
event streams. For example, the input of a service operation that continuously
reads the temperature of a room is specified by a subscription to “temperature”
topic for a certain room with the associated subscription parameters. Except for
such standard operations, other event processing logic such as event filtering,
event aggregation and learning-based event prediction can be encapsulated in
specific operation APIs.
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Fig. 3. IoT Services (“Soft Sensors”)

Specifically, an IoT service has properties such as validity condition, instan-
tiation expression, and service metadata to describe the conditions when an IoT
service becomes instantiated and alive, the input and output, the stream pro-
cessing logic, and service properties, e.g., the location and quality of an IoT
object.

3.2 Resource Space

This section gives a detailed description to Resource Space, which corresponds to
a community for managing, sharing, and recommending resources in BRIBOT.
As shown in Fig. 2, the bridging layer hosts the resource space.

Four fundamental requirements need to be met by the resource space:

– To meet the needs of process modellers, power users, and the IoT physical
environment, the resource space is designed to organize and manage the cross-
organizational BRIBOT resources, including IoT data sources, IoT objects
and IoT services as well as other services, processes and the associated stream
and batch data.

– The resource management mechanisms need to support an optimised schedul-
ing in the collaborative cloud and edge environment. To schedule a huge num-
ber of IoT objects and services as well as a huge volume of data, a distributed
and/or decentralized resource management architecture is needed to optimise
the execution performance of business processes.

– To manage the complexity of the resources, the resource space shall be
designed to facilitate power users to manage resources at different levels with
the zoom-in/zoom-out operations to link different pieces of resources and
history elements while exploring the data provenance of business events.

– The resource space is designed in a way that shall facilitate power users to dis-
cover and choose appropriate resources from a dynamic and large community
hosting tens of millions of objects.

To satisfy the above requirements, we define three characteristics the resource
space needs to have:
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– optimised scheduling. IoT objects, the associated stream and batch data,
and the tasks/services can be allocated to the locations specified by either
the power user or the system including the cloud and the edge. Resource
scheduling methods are designed to achieve specific optimisation goals for
business processes under different business or environmental constraints.

– manageable and customizable. In order to improve the use of various
resources in a dynamic IoT environment, resource management and cus-
tomization mechanisms are designed to provide different resource views to
different users in diverse IoT situations.

– dynamic resource recommendation. To support power users in discover-
ing and choosing the proper objects within the potentially huge and dynamic
IoT environment, a recommender system is needed that adapts to both tem-
poral and spatial changes.

A high-level design for dynamic service recommendation based on the
resource space is illustrated by Fig. 4. First, the process modeller defines a place-
holder with certain functional requirements which is sent to the service registry.
Second, some essential services are selected based on the functional requirements
and the descriptions/tags of the services from the service registry. At the same
time, some supplemental services are recommended according to the topological
and organization model of the services network. Third, the essential and candi-
date services are matched and ranked based on the IoT situation generated by
the IoT services. Fourth, the placeholder is realized with one or multiple services
at run time.

Fig. 4. Dynamic service recommendation based on resource space
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Although a lot of works have been reported on personalized, context-aware
or situation-aware service organization, discovery and recommendation [23–25],
there is still a lack of effective approaches to address the dynamic and large-
scale nature of the service space in an IoT environment. For example, how to
apply the recently proposed complex network models to build the topological
and temporal evolutionary model of services and evaluate their effectiveness,
and how to discover and rank the available services based on the advances in
deep learning research are worth further investigation.

3.3 Event Modelling and Transformation

In this section, we give insights into Event Modelling and Transformation. The
latter is a key programming mechanism in the bridging layer in Fig. 2 to encap-
sulate event streams into business events of interest to the business process,
consume and utilize IoT business events at business process level, and better
control the interactions with the real world.

IoT and business processes are located at different levels in PAIS. IoT focuses
on processing event streams continuously, while contemporary business processes
focus on a rather high level of abstraction, e.g., the status of (black-box) busi-
ness activities. As discussed in Sect. 2, although events handlers in the tradi-
tional BPM systems can match discrete IoT events, flow logic of BPM only
captures sequential logic, whereas IoT event processing heavily relies on strict
timed semantics. The particular challenge is how to effectively and efficiently
integrate the two different concepts and how to cope with naturally occurring
programming mechanism mismatches in the underlying paradigms.

Three fundamental requirements for event modelling and transformation
have been identified:

– Study the coordination facilities to adapt synchronous flow logic and asyn-
chronous IoT event by incorporating IoT services as introduced in Sect. 3.1.

– Define suitable modelling elements for business events. In this context, micro
processes pick up the idea of data-driven process management, enhancing it
with the concepts of objects and object relations [26–28]. As IoT objects can
be easily mapped onto such objects, adopting micro processes as modelling
elements for business events as well as building blocks for modularizing IoT-
aware business processes seems to be very natural.

– Some technical entities must be integrated into business processes, neverthe-
less. While most of the complexity of IoT applications should be dealt with
on a technical level, results naturally influence decisions on a business level.
Thus, technical details having direct impact on business processes need to
be incorporated into the business process models. For example, data quality
of different sensors or external services may influence business decisions or
machine learning algorithms. The latter are commonly employed to analyze
IoT data, but return a probabilistic result, which, in turn, requires appropri-
ate processing on a business level.
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With these requirements in mind, we define the following characteristics for
suitable Event Modelling and Transformation:

– micro process enabled. The modelling and transformation of event stream
into business events is based on micro processes. We propose IoT-aware micro
processes and their lightweight coupling to form the overall multi-object busi-
ness processes. By integrating IoT-aware micro processes and related infor-
mation, the real-world aware execution, monitoring, mining, and decision
support for business processes becomes possible. Moreover, due to the object-
centric approach of micro processes, the black-box nature of process activities
can be broken [26].

– technical dependency sensitive. IoT solutions consist of several technical
entities (e.g. sensors, web services, algorithms, etc.) introducing constraints
to the business processes that must be obeyed or handled (e.g. probabilities
in machine learning).

– automatically executable. Solely defining business process models would
require manual implementation and thus not remedy the problems described
before, but introduce potential inconsistencies between model and implemen-
tation. Automatisms are thus required to transform IoT-enabled business
process models into executable entities, i.e., business process instances. We
envision a system which can receive business process models and convert them
into the necessary software components.

To design a solution meeting these requirements, we argue that such systems
require a hybrid activity-/object-centric process modelling approach combining
the advantages of activity-centric process models (e.g. BPMN models) with the
ones of object-centric micro processes. This approach shall include patterns,
methods and algorithms for mapping multiple IoT-aware micro processes to a
process model in such a way that neither the modelled object behaviors nor the
semantic relations between the micro processes contradict to the overall busi-
ness process logic. At runtime, the IoT-aware micro process instances involved
in the enactment of a business process instance should be allowed to run asyn-
chronously and concurrently as far as possible on one hand, while on the other
their execution needs to be coordinated at certain points taking their semantic
relationships into account.

3.4 Process Awareness and Adaptation

Once event modeling and transformation have converged IoT events into busi-
ness messages, business processes can deal with them in reaction to environmen-
tal events. Some of these messages are consumed directly by business processes
following the prescribed models; others require further treatments via the close
work of BPM with the event modeling and transformation layer to handle unpre-
dictable situations. The latter one needs process adaptation support in BPM.

Process adaptation is a persistent topic in BPM. As introduced in Sect. 2,
many issues and proposed practical solutions to process adaptation have been
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studied [15,16]. However, there is one scenario that neither [15] nor [16] has
touched, i.e., the long-tailed events that need the tight interaction of event pro-
cessing and business process management. Long-tailed events are a kind of short-
lived events that occur with low frequency and unpredictable moments. Never-
theless, such events might be important for the business process. For example,
during COVID-19, many regulations and policies must be adjusted frequently
due to fast-changing situations like family isolation, community closure, resident-
pass system, and social distance in public places. As a result, the business cannot
operate normally according to the established process model. The limp in deal-
ing with long-tailed events in BPM is rooted in the paradigm mismatch between
IoT event processing and BPM. On the one hand, IoT can perceive events in
due course, but it is still lagging off behind the semantics of business messages
required by BPM; on the other hand, BPM focuses on the automation and com-
pliance enforcement for the modeling and execution of business processes, which
is challenging to deal with transient events effectively.

Generally, long-tailed events can hardly be automatically identified by stan-
dard process/data mining techniques due to the rarity of indicators in the event
streams. In particular, due to the nature of long-tailed events, events captured
at the IoT layer need to be further analyzed and verified at the business process
management layer or inspired by business practitioners and then fed back to the
event modeling and transformation layer for further justification. In other words,
the identification of long-tailed events usually needs tight collaboration of bridg-
ing layer and the business process level in Fig. 2. Take the logistics during the
COVID-19 period as an example. The events about complaints on delayed deliv-
ery creep away from traditional mining algorithms (lack of sufficient support)
and deep learning techniques (shortage of annotated training data). However,
business managers could awake traits of clues in their study of daily logs. Like
canaries in the mine, these managers can discover meaningful clues with their
practical experience or professional intuition. As a result, they can provide addi-
tional business activities or specify new criteria to help the filters capture mean-
ingful events iteratively. For example, business managers can ascribe that these
delays come from personal problems (such as sudden damage to the delivery
vehicle) or the strict inspection system for outsiders (delivery workers) enter-
ing the destination community. Feeding these supplementary judgments again
into the event modeling and transformation layer can help identify transient yet
meaningful events.

Similarly, we cannot expect to deal with long-tailed events from BPM alone.
It is beyond the capability of traditional BPM and deviates from BPM practice.
Moreover, facing the long-tailed events, the whole PAIS might paralyze due to
economic problems (events being too many in types and rare in emergence) or
logical problems (making the process model fall into details and lose performance
and maintainability). Still, it is unwisely to feed IoT events directly to BPM that
PAIS cannot catch up with the pace of changes because of inconstant policies.
In a word, in tackling long-tailed events, we have to develop effective solutions
by the close collaboration of the bridging layer and the business process layer.
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With such challenges in mind, we identify four fundamental requirements for
process adaptation in the new context:

– characterizing long-tailed events precisely and studying their impact on nec-
essary business process adaptations.

– developing a practical technology for identifying long-tailed events in time.
– innovating process adaptation techniques to leverage PAIS’ resilience.
– improving quality-guaranty and business governance to embrace ad-hoc adap-

tation of business processes.

To satisfy these requirements, we define the following characteristics for pro-
cess adaptation:

– less invasive. Our goal is to reuse the business process model as much as
possible in a low code manner and let business personnel rather than IT
technicians respond to the long-tailed change requirements of the business
model based on business events.

– verification support. Any adjustments on the business process model, espe-
cially those adjustments on collaborative processes, should be tested to avoid
violating the business nature.

We aim to adapt the classic PAIS framework [15] and exploit annotation facil-
ities in the BPMN standard to adjust process behaviors according to situations
detected by IoT. More specifically, we plan to define an annotation language
to describe new capabilities, constraints, and KPI claims in response to certain
IoT events at the design stage. At the run-time stage, we plan to use a low-code
paradigm to enhance the process engine by adding corresponding handlers to
interpret formatted annotations, which changes the original process variables to
interfere with the execution of process instances. We also plan to study the fea-
sibility of extending current controllability verification algorithms [29] to handle
panorama KPIs in the setting of collaborative processes.

4 Concluding Remarks

With the convergence of design time and run time, cyber and physical objects,
as well as ad hoc and regulatory decision-making, the modelling and execu-
tion of services also need to evolve. New application requirements and emerging
challenges drive forward the service-oriented methodologies. The paper reports
our undergoing efforts in applying service-based approaches to bridge BPM and
IoT Big Data. With this, we hope to stir more interests and discussion on the
related issues such as servitization of IoT data, and service-based triggering of
BPM adaptation in particular.
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Abstract. Process analytics techniques such as process discovery play
an important role in mining event data and providing organizations with
insights about the behaviour of their deployed processes. In many prac-
tical settings, process log data is often geographically dispersed, may
contain information that may be deemed sensitive and may be subject
to compliance obligations that prevent this data from being transmitted
to sites distinct to the site where the data was generated. Traditional pro-
cess mining techniques operate by assuming that all relevant available
process data is available in a single repository. However, anonymising,
giving control access and safely transferring sensitive data across organi-
zation/site boundaries while preserving priacy guarantees is non-trivial.
In this paper, we lay out the first steps for a federated future for process
analytics where organizations routinely collaborate to learn and mine
geographically dispersed process-related data.

Keywords: Distributed process discovery · Business process mining ·
Privacy-preserving process mining

1 Introduction

Modern organizations routinely deploy process analytics, including process dis-
covery techniques on their process data, both to gain insight into the reality of
their operational processes and also to identify process improvement opportuni-
ties [2]. However, in many practical settings, process log data is geographically
dispersed and can contain information that may be deemed sensitive. Traditional
process mining techniques operate by assuming that all relevant available pro-
cess data has been curated into a central site for analysis. However, anonymising,
giving control access and safely transferring sensitive data across organizations is
non-trivial. Moreover, organizations face legal constraints, risk of data breaches
(or hacks) along with data integration challenges, preventing them from building
a centralised data warehouse [8]. This leads to a scenario where event-log data is
present in organizational silos and distributed among several custodians, none of
whom are allowed to share/transfer their sensitive data directly with each other
[18]. Mining process data in such cross-silo settings can prove to be invaluable
for providing relevant operational support to organizations if privacy guarantees
can be offered [14].
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Consider a scenario from the field of medical research involving impediments
to data migration. Here a number of different hospitals wish to jointly mine
their process logs for the purpose of medical research, but are faced with reg-
ulatory and legislative compliance hurdles that prevent clinical process histo-
ries being shared across health jurisdictions (hospitals, health districts, national
boundaries, etc.). Hospitals are therefore restricted from ever pooling their data
or revealing it to each other leading to small dataset available for knowledge
extraction. This negatively impacts the confidence with which clinicians might
deploy the results thus obtained. Our inability to migrate clinical process data
also implies that we miss out on the opportunities for extracting higher-impact
insights that might have been possible if data from multiple health jurisdictions
could have been analysed in juxtaposition [19]. Here a solution is needed that
enables the hospitals to compute the desired data mining algorithm on the union
of their databases, without ever pooling or revealing their data.

Federated learning (FL) has recently gained popularity, in the machine learn-
ing and data science research communities [17,21] as it enables collaborative
learning without centralising the training data [26]. In this paper, we explore
the potential of federated learning paradigm for building secure distributed pro-
cess analytics solutions. We present a case study where we highlight the bene-
fits of FL and demonstrate its usefulness in settings where organisations might
be unwilling to share the sensitive data directly, but might still have a shared
incentive in analyzing the disparate log sources to jointly mine process models,
such that it leads to the collective benefit (e.g. mining of best practices across
industry). Overall, we envision a federated future for process analytics where
organizations routinely collaborate to learn and mine geographically dispersed
process-related data.

Contributions: We identify the problem of FL based secure distributed pro-
cess mining as an important research direction. We present a practical process
discovery algorithm designed to work under the cross-silo Federated Learning
paradigm where we perform computation at the edge. Our approach allows orga-
nizations to collaborate under the coordination of a central server, while keeping
the sensitive process data localized. Our method incorporates various privacy-
preserving protocols and mechanisms to ensure end-to-end privacy while the
distributed mining process is executed.

2 Preliminaries

2.1 Process Mining

Process Mining allows for the analysis of business processes based on event logs
(which are generated by most of today’s information systems) in order to extract
knowledge and insights. Such insights can allow analysts to analyse and under
the behaviour and actual performance of deployed processes.

Process Discovery algorithms can extract a business process model from an
event log, which captures the control-flow relations between tasks recorded in
the event log [23]. Process Discovery algorithms take as input event logs which
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contain information about the start or completion of process steps, sometimes
coupled together with related context data (e.g. actors and resources). Several
process discovery algorithms have been proposed in the literature. For a survey
we refer the reader to recent survey by Augusto et al. [2].

2.2 Federated Learning and Analytics

Federated Learning is a collaborative learning approach where a family of algo-
rithms have been proposed, aimed at addressing characteristics, constraints, and
challenges unique to secure distributed training of machine learning (ML) models
where privacy is a major concern. Kairouz et al. [16] define Federated Learning
as “a machine learning setting where multiple entities (clients) collaborate in
solving a machine learning problem, under the coordination of a central server
or service provider. Each client’s raw data is stored locally and not exchanged
or transferred; instead, focused updates intended for immediate aggregation are
used to achieve the learning objective”. Federated Learning assumes that the
participating nodes are capable of training models locally and are responsible
for transmitting model characteristics (e.g., parameters, gradients). In federated
learning, our goal is to collaboratively learn a shared global consensus model
by a loose federation of participating nodes, which are coordinated by a central
server, such that the final model can generalize over test dataset Dtest without
compromising the privacy of data in individual datasets [16,26].

A related but independent line of research known as Federated Analytics has
a similar goal of moving computations closer to data, where local computations
are performed over individual data, while only revealing the resulting insights
(aggregated results) from each analysis [21]. This allows us to perform analysis
of decentralized raw data and answer basic questions of statistical nature about
the data. e.g. computing counts or rates. An application of such methods is
the discovery of heavy hitters in a population of user-generated data stream or
discovering frequently-taken actions on mobile phone app [26].

2.3 Differential Privacy

Differential Privacy provides us with a formal privacy notion for datasets that
are released publicly or might come in contact with potentially malicious adver-
saries [20]. It is considered as the de facto standard for ensuring privacy in a
variety of domains. The definition proposed by Dwork et al. [11] offers a mathe-
matically rigorous gold standard for ensuring privacy protection when analyzing
datasets like process logs(or results of a randomized algorithm) that might con-
tain sensitive or private information. We modify the definition slightly for event
logs:

Definition 1: Differential Privacy (adapted from [11]). A randomized
mechanism M : D → R with a domain D(e.g.,, possible event logs) and range
R(e.g., all possible trained models ) satisfies (ε, δ)− differential privacy if for any
two adjacent process logs l, l′ ∈ D and for any subset of outputs S ⊆ R it holds
that Pr[M(d) ∈ S] ≤ eε Pr [M (d′) ∈ S] + δ
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Two process log l and l′ are defined to be adjacent if l′ can be constructed
by adding or removing a single instance(entry) from the log l. By bounding the
potential worst-case information loss, the above definition provides us with a
strong formal privacy guarantee. Formally, under the (ε, δ)-differential privacy
definition, we measure Differential Privacy properties of our method by epsilon
and delta values. Epsilon(ε) is the privacy loss parameter in differential privacy
and is inversely proportional to the amount of noise added. i.e. Lower values of ε
imply stronger privacy guarantees. A Differentially private mechanism typically
involves using a randomized mechanim that perturbs the input dataset, inter-
mediate calculations, or the outputs of a function, using a calculated quantity of
noise (usually at the cost of utility) [9]. Such a mechanism is considered private
if it hides the isolated contribution of any single individual in the databases.
i.e. removing a single entry will not result in much difference in the output
distribution [1,11].

Definition 2 (Global Sensitivity [10]). For a real-valued query function
q : D → R, where D denotes the set of all possible datasets, the global sensitivity
of q, denoted by Δ, is defined as

Δ = max
D1∼D2

|q (D1) − q (D2)|

2.4 Secure Multi-Party Computation

Secure Multi-party security models involves multiple parties, collaborating to
compute a common function of interest, without revealing their private inputs
to other parties [13]. The protocol is considered secure if, at the end of the
computation, parties learn nothing but the final result and no other information.
Secure Aggregation is a class of Secure Multi-Party Computation algorithms
wherein a group of mutually distrustful parties u ∈ U each hold a private value xu

and collaborate to compute the aggregate value(such as sum
∑

u∈U xu) without
revealing to one another any information about their private values except what
is learnable from the aggregate value itself [5,7]. Secure aggregation in a federated
learning setting presents its own unique set of challenges, which several recent
works have tried to tackle [6,22].

3 Case Study: Cross-Silo Automated Process Discovery

In Privacy-Preserving Distributed Process Discovery, our goal is to discover a
global process model by privately mining multiple distributed process log inde-
pendently and share only the resulting insights from each analysis. i.e. mining a
differentially private process model, without ever pooling the data to a central
site, in a way that reveals nothing but the final discovery process model to the
participating organizations.
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Challenges and Considerations: To develop a secure protocol for process
discovery, where privacy is paramount, we have to consider a number of data,
communication and privacy-related challenges. We briefly explain these chal-
lenges here:

Privacy is a first-order concern in our cross-silo federated learning setting
[20,25]. The primary challenge is to protect data privacy by ensuring that there
is no information leakage of individual entries held in the private databases of the
participants. We also want to prevent individual participants from inferring and
reconstructing private information from collective or intermediate results shared
during protocol execution. Additionally, there is the challenge of collusion, where
multiple participants might collaborate to reconstruct the sensitive data held
by other participants. Second, no single participating client might own data
which is a representative sample of the overall distribution. i.e. Participants
might hold unbalanced distributions which means data points contributed by
each individual may be highly skewed in terms of modalities, dimensionality and
characteristics [17,25]. Lastly, if connected via internet, communication is often
the primary bottleneck with low-throughput and high-latency connections. This
requires techniques that can minimize the number of rounds of communication
and reliably communicate the relevant frequency or aggregated statistics in an
efficient fault-tolerant way.

We note that a solution that addresses all the constraints, and open chal-
lenges associated with designing a distributed Privacy-Preserving Protocol is
not possible. Rather the characteristics of any proposed solution would be often
a trade-off between privacy, efficiency and computational/communication com-
plexity, where we try to ensure ‘correctness’ of the final mined model to a suffi-
cient extent.

Problem Definition: Formally, the problem setting is described as follows: We
are given a set of n participating clients nodes (or data owners) {F1, . . . FN},
each with access to i.i.d or non.i.i.d event log data {E1, . . . EN}. A typical process
discovery algorithm would consolidate the logs E = E1 ∪ . . . ∪ EN to discover a
global model Mglobal. Our goal is to discover a federated process model MFED

in a cross-silo setting, wherein each participating clients keeps its share of the
data Ei =

{
xi
1 · · ·xi

li

}
secure locally and private from server S. Our goal is to

systematically address privacy concerns by building a Mechanism M(x) that
offers privacy guarantees while maintaining sufficient utility (measured by pre-
cision, recall and generalization).i.e. we want the utility of MFED as close to
Mglobal. i.e. |MFED − Mglobal| < δ, where δ measures the accuracy loss.

Threat Model: To ensure our proposed protocol provides the required privacy
properties, we first define the threat model which specifies the assumptions we
are allowed to make. We consider the honest-yet-curious threat model (some-
times also referred to as the semi-honest threat model in literature) [25]. We
consider the cross-silo federated learning setting where we assume each party
faithfully follows the specified security protocol. i.e. Parties follows the proto-
col honestly without tampering, performing the necessary specified computa-
tions and communicating honest results to the co-ordinating server. Second, we
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assume that both participating clients and server are honest-yet-curious whereby
they are able to passively observe intermediate results, and perform arbitrary
processing on them to infer sensitive information about other participating con-
tributors. Furthermore, participants involved in the computation can potentially
collude by pooling their views together. Lastly, we assume the communication
channel is secure. i.e. no participant can see observe data that is not directly
communicated to it.

We note that ensuring privacy in case of public release of the final mined
model is not within the scope of this work, rather our focus is on preserving
privacy in the scenario of inter-organizational collaboration.

3.1 Method

In this section explain the technical workings and key execution steps proto-
col of our protocol. To designing our solution, we consider the computations
involved for process discovery, the flow of information containing intermediate
results during the process and the threat model (e.g. the actors involved in the
computations and their roles). Federated Learning setting assumes that compu-
tation occurs in a distributed fashion across a number of interconnected nodes.
i.e. We assume a hub-and-spoke topology, where hub represents a central organ-
ising server that orchestrates the mining process(but never sees the raw process
data) and spokes connecting to the participating nodes [26].

We have designed our privacy preserving protocol for the task of automated
process discovery in cross-silo setting where we assume the availability of a
trusted aggregator(co-ordinating server), responsible for orchestrating the com-
plete mining protocol. The server in this scenario has two roles. Firstly, it acts
a central access point for all communication by routing messages between dif-
ferent parties and secondly, it computes the aggregation results in between var-
ious phases during protocol execution and acts as a custodian of intermediate
results(or data structures) needed for computing the final shared process model.
During execution each participant in the collaboration agrees on the function
to be computed in a particular phase. Then each participant subsequently com-
putes and returns a collection of relevant local statistics. The participating nodes
communicate by message passing and a shared Global process model is mined(in
a centrally differentially private way) under the coordination of a honest-but-
curious server.

During execution, we address the privacy concerns, such that it becomes hard
for a malicious party/adversary (under the described threat model) to poten-
tially compromise the privacy of the individual client data by inferring specific
details contained in the process logs. i.e. prevent any adversary from identifying
information or linking items of interest to specific participants. To address the
privacy concerns (defined under the threat model) and prevent many of the sys-
tematic privacy risks, we design our protocol by composing a number of privacy-
preserving technologies such as secure aggregation (SA), Secure Union, and dif-
ferential privacy into an end-to-end solution that offers strong (worst-case) pri-
vacy properties. Federated Learning, follows the principle of focused collection
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and data minimization where, during protocol execution, focused statistics are
shared with the server(stored ephemerally) and raw data never leaves the partic-
ipating node’s device [25]. Cryptographic secure aggregation on the other hand
allows us the server to just learn aggregate function of the individual client con-
tributions. Secure Aggregation, additionally protects the clients data from the
trusted server that may have access to the memory of aggregator instances [4].
Lastly to obtain precise privacy guarantees, we integrated secure aggregation
(SA) prototcol with a differential privacy mechanism such that the final result
can satisfy the desired differential privacy properties for federated learning [15].

We have designed our solution by building upon the Heuristic miner algo-
rithm [23] which works well in practical settings where event logs may contain
noise and non-trivial constructs with a low degree of block structuredness [2].
We first provide a high-level summary of the mining process:

1. Exchange Task List: The mining process is initialized by a trusted server
which is responsible for orchestrating the whole process of mining the dis-
tributed logs. The first step involves, constructing a set of all tasks appearing
in the log using a secure set union protocol. Based on this task list, the
server then initializes a Direct successor matrix (also known as a dependency
matrix) and two loop count matrices(representing loops of length one and
length two) with elements having an initial null value. The three initialized
matrices are then broadcasted to each of the participants.

2. Mining Global Direct Successor Matrix: In the first phase our goal is
to mine a Global Dependency Graph. This is done by each participant analyz-
ing their own individual event log and populating the three matrices obtained
from the previous step. To safely compute the sum of the an individual result-
ing matrices from each participant, we treat the problem as secure multi-party
computation (MPC), where an aggregation protocol [6] is used to protect the
values of the original matrices contributed by each of the participant.

3. Generate loop count matrices: Step 2 is repeated for mining loop count
matrices, representing loops for length one and length two matrices.

4. Compute Dependency Graph/Causal-Net: In this step, the orchestrat-
ing server, receives the contributions of all participants and performs the
merge of each of the three matrices. This results in a Global Successor Matrix
and a Global loop Count Matrices to which the server applies various pre-
defined frequency thresholds. To further protect the individual contributions,
under the differential privacy model, server adds calibrated Gaussian noise to
the resulting matrices. Collectively the three matrices are then used as input
to generate a dependency graph. The dependency graph is translated to an
aggregated causal-net(c-net) by the co-ordinating serer and distributed back
to the participating clients for the next round of computations.

5. Mining AND/OR Splits and Long-Term Dependencies: In the second
phase, Causal-net(C-net) and local logs are used by each participant as input
to mine split/join relations. Similarly, in the last phase, we mine long-distance
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dependency relations. To ensure differential privacy guarantees where indi-
vidual inputs are statistically indistinguishable, each participant employs the
secure aggregation protocol while the server perturbs the final values using a
differential privacy mechanism.

3.2 Protocol Phase Details

We now discuss the three major mining phases that lead to process discovery
in detail : i) mining dependency graph, ii) mining AND/OR Splits and (iii)
mining long term dependencies. In each individual phase, the protocol executes
in multiple rounds, and returns a shared process model. We provide the details
of each phase below:

Phase I - Mining Dependency Graph: In the first phase, our goal is to
mine a dependency graph(representing causal dependencies between tasks) from
independent distributed logs of each participant. The dependency graph has been
defined by Weijters et al. [24] as follows:

Definition 3: Dependency Graph [24]. The dependency graph is defined as
DG = {(a, b) | (a ∈ E ∧ b ∈ a�) ∨ (b ∈ E ∧ a ∈ �b)}. where E is the finite
set of activities, for which events are recorded in the event log,�b denotes the
activities preceding b, and a� consists of the activities succeeding a.

In order to build the dependency graph, we need to collect local statistics
that capture dependency relations in each individual process log. This is done
by constructing a ‘direct successor’ frequency matrix(also known as dependency
matrix) Mds of dimension n × n that captures the dependency measures for
each activity in the process log.

The starting point of Phase-I, is identifying a set of all common tasks appear-
ing in process logs [24]. The mining process, therefore begins by computing a
global set of shared tasks T. i.e. T = {t | ∃σ∈W+ [t ∈ σ]} is a set containing all
tasks appearing in all process logs of all the sites involved in the computation.
To securely compute this list, we rely on the secure union algorithm proposed
by Clifton et al. [7]. During execution, each site encrypts its local task list and
adds them to the global task list. After removing dublicates, each site decrypts
every item to get the union of items. Using this task list, the server constructs
the structure of three matrices where first column and row represents are the
task names. Each entry of these matrices is then intialized with a null value.

To populate these matrices, each participant u ∈ U receives a copy of direct
successor matrix, with values initialized by the server. A frequency-based metric
is used to capture the extent of dependency relation between two events A and
B (represented by a ⇒W b). Each participant then populates the matrix by
computing elements Ma,b(where a and b are two activities present in event log)
of the matrix using the following definition [24]:

a ⇒W b =
( |a >W b| − |b >W a|

|a >W b| + |b >W a| + 1

)
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The frequency metrics indicate the certainty level of a dependency relation-
ship between two events a and b (high values indicate a strong relation). Follow-
ing the FL paradigm, each party performs computations based on their private
process logs and just shares the results of their site with the co-ordinating server.

Federated Mining via Secure Aggregation: Our next step involves aggre-
gating locally-computed dependency matrices which will result in a global depen-
dency matrix (where each entry represents an average of all the individual con-
tributed values). To merge the matrices while limiting the amount of information
that can be inferred during the mining process, we securely compute the sum
of the local dependency matrices in a distributed manner by treating the prob-
lem as a special case of Secure Multi-party Computation. Specifically, we rely
on Secure Aggregation, a Secure Multi-Party Computation protocol that uses
encryption to hide the intermediate results (contribution) of individual partici-
pants from the co-ordinating server while only revealing the aggregate of input
values at the end. The protocol allows us to mitigate the privacy concerns by
analysing the multiple process logs separately and sharing only the resulting
metrics (e.g. frequency statistics) from each analysis in a decentralised setting.
In our collaborative federated learning setting, the co-ordinating server only
learns participant’s inputs in aggregate. To make the security notion concrete,
in the context of secure multiparty computation protocol of secure aggregation,
we consider the Real-Ideal Paradigm which is used in security literature to judge
the security of a proposed protocol [12]. Formally, we define the security in the
honest-yet curious MPC setting as follows [12]:

Definition 4 [12]. Let π be a protocol and F be a functionality. Let C be
the set of parties that are corrupted, and let Sim denote a simulator algorithm.
We define the following distributions of random variables:

- Realπ (κ,C;x1, . . . , xn) : run the protocol with security parameter κ, where
each party Pi runs the protocol honestly using private input xi. Let Vi denote
the final view of party Pi, and let yi denote the final output of party Pi

- Ideal F,sim (κ,C;x1, . . . , xn) : Compute (y1, . . . , yn) ← F (x1, . . . , xn) Out-
put Sim (C, {(xi, yi) | i ∈ C}) , (y1, . . . , yn)

Here the view of a participant is its privately held event long and messages
received during the execution of protocol, while the view of an adversary consists
of the combined views of all colluding parties [12]. Considering the real-ideal
paradigm, a protocol is considered secure against semi-honest adversaries if the
colluding parties in the real world have views that are indistinguishable from
their views in the ideal world.

Definition 5 [12]. A protocol π securely realizes F in the presence
of semi-honest adversaries if there exists a simulator Sim such that, for
every subset of corrupt parties C and all inputs x1, . . . , xn, the distribu-
tions Realπ (κ,C;x1, . . . , xn) and ldealF,Sim (κ,C;x1, . . . , xn) are indistinguish-
able (inκ).

Several secure aggregations protocols exist and we specifically picked the one
proposed by Bonawitz et al. [6]. Their proposed protocol is considered state-of-
the art and is tailored to work in a cross-siloed federated learning setting (under
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our threat model) where we deal with high-dimensional vectors. The protocol is
also robust from a communication point of view, as it can recover from failure
during protocol execution if participants drop out. It consists of four rounds and
is run in a synchronous network between a single server S and a set of n par-
ticipating organizations. The server acts as a coordinator and aggregates inputs
from n parties U1, . . . , Un each holding their locally generated direct successor
matrix, Mds(1), . . . , Mds(n). The goal of the protocol is to compute

∑
u∈U Mds(u)

in a secure fashion, providing a guarantee that the server only learns a sum of
the clients’ inputs containing contributions from each participating client orga-
nizations. To illustrate the workings of the protocol we explain the steps for the
direct successor matrix case:

We assume that the elements Ma,b of Mds(u) and
∑

u∈U Mds(u) are in ZR

for some R. The process initiates by grouping the participating clients into pairs
that agree on a matched pair of input perturbations(exchanged over a secure
channel). Formally, we refer to these perturbations as one-time masks which
consist of random matrices Su,v of size n × n with elements selected uniformly
from [0, R)k. Each participating client computes the direct successor matrix,
along with masking matrix and sends yu to the server. The server computes∑

u∈U yu where the paired masks will be canceled out, when their matrices are
added together, but their actual original direct successor matrix(contributed by
each organisation) will not be revealed [6].

z =
∑

u∈U
yu

=
∑

u∈U

(

Mds(u) +
∑

v∈U :u<v

su,v −
∑

v∈U :u>v

sv,u

)

=
∑

u∈U
Mds(u) (mod R)

The relatively simple approach of masking with one time pads works well in
an ideal environment. However, in practice we face several privacy and commu-
nication efficiency issues. To mitigate these, Bonawitz et al. [6] have proposed
several modifications, which we will describe here:

Firstly, the O
(
kn2

)
communication overhead can be reduced by having the

participants agreeing on common seeds instead of Su,v using a cryptographically
secure pseudorandom generator (PRG). Here each participant generates Diffie-
Hellman secret key and public keys(to reach a key agreement) which are signed
and sent to the server [6]. The server broadcasts these keys to all participants
which allows participants to agree on a secret and for server to maintain a
consistent view of each user state.

Secondly, there might occur cases where participating organizations might
dropout in the middle of protocol execution which poses privacy risks. To solve
this Bonawitz et al. [6] propose a (t, n)- threshold secret sharing scheme where
each participant computes t-out-of-n secret shares for their Diffie-Hellman secret
using a (t, n) - threshold scheme and sending it to all users. This makes it possible
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for a server to recover pairwise seeds even if some clients dropout, so long as
some of the active participants respond with the shares of dropped keys. Lastly,
to protect individual data in scenarios of high latency connection where users
might appear dropped out and server can learn Mds . To counter this threat, a
double masking structure is used, where participants cryptographically upload
individually mined masked matrices and the co-ordinating server accumulates
a sum of the masked individual contributions [6]. We note that another added
benefit of double masking approach is that it protects us from a compromised
server.

yu = Mds(u) + PRG (bu)

+
∑

v∈U :u<v

PRG (su,v)

−
∑

v∈U :u>v

PRG (sv,u) (mod R)

In the unmasking round, participants reveal sufficient cryptographic secrets,
allowing the server to reveal the sum. For dropped users at least t shares of su,v

are required while t shares of bu for all active users are sufficient for server to
subtract off the remaining masks. We refer the reader to [6] for a more detailed
description of the above Secure Aggregation protocol.

Using the described secure aggregation primitive, the server is able to pri-
vately combine outputs of local dependency matrices, by computing element-wise
averages, resulting in a Global Dependency Matrix. Note that, in some scenarios,
it might make sense to take a weighted average. e.g. in case of intra-organization
Process discovery where each individual contribution is highly unbalanced. Next,
same steps will be repeated for securely computing matrices ML1 and ML2 rep-
resenting length-one loops and length-two loops respectively. Global loop count
matrices are securely computed in a manner similar to the Global dependency
matrix. Elements of these matrices are computed by applying using following
equations [24]:

a ⇒W a =
( |a >W a|

|a >W a| + 1

)

a ⇒2
W b =

( |a >>W b| + |b >>W a|
|a >>W b| + |b >>W a| + 1

)

Pruning Using Thresholds: After the server computes the aggregates, we
select a frequency based metric approach where we apply three kinds of thresh-
olds to select the strongest connections between events. We can apply thresh-
old parameters to get rid of uncertain dependency relations(possibly caused by
noise in the dataset) and retain values of dependency measure which represent
an acceptable(strong) dependency relation. Heuristic Miner provides, threshold
parameters such as Dependency threshold, length one-two threshold and length
n threshold which help in deciding if a dependency relation is incorporated in
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the final dependency graph, exists or not. After applying these thresholds, the
server is able to take the global dependency matrix and construct a dependency
graph. This completes the four-round interactive protocol.

Generating a Differentially Private Dependency Graph: Secure aggre-
gation protocol protects the computation inputs from exposure to the server,
however does not formally guarantee that the final result of distributed com-
putation, if shared with participants, would not leak any information about an
individual in a sensitive process log. i.e. we want to prevent any participant from
being able to reconstruct the private data of another participant by exploiting
the global shared matrix. Additionally, there is also the risk of collusion, where
multiple parties can collaborate to reconstruct the private data of another client
by exploiting the final output (global dependency matrix).

To address these challenges, we rely on client-level differential privacy [15] as
a second defence mecahnism, which offers information theoretic guarantees and a
relatively simple approach for achieving the desired level of privacy. Formally, let
us consider a scenario where we want to publish in a differentially private way the
output of a function f (e.g. aggregation function that computes the global depen-
dency model). Differential privacy offers a standard privacy-preserving solution,
whereby sufficient Gaussian noise(enough to mask the contribution of a single
participant) is added to the output value of f ,in order to prevent any leakage
about a single individual and mitigate any privacy risks. Formally we describe
it as follows [1,11] :

Definition 6. Given any function f : N|X| → R
k, the mechanism is a Laplace

Mechanism M if:
M(x) = f(x) + η

where x ∈ X and η is a vector of independent and identically distributed random
variables drawn from Lap(Δf/ε).

Definition 7. For a function f : D → Rk, sensitivity of f is

Δf = max
D,D′

‖f(D) − f (D′) |

for all D,D′ differing in at most one element. The global sensitivity of a function
is determined the maximum change in output when the input differs in a single
entry [1].

Following the above definitions, our goal here is to share in a differentially pri-
vate way, the output of our mining function f , that computes the dependency
graph. To achieve differential privacy, orchestrating server would serve as the
trusted implementer of a differential mechanism, whereby each entry of the out-
put global dependency matrix is perturbed using noise drawn from the symmetric
Laplacian distribution with scale λ = Δ

ε . The zero-mean Laplacian distribution
has a symmetric probability density function f(x) with a scale parameter λ
defined as [11]:

f(x) =
1
2λ

e− |x|
λ
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We ensure that noise is enough to hide any single client’s contributions. The
dependency graph can be easily transformed the into a causal net (A, I,O) where
A is a finite set of activities, I : A → P(P(A)) is the input pattern function and
O : A → P(P(A)) is the output pattern function [23]. The server broadcasts the
resulting differentially-private causal-net to the participants. This concludes the
Phase-I of our protocol.

Phase II-III: Mining Split/Join Relations and Long Term Dependen-
cies. In Phase II, our goal is to mine, for each task in the dependency graph,
the different split and join patterns. First, each participant receives a copy of
causal-net(equivalent of dependency graph) mined in the previous step. Using
local event log, each participating client mines statistics about the ordering of the
tasks. This is done by using the following equation which computes a control-flow
metric for each activity in the process log while considering its corresponding
two elements in the input or output set [23]:

a ⇒W b ∧ c =
( |b >W c| + |c >W b|

|a >W b| + |a >W c| + 1

)

The value obtained from applying this definition determines if activities b
and c are for example in an AND-relation or in a XOR-relation with respect to
activity a.

Similar to Phase-II, we now mine long-term dependency relations that identi-
fies instances in which a task a depends indirectly on another task b for execution.
Such relations characterize the split or join decision point, which is determined
by decisions made elsewhere in the process. Follow equation, lets us determine
the frequency-based metric used to determine these relationships [24]:

a ⇒l
W b =

(
2 (|a >>>W b|)

|a| + |b| + 1

)

−
(

2Abs(|a| − |b|)
|a| + |b| + 1

)

Much of the intuition behind the algorithm and privacy guarantees we pre-
sented in the previous section applies to Phase II and Phase III. The individual
entries are protected by utilizing secure aggregation protocol discussed in the pre-
vious section and the final output is perturbed by introducing privacy-preserving
noise (using any of the well-known DP mechanisms) before broadcasting the final
results.

Noise Calibration: Using any differential privacy techniques is a trade-off
between utility and privacy. To achieve optimal utility, we have to ensure that
the injected noise is carefully calibrated [10]. We perform two additional steps
where we carefully chose the noise distribution to add just add enough noise
that achieves differential privacy while ensuring highest possible utility. First,
we employ an algorithmic noise calibration strategy which allows us to calibrate
the noise of our Gaussian perturbation mechanism, to the match the sensitiv-
ity of a given function f . Here we employ numerical evaluations of the Gaus-
sian cumulative density function (CDF) to obtain the optimal variance which
results in ε-differential privacy [3]. In the second step, we perform post-processing
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which denoises the output using an adaptive estimation technique allowing us
to improve the accuracy of each shared individual entry [3].

This concludes the protocol execution steps. The server may finally apply
a pre-defined relative to best and positive observation threshold to ensure there
are no disconnected activities and broadcast the final global process model.

4 Conclusion

Distributed data mining and machine learning is a longstanding goal pursued
by many research communities (including cryptography, databases, and machine
learning) [16]. We believe that FL holds significant potential for enabling dis-
ruptive innovations in developing privacy-preserving process analytics solutions.
FL based solutions would disrupt the traditional cloud computing model and
enable organizations to create a data alliance where mining private data would
be a common practice. Our case study demonstrates how the promise of FL can
be turned into practical process analytic methods that can combine knowledge
learned from non-co-located data. Our proposed approach is also illustrative of
a general-purpose methodology that will allow future researchers to develop fed-
erated learning, based, privacy-preserving solutions capable of solving many of
the existing key process mining problems in distributed settings, where privacy
is a major concern.
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Abstract. “Application-platform co-design” refers to the phenomenon
of new platforms being created in response to changing application needs,
followed by application design and development changing due to the
emergence (and the specifics, limitations) of the new platforms, therefore
creating, again, new application and platform requirements. This contin-
uous process of application and platform (re-)design describes an engi-
neering and management responsibility to constantly evaluate any given
platform for application fit and platform-specific application design, and
to consider a new or evolutionary platform development project due to
evolving and changing application needs.

In this paper, we study this phenomenon in the context of serverless
computing and (big) data processing needs, and thus, for application-
platform co-design for serverless data processing (SDP). We present an
analysis of the state-of-the-art of function-as-a-service (FaaS) platforms,
which reveals several configuration, deployment, execution, and measure-
ment differences between popular platforms happening at-speed. These
differences indicate already ongoing platform (re-)design processes result-
ing in more specialized serverless platforms and new, platform-specific
challenges for application design. We discuss data processing needs of
applications using the serverless model and present common initial (and
undesirable) workaround solutions on the application level, giving addi-
tional argument to the creation of new SDP platforms. We present crit-
ical SDP requirements and possible new platform augmentations, but
identify the need for engineering methods and tooling to better guide
application-platform co-design. We argue to pay appropriate attention to
the phenomenon of continuous application-platform co-design to better
anticipate and to control future platform and application developments.

Keywords: Platform design and development · Platform-specific
application design and development · Co-design · Serverless
computing · Serverless data processing

1 Introduction

Traditionally, new software platforms were created in response to new applica-
tion demands, such as specific elasticity or big data processing requirements.
Once a new platform is in place, application design and development on top of
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the platform has to take the platform features, specifics, and constraints into
account. Often, the impact of a new platform on application design and devel-
opment is significant. And in turn, new application requirements are created as
a result, which, again, may suggest the development of a new (variant of the)
software platform.

Notably, the advent of NoSQL database systems serves as an example for this
phenomenon of application-platform co-design. Originally initiated by data pro-
cessing and concurrency needs of large enterprises, system designs like, Google’s
GFS [8] and Amazon’s DynamoDB [6] fueled an explosion of numerous (ca.
over 250) new, NoSQL data storage platforms over the last decades. Today, a
developer can choose between a magnitude of managed and self-managed data
storage systems that can meet almost every niche application requirement. But
each platform, however, may provide different data consistency guarantees, shift-
ing data synchronization or conflict resolution, for example, from the platform
to the application as a new application responsibility.

Analogously, the way we run applications on cloud platforms has been evolv-
ing significantly and at-speed, too. Web services can be deployed on elastic-
ity managed VMs, with sophisticated container orchestration platforms such as
Kubernetes, or using tiny micro-VMs in a serverless setting. Modern cloud plat-
forms, thus, already support a plethora of ways a developer can deploy, scale,
and run web-serving applications.

The same application-platform co-design phenomenon can be observed, too,
within the field of serverless computing. With serverless computing, the basic
idea is to free application developers from responsibilities related to elastic-
ity, deployment, and monitoring, that is, from almost any operational task.
Current serverless platforms, specifically Function-as-a-Service (FaaS) offerings,
have rapidly changed and improved since their early introduction in 2014. The
initial one-size-fits-all model suggested with serverless computing has already,
almost in the background, started to shift, and several variants of serverless
platforms serving different application needs than just simple web-serving tasks
have emerged [11,27].

Specifically, distributed data processing [5,7,22] shows to benefit from the
serverless computing model and its extreme scalability, low operational over-
head, work-based billing model, and overall simplicity. Moreover, classical data
processing frameworks, e.g., Apache Spark, Hive, and Apache Flink, require data
analysts to deploy, configure, and operate clusters of servers and thus require
developer responsibility for operational tasks that can impose considerable and
potential disastrous entry barriers [29] to anyone that needs to analyze data.
Serverless data processing frameworks, such as Lithops [23] and Pywren [12]
aim to reduce such entry barriers by providing data processing APIs with sim-
ilar abstractions to classical frameworks without upfront cluster management
needs.

Be it NoSQL stores, cloud platforms, FaaS offerings, or data processing solu-
tions, the continuous cycle of application-platform co-design has led and is still
leading to an abundance of platforms, some of which differ only in details, and
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some of which differ significantly. This introduces the continuous need to question
the application fit of any given platform, to design applications in a platform-
specific manner, or, to develop a new general-purpose or application-specific
platform (variant). As a consequence, software engineering requires increasing
attention to be paid to the diverse phenomena of application-platform co-design.

In this paper, we study and discuss application-platform co-design for server-
less data processing. Based on an analysis of the current state of serverless
platforms, we highlight areas where current platforms are already differenti-
ating themselves from each other. Further, we discuss data processing needs of
applications using the serverless computing model and present common initial,
but undesirable workaround solutions on the application level, giving additional
argument to the creation of new serverless data processing (SDP) platforms. We
present critical SDP requirements and possible new platform augmentations, but
identify the need for engineering methods and tooling to better guide application-
platform co-design. We argue to pay appropriate attention to the phenomenon
of continuous application-platform co-design.

2 Serverless Computing Platforms

Let us first take a closer look at the current state of serverless computing plat-
forms. In this section, we specifically compare the popular FaaS offerings of the
four major cloud providers Amazon, Google, Microsoft and IBM, and highlight
both similarities and differences.

Cloud-based FaaS offerings, the most widely adopted form of serverless com-
puting, ask developers only to define applications through arbitrary function
code and triggering event definitions. The cloud provider is responsible for
deploying, running, and scaling these functions in response to arriving events.
For all cloud providers, developers can select from a set of predefined runtime
environments and only manage few additional configurations, such as setting
memory limits, maximum concurrency and environment variables. Thus, all cur-
rent FaaS offerings enable almost operations free delivery of stateless serverless
applications. However, current offerings still lack support for state management,
hardware acceleration and suitable programming abstractions [18,25] to support
any cloud-based application, although platform vendors already started to differ-
entiate themselves by addressing these and other open serverless challenges [13].

At first sight, from a developer perspective, all platforms provide a similar
programming interface and execution model. Thus, in theory, the choice of a
specific serverless computing platform should not significantly affect the appli-
cation design. However, taking a closer look, the available configuration space,
runtime isolation, platform limitations and auxiliary services can differ substan-
tially between the different platforms, and thus, careful developer consideration
is a must.
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Table 1. Configuration, deployment, execution, and measurement differences in FaaS

AWS GCF ICF ACF Source

min. Mem. [MB] 128 128 128 N.A. Docs

max. Mem. [MB] 10240 8192 2048 14336 Docs

Memory Space [#] 10112 7 1920 14336 Docs

Timeout [s] 900 540 60 600 Docs

vCPU Cores [#] 6 1 ? 4 Docs

CPU [GHz] 2.5 4.8 ? 2.4 Docs

C
o
n
fi
g
u
ra

ti
o
n

max Concurrency [#] 1000+ 1000 1000+ VM*100 Docs

Trigger [#] 8 6 3+ 4+ Docs

Supported Runtimes [#] 15+ 13 8+ 7 Docs

Dependency management Layers Files Docker/Files Files Docs

max. Size [MB] 250 500 48 −1 Docs

D
ep

lo
y
m

en
t

Host controllable No No No Yes Docs

Isolation firecracker gVisor VM+runc VM Docs

Event scheduling Push-based Unknown Push-based Pull-based [2]

Local storage [MB] 512 0 0 143360 Docs

Network Storage [Y/N] Yes No No Yes Docs

Private networking [Y/N] Yes Yes No Yes Docs

Function networking [Y/N] Unsupported Unsupported Unsupported Yes Docs

Tracing [Y/N] Yes Yes No No [4]

Function Metrics [Y/N] Yes Yes Yes Yes [4]

Cloud Logs [Y/N] Yes Yes Yes Yes [4]

Billing Interval [time] 1ms 100ms 100ms 100 ms-1 h Docs

Threads [#] 1024 unknown 1024 varies Docs

Connections [#] 1024 unknown 1024 600 Docs

Payload Size [MB] 6 10 100 Docs

E
x
ec

u
ti

o
n

Rate limit 10× 1000 /s 100MB/s 84/s unmanaged Docs

Configiruation Chages [ms] 996 36630 22 521100 [16]

Cold Start Variance [ms] 9 4900 10528 83691 [17]

M
ea

s.

Cold default throughput [trps] 120 120 120 5 [17]

Further, larger applications built as serverless systems do not consist of a
single function but a composition of functions and other services. The available
platform services for function composition and orchestration differ significantly.

2.1 Platform Comparison

Table 1 provides a comparative overview of the serverless computing platforms
from Amazon (AWS), Google (GCF), IBM (ICF) and Microsoft (ACF). We com-
pare these platforms along four general categories: First, configuration options –
all exposed “tuning knobs” a developer can control; second, deployment options
– e.g., available runtimes and deployment environments; and third, execution
criteria – important criteria for function execution and existing limits. Finally,
we also provide some basic metrics and measurements that indicate platform
qualities such as performance or elasticity.

Configuration reveals two principle models: AWS, GCF, and ICF expose devel-
opers to a singular, highly sensitive performance-related sizing parameter.
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On the other end, AWS offers over 10.000 unique settings to control perfor-
mance. GCF, in contrast, presents only seven options. This singular parameter
affects multiple resource sizes simultaneously, e.g., memory, network bandwidth,
available threads. Hiding many complex resource configurations behind a singu-
lar value leads to the need for sizing tools. With Azure, however, the ability to
select from different VM offerings as a back-end for serverless workloads exists
and so, the sizing problem is different.

Deployment options are similar for all platforms under comparison. While the
number of selectable runtimes differs, the most common programming lan-
guages are supported by all platforms. A major difference, however, relates to
dependency management. The limited allowance for deployment package sizes
(between 50-500MB) and the management of dependency versions has led some
platform provides to offer more advanced features for dependency management.
Among them, AWS allows developers to build shareable layers that multiple
functions can reuse. IBM’s OpenWhisk opened the runtime API to enable devel-
opers to define complete docker images with all dependencies built-in to address
this issue.

Execution in serverless computing platforms is based on three main factors:
Function isolation, assignment of invocations (execution guarantees), and invo-
cation triggering.

For isolation, AWS uses firecracker [1], a KVM based micro-VM. Thus, each
function is strongly isolated while removing comparably long startup times of
classical VMs. Google uses gVisor, a form of OS-level isolation that shares com-
mon roots with AWS firecracker but is also used for other Google services and
thus is less specialized. ICF and Azure use a VM per user to isolate functions.
Thus, functions might interfere with the execution of other functions of the
same user while not interfering with functions of other users. Here, the scaling
of functions depends on the time it takes to launch new VMs per customer.

Besides isolation, the assignment of events to functions is different between
these platforms. For AWS, GCF and ICF, we see a pull-based approach: free
hosts will pull available events. Azure, on the other hand, uses a push-based
approach, which can impact elasticity.

Lastly, all platforms offer means to trigger functions synchronously and asyn-
chronously. However, the number of available options to trigger functions can
differ. For instance, AWS provides triggers for most database services. At the
same time, other platforms such as ACF or ICF give developers only a few
endpoints to trigger functions synchronously or asynchronously.

2.2 Vendor Directions

The comparison shows that the current landscape of serverless platforms shares
a common programming and operations model, while at the same time, reveal-
ing notable differences with respect to limitations and configurable resources
between platforms.
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Some recent platform (re-)design efforts taken by cloud providers further
include introductions of additional platform services and features to overcome
identified shortcomings. For example, Microsoft recently introduced durable
functions, a programming model to store function states after execution. Simi-
larly, Amazon recently added the Elastic File System (EFS) for Lambda, thus
enabling functions to persist data across multiple executions, multiple function-
deployments and between parallel invocations.

Vendors are constantly differentiating their offerings and as a consequence,
the initial common programming model shared between multiple platforms
diverges into diverse, different models, making it nearly impossible to switch
platforms later on. Moreover, the larger serverless research and practitioners’
community has started to propose novel changes for FaaS platforms as well,
addressing some of the most commonly identified serverless shortcomings [10],
again resulting in diverse platform developments.

3 Serverless Data Processing

Let us now look into modern applications’ data processing needs and how these
translate into serverless data processing (SDP) requirements.

3.1 System Requirements

We conducted a series of experiments related to serverless computing and (big)
data processing, initially presented in 2018 [29] and continued with [15–17]
and [28]. From these lessons learned, we define the following serverless data
processing system (platform and application) requirements:

1. Scaleable: A serverless data processing system should use the scalability
potential of a serverless platform and adapt the resource demands of each
computation to the task. Further, the system should have comparable perfor-
mance characteristics as conventional data processing solutions (such as an
Apache Spark Cluster) of similar cost and size.

2. Fully-Serverless: The serverless data processing system should be fully
serverless, that is, the serverless data processing system should be able to
scale down to zero if no resources are needed. Thus, the system should not
incur costs or management tasks if idle (an exception can be made for stor-
ing input data). Further, the analyst should not know the inner workings of
the used services, such as avoiding cold-starts or selecting the optimal size of
AWS S3 files for Lambda.

3. Self-Contained: The system should be self-contained. Specifically, the sys-
tem should handle deployment, re-execution of faulty invocations or re-
configuration of wrongly sized execution environments.

4. Tuneable: The system should allow developers to define high-level objectives
for each computation, such as low cost or fast computation time. The sys-
tem should drive all configurations and executions based on these high-level
tunables.
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5. Integratable: Modern data processing applications need to combine multi-
ple tools, programs and algorithms for pre/post-processing to appropriately
integrate with all relevant business processes. Thus, the system should allow
for arbitrary, yet performance-aware pre/post-processing integration.

Serverless data processing platforms should be as versatile as conventional
data processing solutions such as Apache Spark or Apache Flink. However, not
all use-cases will benefit equally from the properties of serverless data process-
ing [10]. We observe that SDP is most useful for ad-hoc analytics [28], tasks such
as data cleaning, data inspections, as well as IoT scenarios such as predictive
maintenance or troubleshooting. Similarly, exploratory data analytics relevant in
pre-processing of machine learning [24] can benefit well from the ad-hoc process-
ing capabilities of SDP. Further, tasks that only require infrequent processing,
such as indexing for data lakes, also benefit from the fast deployment and re-
deployment of processing resources in the serverless model.

3.2 Common Application Workarounds

Multiple SDP frameworks have emerged in the last four years [5,12,22,23]. Nat-
urally, the complexity of available programming interfaces has increased and
different options exist to address the serverless data processing requirements
identified above.
The most common trend, however, still present in all SDP frameworks, is the
use of workarounds to overcome known platform limitations.

Serverless job orchestration involves the generation of invocations for each
task in a processing job, waiting on the completion of these invocations and the
collection or redistribution of task results. Each of these steps can be addressed in
different ways. A driver can generate events asynchronously (the most common
approach), thus, only submitting tasks to the serverless platform. In that case,
the driver now has to query the platform repeatedly to observe each task. This
design forces an extensive network and request overhead to enable drivers to
observe functions in real-time.

Alternatively, each invocation can be performed synchronously, removing the
need to constantly poll for results but, in turn, limiting the maximum number
of concurrent invocations a single driver can manage. Most platforms require
that each synchronous invocation contains a single event and thus requires a
driver to open as many connections as functions should run in parallel. With
this strategy, it is virtually impossible to reach the scalability potential of state
of the art serverless platforms.

A third option is to use a platform-specific orchestration mechanism, such as a
workflow engine, for example, AWS Step-Functions. However, current platform-
specific orchestration mechanisms are all geared for orchestrating a flow of events
through a tree of different functions rather than facilitating a highly parallel exe-
cution of few functions. On top of that, each mechanism increases management
and configuration overhead and makes migration to other platforms far more
work-intensive.
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A fourth strategy that we see is to spawn functions without specific instruc-
tions. Instead, each function connects to an external service to pull tasks from a
shared task queue [5]. This approach removes the need to observe the completion
of functions through the serverless platform and can use a lightweight mecha-
nisms to launch many functions in parallel. However, at the cost of introducing
new external dependencies that are difficult to maintain, to scale and that typi-
cally are not serverless, fundamental requirements of serverless data processing
may be broken.

Serverless state management in serverless data processing is divided into
two major sub-problems, intermediate storage and data access. Essentially, both
intermediate data storage, data ingestion and saving results involve an external
state management system. Here, frameworks commonly use an object store such
as Amazon’s S3 or a managed message queue system. However, these systems
introduce latency and network overhead for each computation. As an added com-
plication, each function has to manage the connection to the storage regardless of
the selected back end, thus, introducing added overhead per function and many
more sources for errors to occur. It is further unclear if the selected storage-
backends are well suited to transport the type of ephemeral data efficiently.

Serverless uniformity also creates a challenge for framework designers. In
most cases, a framework will deploy one function per task or sometimes even a
single function for all tasks in a processing job. Thus, the sizing of that function
must always fit the largest part of a task to ensure that a computation does not
run out of memory or takes too long. Consequently, serverless processing systems
either struggle with processing skew or otherwise heterogeneous data or waste a
significant amount of resources. The fact that platforms do not allow applications
to implement custom failure recovery mechanisms, such as temporary increasing
resource limits, to address these issues means that application developers need
to find other solutions.

Additionally, we observe that the cold-start of functions is impacted by both
memory size selection and deployment package size [21]. Thus, the design of
current SDP frameworks must take both runtime size and sizing into account
to address cold-start issues. Therefore, it should come as no surprise that most
of these frameworks target AWS Lambda, as it is the most flexible platform in
terms of runtime environments, deployment sizes, and memory sizes. However,
it remains to be seen if platform improvements can be equally or even better
provided for Azure, Google or IBM SDP platforms.

Serverless support eco-system describes the problem of selecting appropri-
ate services to augment missing features in the serverless compute platform.
Most frameworks rely on one or more additional cloud-based infrastructure ser-
vices to fully support each processing step. Thus, selecting a suitable service can
often impact the overall performance, manageability and cost of a framework.
These auxiliary services often differ significantly between vendors, making the
portability of these frameworks problematic as well. Moreover, are these aux-
iliary services are rarely designed for serverless workloads and serverless data
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processing workloads. In particular, the usage for orchestration or data trans-
fer is often inefficiently supported or could easily break if vendors decide to
change service properties without serverless workloads in mind. Consequently,
the design of serverless data processing systems is strongly dependent on the
selected cloud platform and the composition of available auxiliary services and
serverless computing resources.

3.3 Next Steps

Current SDP applications, unsurprisingly, already utilize existing FaaS platforms
and SDP frameworks quite well. However, as discussed above, there are many
specifics and platform and programming model limitations that quickly lead
to potentially significant design inefficiencies and platform lock-in. Applications
need to adapt to platform evolution and welcome desirable innovations, such
as higher-level programming abstractions. While early SDP frameworks only
supported bare-bone map-reduce, the more recent frameworks start to support
higher-level APIs and query languages. Nevertheless, the prominent presence of
many workarounds as described above, and the use of auxiliary services that were
never intended to serve as a backbone to highly parallel computations, creates
a significant risk regarding the usage of current SDP frameworks.

4 Towards Guided Co-design

We expect serverless platforms and current serverless data processing applica-
tions to continue to evolve to fully support all serverless data processing require-
ments. To this end, we envision current limitations and workarounds to be
replaced by solutions that require new platform augmentations. At the same
time, we see the need for new engineering methods and tooling to better guide
platform and application re-design and evolution.

4.1 New Platform Augmentations

We can identify function orchestration, intermediate data transfer, and strag-
gling executions as the most pressing issues in the SDP context requiring new
platform augmentations. In the following, we revisit the undesirable workarounds
presented in Sect. 3.2 and discuss how platform augmentations, or the selection
of new platform features, can remove these issues while remaining true to the
serverless data processing model.

Our discussion and recommendations are based on own prior and other
related work, including both exploratory FaaS studies [15,19,30], bench-
marks [16,21] and technical platform papers [1] as well as emerging open-source
developments [11], SDP prototype developments [29] and exploratory SDP stud-
ies [28].
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For serverless job orchestration, the different approaches discussed all
can introduce undesirable inefficiencies. Each of the presented workarounds thus
introduces a possible adaption cause.

Based on benchmarks performed in previous work [17], it appears that AWS
is the most suitable platform for using synchronous executions. Alternatively,
we can augment existing platforms to address the issue of spawning and observ-
ing multiple function invocations simultaneously. For example, platforms can
introduce new means to batch invocations with a callback on completion to
allow frameworks to spawn thousands of functions without the need to man-
age each invocation individually. Thus, this immediately removes the need to
create complicated management structures around existing platform APIs from
a developer perspective. This would also allow for more predictive scheduling
and reduce overly aggressive polling of APIs for these types of use-cases from a
platform perspective.

For serverless state management several proposals to address the inter-
mediate storage problem are already emerging. Klimov et al. [14], for example,
propose flash-based storage that can be used by serverless analytics in place
of the currently used object storage for intermediate data. However, platforms
could aid function developers by offering an intermediate storage layer on each
worker to address intermediate storage needs on a platform level. These could
hold data for a short time, thus allowing functions to batch read, write to exter-
nal data sources, or even reuse data for intermediate computations. Further,
platforms could address the problem of redundant connection to the selected
storage back-end by integrating connection pooling on the worker level.

Serverless uniformity can in part be addressed on the application level by
chaining the deployment strategy of current frameworks. Instead of deploying
a function with only one configuration, frameworks could deploy functions in
multiple sizes and switch the invocations to larger deployments in case of skewed
data. However, not all platforms allow flexible sizing of deployment packages,
and thus, developers risk oversizing and overpaying with this strategy. Here,
platforms can offer more flexible sizing options, integrate sizing aid at runtime
or enable other mechanisms to adjust deployments in case of errors.

Furthermore, the programming interface of functions could be extended to
include other life-cycle related events such as function termination and function-
creating to allow frameworks to group some common tasks on the start and
end of a function life-cycle instead of every single execution, thus reducing the
risk of timeouts during IO operations. Also, we foresee new serverless platforms
that are breaking even more with the initial one-size-fits-all model of server-
less computing to address specific application requirements, such as the support
of computation accelerators [20], edge-computing infrastructure and optimized
systems for parallel computing.

4.2 Understanding Co-design

As discussed in general in the introduction and as exemplified for serverless data
processing, software platforms will continue to evolve or be newly created in
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response to changing application demands. These platforms continue to push
the envelope of what applications can do and thus again present new demands
that motivate platform changes and, ultimately, again lead to new platforms.

This phenomenon of application platform co-design takes place both con-
sciously and unconsciously between platform and application developers. Under-
standing this phenomenon better enables application developers to anticipate
platform changes as well as new platforms, and thus allows for better manage-
ment of coming changes. Similarly, application developers can take control of the
application-platform co-design cycle and influence new platform developments
directly.

Fig. 1. Conceptual view of application platform co-design cycle

Figure 1 illustrates the continuous nature of application platform co-design.
Newly emerging application demands and requirements drive the discovery of
software platform limitations, for example, native state management in server-
less computing. Once a limitation is known, application developers start to use
workarounds, as described in Sect. 3.2. These workarounds often create a demand
for new application designs and, in turn, new application requirements, in the
case of SDP, for example, the trend towards higher-level language support. How-
ever, at some point these emerging application designs will benefit more from
new platforms that turn workarounds into supported platform features. Thus,
new platform developments may be initiated, and new platforms emerge.

For the platform route in Fig. 1, in a first step, we need to identify the
application requirements that are better addressed through platform support.
As described earlier, requirements such as the SDP requirements [29], must be
defined first. For later validation and to help with the identification of platform-
driven limitations, experimental measurements and application [9,28]- and plat-
form benchmarks [3,17,26] to evaluate against these requirements are needed.
Based on the results, developers can either adapt their applications using the
benchmarking results as a guide when designing necessary workarounds, or devel-
opers can start to implement new prototypical features in the platform and adapt
the application to utilize these features accordingly. By reusing or extending the
application and platform benchmarks, we can evaluate if the changes lead to sig-
nificant improvements for the application use case. By iteratively applying these
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steps, we ultimately create a new platform adapted to the specific application
needs or new applications that are adapted to current platform limitations.

5 Conclusion

In this paper, we described the application platform co-design phenomena and
illustrated it for serverless computing platforms and serverless data process-
ing, in particular. More specifically, we discussed concrete challenges and needs
in an SDP context and how these are initially addressed through application
workarounds, but may lead to new platform features and designs, resulting in a
continuously changing platform landscape and the continuous need for develop-
ers to re-evaluate platforms and re-design applications.

The new SDP platform augmentations discussed have been implemented as
part of the research project SMILE at TU Berlin for OpenWhisk [27]. While we
are still actively augmenting the platform to meet all the defined requirements for
serverless data processing systems, we can already see significant improvements
regarding function invocation management and processing throughput.

Through projects like SMILE and related work and observations, we expect
more and more undesirable application workarounds to be eventually replaced
by new platform features, confirming the continuous co-design phenomenon, but
at the same time making clear, how little engineering support and understanding
for such continuous co-design process exists to-date. The duality of application
and platform (re-)design challenges, the option to address identified limitations
either on the application or the platform level, the continuous nature of both,
and the need to study in depth fine-granular technical platform details, presents
a larger challenge that demands new methods and tooling to better cope with
application-platform co-design. We believe that application platform co-design
awareness is critical to modern engineering needs such as SDP, and that appro-
priate methods and tooling should become an important piece of any developers
tool-belt. Platforms will not stop evolving, and simultaneously, the choice of
what software to use or adapt will grow, correspondingly.
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Abstract. We propose a novel framework for the re-allocation of
drone swarms for delivery services known as Swarm-based Drone-as-a-
Service (SDaaS). The re-allocation framework ensures maximum profit
to drone swarm providers while meeting the time requirement of ser-
vice consumers. The constraints in the delivery environment (e.g., lim-
ited recharging pads) are taken into consideration. We utilize reinforce-
ment learning (RL) to select the best allocation and scheduling of drone
swarms given a set of requests from multiple consumers. We conduct a
set of experiments to evaluate and compare the efficiency of the proposed
approach considering the provider’s profit and run-time efficiency.

Keywords: Drones swarm · Service composition · Swarm
re-allocation · Homogeneous swarms · Provider-centric ·
Congestion-aware

1 Introduction

Swarm-based Drone-as-a-Service (SDaaS) is a concept that describes services
offered by swarms of drones [1]. The SDaaS notion is an augmentation on
the Drone-as-a-Service (DaaS) concept that describes services offered by sin-
gle drones [2]. It offers added capabilities to cover services a single drone is not
capable of achieving. Examples of these services include search and rescue [3],
sky shows and entertainment [4], and delivery of goods [5]. Our focus is on the
use of drone swarms in delivery. An increasing dependency on drone delivery is
perceived especially during pandemics, as they are contact-less and fast. There-
fore, robust and effective deliveries of multiple/heavier packages are needed.
Such deliveries are only possible using a swarm of drones as flight regulations
only allow the use of small drones (payload<2.5 kg) to deliver in the city1. In
addition, swarms of drones in delivery are capable of covering longer trips by
distributing the payload over several drones decreasing the rate of battery con-
sumption [1]. Swarm-based drone deliveries operating in a city are assumed to be
flying within line of sight segments in a skyway network [6]. The skyway network
nodes are assumed to be building rooftops equipped with recharging pads that a

1 https://www.faa.gov/uas/advanced operations/package delivery drone.

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 643–651, 2021.
https://doi.org/10.1007/978-3-030-91431-8_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_40&domain=pdf
http://orcid.org/0000-0001-7938-4438
http://orcid.org/0000-0003-1254-8092
https://www.faa.gov/uas/advanced_operations/package_delivery_drone
https://doi.org/10.1007/978-3-030-91431-8_40


644 B. Alkouz and A. Bouguettaya

swarm may land on to extend its flight range [7]. We formally define an SDaaS as
a swarm carrying packages and travelling in a skyway segment frome node A to
node B. The composition of optimal segments between a source node and a des-
tination node would result in an optimal composite SDaaS service. An SDaaS
service maps to the key components of service computing, i.e. functional and
non-functional attributes [8]. The function of an SDaaS is the successful delivery
of packages by a swarm between two nodes. The non-functional attributes or the
Quality of Services (QoS) include the delivery time, cost, etc.

Three main steps are involved in a successful SDaaS delivery. First, an opti-
mal swarm members allocation approach is essential to serve multiple consumers
requests in a day. Second, an optimal path composition method is required to
optimize the QoS. Third, a failure-recovery solution is necessary in case of uncer-
tainties. In this paper, we focus on the first step, with respect to the composition,
to optimally allocate swarms to consumers requests from a provider point of
view. The last step, i.e. failure recovery, is the future extension of this work. An
optimal allocation is key in assuring that a provider owned drones are optimally
utilized and re-utilized within a day. Therefore, fulfilling as many consumers
requests as possible and increasing a provider profit.

There are several challenges in the swarms allocation problem. First, a
provider owns a limited set of drones that needs to be utilized maximally. Second,
the delivery time of consumers requests may overlap as they need to be deliv-
ered within strict time windows. Hence, requests that maximize the providers
profit need to be allocated. Third, the requests need to be served in a way that
optimizes the re-utilization of drones. Hence, within a time window, a swarm
may be reused if its round trip time to the first request is smaller than the time
window. This problem is challenging since the allocation of any swarm is highly
dependent on the availability of other drones because they are re-allocatable. In
addition, each swarm is bounded by a Round Trip Time from the source to the
destination and back to the destination. This means that the allocation of any
request highly affects the allocation of other requests in the same time-window
and other windows as the provider owns a limited set of drones. We propose
to allocate any available drones to multiple time-constrained requests, and re-
utilize the drones multiple times within a time window to maximize a providers
profit. We summarize our main contributions as following:

– A modified A* congestion-aware algorithm to compose SDaaS services.
– An RL SDaaS allocation algorithm to maximize providers profit.

2 Related Work

A robotic swarm is a set of robots that collectively solve a problem to achieve
a common goal. In delivery, majority of literature refer to swarms of drones
as multiple single independent drones managed to deliver multiple independent
deliveries [9]. However, we refer to a swarm as a set of drones carrying multiple
packages for a single delivery operation. In this regard, a sequential and parallel
delivery services composition using a swarm of drones was proposed [1]. While
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drone swarms in delivery represent a major advancement, developing swarm allo-
cation methods is essential to unlock their full potential and obtain teamwork
benefit [10].

Multi-Robot Task Allocation (MRTA) addresses the assignment of set of
tasks to a set of robots [11]. The robots need to be optimally allocated to tasks
to optimize the overall team performance [12]. Multi Robot Task Scheduling
(MRTS) deals with the scheduling of the tasks to minimize the overall cost,
make it be: time, money, or energy. Most multi-robot systems deal with MRTA
and MRTS as two different steps. However, the decoupling of these steps leads
to partial observability and lack of full insights [11]. In addition, to the best of
our knowledge, most work done in MRTA does not deal with the multiple re-
allocations of the robots in a time-constrained environment. Hence, we propose
to couple the MRTA and MTRS problems and deal with multiple re-allocations
of drone swarms in a time-constrained environment using a service-oriented app-
roach.

The service paradigm is a key enabler of drone deliveries in a skyway net-
work. It ensures congruent and effective provisioning of drone-based deliveries
[13]. Previous works discuss the optimal composition of services, i.e. composing
the best path from the source to the destination [1]. In a different application, a
reinforcement learning approach to compose moving WiFi hotspot services was
proposed [14]. Majority of the existing work uses deep reinforcement learning for
services composition and not allocation [15]. Hence, this work is the first that
deals with the re-allocation of SDaaS services to optimize the QoS. This work
takes into consideration the optimal SDaaS composition and challenges due to
the simultaneous use of the skyway network by multiple swarms.

3 Swarm-Based Drone-as-a-Service Model

In this section, we present a swarm-based drone delivery service model. We
abstract a swarm carrying packages and travelling in a skyway segment between
two nodes as a service (Fig. 1).

Definition 1: Swarm-based Drone-as-a-Service (SDaaS). An SDaaS is
defined as a set of drones, carrying packages and travelling in a skyway segment.
It is represented as a tuple of < SDaaS id, S, F >, where

– SDaaS id is a unique service identifier
– S is the swarm travelling in SDaaS. S consists of D which is the set of

drones forming S, a tuple of D is presented as < d1, d2, .., dm >. S also
contains the properties including the current battery levels of every d in D
< b1, b2, .., bm >, the payloads every d in D is carrying < p1, p2, .., pm >, and
the current node n the swarm S is at.

– F describes the delivery function of a swarm on a skyway segment between
two nodes, A and B. F consists of the segment distance dist, travel time tt,
charging time ct, and waiting time wt when recharging pads are not enough
to serve D simultaneously in node B.
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Definition 2: SDaaS Request. A request is a tuple of < R id, β, P, T >, where

– R id is the request unique identifier.
– β is the request destination node.
– P are the weights of the packages requested, where P is < p1, p2, .., pm >.
– T is the time window of the expected delivery, it is represented as a tuple of

the window start and end times < st, et >.

4 SDaaS Members Re-allocation Framework

Fig. 1. SDaaS members re-allocation framework

The SDaaS members allocation and scheduling framework composes of two main
modules. In the first module, the composition of SDaaS services for every received
request is performed. The output of the first module is the maximum time taken
for the packages to arrive at the destination (AT), the maximum round trip
time back to the source (RTT), and the profit if the request is served. In the
second module, the AT, RTT, and profit are used to allocate and re-allocate the
provider owned drones to the most profitable requests and schedule them in a
way that serves as many requests as possible.

4.1 SDaaS Pre-allocation

The pre-allocation module mainly consists of the SDaaS optimal composition of
all requests to their respective destinations. The optimal path that reduces the
delivery time is composed. The intermediate nodes contain different numbers
of recharging pads. The composition should consider the optimal selection of
nodes that would reduce the charging times. In addition, contention may occur
at a node if two swarms serving different requests take the same path at a
time causing congestion [16]. We assume that the weight of the packages do not
exceed a drones payload capacity. We also assume that a drone may carry a single
package at a time. The swarm is assumed to serve one request in a single trip.
Therefore, the size of a swarm, serving a request, is equivalent to the number
of packages in the request. A request is assumed to have a maximum capacity
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of m packages. The goal of this module is to compute the maximum time a
swarm would take to serve a request (AT) and come back to the source (RTT).
The RTT is the maximum possible time of a trip with the existence of other
swarms in the network at the same time. Hence, the composition is considered
congestion-aware. The composed path is an optimal path in terms of delivery
time that a swarm may take while considering the probability of having other
swarms utilizing the charging pads, i.e. congestion. Hence, we propose a modified
congestion-aware A* approach for SDaaS composition. The AT of the packages
at the destination and the RTT is key in scheduling the requests to serve as
many requests as possible. We assume that the environment is deterministic, i.e.
we know the availability of recharging pads considering other providers using
the network.

The composition is initiated with a set of swarm drones (SD), fully charged
at the source. The swarm is assumed to be static [17], i.e. it traverses the network
without splitting midway. While the drone is not at the destination and back
at the source, the algorithm computes the likelihood for the swarm to reach the
dest/src nodes using Dijkstra’s shortest path without stopping at intermediate
nodes. The likelihood of reaching is computed based on the payload of all the
drones and the energy consumption rate over the distance travelled. If the swarm
is capable of reaching the dest/src directly, it traverses the network and the RTT
gets updated with the travel time tt. Otherwise, if the swarm is not capable of
reaching the dest/src node directly, it selects the optimal neighbouring node. An
optimal neighbor is a neighbouring node with the least travel time tt and node
time nt. The nt is dependant on the number of available recharging pads at a
node. The nt composes of the charging times ct and the waiting times wt due to
sequential charging in case the number of pads is less than the size of the swarm.
We assume that a node may be used by a maximum of two swarms at a time. At
every node, we consider the potential of congestion to compute the maximum
possible AT and RTT . We assume that each drone is occupied by all the other
drones owned by the provider PD if they are less than the maximum swarm size
m. Otherwise, we assume a station is used by another swarm of size m. We com-
pute the node time considering the number of available recharging pads under
congestion. When the best neighbour is selected, the swarm traverses to the node
and charges fully. The swarm attempts again to reach the dest/src directly. The
process continues until the swarm is at the dest/src. The RTT is updated to
include the charging time back at the source. The profit is computed using the
number of drones utilized to serve a request SD and the RTT of the trip.

4.2 SDaaS Allocation and Scheduling

The composed services from Subsect. 4.1 are used to allocate drones to the
most profitable requests for the provider. There might be instances where aggre-
gated less profitable requests result in a better total profit than few high profit
requests. Hence, the allocation and scheduling algorithm needs to maximize the
total profit per day. These allocated requests need to be scheduled in the time-
line efficiently to serve as many possible requests. The allocation and scheduling
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should take in consideration the limited number of provider owned drones. At a
time t a provider may serve a maximum of N packages at a time. Therefore, we
propose a reinforcement learning allocation and scheduling algorithm.

Reinforcement Learning Based Allocation. The proposed framework aims
to allocate the provider owned drones PD to the consumers requests R in the best
possible manner, i.e. maximize profit. This imposes the maximum utilization of
drones and scheduling the request in the best possible timings to be able to
re-allocate the drones over and over again. We leverage Reinforcement Learning
(RL) to find, allocate, and schedule the requests. In RL, an agent learns about
an environment’s behaviour through explorations. RL is capable of discovering
the best set of requests to be allocated and schedule them at the most optimal
time to facilitate the re-use of drones. The main reason for our choice of RL is
its ability to discover the “cumulative” optimal set of requests to be allocated.
The RL does that by assigning rewards for every action the agent invokes. In our
work, the actions are the service requests and time slots that a swarm can get
allocated to. The agent’s role is to pick the next service request and allocation
time that would maximize the overall reward. Therefore, the agent should not
only consider the current requests to make the selection but also future requests
and available drones. The environment that the agent interacts with in this
solution is designed to be problem specific. The environment checks for requests
validity, overlapping allocations, drones’ availability, and time inter-dependencies
and permits only valid actions to be taken by the agent.

We define the agent’s actions as a tuple of request ID and time slot
< Rid, ATw >. The time slot represents the arrival time within the consumer
specified delivery time window < Rst, Ret >. The agent at every step takes an
action, i.e. adds a specific request to the environment at a certain time window.
The environment checks the validity of allocating the request by looking at the
overlapped allocated requests and the availability of the provider owned drones.
The state is updated at every step with the total accumulated profit of the allo-
cated requests. We implement a Q-learning algorithm that seeks to find the best
action to take given the current state [18].

5 Experiments

In this section, we evaluate the performance in terms of total profit gained and
the execution time of the proposed algorithm. A brute force baseline is time
and memory extensive and is not feasible as described earlier. Therefore, we
compare the proposed RL allocation method to the First Come First Served
(FCFS) algorithm [19]. In the FCFS approach, the first request received gets
allocated first. If a request can’t be allocated due to the limited number of
drones being occupied at a time window, the request does not get allocated and
the next arriving request gets checked and allocated.

An urban road network dataset from the city of london is used to mimic the
arrangement of a skyway network [20]. The dataset consists of nodes represent-
ing intersections and segments connecting those nodes. For the experiments, we
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extracted a sub-network consisting of 129 connected nodes. Each node is allo-
cated with different number of recharging pads randomly. A source node is then
selected and r service requests are generated with different destination nodes. For
each request, we synthesize maximum 5 packages payload and a maximum weight
of 1.4 kg. The drone model is assumed to be the DJI phantom 3. All the power
consumption computation is based on this model, the distance travelled, and
payload carried. We used the congestion-aware SDaaS composition algorithm to
compute the AT , RTT , and profit for each request given the recharging pads con-
straints. These requests are assigned to different time windows randomly. Each
time window is assumed to be one hour. Hence, the AT of the package should
lie within this hour. The experiments were run on 7th Gen Intel� CoreTM i7-
7700HQ Processor (2.8 GHz), 16 GB RAM, 64-bit Windows OS PC.

(a) Profit with varying number of requests (b) Profit with varying number of drones

(c) Execution times (d) RL rewards convergence

Fig. 2. Proposed method effectiveness

In the first experiment, we study the effect of varying the number of received
requests a day on the profit. We assume the provider owns a fixed set of 30
drones. As shown in Fig. 2a, the RL allocation outperforms the FCFS. This
is because of its ability to learn the optimal allocation and scheduling of the
requests to maximize the profit. The FCFS is performing worse than RL because
allocating services in an FCFS manner does not consider any order in terms of
most profitable request and round trip times. Therefore, the non-optimal set of
requests gets allocated at non-optimal time windows.

The same behaviour is noted with varying the number of provider owned
drones for a set of 50 requests as shown in Fig. 2b. The RL allocation converges
to the maximum possible profit earlier by serving all the 50 requests. This perfor-
mance of the RL allocation method comes with the cost of execution. Figure 2c
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shows the execution times varying the number of requests received a day. The left
y-axis represents the execution times of the FCFS. The right y-axis represents
the execution time for the RL based algorithm. Since the number of state-action
pairs in RL only increase in one dimension and converges at almost the 20000
episode (Fig. 2d), the execution time does not increase significantly. We assume
the requests are received in batch a day earlier, hence, the learning could occur
overnight.

6 Conclusion

We proposed a provider-centric re-allocation of drone swarm services known as,
Swarm-based Drone-as-a-Service (SDaaS). A congestion-aware SDaaS composi-
tion algorithm is proposed to compute the maximum delivery and round trip
times a swarm may take to serve a request taking the constraints at interme-
diate nodes (limited recharging pads and congestion) in consideration. A rein-
forcement learning allocation method was proposed with the goal of increasing
the provider’s profit. The efficiency of the proposed approach was evaluated in
terms of profit maximization and execution time. Experimental results show the
outperformance of the RL allocation approach to the baseline FCFS approach.
In the future work, the problem could be expanded to cover multi-objectives, e.g.
profit and time. In addition, we will consider heterogeneous swarms allocation
to serve multiple requests and extend the work to deal with SDaaS failures.
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Abstract. A smart home facilities human daily lives by orchestrating
IoT devices through trigger-action (TA) rules. However, creating TA
rules is challenging for novice users as (1) it requires comprehensive
domain knowledge, (2) the created rules often deviate from user intents,
and (3) errors are usually inevitable. To address these challenges, this
paper proposes TAGen, an approach to automating TA rule generations
by mining historical event traces. TAGen augments events and event
traces with contextual information based on a deep understanding of a
smart home system. It synthesizes TA rules by identifying frequent event
pairs, inferring potential conditions, and heuristically filtering and rank-
ing rule candidates. We implement a prototype and evaluate it with a
preliminary experiment, and the experimental results show that TAGen
effectively generates TA rules aligned with user behaviors.

Keywords: Smart home · Trigger-action rules · IoT device · Event
trace

1 Introduction

A smart home (SH) is a complex system making people’s daily lives conve-
nient and comfortable with intelligence techniques, whose one essential capa-
bility is orchestrating Internet of Things (IoT) smart devices. In particular, an
SH exploits trigger-action (TA) rules [12] to automate IoT devices, i.e., lighting,
switches, and locks, to behave in alignment with occupants’ intents.

TA rules are presented in the form of “IF a trigger occurs, THEN do an
action.” In this way, actions are automatically performed when triggering events
occur and some specific conditions (if they exist) are satisfied. An occupant can
develop TA rules with tools like IFTTT1 and Zapier2 to orchestrate smart home
devices. For instance, “IF the smart lock changes to on THEN turns on the living

1 https://ifttt.com/.
2 https://www.zapier.com/.
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room lamp” is a TA rule automating the action “turning on the lamp” when the
event “the smart lock changes to on” occurs.

However, creating a TA rule is not simple, requiring end-users comprehen-
sively regarding multiple factors of humans, devices, and physical environmen-
tal contexts (contexts for short hereafter). Furthermore, end-users often cannot
accurately specify their potential intents and do not know their actual demands,
resulting in bugs [3] and inconsistencies between user mental models and TA
rules [8]. In consequence, developing proper TA rules from scratch is still thorny
for novice occupants.

This paper proposes TAGen to mitigate the gap between user intents and
smart home TA rules. TAGen generates TA rules aligning with occupants’ intents
by mining event traces of a smart home. Occupants usually operate smart home
devices regularly, which reflect their actual intents and daily routines, and hence
it is viable to generate TA rules by identifying the regularities.

The contributions of this work are summarized as follows.

1. We propose a set of definitions and formalize the problem based on a deep
understanding of a smart home system.

2. We propose an approach to generating TA rules by synthesizing triggers,
actions and conditions obtained from smart home event traces.

3. We prototype TAGen and integrates it into a popular open-source smart home
system Home Assistant3 (HA).

2 Related Work and Problem Analysis

2.1 Related Work

Two ways are popular in generating TA rules, i.e., trigger action programming
(TAP) and data mining-based TA rule generation.

Some work facilitates end-users developing, debugging, and understanding
TA rules. AutoTap [15] translates properties to LTL (linear temporal logic)
specifications and automatically synthesizes compliant TA rules. Like scratch
programming, Block Rule Composer [9] creates rules with visual blocks. Zhao et
al. [16] implemented user interfaces that visualize differences between TA rules
in syntax, behaviors, and properties, helping users understand how a TA rule
modification changes an ultimate behavior.

The other way to generate TA rules is by learning from historical smart home
event logs [2]. The approaches focus on activity recognition and behavior pat-
tern discovery through mining frequent/periodic/temporal patterns and casual
relations from event logs. PCMiner [7] discovers periodic composite IoT ser-
vices from event sequences by employing significance and proximity strategies to
make filtering. CoPMiner [4] mines temporal relations among smart home appli-
ances from endpoint sequences transformed from interval-based event sequences.
Trace2TAP [14] applies symbolic reasoning and SAT solving to synthesize a com-
prehensive set of TA rule candidates automatically.
3 https://www.home-assistant.io/.

https://www.home-assistant.io/


654 L. Liu et al.

Similar to mining TA rules, process mining extracts insight in processes from
event logs [11]. An event log is viewed as a set of traces containing all the
activities of a particular process instance [10]. Heuristics Miner generates process
models from event logs and is robust to deal with noises [13]. Fuzzy Miner is
configurable to generate multiple models at different levels of detail for dealing
with unstructured processes [5].

2.2 Problem Analysis

On the one hand, EUD (end-user development) based TAP is of low effective-
ness. (1) Writing TA rules requires much domain knowledge, e.g., how to use
rule development tools and how IoT devices and sensors work [6]. (2) End users
cannot handle complex scenarios and often create buggy rules [8]. (3) End users
do not exactly know their actual requirements and daily routines, let alone map-
ping them to TA rules. On the other hand, limitations exist in data mining-based
TA rule generations. (1) Devices are orchestrated with multiple relations, e.g.,
temporal relations, causal relations, and associations due to user habits; the
conditions under which devices collaborate are complex, such as various physical
environment contexts and temporal properties. Nevertheless, contemporary work
only considers one or part of relations and conditions. (2) The other approaches
usually mine high-level activity patterns from sensor data. However, there are
gaps between transforming such activities into fine-grained executable TA rule
scripts.

Therefore, we are motivated to propose TAGen, an approach to generating
fine-grained executable TA rules based on smart home event trace mining.

3 Definitions and TA Rule Template

We showcase an exemplary scenario of a user’s daily routine at the beginning.

An Example Scenario. On workdays, Jason usually comes back home around
18 o’clock. When he enters his house, he will turn on the living room air condi-
tioner if he feels hot and then closes the living room window within one minute
if the window is open at that moment. He usually sits on the couch and turns
on the TV and the lamp in his living room around 19 o’clock every day.

3.1 Definitions

The above scenario is user-driven in an ordinary home. In other words, the user
is a central controller that manually operates home devices according to his
perception of surroundings (e.g., temperature), habits (e.g., watching TV), and
other intents. In essence, a smart home system replaces the role of an occupant
in an ordinary home. To control target devices as if the user acts on them
directly, the smart home should deduce user intents from multiple aspects, such
as environmental contexts and user states and behaviors perceived by sensors.



TAGen: Generating Trigger-Action Rules 655

Smart home devices are of two types, i.e., sensors and actuators. Sensors
perceive contexts, e.g., physical environmental contexts, human activities and
states, and physical object state changes. Unlike sensors, an actuator is a smart
device capable of changing the environmental context or providing some services.

We propose a set of definitions based on our understanding of a smart home.

Definition 1 (A smart home) is defined as SH =< D,L, C >, where

– D = {d1, d2, · · · , dn} denotes a set of IoT devices in SH, and each device is
either a sensor or an actuator.

– L = {l1, l2, · · · , lm} is a set of zones constituting SH, e.g., a living room.
– C = {Env,Dev,Act} denotes three types of contexts, i.e., environmental

contexts (Env), device states (Dev), and occupant activities and states (Act).

Definition 2 (An actuator) is defined as da =< id, l, P,A, S,Δ,Θ >, where

– id is a unique identity of da, and da ∈ SH.D.
– l ∈ SH.L is the location of da.
– P is a set of properties of da, e.g., the color of a lamp.
– A = {a1, a2, · · · , ai} is a set of operations offered by da, and there are two

basic ones, i.e., switch on and switch off.
– S = {so, sf , S′} is the state set of da, so, sf are two default states representing

on and off, and S′ is the set of other states.
– Δ : S ×A �→ S denotes state transitions, e.g., δ1 : a1 × s1 �→ s2 is a transition

from s1 to s2 after an operation a1, where s1, s2 ∈ S and a1 ∈ A.
– Θ is a set of associations between da’s operations and their effects on con-

texts, including physical environment contexts and device states. For example,
θ1 : a1 �→< temp, increase > is an association specifying da’s operation a1

increases the temperature, where temp ∈ SH.C.

Definition 3 (A sensor) is defined as ds =< id, l, c >, where

– id is a unique identity of ds, and ds ∈ SH.D.
– l ∈ H.L is the location of the device ds.
– c is the context ds perceives, c ∈ SH.C.

A smart home is an event-driven system. Events in the smart home SH are
of two types according to their sources and semantics. (1) An actuator da fires
an operation event when an act changes its state, e.g., an event lamp-switching-
on. (2) A sensor outputs a state-change event when perceiving a target object’s
state change. Therefore, we define an event as the following.

Definition 4 (An event) is defined as e =< type, d, desc >, where

– type ∈ {operation, statechange} is the type of e.
– d is the source device of e, from which we can obtain other information, e.g.,

where e happens.
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– desc describes what the event e is, in terms of a subject-predicate phrase, e.g.,
“TV turns on”, “someone enters”, “window opens”.

Definition 5 (An event trace) is defined as R =< ts, te, E >, where

– ts and te are the beginning and the end time of event trace R.
– E =< e1, e2, · · · > is a temporal sequence of event occurrences.

Fig. 1. The overview of TAGen’s workflow.

Therefore, we can construct event traces for each person and handle them
separately by identifying and clustering multiple users’ events. Notably, we con-
struct an event trace per day, but the time unit of a trace can be varied.

3.2 Rule Template

In general, a TA rule comprises three parts, i.e., an event, an action and condi-
tions, and thus, we propose a TA rule template:

IF e happens, WHILE [con], THEN act a [within ti],

e is a triggering event. a is an action on a device. ti restricts the max time
span between e and a. con is a boolean expression representing conditions. Note
that the elements in square brackets are optional.

Unlike prior work creating a workflow, we concentrate on TA rules containing
only one trigger and one action. It is because TA rules are fundamental building
blocks, and the event-driven mechanism can chain a set of TA rules naturally.
In the example scenario, the event entering the living room triggers the action
switching on the AC that triggers the following action closing the window.

4 Methodology

As Fig. 1 shows, TAGen works in three steps, i.e., (1) identifies frequent event
pairs, (2) infers rule conditions, and (3) post-processes TA rule candidates. This
section elaborates on the details of each step.
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4.1 Identify Frequent Event Pairs

We enumerate combinations of every two events and measure their co-occurrence
frequency in event traces. Intuitively, the more frequently two events co-occur,
the more likely they can be the trigger and action of a TA rule.

Valid Event Pair Enumeration. An enumerated event pair is valid only if,

1. Two events often co-occur within a short period. One action happening right
after one trigger event implies a temporal relation between them, and oth-
erwise not. We use the number of other events occurring between the two
events as a relative threshold (Tinterval).

2. The first event as a trigger is an operation event or a state-change event. The
second event as an action must be an operation event implying an action on
a device. A TA rule usually specifies that an occupant acts on an actuator
right after changing his own state or other physical object’s state.

3. Two paired events relate to different devices because we concentrate on TA
rules that can orchestrate multiple devices.

Measure Event Co-occurrence Frequency. For a valid event pair, TAGen
measures their co-occurrence frequency in a set of event traces R = {R1, R2, · · · }.
An event pair is considered frequent only if the support and confidence of its co-
occurrence are not less than the thresholds supmin and conmin, respectively.

– Support measures how frequently an event pair co-occurs with Eq. 1;
NumOfTrace(e1, e2) is the number of traces containing the event pair at
least once, and NumOfTrace(R) is the total number of event traces.

– Confidence measures the possibility of e2 happening after e1 with Eq. 2, where
Num(e1, e2) denotes the total number of e2 occurring after e1, and Num(e1)
is the total occurrences of e1.

sup(e1, e2) =
NumOfTrace(e1, e2)

NumOfTrace(R)
(1)

con(e1, e2) =
Num(e1, e2)

Num(e1)
(2)

This step outputs a set of frequent event pairs, and in each of which, the two
events are a trigger and an action, respectively.

4.2 Infer TA Rule Conditions

Recall the example scenario, a TA rule must approximate conditions influencing
an occupant’s decision from several aspects, such as environmental contexts (e.g.,
temperature), device states (e.g., a window is open), and time intervals (e.g.,
within one minute).

Environmental Contextual Condition. The physical environmental context
is a critical factor for an occupant to make a decision. We represent a contextual
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condition as c � ĉ, where c is the perceived context value relating to an action
act on an actuator, ĉ is the boundary value of c, and � is an operator denoting
a logical relation, e.g., “==”, “≥”, etc. For example, we infer the operator �
is “≥” and set ĉ with the minimum perceived value of temperature before the
action “turning AC on” occurrences.

Device State Condition. Device states influence whether performing an
action. For instance, when an occupant feels hot, he will switch on an AC only
if the other similar actuator, e.g., a fan, is off, at the moment.

According to the pre-defined smart home model, St− records the states of
all devices before time t. Thus, given an event pair (e1, e2), we get the states
before event e2. We notice that, in general, most devices (excluding sensors)
in a smart home are off at a certain time, and only the non-off devices more
likely influence the subsequent action. Therefore, Eq. 3 measures the possibility
(p(d, s|e2)) of whether a device d in a state s is a condition of the action derived
from e2, where |d, s| is the times of device d in state s when the event pair occur,
and |e1, e2| is the total occurrences of the event pair. We consider (d, s) as a
condition if p(d, s|e2) exceeds a threshold Tstate.

p(d, s|e2) =
|d, s|

|e1, e2| (3)

Temporal Restriction. A temporal restriction limits the max time span
between a trigger and an action, e.g., “closing the window” should be performed
“within in one minute” once the trigger “turning on the AC” occurs. For an
event pair < e1, e2 > occurring n times, SD(e1, e2) is the standard deviation
of their time interval. The smaller SD(e1, e2) is, the more regular the tempo-
ral restriction is. We set Tspan with a sum of the max perceived time interval
max(x) and SD(e1, e2), as the time span threshold.

Finally, a candidate rule is synthesized with an event pair and inferred con-
ditions based on the rule template.

4.3 Post-process Rule Candidates

TAGen first removes redundant candidate rules whose effects are similar. Then,
it prioritizes the remaining rules and recommends the top K rules to end-users.
Note that the value of K is configurable, and we set it with 20 as default.

Filter Redundant Candidate Rules. TAGen constructs a directed graph
(DG) whose vertexes are triggers and actions of obtained candidate rules, and
each directed edge goes from a trigger to an action along with conditions on
it. Within DG, a redundancy exists if (1) there are two or more paths from a
trigger to an action, and (2) conditions in the paths are equal or similar.

Rank Candidate Rules. TAGen ranks the filtered candidates by regarding
their diversity and significance. It clusters the candidates in groups and each of
which contains candidates with the same actions. TAGen prioritizes the candi-
dates within each group according to the action occurrences they can automate
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and chooses the top one as a recommendation. Finally, TAGen ranks all rec-
ommended rules in descending order by their confidence in original event traces
and outputs the top 20 TA rules.

4.4 Prototype Implementation

We implement a prototype and integrate it into HA. HA provides an environment
for users to customize TA rules in the form of YAML-based scripts. Specifically,
we implement the front-end of TAGen based on a Python Web framework Flask,
where the top 20 candidate rules are listed in default. Once a recommended rule
is confirmed, TAGen generates a YAML-based HA automation script by synthe-
sizing its trigger, conditions, and action. Finally, a user can find a generated rule
in the automation card of HA and enable (or disable) it with the offered switch.

Fig. 2. (a) The effect of Tinterval on identified event pairs, (b) The effects of thresholds
supmin, Tinterval on identified event pairs, (c) The effects of thresholds conmin, supmin

on identified event pairs

5 Evaluation

We evaluate TAGen’s performance in TA rule recommendation with a public
dataset [1]. Notably, the dataset is augmented with some physical environment
context data (temperature and humidity) of another publicly available dataset
provided CASAS4. In particular, we analyze the impact of threshold settings,
i.e., Tinterval, supmin, conmin, on TAGen’s performance.

Maximum Interval. We set supmin with 50 and conmin with 0.65 in respective
and increase Tinterval from 1 to 10 for analyzing the effect of Tinterval on iden-
tified event pairs. Figure 2(a) depicts the changes of identified event pairs along
with the increase of Tinterval. The identified event pairs significantly increase
when Tinterval increases from 1 to 4 and then increase more gently, indicat-
ing that most frequent event pairs contain events happening very closely. The

4 http://casas.wsu.edu/datasets/.

http://casas.wsu.edu/datasets/
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event pairs with larger intervals would be filtered out at last due to their low
co-occurring frequencies. Therefore, it is reasonable to set Tinterval in [1,4].

Minimum Support. Figure 2(b) shows the effects of Tinterval and supmin on
identified event pairs in the condition of conmin = 0.7. It is obvious that no
matter what Tinterval is, supmin has little effect on the number of identified
event pairs. Therefore, we set supmin with {30, 60, 90, 120} in this experiment.

Minimum Confidence. We vary conmin, supmin with Tinterval = 3. Figure 2(c)
shows the results. We vary supmin and conmin to analyze their impact on the
identified event pairs. We observe that the number of event pairs decreases dras-
tically when setting conmin with a value around 0.700. It is also seen that no
matter what value supmin is, the number of event pairs will be less than 20 when
conmin approaches 0.800. Therefore, we set conmin in the range of [0.65,0.8] to
get a more reasonable number of events pairs.

Overall, identified event pairs are proportional to Tinterval and inversely pro-
portional to supmin and conmin.

Accordingly, we set Tinterval = 2, supmin = 120 and conmin = 0.65 and
configure TAGen to output top 20 TA rules in this experiment. We manually
inspect the reasonability of the recommended rules and confirm that all the TA
rules are in alignment with the users’ regular behaviors. Notably, the obtained
TA rules are not listed due to space limitations.

6 Discussion

Although our preliminary experiment reveals that TAGen is capable of mining
TA rules from event traces, some limitations still exist.

(1) The parameter settings would affect TAGen’s performance, and thus setting
reasonable values may be specific to different users and scenarios. We will
explore adaptive parameter configuration algorithm in future work.

(2) TAGen currently only processes event logs in single-user environment, and
its applicability in multi-user environment needs to be verified.

(3) TAGen’s robustness in handling noises in event traces should be concerned
and evaluated. In future work, we will evaluate TAGen with much more
datasets and compare it with other techniques extensively.

7 Conclusion

Automated TA rule generation helps end-users customize smart home device
orchestrations in alignment with their daily lives and intents. This paper sys-
tematically proposes an approach TAGen to generate TA rules by mining smart
home historical event traces. TAGen synthesizes TA rule candidates with identi-
fied frequent event pairs and inferred conditions based on a general rule template.
It filters out redundant rule candidates and ranks the remaining ones heuristi-
cally. We implement a prototype and perform preliminary evaluations.
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Abstract. This paper aims to study a computation task scheduling problem in the
space-air-ground integrated network (SAGIN). The prior works on this problem
usually assume that an unmanned aerial vehicle (UAV) is static or has a fixed
flying trajectory. In this paper, we allow a UAV to plan its own trajectory and to
have a certain coverage area. Our objective is to design a policy that minimizes
the maximum task processing delay by joint optimization of task scheduling and
UAV trajectory. We first formulate this nonconvex optimization problem as a
Constrained Markov Decision Process (CMDP) under the constraints of UAV
energy capacity and mobility space. Then, we design a Deep Deterministic Policy
Gradient (DDPG)-based reinforcement learning algorithm to learn the optimal task
offloading ratio and UAV trajectory. Our work is evaluated from three aspects: (1)
SAGIN network architecture vs. single layer network; (2) DDPG-based algorithm
vs. Deep Q Network-based algorithm; (3) optimized UAV trajectory vs. fixed
UAV position. Experiment results validate that the optimized UAV trajectory can
achieve a lower task processing delay than fixed UAV position .

Keywords: LEO · RL · SAGIN · Task offloading · UAV trajectory optimization

1 Introduction

The space-air-ground integrated network (SAGIN) emerges to provide high-rate, seam-
less and reliable transmission, which is conceived to become the next generationwireless
communication network [1]. A typical SAGIN has three layers: ground layer, aerial layer
and space layer. IoT devices are restricted by ground infrastructure and have limited com-
puting capacity. Therefore, there is a need to exploit aerial/space to alleviate terrestrial
computation pressure. Low Earth Orbit (LEO) satellites in the space layer can provide
wide coverage for remote areas and have been devoted to the commercialization, such
as SpaceX [2] and OneWeb [3]. But they are limited by large satellite-terrestrial delay.
Unmanned Aerial Vehicles (UAVs) in the aerial layer can move flexibly to provide
temporary coverage enhancement. Moreover, UAVs are low cost and can be deployed
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quickly to relieve the booming traffic demands of terrestrial networks. However, UAVs
are constrained by energy supply and cannot provide service for a long time [4]. Satel-
lites, UAVs and IoT in different layers can complement each other to provide seamless
and fast service for IoT devices, which is the origin of SAGIN [5].

Researches have been conducted on the computation task scheduling problem in
SAGIN [6, 7]. But they usually ignored UAV mobility or merely assumed fixed UAV
trajectory. Actually, during theUAVflight, users can join or exit the network dynamically
because of new tasks arrival and/or the completion of old tasks. According to these
dynamics, the UAV should adjust its position to serve more users [7]. Studies have
shown that UAV trajectory optimization can improve the transmit power of IoT devices
and enhance the network reliability [8]. Therefore, it is necessary to consider UAV
trajectory optimization in the computation task scheduling of SAGIN.

In this paper, we endeavor to minimize the maximum task processing delay for IoT
devices by joint optimization of task scheduling and UAV trajectory in SAGIN. In our
scenario, IoT devices generate tasks and then decide to compute locally or upload part of
tasks to theUAV.Similar to previous studies [6, 7], a flyingUAVprovides edge computing
service for IoT devices and a LEO satellite as a cloud center offers ubiquitous access.
Considering UAV mobility, each UAV is assumed to have a certain coverage range and
can only provide service to the IoT devices within its coverage area [9]. Therefore, there
may be the situation where tasks are not completed at a UAV and the IoT device is out of
the range. In that case, the UAV must transmit the remaining tasks to the LEO satellite
to make sure that the tasks are finished and can be returned to IoT devices [10]. During
the process, there are two decisions to make. The first is that IoT devices should decide
how many tasks need to be offloaded to the UAV. The second is that the UAV needs to
adjust its speed and angle to optimize its trajectory.

Considering the limitations of UAV energy capacity and mobility space, we formu-
late the delay-oriented task scheduling and UAV trajectory optimization problem as a
Constrained Markov Decision Process (CMDP) [11]. Since the UAV action space is
continuous, a Deep Deterministic Policy Gradient (DDPG)-based reinforcement learn-
ing algorithm is designed to address the CMDP [12]. To evaluate the advantages of
the proposed algorithm, we compare our algorithm with a Deep Q Network (DQN)-
based algorithm. The results indicate that our algorithm behaves better than DQN-based
algorithm in terms of task processing delay.

The rest of the paper is organized as follows. In Sect. 2, we describe the considered
SAGIN network architecture and introduce the computation, transmission, and energy
consumption models. The optimization problem is formulated in Sect. 3. Section 4
describes the designed algorithm. The performance evaluation is presented in Sect. 5.
Section 6 concludes the paper.

2 System Model

Figure 1 illustrates a SAGIN architecture including three layers, the ground layer with
N IoT devices, the aerial layer with a UAV and the space layer with a LEO satellite.
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In the ground layer, IoT devices are located in the areas where there is no cellular
coverage. Due to the lack of ground infrastructure, the IoT devices can offload a portion
of the tasks to the UAV and execute the remaining tasks locally. The UAV in the aerial
layer can serve as an edge node to provide edge computing service for IoT devices.
However, the UAV is moving and has its coverage limit. When the IoT device in service
is out of the UAV coverage and becomes disconnected due to UAV mobility, the UAV
will offload the remaining tasks to the LEO satellite, ensuring that the processing results
can return to IoT devices. Moreover, given that the UAV energy capacity is limited, all
tasks must be finished within the allowed energy.

LEO coverage
UAV coverage

IoT devices
LEO satellite
UAV

IoT-UAV link
UAV-LEO link

Fig. 1. An overview of the SAGIN architecture

In this paper, we aim tominimize themaximum task processing delay for IoT devices
by task scheduling and UAV trajectory optimization. We consider a discrete time-slotted
system � = {1, 2, · · · , t} with equal length time slots. The computation task, transmis-
sion, and energy consumption models are presented in the following. The notations and
default settings of variables can be found in Table 1.

Table 1. Notations and default settings of variables

Notation Definition

cyc The CPU cycles required to process each unit byte

Pcom The power consumption for UAV processing tasks

Mu Weight of the uav

tfly The time of UAV flying

fUAV fIoT fLEO UAV, IoT, LEO process unit cpu-cycle frequency

rateu(t) The wireless transmission rate of the IoT-UAV link

ratel(t) The wireless transmission rate of the UAV-LEO link

Pl Transmission power of UAV-LEO link

dS The propagation delay of uav-leo link

rn(t) The ratio of IoT offloading to UAV

tcov UAV coverage time

taskn(t) The task size produced by IoT device n in time slot t

delayall(t) The delay for all offloaded tasks processed at UAV in time slot t
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(1) Computation Task Model
We now present the processing delays in local computing, UAV computing and LEO
computing, respectively.

1) The delay for computing locally is delayloc(t) = (1 − rn(t)) · taskn(t) · cyc/fIoT .
2) Considering the UAV coverage time, the actual delay of task computing at the

UAV is

delayUAV (t) =
{
rn(t) · taskn(t) · cyc/fUAV , delayall ≤ tcov

tcov, else

3) The remaining task size that needs to run at the LEO satellite is

taskLEO(t) =
{

0, delayall ≤ tcov
rn(t)taskn(t) · cyc − tcovfUAV , else

Namely, the delay for computing at LEO satellite is delayLEO(t) = taskLEO(t)/fLEO.

(2) Transmission Model
We now present the transmission delays on the IoT-UAV link and the UAV-LEO link,
respectively.

1) The delay for transmitting tasks from IoT devices to the UAV in time slot t is
given by delayIU (t) = rn(t)taskn(t)/rateu(t).

2) The transmission delay from theUAV to the LEO satellite is given by delayUL(t) =
taskLEO(t)/ratel(t)+dS .

(3) Energy Consumption Model
The UAV energy consumption consists of flying energy, computing energy and
transmission energy. Note that we ignore the energy consumption for hovering.

1) The energy consumed to fly is efly(t) = Mu||v(t)||2tfly/2.
2) The energy consumption for computing is denoted by ecom(t) = Pcom ·

delayUAV (t).
3) The energy consumption for transmission is denoted by etrans(t) = Pl ·delayUL(t).
The cumulative energy consumption is et+1 = et − efly(t) − ecom(t) − etrans(t).

3 Problem Formulation

This paper focuses on minimizing the maximum processing delay by optimizing UAV
trajectory and task scheduling, while satisfying the UAV energy capacity and mobil-
ity space constraints. Let delayoff (t) = delayUAV (t) + delayLEO(t) + delayIU (t) +
delayUL(t). Based on the models in Sect. 2, the optimization problem in SAGIN can be
formulated as P1.

P1 : min
T∑
t=1

N∑
n=1

βn(t)max
[
delayloc(t), delayoff (t)

]
(1a)

s.t. βn(t) ∈ {0, 1},∀t ∈ {1, 2, · · · ,T }, n ∈ {1, 2, · · · ,N } (1b)
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N∑
n=1

βn(t) = 1,∀t, (1c)

(xn,t, yn,t) ∈ [0,L], (1d)

(xuav,t, yuav,t) ∈ [0,L], (1e)

0 ≤ rn(t) ≤ 1,∀n, t, (1f)

flagn(t) ∈ {0, 1},∀n, t, (1g)

T∑
t=1

N∑
n=1

(
efly,n(t)+ecom,n(t)+etrans,n(t)

) ≤ etotal,∀n, (1h)

T∑
t=1

N∑
n=1

βn(t) · taskn(t) = taskall (1i)

Equation (1a) is the objective that minimizes the maximum delay for processing all
tasks over T time slots. Equation (1b) and Eq. (1c) restrict that only one IoT task can be
processed in a time slot. Equation (1d) and Eq. (1e) limit the locations of the UAV and
IoT devices. Equation (1f) constrains the range of task offloading ratio. Equation (1g)
expresses whether there is a blockage between the UAV and IoT devices, and Eq. (1h)
restricts the energy capacity. Equation (1i) represents all tasks must be completed over
T time slots.

The states, actions, reward, and policy in an MDP can be formulated as follows.
1) State: In time slot t, st = (UAVloc(t), IoTn(t),Taskn(t), flagn(t)), n ∈ N is used

to describe the system state, where st ∈ S. UAVloc(t) indicates the location of the UAV,
IoTn(t) represents the location of IoT device n, Taskn(t) denotes the task size produced
by IoT device n, and flagn(t) is to indicate whether the signal between the UAV and IoT
device n is blocked by obstacles in time slot t.

2) Action: at = (θ(t), v(t),R(t)), at ∈ A. θ(t), v(t) and R(t) represent UAV flight
angle, UAV flight speed, and task offloading ratio in time slot t, respectively.

3) Reward function: The reward function is defined as R(st, at) = −delay(t), where

the processing delay turns to max
T∑
t=1

N∑
n=1

βn(t)max
[
delayloc(t), delayoffload

]
.

4 Algorithm

In order to train DNN effectively, state normalization is adopted to preprocess the
observed states. To minimize the maximum task processing delay, DDPG-based joint
optimization scheme is shown in Algorithm 1. It is noted that the training phase is run for
Nep episodes with each episodeNex steps. The algorithm includes two parts: the network
environment initialization (line 1) and the deep RL algorithm (lines 2–15).
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As introduced above, the state needs to be normalized first (line 5) and then is fed to
actor network. The actor produces awith observation s by A( s|θa) and the noise is added
to ensure sufficient exploration (line 6). Each interaction with the environment is stored
as a tuple (line 8) and a set of data is extracted from the buffer in the learning phase
(line 9). During the process of training, the parameters of actor and critic networks are
updated iteratively (lines 10–12). And target networks are updated by line 13 to avoid
divergence of the learning algorithm.

5 Experiment Results

This section conducts extensive simulations to evaluate the proposed SAGIN scheme.
The simulation is implemented via Python3.8 andPytorch open-sourcemachine learning
library. The training of DNNs is conducted with an Intel(R) Core (TM) i5-9400F CPU
@ 2.90 GHz. The default detailed parameters are referred to [13].

Our work is evaluated from two aspects: network architecture evaluation and algo-
rithm evaluation. First, the task processing delay under different offloading mechanisms
is presented in Fig. 2, where local-only, UAV-only and LEO-only mean that all tasks are
only allowed to be computed by IoT devices, theUAVand the LEO satellite, respectively.
SAGIN represents the tasks are offloaded according to the scheme in Sect. 2. From it,
we can see the proposed offloading approach can achieve the lowest delay because of
the learnt optimal offloading policy.

Algorithm 1 DDPG-based joint optimization of task scheduling and UAV trajectory algorithm
Input: Episode times epN , exploration times exN , actor learning rate aη ,

critic learning rate cη , parameter of state normalization , ,x y taskλ λ λ

Output: Learned actor ( ; )θaA s and critic ( , ; )θcC s a
1 Initialization:

Initialize actor network ( | )aθA s and critic network ( , | )cθC s a randomly with θa and cθ

Initialize target actor network A′ and target critic network C′ with θ θa a′ ← and θ θc c′ ←

2 for i =1 to epN do

3 Obtain initial observed state 1s

4 for j = 1 to exN do

5 Normalize state ts to ts′ by state normalization

6 Get action ta by ( ; )θt aa A s noise= +

7 Execute action ta , obtain reward tr and new state 1ts +

8 Save { }1 1, , ,t t t ts a r s+ + to the memory
9 Sample a batch size of data from memory 
10 Obtain iy by Eq. (6)
11 Update critic network by Eq. (5) 
12 Update actor network by Eq. (7) 
13 Update the target networks (1 )θ θ θa a aτ τ′ ′← + − , (1 )θ θ θc c cτ τ′ ′← + −
14 end for
15 end for
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Next, we present the task processing delay under different reinforcement learning
algorithms (DDPG andDQN algorithms). From Fig. 3, we can see DDPG behaves better
than DQN in terms of reducing task processing delay in SAGIN. Because of the discrete
action space, DQNmay miss the optimal policy. However, DDPG explores a continuous
action space and takes an accurate action, which can find the optimal policy.

In Figs. 4, 5 and 6, we investigate the impact of bandwidth, UAV computing capa-
bility, and energy capacity on the task processing delay. We can see that the delay with
optimized UAV trajectory is less than that with fixed UAV position under different band-
widths, UAV computing capabilities and energy capacities. From Fig. 6, we can see that
the delay with optimized UAV trajectory reduces from 10 to 50 kJ and then remains
stable after 50 kJ, which is because the UAV cannot deal with all the tasks when its
battery capacity is low. If the battery capacity is large enough, the UAV can handle all
the tasks within the battery capacity.
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Figure 7 and Fig. 8 show the UAV trajectory in 3D and 2D areas in an episode,
respectively. The yellow circle represents the UAV starting position, and the green circle
indicates the UAV ending position. We set a 100 × 100 × 100 three-dimension space
with the fixed UAV height. Each blue circle represents a UAV position variation. Since
the locations of IoT devices are varying, and the UAV can fly randomly in the area to
find the optimal location to reduce the transmission delay between IoT devices and the
UAV. Therefore, the UAV trajectory is irregular.

6 Conclusion

In this paper, a novel SAGIN network architecture is described, in which IoT devices
generate tasks and decide to compute locally or upload a portion of the tasks to the
UAV. Different from other researches, our UAV is flexible and can plan its trajectory in
order to reduce the task processing delay. In addition, the LEO satellite as a standby to
deal with the tasks that the UAV cannot finish within the limited time. We aim to find
a policy to minimize the maximum task processing delay by joint optimization of task
scheduling and UAV trajectory. We formulate the optimization problem as a CMDP. To
capture the continuous action of the UAV, a DDPG-based RL algorithm is adopted to
solve the CMDP. The experiment results indicate that the delay with optimized UAV
trajectory is lower than that with fixed UAV position.
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Abstract. The automatic Key Performance Indicators (KPIs) assessment for
smart cities is challenging, since the input parameters needed for the KPIs cal-
culations are highly dynamic and change with different frequencies. Moreover,
they are provided by heterogeneous data sources (e.g., IoT infrastructures, Web
Services, open repositories), with different access protocol. Open services are
widely adopted in this area on top of open data, IoT, and cloud services. However,
KPIs assessment frameworks based on smart city models are currently decou-
pled from open services. This limits the possibility of having runtime up-to-date
data for KPIs assessment and synchronized reports. Thus, this paper presents
a generic service-oriented middleware that connects open services and runtime
models, applied to a model-based KPIs assessment framework for smart cities.
It enables a continuous monitoring of the KPIs’ input parameters provided by
open services, automating the data acquisition process and the continuous KPIs
evaluation. Experiment shows how the evolved framework enables a continuous
KPIs evaluation, by drastically decreasing (∼88%) the latency compared to its
baseline.

Keywords: Models@run.time · Continuous monitoring · Smart cities
assessment

1 Introduction

The Smart Cities (SCs) ecosystem is an ideal ground for service-based applications,
where the role of Service-Oriented Architecture (SOA) is to enable the integration
between city services to realize innovative services and applications (e.g., [1,2]). Par-
ticularly, we focus on the smart governance [3] process within SCs, concerning the use
of technology in processing information and supporting smart decision making. Specif-
ically, it exploits Key Performance Indicators (KPIs) assessment to measure qualitative
metrics over cities to support their smart and sustainable growth1. For instance, the
International Telecommunication Union (ITU) defined a list of all the KPIs for Smart
Sustainable Cities, along with its collection methodology [4]. The KPIs assessment

1 https://bit.ly/3ekdT9D.
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process involves different tasks, e.g., retrieving input data, calculating indicators, and
reporting evaluation results. Traditional approaches, e.g., manual or spreadsheet-based
approaches2, envisage a significant human contribution to perform such operations,
with expensive and repetitive activities requiring resources and time to be performed.

Enabling automation in the KPIs assessment to both the retrieval of input data and
calculation of KPIs, is not trivial, since the input parameters needed for the calcula-
tions may come from different types of data sources (e.g., IoT infrastructure, open data
repositories or statistics elaborated by public entities) in different formats. Moreover,
the values of the input parameters can change periodically (e.g., hourly), and thus, the
KPIs assessment process has to be synchronized and re-assessed accordingly.

On the one hand, Web services and APIs, i.e., the most common way to specify
open services in the SC domain, are widely adopted to build new applications on top
of open data, IoT, and cloud services. On the other hand, model-based approaches are
exploited in the SC domain, i.e., to represent complex systems through abstract mod-
els [5]. However, despite the huge availability of SC services and models, they are
currently not well-connected, which would be required to reach the notion of a dig-
ital twin [6]. Moreover, the currently available frameworks for the KPIs calculation
are mainly online spreadsheets3, which are far from being automated, and Web-based
applications (see, e.g., [7]) only providing a fixed set of predefined KPIs. In our previ-
ous work [8], we presented a flexible and automated model-based approach for KPIs
assessment in SCs. However, the research efforts in [8] have focused on the definition
of the model-based artifacts of the framework, while ignoring the relationship with the
independent and heterogeneous data sources providing KPIs input parameters and the
constant synchronization with them. Thus, in [8] the input parameters values have to be
manually retrieved and updated in the models.

With these premises, we developed a generic service-oriented middleware that con-
nects open services and runtime models. Specifically, we evolve the architecture in [9]
of our approach in a service-oriented fashion, by means of the message-oriented middle-
ware enabling: (i) continuous monitoring of KPIs input parameters from heterogeneous
sources available as (open) services, and (ii) runtime models evolution with up-to-date
input parameters for the SC modeling artifacts, in accordance with the real-world SCs
evolution reflected by the open services. In other words, we provide a generic solution
for monitoring runtime model parameters from open services for SCs models. Thus, we
turn SC models into digital twins, by weaving open services and the runtime models,
allowing the automated information flow from the system to the model [6].

The rest of the paper is organized as follows: background and motivation for this
work are discussed in Sect. 2. Section 3 presents the proposed approach. Evaluation
results of the implemented prototype are reported in Sect. 4. Finally, Sect. 5 discusses
the related work and draws conclusions and future directions.

2 https://bit.ly/37EFR9r.
3 https://bit.ly/3dT1zwV.
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2 Background and Motivation

In this section, we describe the assessment process realized by the smart cities KPIs
modeling framework from [8], its limitations, and the challenges we aim to address.

2.1 A Smart Cities KPIs Assessment Framework

Figure 1 depicts the overall KPIs evaluation approach consisting in four main phases,
each with dedicated input and output elements. The assessment of a SC starts from
the SC Modeling phase, during which the city under evaluation is modeled, by means
of MDE techniques. In the SC Model, SCs are designed in terms of their stakeholders
(e.g., municipality), infrastructures (e.g., IoT infrastructures), data sources (e.g., open
data, IoT services) and data types. This way, the SC Model provides the input parame-
ters needed to calculate the KPIs of interest, as we will see in the following. In the KPIs
Definition phase, by following KPIs Guidelines/Documentation (e.g., [4,7]), the user
models or select the relevant KPIs for the SC under evaluation (e.g., Air Pollution KPI,
Travel Time Index KPI). In the KPIs Model given as output, the calculation formulae of
the selected KPIs are defined by using a textual Domain-Specific Language (DSL) [10].
The designed SC Model and KPIs Model, are the inputs for an evaluation engine that
executes the KPIs Assessment over the candidate SC. The assessment phase returns an
Evaluated KPIs Model reporting the KPIs concrete values resulted from the assessment.
The Evaluated KPIs Model, in turn, is the input of the KPIs Visualization phase during
which Dashboards representing the KPIs status are generated, through code generation.

Fig. 1. KPIs assessment: process overview.

In the following, we give a trivial
but concrete example of a KPI evaluated
for a smart city, as done in [8]. Specifi-
cally, we consider the KPI Air Pollution
(AP) that measures the air quality based
on the values reported for specific pol-
lutants [4]. It is based on the Air Qual-
ity Index (AQI) formula, calculated as in
(1), where p refers to the pollutant (e.g.,
PM2.5) whereas the legal limit is estab-
lished by the law:

AQIp = (measured concentrationp/legal limit)× 100 (1)

The worst AQIp (i.e., the greater) determines the Air Pollution AP KPI, which is eval-
uated w.r.t. five evaluation classes, i.e., Excellent, Good, Discrete, Bad, Terrible. To
calculate the AP KPI we need, as input parameters, the measured concentrations of
the required pollutants. These values are provided by the SC Model together with the
data sources from which they have been collected, e.g., the Breezometer open API4. An

4 https://www.breezometer.com/.

https://www.breezometer.com/
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Fig. 2. Excerpts of the smart city model designing the city of L’Aquila.

excerpt of the SC model of the smart city of L’Aquila is depicted in Fig. 2. It shows
the tree-view of the model as shown in the Eclipse Modeling Framework (EMF)5,
on top of which the assessment framework has been designed. Figure 2 also shows an
excerpt of the tree-view of the KPIs Model where the AP KPI formula is nested into the
Aggregated Ranged Value. The corresponding textual representation through
the provided DSL [8] can be found in our online repository6. It is important to notice
that, in the KPI definition, the names of the parameters whose values are provided by
the SC Model must conform. This match will be executed by the evaluation engine dur-
ing the assessment. Figure 2 eventually shows the Property View reporting the AP KPI
Actualized Value before and after the assessment, i.e., Good.

2.2 Limitation and Challenges

In the selected framework, the KPIs assessment process envisages the involvement of
the users (e.g., KPIs experts) not only in the initial design of the required models but
also in the manual retrieving of the KPIs input parameters. This means that the user has
to manually fill the SC model every time the KPIs input parameters change, and then
trigger the re-execution of the KPIs assessment process. These manual tasks are time-
consuming and error-prone. Moreover, some KPIs input parameters are highly dynamic,
since they change with very different frequencies (e.g., monthly, hourly). For instance,
data about pollutants concentrations can be collected every hour or even minutes. Lastly,
KPIs input parameters are provided by a multitude of heterogeneous sources, such as
IoT sensors, social media, open data, usually available and accessible as (open) APIs
and services. Given the discussion above, we can identify the following challenges:
(C1) The framework must guarantee a continuous and possibly automated monitoring
of KPIs parameters sources, i.e., services, and runtime update of the models using these
parameters. (C2) The framework must provide real-time evaluated KPIs, i.e., as much

5 https://bit.ly/3lc1GHG.
6 https://github.com/iovinoludovico/runtime-kpi-assessment.

https://bit.ly/3lc1GHG
https://github.com/iovinoludovico/runtime-kpi-assessment
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up-to-date as possible w.r.t. the current status of the smart city, given that KPIs support
and affect the decision-making processes in smart cities. For these reasons, we believe
that our approach can benefit from a service-oriented continuous monitoring feature,
providing automatic gathering of data and runtime models updates (i.e., SC models),
enabling the dashboards synchronization.

3 Runtime Model Updates by Continuous Monitoring

The architecture [9] behind our previous framework [8] was focused on the assessment
phase, thus keeping the gathering of data and the consequent models update as manual
tasks. To address the challenges discussed above and overcome the current limitations
of the framework, we refactored and extended its architecture by adding a message-
oriented middleware enabling continuous monitoring of KPIs data sources and runtime
update of models in the KPIs assessment for SCs, as shown in Fig. 3. This extension
evolves the manual and standalone framework into an automatic and service-oriented
one, where heterogeneous data sources continuously feed the assessment process.

In the front-end, we have the KPIs Modeling Editor (implemented with Xtext7)
devoted to the selection and definition of the relevant KPIs for the SC under evalu-
ation, through custom textual DSLs. The Smart City Modeling Editor [11] (imple-
mented with Sirius [12]), instead, helps users to model the SC under evaluation through
the exploitation of graphical functionalities [11]. Lastly, the graphical Dashboard,
obtained through model to code transformations (and visualized with Picto8) allows
the interpretation of the KPIs assessment results.

In the back-end, the Requests Manager handles: (i) KPIs assessment requests to
the Evaluation Engine (modeled with the Epsilon Object Language9) that is responsi-
ble for performing the SC evaluation; (ii) visualization requests from the Evaluation
Engine to the Dashboard component. In particular, the Dashboard Synchronizer
converts the KPIs model instantiated after the assessment in an HTML file, which is in
sync with source files of the Dashboard. The synchronizer has its own listener that every
time the model changes the HTML file is reloaded, updating the views. The Requests
Manager also handles requests to the Models Manager to gather or store the models
needed in the KPIs assessment process. The models manager handles the persistence of
models in the SC Models Repository and the KPIs Models Repository.

7 https://www.eclipse.org/Xtext/.
8 https://bit.ly/3l8jL9s.
9 https://www.eclipse.org/epsilon/doc/eol/.

https://www.eclipse.org/Xtext/
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Fig. 3. The service-oriented architecture for the continuous KPIs
assessment of SCs. The arrows shape the data-flow among com-
ponents. White and blurred grey components show the architec-
ture from [9], where the blurred grey ones required modifications
for this work. In grey, instead, the newly integrated components.

We now describe the
new components and the
message-oriented middle-
ware. The Publishers and
the Subscriber imple-
ment the classic pub-
lish/subscribe communi-
cation pattern based on
Topics. The type of top-
ics are the types of param-
eters the SC can handle in
the evaluation, e.g., pollu-
tants, travel time, and so
on. Specifically, the Pub-
lisher components can
be multiple, considering
the multiple data sources.
They send calls to data
sources, e.g., open ser-
vices, to gather the input
parameters needed for the
KPIs calculations. Each
publisher prepares the
data, before publishing
changed parameters on

the assigned topic. These components are interfaces implemented, in turn, by specific
Java classes.

The topics are published as MQTT [13] messages with a specific structure, namely
lat/{latitude}/long/{longitude}/parameter, allowing multi-city evaluation. Lati-
tude and longitude are the GPS coordinate of the smart city under evaluation. This
way we can provide multiple publishers as types of data gatherer for different cities,
by matching the smart cities coordinates. Then, the subscriber is able to distinguish
which data intercept, by using the latitude and longitude of the smart city under eval-
uation. The Subscriber is devoted to the synchronization of the models with the data
sources. It receives changed parameters through the subscription to the corresponding
topic and actions can be triggered, as specified in the following. The Runtime Model
Injector is invoked by the Subscriber, when it receives new data from the topics, and
devoted to the retrieving of the SC models that need to be synchronised. It checks if
the input parameters in the models are in line with the ones received by the Subscriber
by querying the model. It is also in charge of SC models update, that is the operation
of filling the models with the received up-to-date data, through EOL queries. Further-
more, the Runtime Model Injector interacts with the Requests Manager to trigger
the KPIs assessment process due to changed input parameters, requesting the last saved
SC models. The overall monitoring process is enabled by the user that is responsible
for setting up the continuous monitoring features, only for the dynamic parameters with
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the runtime attribute set to TRUE in the SC model, through the Settings Interface. It
is used for defining the topics to which the Subscriber has to subscribe, and configure
the APIs and the frequency with which they must be called in the Publishers. This set-
ting is provided through a name based convention, so if the parameters in the SC model
are included in the topics, then the Runtime Model Injector will consider them in the
process.

It is worth noting that after converting the architecture of our framework in a
service-oriented one, enabling continuous monitoring and runtime models update, the
assessment approach can be enhanced in a models@runtime evaluation. Lastly, if new
KPIs are modeled, to monitor their input parameters it suffices to add new publish-
ers according to provided templates and connect them with parameters names in the
SC Model.

4 Implementation and Evaluation

We demonstrate the evolved approach through a running example, by applying the
extended evaluation framework over a real smart city, i.e., L’Aquila. Specifically, we
consider 6 dynamic KPIs and four Publishers as data sources for the input parameters
of these KPIs, i.e., 3 open services and an IoT infrastructure. Details can be found in
our online repository10. We experimentally assess the service-based continuous KPIs
assessment and compare it with its previous version where the KPIs parameters contin-
uous monitoring and runtime models update were not available.

Research Question (RQ). We aim to answer the following RQ: What is the impact
of KPIs input data retrieving, models update and evaluation engine execution tasks on
the latency? How does the presented approach compare with its baseline [9] w.r.t. the
impact to latency of these tasks?

Experiment Setup. To answer to RQ, we have conducted an experiment by comparing
the baseline framework proposed in [9], requiring manual data retrieving and models
filling, with the fully automated framework, enabling continuous monitoring and run-
time models update presented in this paper. We consider one subject smart city and
6 dynamic KPIs. For this experiment, the framework run on a Macbook Pro 2019,
2,3 GHz 8-Core Intel Core i9 processor, 32 GB 2667 MHz DDR4 RAM and 2TB SSD
of storage. This laptop runs the Mosquitto client, all the publishers, the subscriber and
the evaluation engine. We run the experiment for 6 h. Anytime (and only when) the SC
Model is not up to date, the subscriber updates the parameters in the model with the new
received values and it runs the evaluation engine that triggers the dashboard’s update.
All these activities have been automatically monitored and measured in a log.

Results for RQ. Table 1 shows to which extent the data retrieving, SC Model update
and evaluation engine execution contribute to the framework latency, in both the Auto-
mated and Baseline Exps. Specifically, Table 1 reports the average execution time for
each of the three phases in milliseconds (ms), for both Exps. As expected, each of the
three phases requires quite more time in the Baseline Exp, where the data retrieving

10 https://github.com/iovinoludovico/runtime-kpi-assessment.
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and model update (performed manually) are the most time consuming ones. Moreover,
the latency in the Baseline Exp could also depend from communication issues among
the users involved in the monitoring of data sources and update of the models. The eval-
uation engine execution also contributes more to the latency in the Baseline Exp, since
it has to be manually launched anytime changes are applied in the SC Model due to the
evolution of the KPIs input parameters.

Table 1. Latency contributed by the three phases.

Approach Data retrieving SC model update Evaluation engine

Baseline 14.929,89 ms 18.668,28 ms 6.605,22 ms

Automated 525,89 ms 2,96 ms 138,82 ms

Discussion. Current limitations concern the generalizability and scalability of the app-
roach. Although it has been applied on a single smart city to evaluate 6 KPIs, it uses
techniques (e.g., PubSub pattern, open APIs) that can be generalized and extended to
more complex systems, as long as there are accessible data sources to get real input
parameters for dynamic KPIs to be measured on real smart cities. Indeed, PubSub is
known to offer better scalability w.r.t. traditional client-server, by means of parallel
operation and message caching. Of course, the message-oriented middleware might add
a network latency delay. However, keeping the data retrieving and update of models as
manual tasks is impractical, considering the huge number of identified KPIs.

5 Related Work, Conclusion, and Future Work

Several SCs architectures can be found in the literature [14]. Matar et al. [15] present
an approach for designing smart city’s ecosystems, by means of a reference architec-
ture (RA), SmartCityRA, by exploiting model-driven architecture techniques. Voronin
et al. [16], propose an RA for designing a smart city context through the use of Big
Data. However, both approaches [15,16] do not support SCs evaluation.

The currently available frameworks for the KPIs calculation are still far from
being automated. Manual and online spreadsheets are not appropriate for dynamic data
retrieving. Among Web-based framework, Bosch et al. [7] select a set of KPIs to assess
SCs to measure their smartness and to visualize them with graphical representations.
However, the tool does neither envisage automatic calculation nor retrieving of data.
Moustaka et al. [17] present a framework to support maturity benchmarking of SCs.
However, it lacks continuous monitoring and automatic injection of data.

Run-time monitoring (RM) and models@runtime [18] have been widely exploited
in model-based systems and applications. Hili et al. [19] propose an architecture sup-
porting RM of executions of models of real-time and embedded systems. In their case
studies they connect the code generated from a model with a range of external tools
for different purposes (e.g., run-time verification). While they apply RM on model arti-
facts, we monitor heterogeneous third-party data sources, to dynamically update model
artifacts (i.e., the SC Model). Other approaches exploiting RM are proposed in the IoT
context, to support the management of its inherent heterogeneity, as done, for instance,
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in Chen et al. [20]. Differently, we aim to apply continuous monitoring both to IoT
architectures and to other data sources (e.g., Open services), with diverse architectures
and access protocols. This further increases heterogeneity beyond that inherent in IoT
architectures. In service-based systems, Johng et al. [2] propose a continuous service
monitoring framework to control changes in services by detecting SLA’s violations, to
facilitate collaborations among DevOps software teams. Differently, our framework is
not just a notification system but integrates a complete SC assessment.

Nevertheless, despite the availability of numerous smart cities services, and the wide
use of models@runtime and service-based technologies, to the best of our knowledge,
it does not exist a service-oriented framework for the continuous evaluation of SCs.

In conclusion, we presented a service-oriented architecture for a model-based KPIs
assessment framework supporting decision-making processes in SCs, and providing a
robust and fully automated platform. As future work, we aim to integrate time-series
databases [21] enabling temporal models to support the storing of historical values.
This way, we may store the history of the input parameters and time-based analysis
of the KPIs result, which can be used to visualize the evolution of the smart city and
its performance over time. Lastly, we aim to deploy the framework online as a Web
application. This way, the framework would become itself a smart city service provider.
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Abstract. In this paper, we propose a novel approach to recommend ser-
vices for a given mashup development task. We model service data as a het-
erogeneous service graph which includes multiple types of nodes and edges
to capture rich information extracted from the data. We extend the design
of the graph convolutional networks to learn optimal graph embeddings
based on a novel structure alignment framework leveraging the latent het-
erogeneous graph structural features. We then design a ranking mecha-
nism to recommend those services so that their links to the mashup can
best fit the latent graph structural features. Both the embedding learn-
ing and ranking process make the use of meta-paths to incorporate prior
domain knowledge into recommendation. A comprehensive experimental
study is conducted on a real-world data set and the result indicates that
our approach can significantly outperform the existing solutions.

Keywords: Graph convolutional neural networks · Mashup
recommendation · Service recommendation

1 Introduction

As software reuse has been one of the major driving forces for the develop-
ment of web services, it is important to efficiently discover relevant services
for a given software development task, i.e., developing service mashup. How-
ever, identifying the most suitable APIs from a large pool of candidates for
mashup construction poses some fundamental challenges. For example, a popu-
lar web service repository, ProgrammableWeb1, lists 24, 147 public services, but
the support for service search is either keyword-based or category/tag-based,
which is limited. Finding the relevant services from such a large service pool can
be quite time consuming and error prone. Inspired by the tremendous success of
current recommender systems, such as Netflix movie recommendation and Ama-
zon product recommendation, mashup recommendation, which is to recommend
services for a given mashup development task (usually described in free-form
text), has received significant attention in service computing communities [2,7].
Mashup recommendation has a great potential of promoting the usage of web

1 https://www.programmableweb.com.
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services as it significantly simplifies the work of finding relevant services for a
given development task and improves the discovery result.

The majority of mashup recommendation solutions rely on textual descrip-
tions of services and mashups [4,6]. Some of them also consider the usage of
services by mashups and use either collaborative filtering or generative pro-
cess to make recommendation [1,3,7,13]. Some recent approaches take a step
on capturing and utilizing links between services, i.e., forming service graphs
where services are connected through their features, e.g., categories or mashups.
Such relational information is then incorporated into the recommendation pro-
cess [9,11]. They also leverage the current deep learning techniques to learn
the representations of mashups, services, and their relationships for recommen-
dation. However, most of the modeled service graphs are either homogeneous
where all the nodes have the same type, i.e., services, or only the direct relations
between them, i.e., linked by the same mashup, are leveraged. This could cause
the ignorance of some important but latent knowledge, such as indirect inter-
service relationship derived from connectivity between different types of entities
(such as mashup, providers, tags, categories) and interesting structural patterns
that can be leveraged into the recommendation.

In this paper, we propose to model a heterogeneous service graph among ser-
vices and their features, similar to Heterogeneous Information Networks (HIN)
[8], to capture more latent knowledge that can contribute to the recommenda-
tion results. Such a graph consists of different types of nodes, such as services,
mashups, tags, and categories, and multiple types of edges, such as those between
services and their tags, those between services and mashups (if a service is used
in a mashup), and so on. Through this design, the graph can not only capture
the information directly obtained from the data (e.g., node and edge features)
and the connectivity between nodes, but also the latent information derived from
meta-paths [8], which has been shown to be effective in representation learning
of graph data. With such a graph, the recommendation of APIs for mashups
is performed by maximizing the alignment of the recommendation result to the
inherent graph structural features learned from the graph. The major technical
contributions of this paper are summarized as follows.

1. We propose a deep graph learning model based on graph convolutions on a
heterogeneous graph to learn embeddings that encode graph structural latent
features for mashup recommendation.

2. We propose a ranking method to evaluate how well a recommendation result
can preserve the current graph structural features based on the embeddings
of services and mashups.

3. We conduct a comprehensive experimental study using ProgrammableWeb
data, a real world dataset, to evaluate the performance of the proposed app-
roach.

The rest of this paper is structured as follows. Section 2 introduces related
work. Section 3 presents the methodology of our proposed model. Section 4
presents the experimental settings, evaluation process and performance com-
parison in our experiments. Section 5 presents our conclusions.
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2 Related Work

The early efforts recommend services based on the similarities between candi-
date services and the mashup being developed. [4] uses Relational Topic Model
(RTM) to derive latent links between a service and a mashup based on the
textual descriptions and tags. [10] proposes a category-based service recom-
mendation approach to ensure the diversity of recommendation results. Services
are clustered into categories first based on their functionality and the recom-
mendation is distributed to the matching service categories to select service in
each category. LDA is used to model service functional features and compute
the relevance of a service to the mashup. [6] builds a hierarchical structure of
topics that defines semantics to compute the matching score between a service
and a natural language query. Some later efforts incorporate the usage history
of services by mashup into the recommendation process. [13] uses Probabilistic
Matrix Factorization (PMF) to recommend services based on both service pro-
files and service co-invocation history. The limitations of these work lie in the
fact that they don’t go beyond textual descriptions and usage history of services,
failing to leverage more information from service data, including those related
to relationships other than being invoked by the same mashups.

Some recent works leverage the current graph mining and deep learning
technique into service recommendation. [11] generates a service network con-
sisting of services and their attributes, where edges are only between services
if they are used by a same mashup. It proposed a deep representation learning
model to recommend services based on the GAT2VEC where the loss function
is linked to both network connectivity and service features. [14] modeled mobile
app interactions as a knowledge graph consisting of entity-relation-entity triplets
with multiple relations. The recommendation is performed through learning the
embeddings of nodes and predicting the matching scores by the final representa-
tions of users and apps. Our approach is different as the proposed heterogeneous
service graph is more comprehensive and challenging to process compared to the
homogeneous graphs.

3 Deep Graph Model Based Mashup Recommendation

Figure 1 shows the overall process of mashup recommendation. It takes a new
mashup description as the input from user and feeds that to the structural
alignment neural network. The model takes a heterogeneous service graph, gen-
erated from the data collected from public service repository, such as Pro-
grammableWeb, as well as candidate meta-paths, to train the optimal node
embeddings for services, mashups, and their features through graph convolu-
tional layers. A multivariate Gaussian is used to initialize the first layer for the
embeddings. The embeddings are used to compute the scores of a service for
the given mashup description and rank them, where the model uses a learned
transformation for each meta-path to generate the intermediate scores. A final
score for each service is then generated considering all the selected meta-paths
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Fig. 1. Structure alignment service recommendation framework

and all pairs of nodes from the corresponding paths. The ranked list of services
will be returned to the user as the output of this recommendation process.

Heterogeneous Service Graph Generation. The first step is to extract fea-
tures related to services and mashups and transform them to a heterogeneous
service graph. The key difference between heterogeneous graphs and homoge-
neous graphs is that the former has multiple types of nodes and edges while in
the latter, nodes are in the same type and so do the edges. In a heterogeneous
service graph, nodes can be services, mashups, categories, terms, and tags.

To generate the service graph, we map each service to a service node, each
mashup to a mashup node, each tag to a tag node, and each category to a cat-
egory node. For term nodes, we use the standard Natural Language Processing
(NLP) tools, such as tokenization, stop-word removal, PoS tagging, and lemmati-
zation to process textual descriptions of services and mashups. Edges are created
between different nodes if there is such a connection is observed in the data.

Structural Alignment Neural Network. To go beyond the current mashup
recommendation solutions that rely on service-mashup relationships, the pro-
posed structural alignment neural network allows to incorporate more types of
relationships into the learning by taking the heterogeneous service network as
part of the input. It also allows domain knowledge to be included to improve
the recommendation result, where domain knowledge is encoded as meta-paths.
A meta-path p a type of paths that follow a specified sequence of node types.
For example, a meta-path p = TM → M → S refers to those paths that start
with a term node, followed by a mashup node, and ends with a service node. It
can link a given term to the APIs that compose mashups with corresponding
description terms in TM . For another example, the meta-path p = S → M → S
links those services that are both used in the same Mashup M . Therefore, we can
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encode the input from domain experts on the meaningful links between nodes
as meta-paths.

As shown in Fig. 1, the embeddings of services, mashups, and features are
learned through a set of relationship-aware graph convolution layers, which
extends the design of traditional Graph Convolution Networks (GCN) in two
aspects: the support of heterogeneous graphs and the incorporation of meta-
paths. More specifically, let Hk ∈ R

N×d be the feature representation of the
k-th layer in a GCN. The forward propagation of a deep network layer in the
proposed network is defined as:

Hk+1 = σ

[
1

|P |
∑
r∈P

(
D̃− 1

2 ÃD̃− 1
2 HkW k

r

)]
(1)

where P is the set of all meta-paths, Ã = A + I ∈ R
N×N , A is the adjacency

matrix of the graph G, r ∈ P is a meta-path describing a relationship, D̃ is
the degree matrix of Ã such that Dii =

∑
i Ãij ,W k

r is a relationship-specific
learnable weight matrix, and σ is an activation function, e.g. Rectified Linear
Unit (ReLU). The meta-paths in P determine the types of relations in the service
network that will be evaluated for the propagation. We use |P | (the cardinality
of P ) to normalize vector values and avoid numeric representation overflow. The
output of this model contains the embeddings for all entities including services,
mashups, and features, which will be used later to compute service scores.

The loss function for neural network training can be defined as the mean
squared error of the difference between the predicted connectivity ŷ and the
actual connectivity y, for all nodes.

J =
1

|V |
∑
vl∈V

(y − ŷ)2 (2)

V is the set of all vertices. |V | is the vertex set cardinality. y is the normalized
node degree calculated from the training data, i.e., the in-degree of a node divided
by M where M is a hyper-parameter used to set the maximum allowed vertex
degree. ŷ is the predicted normalized node degree.

Once the embeddings are learned through the network, the relevance scores
for services for a given mashup description is computed as the bi-linear transfor-
mations Wr from the learned node embeddings for each meta-path r and then
be aggregated, as shown in Formula 3.

score(vl) =
∑
r

1
|Vr|

∑
l,m∈Vr

1Q · h(vl)T · Wr · h(vm) (3)

where 1Q is the indicator function for the set of vertices that is part of the query
set Q, h ∈ R

d is a vertex embedding generated by our model, Wr ∈ R
d×d is

the relationship-specific learned weight matrix, and vl, vm are vertices from Vr

which are the vertices from meta-path r. Since the scores are correlated with the
connectivity, a higher score means that recommending the service to the given
mashup will yield better alignment with the original graph structure.
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Notice that for each relationship described by the meta-path r, we go over all
possible pairs of vertices from the paths that follows the meta-path definition. In
another word, each path from the meta-path r is broken down into a sequence
of vertex pairs. We introduce a simple normalization factor for the meta-path-
specific sub-score, 1

|Vr| , to prevent the score from increasing with the number
of available paths. As meta-paths deliver the domain knowledge on meaningful
relations among services, using meta-paths can guide the selection of potentially
good paths, which are used as evidence when learning matrices Wr to maximize
the objective that is correlated to the service recommendation.

4 An Experimental Study

We conducted a set of experiments to evaluate the performance of the proposed
mashup recommendation approach, using the data collected from one of the
largest public web service repositories, ProgrammableWeb [7]. We only chose
those APIs that were used in at least one mashup, which results in 1,350 APIs.
Based on a thorough analysis, we selected three meta-paths in the experiments:
F-S (Feature → API), F-M-S (Feature → Mashup → API), and F-S-M-S (Fea-
ture → API → Mashup → API). The experiments were carried out on a com-
puter with 8-core Intel i7 3.60 GHz CPU, 32 GBs of RAM and Nvidia GeForce
GTX 2070 Super GPU, running Ubuntu Linux 20.4 LTS. We compared the per-
formance to the following recent works and used standard metrics, including
precision, recall, and F1 score.

– PASREC [5], a collaborative filtering model that uses multiple relationships
mined from a service heterogeneous information network;

– HDP-PMF [7], a probabilistic matrix factorization approach that uses HDP
to discover latent representations of services;

– HINGAN [12], a deep generative adversarial network model that models ser-
vice relations using meta-paths in a heterogeneous graph;

– DSASR (our proposed model), a deep structural alignment learning model
that models relationships as meta-paths in a heterogeneous service graph.

Evaluation Metrics. We evaluated our recommendation approach using a
training-test split, a typical setting for deep learning models, where the testing
split consisted of all mashups with at least 4 services in their composition, with a
train/test ratio of 90–10. The following evaluation metrics were used to measure
the recommendation performance: Precision@K, Recall@K, and F1-measure@K:

Precision@K =
1

|V |
∑
l∈V

|recommended(l) ∩ actual(l)|
|recommended(l)| (4)

Recall@K =
1

|V |
∑
l∈V

|recommended(l) ∩ actual(l)|
|actual(l)| (5)

F1@K = 2
Precision@K · Recall@K

Precision@K + Recall@K
(6)
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(a) Precision@K (b) Recall@K

(c) F-Score@K

Fig. 2. Performance comparison

where V is the set of mashups in the testing split, |V | is the the cardinality of
V , recommended(l) is the recommended service list and actual(l) is the actual
ground-truth service list.

Performance Comparison. Figures 2(a)–(c) present the results of our exper-
iments, respectively for the Precision@K, Recall@K and F-Score@K. With the
Precision@K metric, the performance of all the approaches decreases with K as
the actual number of services in a mashup is typically less than 10. Our app-
roach, DSASR, is about 16% better than the second best one, which is HDP-
PMF, when K is 10. It is also consistently the best with the various values of
K. The two other deep learning based techniques, HINGAN and PaSRec, per-
form the worst. Regarding Recall@K metric, the deep learning based technique
superiority became clear when K is small and DSASR performed significantly
better than PaSRec and HINGAN. As for F-score@K, where both precision and
recall are considered, the performance of all the approaches change in a steady
and similar way, which shows this metrics is more stable and reliable than the
other two. Our DSASR model was still the best performing one, outperforming
other approaches by a large margin.

5 Conclusion

We propose a deep graph learning architecture that is trained to learn the struc-
ture of a graph as part of its representation learning objective. We show empir-
ical results in a real-world dataset that suggests that our approach are at least
as good as the state-of-the-art recommendation models with very significant
improvement of 91% improvement of F-1@10, making the task closer for adop-
tion in real-world setting. We model the API data as a heterogeneous graph and
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leverage meta-paths to extract rich and human-interpretable relationships while
allowing multiple relationships to be incorporated seamlessly. By ranking the
services that better align with the original graph structure, we are able to out-
perform current state-of-the art models. For future work, we plan to incorporate
other graph neighborhood normalization techniques into the objective function
to further enhance performance.
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Abstract. We propose a novel software service recommendation model
to help users find their suitable repositories in GitHub. Our model first
designs a novel context-induced repository graph embedding method to
leverage rich contextual information of repositories to alleviate the diffi-
culties caused by the data sparsity issue. It then leverages sequence infor-
mation of user-repository interactions for the first time in the software
service recommendation field. Specifically, a deep-learning based sequen-
tial recommendation technique is adopted to capture the dynamics of
user preferences. Comprehensive experiments have been conducted on a
large dataset collected from GitHub against a list of existing methods.
The results illustrate the superiority of our method in various aspects.

Keywords: Recommender system · Service recommendation ·
Sequential recommendation · Software services · GitHub repository

1 Introduction

With the development of emerging computing areas such as cloud computing, big
data, and Internet of Things, the Web-based services available on the Internet
have increased rapidly in both quantity and type. Following [1], software service
is specifically defined as services which contain code under open-source licenses
for others to use and modify freely, such as open-source projects or repositories
on social coding sites (e.g., GitHub, Bitbucket, SourceForge). Users can build
their Web services, applications, or even scientific experiment systems quickly
by exploiting functional code modules in massive software services [9].

As a representative software service hosting platform, GitHub is widely
known to developers from all over the world, who find it easier and quicker to
build up their complex applications from particular repositories. As of January
2020, GitHub reports having over 40 million users and more than 100 million
repositories [3], making it the largest host of software services in the world. The
large number of repositories has undoubtedly increased the difficulty of selecting
the most suitable ones to fulfill users’ application development. Therefore, soft-
ware service recommendation has become of practical importance. Sun et al. [10]
c© Springer Nature Switzerland AG 2021
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proposed an approach to recommend repositories considering both user behav-
iors and repository features. Shao et al. [9] designed a novel cross-platform rec-
ommender system, paper2repo. It recommended relevant repositories on GitHub
that match a given paper, by integrating text encoding and constrained graph
convolutional networks. LRMF [5] is a pairwise regularization framework for
GitHub open source repository recommendation based on matrix factorization,
focusing mainly on exploiting user language preference. PNCF [1] is the state-
of-the-art repository recommender model, which combined deep learning with
collaborative filtering to enhance recommendation effectiveness, and also focused
on language preference.

The above methods proposed effective strategies to make software service rec-
ommendation. However, they suffer from the following two common issues. First,
the well-known data sparsity problem is not addressed. Although the number of
users and repositories on GitHub can be very large, the interactions between
users and repositories are highly sparse, i.e., most users typically interact with
a few repositories. Second, user preferences may exhibit dynamic characteris-
tics. For instance, users’ preferences may drift over time due to the continuous
evolution of software technology and the influence of other users.

To address the two aforementioned issues, a novel recommendation model
named CSSR (Context-aware Sequential Software Service Recommendation) is
proposed in this paper with two unique traits. Firstly, we leverage more compre-
hensive contextual information of repositories (i.e., topics, general description,
README ) compared with the state-of-the-art recommendation methods [1,5]. It
can model the similarity between repositories more precisely to make better rec-
ommendation when the interaction data is sparse. Secondly, users on GitHub
interact with repositories in a chronological order. The temporal information of
user interaction behaviors can help to model users’ dynamic interests. For exam-
ple, it is reasonable to assume that a user is most likely to access the repositories
which are relevant to the repositories the user has interacted with recently. There-
fore, we adopt sequential user-repository interactions to capture the dynamics of
user preferences. More specifically, CSSR first explores contextual information to
construct a repository graph upon which the latent vector of each repository can
be derived through the graph embedding. Then, the repository sequences of users
are fed into a GRU model, where the latent vector of each repository is applied
to identify the appropriate repositories and recommend them to users. We have
conducted comprehensive experiments to compare CSSR with the state-of-the-
art methods on a large real-world dataset crawled from GitHub1. The exper-
imental results show that CSSR achieves at least 16.16%, 22.05% and 11.35%
improvements over the best baseline in terms of Hit Rate, Mean Reciprocal Rank
and Normalized Discounted Cumulative Gain respectively, and the performance
boost is more significant in the situation of high level of data sparsity.

1 The dataset and source code are released on https://github.com/JiaYuan6/CSSR.

https://github.com/JiaYuan6/CSSR
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2 Problem Formulation

Each user has interacted with a sequence of repositories ordered by time on
GitHub. The repositories may be created by a user directly or forked from other
users. Each repository has contextual information.

Let U = {u1, u2, ..., u|U|} and R = {r1, r2, ..., r|R|} be sets of users and repos-
itories, with |U| and |R| being the sizes, respectively. Each user u can be asso-
ciated with a sequence of repositories Ru = {ru1 , ru2 , ..., ru|Ru|} by sorting inter-
action records in a chronological order, where rut represents the repository that
user u interacted with at time step t. Ru

t1:t2(t1 < t2) refers to the subsequence
from interaction rut1 to rut2 . We learn how to recommend the next repository
for each user based on the recent repository subsequence of length L the user
interacted with, where L is a hyperparameter. For each user u at time step t, we
will have a training data record where the features are Ru

t−L:t−1 and the label is
rut . For all users from t = 1 to tcur − 1 (tcur denotes the current time step and
tcur − 1 is greater than L), we will obtain a training data set. Based on it, the
research problem investigated in this study is to (1) represent user preferences
and repositories, and (2) develop a prediction model to identify and recommend
the preferable repositories to users. The objective is to optimize the performance
by addressing the data sparsity issue and the dynamics of user preferences along
with time.

3 Methodology

3.1 Context-Induced Repository Graph Construction

First, a repository graph is constructed where the text-based contextual infor-
mation is exploited. On GitHub, developers usually tag their repositories with
topics using words or phrases. The topics are suggested by a topic extraction
framework, called repo-topix, which was developed by GitHub considering many
engineering problems. We utilize the topics tagged by users with the sugges-
tion of repo-topix directly rather than extracting the similar information using
topic modeling like in existing studies. However, some repositories may not be
tagged with such information explicitly or tagged incompletely. We then, for each
repository, exploit its general description and README to derive and complete
its topics by techniques such as keyword matching against the explicitly-tagged
topics. In addition, the programming language of a repository can also be used
as a special kind of topic-like information. This is because users are more likely
to find source codes with languages they have used before.

Let T = {t1, t2, ..., t|T |} be the set of topics of repositories R =
{r1, r2, ..., r|R|}. Each repository r has a repository topic vector RT =
{rt1, rt2, ..., rt|T |}, where rtk = 1 if r has tk (either directly tagged by devel-
opers or derived from description, README ); otherwise rtk = 0.

Given any two repositories rp and rq, RT p = {rtp·1, rtp·2, ..., rtp·|T |} and
RT q = {rtq·1, rtq·2, ..., rtq·|T |} are their corresponding repository topic vectors.
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The similarity between rp and rq is measured using cosine distance between RT p

and RT q as follows:

sp,q =
RT p · RT q

‖RT p‖‖RT q‖
=

∑|T |
i=1 rtp·i × rtq·i

√∑|T |
i=1 rt2p·i

√∑|T |
i=1 rt2q·i

(1)

The similarity ranges from 0 (meaning that two repositories don’t have any
same topic) to 1 (meaning two repositories have the exactly same set of topics).
We further define a hyperparameter in our model, i.e., the edge keeping threshold
ε ∈ (0, 1), which is used to help generate an effectual and simple graph. With
the threshold, the similarity between rp and rq is refined as follows:

sp,q =

⎧
⎨

⎩

0, p = q
sp,q, (p �= q) ∧ (sp,q ≥ ε)
0, (p �= q) ∧ (sp,q < ε)

(2)

After calculating the similarity of any two repositories, we can get a similarity
matrix S = {s1, s2, ..., s|R|} ∈ R

|R|×|R|, where sr = {sr,1, sr,2, ..., sr,|R|}. We
represent each repository r as a vertex vr. So, there are {v1, v2, · · · , v|R|} vertices;
and there is a link between two vertices vp and vq only if similarity sp,q is greater
than 0. By this way, we obtain a homogeneous graph where the contextual
similarity between repositories has been captured. The graph is called context-
induced repository graph.

3.2 Context-Induced Repository Graph Embedding

For nodes in a graph, graph embedding automates the process of extracting low-
dimensional node feature vectors. It has been proved very useful in many down-
stream tasks, such as classification, link prediction and recommendation. Vari-
ous graph embedding models have been proposed. For embedding the context-
induced repository graph G, we adopt Structural Deep Network Embedding
model (SDNE) [11], which is a representative embedding model for homoge-
neous graphs.

3.3 Sequential Repository Recommendation

The framework of our proposed model (CSSR) highlights the sequential repos-
itory recommendation component as illustrated in Fig. 1. Recall, in a train-
ing data record, the features are Ru

t−L:t−1 and the label is rut . More specifi-
cally, Ru

t−L:t−1 includes L repositories, i.e., rut−L, · · · , rut−1. Correspondingly,
the sequential recommendation component consists of L GRU (Gated Recurrent
Unit) [2] blocks as shown in Fig. 1. The input of GRU block t − i (1 ≤ i ≤ L) is
a nonlinear transformed vector ŕut−i of the combined feature vector of repository
rut−i. The repository combined feature vector is derived from graph embeddings
as discussed in Sect. 3.2. It is coupled with a list of other repository features
relevant to repository recommendation (e.g., the number of watches, stars and



Context-Aware Sequential Software Service Recommendation 695

forks). The output of the last GRU block is the inferred repository ŷu(t)
which

will be compared against the ground truth (i.e., rut , the label of the training
record), and the GRU parameters will be learned.
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Fig. 1. The framework of the proposed CSSR model.

4 Experiments and Evaluation

4.1 Dataset Description

We evaluate the proposed method on a large dataset crawled from GitHub.
We use GitHub REST API to create calls to obtain the data in JSON format
and store them in MongoDB. A user is considered to prefer a repository if the
user forked it. This means the user produced a personal copy of someone else’s
repository so that she can contribute to it or use it as the starting point for
her own. All the repositories that a user created or forked are listed in her Web
page in a chronological order. We randomly select users who forked more than
5 repositories. For each selected user, we crawl the information of all her forked
repositories (e.g. topics, programming languages, README ). Such information is
used to construct context-induced repository graph. We eliminate repositories
forked by fewer than 5 users. There are 2,616 users, 3,126 repositories, and 21,924
interactions in the dataset after preprocessing. The data sparsity is 0.268%.

4.2 Baseline Methods

Next, we compare CSSR against the following baseline methods.
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– Pop simply recommends top ranked repositories based on popularity in train-
ing data.

– Item-KNN [8] recommends a user the repositories similar to the previously
forked repositories by the user based on cosine similarity.

– BPR [7] is a classic method for non-sequential recommendation, which opti-
mizes a Matrix Factorization model using a pairwise ranking loss.

– FFM [6] is the representative recommendation model based on factorization
machine. It groups features into fields, and learns the interactions between
users and repositories to complete the user-repository implicit rating matrix.

– GRU4Rec [4] is a representative sequential recommendation model, which
also utilizes GRU to model user action sequences. We feed randomly-
generated repository embeddings into GRU blocks, and obtain the best per-
formance by using Xavier initializer against other random number generators.

– PNCF [1] is the state-of-the-art GitHub repository recommendation method
by building a preference-based neural collaborative filtering recommender
model. We feed the model not only with the language features in the original
paper but also all our utilized topic features to make it fair.

4.3 Experimental Settings

For constructing the context-induced repository graph, we conduct stemming
and lemmatization on all topics tagged by users with the help of repo-topix,
and extract 4,015 topics. The edge keeping threshold ε is set to 0.3, which can
generate a reasonable number of edges. The final constructed graph contains
3,126 repositories with 168,039 edges between them.

The hyperparameters are learned from the validation dataset and set as fol-
lows. The size of initial repository embedding is 140. The size of user embedding
is 64. L = 4 means that the recent 4 interacted repositories are considered to infer
recommendations. The learning rate is 0.009. The maximum number of epoch
is 100 during the model training. All the experimental results of our model are
achieved by using the above hyperparameter configuration settings if no specific
situations are provided. The optimal hyperparameters of each baseline method
are set based on the experiment reports of the relevant research papers. We
implement our CSSR model in Tensorflow.

4.4 Performance Comparison

The experimental results of of CSSR and all the baselines are reported in Table 1.
We have the following observations. (1) In most cases, the state-of-the-art base-
line PNCF achieves the best performance than the other baseline methods. (2)
The proposed CSSR consistently achieves better performance on all the metrics
at different N values compared with all the baselines by at least 10%. Specifically,
it improves the performance slightly more on the metric MRR than on HR and
NDCG. It achieves slightly more performance improvement when N = 10 than
other N values. (3) All the baselines except GRU4Rec are sequential-information
free models. However, GRU4Rec doesn’t outperform the other baselines by just
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using randomly-initialized repository embeddings. Compared with GRU4Rec,
the significant improvement of CSSR validates the importance of the context-
induced repository graph embedding component in our model.

4.5 Impact of Data Sparsity

We compare CSSR and all the baselines at different levels of data sparsity. The
aim is to evaluate the solution applied in CSSR for mitigating the issue of sparse
data. Since each user has at least 3 repositories and a repository has at least one
user, we delete at most 14,081 interactions in our dataset to simulate different

Table 1. The performance comparison (The method with the best performance is
starred and the method with the second-best performance is boldfaced; columns
“KNN” and “GRU” denote the baseline “Item-KNN” and “GRU4Rec” respectively;
column “Improv.” denotes the improvement ratio of CSSR relative to the best base-
line).

top-N Metrics Pop KNN BPR FFM GRU PNCF CSSR Improv.

5 HR (%) 1.566 2.467 3.103 2.709 3.086 3.231 3.769* 16.65%

MRR (%) 0.662 1.421 1.646 1.428 1.288 1.705 2.085* 22.29%

NDCG (%) 0.886 1.923 2.003 1.746 1.712 2.079 2.497* 20.11%

10 HR (%) 2.428 3.955 4.713 3.926 4.414 4.962 6.077* 22.47%

MRR (%) 0.762 1.628 1.857 1.586 1.448 1.926 2.378* 23.47%

NDCG (%) 1.151 2.599 2.519 2.136 2.099 2.629 3.206* 21.95%

15 HR (%) 4.855 5.090 6.206 5.300 5.781 6.115 7.308* 17.76%

MRR (%) 0.962 1.723 1.975 1.694 1.576 2.018 2.472* 22.50%

NDCG (%) 1.803 3.064 2.915 2.499 2.501 2.935 3.523* 14.98%

20 HR (%) 5.834 5.991 7.384 6.203 6.680 7.269 8.577* 16.16%

MRR (%) 1.016 1.774 2.042 1.745 1.620 2.082 2.541* 22.05%

NDCG (%) 2.032 3.444 3.194 2.712 2.685 3.206 3.835* 11.35%

Table 2. The performance comparison at different sparsity levels.

Ratio (Sparsity) Metrics Pop KNN BPR FFM GRU PNCF CSSR Improv.

ALL (0.096%) HR (%) 2.346 1.006 2.194 1.735 1.904 2.250 3.369* 43.61%

MRR (%) 0.741 0.402 0.748 0.927 0.711 0.772 1.457* 57.17%

NDCG (%) 1.103 0.543 1.085 1.116 0.989 1.119 1.881* 68.09%

Half (0.182%) HR (%) 2.747 2.709 3.403 2.624 3.633 3.640 4.648* 27.69%

MRR (%) 0.924 0.872 1.434 1.067 1.323 1.511 1.922* 27.20%

NDCG (%) 1.350 1.538 1.893 1.429 1.853 2.004 2.487* 24.10%

No (0.268%) HR (%) 2.428 3.955 4.713 3.926 4.414 4.962 6.077* 22.47%

MRR (%) 0.762 1.628 1.857 1.586 1.448 1.926 2.378* 23.47%

NDCG (%) 1.151 2.599 2.519 2.136 2.099 2.629 3.206* 21.95%
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settings of sparsity. Table 2 shows the performance of all the methods at three
levels of sparsity, i.e., deleting all/half of/none of the 14081 interactions respec-
tively. We set N = 10, and adopt all repositories in the training set that a user
has interacted with to train the model in the first two sparsity levels, i.e., the
repository sequence length L is not fixed. From Table 2, we have the following
observations. (1) The performance of all the methods gets worse and worse when
the data sparsity changes from 0.268% to 0.182% and then to 0.096%. (2) Com-
pared with all the baselines except Pop, the impact of data sparsity on CSSR
is much weaker. CSSR can have much more stable performance than the other
methods except Pop, and achieve more significant improvements against the best
baseline in the sparser data set. (3) Although the impact of data sparsity on Pop
is weaker than CSSR, the performance of Pop is very poor among baselines. In
short, our model achieves the best performance and demonstrates robustness in
the situation of data sparsity.

5 Conclusion

This paper presented a context-aware sequential software service recommenda-
tion model—CSSR. It can recommend repositories on GitHub matching users’
interests. CSSR is a joint model that incorporates a graph embedding technique
into a GRU formulation to generate latent vectors of users and repositories.
Specifically, graph embedding technique is leveraged to exploit rich repository
contextual information to alleviate the data sparsity problem. The context-aware
latent vectors of repositories are then fed into a GRU model, which captures the
dynamics of user preference and eventually recommend repositories to users.
The results of extensive experiments show that our method can significantly
outperform the existing state-of-the-art repository recommender models in var-
ious aspects.

Acknowledgement. This work is partially supported by Australian Research Council
Linkage Project (No.LP180100750) and Discovery Project (No.DP210100743).

References

1. Chen, L., Zheng, A., Feng, Y., Xie, F., Zheng, Z.: Software service recommendation
base on collaborative filtering neural network model. In: Pahl, C., Vukovic, M., Yin,
J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 388–403. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03596-9 28

2. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties
of neural machine translation: encoder-decoder approaches. In: Proceedings of
SSST@EMNLP, pp. 103–111. Association for Computational Linguistics (2014)

3. GitHub: The state of the octoverse (2020). https://octoverse.github.com/
4. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-

tions with recurrent neural networks. In: Proceedings of ICLR, pp. 1–10 (2016)
5. Jiang, J., Cheng, P., Wang, W.: Open source repository recommendation in social

coding. In: Proceedings of SIGIR, pp. 1173–1176. ACM (2017)

https://doi.org/10.1007/978-3-030-03596-9_28
https://octoverse.github.com/


Context-Aware Sequential Software Service Recommendation 699

6. Juan, Y., Zhuang, Y., Chin, W., Lin, C.: Field-aware factorization machines for
CTR prediction. In: Proceedings of RecSys, pp. 43–50. ACM (2016)

7. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of UAI, pp. 452–461.
AUAI Press (2009)

8. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative fil-
tering recommendation algorithms. In: Proceedings of WWW, pp. 285–295. ACM
(2001)

9. Shao, H., et al.: paper2repo: GitHub repository recommendation for academic
papers. In: Proceedings of WWW, pp. 629–639. ACM/IW3C2 (2020)

10. Sun, X., Xu, W., Xia, X., Chen, X., Li, B.: Personalized project recommendation
on GitHub. Sci. China Inf. Sci. 61(5), 1–14 (2018)

11. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of KDD, pp. 1225–1234. ACM (2016)



LogLAB: Attention-Based Labeling of Log
Data Anomalies via Weak Supervision

Thorsten Wittkopp(B), Philipp Wiesner(B), Dominik Scheinert(B),
and Alexander Acker(B)

Technische Universität Berlin, DOS, TU-Berlin, Berlin, Germany
{t.wittkopp,wiesner,dominik.scheinert,alexander.acker}@tu-berlin.de

Abstract. With increasing scale and complexity of cloud operations,
automated detection of anomalies in monitoring data such as logs will be
an essential part of managing future IT infrastructures. However, many
methods based on artificial intelligence, such as supervised deep learning
models, require large amounts of labeled training data to perform well. In
practice, this data is rarely available because labeling log data is expen-
sive, time-consuming, and requires a deep understanding of the underlying
system. We present LogLAB, a novel modeling approach for automated
labeling of log messages without requiring manual work by experts. Our
method relies on estimated failure time windows provided by monitoring
systems to produce precise labeled datasets in retrospect. It is based on
the attention mechanism and uses a custom objective function for weak
supervision deep learning techniques that accounts for imbalanced data.
Our evaluation shows that LogLAB consistently outperforms nine bench-
mark approaches across three different datasets and maintains an F1-score
of more than 0.98 even at large failure time windows.

Keywords: Anomaly labeling · AIOps · Log analysis

1 Introduction

As more and more companies outsource their IT services to the cloud, the number
of servers and interconnected devices is continuously increasing. In the meantime,
modern abstraction layers are driving the creation of large multilayered systems
while adding technical complexity under the hood. This aggravates the operation
and maintenance of systems and services and, therefore, poses new challenges
for cloud operators. To maintain control over complexity, monitoring becomes
an integral part of cloud infrastructure operations. However, in today’s systems
the amount of monitoring data is often growing to an extent that cannot be
analyzed manually.

The area of artificial intelligence for IT operations (AIOps) is intended to
support cloud operators to ensure operational efficiency as well as dependability
and serviceability [5]. A core component of any AIOps system is the detection of
anomalies in monitoring data such as metrics, logs, or traces. Log data are one
c© Springer Nature Switzerland AG 2021
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of the most important resources for troubleshooting because they record events
during the execution of service applications. However, even though most types of
log messages come with a severity level, these do not necessarily reflect the status
of the overall system. Therefore, recent research utilizes deep learning models
to analyze log data and perform anomaly detection [2,16,29]. One of the main
obstacles in log anomaly detection is the lack of labeled log data [25]. Labeling
data is costly and time-consuming, as experts need to analyze every single log
message and investigate which messages reflect their corresponding errors. Since
supervised models that train on large volumes of labeled data show significant
performance in log anomaly detection [27,29], it is important to automate the
labeling process to gain a strong accelerator for log anomaly detection [19].

To address this problem, we propose LogLAB, an attention-based model for
binary labeling of anomalies in log data via weak supervision. It relies only on
rough estimates of when an error has occurred - information that can often be
derived from other monitoring systems [23]. Specifically, the contributions of this
paper are:

– A problem description for how to label anomalies in log data using monitoring
information and weak supervision including a method solving this.

– A custom objective function for weak supervision deep learning techniques
that takes class-imbalanced data into account.

– An extensive evaluation of ten different approaches solving the defined prob-
lem, including LogLAB and its implementation1.

The remainder of this paper is structured as follows. Section 2 surveys the
related work. Section 3 provided a problem description and explains our approach
LogLAB. Section 4 evaluates LogLAB in comparison to nine other approaches.
Section 5 concludes the paper.

2 Related Work

We discuss works for text classification, anomaly detection and PU learning.

Text-Based Classification. Many established methods are discussed in [10].
The PCA algorithm [9] is for instance often employed for dimensionality reduc-
tion right before the actual classification procedure. Random forests [7] are
another technique and a suitable tool due to their ensemble learning design.
Logistic regression [8] belongs to the classic statistical methods [4]. Other pub-
lications utilize the Rocchio algorithm that is compared against kNN in [22]. In
another work [21], the authors design a pipeline involving the Rocchio algorithm.

Log Anomaly Detection. The experience report for anomaly detection on
system logs [6] discusses additional methods. Invariant Miners [13] retrieve struc-
tured logs using log parsing, further group log messages according to log parame-
ter relationships, and mine invariants from the groups to perform actual anomaly

1 https://github.com/dos-group/LogLAB.

https://github.com/dos-group/LogLAB
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detection on logs. Decision Trees [18] are another solution often employed in clas-
sification problem scenarios. SVMs are evaluated in [14] for document classifica-
tion and anomaly detection. The authors of [20] propose a boosting-based system
and thus ensemble learning method that shows good performance. Deep Learn-
ing methods are also more and more used in the realm of log anomaly detection.
DeepLog [2] utilizes an LSTM and thus interprets a log as a sequences of tem-
plates to performs anomaly detection per log message. More recent works [26–28]
also make use of deep learning.

PU Learning. A problem setting also discussed in other works. For instance,
the authors in [12] utilize the EM algorithm together with naive Bayesian classi-
fication. A more conservative variant of this method is proposed in [3] where the
set of reliable negative instances is iteratively pruned using a binary classifier,
which ultimately leads to improved final prediction results due to the few but
high quality negative instances. An ensemble learning method for PU learning is
proposed in [15]. The authors motivate bagging SVM, i.e. the aggregation of mul-
tiple SVM classifiers in order to answer sources of instability often encountered
in PU learning situations.

3 Automated Log Labeling

3.1 Problem Description

Log messages can describe failures that occur during runtime, such as the crash
of a service. We refer to such log messages as ‘abnormal’. Modern monitoring
solutions raise alerts when a system runs into an abnormality or outages occur by
observing metrics, hardware component failures, workload deployment failures
and other failure scenarios [23]. Therefore, we assume that in an IT operation
center failure time windows of services and systems are roughly known. We use
this information in retrospect to identify and label abnormal log messages.

System logs

Approx. normal Approx. abnormalSystem error time Time window

Monitoring
instruction cache parity error corrected
Controller performing on R27-M1-L3-U18-C bit 3
detected and corrected on rank 0, bit 3

ciod: failed to read message prefix on control
ddr: activating bit steering: rank=0 symbol=0

ddr: excessive failures on 0xff
CE sym 25, at 0x04bfb9e0, mask 0x20

-δ Model

Prediction

time

+δ

Fig. 1. We use rough estimates for failure times provided by monitoring systems in
order to identify and label abnormal log messages via weak supervision. (Color figure
online)

Figure 1 provides an example for the described problem. It displays the log
of a system with one abnormal log event (colored in red). We utilize monitoring
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information to estimate time windows of the length 2 ∗ δ in which we suspect
abnormal log events. The model’s task is to identify the abnormal log messages
in the time window and classify all others as normal.

We describe the log labeling as a weak supervision learning problem with
inaccurate labels as defined by Zhou et al. [30]. Thereby, label inaccuracy stems
from the imprecision of the failure time windows. We assign inaccurate labels for
all log events, depending on whether they are in the failure time windows or not.
Further, we utilize PU learning [11,12] which is short for learning from positive
and unlabeled data. Thereby, the underlying log data is divided into two classes,
positive P and unlabeled U , where U consists of all log messages that occur in
the aforementioned failure time windows and P of the remaining log messages.

3.2 LogLAB

For the labeling of logs, we design a processing and modeling pipeline illustrated
in Fig. 2. The individual steps are as follows:

Log Line t t t

1. Tokenization

Self-
Attention

Anomaly
Score

3. Model 4. Output

Transformer
Encoder

2. Embedding

Assign
Label

5. Label

update

Fig. 2. High level log message labeling pipeline.

First, we convert the content ci of each log message li into a sequence of
tokens ti by splitting on the symbols .,:/ and whitespaces. Subsequently, we
clean the resulting sequence of tokens by replacing certain tokens with place-
holders. Thereby placeholder tokens for hexadecimal values ‘[HEX]’ and any
number greater or equal 10 ‘[NUM]’ are introduced. Finally, we prefix the
sequence of transformed tokens with a special token ‘[CLS]’ which serves as
a numerical summary of the whole log message. An exemplary log message:
time.c: Detected 3591.142 MHz is thus transformed into a sequence of tokens:
[‘[CLS]’, ‘time’, ‘c’, ‘Detected’, ‘[NUM]’, ‘[NUM]’, ‘MHz’].

Since these sequences can vary in length, we truncate them to a fixed size
and pad smaller sequences with ‘[PAD]’ tokens. For each token wj of the token
sequence ti, an embedding �ei(j) is obtained. The truncated sequences of embed-
dings �e′

i serves as the input for the model.
The model computes an output embedding, for each input sequence �e′

i, which
summarizes the log message by utilizing the embeddings of all tokens. This
output embedding is encoded in the embedding of the ‘[CLS]’ token which
is also modified during training. For this purpose, we utilize the transformer
architecture [1] with additional self-attention [24]. During the training process,
the model is supposed to learn the meanings of the log messages, thereby getting
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an intuition of what is normal and abnormal. Finally, this model outputs a vector
(embedding) for each input sequence �e′

i. We denote the output of the model as
zi = Φ(�e′

i;Θ) and use it throughout the remaining steps. Thereby the anomaly
score is calculated by the length of the output vector ‖zi‖. Anomaly scores close
to 0 represent normal log messages, whereby large vectors indicate an abnormal
log message. The computed anomaly score is used to assign a label ŷi to the log
message li, i.e. either normal or abnormal.

3.3 Objective Function

To label the log data, the model must be trained in a way that it is capable
to handle the problem of weak supervision with inaccurate labels. Thus, the
objective function must assign log anomaly scores to log messages that occur in
class P and U . Log messages that occur only in U are likely abnormal and must
therefore have higher anomaly scores. In addition, the loss function must be able
to handle large amounts of incorrectly labeled log messages, since the class U
can increase quickly for large δ. The objective function consist of two parts. The
first part minimize the errors of samples from class P, from which the calculated
anomaly scores should be close to 0. The second part of the objective must
minimize the errors of samples from class U , by pushing them away from 0. The

structure of the objective function is defined as 1
m

m
∑

i=1

((1− ỹi)∗a(zi)+(ỹi)∗b(zi),

where ỹi is the inaccurate label, zi the output vector and m the batch size. The
function ‘a()’ becomes 0 if the sample is from class U , while the second function
‘b()’ becomes 0 if the sample is from class P. For a we choose a(zi) = ‖zi‖2
and for b we choose b(zi) = q2

‖zi‖ to minimize the error. Thereby a calculates the
squared error of the length of the output for samples from class P. In contrast,
we increase the error for all small anomaly scores when the log message is of class
U . Thereby q is a numerator between 0 and 1 that represents the relation of the
number of samples in P and U . To ensure that q is representing the relation of P
and U and remains in the boundaries of 0 to 1, we model q as a limited function
f(x) = x

x+1 , with lim
x→∞ f(x) = 1, that is provided with the relation of P and U :

q = f( |P|
|U| ) =

|P|
|U|

(
|P|
|U|+1)

= |P|
|P|+|U| . Thus the total loss function can be expressed

as: 1
m

n
∑

i=1

(

(1 − ỹi) ∗ ‖zi‖2 + (ỹi) ∗ (
|P|

|P|+|U| )
2

‖zi‖
)

.

4 Evaluation

To obtain a significant and wide benchmark, we compare LogLAB to several
state of the art text-classification and anomaly detection approaches presented
in a recent text-classification survey [10] as well as in an established survey for
anomaly detection in system logs [6]. Namely, we choose PCA, Invariant Min-
ers, Deeplog, Decision Trees, Random Forests, SVMs, Logistic Regression, the
Rocchio algorithm, and boosting approaches as benchmark methods. Thereby
we measure the deviation from the ground truth yi and the calculated labels ŷi.
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4.1 Experimental Setup

We evaluate all methods on three labeled log datasets recorded at different large-
scale computer systems[17]. The BGL dataset contains 4 747 963 log messages
of which 7.3 % are abnormal and records a period of 214 days, with on average
0.25 log messages per second. We selected the first 5 M log messages from the
Thunderbird dataset of which 4.5 % are abnormal. They account for a period
of 9 days, with on average 6.4 log messages per second. Again, we selected the
first 5 M log messages from the Spirit dataset of which 15.3 % are abnormal.
They cover a period of 48 days, with on average 1.2 log messages per second.

We create our evaluation datasets with inaccurate labels by including all
abnormal log events as well as their surrounding events within a time window 2∗δ
in U ; all remaining log events are in P. Thereby we investigate the performance
at three different time windows: ±1000ms (2s), ±5000ms (10s) and ±15000ms
(30s). The amount of samples in U is changing for BGL: 0.39M , 0.44M and
0.47M , Thunderbird: 1.42M , 2.36M and 2.90M and Spirit: 1.00M , 2.33M and
3.26M regarding the respective time window δ.

Each sequence of tokens ti is truncated to have a length of 20 for Thunderbird,
16 for Spirit, and 12 for BGL. The dimensionality d of our embeddings is set to
128. For the training of our LogLAB model, we use a hidden dimensionality of
256, a batch size of 1024, a total of 8 epochs, and a dropout rate of 10%. We use
the Adam optimizer with a learning rate of 10−4 and a weight decay of 5 · 10−5.

4.2 Results

Table 1. Evaluation results: F1-scores above 0.99 and 0.98 are highlighted in blue and
cyan, respectively.
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δ = ±1000ms

BGL F1-Score 0.5963 0.5102 0.7759 0.9974 0.9830 0.9840 0.9976 0.9908 0.7096 0.9977

TBird F1-Score 0.3048 0.1824 0.0880 0.3242 0.3144 0.3235 0.3242 0.3361 0.3440 0.9995

Spirit F1-Score 0.8043 0.5807 0.9926 0.9967 0.9604 0.9857 0.9962 0.9968 0.9971 0.9997

δ = ±5000ms

BGL F1-Score 0.5930 0.5112 0.7755 0.9874 0.9646 0.9680 0.9875 0.9795 0.8054 0.9949

TBird F1-Score 0.3053 0.1936 0.0651 0.2669 0.2415 0.2439 0.2678 0.2869 0.3146 0.9995

Spirit F1-Score 0.7691 0.5740 0.9929 0.6513 0.5453 0.5584 0.6560 0.5830 0.9946 0.9980

δ = ±15000ms

BGL F1-Score 0.5879 0.5130 0.7760 0.9753 0.9483 0.9523 0.9767 0.9762 0.7898 0.9902

TBird F1-Score 0.3025 0.1933 0.1113 0.1341 0.1248 0.1348 0.1350 0.1476 0.2241 0.9995

Spirit F1-Score 0.4958 0.4254 0.8236 0.4909 0.4735 0.4836 0.4917 0.4887 0.5192 0.9825
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To compare LogLAB to our baselines, we assess the prediction performance
ỹi ∼ yi in terms of F1-score metrics. The F1-scores are presented in Table 1. As
expected, with increasing δ and thus growing size of U , the performance across
all approaches tends to decrease. For δ = ±1000ms this was apparently easy
to achieve for most of the methods. An exception is the Thunderbird dataset,
which is characterized by a large U class: No baseline manages to achieve an
F1-score higher than 0.35, except LogLAB. For δ = ±5000ms we notice that
the performance degradation previously observed for most approaches on the
Thunderbird dataset now also start to manifest on the Spirit dataset. The biggest
gap in performance becomes evident at the largest observed time window of
δ = ±15000ms. For the dataset BGL, we notice a considerable drop in F1-scores
of other approaches to 0.97, while LogLAB maintains its high performance.

5 Conclusion

This paper presents LogLAB, a novel model for labeling large amounts of log
data, such that the usually required need of time-consuming manual labeling
through experts is automated. It relies only on rough estimates of failure time
windows provided by monitoring systems to generate labeled datasets in retro-
spect. LogLAB is based on the attention mechanism and uses a custom objective
function for weak supervision deep learning techniques that accounts for imbal-
anced data and deals with inaccurate labels. We evaluated LogLAB on three
different datasets in comparison to nine benchmark approaches. LogLAB out-
performs other approaches across all experiments and shows a performance of
more than 0.98 F1-score, even for large amount of inaccurate labels. As further
work we consider to enhance the labeling process by iteratively moving log mes-
sages from U to P during training, which have significantly lower anomaly scores,
calculated by the model. Likewise, this method can be extended by adding other
sources for estimating the time windows and therefore improve the training basis.
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3. Fusilier, D.H., Montes-y Gómez, M., Rosso, P., Cabrera, R.G.: Detecting positive
and negative deceptive opinions using PU-learning. Inf. Process. Manag. 51, 433–
443 (2015)

4. Genkin, A., Lewis, D.D., Madigan, D.: Large-scale bayesian logistic regression for
text categorization. Technometrics 49(3), 291–304 (2007)

5. Gulenko, A., Acker, A., Kao, O., Liu, F.: Ai-governance and levels of automation
for aiops-supported system administration. In: ICCCN. IEEE (2020)

6. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for
anomaly detection. In: ISSRE. IEEE (2016)



LogLAB: Attention-Based Labeling of Log Data Anomalies 707

7. Ho, T.K.: Random decision forests. In: ICDAR. IEEE (1995)
8. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression,

vol. 398. Wiley, Hoboken (2013)
9. Jolliffe, I.: Principal component analysis. Encyclopedia of statistics in behavioral

science (2005)
10. Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., Brown,

D.: Text classification algorithms: a survey. Information 10(4), 150 (2019)
11. Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive

and unlabeled examples. In: ICDM. IEEE (2003)
12. Liu, B., Lee, W.S., Yu, P.S., Li, X.: Partially supervised classification of text doc-

uments. In: ICML, Sydney, NSW (2002)
13. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for

system problem detection. In: USENIX Annual Technical Conference (2010)
14. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. J. Mach.

Learn. Res. 2(Dec), 139–154 (2001)
15. Mordelet, F., Vert, J.P.: A bagging SVM to learn from positive and unlabeled

examples. Pattern Recognit. Lett. 37, 201–209 (2014)
16. Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J., Kao, O.: Self-attentive

classification-based anomaly detection in unstructured logs. In: ICDM (2020)
17. Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs. In:

DSN (2007)
18. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
19. Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., Ré, C.: Data programming: creating
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Abstract. Log analysis is an important technique that engineers use
for troubleshooting faults of large-scale service-oriented systems. In this
study, we propose a novel semi-supervised log-based anomaly detection
approach, LogDP, which utilizes the dependency relationships among
log events and proximity among log sequences to detect the anomalies
in massive unlabeled log data. LogDP divides log events into dependent
and independent events, then learns the normal patterns of dependent
events based on the dependencies among events and the normal patterns
of independent events based on the deviation of values from a historic
mean. Events violating any normal pattern are identified as anomalies.
By combining dependency and proximity, LogDP is able to achieve high
detection accuracy. Extensive experiments have been conducted on real-
world datasets, and the results show that LogDP outperforms six state-
of-the-art methods.

Keywords: Log analysis · Log-based anomaly detection ·
Dependency-based anomaly detection · System operation and
maintenance

1 Introduction

Modern software-intensive systems, including service-oriented systems, have
become increasingly large and complex. While these systems provide users with
rich services, they also bring new challenges to system operation and mainte-
nance. One of the challenges is to identify faults and discover potential risks by
analyzing a massive amount of log data. Logs are composed of semi-structured
texts, i.e., log messages. Log analysis is one of the main techniques that engineers
use for troubleshooting faults and capturing potential risks. When a fault occurs,
checking system logs helps to efficiently detect and locate the fault. However,
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with the increase in scale and complexity, manual identification of abnormal logs
from massive log data has become infeasible.

During the past decade, many automated log analysis approaches, includ-
ing supervised, semi-supervised, and unsupervised approaches, have been pro-
posed to detect system anomalies reflected by logs [1–6]. Although supervised
approaches show promising results, the scarcity of labeled anomalous log data is
a daunting issue. In contrast, unsupervised and semi-supervised approaches have
a significant advantage in that no labeled anomalous data are needed. However,
the existing unsupervised and semi-supervised approaches [1,3,4,7–9] have low
accuracy.

In this paper, we propose a log anomaly detection method, LogDP, which
simultaneously utilizes both dependency and proximity among log sequences
to detect anomalous log sequences. LogDP first discovers the normal patterns
for logs, then identifies the log sequences that violate these patterns as anoma-
lies. There are two types of normal patterns, dependency patterns (DPs) and
proximity patterns (PPs). DPs are related to the events that have dependency
relationships with other events, and PPs are for the events that are independent
of other events. To find the DP of an event, LogDP trains a predictive model to
predict this event using some other events as predictors. Here, we name the log
event to be predicted as the focused event, and the predictor events as the related
events of the focused event. To find the PP of an event, a mean prediction model
is trained to use the mean value of the event as the expected value of the event.
When detecting anomalies, given a log sequence, its expected values on all log
events are predicted using the learned models, and the differences between the
observed values and expected values are calculated, named pattern deviations,
which indicate the degree of the log sequence deviating from their corresponding
normal dependency. If any pattern deviations are beyond normal ranges, i.e., the
normal patterns are violated, the log sequence is flagged as an anomaly.

In summary, our main contributions in this work are as follows:

– We propose LogDP, a novel log-based anomaly detection method, which uti-
lizes dependency among log events and proximity among log sequences at
the same time. To our best knowledge, we are the first to introduce the
dependency-based anomaly detection techniques in the field of log analysis.

– We experimentally demonstrate the effectiveness of the proposed method on
seven settings of three widely-used log datasets. The empirical experiments
show that the proposed approach can outperform the state-of-the-art unsu-
pervised and semi-supervised log-based anomaly detection methods.

2 The LogDP Method

In this section, we first explain log preprocessing, and then present the LogDP
method. The LogDP method consists of two phases, the training phase and the
test phase. In the training phase, for each log event, LogDP trains an expected
value prediction model and produces the corresponding threshold. In the test
phase, the trained prediction modes and thresholds are used to determine if a
log sequence is an anomaly or not.
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(a) A snippet of log parsing. (b) An event count matrix.

Fig. 1. Log preprocessing.

2.1 Log Preprocessing

Logs are usually semi-structured texts, which are used to record the status of
systems. Each log message consists of a constant part (log event) and a variable
part (log parameter). Log parsers [10–12] can parse log messages into log events,
which are the templates of the log messages. Figure 1a shows a snippet of raw
logs and the results after they are parsed.

Log messages can be grouped into log sequences (i.e., series of log events that
record specific execution flows) according to sessions or time windows. Session-
based log partition often utilizes certain log identifiers to generate log sequences.
When using time windows to partition logs, two types of strategies are usually
used, i.e., fixed window and sliding window. Fixed window strategy uses a pre-
defined window size, e.g., 1 h, to produce log sequences, while sliding windows
strategy generates log sequences using overlapping between two consecutive fixed
windows. For each log sequence, the occurrences of the events are counted, result-
ing in an Event Count Matrix (ECM). For example, an ECM is shown in Fig. 1b,
where cij indicates the number of occurrences of eventj in sequencei, namely
instanceij .

The notation used in this paper is as follows. We use a boldfaced upper case
letter, e.g. X to denote a matrix; a boldfaced lower case letter, e.g. e, for a vector;
a lower case letter, e.g. c, for a scalar. We have reserved X ∈ R

n×m for an ECM
with n log sequences and m log events. E = {E1, · · · , Em} represents the set
of log events of X and E is a log event, i.e., E ∈ E. A log sequence is denoted
as c = {c1, · · · , cm}, where c is a log instance, i.e., the occurrences count of an
event in c. The log instance of event Ej in sequence ci is represented as cij .

2.2 The Training Phase of LogDP

The workflow of the training phase of the LogDP method is presented in Fig. 2.
The inputs of the training phase are a training set Xtrain and a validation set
Xval, both of which only contain normal log sequences. Xtrain is used to train
expected value prediction models, and Xval is used to obtain the thresholds. The
training phase is composed of two steps, related event selection and prediction
model training. In the related event selection step, for each event, named focused
event, its related event is selected to be used as predictors to predict the focused
event. In the prediction model training step, two different prediction models are
trained according to if Markov blanket (MB) is found for the focused event. If
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Fig. 2. The workflow of the training phase of the LogDP method

the focused event is not independent, i.e., it has MB, a Multi-Layer Perceptron
(MLP) regressor is trained to embody the dependency relationship between the
focused event and its MB. If the focused event is independent, i.e., it has not
MB found, a mean prediction model is trained. That is, DPs are learned for
dependent events using the dependency-based technique, and PPs are for inde-
pendent events using the proximity-based technique. After training the expected
value prediction models, Xval is input to obtain the corresponding thresholds.
The outputs of the training phase include a set of prediction models and their
corresponding thresholds.

Related Event Selection. In this step, we aim to identify the related events
for a focused event, which are later used as predictors in a predictive model to
predict the value of a focused (independent) event. We follow [13] to adopt a
causal feature selection technique, MBs, in the step to achieve a good prediction
accuracy and efficiency. MBs are defined in the context of a Bayesian Network
(BN) [14]. A BN is a type of probabilistic graphical model used to represent and
infer the dependency among variables. In the context of log analysis, variables
correspond to log events. A BN can be denoted as a pair of (G,P ), where G is
a Directed Acyclic Graph (DAG) showing the structure of the BN, and P is the
joint probability of the nodes in G. Specifically, G = (E,A), where E is the set
of nodes representing the random variables in the domain under consideration,
and A ⊆ E×E is the set of arcs representing the dependency among the nodes.
E1 ∈ E is known as a parent of E2 ∈ E (or E2 is a child of E1) if there exists an
arc E1 → E2. For any variable E ∈ E in a BN, its MB contains all the children,
parents, and spouses (other parents of the children) of E, denoted as MB(E).
Given MB(E), E is conditionally independent of all other variables in E, i.e.,

P (E|MB(E)) = P (E|MB(E),S) (1)

where S = E \ ({E} ∪ MB(E)).
According to Eq. 1, MB(E) represents the information needed to estimate

the probability of E by making E irrelevant to the remaining variables, which
makes MB(E) is the minimal set of relevant variables to obtain the complete
dependency of E. The study in [13] has shown that using MBs as related variables
could achieve better performance than other choices of related events.
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Dependency Model Training. The goal of the step is to train expected value
prediction models. As shown in Fig. 2, after learning MBs in the first step, events
are categorized into two groups, independent events, i.e., events have no MB, and
dependent events, i.e., events have MB. For an independent event, the expected
value is predicted as the mean of the instances of the event in the training set.
For a dependent event, an MLP regressor is trained to predict the expected value
of E using MB(E) as predictors. Theoretically, any regression model could be
used for the step, and several regression models, such as regression trees, linear
regression and SVM regressors, have been adopted in exiting dependency-base
anomaly detection techniques. We chose MLP as the dependency model because
it could deal with more complex data distribution and shows better performance
than other regression models in our experiments.

In LogDP, we consider both dependent and independent log events in
anomaly detection because it is common that some anomalous messages are
printed to system logs only when anomalies occur. These anomalous log mes-
sages usually have no dependency on other log events. If this case is not included
in the anomaly detection, a lot of anomalies could be missed. As these anomalous
events only occur when anomalies happen, they are unlikely presented in normal
log sequences, which is the reason that LogDP detects them by examining the
deviation from the mean of values of normal sequences.

To obtain the threshold, a validation set Xval with normal log sequences
is input into the learned expected value prediction models to get the expected
value of the validation set, i.e., X̂

val
. The deviation matrix of Xval are calculated

as D = |Xval − X̂
val|. Then, for each event, its threshold is calculated as the

maximum value of the deviations of the event, i.e., ti = maximum(D∗i), where
D∗i is the j-th column of D.

2.3 The Test Phase of LogDP

The goal of the test phase is to use the learned models and thresholds to detect
anomalies. Given a log sequence c = {ci, · · · , cm}, the expected value of each
instance ci ∈ c is predicted by corresponding prediction model. Then, the devi-
ation is calculated as δ = |ci − ĉi|. If δ > ti, then c is flagged as an anomaly. c
is considered to be normal only if it follows all the normal patterns.

3 Evaluation

Datasets. Three public log datasets, HDFS, BGL and Spirit, are used in our
experiments, which are available from [15]. From the three datasets, we generate
seven datasets using different log grouping strategies. The HDFS is generated
using session, and BGL and Spirit are generated using 1-hour logs, 100 logs, and
20 logs windows. The names of the datasets of BGL and Spirit are denoted as
Dataset-Window, e.g., BGL-100logs as shown in Table 1.

For LogDP, the first 2/3 sequences of the training set are used for training,
and the remaining 1/3 sequences are used as a validation set.



LogDP: Combining Dependency and Proximity 713

Table 1. Overview of datasets used in the experiments.

Datasets # Evt Window Training set Test set

# Seq # Anom. %Anom. # Seq # Anom. %Anom.

HDFS 29 Session 287,530 8,419 2.93% 287,531 8,419 2.93%

BGL 980 1 h 3,673 495 13.48% 1,481 170 11.48%

100 logs 37,707 4,009 10.63% 9,426 816 8.66%

20 logs 188,539 17,252 9.15% 47,134 3,005 6.38%

Spirit 1,229 1 h 1,751 1,213 69.27% 585 225 38.46%

100 logs 79,999 20,598 25.75% 19,999 429 2.15%

20 logs 399,999 82,002 20.50% 99,999 498 0.50%

#Evt: number of events; #Seq: number of sequences; #Anom.: number of anomalies;
%Anom.: percentage of anomalies.

Benchmark Methods. Six state-of-the-art log-based anomaly detection meth-
ods are selected as the benchmark methods, including three proximity-based
methods, PCA [7], OneClassSVM [8] (OCSVM), LogCluster [9]; a sequential-
based methods, DeepLog [4]; and two invariant relation-based methods, Invari-
ant Mining [1] (IM) and ADR [3]. The description of the benchmark methods
can be found in Sect. 4.

Experimental Results. The experimental results (in precision, recall and F1)
of LogDP and benchmark methods are presented in Table 2. The best results are
in boldface. Overall, LogDP produces superior results comparing to benchmark
methods. Out of 7 datasets, LogDP achieves all the best results in F1; five best
results in precision; two best results in recall.

As for different strategies of log partitioning, i.e., session (for HDFS) or
time window (for BGL and Spirit), LogDP performs well with both strategies.
In contrast, as IM, ADR and DeepLog are designed to be more suitable for
session-based log partitioning, they yield good results on the HDFS dataset but
relatively poor results on other datasets. Compared to the benchmark methods
based on proximity-based anomaly detection techniques, i.e., PCA, OCSVM and
LogCluster, LogDP produces significantly better results on all datasets except for
the precision of PCA on the HDFS dataset. In summary, the experiments have
shown the superior performance of LogDP on different datasets with different
log partition strategies.

4 Related Work

Log-based anomaly detection has been intensively studied in recent decades.
In terms of the techniques used for anomaly detection, the existing approach
can be roughly categorized into proximity-based, sequential-based, and relation-
based approaches. Proximity-based methods, such as PCA (Principal Compo-
nent Analysis) [7] and LogCluster [9], cast a log event sequence, as a point in a
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Table 2. Experimental results of LogDP and benchmark methods.

Dataset Metrics LogDP PCA OCSVM LogCluster DeepLog IM ADR

HDFS-session F1 0.987 0.790 0.068 0.800 0.945 0.943 0.974

Precision 0.979 0.980 0.035 0.870 0.958 0.893 0.951

Recall 0.995 0.670 0.940 0.740 0.933 1.000 1.000

BGL-1hour F1 0.789 0.170 0.393 0.147 0.596 0.490 0.547

Precision 0.935 0.352 0.383 0.009 0.474 0.343 0.377

Recall 0.682 0.112 0.403 0.394 0.802 0.859 1.000

BGL-100logs F1 0.539 0.130 0.132 0.243 0.378 0.387 0.250

Precision 0.858 0.440 0.075 0.147 0.321 0.324 0.143

Recall 0.393 0.076 0.556 0.705 0.461 0.482 0.987

BGL-20logs F1 0.460 0.237 0.168 0.226 0.224 0.203 0.204

Precision 0.985 0.447 0.094 0.129 0.126 0.163 0.114

Recall 0.300 0.162 0.744 0.884 0.981 0.269 0.988

Spirit-1hour F1 0.821 0.187 0.601 0.367 0.582 0.387 0.792

Precision 0.697 0.312 0.742 0.324 0.412 0.678 0.656

Recall 1.000 0.133 0.505 0.422 0.991 0.271 1.000

Spirit-100logs F1 0.575 0.111 0.003 0.110 0.153 0.107 0.445

Precision 0.405 0.094 0.002 0.152 0.087 0.057 0.287

Recall 0.993 0.135 0.023 0.086 0.643 0.993 0.994

Spirit-20logs F1 0.905 0.095 0.009 0.173 0.135 0.032 0.558

Precision 0.835 0.051 0.005 0.150 0.191 0.016 0.387

Recall 0.988 0.639 0.057 0.205 0.104 0.974 0.999

feature space and utilize distances or density metrics to evaluate the proximity
of the log sequence with others. The sequences far from the others are flagged as
anomalies. Sequential-based methods, such as DeepLog [4] and LogAnomaly [5],
use sequences of the log events to train models and try to predict future events.
The log sequences that do not comply with the predicted sequential patterns are
identified as anomalies. Relation-based methods such as Invariants Mining [1]
and ADR [3], try to find meaningful relations among the log events and use
the relations to detect anomalies. As a relation-based method, LogDP is more
flexible than the existing ones. Existing relation-based methods [1,3] are based
on the invariant relationships among log events. Invariant relations refer to the
linear relationships among log events that are related to the program workflows.
However, there are two limitations in the existing invariant relation-based meth-
ods: (1) the mined relations are sensitive to data noise; (2) the mined relations
are restricted to linear relations among the events. In contrast, LogDP utilizes
the probabilistic relationships among log events, which makes it less sensitive
to data noise. LogDP also adopts MLP regressors as dependency models, which
can deal with both linear and non-linear relationships.
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5 Conclusion

We have proposed a log-based anomaly detection method, LogDP, which uti-
lizes the deviations from normal patterns to effectively detect anomalous log
sequences. LogDP divides log events into two types, dependent events and inde-
pendent events. For dependent events, the normal patterns are learned from
the probabilistic relationship among an event and its MB, i.e., the dependency
among events. For independent events, the normal patterns are obtained from the
mean prediction models, i.e., the proximity among sequences. The log sequences
that violate any normal pattern are identified as anomalies. Our experimental
results show that LogDP outperforms the state-of-the-art benchmark methods.
Our source code and experimental data are available at: https://github.com/
ilwoof/LogDP.
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Abstract. Recently, machine learning has been widely used for services
classification that plays a crucial role in services discovery, selection, and
composition. The current methods mostly rely on only one data modal-
ity (e.g. services description) for web services classification but fail to
fully exploit other readily available data modalities (e.g. services names,
and URL). In this paper, a novel MultiModal-Attention-based deep neural
network (MMA-Net) is proposed to facilitate the web services classifica-
tion task via effective feature learning from multiple readily available
data modalities. Specifically, a new multimodal feature learning mod-
ule is introduced to achieve effective message passing and information
exchanging among multiple modalities. We conduct experiments on the
real-world web services dataset using various evaluation metrics, and the
results show that our framework achieves the state-of-the-art results.

Keywords: Deep learning · Web services · Services classification ·
Multimodal learning · Attention

1 Introduction

Web services provide a unified, loosely coupled integration for the reuse of het-
erogeneous software components [23]. A large number of web services in the
common services library are very high-value resources [21]. The commonly used
services repositories specify publication specifications for services publishers. The
key to use services in software development is to find the required services in the
repository, which is the primary concern in services discovery [5].

The most common and practical search method for services discovery is
keyword-based search [2,6]. Recently, several machine learning-based web ser-
vices classification methods [9,12,18,22] are proposed to automatically predict
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and recommend services keywords, which have achieved promising results, espe-
cially the deep learning-based methods. These methods generally take the ser-
vices descriptions as input and the services tags as output and develop a machine
learning model to achieve the automatic services classification.

Conventional machine learning methods (e.g., Naive Bayes [14], SVM[27],
C4.5 [13], and LDA-SVM) have been widely used to predict the tags of services [8,
9,12,18] on 7 or 10 categories. Recently, deep neural networks [11] have also been
applied to services classification in many studies [20,22,26,28], which can classify
more categories with higher accuracy. However, most of the current methods
merely rely on a single data modality without considering some other readily
available data sources provided by the API sharing platform.

In the machine learning community, a well-defined problem named multi-
modal machine learning [1] aims at building models that process and relate
information from multiple modalities. Motivated by multimodal learning, in the
context of web services classification, we define different input types to the model
as different data modalities, such as services description, name, and the URL
that links to the web services. These modalities are closely related since they are
pointing towards the same services but may contain complementary information
due to their different views of descriptions. A recent work [22] proposes a simple
sum-fusion method to merge features of two different modalities (e.g., services
names and services descriptions) extracted by BERT [3]. Though the fusion
method improves the performance compared to its single modality counterpart,
the shared and complementary information between different modalities is not
well exploited due to its simplicity. Motivated by a recently proposed popular lan-
guage model, transformer[25], the cross-attention-based methods [15] have been
proposed and achieved promising results among the multimodal fusion methods.
However, they are originally designed for vision and language tasks. Thus, their
performance in the context of web services classification is unknown. Moreover,
most of the cross-attention-based methods are only designed and evaluated for
two different modalities. Thus, how to excavate both consensus and complemen-
tary information from more than two modalities is still a challenging task in
both multimodal machine learning and web services classification.

In this paper, we take three different data modalities into account, and pro-
pose a new MultiModal-Attention-based deep neural network (MMA-Net) for
web services classification, which improves the performance by a newly proposed
multimodal feature learning module which flexibly exchange and fuse informa-
tion from multimodal data.

The contributions of this paper are summarized as follows:

– We for the first time propose to excavate knowledge from three different data
modalities, namely services name, services description, and services URL, to
enhance the performance of the web services classification task.

– A novel MultiModal-Attention-based deep neural network (MMA-Net) is pro-
posed for web services classification, which fully exploits multiple data modal-
ities by flexibly exchanging and fusing information and can be easily extended
to more data modalities.
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– Experiments are conducted on a public 50-category web services benchmark1

with multiple evaluation metrics. The results show that the proposed method
outperforms the state-of-the-art web services classification methods.
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Fig. 1. Overview of the MMA-Net model architecture.

2 MMA-Net

In this section, we introduce the details of the MultiModal-Attention Network
(MMA-Net). Suppose the web services dataset is D = {(xi,yi)}Ni=1 with N
labeled training data, where xi denotes the input web services text data (e.g.
services name, services description, and services URL) while yi indicates the
corresponding class label of xi. We denote the number of classes as K, then
we encode the label of a web service as a one-hot vector as yi = [y1i , ..., y

K
i ] ∈

{0, 1}K . The goal of our MMA-Net model is to correctly classify the web services
based on the designed model and the training data.

The overview of the proposed MMA-Net framework is shown in Fig. 1, which
is consisted of four modules: 1) feature embedding module, 2) attention-based
multimodal feature learning module, 3) feature fusion module, and 4) clas-
sification module. The proposed model takes the services name (denoted by
xname), services URL (denoted by xurl), and the services description (denoted
by xdes) as inputs. The feature extraction module uses a pre-trained BERT
model [3] to embed different inputs into high-quality feature vectors, respectively.
After extracting individual features, the multimodal feature learning module
exchanges and integrates multimodal features through a multimodal attention
mechanism. The feature fusion module then fuses the three individual features

1 http://www.programmableweb.com.

http://www.programmableweb.com
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after information exchanging as the final joint feature representations. Then the
classification results are obtained by feeding the fused features into a classifica-
tion module.

Feature Extraction. We embed the services names, services URL, and ser-
vices descriptions into feature embeddings using the BERT model [3], which
is a widely used pre-training language model that can convert string-type text
sequences into high-quality feature vectors. A sentence will obtain two types
of outputs after passing through the BERT model: 1) “pool output”, and 2)
“sequence output”. In this paper, in order to ensure the comprehensive repre-
sentation for multimodal feature learning, we will concatenate “pool output”
and “sequence output” as the feature representation of every single modality.
We denote the services name as xname, services URL as xurl, and xdes as the
services description. The features of services name (Fname), services URL (Furl)
and services description (Fdes) of one services can be defined as,

Fmodal = concat(F pool
bert (xmodal), F

seq
bert(xmodal)), (1)

where modal ∈ {name, url, des} indicates different modalities, F pool
bert (·) and

F seq
bert(·) represent the “pool output” and “sequence output” produced by the

BERT model, respectively.

Attention-Based Multimodal Feature Learning. To achieve effective fea-
ture fusion, we introduce a novel multimodal-attention module.

The key idea of our multimodal-attention is motivated by the attention mech-
anism in transformer [17]. In self-attention, the features are split into query (Q),
key (K), and value (V). Q is then multiplied by the affinity matrix produced by
the inner-product of K and V. The affinity matrix characterizes the similarities
between pairs of tokens in a sentence. To achieve cross-modal message pass-
ing, a recently proposed cross-attention method [15] exchanges key-value pairs
between two different modalities. However, when data from multiple modalities
are presented, the pair-wise exchanging strategy is computationally costly with
O(M2) complexity (where M is the number of data modalities). By contrast,
we propose to fuse the keys and values from different modalities, respectively,
to obtain the joint key-value pair that serves as a multimodal dictionary for
the queries from each individual modality. In this way, the complexity becomes
O(M). Moreover, compared to the cross-attention-based methods, the joint key-
value pairs proposed in our method allow the learning of more flexible attention
maps that enhance the feature learning for each modality.
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Fig. 2. Illustration of the multimodal feature learning module for Fname. Note that
other data modalities (Fdes and Furl) are processed by following a similar procedure.

The details of the Multimodel Attention module are shown in Fig. 2. Fname is
divided into Qname, Kname, and Vname. Fdes and Furl are processed in the same
way. In the attention-based method, this operation is usually achieved through a
set of linear transformation networks (e.g. Fname

linear(·), Fdes
linear(·), Furl

linear(·)). The
feature transformations are obtained through:

Qmodal,Kmodal, Vmodal = Fmodal
linear (Fmodal), (2)

where modal ∈ {name, url, des} indicates different modalities. Then, the K and
V of different modalities are concatenated as Kmulti and Vmulti to realize the
exchange of information between the modalities as follows,

Kmulti = concat(Kname,Kdes,Kurl), (3)

Vmulti = concat(Vname, Vdes, Vurl). (4)

The attention map is then obtained as follows,

F̂MA
modal =

softmax(Qmodal · (Kmulti)T ) · Vmulti√
dK

, (5)

where modal ∈ {name, url, des} indicates different modalities, the softmax(·)
function normalises all elements of the vector between 0 and 1 with the sum of
all elements as 1, and dK is the second dimension of K for normalization.

A feed forward network is added after the multimodal-attention module.
Specifically, the feed forward neural network is a multilayer perceptron (MLP),
which is also known as fully connected layer, a type of classic deep neural network
layers. For easier optimization, the shortcut connections are added to the cross-
attention module and the feed forward network. The specific forms of shortcut
connections and feed forward neural networks are as follows,
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FMA
modal = Ffw(Norm(F̂MA

modal + Fmodal)), (6)

where modal ∈ {name, url, des} indicates different modalities, Ffw represents
the feed forward neural network, and Norm(·) is the layer normalization.

To sum up, the multimodal-attention module accepts three single modal
features as input and outputs three matrices. The shapes of the output matrices
are the same as their respective inputs. Moreover, the first row of the matrix
is similar to the pool output in the BERT output, and the rest of the rows are
similar to the sequence output in the BERT output. For the BERT model in
the classification task, pool output is generally used as the classification feature.
Inspired by this, we select the first row in the output matrix as the final features
of the multimodal-attention module.

Feature Fusion. After obtaining the multimodal feature representations pro-
duced by different modalities, we further fuse the three feature vectors output by
the multimodal-attention module into one single vector. The result after feature
merging ffuse can be defined as:

Ffuse = FMA
name[1, :] + FMA

des [1, :] + FMA
url [1, :], (7)

where [1, :] is the slicing operator to extract the first row of the matrix.

Classification Module. The task of the classifier layer is to obtain the final
classification results. In our model, we use a fully connected neural network that
converts high-level feature information into classification prediction. To train the
model, a standard classification loss function Lcls is defined on all the training
data pairs (x, y) ∼ D as follows,

Lcls = E(x,y)∼DLcross entropy(FC(Ffuse),y), (8)

where the standard cross-entropy loss Lcross entropy is used in our method.

3 Evaluation

3.1 Implementation Details

Network Hyper-Parameters. We choose the pre-trained BERT model named
(bert en uncased L-12 H-768 A-12) from Tensorflow Hub2, which transforms
each word of services description and services name into a 768-dimension vector.
For multimodal cross attention, we set the parameter rate to 0.7, the number of
heads to 1, and the number of layers to 1. To avoid over-fitting, we add a dropout
layer between every two layers of MMA-Net with drop probability (rate) 0.1.

2 https://tfhub.dev/tensorflow.

https://tfhub.dev/tensorflow


MMA-Net for Web Services Classification 723

Training Hyper-Parameters. In MMA-Net, the Adam optimizer is used for
training with the learning rate = 2e-5, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-6,
and weight decay = 0.01. The total epoch number is 20 with batch size as 64.

3.2 Web Services Dataset

For a fair comparison with previous methods, we use the publicly released web
services dataset proposed by [22] and follow the same setting as [22]. Specifi-
cally, the web services data were crawled from the API sharing platform website
through crawlers. The dataset contains 15,340 pieces of services data, a total of
401 categories. Each services data contains 20 fields, includes title, description,
URL, etc. In this paper, we select the title (i.e., services name), description (i.e.,
services description), and URL as input, and the primary category fields as the
services classification ground-truth label. By following [22], the dataset is pre-
processed by removing the small size categories. The final web services dataset
contains 50 categories with 10943 services samples.

3.3 Evaluation Protocols

We choose Top-N accuracy as our primary evaluation metrics, which is commonly
used in multi-class classification problems. For the calculation of the top-N accu-
racy, the number of correct labels counts when the top-N predicted labels contain
the ground-truth target category label. We use the commonly adopted top-1 and
top-5 accuracy for evaluation. In addition, we also evaluate using F1-score and
AUC score, both of which take data imbalance into account.

3.4 Compared Methods

We compare our method with both conventional machine learning methods and
deep learning models for services classification on the services dataset. Our exper-
iments show that the modern deep learning-based methods outperform the con-
ventional machine learning methods.

For the deep learning-based methods, we compare our method with: 1) Con-
volutional neural network (CNN) [19] is a special feedforward neural network
with convolutional operations. 2) Long short-term memory (LSTM) [7], which is
a special type of recurrent neural network (RNN) [24]. 3) Combination methods
of CNN and RNN [10]. 4) BI-LSTM [4], which is an improved LSTM. 5) CARL-
Net [16] uses the attention mechanism. 6) ServeNet [22] combines different deep
learning models. Among these methods, CARL-Net and ServeNet [22] achieve
the state-of-the-art performance on web services classification.



724 J. Zhang et al.

Table 1. Comparison with deep learning-based methods.

Model Top-5 Top-1 AUC F1

CNN [19] 58.46 27.60 0.36 0.24

LSTM [7] 80.10 51.18 0.48 0.41

Recurrent-CNN [10] 84.29 60.02 0.57 0.54

BI-LSTM [4] 86.70 60.45 0.68 0.58

CARL-Net [16] 89.00 71.50 0.86 0.69

ServeNet [22] (w/two modalities) 91.58 69.95 0.83 0.65

ServeNet [22] (w/three modalities) 91.93 70.06 0.85 0.69

Cross-attention (w/two modalities) 89.53 67.62 0.77 0.59

Cross-attention (w/three modalities) 89.69 68.83 0.79 0.62

MMA-Net (w/two modalities) 92.54 70.18 0.88 0.74

MMA-Net (w/three modalities) 94.18 70.82 0.90 0.77

3.5 Experimental Results and Discussion

The experimental results are shown in Table 1. It can be observed that the
proposed method achieves the best performance on top-5 accuracy (94.18%), F1
(0.77), AUC (0.9), and comparable top-1 accuracy, compared to the state-of-
the-art CARL-Net and ServeNet [22], as well as the cross-attention-based multi-
modality feature learning method. We analyze the results from the following
perspectives.

Discussion on the Deep Learning-Based Methods: For the deep learning
methods, the key to the natural language processing model is to summarize
and encode the context information into a unified feature vector or matrix.
However, due to the serious phenomenon of gradient vanishing and exploding
in RNN-based models, it is still very hard for LSTM to capture the long-term
dependencies in long sequences with multi-layer structures. Thus, the attention-
based model, such as BERT is more successful in processing long sequences of
texts. Here, CARL-Net, ServeNet [22], and our method all rely on the BERT pre-
trained model, and the results are much better than the RNN-based methods.

Comparison with the Cross-Attention-Based Methods: Cross-attention
is generally calculated between two different modalities. We implement the cross-
attention method with both two and three modalities and show the results in
Table 1. It is obvious that our method outperforms cross-attention in both set-
tings of two modalities and three modalities.

Comparison with CARL-Net: In addition, when comparing with the state-
of-the-art method CARL-Net, the top-1 accuracy between CARL-Net and our
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method is comparable. However, our method significantly outperforms CARL-
Net on top-5 accuracy, F1 score, and AUC results. We argue that top-5 accuracy
is more important than top-1 accuracy in some scenarios since one web service
generally corresponds to multiple tags, rather than a single one. In addition, since
the services classification data are generally imbalanced the F1 score and AUC
score for evaluating the performance on the imbalanced data are also essential.

Comparison with ServeNet: To make a fair comparison, we have reproduced
and adapted the ServeNet [22] so that it can also use three modalities of data as
input. At the same time, two modal data are also tested in our proposed model.
The experimental results show that the proposed model is optimal in both three
modalities and two modalities. Also, it is easy to observe that our proposed model
performs significantly better when using three modalities than when using two
modalities, which shows the validity of the multimodal learning strategy.

Ablation Study: We have conducted ablation Study by comparing our full
method with the variants of our method that removes Multimodal Feature Learn-
ing (i.e., MFL) and Feature Fusion (i.e., Fusion), respectively. The results (%)
are shown in Table 2, which verify that both of the proposed modules contribute
to the improved performance.

Table 2. Ablations on comparison between our full method and its variants.

Model Top-5 Accuracy Top-1 Accuracy

Ours (Full) 94.18 70.82

Ours (w/o MFL) 87.57 68.31

Ours (w/o Fusion) 92.86 69.41

4 Conclusion and Future Work

In this paper, we introduce a novel deep-learning-based services classification
method, named MMA-Net. By observing that more than one data sources (e.g.
services description, services name, and services URL) are generally readily avail-
able in many web services data, we propose the multimodal fusion strategy for
improving the classification results. Specifically, we propose a new multimodal-
attention mechanism for effective information exchange and fusion between dif-
ferent modalities. We evaluate our method by comparing it with the state-of-the-
art traditional machine learning and deep learning-based methods. The experi-
mental results show that our method outperforms or is comparable to existing
methods on different evaluation metrics. Moreover, our method is flexible and
can be extended by involving more modalities with limited computational cost,
which will be left to our future work.
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Abstract. With the development of intelligent mobile devices, spatial
crowdsourcing (SC) has become popular recently, and SC platforms coop-
eration has attracted people’s attention, which can enlarge the whole
social-economic benefits. The way to encourage platforms to take part
in cooperation is essential. A viable method is to make each platform in
cooperation get higher revenue via allocating the revenue generated by
cooperation. However, the current work lack studies on the revenue allo-
cation in SC platform cooperation. In this paper, based on cooperative
game theory, we propose some ideal properties that the revenue allocation
method should satisfy. Then, based on Shapley value, we propose a fair
revenue allocation method named SRA, measured by the marginal contri-
bution of each platform. Given the exponential complexity of the method,
we propose an efficient approximation method, Coalition-based Shapley
value Revenue Allocation (CSRA). Extensive experimental results verify
the effectiveness and efficiency of our algorithms.

Keywords: Spatial crowdsourcing · Incentive mechanism · Shapley
value · Revenue allocation

1 Introduction

Spatial crowdsourcing (SC) is a new resource allocation model that integrates
the power of the masses to accomplish some complex tasks with spatial and
temporal features [5,7]. As a new form of employment, SC has provided a large
number of jobs for society and driven the development of related industries. It
has a wide range of daily applications, including ride-hailing services (e.g., Uber
and Didi Chuxing), citizen sensing services (e.g., OpenStreet Map), and food
delivery services (e.g., Eleme and Meituan).

SC realizes rational resources allocation by means of task assignment (a.k.a.
supply-demand matching) conducted by platforms. In particular, an SC platform
arranges tasks to suitable workers with different optimization objectives such as
maximizing the total number of assigned tasks or minimizing the total travel
cost of the allocated workers. This traditional task assignment occurs within each
c© Springer Nature Switzerland AG 2021
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platform [3–5]. In the real world, however, the distribution of tasks and workers in
a platform is usually uneven, leading to an imbalance between supply (workers)
and demand (tasks). As a result, some tasks are unable to be completed due to
the lack of workers or some workers have nothing to do due to the lack of tasks [2].
Through sharing tasks and workers from multiple platforms in a cooperative
manner, and delegating the tasks that cannot be completed or that are costly
to complete to other platforms’ workers (cooperative task-worker matching), the
platforms can reduce the negative effects of the uneven distribution. This multi-
platform cooperation model enables tasks to be completed at a much lower cost
(e.g., the travel distance of workers) and are expected to accomplish tasks that
would otherwise be impossible due to the lack of workers, thus increasing the
benefits (e.g., profit, task completion ratio).

There are two key problems needed to be addressed in this multi-platform
cooperation mode: 1) how to assign tasks and workers across platforms, and
2) how to distribute the revenue generated by the cooperation fairly. For the
first problem, Cheng et al. [2] propose a real-time cross online matching method
(COM) that permits a platform to “borrow” idle workers from other platforms
for finishing the tasks, while the second key problem remains to be researched. In
this paper, we propose an effective revenue allocation method and two efficient
approximate methods for the second problem.

In this paper, we first propose some natural properties based on coopera-
tive game theory that the revenue allocation method should satisfy. Then, we
propose a fair revenue allocation method called Shapley value-based Revenue
Allocation (SRA), which quantifies the marginal contribution of each platform
when joining the cooperation in different orders and allocates the revenue based
on the contribution of each platform. Considering that calculating the marginal
contribution of each platform in all possible orders will result in exponential
complexity, we then propose an efficient approximation algorithm.

The paper is organized as follows. Section 2 provides the preliminaries.
Section 3 shows the details of the revenue allocation method SRA. Section 4
describes in detail our approximate method. Section 5 presents the experimental
results and discussions. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

In this section, we provide some definitions that will be used throughout the
paper and then formally state our problem.

Definition 1 (Spatial Task). A spatial task (task for short) t is defined as
a tuple t = (t.ts, t.plat, t.ori, t.des, t.price). More specifically, the task t is pub-
lished on platform t.plat at time t.ts, and a worker must travel from an origin
location t.ori to a destination location t.des to complete it. After the task t is
completed, the platform t.plat can gain profit t.price.

Definition 2 (Worker). A worker w is a tuple w = (w.ts, w.plat, w.loc, w.r)
where the w.plat represents the platform the worker belongs to, w.loc means the
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current location at time w.ts, and w.r is the working radius, that is, worker w
is willing to perform a task if and only if the distance (e.g., Euclidean distance)
between worker and task is not larger than working radius w.r.

Definition 3 (Cooperative Task Assignment). Given a platform set N =
{1, 2, · · · , n}, and each platform i has its own task set Ti = {ti1, ti2, · · · } and
worker set Wi = {wi1, wi2, · · · }. Each platform in the coalition N realizes cross-
platform task-worker matching in a specific task assignment method by sharing
workers Wi and tasks Ti.

Each platform sends all tasks and workers data to the central server, and the
central server implements cross-platform task assignment. It should be pointed
out that this centralized approach is not necessary, and distributed solutions can
also work.

Problem Statement (Revenue Allocation Problem). Given the revenue
v(N) gained by the platform set N , the problem of revenue allocation is to
explore a reasonable and effective revenue allocation method based on the con-
tribution of each platform so that all platforms are willing to continue to par-
ticipate in cooperation.

3 Shapley Value-Based Revenue Allocation Method

In this section, we will introduce a precise Shapley value-based Revenue Allo-
cation method (SRA) to encourage platforms to take part in cooperation. We
regard that SC platforms’ cooperation as a cooperative game, and we use the
Shapley value to allocate the revenue gained by cooperation. Considering a set
of platforms N and a function v(·) that maps each subset S ⊆ N of platforms to
real numbers, modeling the revenue of cooperation when platforms in S partici-
pate in it. The Shapley value is one way to fairly quantify the total contribution
of each platform to the result v(N) of the cooperative game, and it satisfies a
set of desirable properties:

1) Group Rationality: All total revenue v(N) obtained by the coalition N should
be distributed to the participating platforms.

2) Individual Rationality: The revenue of the platform participating in the coop-
eration should be greater than that of the platform not participating in the
cooperation.

3) Symmetry: If for platform i and j and any subset S ⊆ N − {i, j}, We have
v(S∪{i}) = v(S∪{j}), then we think the contribution of these two platforms
is the same, and they should get the same profit.

4) Dummy Player: For any subset S ⊆ N − {i}, if v(S) = v(S ∪ {i}), it means
that the platform i did not make any contribution, and then it won’t be
allocated any profit from coalition revenue.

For a given platform i, the Shapley value can be computed as follows:

ϕi =
∑

S⊆N

(|S| − 1)!(|N | − |S|)!
|N |! [v(S) − v(S − {i})] (1)
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where ϕi represents the contribution of platform i, and it is also the revenue
allocated to the platform i. The Shapley value for player i defined above can
be interpreted as the average marginal contribution of platform i to all possi-
ble coalition S that can be formed without it. The specific method of revenue
distribution is shown in the Algorithm 1.

Algorithm 1: Shapley value-based Revenue Allocation (SRA)
Input: platform set N , task set T , worker set W
Output: platform revenue set {ϕ1, ϕ2, · · · , ϕn}

1 Initialize ϕi = 0, for i = 1, · · · , n;
2 Initialize v(S) = 0, for all nonempty subset S ⊂ N ;
3 foreach nonempty subset S ⊂ N do
4 v(S) = TaskAssignment(S, TS , WS);
5 foreach platform i ∈ S do

6 ϕi = ϕi + (|S|−1)!(|N|−|S|)!
|N|! [v(S) − v(S − {i})];

7 end

8 end
9 Return: {ϕ1, ϕ2, · · · , ϕn};

Algorithm Details. The input of SRA is the platform set N , the task set T ,
worker set W . The output is the revenue set of each platform {ϕ1, ϕ2, · · · , ϕn}.
Firstly, initialize platform revenue ϕi = 0 and each coalition revenue v(S) = 0
(Lines 1–2). For each nonempty subset S ⊆ N , use a specific task assignment
method to get the corresponding revenue v(S) (Lines 3–4). After that, we cal-
culate the revenue of each platform according to Eq. 1 (Lines 5–6), and return
the revenue set (Line 9).

Complexity Analysis. The Algorithm 1 consists of two parts: calculating rev-
enue and distributing revenue. The first part mainly uses a specific task assign-
ment method to calculate all the revenue, and the computational complexity
varies with different task assignment methods, and take the greedy task assign-
ment method as an example, the computational complexity is O(|T |× |W |×2n)
since it needs to compute all non-empty subsets of set N . The second part uses
Eq. 1 to allocate the revenue fairly, and its computational complexity is O(n×2n).
Therefore, the total computational complexity is O(2n × (|T | × |W | + n)). The
space complexity is O(|T | + |W | + n).

4 Approximate Shapley Value-Based Revenue Allocation

In order to calculate the Shapley value accurately, it is necessary to calculate
all possible subsets of N , and the computational complexity is exponentially
large in the size of the platform number. In addition, the computation of v(S)
for each S ⊆ N involves a process of assigning tasks, and take the greedy task
assignment as an example as before, its time complexity is O(|TS | × |WS |). As
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a result, it is impossible to accurately distribute the revenue according to the
Shapley value in a limited time. In this section, we discuss an approximation
method for efficiently estimating the Shapley value.

Algorithm 2: Coalition-based Shapley value Revenue Allocation
Input: N , T , W , t
Output: each platform’s revenue {ϕ1, ϕ2, · · · , ϕn}

1 Initialize ϕi = 0 for i = 1, · · · , n;
2 Divide N into t coalitions C = {C1, · · · , Ct} randomly and uniformly;
3 Initialize ϕCi = 0 for i = 1, · · · , t;
4 foreach S ⊆ C do
5 v(S) = TaskAssignment(S, TS , WS);
6 foreach Ci ∈ S do

7 ϕCi = ϕCi + (|S|−1)!(|C|−|S|)!
|C|! [v(S) − v(S − {Ci})];

8 end

9 end
10 foreach coalition Ci do
11 foreach S ⊂ Ci do
12 v(S) = TaskAssignment(S, TS , WS);
13 foreach platform i ∈ S do

14 ϕi = ϕi + (|S|−1)!(|Ci|−|S|)!
|Ci|! [ϕCi − v(S − {i})];

15 end

16 end

17 end
18 Return: {ϕ1, ϕ2, · · · , ϕn};

Basic Idea. We propose an improvement in the exponential calculation of the
Shapley value. Each platform participates in the cooperation in the form of
individuals in the original calculation method. We assume that they participate
in cooperation in the form of a particular coalition. That is, they form t coalitions
firstly, and then these coalitions participate in the cooperation. We allocate the
revenue v(N) among coalitions, and then we distribute the revenue to platforms
within the same coalition so that we reduce the number of task assignment
needed to calculate revenue allocation from 2n to 2t + t × 2n/t, described with
more detail in Algorithm 2.

Algorithm Details. The input is the set of platforms N , the set of tasks T ,
the set of workers W , the number of coalitions t and the output is the revenue of
each platform {ϕ1, · · · , ϕn}. First, we initialize the platform revenue ϕi = 0, and
then divide platforms uniformly into t coalitions C = {C1, · · · , Ct} and initialize
the coalition revenue ϕCi

= 0 (Lines 1–3). For each non-empty set S ⊂ C, we
calculate its revenue and update the revenue of each coalition Ci ∈ S (Lines 4–
7). And then, we continue to distribute the revenue from each coalition among
platforms. In a similar way, we first calculate the revenue of all non-empty sets
v(S), S ⊆ Ci (Lines 10–12), then we allocate revenue to each platform i ∈ S
(Lines 13–14). Finally, we return the set of platforms’ revenue {ϕ1, · · · , ϕn}
(Line 18).
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Complexity Analysis. The algorithm can be divided into two parts: allocation
of revenues to coalitions (Lines 4–9) and allocation of revenues to platforms
(Lines 10–17). The computational complexity of the first part is O(2t × (|T | ×
|W |+ t)) and that of the second part is O(t× 2n/t × (max(|TCi

|× |WCi
|)+n/t).

Considering the complexity, we suggest that t is set to [
√

n].

5 Experiment

In this section, we evaluate our proposed algorithms’ effectiveness and efficiency
by conducting a series of experiments on a real dataset and reporting the exper-
imental results.

5.1 Experimental Setup

We conduct our experiments using a real DiDi dataset [1], which provides taxi
order tasks, which are used to simulate our problem. The taxi order dataset was
collected from Chengdu in November 2016, and wherein each task is associated
with a release time, an end time, a start GPS point, an end GPS point, and
the reward for the task. Since these tasks come from one platform, we randomly
divide them into several platforms to accommodate our problems and generate
several workers for each platform. In total, the dataset provides taxi order data
in the area of Chengdu (with latitude from 30.653◦ to 30.728◦ and longitude from
104.042◦ to 104.130◦), which includes 67714 tasks and 6770 workers each day on
average. We use the data of the first 20 days to train the learning model and
carry out the simulation experiment based on the data of the 21st day. Table 1
shows our experimental setting, where the default values of all parameters are
in bold. Here, |N | is the number of platforms, |T | (|W |) is the average number
of tasks (workers) of each platform.

Table 1. Experiment parameters

Parameters Values

|N | 2, 3, 4, 5, 6

|T | 2 k, 4 k, 6 k, 8 k, 10 k

|W | 200, 400, 600, 800, 1000

r 0.5, 1.0, 1.5, 2.0

Task value real

We propose a baseline approximation algorithm: Weighted Average (WA) to
compare with our methods, in which the revenue is distributed by considering
the proportion of tasks and workers of each platform, and the calculation is as
follows:

ϕi = (a × |Ti|
|T | + b × |Wi|

|W | ) × v(N) (2)
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where, a and b describe the importance of the number tasks and the workers
respectively, and they meet the requirements a + b = 1, and we set a = b = 0.5.
We evaluate our methods regarding efficiency and effectiveness according to the
time-consuming and error (using Mean Absolute Percentage Error index) of
estimation accuracy and revenue allocation in two task assignment methods,
real-time online Greedy method and TGOA-OP [6]. It should be noted that in
this experiment, we only consider the dynamic appearance of tasks. All methods
can be summarized as follows:

- SRA: Calculate the revenue of each platform according to Algorithm 1.
- WA: Calculate the revenue according to the proportion of workers and tasks

of each platform.
- CSRA: The platform set is divided into several coalitions, and then the

revenue is calculated according to Algorithm 2.

5.2 Experimental Result

Fig. 1. Effect vs |N |

Effect of |N |. In Figures 1(a) and 1(b), the time consumption of SRA increases
exponentially in both two task assignment methods as expected and makes the
enormous time cost, followed by CSRA. As for CSRA, the value of t varies with
the |N | as we suggested before. When |N | increases from 3 to 4, the value of
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t changes to 2, resulting in the time consumption of CSRA does not change
as before. The time consumption of the WA method is the smallest among all
methods, and it is relatively fixed. As for revenue allocation accuracy, shown in
Figs. 1(c) and 1(d), the CSRA method has the highest accuracy, and the WA
method has the lowest accuracy. It should be noted that when |N | = 2 or 3, the
value of t in the CSRA method is 1, the CSRA method is completely consistent
with the SRA method, so the error MAPE is 0.

6 Conclusion

In this paper, we present the importance of revenue allocation for platforms’
cooperation and propose a Shapley value-based Revenue Allocation (SRA),
which can achieve fair revenue allocation in the cooperation scenario of SC
platforms. Then, considering the exponential complexity of the SRA method,
We propose an approximation methods CSRA, for efficient revenue allocation,
and extensive experimental results verify the effectiveness and efficiency of our
approach.
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Abstract. With the development of software systems, log has become
more and more important in system maintenance. During the past few
years, log-based anomaly detection has attracted much attention. We
propose a novel log-based anomaly detection model, called Sprelog, which
captures “inconsistent” information during the evolution of log messages
by exploring word-word interactions features. Firstly, we compute the
interactive information of each word-word pair in the input log sequence,
constructing self-matching attention vectors. Next, we use these self-
matching attention vectors to manage the log sequence and construct
the representation vectors. Hence, the log sequence can be matched
word-by-word, adapting to the evolution of log messages. In addition,
we combine pre-trained models in our proposed network to generate the
higher-level semantic component information. More importantly, we use
a low-rank bi-linear pooling approach to connect inconsistent and com-
positional information, thus our model can reduce potential information
redundancy without weakening the discriminative ability. Experiment
results on publicly available datasets demonstrate that our model sig-
nificantly outperforms extant baselines on standard evaluation metrics,
including precision, recall, F1 score and accuracy.

Keywords: Log analysis · Anomaly detection · Self-matching
networks · Pre-trained models

1 Introduction

With the continuous development of software systems, the scale of systems
becomes larger and larger, hence it is almost impossible to detect system anoma-
lies manually. During the past decade, we witness the introduction of many
automated log-based approaches [1,2]. These methods often apply useful infor-
mation from logs to detect system anomalies. We observe that some methods
c© Springer Nature Switzerland AG 2021
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adopt data mining and machine learning techniques to analyze log data and
detect the occurrence of system anomalies. For example, Xu, et al. [2] treated
the log-based anomaly detection task as an unsupervised learning problem and
utilized Principal Component Analysis (PCA) to detect anomalies.

However, most of these log-based anomaly detection approaches are not suf-
ficiently robust in the real-world implementation. Therefore, in this paper, we
propose a method named Sprelog - a novel log-based anomaly detection app-
roach, which can achieve accurate and robust anomaly detection on real-world,
ever-changing, and noisy log data. More importantly, we evaluate the proposed
approach using the public log data collected from Hadoop. Specially, we reor-
ganize the injection ratios of the Hadoop log data to evaluate the effectiveness
of the proposed approach. Our experimental results demonstrate that when we
increase the injection rate from 5% to 20%, the F1-score merely decreases from
0.97 to 0.94. Hence, the experiment not only shows that our approach can effec-
tively detect anomalies of the online service system with the ever-changing and
noisy log data, but also, more importatnly, very robust.

We summarize the main contributions of this paper as follows:

(1) We aim to solve the task of unstable log anomaly detection. Specifically,
we adopt a self-matching network that captures “inconsistent” information
during the evolution of log messages by exploring word-word interaction
features. This self-matching network assists our method to manage both
the instability during the evolution of log messages and the noise in the log
data.

(2) We adopt two semantic representations, the local static-based word embed-
ding (word2vec [3] or glove [4]) and the global dynamic word embedding
(ReBERTa [5]). Also, we apply the low-rank bi-linear pooling approach to
integrate these two semantic representations effectively.

(3) We have evaluated Sprelog using two public datasets. The results confirmed
the effectiveness of our approach.

2 The Proposed Model

2.1 Task Description

In this research, the log-based anomaly detection task can be described as a
tuple of three elements (S, I, y), where S = [s1, s2, . . . , sg] represents the log
event whose length is g. I denotes the current log message task ID and y ∈ Y
conveys the anomaly detection status of the log. More detailed, Y={Yes, No}
which Yes represents that log is normal, and No means that the log is abnormal.
Generally, the function of our model Sprelog is to assign a label to each task
ID based on the conditional probability Pr(y|S, I) according to the given set of
{S, I} to solve the log-based anomaly detection task.
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2.2 Overview of the Proposed Model

In this section, we describe our proposed model in detail. Model architecture is
depicted in Fig. 1. First, we process the unstructured original log data into the
structured log events by log parsing, and then convert each word of log events
into a vector by word embedding. Then, to transform log events into fixed-
dimensional log sequence semantic vectors, we combine word-to-word interac-
tions vectorization with Reberta-based semantic feature vectorization. Finally, to
further synthesize the vectorized log event sequences, we use Low-rank Bi-linear
Pooling to integrate the log sequence information for the log-based anomaly
detection task.

Fig. 1. Overview of our proposed Sprelog model.

2.3 The Representation of the Local Semantic Log Sequence

In this section, we acquire the representation of the local semantic informa-
tion. Firstly, we construct word-to-word interactions features from parsed logs.
Secondly, we combine the word information with the log sequence local seman-
tic information via our self-matching networks [6]. After the above-mentioned
steps, we fix the number of the word-to-word interactions vector of the whole
log sequence.

It is worth noting that the self-matching network can generate a attended fea-
ture vector for the input log sequence: fa = S·a, where a ∈ Rn is the self-matched
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attention vector. Literature [7] provides study to demonstrate the effectiveness
of semantic incongruity as a predictor for log-based anomaly detection. Hence,
attention vector a can be designed to capture log sequence incongruity.

In this paper inspired came from “co-attention” network proposed by Lu et
al. to address the Visual Question Answering (VQA) task [8]. They introduce
an affinity matrix C to attend input picture feature map V and text question
representation Q. C is calculated by:

C = tanh (Q · Wa · V) (1)

where Wa contains attention weights.
A joint activation approach (e.g. maximize by rows and columns) is adopted

to adjust attention weights for V and Q simultaneously. We modify this approach
by introducing a weight matrix between word-to-word pair to improve the ability
of capturing joint information of words.

Given a word pair (ei, ej), the the joint feature vector wi,j is computed:

wi,j = tanh
(
ei · Mi,j · eTj

)
(2)

where ei and ej are word embeddings for i and j [9], wi,j ∈ R measuring the
joint information between word i and word j , and Mi,j ∈ Rk×k is a parameter
matrix.

The self-matching information matrix W based on all joint information wi,j ,
i.j ∈ (1, 2, . . . , n) is computed:

W =

⎛

⎜
⎜
⎜
⎝

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n

...
...

. . .
...

wn,1 w2,2 . . . wn,n

⎞

⎟
⎟
⎟
⎠

(3)

A maximization activation approach is applied to calculate the self-matched
attention vector a. We first calculate an intermediate vector m ∈ Rn, by maxi-
mizing elements in W by rows.

mi = max (wi,1, wi,2, . . . , wi,n) ,∀i ∈ (1, 2, · · · , n) (4)

Then, we input m into a standard softmax function to calculate a: a =
softmax(m). Softmax function is adopted for the purpose of normalization.

2.4 The Representation of the Global Semantic Log Sequence

In this section, we use Reberta to obtain global semantic features in log
sequence. Specifically, the Reberta applied contains token embeddings, segment
embeddings, position embeddings, and Transformer with multi-head attention
[5] as the encoder layer to obtain H-dimensional encoded log sequence con-
taining contextual information. To achieve these representations, we first use
S = [s1, s2, . . . , Sg] to represent the log event whose length is g. In the pre-trained
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method Reberta, we obtain global contextual log sequence representation fl by
applying the fixed-dimensional output vector as the semantic representation of
the entire log event. The output vector is symbolized as the [cls]. The detailed
equation is demonstrated as follows:

fl = Rebertacls(S) (5)

2.5 Low-Rank Bilinear Pooling

After the previous steps, two log sequences feature vectors are acquired: fa gen-
erated by the self-matching network and fl generated by the Reberta encoder.
Here, we concatenate these two feature vectors for the final prediction. We
employ a Low-rank Bilinear Pooling (LRBP) method based on Hadamard prod-
uct to reduce the dimension of the final input vector to control the potential
information redundancy without reducing feature vector’s discriminative power
[10].

In this work, we follow the concept of LRBP to pool information from two
input feature vectors: fa ∈ Rk and fl ∈ Rd. The final projection feature vector
for the input log sequence is calculated:

f = UT · fa ◦ V T · fl + g (6)

where ◦ represents the Hadamard product, f ∈ Rc, U ∈ Rk×c, and V ∈ Rd×c

are parameters that need to be learned. g ∈ Rc is bias, c, k and d are hyperpa-
rameters.

f is the final feature vector for the inputted log sequence. We input f into
a standard softmax classification layer to make the log-based anomaly detection
prediction:

pi = softmax(Wf · f + b) (7)

where pi ∈ R2 represents whether the input log event sequence is normal or not,
and Wf ∈ R2×c, b ∈ R2 are parameters to be learned.

2.6 Training Objective

The lost function of this Log-Based Anomaly Detection classification task is a
standard cross-entropy:

J(θ) = −
N∑

i=1

[yi · log pi + (1 − yi) · log (1 − pi)] + λ · R (8)

where N is the size of training dataset, yi is the true label for log sequence i.
θ = {Mi,j , U, V, g,Wf , b} are model parameters. R = ‖θ‖L2 regularization term,
λ is a hyperparameter measuring the weight of regularization term.
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3 Experimental Setup

3.1 Dataset and Hyper Parameters

We evaluate our proposed Sprelog on two datasets, including the original HDFS
datasets [11] and the synthetic unstable HDFS datasets. To prepare for the
synthetic datasets, we randomly collect 51,000 log sequences from the original
HDFS datasets consisting of 50,000 normal and 1,000 anomaly sequences. We
inject the unstable log data into it and create two testing sets: NewTesting 1
and 2, which contain injected unstable log events and unstable log sequences,
respectively. The details of the two datasets are show Table 1:

Table 1. The synthetic HDFS datasets

Set Unstable event Unstable seq. Normal Anomaly Total

Training No No 6,000 6,000 12,000

NewTesting1 Yes No 50,000 1,000 51,000

NewTesting2 No Yes 50,000 1,000 51,000

We fix all the hyper-parameters applied to our model. Specifically, We train
our networks by stochastic gradient descent with the learning rate of 0.1, the
momentum of 0.9, the weight decay of 0.0005, the dropout ratio of 0.5, and the
gradient clipping of 0.1. The training batch size for all datasets is tuned amongst
64, 128, 256. The L2 regularization is set to 10−5 for the original HDFS datasets,
and 10−3 for synthetic unstable HDFS datasets.

3.2 Results and Analysis

To analyze the effectiveness of our model, we take some current competitive
methods as baselines on the above two datasets to compare the performance of
Sprelog with other models. The results are demonstrated as follows.

Table 2. Experiment results on synthetic HDFS dataset of untable log sequences (the
NewTesting1 set)

Injection ratio Metric LR [10] SVM [12] IM [13] PCA [11] LogAnomaly [14] PLELog [15] LogRobust [7] Sprelog

5% Precision 0.25 0.36 0.78 0.90 0.97 0.91 1.00 0.99

Recall 0.92 0.96 0.56 0.66 0.89 0.78 0.91 0.95

F1-score 0.39 0.53 0.65 0.76 0.93 0.84 0.95 0.97

10% Precision 0.18 0.11 0.88 0.90 0.86 0.82 0.89 0.92

Recall 0.95 0.89 0.40 0.64 0.94 0.89 1.00 0.96

F1-score 0.30 0.20 0.56 0.74 0.90 0.85 0.94 0.94

15% Precision 0.08 0.11 0.84 0.82 0.82 0.78 0.86 0.90

Recall 0.85 0.90 0.41 0.42 0.97 0.85 0.99 0.99

F1-score 0.14 0.20 0.55 0.55 0.89 0.81 0.92 0.94

20% Precision 0.06 0.09 0.82 0.82 0.92 0.78 0.99 0.96

Recall 0.87 0.89 0.43 0.41 0.88 0.75 0.81 0.92

F1-score 0.11 0.16 0.56 0.54 0.90 0.76 0.89 0.94
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(1) Experiments on the Synthetic HDFS Dataset
Our work focuses on the anomaly detection problem in unstable logs. To further
prove that the model proposed in this paper can effectively solve the anomaly
detection issue in unstable logs, we conduct two groups of experiments. First, for
the unstable log events, our model is trained on the original HDFS log datasets
and tested on the synthetic unstable log event datasets (NewTesting1). The
comparison results on the NewTesting1 set are shown in Table 2. We can note
that as the proportion of unstable log injection increases, the performance of the
five baselines continues to decline. The f1 value of our model Sprelog is around
0.94 based on different injection rates, which strongly proves that our method
has high robustness and can effectively solve the anomaly detection issue in
unstable logs. The main reason is that, during the log presentation process, our
model applies the pre-trained model and semantic vectors, projecting the logs
into higher dimensions, thus higher-level semantic information can be obtained.

Next, we conduct another group of experiments on the unstable log data.
Specifically, our model is trained on the original HDFS log datasets and tested on
the synthetic unstable log sequence datasets (NewTesting2). The experimental
results are shown in Table 3.

Table 3. Experiment results on synthetic HDFS dataset of untable log sequences (the
NewTesting2 set)

Injection ratio Metric LR [10] SVM [12] IM [13] PCA [11] LogAnomaly [14] PLELog [15] LogRobust [7] Sprelog

5% Precision 0.97 0.94 0.03 0.95 0.98 0.93 0.99 0.98

Recall 0.85 0.98 0.84 0.65 0.92 0.81 0.93 0.96

F1-score 0.96 0.96 0.06 0.77 0.95 0.87 0.96 0.97

10% Precision 0.44 0.77 0.03 0.96 0.92 0.96 0.94 0.96

Recall 0.93 0.97 0.97 0.63 0.96 0.76 0.99 0.97

F1-score 0.61 0.86 0.06 0.76 0.92 0.82 0.96 0.96

15% Precision 0.09 0.21 0.02 0.83 0.95 0.83 0.98 0.98

Recall 0.88 0.93 0.97 0.39 0.92 0.74 0.91 0.95

F1-score 0.17 0.33 0.04 0.53 0.93 0.78 0.94 0.96

20% Precision 0.07 0.07 0.01 0.87 0.90 0.76 0.92 0.95

Recall 0.82 0.86 0.98 0.37 0.96 0.68 0.97 0.98

F1-score 0.12 0.14 0.03 0.52 0.93 0.72 0.95 0.96

We can observe that LogAnomaly [14], LogRobust [7], and our proposed
Sprelog are semantic-based models. When the injection ratio of log sequences
increases, these models performance reduces slower compared to other methods.
In particular, our proposed method Sprelog still remain significant performance,
when the injection ratio of log sequences increases, log sequences suffer from
missed, duplicated, or shuffled problems. The f1 value of the model Sprelog
is basically around 0.96. The reason is that our model uses a self-matching
network in the log sequence representation. The self-matching network explores
the contextual information embedded in the log sequence and learns the different
importance of log events through the attention mechanism. Therefore, it makes
our model robust to small changes in the sequence.
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4 Conclusion

Engineers can use logs (for example, system log messages) to investigate the
anomalies. However, due to the continuous evolution of log statements and the
emergence of processing log noise, the current log anomaly analysis model are
not robust enough. To overcome this issue, we propose a new log-based anomaly
detection method - Sprelog. Which can capture the inconsistency in the evolution
of log sequences and higher-level semantic component information. Experiment
results on publicly available datasets, our proposed Sprelog model achieves state-
out-of-art performance, outperforming the most advanced log-based anomaly
detection models that exist. In the future, our research group would like to
improve the computing speed of Sprelog to further level up the performance of
our solution.
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Abstract. In this paper, we present a load variation aware adaptive
stochastic method for user service request allocation and service place-
ment in Multi-Access Edge Computing (MEC). Simulation based exper-
imental results on the benchmark EUA dataset show that our approach
can better handle workload fluctuations as compared to state of the art.

Keywords: Edge computing · Service allocation · Stochastic
optimization

1 Introduction

In Multi-Access Edge Computing (MEC), a service allocation policy determines
which service requests from which mobile user is provisioned by which MEC
server [3], while a placement policy determines the service containers to be
deployed on each MEC server [3]. MEC servers have capacity constraints and
thus cannot host or execute all service containers simultaneously. Deciding which
services to host at which server is difficult apriori, considering the spatial and
temporal diversity of user service requests, mobility of users, latency constraints
of application services and varying resource footprints for service execution. In
the event that a service request cannot be allocated on any edge server, either
due to absence of the required service container or lack of resources for execution,
it is allocated to a cloud server with additional user perceived latencies.

This paper presents a joint optimization approach for user request allocation
and container placement considering runtime load variations of service execution
arising due to heterogeneous service invocations and their consequent resource
demands, and edge server capacity constraints. A challenge for allocation is in
deriving an estimate of the amount of resources that may need to be allocated
to each container at runtime for execution. This is often difficult to learn or
predict based on past usage records, due to the dynamic nature of the services,
the invocation patterns and the resulting execution variations. In this paper, we
propose a novel stochastic optimization model for the joint service allocation
and placement problem. We use random variables to model the resource require-
ments of service requests, thereby effectively representing their stochastic nature
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 747–755, 2021.
https://doi.org/10.1007/978-3-030-91431-8_51
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and solve a stochastic programming formulation to generate optimal solutions
through determinization. Our formulation thus entails a more accurate estimate
of resource variability and yields a better allocation any time when executed
on user service requests. Our provisioning model is fully dynamic, wherein we
execute the allocator whenever the existing allocation needs to be revisited. We
consider an event driven dynamic approach - our algorithm is executed when-
ever: (a) users move in/out of coverage zones of edge servers, (b) users or edge
servers become inactive, or (c) new service requests are placed. We propose a
simple caching based heuristic solution on top of our basic model for real-time
dynamic execution of the algorithm. The ability to model both resource and
environment variations is a novelty that distinguishes our work from others.

We present experimental results on the EUA dataset, a real-world MEC
benchmark. We compare our results with state-of-the-art approaches that do
not consider workload fluctuations to show that our framework fares better in
terms of lesser runtime overflows and more user onboarding on the edge servers.

2 Problem Formulation

Our stochastic constraint model for the user server allocation and placement
problem considers the parameters memory, CPU, bandwidth as random vari-
ables. Further, we assume that even the distributions of these variables are
unknown, we only have information about their expected mean and variance.
We formulate stochastic constraints and present solutions that satisfy the con-
straints probabilistically, as is usually done in stochastic programming. We dis-
cuss our approach in detail in the following section. We have the following in
our context:

– A set of edge services S = {s1, s2, . . . , sp}, a set of users U = {u1, u2, . . . , un}.
– A set of edge servers E = {e1, e2, . . . , em}.
– A set R = {r1, r2, . . . , rk} of service requests from users in U for services ∈ S.

Each request ri is owned by an user u(ri) ∈ U for some service in S.
– For each server, we have memory capacity Qe, CPU compute capacity Ce,

uplink bandwidth capacity B↑
e and downlink bandwidth capacity B↓

e .
– For each request ri ∈ R, we have a set of parameters modeled as:

• Memory: random variable sri
with mean μri

s and variance (σri
s )2

• CPU: random variable (cri
) with mean μc

ri
and variance (σc

ri
)2

• Uplink bandwidth: random variable (b↑
ri

) with mean μb↑
ri

, variance (σb↑
ri

)2

• Downlink: random variable (b↓
ri

) with mean μb↓
ri

, variance (σb↓
ri

)2

Further, as part of our stochastic formulation, we have a bound on each param-
eter Qe, Ce, B

↑
e and B↓

e to be satisfied with probability ≥ 1 − α, where α is
the overflow probability. The essential idea is to place containers and onboard
users on the edge servers, while satisfying capacity constraints on the server
parameters probabilistically. To develop the stochastic model, we first discuss a
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simple integer programming model below based on the one in [6], considering all
users are covered by all edge servers for simplicity. We later dispense with this
requirement in a later subsection when we present our formulation.

Let Ec represent the cloud server. Let Eu ⊆ E denote the set of edge servers
covering user u ∈ U . An user can be under the coverage area of multiple edge
servers. The set Se ⊆ S denotes the services at server e ∈ E. Each edge server
can host a number of services from S having different resource requirements.
Requests from user u ∈ U under the coverage of a server e ∈ E can be allocated
provided that the service container can be hosted at the edge server with the
required memory, computation and bandwidth resources available. The cloud
server Ec hosts all available services. In the case that an user is not allocated to
any edge server due to resource constraints, we allocate the user to Ec.

2.1 A Simple Optimization Model

We first present a standard Integer Linear Programming (ILP) formulation for
allocation and placement. The ILP formulation below attempts to minimize the
number of users sent to the cloud server. We use a binary (0/1) decision variable
vij for the ILP formulation, where vij = 1 denotes service request ri is onboarded
on some edge server ej ∈ E. Let Re ⊆ R denote the set of requests allocated to
edge server e ∈ E. Thus, for each request rk in Re, we have vke = 1.
Objective:

Maximise :
∑

ri∈R,ej∈E

vij (1)

Subject To:∑

rk∈Re

crk
≤ Ce (2)

∑

rk∈Re

srk
≤ Qe (3)

∑

rk∈Re

b↑
rk

≤ B↑
e (4)

∑

rk∈Re

b↓
rk

≤ B↓
e (5) ∀e ∈ E,Re ∩ Re′ = φ where e, e′ ∈ E and e �= e′ (6)

Equation 1 is the optimization objective. Any feasible allocation needs to restrict
each user to be allocated to only 1 edge server, expressed by Eq. 6. Equations
2, 3, 4 and 5 ensure that the combined requirements of the requests allocated to
any edge server satisfy memory, CPU, uplink, downlink capacities.

2.2 Stochastic Optimization Model

The constraints involve random variables crk
, srk

, b↑
rk

, b↓
rk

and cannot be directly
solved by ILP solvers. To deal with the randomness of resource elements, we for-
mulate probabilistic capacity constraints with bounding values to express the
requirement that the capacity constraints at each edge server for each of the
parameters have to be satisfied with a certain probability. This is in sharp con-
trast to allocation and placement methods that treat these as constants, and for-
mulate optimization models to satisfy cumulative resource bounds on the same
for each edge server. To this end, we define an overflow probability α between
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0 and 1. Consequently, the probability 1 − α represents the probability of the
event where the allocation strategy of users to the edge server does not over-
flow, hence total resource utilization by the services are within the edge server
resource capacity. The probabilistic version of resource constraints are as below.
∀e ∈ E, we have:

P

[
∑

rk∈Re

crk
≤ Ce

]
≥ 1 − α (7) P

[
∑

rk∈Re

srk
≤ Qe

]
≥ 1 − α, (8)

P

[
∑

rk∈Re

b↑
rk

≤ B↑
e

]
≥ 1 − α (9) P

[
∑

rk∈Re

b↓
rk

≤ B↓
e

]
≥ 1 − α (10)

Determinization: A standard approach for solving such optimization problems is
to transform the probabilistic constraints into equivalent deterministic ones. By
doing so, the original linear stochastic constraint may no longer remain linear
after the transformation. As in [4], we transform the probabilistic constraints
to their deterministic equivalents, thereby making them solvable by standard
solvers. We assume that the probabilistic distribution of the resource parameters
is unknown. In this case, we use the Chebyshev’s inequality [1] for analysis.

Consider a random variable X with mean μ and variance σ2(�= 0) and t be a
positive real number. The one-sided Chebyshev’s inequality (Cantelli’s inequal-
ity) can be stated as: P [X−μ

σ > t] ≤ 1
1+t2 .

As discussed, the resource requirements sri
, cri

, b↑
ri

and b↓
ri

of any service
request ri ∈ R requested by any user u ∈ U follows an unknown distribution
with mean μs

ri
, μc

ri
, μb↑

ri
, μb↓

ri
and standard deviation σs

ri
, σc

ri
, σb↑

ri
, σb↓

ri
respectively.

Let Xc
e =

∑

rk∈Re

crk
. Observe that Xc

e is a random variable, denoting the aggregate

memory demand at an edge server, following an unknown distribution with mean
as ηc

e =
∑

rk∈Re

μc
rk

and variance as (γc
e)

2 =
∑

rk∈Re

(σc
rk

)2.

Now, P [Xc
e ≤ Ce] ≥ 1 − α =⇒

P
[

Xc
e−ηc

e

γc
e

≤ Ce−ηc
e

γc
e

]
≥ 1 − α =⇒ P

[
Xc

e−ηc
e

γc
e

>
Ce−ηc

e

γc
e

]
≤ α

Using one-sided Chebyshev’s inequality with t = Ce−ηc
e

γc
e

=⇒ P
[

Xc
e−ηc

e

γc
e

>
Ce−ηc

e

γc
e

]
≤ 1

1+(
Ce−ηc

e
γc

e
)2

≤ α =⇒ ηc
e + γc

e

√
1−α

α ≤ Ce,

Thus, the transformed deterministic constraint formulation of Eq. 7 is:

ηc
e + γc

e

√
1 − α

α
≤ Ce, ∀e ∈ E, 0 ≤ α ≤ 1 (11)

Similarly, the transformations for Eq. 8, 9 and 10 ∀e ∈ E, 0 ≤ α ≤ 1 are:

ηr
e + γr

e

√
1−α

α
≤ Qe (12) ηb↑

e + γb↑
e

√
1−α

α
≤ B↑

e (13) ηb↓
e + γb↓

e

√
1−α

α
≤ B↓

e (14)



Service Allocation/Placement in Multi-Access Edge Computing 751

Finally, using the determinized constraints obtained above, and using K =√
1−α

α , the ILP formulation to maximize the number of users allocated on the
edge can be formulated as discussed below. We define the following:

xji =

{
1, If the service si is placed at edge server ej

0, Otherwise

yji =

{
1, If service request ri ∈ R is allocated to edge server ej

0, Otherwise
Objective:

Maximise
∑

ri∈R,ej∈E

yji (15)

Subject To:

– Integer Constraints:
xji ∈ {0, 1} : ej ∈ E, si ∈ S (16) yji ∈ {0, 1} : ej ∈ E ∪ {Ec}, ri ∈ R (17)

– Coverage Constraint:

yji = 0, ∀ri ∈ R, ej /∈ Eu(ri) (18)

u(ri) is the owner of request ri and Eu(ri) is the set of servers covering u(ri).
– Service Placement Constraint:

yji ≤ xji, ∀ej ∈ E, ri ∈ R (19)

– Memory Constraint:

∑

ri∈Re

xjiμ
s
ri

+ K

√ ∑

ri∈Re

xji(σs
ri

)2 ≤ Qe,∀e ∈ E (20)

– Computation Load Constraint:

∑

ri∈Re

yjiμ
c
ri

+ K

√ ∑

ri∈Re

yji(σc
ri

)2 ≤ Ce,∀e ∈ E (21)

– Bandwidth Constraint ∀e ∈ E:
∑

ri∈Re

yjiμ
b↑
ri

+ K

√ ∑

ri∈Re

yji(σb↑
ri

)2 ≤ B↑
e (22)

∑

ri∈Re

yjiμ
b↓
ri

+ K

√ ∑

ri∈Re

yji(σb↓
ri

)2 ≤ B↓
e (23)

– User-Server Mapping:
∑

ej∈Eu∪Ec

yji = 1,∀ri ∈ R (24)
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The integer program formulation aims to maximize the number of users allocated
to the edge, as in Eq. 15 along with other constraints. Users should only be
allocated to an edge server when within the coverage of that edge server, this is
expressed in Constraint 18. A service provisioned has to be hosted on the edge
server, as expressed in Constraint 19. A single user should not be allocated to
more than one edge server, as in Constraint 24. The constraints in Eqs. 20, 21,
22 and 23 are deterministic ones which bound the overflow probability on each
server. A solution satisfying all constraints for a given α is an allocation for a set
of user requests to a given set of edge servers, such that the overflow probability
on the aggregate resource demand of the requests allocated to an edge server is
bounded for each of memory, compute, uplink and downlink bandwidth.

2.3 Putting Everything Together

Our allocation and placement scheme is fully dynamic, wherein we execute the
above whenever an existing allocation needs to be revisited. In the initial step, we
solve the above constraint model for the initial set of user service requests, edge
servers and user positions. The allocation produced by the optimization solver
is used to set up the binding between servers and user requests, as mandated by
the constraint model. Following this, we consider an event driven dynamic app-
roach - our algorithm is executed whenever users move in/out of coverage zones
of edge servers, users or edge servers become inactive or new service requests are
placed. As and when any of these events happen, the constraint model is recom-
puted with the changed parameters. To expedite this computation, we consider
a simple heuristic approach on top of the constraint model to incorporate real
time dynamic execution requirements. The heuristic stores and judiciously reuses
the solutions from earlier instances. Whenever any of the above events happen,
the integer programming formulation is modified to include equality constraints
in the stochastic formulation for users whose parameters do not change. Thus
we reuse the existing solution for those users i.e. we keep the user-server bind-
ing unchanged for such users. Consider that at time instant t1, service requests
from users u1 and u2 are bound to servers e1 and e2 respectively. Suppose at
time instant t2, user u2 moves out of the coverage of e2. In such a case, we
re-execute the constraint model with the new coordinates for u2, however, our
heuristic excludes u1 from the computation and forces the solution e1 to u1 and
a new solution for u2 only is computed. This helps to reduce the search space
that the optimization solver needs to examine for generating a solution, thereby
effectively reducing the time taken to obtain the solution.

3 Experiments and Results

We use the EUA [5] data-set for edge server and edge user locations. The coverage
areas of edge servers are set to values less than 150 m radius. We randomly select
several users and include the following randomly: (a) to simulate user movement,
assign 20% users with 0m/s speed to represent static users, 30% users with speed
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between 1−2m/s, the average walking speed of humans, and the remaining 50%
users with speed between 10 − 20m/s, the average vehicle speed in the city (b)
assign an initial direction between 0◦ to 360◦ which follows the random way-
point mobility model [5] and (c) remove and add users. The overflow probability
α is set to 0.15. We average over 50 repeated experiments. The resources of each
server and requirements of service requests are represented as [C, R, BU, BD]
and resource availability of each edge server is set to [10 GHz, 20 GB, 15 Mbps,
35 Mbps]. The services requested by users are taken from the zipf distribution
[6] which is mapped randomly to one of the five services shown in Table 1 list-
ing some predetermined range of values, representative of widely used services
hosted on the edge servers [6], from which the values are generated randomly. For
example, if a request is mapped to the Augmented Reality service, the memory
requirement value μr

s will be assigned randomly from the range 1 to 4. The five
services used in this experiment are shown in Table 1. We compare our proposal
with algorithms (ILP and ILP approximation) provided in [6]. We use Gurobi
as the ILP solver [2]. Whenever an event is registered, our dynamic event-driven
algorithm is executed with the updated environmental scenarios. We adapt the
ILP and ILP approximation algorithms in [6] to also run in a similar manner
since they can also be used in an event-driven context. The time out for all the
algorithms is set to 25 s, i.e., whenever an event occurs, the maximum amount
of time that each algorithm runs is set as 25 s. The results obtained within the
25 s timeout is utilized as the new allocation. In case of timeouts, we utilize the
partial results generated by the ILP solver Gurobi within that time frame. We
consider two scenarios for each set of experiments in conjunction with the ILP
and approximation approaches: (i) utilize the maximum resource utilization and
(ii) utilize the average resource utilization. The maximum value used for the ILP
is computed using the maximum value observed among 1000 random samples
using mean and variances as given in Table 1. Similarly, the average value is esti-
mated by averaging over 1000 random samples from a normal distribution (to
demonstrate our approach in known scenarios). All experiments are conducted
on an Intel Core i5-8250U processor with 8 GB RAM.

(a) Allocation: E=30 (b) Execution Time: E=30 (c) Unused(%): E=30

Fig. 1. Maximum case with E = 30
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(a) Allocation: E=20 (b) Allocation: E=30 (c) Overflow(%): E=20

Fig. 2. Varying Servers (E) with Average Case

3.1 Results

Figure 1a depicts the number of users allocated with E = 30 for resource request
sizes. The resource availability of servers is kept fixed at [10 GHz, 20 GBs, 15
Mbps, 30 Mbps] while the number of services is fixed at 5. The maximum case
approach in traditional approaches being conservative allocates less number of
users, however, our proposal obtains higher number of users allocated to the edge
server. Figure 1c represents unused resource percentage on edge servers. Due to
less number of users being allocated to edge server in other allocation policies,
the unused resource percentage is higher in case of [ILP] and [ILP approx].
Similarly, Figs. 2a and 2b depict the number of users allocated when varying the
number of edge servers assuming the average values for resource request sizes.
Here, the number of allocations generated by our approach is lower to avoid
overflow. As depicted in Fig. 2c, the overflows due to allocation generated by
the stochastic approach is negligible. Whenever an overflow does indeed occur,
we handle overflow scenarios by re-allocating users involved in the overflow to
the cloud server, with additional access latencies. The additional latencies to the
cloud is taken as 112ms, as shown in [7] measured as the real world round-trip
latency to a public cloud provider. Figure 3 illustrates the extra latencies incurred
due to overflow for the set-up in Fig. 2. In certain cases, the extra latencies are
almost negligible as can be seen in the figure. The access latencies vary in other
scenarios, however, on an average, the stochastic approach outperforms the other
approaches. The stochastic optimization approach performs well in comparison
to traditional approaches which do not take into account workload variations
and performs especially well in large scale scenarios where a greater variation in
the number of allocated users at edge servers is observed. Even in the situations
of overflow, the incurred latencies as a result of re-allocating requests to the
back-end cloud is lower for our approach as compared to others.
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Fig. 3. Extra latencies for over-
flows with average case, E = 30

Table 1. Service parameter values used

Services Resources

Computation Memory Uplink
Bandwidth

Downlink
Bandwidth

Mean Std Mean Std Mean Std Mean Std

Video streaming 0 0 1–4 0–1.3 0 0 1–8.5 0–2.8

Face recognition 0.4–1.6 0–0.5 1–5 0–1.6 1–4 0–1.3 0 0

File compression 0.05–0.2 0-0.06 0.02 0 1–4 0–1.3 0.25–1 0

AR 0.3–1.2 0–0.4 1–10 0–3.3 1–4 0–1.3 0.25–1 0–0.3

ML Inference 0.35–1.4 0–0.6 1–10 0–3.3 0.5–2 0-0.6 0.1 0

4 Conclusion and Future Work

In this paper, we propose a joint service allocation and placement policy which
takes into account the stochastic nature of service workloads. We perform exten-
sive experiments on real-world datasets to demonstrate the effectiveness of our
approach. As future work, we plan to design a stochastic approximation algo-
rithm which builds on our present proposal.
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Abstract. Multi-cloud makes it possible to effectively utilize various
cloud services provided by multiple cloud providers at different locations.
To process the requests for latency-sensitive applications, cloud brokers
must select proper cloud services in multi-cloud to minimize the net-
work latency without running into the risk of over-spending. The prob-
lem of location-aware and budget-constrained service brokering in multi-
cloud demands a machine learning approach to handle the highly dynamic
requests. In this paper, we apply deep reinforcement learning to solve the
problem. The proposed algorithm, named DeepBroker, can dynamically
and adaptively select virtual machines in multi-cloud for new arriving
requests at a global scale. Specifically, DeepBroker trains brokering poli-
cies by employing a deep Q-network combined with the newly designed
state extractor and action executor. To ensure financial viability, we intro-
duce a penalty-based reward function to prevent over-budget situations.
Evaluation based on real-world datasets shows that DeepBroker can sig-
nificantly outperform several commonly used heuristic-based algorithms
in terms of network latency minimization and budget satisfaction.

Keywords: Cloud service brokering · Multi-cloud · Location-aware ·
Budget-constrained · Deep reinforcement learning

1 Introduction

Gartner forecasts that the worldwide public cloud service revenue will exceed
300 billion U.S. dollars in 2021. In the booming public cloud marketplace, multi-
cloud has become a popular cloud ecosystem, because it allows cloud users to
share the cloud services across multiple cloud providers to achieve high quality
of services with low operation cost and also avoid vendor lock-in [9,12]. By
providing a single entry point to multiple clouds, cloud broker is responsible
for the deployment and management of cloud services for cloud applications on
behalf of the cloud users [8,11].
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The network latency between cloud users and cloud services in different loca-
tions significantly affects the performance of cloud applications [3], especially
for latency-sensitive applications, e.g., patient respiratory monitoring and visi-
tor identification [5]. To satisfy cloud users’ requirements on low latency, leading
cloud providers have established data centers in many geographic locations. Note
that the prices of cloud services in different regions can vary substantially. For
example, the prices of m6g.large (Linux) from Amazon EC21 are $0.077 and
$0.1224 per hour in Northern Virginia (USA) and Sao Paulo (Brazil) respec-
tively. This raises the problem to select proper services from multi-cloud data
centers for various user requests. In [3,7], this problem is studied to select vir-
tual machines (VMs) to minimize the total cost and network latency between
cloud users and selected VMs. Concretely, the two objectives are transformed
into a single objective through weighted sum. From the perspective of cloud
brokers, the problem formulation fails to satisfy the practical requirements, e.g.,
the stringent budgetary control to ensure financial viability [10,11]. Therefore,
we study the Location-aware and Budget-constrained Service Brokering in Multi-
cloud (LBSBM) to minimize the network latency within the total budget over a
time span such as a billing day.

The LBSBM problem is highly challenging because the user requests are
highly dynamic in terms of resource requirements and geo-distribution. Recently,
Deep Reinforcement Learning (DRL) has been successfully applied to various
combinatorial optimization problems with high dynamicity [2,13]. In a DRL
system, an agent interacts with an environment by iteratively observing the
state of the environment, choosing an action to perform, and obtaining a scalar
reward. The goal of the agent is to optimize the expected cumulative reward.
For this purpose, the DRL system applies a deep neural network, e.g., deep
Q-network (DQN) [6], to capture the optimal action-selection policy.

There are two key advantages of using DRL to solve the LBSBM problem.
On the one hand, the trained deep neural network, as a model of the service
brokering policy, can maximize the overall reward during a long period of system
operation. On the other hand, the neural network presents a computationally
efficient way to select VMs for handling new arriving user requests.

However, we have two major challenges in applying DRL to the LBSBM
problem. First, because theoretically cloud brokers can select an unlimited num-
ber of VM instances in multi-cloud, a fixed-size description of the system state
is difficult to obtain. Second, to meet the budgetary constraint, DRL requires
a specific mechanism to prevent the overuse of expensive VMs. The aim of this
paper is to tackle these two challenges and propose a new DRL-based algorithm
with novel components: a state extractor to extract information for all available
VM types (determinate amount) and an action executor to identify specific VM
instances for processing user requests. Moreover, we design a new penalty-based
reward function to train the deep neural network so that the brokering policy
can generate budget-compliant solutions.

1 https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/
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2 Problem Description

Generally, a broker can select various VMs from multiple cloud providers to
satisfy any user request. A set of VM types V is offered by different cloud
providers at a set of regions R covered by multi-cloud data centers. Each type
of VM v ∈ V provides the capacities of CPU Gv and memory Mv. Besides, for
each VM type v we use Rv ⊆ R to denote the set of available regions offered by
its cloud provider.

Let N denote the number of requests submitted to the broker during a time
period T (e.g., one billing day). Each request i from user location ui has resource
requirements, e.g., CPU gi and memory mi, and specifies how long it will use
the resource for, denoted by ti. When request i arrives at time Ti, the broker
will instantly assign it to an VM instance. The VM instance can be either an
idle VM instance or a newly selected VM instance.

As in [3], the following assumptions are made in this paper.

– The same VM instance can be used to process one request or multiple requests
sequentially. Each request can only be assigned to a single VM instance that
will process the request.

– VM usage is charged on an hourly rate, and the price is determined based on
its provider, type, and region.

– Once a VM instance is selected, its configuration cannot be changed during
its use.

We also consider the following constraints when request i is assigned to an
instance of VM type v.

gi � Gv, mi � Mv, ti � �v,i, (1)

where �v,i is the leased VM hours of v for request i. The above constraints in Eq.
(1) are important to meet the resource demands. In the remaining of this paper,
we use capacity-feasible VM types to refer to the VM types whose capacities are
at least as high as the resource demands.

To process the N requests during time span T , the total cost (TC) and
average network latency (ANL) can be calculated as follows:

TC =
∑

v∈V

∑

r∈Rv

Cv,rxv,r, ANL =
1
N

N∑

i=1

∑

v∈V

∑

r∈Rv

Li,ryi,v,r, (2)

where Cv,r is the hourly price of VM type v ∈ V in region r ∈ Rv and xv,r is
the sum of leased hours of VM type v in region r. That is, xv,r is computed
by accumulating the hours of corresponding VM instances over T , including the
newly selected VM instances as well as the additional hours of selected VM
instances. On the other hand, we use the decision variable, yi,v,r ∈ {0, 1}, to
decide whether request i is assigned to an instance of VM type v ∈ V in region
r ∈ Rv. Li,r is the network latency between user location ui and region r.
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Therefore, the LBSBM problem aims at minimizing ANL, as defined in Eq.
(2), subject to the total budget:

TC ≤
N∑

i=1

bi, (3)

where bi is the budget for request i. We use budget feasible or feasible solutions
to refer to the solutions of request assignment during time period T that satisfy
the budgetary constraint. Following the recent research in [11] we define bi in
Eq. (4):

bi = Ci,minti + k · (Ci,maxti − Ci,minti), (4)

where Ci,max and Ci,min are the hourly prices of the most expensive VM type
and the cheapest capacity-feasible VM type for request i respectively. k ∈ [0, 1]
is the budget factor to determine how tight the budgetary control is. The larger
k is, the more budget the broker has.

3 DeepBroker: A DRL-Based Algorithm

In the LBSBM problem, each state transition occurs whenever a new request
arrives from a user. We define the DRL system as follows.

– State si: The observed state includes the new request i and all the leased
VM instances at Ti.

– Action ai: To select a specific instance of capacity-feasible VM types, i.e.,
an idle VM instance or a newly selected VM instance, for request i.

Fig. 1. Training DQN-based brokering policy.

Figure 1 shows the DQN-
based brokering policy, which
is composed of State Extrac-
tor, Deep Q-Network, and
Action Executor. Concretely,
State Extractor transforms
the information regarding the
new user request and cur-
rently leased VM instances to
a state feature vector as the
input of DQN. Afterwards,
DQN generates Q-values, which decide the VM type as the input of Action
Executor. Finally, Action Executor uses the VM type to select a specific VM
instance to process the request. DeepBroker trains the brokering policy based
on request arrival history. Subsequently, the trained brokering policy is commis-
sioned to select VM instances for each new request. In the following, we provide
a detailed description for each component of the DQN-based brokering policy.



760 T. Shi et al.

State Extractor. State Extractor first translates the user location of request
i into a latency vector li = [Li,r]r∈R including the network latency between
user location ui and all the regions R covered by multi-cloud data centers.
Next, State Extractor extracts information for each VM type v ∈ V in region
r ∈ Rv. Subject to the resource constraints defined in Eq. (1), State Extrac-
tor first checks the CPU and memory capacities of VM type v. If v satisfies
the resource demands for request i, State Extractor then checks whether there
are certain idle VM instances. If there are several idle VM instances of type
v in region r, State Extractor uses the maximum remaining time of these VM
instances as the state feature of VM type v in region r, i.e., mrtv,r. The rationale
behind it is two-fold. On the one hand, the cost for processing request i depends
on the remaining time of the assigned idle VM instance. On the other hand,
the idle VM instance with mrtv,r has the greatest potential on cost saving for
processing request i, because the instance is most likely to process the request
without leasing additional VM hours. If VM type v is not capacity-feasible or
does not have the corresponding idle VM instances, State Extractor sets its
state feature as 0. Finally, State Extractor returns the extracted feature vector
fi = [li, gi,mi, ti, [mrtv,r]v∈V,r∈Rv

].

DRL for Training DQN. We define the reward function to direct DRL to
minimize ANL among all user requests during time span T subject to the bud-
getary constraint. Suppose that request i is assigned to an instance of VM type
v in region r based on action ai, the corresponding reward is:

ri = −Li,r − max(0, (Cv,rti − bi)). (5)

We apply Q-learning to maximise the expected cumulative reward, i.e., the
total rewards received by following the learned Q-function from any given state.
DRL applies DQNs as function approximators. Following many existing research
works [2,13], we use experience replay [6] to stabilize Q-learning.

Action Executor. Based on the selected VM type v in region r, we further
propose an Action Executor to determine the specific VM instances for assigning
requests. Action Executor first extracts the set of idle instances of the capacity-
feasible VM type v in region r, i.e., idleVv,r. If idleVv,r is not empty, Action
Executor returns the idle VM instance with the maximum remaining time. Oth-
erwise, Action Executor returns a new VM instance of type v in region r for
request i.

4 Experiments

Datasets. Based on the latest report regarding the worldwide Infrastructure-
as-a-Service public cloud service market share, we have collected the real VM
type descriptions and pricing schemes in April 2021 from three leading cloud
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providers, i.e., Amazon Web Services (AWS)2, Microsoft Azure3 and Alibaba
Elastic Compute Service (ECS)4. 12 different VM types (4 from AWS, 4 from
Azure, and 4 from Alibaba) have been included in the experiments. We also
consider a total of 8 regions for major AWS, Azure and Alibaba data centers, i.e.
Northern Virginia, Dublin, Singapore, Tokyo, Sydney, Northern California, Sao
Paulo, and Mumbai. Furthermore, we adopt 36 user locations from 35 countries
on 6 continents in the Sprint IP Network5 to simulate the global user community.

We trace user requests based on the public VM request workload in the
Microsoft Azure dataset [1], which contains request arrival time, lifetime,
resource requirements in terms of CPU and memory, and subscription infor-
mation. Because the workload within a subscription is logically related [1], we
attach the identical user location to the requests from the same subscription in
the dataset. Following [2], we scale down the request arrival rate by 20 for faster
training convergence, while retaining the original arrival pattern of the complete
workload.

To evaluate the network latency between users and assigned VM instances, we
use real-world observations of network latency from Sprint IP backbone network
databases (see Footnote 5).

Algorithm Implementation. We implement DeepBroker using PyTorch on
a server with Intel Core i7-8700 CPU (3.2 GHz and 16 GB of RAM). The built
DQN has two fully-connected hidden layers, each with 64 nodes. The input
and hidden layers use rectified linear units (ReLUs). We apply MSE as the loss
function and Adam [4] as the optimizer. Refer to [13], the initial and minimum
ε, i.e., the probability that DRL randomly chooses an action, are set as 0.2 and
0.01, respectively. Other algorithm settings include: learning rate α is 0.001,
discount factor γ is 1.0, and mini-batch size is 32.

We extract one day’s workload with 365 user requests from the Azure dataset
for training the DQN-based brokering policy. In training, we implement 4 budget
factors, i.e., 0.2, 0.4, 0.6, and 0.8, to simulate different budgetary levels. The one-
day workload is trained repeatedly for 100 episodes until the model converges.

Baselines. The greedy heuristic in [3] iteratively assigns each user request to
the best possible VM instance in terms of the weighted sum of the normalized
cost and network latency. Concretely, the weight for cost ω1 and the weight for
network latency ω2 are set as different combinations (ω1 + ω2 = 1) to reflect
the different preference of the broker. For example, for values of ω1 close to
1, the broker prefers low-budget solutions, which may result in higher latency.
To make the greedy heuristic adaptive to our budget-constrained optimization
problem, we tune an appropriate combination of ω1 and ω2 based on the training

2 https://aws.amazon.com/ec2/instance-types/.
3 https://azure.microsoft.com/en-us/services/virtual-machines/.
4 https://www.alibabacloud.com/product/ecs..
5 https://www.sprint.net/tools/ip-network-performance.

https://aws.amazon.com/ec2/instance-types/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://www.alibabacloud.com/product/ecs.
https://www.sprint.net/tools/ip-network-performance
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workload so that ANL is minimized subject to the total budget. For convenience,
we denote the baseline algorithm as Greedy.

The heuristic in [13] first identifies a set of eligible processors with enough
resources that can process the arriving request. Then, it assigns the request to
the processor with the highest post-allocation utilization. In multi-cloud envi-
ronment, the VM instance with the highest post-allocation utilization can be an
idle instance or a new instance. We adapt the heuristic to the LBSBM problem
as follows. If there are idle instances with the highest post-allocation utilization,
we assign the user request to the closest one (i.e., with the minimal latency).
Otherwise, we select the closest instance of VM type subject to Cv,rti � bi to
process request i (i.e., for budget compliance). For convenience, we denote the
baseline algorithm as Consolid.

Evaluation Results. We evaluate the performance of DeepBroker and base-
lines using a workload of 362 requests on the following day in the Azure dataset.
Each experiment is repeated independently for 30 times. The mean and standard
deviation of ANL and TC achieved by the competing algorithms under different
budget factors are presented in Table 1. For algorithm Greedy, the tuned ω1 and
ω2 based on the training workload are also included in Table 1.

Table 1. Algorithm performance comparison for the LBSBM problem under different
budget factors (ANL in ms., total budget and TC in USD, the best is bold).

k Total
budget

DeepBroker Greedy based on [3] Consolid based on [13]

ANL TC n ANL TC ω1 ω2 n ANL TC n

0.2 178.71 26.83 ± 0.23 164.98 ± 4.8 249 124.4 ± 0 182.21 ± 0 1.00 0.00 181 105.73 ± 0 192.39 ± 0 172

0.4 197.68 26.93 ± 0.3 162.18 ± 3.61 253 61.83 ± 0 191.75 ± 0 0.95 0.05 221 97.53 ± 0 196.1 ± 0 171

0.6 216.65 26.86 ± 0.2 171.65 ± 5.83 245 38.17 ± 0 219.09 ± 0 0.85 0.15 225 73.35 ± 0 221.56 ± 0 172

0.8 235.62 27.01 ± 0.29 167.82 ± 6.58 249 26.55 ± 0 237.6 ± 0 0.75 0.25 230 73.35 ± 0 221.56 ± 0 172

Table 1 indicates that only when k = 0.4, Greedy assigns user requests within
the total budget. For 2 out of 4 cases (k = 0.2 and 0.6), Consolid cannot gener-
ate feasible solutions. Without the information or knowledge from the training
workload, it is challenging for Consolid to meet the budget requirement in the
complicated multi-cloud brokering environment. Based on our proposed penalty-
based reward function, the brokering policy obtained by DeepBroker can effec-
tively prevent the over-budget situations with the lowest TC under all budget
factors.

Only considering ANL of the budget feasible solutions, DeepBroker achieves
56% less ANL than Greedy and 72% less ANL than Consolid when k = 0.4, and
63% less ANL than Consolid when k = 0.8. The observed performance differ-
ences between DeepBroker and the baseline algorithms are all verified through
statistical test (Wilcoxon Rank-Sum test) with significance level of 0.05. This
reveals the effectiveness of DeepBroker, as compared to the heuristic-based opti-
mization algorithms. We also observed that DeepBroker has small standard devi-
ation, confirming its stability and reliability for the LBSBM problem.
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Analysis. We analyse the experimental results by checking the total number of
leased VM instances for the test workload. Corresponding results are shown in
Table 1 (n columns). With the best performance in terms of ANL, DeepBroker
always has the biggest n among the competing algorithms. The results are intu-
itive because using more VM instances means more requests can be processed
by the VM instances with shorter network latency. Greedy also shows the strong
relationship between n and ANL. That is, ANL decreases with the increasing
n under different k. However, using more VM instances, i.e., a bigger n, may
cause VM instances to become heavily underutilized. We can see TC of Greedy
increases tremendously with the increase of n. In comparison, DeepBroker per-
forms well with respect to both ANL and TC.

It takes less than 30 min to train DQN-based brokering policies until con-
vergence. The policies can select VM instances for arriving requests with trivial
computational overhead (within 1 ms), which is highly feasible in practice.

5 Conclusions

The paper studies the LBSBM problem, i.e., selecting VMs for arriving user
requests to minimize the average network latency of VMs subject to the total
budget over a time span. We propose a DRL-based algorithm, named Deep-
Broker, with the problem-specific state extractor, action executor, and penalty-
based reward function to train the DQN-based service brokering policies. The
experiments based on the real world datasets show the trained brokering poli-
cies significantly outperform several heuristic-based algorithms in terms of both
average network latency and budget satisfaction.
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Abstract. Edge node placement optimization has been an emerging
research area that has drawn extraordinary attention from the disci-
plines of distributed and services computing. Existing studies, neverthe-
less, barely focus on overall deployment cost minimization with edge node
site selection and server amount optimization, while bearing users’ delay
tolerance. In this paper, we focus on investigating feasible user delay
tolerance-aware edge node site selection and server placement optimiza-
tion strategies adaptive for real-world large-scale use cases, with the objec-
tive of deployment cost minimization. A Coverage First Search method is
proposed to address this problem in polynomial time. The experiments
conducted on a real-world dataset demonstrate the effectiveness of our
method.

1 Introduction

Mobile Edge Computing (MEC) is a network architecture accompanying 5G.
MEC deploys plenty of small-scale servers (known as edge servers or edge nodes)
to network edges in a distributed manner. Users stay closer to those edge nodes
in a MEC network, which not only can significantly reduce network latency but
also can provide substantial computing resources to mobile users [5].

Problem. In this paper, we study the problem of optimal edge node deploy-
ment, aiming to provide qualified and low-latency services to massive mobile
users city-wide with minimum cost. There are many factors that should be con-
sidered during the edge node deployment. First, the network QoS (Quality of
Service) guarantee is the baseline of the deployment. For example, delay, as one
of the most important QoS factors, should not exceed users’ tolerance [4]. Sec-
ond, minimizing the deployment cost is always welcome and should never be
neglected [1,6]. Third, the resource is finite, but the design of MEC is expected
to provide users ample resources, with which goal the MEC should be optimized
for higher productivity. [3,7,8]. Thus, the selected edge nodes with “just enough”
computation resources allocated is always the ideal case.

Motivation. There is always a trade-off between the edge node deployment cost
and the delay experienced by mobile users [5]. That trade-off is highly related
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 765–772, 2021.
https://doi.org/10.1007/978-3-030-91431-8_53
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(a) Initial network (b) OPT with 3.0s delay (c) OPT with 1.5s delay

Fig. 1. Example of optimal EN deployment under different delay tolerance

to edge node site selection and the corresponding resource allocation. Deploying
more edge nodes can potentially reduce the transmission delay by decreasing the
average distance between base stations and edge nodes. Also, adding more servers
(i.e. computing resources) into edge nodes can cut down the computation delay
as edge nodes would have higher computation capacity. However, both cases will
inflate the overall deployment cost. Therefore, with users’ delay tolerance, it is
necessary to find the most cost-efficient edge node deployment strategy such that
the overall deployment cost is minimized, as shown in the following example.

Example 1. Figure 1 demonstrates how users’ delay tolerance affects the opti-
mal edge node deployment when considering cost-efficiency. Figure 1a shows the
initial connections between base stations. Edge nodes will be deployed that co-
locate with base stations. Developing an edge node within a base station will
introduce a setup cost, while adding servers to an edge node to increase its com-
puting capacity will generate server purchase costs. Given users’ delay tolerance
threshold and the goal of cost minimization, placing just the right amount of
edge nodes accompanying workload-matched server numbers is the ideal case.

With the objective of minimizing the total cost, the optimal edge node
deployment strategy will vary under different users’ delay tolerance. Figure 1b
illustrates the optimal edge node placement in case the users’ delay tolerance
threshold is 3.0 s, where the most cost-efficient deployment is to develop two edge
nodes S1 and S2. Adding one more edge node is more expensive than adding more
servers to existing nodes. However, when we decrease the delay tolerance thresh-
old to 1.5s, the optimal placement becomes what is shown in Fig. 1c. To satisfy
this more rigorous delay tolerance requirement, there are two intuitive options:
continuously adding more servers to existing edge nodes to further decline the
computation delay, or developing a new edge node to decrease the transmission
delay. Figure 1c shows that the optimal solution is to develop a new edge node
instead of adding more servers.

To the best of our knowledge, few researchers attempted to address the trade-
off between cost and delay while considering the computation resource alloca-
tion [2,6]. Existing studies are subject to the following major limitations. First,
the scalability and practicability of existing solutions have not been fully explored
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for large-scale datasets. in reality, the number of deployed base stations is signif-
icant and keeps increasing (e.g., Shanghai in China is projected to have 50 5G
base stations per square km1). Designing a highly scalable and efficient solution
is therefore essential. Second, the issue of delay has not been well addressed.
The existing studies ignore the fact that the computation delay is supposed to
decrease with more servers placed in edge nodes.

Main Contributions. In this paper, we aim to address the trade-off between
the cost and delay by formulating our edge node deployment problem with the
objective of minimizing the deployment cost while considering users’ delay tol-
erance. Our deployment plan will not only explore optimal edge node sites but
also provide the optimal resource allocation according to the real workload in
edge nodes. Our major contributions include:

– We formulate a problem to address the trade-off between the deployment
cost, and the transmission and computation delay. We propose a peak-based
workload measurement for the robustness of our deployment. Moreover, we
define a delay measurement to make it fit in real-world cases (Sect. 2)

– We propose a Coverage First Search (CFS) algorithm to solve the defined
problem in polynomial time (Sect. 3).

– We conduct extensive experiments to demonstrate the effectiveness of our
method (Sect. 4).

2 Problem Formulation

In this section, we firstly define the MEC network and its components. Then, we
define the workload and delay measurement. Finally, we formulate our problem
with the goal of minimizing the deployment cost with delay tolerance satisfied.

Preliminaries. Here, we introduce some key concepts to facilitate our illustra-
tion across the paper.

MEC Network. The MEC network consists of a set B of base stations (BSs) and
a set S of edge nodes (ENs). Elements in both B and S are denoted by a tuple
(id, lat, lng, n) where lat, lng and n represent latitude, longitude and number of
servers added respectively. Following a widely adopted setting [3,7,8]: ENs are
co-located with BSs, we upgrade a BS to an EN by adding servers to it. Multiple
servers are allowed to an EN to provide enough computation capacity. Then, we
have: (1) ∀ b ∈ B, b.n = 0; (2) ∀ s ∈ S, s.n ≥ 1;

EN Setup Cost and Server Cost. We define two kinds of costs: EN setup cost and
server cost. Let pr denote the setup cost, which is the cost of upgrading a BS
to an EN, such as infrastructure renting fee and construction fee. Let ps denote
the server cost, which is the cost for purchasing new servers to ENs. To be more
specific, installing a server to a base station will cost pr + ps, while adding a
server to edge node will simply cost ps.

1 https://techblog.comsoc.org/2020/08/07/5g-base-station-deployments-open-ran-
competition-huge-5g-bs-power-problem/.

https://techblog.comsoc.org/2020/08/07/5g-base-station-deployments-open-ran-competition-huge-5g-bs-power-problem/
https://techblog.comsoc.org/2020/08/07/5g-base-station-deployments-open-ran-competition-huge-5g-bs-power-problem/
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Connectivity and EN Service Range. We define two BSs b1 and b2 are connected
if they meet a certain delay threshold which is constrained by transmission delay
and computation delay together. We will elaborate these two delays later in this
section. Then, the service range of an EN s ∈ S denoted as R(s) is represented
by a set of BSs, that are directly connected with s.

BS Assignment. Give that ENs may have their service range overlapped, we
assign base stations to edge nodes based on the following criteria: (1) a BS can
be assigned to one EN only; (2) the selected ENs cover all BSs in the network.
We assign EN with enough computation capacity to process all incoming tasks
from the assigned BSs and will not further offload the task to other ENs. We
represent the assignment with a set of key-value pairs A, where the key is the
EN, followed by a set of assigned BS as value, e.g. A[s1] = {b1, b2, b19, ...}.

Workload Measurement. Most of existing studies measures the workload of a
BS or an EN by task’s average requesting [7]. However, in real cases, the workload
usually fluctuates dramatically during a day [5], so the peak workload is non-
negligible in some cases considering the robustness of the network, especially
during the rush hour.

We propose a peak metric to measure the workload. We assume that the
tasks transmitted in the network are all data-intensive computing tasks, e.g.
HD videos, to guarantee that the MEC network is capable of dealing with over-
whelming workload. We define the task size of a single task as ξ in bits. Then
the peak workload will appear at the time period that has the largest number
of coming tasks. We assume the task can be processed as soon as it arrives. We
define tasks that have their processing time overlap as concurrent tasks. Let CT
denote the number of concurrent tasks and CTmax denote the largest number of
concurrent tasks that have occurred.

Thus, with the peak metric, we define the workload of a BS b as:

W (b) = ξ · CTmax (1)

Delay Measurement. Since we assume task offloading between ENs is not
allowed, there are two major delays: transmission delay for a task to transmit
between a BS and an EN and the computation delay for a task to be computed
in an EN [5], which are related to the channel’s transmission capacity and EN’s
computation capacity respectively.

Transmission Capacity. We adopt Shannon’s channel capacity formula2 to com-
pute a channel’s transmission capacity (denoted as Ctrams):

Ctrans = B log2 (1 +
SP

N
) (2)

In this equation, B represents the channel’s bandwidth, SP represents the
average received signal power over the channel and N represents the average
noise power over the channel. We assume that the signal power is identical to
2 Shannon theorem: http://www.inf.fu-berlin.de/lehre/WS01/19548-U/shannon.html.

http://www.inf.fu-berlin.de/lehre/WS01/19548-U/shannon.html
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all channels. Considering channel noise can be affected by many factors, such
as distance, environments and quality of cable3, we use a very common way
in the literature by assuming that the channel noise is only affected by the
distance [3,7]. We define the noise as N = α · d(s, b), where d(s, b) denotes the
distance between s and b, and α is a coefficient between N and the distance.

Computation Capacity. Adding servers to EN gives it computation capacity. We
assume that servers placed to EN have the same computation capacity μ bit/s.
Then, for an EN s with s.n servers placed, the computation capacity is:

Ccomp = s.n · μ (3)

Delay. The delay calculation depends on the data size and processing capacity4.
Since the delay incurred between a BS b and an EN s includes transmission delay
and computation delay, we define our delay model as

D(b, s) =
W (b)
Ctrans

+
W (s)
Ccomp

(4)

Definition 1 Qualified EN Placement Plan. Given a set of BSs B and a
delay threshold θ, select a subset S ⊆ B as ENs such that the following con-
straints hold: (1) ∀s ∈ S b ∈ A[s], D(s, b) ≤ θ; (2)

⋃
s∈S A[s] = B\S; (3)

∀si, sj ∈ S, si �= sj ,A[si] ∩ A[sj ] = ∅.
Intuitively, these constraints indicate that the total delay experienced by the

user does not exceed θ, S should serve all b ∈ B\S, and each BS will be assigned
to one and only one EN for task offloading, respectively.

Definition 2 Cost Minimization in MEC Edge Node Placement
(CMMENP). The CMMENP problem is to find a solution S∗ which can min-
imise the total cost

F (S∗) = arg min
S⊆B

∑

s∈S

(pr + s.n · ps) (5)

where F (S∗) denotes the total cost incurred by selecting S∗ as ENs, S is a
qualified EN placement plan, pr is the setup cost, and ps is the server cost.

3 Methodologies

In this section, we will introduce a greedy-based solution: Coverage First Search
(CFS), which is an efficient algorithm that aims to provide a solution in poly-
nomial time.

3 Noise: https://documentation.meraki.com/MR/WiFi Basics and Best Practices.
4 https://manuals.gfi.com/en/exinda/help/content/exos/how-stuff-works/network-

performance-metrics.htm.

https://documentation.meraki.com/MR/WiFi_Basics_and_Best_Practices
https://manuals.gfi.com/en/exinda/help/content/exos/how-stuff-works/network-performance-metrics.htm
https://manuals.gfi.com/en/exinda/help/content/exos/how-stuff-works/network-performance-metrics.htm
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Algorithm 1: CFS Algorithm
Input : Base Station set B, Delay threshold θ
Output: Edge Node set S

1 S= ∅, A ← ∅; // A: a set of 〈s : {b1, b2, ...}〉 for BS assignment

2 while B �= ∅ do
3 B ← getConnection(B, θ)
4 bs ← arg max{|R(b)| | b ∈ B}; A[bs] ← R(bs)
5 S ← S ∩ bs;
6 B ← B \ bs
7 foreach b ∈ A[bs] do
8 B ← B\ b

9 return S

In order to improve the computation efficiency, considering the objective of
cost minimization, we devise an approximate algorithm, Coverage First Search
(CFS). The core idea of CFS is to minimize the number of ENs being deployed,
as the construction cost of edge nodes (e.g., EN setup cost) is usually much
greater than the cost of a standard server (e.g., server cost) [6]. As shown in
Algorithm 1, we will first model the connections between BSs according to the
delay threshold θ (line 3). Then, we iteratively pick the BS which has the highest
number of connections as the site to construct an EN, and assign it with all its
connected BSs in its service range R (line 4). Finally, we remove the EN and its
assigned BSs from the input BS set (lines 6–8). We repeat this process until all
the BSs in the input set being assigned.

4 Evaluation

We conduct extensive experiments on CFS and random method to evaluate their
effectiveness with a real-world large-scale dataset.

4.1 Experiment Settings

Dataset. Our experiments are conducted on the Shanghai Telecom Dataset5.

Experiment Environment. All experiments are conducted on MacOS
(2.5 GHz Daul-Core Intel i7 processor and 16 GB memory). Our methods are
implemented in Java.

Parameter Settings. Following [6], we also set the ratio of edge node construc-
tion cost and a standard server cost as 4:1 and we set the computing capacity
of a standard server as μ = 100 bps. The bandwidth B is set to 200 Mbps6. The
Channel signal power SP is set to −35 dBm7. The single task size ξ is configured
5 ShanghaiTelecomDataset: http://sguangwang.com/TelecomDataset.html.
6 https://go.frontier.com/business/internet/200-mbps.
7 https://www.metageek.com/training/resources/wifi-signal-strength-basics.html.

http://sguangwang.com/TelecomDataset.html
https://go.frontier.com/business/internet/200-mbps
https://www.metageek.com/training/resources/wifi-signal-strength-basics.html
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(a) Deployment cost (b) # of EN selected

Fig. 2. Effectiveness with different BS input scale

to 15 bits8. Furthermore, all our experiments are conducted with a default delay
threshold θ = 14 s based on the empirical studies depicted in Sect. 4.2.

Evaluation Metrics. The effectiveness metrics include the deployment cost and
the number of selected ENs. We measure the effectiveness of CFS and Random
on different numbers of BSs.

Methods for Comparison. We compare the performance of the following two
methods: a Random method that randomly picks BSs and our proposed CFS
method.

4.2 Experimental Results

The deployment cost and the number of selected ENs of the aforementioned
candidate solutions on different BS input scales are shown in Fig. 2a and 2b.

As shown in Fig. 2a, compared with Random, CFS shows outstanding cost-
saving performance especially when the number of participated BSs is high.
The cost growth of CFS is relatively smoother than Random method with the
increasing number of BSs, which indicates its higher reliability.

We can observe from Fig. 2b that the numbers of ENs selected by CFS is
clearly smaller than that is selected by Random. It shows a steady increasing
trend for both random and CFS in terms of the number of EN selected, while
we can see obvious fluctuations in terms of the deployment cost in Fig. 2a. Such
phenomenon reflects the major limitation of CFS that it is incapable of finding
all potentially suitable EN locations and optimizing the assignment between BSs
and ENs, which causes the following problem: (1) its selected ENs may not be in
the optimal locations. (2) the ENs would require high computation capacity to
serve distant BSs. It explains the abnormal cost fluctuations experienced by CFS
(e.g. when the number of BSs is 800 in Fig. 2a). Similarly, the Random selection
also experiences such issue, as we can see obvious fluctuations for random either.

8 https://www.amaysim.com.au/blog/stuff-made-simple/internet-data-usage-guide.

https://www.amaysim.com.au/blog/stuff-made-simple/internet-data-usage-guide
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5 Conclusion

In this paper, we defined an MEC Edge Node Placement Problem to address
the trade-off between deployment cost and users’ delay tolerance. Within this
problem, we defined a practical and delicate delay measurement and propose a
peak workload metric. We proposed an approximate solution CFS whose effec-
tiveness is demonstrated via our extensive experiments on a real-world dataset.
For future works, we will focus on optimizing the proposed solutions to further
improve their effectiveness and exploring their performance with respect to the
average workload metric.
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Abstract. Recently, to mitigate tremendous damage caused by vari-
ous accidents, edge-cutting technologies are utilised to protect lives and
properties continuously. Specifically, edge based intelligent video systems
have been proved to be an effective tool to monitor and regulate these
public security accidents. In these systems, Edge User Allocation (EUA)
problem focuses on allocating edge resources to various calculating tasks
efficiently, which attracts much attention with multiple approaches pro-
posed. However, in these existing approaches, the priorities of tasks
and the varieties of these priorities are not fully considered. Furtherly,
these tasks’ priorities are not immutable, which depends on these pre-
vious moving persons in the evacuation process. In this regard, we take
these concerns into consideration and formulate a Priority-Awareness
Edge User Allocation (PA-EUA) problem. Then, we propose our novel
prediction-based approaches called UGP and CCGP. Lastly, three series
of extensive experiments are conducted on a widely-used real-world data
to evaluate our approaches against four representative approaches, and
the results show that our novel approaches dominate the performances.

Keywords: Edge computing · Edge user allocation · Prediction ·
Priority · RVO

1 Introduction

Recently, the increasing of public accidents occurring lead to massive property
losses and casualties. Thus, many edge-cutting technologies are combined with
traditional technologies. Specifically, as a traditional technology, video surveil-
lance systems play a vital role in the security area. Therefore, intelligent video
systems [7] based on edge computing are widely discussed. Due to the distributed
feature of edge computing, data analysis tasks can be processed by multiple edge
servers. And to tackle this allocation issue, the Edge User Allocation (EUA)
problem [4] has recently received great attention.

However, existing EUA does not fully consider the priorities of tasks and
the varieties of these priorities. Varieties of priorities make different allocation
results of tasks at different time spots. To satisfy high-priorities tasks as much
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 773–780, 2021.
https://doi.org/10.1007/978-3-030-91431-8_54
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as possible, tasks of lower priorities should transmit resources for tasks of higher
priorities. When transmitting tasks, it may causes high transmission costs. In
this regard, the Return Value Optimization (RVO) [1] algorithm is an effective
approach and RVO is suitable for our problem, as it can simulate the movement
of crowds in an urban area with avoiding collision.

(a) First case: crowds in a parade (b) Second case: changes of resource

Fig. 1. A motivating example (Color figure online)

A motivating example in considering the priorities of tasks and the varieties
includes two cases for tasks allocation. In Fig. 1(a), the first case shows the parade
in an urban area (Melbourne CBD area in Australia). Parade follows route (red
arrow), and several individuals (blue square) gather to join parade. Specifically,
there are five cameras (orange circle) C (the set of cameras ci) within the range
of two edge servers (blue triangle) S (the set of edge servers sj) respectively.
Assuming there are individuals moving from A to B at time spot t1 and t2
respectively. When the individuals at position A, task of camera c1 with a low
priority and can not be allocated. As the individuals moving to B at time spot
t2, c1 has a higher priority than before. Then, task c1 should be allocated on s1.

In Fig. 1(b), the changes of resource is shown to demonstrate the allocation
details. Tasks ci1 and ci2 are allocated on sj , which is described as sj < ci1, ci2 >.
At time spot t1, priorities of tasks c1, c2, c3, c4 and c5 are 1, 5, 3, 2 and 6. Tasks
c2 and c3 are allocated in s1, and c4 and c5 are allocated in s2. At time spot t2,
and the priority of c1 is increased from 1 to 4. According to the new priorities,
we reallocate the c3’s resource to c1 and c4’s resource to c3. Finally, c2 and c1
are allocated in s1, and c3 and c5 are allocated in s2.

In this paper, we make the following major contributions: 1) we formulate the
PA-EUA problem and prove its NP -hardness; 2) we creatively propose two novel
approaches based on prediction to protect crowds. One approach is Unrestricted
Greedy Prediction (UGP), which is proposed for the situation without involv-
ing transmission costs. Another approach is Cost Controlled Greedy Prediction
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(CCGP), which is proposed for the situation involving transmission costs; 3)
we evaluate our approaches and the approaches’ performance is superior to rep-
resentative approaches on a widely-used real-world dataset.

In the following of this paper, Sect. 2 reviews the related work. The PA-EUA
problem is formulated in Sect. 3. And the proposed approaches UGP and CCGP
are discussed in detail. Finally, we evaluate our approaches in Sects. 4 and 5
concludes this paper.

2 Related Work

Existing works in Edge Computing, Dynamic Allocation, Priority Based and
Prediction Approaches are valuable supports for our paper, respectively.

Currently, resource allocating in edge computing has been an important prob-
lem due to the general insufficiency of hardware resources. To solve this problem,
Xu et al. [8] use a utility-aware resource allocation model to allocate resources.
In comparison, edge computing is our background, and ours focuses on task
allocation driven by priority.

Considering the dynamic systems, static approaches may not fully applica-
ble. Specifically, Chen et al. [2] discuss the time-varying resource management
problem in industrial IoT executed in MEC server. To mitigate the accuracy
loss in the IoT applications, those works about dynamic environments inspire
us by the variety motivation.

It is effective to integrate the priorities of tasks when performing multi-task
allocation. Madej et al. [6] discuss priority-based fair scheduling in edge com-
puting systems, which is valuable support for our paper. Meanwhile, prediction
is an effective approach in terms of varieties. As an effective prediction app-
roach, simulation based prediction approaches are also widely used [10] in some
scenarios without massive training costs. Therefore, simulation based prediction
approaches that driven by priority are considered in this paper.

Considering the related researches, prediction-awareness allocation
approaches UGP and CCGP are proposed in a simulation environment to deal
with PA-EUA problem.

3 Problem Formulation and Our Approaches

3.1 Problem Definition

In the PA-EUA problem, the priority pit (priorities of camera i’s task at time
spot t) of each camera’s task is decided by the number of individuals in the
camera’s shooting range. And we use At (the set of allocation marks of which
tasks occupy resources at time spot t) to mark tasks’ allocation situations as
shown in Eq. (1). Then we obtain the sum of allocated tasks’ priorities at one
specific time spot.

Therefore, PA-EUA is formulated as shown in Eq. (2). Its primary goal is
to ensure the average of these sums in every time spot of the whole process,
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which we called Priority Satisfiability (PS ). Besides, the secondary objective
also needs to be satisfied as needed, which is to minimize the Total Transmission
Cost (TTC ).

{
ait = 1, ci is allocated
ait = 0, ci is not allocated

s.t.∀ci ∈ C, i = 1, 2, ..., n, t = 0, 1, ..., L
(1)

⎧⎪⎨
⎪⎩
Max PS(A,P ) = 1

L

∑L
t=0

∑n
i=1(ait × pit)

s.t.∀ait ∈ Ai,∀pit ∈ Pt, i = 1, 2, ..., n, t = 0, 1, ..., L
Min TTC(T ) =

∑L
t=0 trant, s.t.t = 0, 1, ..., L

(2)

3.2 Problem Hardness

Theorem 1. The PA-EUA problem is NP.

Proof. It is assumed that n video tasks are assigned to m edge servers. Each task
can be assigned to at most one edge server. All tasks assigned to an edge server
must not require more computing resources than the total computing resources
available on the edge server. We can verify all individuals in polynomial time
O(mn). Therefore, the PA-EUA problem is NP.

Theorem 2. The PA-EUA problem is NP-hard.

Proof. Firstly, the allocation problem at every time spot in the PA-EUA problem
is a special case of the EUA problem. Specifically, all tasks need to be check once
at every moment, and high-priority tasks need to be prioritized. If the n tasks at
a time have the same priority, the PA-EUA problem is equivalent to the EUA
problem. As proved by [3], the EUA problem is extended from the BP problem.
Since BP problem is a NP-hard problem [4], the EUA problem and the PA-EUA
problem also is a NP-hard problem.

3.3 UGP

⎧⎨
⎩

ukt = 1, ukt ∈ cov(ci)
, pit =

∑r
k=1 ukt

ukt = 0, ukt /∈ cov(ci)

s.t.∀ci ∈ C, i = 1, 2, ..., n, t = 0, 1, ..., L

(3)

Pave = (
1
l

t∑
t=t−l

p1t,
1
l

t∑
t=t−l

p2t, ...,
1
l

t∑
td=t−l

pnt)

s.t.t = t − l, t − l + 1, ..., t

(4)

As introduced before, UGP focuses on the situation without considering
transmission cost and consists of two phases. At each time spot, RVO is used to
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Algorithm 1: UGP
Input: edge servers S, individuals U , cameras’ tasks C, prediction period l
Output: PS, TTC, and AM

1 Phase 1: Prediction based planing
2 for each time spot t = 0, 1, ..., L do
3 Obtain Pt by equation (3)
4 if t == 0 or t mod l == 0 then
5 Obtain Pave by equation (4) and sort all tasks descendingly according to

Pave

6 Greedy allocate sorted tasks to obtain the wth tasks allocation result
AMt at time t, and record it into AM

7 Phase 2: Allocating Action
8 for each time spot t = 0, 1, ..., L do
9 if t == 0 or (t mod l) == 0 then

10 Reallocate all tasks according to the wth allocation result in AMt

11 Obtain Pt by equation (3), and sort all tasks descendingly according to Pt

12 for each task ci in order of Pt do
13 if LT is allocated on edge servers that cover ci and pLTt<pit then
14 Free LT ’s resource to allocate ci

15 PS increase by all allocated tasks’ priorities at this time spot, and TTC is
increased by time consuming trant

update each individual’s position. Then, by using positions, we can get priorities
Pt for tasks and pit is generated by Eq. (3) (Line 3). When each time passing l,
the average priority Pave of each task is calculated by Eq. (4), and Pave is sorted
descendingly (Line 5). At the final of each loop, we allocate tasks greedily in
the descending order of Pave to obtain allocation result the Allocation Matrix
(AMt), and we record AMt at the wth entry of AM (Line 6), where w is �L/l�.
Finally, AM records allocation results of w time spots, which is the basis of next
phase. Then, individuals’ positions are updated by RVO to generate priorities
for tasks. After sorting tasks by Pt (Line 11), we check each task’s resource suf-
fering its priority. When checking a task ci, if all edge servers that cover ci with
resources are occupied by other tasks, and the priority of the Lowest priority
Task (LT ) in those tasks is lower than ci’s (Line 13). Then, LT ’s resource is
freed and reallocated to ci to increase PS (Line 14). Besides, at each time spot,
the PS increase by all tasks’ priorities that occupy resources. And in this step,
TTC is increased by consuming time trant (Line 15). Finally, PS, TTC and AM
are output as results.

3.4 CCGP

As introduced before, CCGP focuses on the situation with considering transmis-
sion cost and also has two phases. Based on UGP, we add servers’ relationship
G (the set to mark each task can be allocated on which edge server) to reduce
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TTC. In prediction based planning phase, a new step is added before line 2. In
this step, firstly, all sj cover ci are recorded into SCi (the set of edge servers
cover task ci). Then markj is increased every time sj is recorded. Finally, the
minimum markj is got in SCi by Eq. (5), and sj is recorded into CSi (the set
of task ci can be allocated on which edge server). CSi make up the tasks and
servers’ relationship G.

⎧⎪⎨
⎪⎩
SCi = SCi ∪ markj , s.t.ci ∈ cov(sj),∀ci ∈ C,∀sj ∈ S

markj = markj + 1, s.t.sj ∈ CSi,∀markj ∈ SCi

CSi = CSi ∪ si, s.t.minimum{markj ∈ SCi}
(5)

Consequently, in CCGP, tasks can only be allocated to corresponding edge
servers base on G, while UGP does not restrict this (Line 6). And when checking
a task ci in allocation action phase, in CCGP, only edge servers recorded in CSi

can allocate ci, while in UGP all edge servers that cover ci can allocate it (Line
13 to 14). Furtherly, the complexities of UGP and CCGP are shown as follow:

Theorem 3 (Complexity). The computing complexity of UGP is O(n(2L +
L
l ))and CCGP’s complexity is O(n(1 + 2L + L

l )).

Proof. For UGP, in the whole time period L, each of the n tasks’ priorities Pt

is calculated once at each time spot. And when time increase by l, the average
priority Pave of each task is calculated once. Then, each task Thus, the complexity
of prediction in UGP is O(n × L + n × L

l ). For allocation action phase, in the
whole time period L, each of the n tasks’ priority is calculated once at each time
spot. The complexity of allocation phase is O(n × L). For CCGP, at the first of
CCGP, we added a step traverse and assign C equally to S. So the complexity
of prediction in CCGP is O(n + n × L + n × L

l ). For allocation action phase,
similar as UGP the complexity of allocation phase is O(n × L).

Hence, the complexity of UGP is O(n×L+ n× L
l + n×L) = O(n(2L+ L

l ))
and the complexity of CCGP is O(n+n×L+n× L

l +n×L) = O(n(1+2L+ L
l )).

4 Experimental Evaluation

4.1 Comparison Approaches and Experiment Settings

Four representative approaches are shown as follow. RANDOM : The idle
resources of each edge server are randomly assigned to the video tasks within
the coverage of the edge server. GREEDY : At first, tasks’ priorities are sorted
descendingly. Then allocate tasks on edge servers according to priorities. MCF
[5]: It is a heuristic approach for the EUA problem, which can find a sub-optimal
solution. TSPP [9]: This time-series pattern prediction approach is based on K-
MaxSDev and Time-Series Pattern Generation Algorithm (TSPG).

Our experiments are based on the EUA Dataset [4], including 125 base sta-
tions and 816 individuals within the Melbourne CBD area in Australia. And
three parameters are changed in experiments respectively. (1) Number of Indi-
viduals (NoI ): To reflect the ability of protect crowds in different approaches
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under the pressure of NoI, we select individuals from 816 real position data.
(2) Number of Edge Resources (NoER): To reflect the performance under the
different extent of resource insufficient, NoER is used to determine the number
of tasks that edge servers can load. (3) Single Transmission Cost (STC ): In PA-
EUA, a goal is to reduce the TTC. Since in different network environments, STC
is different and the transmission costs are influencing available resources on edge
servers.

4.2 Experimental Results and Discussion

(a) PS in changed NoI (b) PS in changed NoER (c) PS in changed STC

(d) TTC in changed NoI (e) TTC in changed NoER (f) TTC in changed STC

Fig. 2. Resulted metrics of three experiments

In Fig. 2(a), we only change the NoI. UGP has the best performance and CCGP
can deal with the pressure of NoI well. In Fig. 2(d), CCGP performs close to
non-prediction approaches, while UGP has under performed. In Fig. 2(b), UGP
has the best performance and CCGP perform well in insufficient situation. In
Fig. 2(e), UGP has higher costs than most approaches in insufficient situation,
i.e. NoER less than 4, while CCGP has almost the best performance. Besides,
when resources are sufficient, all approaches perform close in PS and the TTC
of UGP and CCGP become 0. In Fig. 2(c). UGP and CCGP have the two
highest performances. And UGP performs poorly in TTC. In Fig. 2(f), CCGP
can always keep its TTC at better level than UGP.

In summary, UGP has the best performance of PS in most cases, while it
performs poorly in TTC. And CCGP has the second best performance of PS
in most cases, and it performs much better than UGP in TTC. Through the
experiment based on the three sets above, it is evaluated that our approaches
can satisfy two goals well.
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5 Conclusion

In public security, the intelligent video system based on edge computing is widely
used. However, resources on edge servers can not support all video analysis tasks
with varied priorities. Thus, we formulated PA-EUA problem based on EUA
problem and proposed two prediction-based approaches. By comparison with
four representative approaches, we evaluated that our approaches’ performance.
In the future, resource diversity, disaster tolerance, and personal information
security will be taken into investigation.

Acknowledgement. This work is supported by the National Natural Science Foun-
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Abstract. Runtime IoT data fluctuation brings challenges for optimizing the
resource allocation for a data stream processing (DSP) flow in a cloud-edge envi-
ronment. It can result in extra high latency for a flow. Optimized strategy of
dynamic resource allocation is still hard to design to timely dealing with the IoT
data fluctuation. In this paper, the above challenge is abstracted and redefined as
the service deployment problem. An improved GA optimization algorithm, inte-
grating with the IoT data fluctuation prediction ability, is proposed to handle IoT
data fluctuations during the running of a DSP flow. Effectiveness of the proposed
approach is evaluated based on the real datasets from a real application.

Keywords: Latency · Service Deployment · Data Prediction · Optimization ·
Cloud-edge Environment

1 Introduction

Today, many efforts have been made to integrate cloud and edge devices by allowing the
computing resources to be shared and comprehensively utilized [1–4]. In this settling, due
to fluctuation of IoT data stream in the runtime, it is still challenge to design an optimized
strategy of the dynamic resource allocation for a data stream processing (DSP) flow,
which is commonly structured as a directed graph whose vertices are IoT data services
[5–7], whereas edges represent the data streams between services [8].

Existing works for deploying services in a cloud-edge environment can be divided
into two categories: the static off-loading deployment and dynamic deployment [9–15].
In the static offloading literatures, researchers pay attention to decide which and how
the computations are offloaded to the edge nodes while meeting partial metrics such as
latency, WAN traffic, and so on [9–11]. The limitation of static deployment lies in that
they usually assume that the DSP flow is pregiven and static. More recent works deal
with dynamic service deployment problemwho changing the initial static deployment by
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redeploying services to different edge to cope with events such as load changes, device
failures, among other issues [12–15].

Due to the dynamic nature of IoT environment as well as the limited computing
capability of edge devices, it still faces several challenges to dynamically allocate ade-
quate resources for a DSP flow for timely processing of the IoT data. Firstly, the data
dependencies and data movement between services [16, 17] introduce data overhead.
The fluctuation of IoT data streams makes the data overhead continually varied over
time. It can result in extra latency and become an important factor in making deploy-
ment decision. Secondly, a DSP flow is not always running and keep consuming lots
of resources. It may be activated sometime and keep running until no more data to be
handled. The task dispatch process of a DSP flow is highly dynamic and random. Most
current service deployment methods are not applicable to deal with the data streams
arrive dynamically.

In this paper, we abstract and redefine the above challenge as the service deploy-
ment problem. We propose a dynamic service deployment approach for a DSP flow. An
improved GA service deployment algorithm is proposed to meeting resource constraints
and minimizing latency which integrating the IoT data fluctuation prediction ability to
handle IoT data fluctuations during the running of a DSP flow.

2 The Definition of Problem

The Definition 1 shows a DSP workflow which is composed of several IoT data services
[18]. The goal of the service deployment is to find an optimized strategy to minimize the
latency during the execution of a DSP flow in a cloud-edge environment.

Definition1. Data Stream Processing Flow (DSP Flow): A data stream processing
flow can be represented a directed acyclic graph of vertex and edges:G = 〈S,E〉, where
S = {

s1, s2, . . . , sj . . . , sn
}
is service vertices that processing arriving data stream. An

edge E = {e1, e2, . . . , em . . . , eM } represents a set of M links between services. Each
edge is represented as , where smsour represents upstream source
service, smdest denotes the destination service as the target of the edge em, denotes the
percentage of data generated by smsour that is routed towards smdest .

The computing resource contains both the cloud and edge infrastructure that is
represented as a graph G = 〈R,L〉.R = {r1, r2, . . . ri . . . , rm} is the set of computing
resources. We use a vector ri = 〈CPUcore,memory〉 to represent the available com-
putation resource or the resource requirement for service. Note that the above vector is
apt to be extended if more resource types are required. L = {l(i,j)|i, j ∈ [1,m]} is the
set of network links. l(i,j) = 〈

bdw(i,j), lat(i,j)
〉
is the network link between computational

resources ri and rj where bdw(i,j). is the bandwidth capability, lat(i,j) is the network delay.
We consider t delay of a resource to itself to be 0. Besides, we use fri ∈ {0, 1} signals
whether is a cloud resource.

The external stream data sources who are inputted into aDSP flow can be represented
as EX = {

ex1, ex2, . . . , exp . . . , eP
}
, each exp. is an external data source, λexp is the

output data rate of this data source. We distinguish the input and output transmission
rates for a service. The input transmission rate ψ in

si . for a service si is the sum of the
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stream rates on all its incoming sources. ψout
si represents the output transmission rate of

a service.

(1)

where
∑

ei∈E|smsour=exmp &smdest=si λ
exp is the total input stream data ces from the extra

data source. And is the total data transferred from its
upstream services.

The problem of service deployment is defined as follows:

Definition 2. The Service Deployment: The service deployment at time step t can be
modeled as a mapping function At : Gt → Gt . We use yrmsi (t) to present the deployment
decision of service si at time step t, if service si is deployed onto edge device rm, then
yrmsi (t) = 1, otherwise, yrmsi (t) = 0.

The data processing rate for si if it is deployed on rj is denoted as μ
(
si, rj

)
. The

reference values of CPU, memory requirements for service si on rj when processing
data Refdsi can be defined as fcpusi , fmemsi respectively which can be obtained by
profiling it on a reference resource [12]. Thus, one service’s CPU (cpusi ) and memory
(memsi ) requirements needs to process its incoming data stream can be calculated as
follows:

cpusi = fcpusi × ψ in
si

Refdsi
(2)

memsi = fmemsi × ψ in
si

Refdsi
+ lmemsi (3)

Note that the overall memory comprises the memory needed to load itself lmemsi as
well as the memory required for processing the incoming data.

The data transmission rate Vsi→sj is also given, which is the stream rate of the
number of events or sensor data passing between services per time unit. With the data
transmission rate, the data overhead of a service in a DSP flow can be defined as the
multiply of the data transmission rateVsi→sj with a time interval θ using the timewindow
technique.

The calculation for latency ofDSPflowcontains two parts: the service execution time

etimesi and stream transfer latency . Thereby, the latency of a data

analysis flow is the aggregate latency of all services, it can be calculated as following:

(4)

The problem of service deployment is to find a mapping that minimizes the latency
and respects the resource constraints. That is:

min(Latency) (5)
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Subject to:

∀At
k ,

〈
si, rp

〉 ∈ At
k |si ∈ Ssrc → eu ∈ EU

|si ∈ Ssnk → Cloud
(6)

∑
y
rj
si (t) ∗ cpusi ≤ cpuEU (7)

∑
y
rj
si (t)*memsi ≤ memEU (8)

y
rj
si (t) ∈ {0, 1}, j = 1, . . . ,m (9)

Constraints (6) guarantees that the source services must be placed on edge devices
because they directly operate on the sensor streams, while the sink servicemust be placed
on the cloud, because they will output final results to applications. Constraints (7) and
(8) make sure that the required computing resources of services are not exceeded the
available computing resources of edge devices.

3 The Predictive Service Deployment Approach

We propose a Predictive Service Deployment Approach (PSDA) that incorporates two
advanced optimization algorithms to address the above challenges.

Firstly, we use Genetic Algorithm to generate service deployment strategy candidate
solutions. The encoding operation aims at representing a feasible joint solution. We use
a binary encoding scheme to construct a chromosome. In his paper, the population is
denoted by.

Popc, which is computed by using the formula (10)

Popc =
⎡

⎢
⎣

ymn · · · yMN
...

. . .
...

ymn · · · yMN

⎤

⎥
⎦ (10)

where M is the number of edge nodes, N is the number of services that need to be
deployed. If the service sn is deployed on edge node em, then ymn = 1, else, ymn = 0.
There is a critical problem that the definition of the fitness function for the evaluation
of the chromosomes. The objective function of Eq. (5) can be considered as a fitness
function (Fit) of the genetic algorithm.

Fit = 1 − 1

Latency
(11)

At the running time, we use the prediction technology to predict future data fluctua-
tions so that we can predict the services whose input data rates will be changed. We can
use the predicted value to predict the service’s expected resource requirements (Eq. (2)
and Eq. (3)).
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The data overhead is a typical real-time streaming time-series data obtained over a
specific period or since a certain point in time. We use a vector to model the data over-
head of service si can be modeled as a vector zti = (

xti , y
t
i

)
, in which, yti = (ψ in

si )
t , and

.
In which, t is the current time window t(ta, tb), the length of t is a constant which can
be defined as |tb − ta|. t − m is the mth previous time window, k is a temporal constant.

For the given the time series of incoming data overhead, we use a decomposable
time series model with two main model components: trend and seasonality to build the
prediction model. They are combined in the following equation:

y(t) = C(t)

1 + exp(−k(t − b))
+

∑(
an cos

(
2πnt

P

)
+ bn sin

(
2πnt

P

))
+ εt (12)

Here C(t)
1+exp(−k(t−b)) is the trend function which models non-periodic changes in the

value of the time series, C(t) is the time-varying capacity, k the growth rate, and b
an offset parameter.

∑(
an cos

( 2πnt
P

) + bn sin
( 2πnt

P

))
represents periodic changes (e.g.,

weekly and yearly seasonality), we rely on Fourier series to provide a flexible model
of periodic effects [19]. In which P is the regular period we expect the time series to
have (e.g., P = 365.25 for yearly data or P = 7 for weekly data, when we scale our
time variable in days). an and bn are required estimating parameters. The error term εt
represents any idiosyncratic changes which are not accommodated by the model.

Based on the prediction value, Greedy heuristic can be used to adopt a deploy-
ment plan generated by the genetic algorithm at runtime because it provides a feasible
low-complex algorithm that adapted to real-time dynamic cloud-edge computing envi-
ronment. In future time slot t + 1, PSDA finds the services affected by the data stream
fluctuation directly or indirectly. Then, for each service affected, it finds the best resource
provisioning solution based on the predicted data overhead. Based on the predicted data
overhead, we can get each service’s input data rate and required computation resources
in the future time slot t + 1. Current resource usage of edge nodes can be obtained by
using network resource monitoring tools installed in the edge computing network plat-
form. We will remove edge node that does not meet future computation requirements of
service. The remaining edge nodes in this list will be used to find the best edge nodes to
deploy service with the help of the Minimax with Alpha-Beta pruning algorithm [20].

4 Experiment

4.1 Experiment Setup

Experiment Environment: The experiment environment is composed of a cloud center
and several edge devices. Five Acer AR580 F2 rack servers via Citrix XenServer 6.2 are
utilized to build a private cloud, each of which own 8 processors (Intel Xeon E5-4607
2.20 GHz), 64 GB RAM and 40 TB storage. Four different types of Raspberry Pis are
used as the edge devices in terms of computation capacity. 150 edge devices are selected
to build up the edge environment. The edge devices are connected to the cloud with a
bandwidth of 100 Mbps.
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Experiment Dataset: The dataset in the experiment is real collected from the SGCC
in scenario 2. Data streams from 5871 sensors are involved.

We have realized 1322 services abstracts on the cloud. Four different structures of
DSP flows are constructed randomly: theDSP flow 1 contained 10 data services, the DSP
flow 2 contained 20 data services, the DSP flow 3 contained 30 data services. the DSP
flow 4 contained 50 data services. We have created total 100 the DSP flow instances
which contains 40 instances of the DSP flow 1, 30 instances of the DSP flow 2, 20
instances of the DSP flow 3 and 10 instances of the DSP flow 4.

We will conduct the following methods for stream processing: the resource-aware
approach (RA), the location-aware approach (LA), and the predictive service deployment
approach (PSDA) in this paper. The main performance metric is the latency of a DSP
flow for stream data processing. It can be calculated by the Eq. (4).

4.2 Experiment Results and Evaluation

We first change the input rate of the services: we vary the data stream rate of sensors
from 10, 20, 40, 80, 160, 320, 640, 1000 to 2000 (104 records/s) for services. Each
experiment runs for 50 times.

Figure 1 compares the latency with different service deployment solutions under
different input stream rates. It can be seen that the proposed PSDA method also can
deliver a shorter latency than other two method (i.e., 45.67% lower than RA on average
in four DSP flows, and 41.35% lower than LA).

0

200

400

600

10 20 40 80 160 320 640 1000 2000

La
te

nc
y(

m
s)

Stream Rate(104 records/s)

Latency of  DSP flow 1

RA LA PSDA

0

200

400

600

800

1000

10 20 40 80 160 320 640 1000 2000

La
te

nc
y(

m
s)

Stream Rate (104 records/s)

Latency of  DSP flow 2

RA LA PSDA

0

500

1000

1500

10 20 40 80 160 320 640 1000 2000

La
te

nc
y(

m
s)

Stream Rate (104 records/s)

Latency of  DSP flow 3

RA LA PSDA

0

500

1000

1500

2000

10 20 40 80 160 320 640 1000 2000

La
te

nc
y(

m
s)

Stream Rate (104 records/s)

Latency of  DSP flow 4

RA LA PSDA

Fig. 1. Latency under different input stream rates

Then, we set a fixed input stream rate of 160 × 104 records/s and change the input
stream numbers at system running time from 100, 200, 400, 800, 1600 to 3200.The
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results of latency evaluation are shown in Fig. 2. As number of data streams inputted
to the stream process graphs increases, the proposed PSDA method performs the best
among the two methods. It can reduce the average latency by 46.12% compared to the
RA, and by 40.85% compared to the LA.

The experiment results prove that the proposed PSDA is more efficient than RA and
LA. The reason is that data overhead among services can result in latency due to the
cost of moving and storage. The RA and LA both do not consider it when deploying
the services. Furthermore, the data overhead continually varied over time due to the
fluctuation characteristic of sensor streams. It makes the current deployment strategy
may be not the optimal one. The proposed PSDA have integrated the prediction ability
of runtime data fluctuations that can predictively offer a satisfactory service deployment
solution for current as well as future DSP flow activations.
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Fig. 2. Latency under different input stream numbers

5 Conclusion

This paper proposed a distinctive problem of dynamically deploying the services in a
cloud-edge environment to support the emerging real-time requirement of IoT applica-
tions. We define the optimization problem for dynamic deployment of services with data
overhead and compute constraints. We have proposed a predictive service deployment
approach to adaptively deploy services from cloud onto edge devices by predicting the
fluctuation of data overhead. The effectiveness of the proposed approach is demonstrated
by examining real cases of State Grid Corporation of China.
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Abstract. The Internet of Things (IoT) creates environments where
devices and users interact. Service-oriented architectures (SOAs) encap-
sulate devices’ capabilities as IoT services which users can request. SOAs
manage the scale of IoT services by placing services descriptions about
appropriate services in distributed architectures (e.g., a network of IoT
gateways). Such distribution increases the chances of responding to users
in an efficient fashion as requests are attended locally. However, dynamic
IoT environments can easily outdate the distribution of services descrip-
tions, which in turn impacts SOAs efficiency when the required ser-
vices descriptions are not in place. Current architectures use pre-defined
knowledge to adapt the distribution of services descriptions reactively.
However, such human intervention is not always available and may be
error-prone in dynamic IoT environments. We propose a reinforcement
learning model that IoT gateways use to automatically decide how to dis-
tribute services descriptions over time. We evaluate the model in a real
IoT testbed and results show that its performance in different scenarios
compares favourably against a reactive baseline.

Keywords: Internet of Things · Service oriented computing ·
Self-adaptive systems · Pervasive computing · Reinforcement learning

1 Introduction

Service-oriented architectures (SOAs) manage IoT devices as IoT services [4].
Users request these services to retrieve and process relevant information [5].
SOAs have proposed storing services descriptions in networks of IoT gateways,
enabling efficient responses to requests by placing services’ information closer
to end users [5,7]. Events in dynamic IoT environments can outdate services
distribution, which in turn impacts the efficiency of SOAs when responding to
users’ requests. The distribution of services descriptions must change accordingly.
Otherwise, SOAs will not be able to efficiently respond users’ requests. Similarly,
new IoT gateways can join and need to determine which services to store. SOAs
must self-adapt to respond to users’ requests in dynamic IoT environments [4,6].
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Current SOAs self-adapt by reacting to changes in the IoT system (e.g.,
devices battery levels) [1,8] or the IoT environment [2,3]. Some approaches
sense variables in the IoT environment and decide when to trigger adaptive
processes based on the values of such variables and predefined thresholds. Other
approaches use pre-defined knowledge about events to trigger the adaptation.
Reactive approaches tend to experiment with performance degradation before
events are identified. Additionally, such approaches are likely to be error-prone,
and might not suit IoT environments where predefined knowledge is not avail-
able. This paper presents a reinforcement learning-based service model for the
IoT, which adapts services distribution based on users’ requests. The approach
is based on a Q-learning algorithm [12], which works on a network of IoT gate-
ways. Each gateway uses this algorithm to learn from requests that arrive and
moves services’ descriptions between them accordingly. This algorithm enables
new gateways to automatically determine which services to store. Our model is
evaluated in an IoT testbed where we explore three different IoT scenarios.

2 Related Work

Different self-adaptive SOAs have been proposed to manage IoT environments.
Trendy [2] groups services according to their location. It has a Directory Agent
(DA) which updates services status according to requests’ behaviour. del Val et
al. [10] propose an agent-based approach to discover atomic services. Each agent
in the system offers a service and can trigger adaptation processes under two
circumstances. First, an agent can change the network topology according to the
request’s resolution and forwarding. Second, an agent can change the population
of agents by cloning itself when there are many requests for its services. Kumar
and Satyanarayana [8] propose a self-adaptive model based on semantic annota-
tions, which are used to compute the relevance of web services for user queries.
This relevance changes according to historical usage of services. Athanasopou-
los [1] proposes a service organisation schema based on service functionalities.
Services are organised into hierarchical groups based on their descriptions (i.e.,
providers’ perspective). This structure adapts according to the historical usage
(i.e., consumers’ perspective) which is used to calculate the similarity between
services. Cabrera et al. [3] propose an adaptive service model for smart cities.
Such model reactively responds to city events by reorganising services’ informa-
tion in distributed repositories. Events are identified by evaluating the system
performance against a threshold, or they are pre-defined by city authorities.

Current self-adaptive SOAs architectures identify changes in the environ-
ment or the system to trigger adaptations. Such adaptation is mostly reactive as
architectures respond to events after they are identified, which is likely to result
in performance degradation. Additionally, system adaptations (e.g., adding a
new component) require pre-defined knowledge that requires human interven-
tion. Few architectures [1,8] self-adapt by using historical data (e.g., logs). Even
for those that do, such data might not be always available in IoT environments,
which makes models that interact and learn from the environment more suitable.
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3 Learning-Based Service Model

We consider IoT environments where capabilities are encapsulated as IoT ser-
vices. A network of IoT gateways stores information about these services in their
local repositories. Each gateway is defined as gi = 〈R,D〉, where R is the local
repository that stores services descriptions, and D is the set of domains that
defines the services that gi manages. Gateways initially configure the network
and define D based on contextual information from the IoT environment [5].
R stores services descriptions, which are defined as sdesc = 〈id, I, O,D〉, con-
sisting of a service identifier, input types, output types, and domains. Users
can send requests to gateways, and each request is defined as r = 〈I,O,D〉,
consisting of request input types, output types and domains. New IoT gate-
ways can join the network at any time without any service or pre-defined infor-
mation. They only receive requests and exchange messages with other gate-
ways in the network. The IoT environments recognise repetitive time periods
(e.g., days, weeks, etc.), which also have recognised sub-periods (e.g., a day has
24 h). Each gateway models environments’ time periods as a discrete variable
T = 〈t0, t1, ..., tm〉, where m is their number of sub-periods. Requests reflect
periodic users’ behaviour, which means that users are likely to ask for the same
service at the same time in a given period. Each gateway stores a request’s history
as H = {〈t1,D1〉 , 〈t2,D2〉, ..., 〈tn,Dn〉}, which captures the set of domains Di of
all received requests at a given time ti. Similarly, each gateway stores informa-
tion about other gateways as G = {〈gw1,D1〉 , 〈gw2,D2〉, ..., 〈gwm,Dm〉}, which
captures the set of domains Dj for the services managed by gateway gwj .

3.1 Reinforcement Learning Model

Each IoT gateway gwi implements a reinforcement learning model that decides
how to update its local repository according to users’ requests. The learning
model represents the system performance as an utility function (Eq. 1, encapsu-
lating a set of metrics that measure the service management efficiency in each
gateway. These metrics include the rate of solved requests, average search pre-
cision, average search response time, average number of hops and percentage of
used storage.

u(sd)t = w1rsrt + w2aspt − w3v(artt) − w4anht − w5pust (1)

Equation 2 defines the reward function used by the reinforcement learning
model. It captures the difference between the system utility from state t − 1 to
state t in a given period. If the utility function increases from one time ti−1 to
another time ti, the reward is positive. Otherwise, the reward is negative.

rt = u(sd)t − u(sd)t−1 (2)

Figure 1 represents the states that the learning model uses to represent IoT
environments periods of time (i.e., T), and its sub-periods (i.e., t0, t1, ..., tm). The
model can decide to do nothing (i.e., a0), move services (i.e., a1), or remove services
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Fig. 1. States and actions in an IoT environment.

(i.e., a2) to update services repositories at any sub-period ti. A transition matrix
q drives the action selection and stores the reward from the environment. Algo-
rithm 1 shows the Q-learning [9,11] process each gateway executes while solving
service requests from users. This algorithm uses a transition matrix q to represent
the IoT environment states and gateways actions. It also stores the utility of the
last state, the service information received from other gateways, and the current
system state. The current time ti, the time period T (e.g., day identifier), and the
memory periods mp are parameters. Memory periods mp determine the number
of historical time periods to be considered when calculating the utility (Line 3).
This parameter enables the learning algorithm to identify utility degradation even
when system has had good performance over a long time. The algorithm starts by
calculating the reward based on the current and previous utility values (Line 2 to
4). The first time the algorithm is executed, the Q-matrix is initialised as a zero
matrix (Line 6).Otherwise, theQ-matrix is updated usingEq. 3 (Line 8). Then, the
algorithm updates the epsilon parameter e if the current period is greater than the
decay time parameter dt (Line 9 to 10). The epsilon parameter e defines whether it
explores the actions space in the current state, or exploits the accumulated knowl-
edge to select the next action. The decay function balances the exploration ver-
sus exploitation trade-off by prioritising the exploitation as time passes as there is
more knowledge in the Q-matrix. The decay time parameter dt prioritises explo-
ration at the beginning when there is not enough knowledge in the Q-matrix. The
algorithm determines the action to perform based on the epsilon e value (Line 11
to 15). It selects a random action, if a random number r is lower than e (Lines 12
and 13). The algorithm selects the action that generates a higher reward based on
the Q-matrix knowledge otherwise (Lines 14 and 15).

q[t, a] = (1 − α)q[t, a] + α(rt + γ max(q[t + 1, ∗]])) (3)

a(t) = γ max(q[t, ∗]])) (4)
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Algorithm 1. Learning Algorithm.
Require:

Transition matrix q
Action a
State st
Double lastUtility = 0.0
Epsilon e = 1.0
received = [ ]

1: function Q-Learning(ti, T, mp, te) � where ti is the current sub-period,
T is the current period, mp determines the number of past periods that the utility
function considers, and dt determines when e starts to decay

2: uti−1 ← lastUtility
3: uti ← calculateUtility(ti, mp)
4: rti ← uti − uti−1

5: if t = 0 and T = 0 then
6: sti ← init(q)
7: else
8: sti ← update(q, sti , a, rti , T, ti)
9: if T > dt then

10: e ← decayEpsilon(e)

11: r ← getRandom()
12: if r < e then
13: a ← getRandomAction()
14: else
15: a ← getMaxAction(q)

16: if a = a0 then
17: do nothing

18: if a = a1 then
19: RD ← defineRequiredDomains(ti, H)
20: destinations ← getDestinations(RD, G)
21: for each gw ∈ destinations do
22: sendMessage(Adpmsg(gwid, RD)

23: localRepository.insert(receivedServices)
24: for each service ∈ receivedServices do
25: received.add(service.id)

26: if a = a2 then
27: localRepository.remove(received)
28: received = [ ]

If the algorithm selects a0 (do nothing), then the gateway waits until the next
iteration. If the algorithm selects a1 (move services), the gateway sends a mes-
sage Adpmsg to the destinations asking for services from the required domains
RD (Lines 21 and 22). The selected gateways respond with their available ser-
vices’ information, and the gateway inserts those services’ descriptions in the
local repository (Line 23). If the algorithm selects a2 (delete services), then the
gateway removes the services previously received (Lines 27 to 28).
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4 Evaluation

We implemented the learning model1 in Python 3.5. It was deployed in an IoT
testbed of 5 Raspberry Pi3. One board is the consumer and sends requests
the other boards, which form a network of IoT gateways. Gateway 1 receives
requests, monitors the utility function, and asks for services descriptions to other
gateways. We evaluate the proposed approach in three different scenarios.

Scenario 1 represents environments where requests are periodic and do not
change over time. Experiments last 8 h with periods of 8 min, for a total of
60 periods. Periods has 4 sub-periods that last 2 min each. Services from known
domains are requested between sub-periods 0 and 1, 2 and 3, and 3 and 4 at each
period. Services from unknown domains are requested between sub-periods 1 and
2. Scenario 2 represents environments where requests are periodic and change
in the middle of each experiment when a new type of service request emerges.
Experiments last 8 h with periods of 8 min, for a total of 60 periods. Periods has
4 sub-periods that last 2 min each. Services from known domains are requested
between sub-periods 0 and 1, 2 and 3, and 3 and 4 at each period before period
30. Services from unknown domains are requested between sub-periods 1 and 2 at
each period from the beginning of the experiment, and between sub-periods 3 and
4 after period 30 (i.e., emergent unknown service request). Scenario 3 represents
environments where a new gateway joins the network. Gateway 1 starts receiving
requests and does not have any pre-defined knowledge or services’ information at
the beginning. This scenario has the same configuration as scenario 1 regarding
periods, sub-periods, and services requests’ pattern. We run experiments 10 times
for each combination of scenarios and parameters. The memory periods varies
from 1 to 5, increasing by 2. The decay time varies from 0% of the experiment
time to 100%, increasing by 25%. Decay type can be Boolean or exponential.
We use a learning rate (i.e., α) of 0.8, and a discount factor (i.e., γ) of 0.95 as
a high value for α speeds up the learning, and a higher value for γ gives future
rewards more value [9].

4.1 Results

Figure 2 presents the model performance with different decay types, and param-
eters in scenario 1. We report the utility mean from the 10 repetitions, with a
95% CI. Results show the utility is higher with a Boolean decay as it changes e
from 1 to 0 straight away, and the model selects actions with higher rewards for
a longer time. The number of memory periods impacts the utility in an inverse
fashion. The model has the best performance with a memory of 1 period as it
is more sensitive to performance changes. This sensitivity produces greater pos-
itive or lower negative rewards, which reinforce the accumulated knowledge in
a more significant fashion. The utility increases with a higher decay time as the
learning model exploits more the accumulated knowledge. Figure 3 shows the
model performance in scenario 2, where there is an emergent service request.

1 Smart City SD GitLab - https://gitlab.scss.tcd.ie/groups/smartcitySD/subgroups.

https://gitlab.scss.tcd.ie/groups/smartcitySD/subgroups
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Fig. 2. Scenario 1 - Parameters

This emergent behaviour causes a clear degradation in the performance despite
the parameters’ values. However, the model manages to recover its performance
in most cases. The difference between Boolean and exponential decays is not as
clear compared to the first scenario. The highest utility that the model achieves
is around 0.25 for both types of decay. The number of memory periods has a
similar impact to scenario 1 (i.e., inverse relation). The learning model achieves
the best results with a lower number of memory periods. The decay time also
has a similar effect as in scenario 1 (i.e., direct relation). The utility increases
when the model exploits the accumulated knowledge (e.g., a decay time greater
or equal to 50%), even after the new request type emerges.

Figure 4 presents the system performance in scenario 3 when a new gateway
joins an IoT environment without any pre-defined knowledge. The model can
effectively exploit the resources of the new gateway as it enables the new gateway
to learn which services descriptions to manage based on users’ requests. Boolean
decay offers better performance compared to exponential decay. The system
performs better when there is more time to exploit the accumulated knowledge,
as in scenario 1. The number of memory periods impacts system performance
differently compared to previous scenarios. A lower number of memory periods
(e.g., 1) makes the model more sensitive to changes in the environment. The
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Fig. 3. Scenario 2 - Parameters

utility function degrades to negative values while the model does not have the
chance to exploit the accumulated knowledge (i.e., a decay time lower or equal
to 50%) when the gateway is new. A higher number of memory periods (i.e., 3
or 5) makes the model less sensitive, so the impact of random decisions is not
that high. Results in different scenarios show the model achieves more consistent
results with a Boolean decay, 1 period of memory, and 100% of decay time. This
configuration is used to compare our model performance with the closest related
work which updates repositories in a reactive fashion [3].

Figure 5 shows the behaviour of the reinforcement learning model compared
against the baseline in different scenarios. The proposed approach has the best
performance in all scenarios as it learns how requests behave and updates the
local repositories before changes happen. The baseline has a repetitive behaviour
in scenarios 1 and 2 (Figs. 5a and b). First, the utility increases as the base-
line addresses requests with the available information. The utility then degrades
because requests change and the baseline must identify these changes before
updating repositories. The utility increases once changes are identified until
a new change in the requests out-dates the services distribution, which again
degrades the utility. The baseline cannot do anything in the scenario 3 (Fig. 5c)
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Fig. 4. Scenario 3 - Parameters

Fig. 5. Baseline comparisons

as it requires pre-defined information that is not available in the new gateway.
The learning model accumulates knowledge from requests and updates the gate-
way repository with relevant information.

5 Conclusions

This paper proposes a reinforcement learning service model for the IoT, which
automatically distributes services descriptions to respond to users’ dynamic
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behaviour. The model identifies such behavior from users’ requests and updates
services repositories accordingly. It avoids human intervention as a Q-learning
algorithm accumulates knowledge from the system’s interactions with the IoT
environment. The algorithm uses such knowledge to decide when and how to
re-distribute the services descriptions. We evaluated the model in a real IoT test-
bed under 3 different scenarios. Results show that the proposed model achieves
a better performance than a reactive baseline. Future work will be focused on
adaptive architectures that integrate learning models and reactive approaches
to address challenges from scenarios with and without repetitive behaviours.
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Abstract. Machine learning (ML) has been extensively used in Internet of Things
(IoT) applications, including traffic profiling, network security, and IoT device
identification. However, machine learning models are vulnerable to adversarial
examples/attacks leading to misclassification and system malfunction. Though
these attacks have been studied in domains such as computer vision, a compre-
hensive exploration in the IoT context is lacking. This work takes the first step in
evaluating the adversarial attacks in this setting and particularly focuses on IoT
device identification. To this end, our empirical analyses considering various attack
techniques, including Fast Gradient Sign Methods and Jacobian-based Saliency
Map, on the real-world IoT device classification dataset demonstrate that the ML-
based IoT device classification is vulnerable to these attacks in both white box and
black box scenarios. Moreover, these attacks are highly imperceptible in IoT net-
works and remain stealthy as demonstrated by applying the Kolmogorov-Smirnov
goodness-of-fit test and ability to evade one-class Support Vector Machine and
Isolation Forest based network intrusion detection systems.

Keywords: Adversarial machine learning · IoT · Security evaluation ·
Adversarial examples · Gradient based optimization · IoT device classification

1 Introduction

The Internet of Things (IoT) is bringing network connectivity to a wide array of objects
ranging from refrigerators, automobiles, watches, light bulbs, and factory machinery.
However, along with their wide presence and popularity, their security challenges are
also increasing [1]. Thus, IoT device visibility in the network and the ability to identify
illegitimate or compromised devices is essential for network administrators. The required
visibility is provided by IoT device identification systems.

IoT device identification is typically done by leveraging machine learning (ML) and
artificial intelligence (AI) [2]. ML/AI models are capable of profiling IoT devices based
on their behaviors in the network, including their network traffic data. Despite their
significant usefulness, these ML/AI models are vulnerable to adversarial attacks [3, 4],
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where adversaries aim to fool these models by perturbing normal inputs, such that the
manipulations are usually not detected by the system checks. Adversarial ML/AI model
attacks have been extensively studied in domains such as deep learning and computer
vision [5]. However, a fewworks consider network-based data (e.g., IoT network traffic),
which is structured and time series in nature. Although these works provide some hints
on the possibility of adversarial attacks on the IoT device identification systems, it is
still unclear about the (detailed) possibility and detectability of adversarial attacks on
the IoT device classifiers under both the white box and black box settings.

To this end, this work investigates adversarial attacks on ML/AI-based IoT device
classification systems and their detectability in practical network settings. Our studies
unveil the severity of security inML-based IoTdevice classification systems andmotivate
further works towards addressing them. We summarize our major contributions in the
form of the following research questions:

RQ1: (Possibility Check). IsML/AI-based IoTdevice identification systemvulnerable
to adversarial attacks?

We study adversarial machine learning on IoT device identification based on four
ML models, namely logistic regression, feed-forward neural networks, random forest,
and decision tree. Our empirical results demonstrate that attacks are successful under
both white box and black box attack settings even with minor perturbation (for example
ε = 0.003) in popular attacks, namely Fast Gradient Sign Method (FGSM) [6], Basic
Iterative Method (BIM) [7], and Jacobian-based Saliency Map Attack (JSMA) [8].

RQ2: (Detectability). Is the adversarial input to the ML/AI-based IoT device classifi-
cation system detectable?

Our analysis and empirical results demonstrate that the adversarial inputs are highly
undetectable. We tested the stealthiness of the adversarial inputs via statistical analy-
sis under nonparametric test, i.e., KS test, and a ML-based intrusion detection system
deploying unsupervised one-class SVM and Isolation Forest.

The rest of this paper is organized as follows: Sect. 2 provides background on
adversarial examples and attack algorithms, Sect. 3 presents the details of our research
methodology, Sect. 4 provides our experiments and results. The relevant related works
are overviewed in Sect. 5, and Sect. 6 concludes the paper.

2 Background

In this section, we provide some background on adversarial examples and attack algo-
rithms. An adversarial example is a sample of input data designed to fool a classifier
and lead to misclassification. Given an input (train or test) sample x, which is a clean
example, the machine learning classifier M can classify it correctly, i.e.,M (x) = yTrue.
Szegedy, et al. [9] showed the attacker can run an optimization algorithm to carefully
craft change ρ and build adversarial example x̂ = x + ρ which is close to x according
to some distance metrics, but is classified incorrectly, i.e., M

(
x̂
) �= yTrue. In this study,
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we consider three state-of-the-art adversarial attack models: Goodfellow, et al. [6] pro-
posed FGSM that performs a one-step gradient update along the direction of the sign of
gradient for every input in the dataset as follows:

Xadv = X + εsign(∇xJ (X ,Y )),

where ε is the constant parameter that characterizes the size of perturbation,∇xJ (X ,Y ) is
the gradient of loss functionwith respect to the input X.Kurakin, et al. [7] proposedBIM,
which is the straightforward extension of the fast gradient sign method. This method
applies adversarial perturbation epsilon with smaller step sizes in multiple iterations and
calculates the adversarial example as follows:

X adv
0 = X , X adv

N+1 = ClipX ,ε

{
X adv
N + αsign

(
∇xJ

(
X adv
N ,YTrue

))}
,

where J is the loss function of model, N denotes the number of iterations, ε is the
maximum permitted perturbation and α is a constant that controls the magnitude of
perturbation. The Clip function ensures that the generated adversarial sample is in the
range of [X − ε,X + ε]. Papernot, et al. [8] proposed JSMAwith the aim of minimizing
the number of features modified while causing misclassification. JSMA computes the
Jacobian matrix of an input sample X , which is defined as:

∇F(X ) = ∂F(X )

∂X
=

[
∂Fj(X )

∂Xi

]

i∈1...M ,j∈1...N

According to the Jacobian matrix, the adversarial saliency map is identified. The
features are then selected in decreasing order of saliency values, and each is perturbed
accordingly by the value of ε (Fig. 1).

3 Methodology

The first step is training an IoT device identification classifier on the original dataset to
predict the IoT device class. Then, we assume the attacker has taken over an IoT device
(e.g., by deploying malware) and can manipulate traffic sent by that IoT device. The
attacker crafts adversarial attacks in two attack scenarios, namely white box and black
box. We say the adversarial attack is successful if the adversary can cause the IoT device
to be misclassified. Finally, we evaluate the stealthiness of the adversarial attacks.

Fig. 1. Methodology
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3.1 IoT Device Identification

We set up a multi-class IoT device classifier which will be tested against adversarial
attacks in the next step. We use the typical models used in the literature (discussed in
related works in Sect. 5), including Feed Forward Neural Network (FF-NN), Logistic
Regression (LR), Random Forest (RF), and Decision Tree (DT) for the classification
task.

3.2 Modeling Attack

We study the possibility of adversarial attacks on the aforementioned IoT device classi-
fication models by manipulating network traffic from an IoT device such that it should
be mistaken to be another IoT device in the network. We define two attack scenarios
based on attacker knowledge of the following components θ = (D,X , f ,W ); where
D indicates the dataset D = {(xi, yi), i = 1, . . . , n} comprised of n training samples, X
represents the feature space, f is the target IoT device classifier that trained in the first
step, and W denotes the model parameters.

White Box Scenario. In this scenario, the attacker has complete knowledge of all com-
ponents: θ = (D,X , f ,W ). Implementing the white box attack allows us to test the
security of the classifiers in the most extreme setting. The white box attack setup com-
monly adopted for differentiable classifiers is such that their gradient with respect to the
input data can be calculated [10]. Hence, in this scenario, we only attack differentiable
classifiers including LR and FF-NN.

Black Box Scenario. In this scenario, the adversary is unaware of the dataset, feature
space, target classifier and its architecture used for IoT device identification. We char-

acterize attacker knowledge in black box scenario as θ̂ =
(
D̂, X̂ , f̂ , Ŵ

)
. The current

mainstream method of crafting black box attacks is transferring adversarial examples
from a substitute model to the target model [11]. In this attack scenario, we launch white
box attack on substitute models of FF-NN and LR, then transfer crafted adversaries to
the admitted target models including FF-NN, LR, RF, and DT.

3.3 Attack Stealthiness

A successful stealthy adversarial attack is not perceptible in the network, thus making
it difficult to detect. We propose statistical analysis and ML-based intrusion detection
system to test the stealthiness of adversarial attacks. We assume the attack is imper-
ceptible in the network if we detect at least one device which has a similar distri-
bution of network traffic as that of the adversarially crafted network traffic. For this
purpose, we propose the Two-sample Kolmogorov-Smirnov goodness of fit test (KS-
test). Algorithm 1 depicts the detectability checks of the attack using the KS-test. KS-
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test returns the p_value, which is compared with a significance level of α. If p_value
> α then the adversarial distribution is similar to the original data of at least one
other device – this means that the generated adversarial examples are not perceptible

in the network. The third
method investigates the attack
perceptibility by considering
an Intrusion Detection System
(IDS), which is often deployed
in most IoT networks to thwart
security attacks. We assume
that the attack is not percepti-
ble if adversarial examples can
bypass typical ML-based IDS
systems.

4 Experimental Results

We implemented our methodology in Python 3.5 on an Intel® Core i5 2.3 GHz CPU,
64 GB of RAM, and running on MAC OS. First, we present an overview of the dataset.
Next, we show the performance ofML-based IoT device identification systems in a clean
environment. Then we present the vulnerability of these systems to adversarial attacks.
Finally, we present the stealthiness of generated adversaries in IoT networks.

4.1 Data

We used a large-scale dataset collected by Sivanathan, et al. [12] in a university cam-
pus environment over 6 months1. It contains network traffic data from 28 IoT devices,
including cameras, lights, plugs, motion sensors, appliances, and health monitors. The
authors characterized IoT traffic by features including traffic flow, flow volume, flow
duration, sleep time, NTP interval, DNS interval, and domain count.

4.2 IoT Device Identification

Wefirst evaluate the performance ofML-based IoTdevice classificationmodels in a clean
environment. The purpose of this is to have the baseline models trained for assessing the
possibility and impact of the adversarial attacks. We trained baseline models of LR, FF-
NN,DT, and RF on the training dataset. Themulti-class LR is performed using a softmax
regression on inputs. The FF-NN is made up of a hierarchy of 3 dense hidden layers
including 768, 384, and 200 nodes. The activation function of each node is Rectified
Linear Activation (ReLU) and the softmax dense is the output layer.

1 https://iotanalytics.unsw.edu.au.

https://iotanalytics.unsw.edu.au
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Table 1. Model performance on test data in clean environment

Classifier Accuracy score (%)

Logistic Regression (LR) 92.99

Feed Forward Neural Network
(FF-NN)

92.07

Random Forest (RF) 99.33

Decision Tree (DT) 99.41

Table 1 presents the classifiers’ accuracy on the test dataset. The results show that
all classifiers are doing well for IoT device identification problems.

4.3 RQ1: (Possibility Check) is ML/AI-Based IoT Device Identification System
Vulnerable to Adversarial Attacks?

White Box Scenario. Here, we evaluate the security of IoT device identification sys-
tems explained in Sect. 3.2 against three state-of-the-art adversary threats, i.e., FGSM,
BIM, and JSMA, through white box scenario. We use IBM’s Adversarial Robustness
Toolbox [13] for crafting adversarial examples. Accuracy score is considered as a met-
ric to show the impact of adversarial attacks on the classifiers’ performance. Lower
accuracy scores imply that the classifiers are more vulnerable to attacks. As described in
Sect. 2.3, while generating adversarial examples, the epsilon parameter characterises the
maximum admissible perturbation that can be added to the original IoT data. Figure 2
demonstrates the vulnerability of FF-NN and LR-based IoT device classification models
against white box adversarial attacks in terms of model accuracy. The accuracy score
in both models drops sharply at first relative to the clean environment (i.e., baseline
results). For example, a sharp fall of accuracy score at ε = 0.001 for JSMA on FF-NN
from around 92% to about 70%. This confirms the vulnerability of these models in an
adversarial environment. Further increase in attack intensity (indicated by ε) has less
impact on the performance of the models. For example, after ε = 0.02, the change in
the models’ accuracy under adversarial attack is minimal.

Fig. 2. White box attack
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Under FGSM attack, results show that LR is more vulnerable to white box attacks
compared to FF-NN since there is a greater drop in the LR model accuracy compared
to FF-NN for the same level of perturbation. The possible reason for this can be the
simplicity of LR model for adversarial manipulation compare to FF-NN. Under JSMA
attack, both FF-NN and LR models present a severe drop in the accuracy even for
the lower amount of perturbation compared to FGSM and BIM attacks. In this case,
JSMA is more successful than FGSM because, by definition, it perturbs only a small
number of selected features to a maximal value. Moreover, the output is relatively sus-
ceptible to these selected features than other features. In contrast, FGSM perturbs all
features. Besides, FGSM requires a large perturbation and is prone to label leaking [14].
Consequently, the success rate of FGSM is low compare to JSMA.

Black Box Scenario. As described in Sect. 3.2, we generate adversarial attacks in the
white box setting and use them to target black box IoT device classifiers including FF-
NN, LR, DT, and RF. Figure 3 Part A and Part B show the vulnerability of targeted
models against FGSM, BIM, and JSMA black-box attacks where FF-NN and LR are
substitutemodels, respectively. In the figure,Y-axis shows the performance of themodels
(accuracy score), andX-axis shows the different levels of perturbations. Our results show
that the performance of all models drops even with a small amount of perturbation (for
example, ε = 0.001). In Part A, under adversarial attacks with FGSM and BIM, the
attack success pattern (measured in terms of the fall of accuracy with respect to ε) for
the FF-NN target classifier is comparatively slower than the rest if the perturbation level
is less than 0.02. However, DT attains a non-decreasing accuracy pattern (attack success
pattern) despite an increase in the perturbation beyond ε = 0.02, where the accuracy
stays around 78% and 76% for FGSM and BIM, respectively. Similar to the white box
scenario and due to the same reasonings, JSMA exhibits a strong ability in attacking
FF-NN and LR target classifiers. Also, it is indicated by the more fall in the accuracy
for the same level of perturbation than the cases with RT and DT.

Furthermore, FGSM and BIM attacks require larger perturbation for the same level
of drop in model accuracy than JSMA. For the black box attack with the LR substitute
model, we find a similar pattern of attack success for FGSM, BIM, and JSMA as in
their corresponding cases with the FF-NN substitute model (see Fig. 3 Part B). Thus,
for black box attack scenarios, our results indicate that a simple and computationally
efficient model such as LR effectively generates adversarial attack signals/data in an IoT
device identification system. For both the FF-NN substitute and LR substitute model-
based black box attack, the attack success pattern is non-decreasing for RF and DT
after ε > 0.02. This is possibly due to the inability of our gradient-based substitute
models (FF_NNandLR) tomimic the similar decision boundaries of non-gradient-based
non-linear models such as RF and DT under highly perturbed adversarial samples.

4.4 RQ2: (Detectability) is the Adversarial Input to the ML/AI-Based IoT Device
Identification System Detectable?

Statistical Test. As described in Sect. 3.3, a stealthy adversarial attack is not percep-
tible in the network. We measure the attack perceptibility through KS goodness-of-fit
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Part A. FF-NN substitute model

Part B. LR substitute model
LR FF RF DT

Fig. 3. Black box attack

test analysis to compare the distribution similarity between original and adversarial
data/examples. To define the KS test statistic, first we specify H0 hypothesis “H0: both
adversarial and original samples come from the same distribution”. The KS test returns
the P-values of an original signal vs an adversarial one. We set the significance level α
to 0.05, which is the most commonly used value [15]. Moreover, Fisher, the father of
modern statistics, recommended a significance level of 0.05 as a standard level [16]. We
compare P-values to the significance level. Therefore, high confidence, P-value> 0.05,
shows that adversarial examples are drawn from the same distribution as the original
data. We evaluated the attack perceptibility of all crafted adversaries in this research,
and statistical results under the KS test show that all generated attacks are imperceptible
in the network for ε ≤ 0.1. We present our result with ε = 0.1 and five devices as an
example in Table 2. The table presents KS statistic theory results for black box FGSM
attack against LR classifier where the substitute model is FF classifier. The rows show
the predicted class label by the LR classifier in FGSM adversarial setting. Columns list
all perturbed features in this study. The number of devices that passed the H0 hypothe-
sis in KS statistical theory is depicted in each cell. Results reveal that for all predicted
devices in the adversarial setting, we can find at least one device in a clean environment
that has similar distribution for the corresponding perturbed feature. This implies that
the adversarial sample is not perceptible in the IoT network with the KS test.

ML-Based Intrusion Detection System. In our experiment, we implemented ML-
based IDS systems based on two different anomaly detection models, namely one-class
SVM, and isolation forest. Our results are presented in Table 3 and 4. These tables show
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Table 2. KS statistical test results

e = 0.1 Number of devices in clean environment that have same distribution as adversarial
device

Domain count Sleep time Flow volume Flow duration DNS
interval

NTP
interval

Device 1 3 6 2 2 4 3

Device 2 5 5 4 3 2 9

Device 3 2 2 3 2 3 5

Device 4 4 7 3 3 2 23

Device 5 3 2 2 2 2 8

the confusionmatrix for one-class SVM, and Isolation Forestmodels, respectively, under
the test data. The results show a True positive rate of 8% and 25% for one-class SVM
and Isolation Forest, respectively. This confirms the effectiveness of adversarial attacks
to bypass the IDS systems.

Table 3. Confusion Matrix for Isolation Forest

Isolation Forest Predicted class

Normal Attack

Actual
class

Normal TN =
18248

FP = 1777

Attack FN =
1503

TP = 496

Table 4. Confusion Matrix for One Class
SVM

One class SVM Predicted class

Normal Attack

Actual
class

Normal TN =
18307

FP =
1718

Attack FN =
1824

TP =
175

5 Related Works

In this section, we summarize the relevant related work to machine-learning-based IoT
device classification systems. Sivanathan et al. [12] proposed a multi-stage classification
framework to classify IoT devices in the network environment. Miettinen, et al. [17]
presented IoT SENTINEL, aML-based system for automatically identifying IoT devices
and pinpoint vulnerable devices to limit their communications in a network accordingly.
In another work, Long short-term memory with convolutional neural network (LSTM-
CNN) cascade models was proposed by Bai, et al. [18] to identify the semantic type of
the device with only small training dataset. Siby, et al. [19] proposed the IoT scanner,
a system to monitor IoT environment and actively classify streaming IP cameras from
non-camera devices. A neural network based approach is proposed by Das, et al. [20] to
identify 30 low power IoT devices. In another study, Acar, et al. [21] introduced a novel
machine learning based privacy attack in smart home environment for identifying IoT
devices.
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6 Conclusions

In this paper, we evaluated the possibility of generating adversarial attacks for IoT device
identification under the white-box and black-box attack scenarios. We further studied
the attack stealthiness by KS statistical test analysis, and IDS system evaluation. Our
results demonstrated that adversarial examples are strongly possible, and they lead to
the degradation of performance of IoT device identification systems. In addition, these
attacks are highly imperceptible in the network for various tests, including statistical
analyses. Our results clearly presented the severity of these attacks in IoT device iden-
tification systems and motivate further studies to tackle the concerns. Thus, robustness
techniques to improve the attack resilience against the adversarial attacks for IoT device
identification systems are left as our future work.
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Abstract. As mobile phones become inseparable from daily activities
and lifestyles, users generate a large amount of app usage data. Such data
contain patterns that could be useful for accurate mobile application
usage prediction which can be used to improve user experience and the
performance of smartphones. In this paper, we propose novel enhance-
ments to the state-of-the-art deep learning model, named DeepPatterns
model, to improve the performance of the mobile app usage prediction.
Our proposed model enhances the contextual awareness of the prediction
by adding the Point-of-Interest (PoI) distribution and weather features.
Furthermore, we extend the model training by including weekend mobile
apps usage data. Finally, we implement a different partitioning method
in the training process to tackle the limitations of our smaller dataset
size. Our experimental results show that the enhanced model outper-
formed the state-of-the-art model in the recall, precision, f1-score, and
AUC measures ranging from 7% to 11% despite having less than one-
tenth of the original dataset.

Keywords: Mobile apps · Usage patterns · Spatio-temporal ·
Contextual information · Deep learning

1 Introduction

Smart cities utilise sensors to obtain information from the environment and peo-
ple. In our society nowadays, most people use smartphones that can be applied
as sensors since smartphones collect various information such as location, appli-
cation usage, and others.

These data can be used to predict the next application that will be opened
by users. The next application prediction is useful as it can be applied to sev-
eral smart services, such as recommendation systems, targeted advertising and
virtual assistant.

Next-app prediction is a challenging task for two major reasons. Firstly, it
is not only a classification problem but also a time-series prediction. App usage
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-91431-8_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91431-8_58&domain=pdf
http://orcid.org/0000-0003-2674-0253
http://orcid.org/0000-0002-2335-0404
https://doi.org/10.1007/978-3-030-91431-8_58


812 B. Suleiman et al.

is highly correlated to the spatial-temporal context and is heavily influenced by
both short-term and long-term usage history. This complex relationship could
not be well represented by traditional models such as naive Bayes or the hidden
Markov model. Secondly, every person has a unique app usage pattern due to
reasons such as personal interest, occupation, demographics, and others. A pre-
diction model that predicts well on one user may not predict well on another
user. Meanwhile, building a separate model for each user is not computation-
ally effective. These challenges remain until researchers turned to deep learning
models which provide a promising framework to solve them.

Currently, DeepApp [10] is the state-of-the-art model in next app prediction.
It is a supervised model that applied multi-task learning to learn the relation-
ship among time, location, usage, and app explicitly. In this study, we extend the
DeepApp model and propose several novel enhancements to further improve its
prediction results. We conduct thorough experiments on a real-world dataset
of and found that most of the proposed enhancements can improve perfor-
mance metrics. The goals of this study are to evaluate the effect of the proposed
enhancements on the model’s performance and to make significant improvements
to the baseline model, the DeepApp [10], with the constraint of smaller dataset
size. Both goals contribute to making a better and more efficient next-app pre-
diction model which would improve user experiences. The contributions of our
work is threefold:

– We propose novel enhancements to the state-of-the-art deep learning model
that improves the prediction of mobile apps usage based on Spatio-temporal
and contextual features.

– We develop an enhanced deep learning model, called DeepPatterns, for pre-
dicting mobile apps usage patterns.

– We conduct thorough experiments and ablation study to evaluate the effect
of our proposed DeepPatterns model and demonstrate how it outperforms
the state-of-the-art mobile app usage prediction.

2 Related Work

In the past decades, many studies focused on modelling the relationship between
app usage and spatial-temporal context using different techniques so the model
could predict the next apps to be used by a user. Qiao et al. [5] utilised a
Hidden Markov Model, Wang et al. [9] designed a novel hierarchical Dirichlet
process mixture model, Chen et al. [3] built a heterogeneous graph embedding
algorithm, Lv et al. [4] designed a rating framework that extracts the semantic
information from the spatial data, and Tu et al. [8] used complementing data
to make a prediction (posts on social networking websites). Other studies such
as Zhao et al. [12], Sarker and Salah [6], Shen et al. [7] and Xia et al. [10] used
deep learning methods such as RNN, AppUsage2Vec, DeepApp that increased
the model complexity and achieved improved performance. These approaches
mainly used temporal, app usage, and location data as input. As in location
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data, there is a research branch called trajectory data. It focuses on identifying
mobility pattern which is also correlated to the app usage behaviour.

Trajectory data could be passively collected via GPS and cellular tower
connection when individuals connect their mobile devices to the internet. The
immense amount of location data enabled big data analytic of mobility patterns
on both individual and population-level [2] which shows that a unique user can
be identified by as few as 4 spatial-temporal data points [1].

Additionally, the cellular towers hand-off feature, whereby a user connects to
the nearest base station, causes the phenomenon of oscillation. The frequency
of oscillation between towers can infer the spatial closeness between the cellular
tower [4]. The study discovered individual movement patterns from cell-id tra-
jectories without explicit location information but using their novel sequential
pattern mining algorithm. Besides, Yu et al. [11] also showed in their study that
PoI is correlated with app usage patterns.

Several of the studies were conducted by using the same dataset in our study.
Wang, et al. [9] applied a Bayesian mixture model to predict future app usage
of users. It leverages spatial and temporal aspects of the data to aid in the pre-
diction of users that have made minimal requests. Spatially, the PoI distribution
of each cellular tower provided context to answer why the user is using the app.
Using PoI distribution of each cellular tower is a common theme amongst papers
on the same dataset as it is the only source of context whereby GPS offers none.
DeepApp model in [10] also stated in the paper that using PoI distribution could
be a future work to experiment with.

3 Methodology

Our goal is to predict a set of apps that a user will use in the next time inter-
val given the historical usage and any additional features such as location and
weather conditions. Each time interval is 30-min long. We adapt the problem
definition in [10] as follows. A user opened WhatsApp and Instagram between
11:00–11:30, denoted as S1. In the next 30-min interval, during 11:30–12:00, the
user opened YouTube and Amazon, denoted as S2. Subsequently, during 12:00–
12:30, user opened WeChat, denoted as S3. The objective is to predict what
apps would be opened by the user in the next 30 min, denoted by S4.

3.1 Dataset

The study is evaluated using the Tsinghua App Usage Dataset [11] which is
procured from China Telecom. It is a collection of user app usage data in a
major city in China between 20 and 26 April 2016. The dataset used in this
study is a subset of the original dataset mined by China Telecom. It contains 4.2
million records from 871 users and 9,800 base stations. Each record is a network
request that contains a timestamp, anonymised user id, mobile application id,
category of the mobile application and cellular tower id.
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We have 871 users in our dataset with average app usage is 4,789. The usage
range is wide from the highest usage request of 1,098,748 to a minimum of 4. For
application, it has 1,696 apps, average usage of an app is 2,459, the usage range
is also wide, from maximum usage request of 898,308 to minimum of 1. From
location wise, we have 6,739 base stations, the mean request from a base station
is 4,956 with a maximum of 9,849 and a minimum of 0. From the descriptive
statistics, we observed a high variance dataset as some users, applications, and
locations have significantly higher observations than others.

3.2 DeepPatterns: A Spatio-Temporal and Contextual-Based
Prediction of User’s Mobile App Usage

Our proposed enhancements to this problem are: enriching the input, using a dif-
ferent trainingmethod, and removing noises. First, we suggest addingPoI distribu-
tion as a feature. It is a distribution of the categories of the PoIs under the coverage
of a base station. There are 18 categories in total. PoI distribution is a better repre-
sentation of the spatial information as compared to a discrete base station ID. We
also suggest including weather information as an additional feature. Weather infor-
mation could play a role in app usage behaviour. For instance, users will have dif-
ferent behaviours in sunny vs. rainy days. Since the dataset only contains 7 d’ data,
seasonality differences could not be analysed. However, between 20 and 27 April
2016, there were few showers during the day which might change user behaviour.
This enables us to study the effect of adding weather to the input feature. So, we
use all available data for training and testing.

Secondly, we propose to train the model with a different approach to combat
the limited amount of data. The DeepApp [10] splits the dataset into training,
validation, and test set by day, it used the first 3 d (20, 21, and 22 April 2016)
for the training set, the fourth day (24 April 2016) as the validation set and the
last day (25 April 2016) as the test set. In our approach, we split the results by
user and we use 80% user to train, 10% for validation, and the remaining 10% for
testing. The rationale is that there are individuals that have similar behaviours
such that the model is better at predicting the app usage of those users. Thirdly,
we proposed to remove oscillation from the dataset. In data exploration, we
observed a significant amount of oscillation. We believe that removing oscillation
can remove the unwanted noise in spatial information, hence improve accuracy.

DeepPatterns: Model Architecture. Our spatio-temporal and contextual-
aware prediction model is adapted from the DeepApp [10], and shown in Fig. 1.
It consists of three modules. The Embedding Module receives the input features
and embeds each feature into a dense vector of different dimensions. The embed-
ded vectors are then concatenated into a single vector before passing it to the
DeepApp Module. In the DeepApp Module, there will be a single layer RNN
unit, which can be substituted with any other recurrent neural networks such
as GRU and LSTM. The last hidden state would be passed into the Prediction
Module, which consists of a linear layer to match the expected output dimension
and the log-softmax function to calculate the probability of each app being used
in the next time interval.
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Fig. 1. DeepPatterns: proposed model enhancements

Compared to the original DeepApp model [10], there are two significant
changes in our DeepPatterns model. Firstly, location prediction and user pre-
diction were removed from the Prediction Module and only the app prediction
is kept. Thus, the loss function only focuses on the binary cross-entropy loss
from app prediction. Secondly, with additional features are passed as inputs, the
Embedding Module concatenates five dense vectors before passing it to the next
module.

Two different partitioning methods are adopted for model training. There-
fore, we introduce two different training modes. The implementation of the model
can be trained and evaluated in two modes with different settings, defined by the
parameter called ‘split mode’. This parameter determines how the training, vali-
dation, and test sets are partitioned and imputed into the model. The first mode,
the ‘temporal’ mode, is the one implemented in the original DeepApp implemen-
tation [10]. In this setting, each user’s pre-processed data is first sorted by date.
Subsequently, if only the 5 working days are included in the pre-processed data,
the first 3 d serve as the training set, and the remaining 2 d serve as validation
and test set. However, if the weekend days are included, our implementation
will implicitly use the first 3 weekdays and 1 weekend day as the training set, 1
weekday as the validation set, and the remaining weekday and weekend day as
the test set.

The second setting, the ‘user’ mode, can be selected by setting the ‘split mode’
parameter as ‘user’. This additional mode is added so that the model can be trained
using a subset of users and evaluated and validated on the remaining ones. Namely,
it allows the model to be trained on some users’ entire data and predicts unseen
users’ usage data. When set to the ‘user’ mode, the model implicitly uses all 7 d
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of data from the users. The proportions of users being assigned to each partition
is defined by an additional parameter ‘split ratio’ which is a list containing the
corresponding proportion of data assigned to the training, validation, and test sets.

The main motivation for this second mode is the assumption that users share
some common app usage patterns, and by training the model with a proportion
of the users, it is possible for the model to uncover those patterns and make
predictions on unseen users. Another reason for this is to allow control on how
much data is used for each partition as the ’temporal’ mode is restricted by the
number of days contained in the dataset.

Benchmarking and Evaluation. Various experiment results would be bench-
marked with the DeepApp. Experiments will include all variations of enhance-
ments. Several baseline models will be created, including multinomial logistic
regression, multi-layer perceptron, and most recent app usage. Results compar-
isons were conducted using various evaluation metrics, to show that deep learn-
ing recurrent models are more suitable for the objective. Two evaluation metrics
were adopted from [10]: Recall@5 and Area Under the Curve (AUC), to evaluate
the models. Recall@5, takes the top 5 predictions with the highest probability of
being used in the next time interval and compares them with the ground truth.
Moreover, Precision@5 and f1@5 are included to take both false positives and
false negatives into account.

4 Results

To achieve the best experiment results, we trained our DeepPatterns model
with the ‘user’ mode for the partitioning of our data in the training process. The
split proportions were 80–10-10. We used an Adam optimiser and trained for 10
epochs to obtain the model with the best validation metrics. The learning rate
is initially set at 1e−4 and is updated by a scheduler when the loss reaches a
plateau. The scheduler updates the learning rate by multiplying the latter with a
learning rate decay factor which is set to 0.1 in our optimal setting. Similarly, to
the original DeepApp, a dropout layer with a rate of 0.5 is implemented between
the embedding layer and extraction modules to prevent overfitting. The optimal
model removes the two other tasks (location prediction and user prediction) in
the predicting module, which means that the model optimises with the loss of the
main app prediction task only. In the Embedding Module where the model learns
the best embedding of input features, the embedding size for PoI distribution,
base ID, time interval, and app usage are 4, 256, 16, and 512 respectively.

As shown in Table 1, our DeepPatterns model outperforms the original model
in all evaluation metrics with improvements ranging from 7% to 11%. The mod-
ifications that seem to contribute the most to this increase in performance are
the integration of the weekend and the addition of the ‘user’ mode. These two
enhancements allow the model to be trained on more data which helps the latter
better capture the usage patterns from different users. The model when set to
‘user’ mode seems to adapt and predict better on a smaller and scarce dataset.
Rather being trained on partial data from all users and predict those same users’
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Table 1. Results from different modes that include weekend data

Model Recall@5 Precision@5 F1-Score@5 AUC

DeepApp model 0.5946 0.5489 0.5580 0.8191

Multinomial logistic regression 0.3172 0.0960 0.1416 0.4342

Multi-layer perceptron 0.2181 0.0579 0.0887 0.4691

Näıve bayes 0.6641 0.6132 0.6329 0.4453

Our DeepPatterns model 0.7050 0.6614 0.6712 0.8925

remaining temporal splits, the model learns from the complete data from some
users and predict the remaining unseen users.

Finally, the additional features, PoI and weather data, do not contribute
significantly to performance improvements. However, when these two additional
features are added, increases in most metrics can be observed in most variants
which show that they hypothetically could have a more significant influence on
a larger and less scarce dataset.

5 Discussion

Adding related features, using more data to train and training with a different
train-test split could significantly improve the performance metrics. The incre-
ments in precision score and recall score show that the enhanced model makes
fewer false positive and false negative predictions. This is also reflected by an
improved F1-score that indicates a balance of precision and recall. In context,
the model is less likely to predict apps that would not be used (precision) and are
less likely to miss apps that would be actually used (recall). Besides, although the
enhancement and experiment results are specific to the DeepApp [10], most of
the enhancements focus on improving the input features and training approach.
The underlying principles of the enhancement should be invariant to different
models, hence these enhancements might be transferable to other studies that
are related to app usage prediction.

6 Conclusion

We proposed and elaborated on how we enhanced the spatio-temporal awareness
of the model DeepApp by integrating additional contextual information namely
PoI distribution of the location and the weather information. We also found
that integrating the weekend data, which was excluded in the original DeepApp
study, and using a different data partitioning method in the training process
could help our model achieve better training efficiency and similar performance
to the original model with only a fraction of the original dataset. Through exten-
sive experiments, our enhanced DeepPatterns model demonstrated significant
improvements in efficiency and performance compared to the original DeepApp
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model when trained on smaller dataset size. In the future, we plan to compare the
performances of both original and modified models on the larger original dataset,
if made accessible, to get a more concrete comparison between our model and
the original one. Furthermore, it would be interesting to study how our model
would perform on other app usage datasets.

Acknowledgment. We would like to thank Hin Lok, Liu and Kevin Lam for helping
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Abstract. Cloud applications are increasingly executed onto lightweight
containers that can be efficiently managed to cope with highly varying and
unpredictable workloads. Kubernetes, the most popular container orches-
trator, provides means to automatically scale containerized applications
to keep their response time under control. Kubernetes provisions resources
using two main components: i) Horizontal Pod Autoscaler (HPA), which
controls the amount of containers running for an application, and ii) Ver-
tical Pod Autoscaler (VPA), which oversees the resource allocation of
existing containers. These two components have several limitations: they
must control different metrics, they use simple threshold-based rules, and
the reconfiguration of existing containers requires stopping and restarting
them.

To overcome these limitations this paper presents KOSMOS , a novel
autoscaling solution for Kubernetes. Containers are individually con-
trolled by control-theoretical planners thatmanage container resources on-
the-fly (vertical scaling). A dedicated component is in charge of handling
resource contention scenarios among containers deployed in the same node
(a physical or virtual machine). Finally, at the cluster-level a heuristic-
based controller is in charge of the horizontal scaling of each application.

Keywords: Kubernetes · Containers · Resource provisioning · Control
theory

1 Introduction

Containerization is a lightweight virtualization technique that allows operating
system (OS) processes to be run and managed independently of one another [9].
Containers are built using different runtime environments (e.g., Docker1) that

1 https://docker.com.
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exploit specific OS features (e.g., namespaces, control groups) to guarantee iso-
lated execution and management. Applications that are executed in containers
usually require multiple replicas (i.e., instances of the same container) deployed
onto multiple machines to serve intense workloads that cannot be handled by
a single executor. These applications are often constrained by requirements on
their response time, usually included in Service Level Agreements (SLA). To
avoid SLA violations that lead to economic fines and customer dissatisfaction,
container resources must be allocated dynamically and precisely so that external
factors, such as a highly varying workload and the unstable performance of the
underlying cloud infrastructure, do not affect the user-perceived response time.

Since containers live within a single OS, container orchestrators are required
to properly manage distributed containers running on different host nodes.
Kubernetes2 is by far the most popular container orchestrator [6] and it is also
offered as-a-service by all the most important cloud providers. Kubernetes uses
an abstraction called pod, a bundle composed of a main container and some
related components (e.g., volumes, monitoring agents) that is deployed as a sin-
gle unit3. Kubernetes provides two components dedicated to resource allocation:
Horizontal Pod Autoscaler (HPA) [3] to scale containers horizontally and Verti-
cal Pod Autoscaler(VPA) [5] to scale them vertically. Horizontal scaling aims to
dynamically increase or decrease the number of container replicas that execute a
given application; vertical scaling dynamically increases or reduces the amount
of CPU power and/or memory allocated to a single instance of a container.

Kubernetes autoscaling components are affected by at least three main issues.
First, HPA and VPA cannot work together on the same input metric (e.g., the
response time). This limitation derives from the fact that the two components
are not designed to cooperate, and by working on the same metric they could
interfere with one another. Second, VPA does not provide in-place vertical scal-
ing but it reconfigures pods in three, less efficient, steps: i) it computes the new
resource allocation, ii) it terminates the old containers, iii) it recreates the con-
tainers with the new resource allocation. Moreover, VPA can only compute the
same reconfiguration for all the running replicas of a container. This means that
all the replicas of a pod always have the same amount of resources allocated,
no matter their different execution environments (e.g., different types of VMs).
Third, they rely on simple rules (e.g., threshold-based heuristics) which could
result in sub-optimal performance in non-trivial scenarios.

Few works attempted to overcome the aforementioned limitations. For exam-
ple, Baresi et al. [8] and Rattihalli et al. [11] present solutions to better exploit
vertical scaling in Kubernetes. To do that they update container resources by
using directly the underlying Docker runtime (recently deprecated by the Kuber-
netes team [2]) bypassing the Kubernetes API. Other approaches highlight the
potential of combining both horizontal and vertical scaling [7]. Kwan et al. [10]

2 https://kubernetes.io.
3 In some edge cases a pod can also contain multiple “main” containers. Our solution

supports this case, but for simplicity are not considering herein. In the rest of the
paper we will use word “container” to refer to the main container of a pod.

https://kubernetes.io
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state that, when using a combined approach, they obtained a speedup of 49%
with respect to using only Kubernetes HPA, but their approach is not integrated
with Kubernetes.

This paper presentsKOSMOS , a comprehensive autoscaling system for Kuber-
netes. KOSMOS is built on top of the API of Kubernetes, it can control multiple
concurrent applications simultaneously and it exploits a multi-level control sys-
tem. At the application level it provides horizontal scaling using a heuristic, at
the container level it carries out in-place vertical scaling using control-theoretical
planners, and at the node level a dedicated component oversees resource contention
among containers that share the same host machine. Moreover, it also provides a
resource-aware load balancing system to properly distribute the workload to a set
of independently managed container replicas, and a lightweight monitoring mech-
anism to efficiently feed the controllers with proper metrics. To the best of our
knowledge, KOSMOS is the first approach that combines three key characteris-
tics: horizontal scaling of containers, in-place vertical scaling of containers, and a
seamless integration with the Kubernetes API.

The rest of the paper is organized as follows. Section 2 provides an overview
of KOSMOS . Section 3 explains the control algorithms employed by our solution.
Section 4 surveys some important related work, and Sect. 5 concludes the paper.

2 KOSMOS

To overcome the limitations of state-of-the-art autoscaling systems and to fully
exploit the potential of containerization technology, KOSMOS4 was built to
provide the following key features.

Kubernetes Integration. Kubernetes is one of the key technology of the modern
cloud [6]. KOSMOS is an extension of Kubernetes and its additional components
are all created using the Kubernetes API.

Fast and Fine-grained Control. Containers unlock the possibility of fast and
fine-grained allocation of resources. Containers can be booted in seconds and
re-configured in hundreds of milliseconds [12]. Containerization also provides
the means to precisely allocate resources to each process (bytes of memory
and fractions of cores). KOSMOS fully exploits this technology by employing
lightweight control-theoretical planners and heuristics that are able to compute
precise allocations in constant time for each container. The coordination among
the controllers is also lightweight thanks to KOSMOS ’s multi-level design.

Bi-directional Autoscaling. Unlike VMs that can usually be only scaled horizon-
tally (in public clouds), users can scale containers both horizontally and verti-
cally. Since no existing system provides the two types of scalability in Kuber-
netes, KOSMOS combines horizontal and vertical scaling. Vertical scalability is
used to quickly reconfigure existing containers, horizontal scaling is employed
only when the efficiency of the system decreases.

4 The source of KOSMOS is available at https://github.com/deib-polimi/kosmos.

https://github.com/deib-polimi/kosmos
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In-place, Replica-independent Vertical Scaling. In Kubernetes, pods are consid-
ered an immutable resource, thus the only way to reconfigure them is to termi-
nate and restart them with a new setting. KOSMOS does not require, unlike
Kubernetes VPA, to restart containers to actuate a vertical scaling action. To
do that, KOSMOS exploits an update of Kubernetes (technically, a Kubernetes
Enhancement Proposal) that is currently in advanced approval state [1] that
allows container resources to be modified at runtime (through a new patch end-
point). Moreover, while VPA actions require all the replicas to be reconfigured
with the same amount of resources, KOSMOS computes a different optimized
allocation for each replica.

Resource-Aware Load Balancing. In KOSMOS multiple replicas of a container
may have different resource allocations, thus policies that evenly distribute the
traffic (e.g., the ones adopted in Kubernetes) could be extremely inefficient.
Instead, KOSMOS adopts a resource-aware heuristic that works in conjunction
with vertical and horizontal scaling.

Multiple Applications. Many autoscaling systems focus on single applications,
KOSMOS is designed to control multiple applications simultaneously. A con-
troller, one for each node, is dedicated to manage resource contention scenarios.

Low Latency Container Monitoring. Since KOSMOS aims to fully exploit the
speed of containers, the employed monitoring mechanism must not introduce
any significant delay. KOSMOS provides a per-replica monitoring system of
application-level metrics that uses a negligible amount of resources (less than
50 millicores according to our measurements) and that feeds all the control com-
ponents.

2.1 Architecture

The architecture of KOSMOS is an extension of Kubernetes and its components
extend some of the key entities of the platform. A Kubernetes cluster is composed
of a centralized master node dedicated to the orchestration of a set of distributed
worker nodes (i.e., physical or virtual machines). A Kubernetes agent called
Kubelet is deployed onto each worker node and it used to communicate with the
master node.

The master node exposes a so called API Server through which Kuber-
netes Resources can be created, read, updated and deleted. Examples of built-in
Kubernetes Resources are pods, services and nodes. As mentioned before, a pod
is a container with some related components that are always deployed as a single
unit, a service is a logical set of pods (e.g., a set of container replicas) that are
exposed with a single interface (e.g., a loadbalancer), and a node is the represen-
tation of a worker node. Kubernetes also supports so-called Custom Resources
that allow users to enrich the API Server with new endpoints dedicated to user-
defined types of entities. Kubernetes Controllers are components that manage
a set of resources using a control loop. Examples of controllers are Kubernetes
HPA and VPA.
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Figure 1 shows the architecture of KOSMOS , the new components are
depicted in white, while non-white components are built-in ones. KOSMOS
defines the following Custom Resources: i) ServiceLevelAgreement ii) PodScale
iii) PodMetrics, and iv) ServiceMetrics.

Fig. 1. Architecture of KOSMOS .

Resources of type ServiceLevelAgreement are defined by users to set a con-
straint on the response time for a given Kubernetes service. This resource also
allows to set the default resource allocation allocated at startup time, the min-
imum and maximum allocation of CPU cores and memory for each container
instance of the service (for vertical scalability), and minimum and maximum
number of replicas as bounds for horizontal scaling.

When a resource ServiceLevelAgreement is created for a service, an instance of
resource PodScale is created for each pod that belongs to that service. This kind
of resource is used to monitor the current state of the scaling process, embed-
ding all the allocations planned and actuated for a given pod. Thus, a PodScale
resource that is linked to a pod p, is updated at each vertical scaling action that
targets p. A new PodScale resource is created (or deleted) when the horizontal
autoscaling system scales up (or down) a given service. Resource PodScale not
only contains the enacted configuration but also the ones that are capped because
either desired allocations are too big for the hosting node or for resource con-
tention scenarios. Finally resources PodMetrics and ServiceMetrics are addition
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to the built-in Custom Metrics API 5 that allows controllers to gather monitor-
ing data of user-defined metrics. Resource PodMetrics holds monitoring data at
pod-level granularity whereas ServiceMetrics at service-level.

KOSMOS employs a set of new Kubernetes Controllers to optimize resource
provisioning. Component KOSMOS Vertical Pod Autoscaler (KVPA) is in
charge of vertically scale each instance of pod. Controller KVPA is composed
of three sub-components. First, Recommender (logically, one for each container)
uses control theory to compute the optimal resource allocation for each con-
tainer given the defined SLA. Second, Contention Manager (logically, one for
each node) is in charge of solving resource contention scenarios. In particular, it
ensures that the sum of resource allocations computed by Recommender never
exceeds node capacity. Third, Pod Resource Updater actuates the resource allo-
cations as computed by the Contention Manager using in-place vertical scaling.
Furthermore, it saves all the previously computed allocations into the proper
PodScale resource.

Component KOSMOS Horizontal Pod Autoscaler (KHPA) takes care of
the horizontal scaling process by adjusting the number of Pod replicas. Usu-
ally, it comes into action when the vertical scaling can not satisfy the Service
Level Agreement requirements. It is implemented as a modular set of heuristics.
Finally, PodScale Controller is in charge of managing PodScale resources when
a new ServiceLevelAgreement resource is created or removed and when a new
pod is created or terminated.

For each service, KOSMOS deploys a i) resource-aware loadbalancer that
distribute the requests to the pod replicas based on the dynamically allocated
resources, and ii) a Metric Exposer that collects PodMetrics, aggregates them
into ServiceMetrics and push them to the proper Custom Metrics endpoints.
Finally, each pod is enriched with a KOSMOS Proxy, a lightweight component
that, by exploiting the Monitoring Sidecar pattern [4], intercepts all the requests
incoming to the main container of the pod and propagates the monitoring data
to component Metric Exposer.

3 Scaling Capabilities

Component KVPA is in charge of vertically scaling each pod given a constraint
on the response time. KVPA is composed of three main sub-components: Rec-
ommender, Contention Manager and Resource Updater.

The complexity of the whole control loop is linear to the amount of the
available pods and given the loose dependency among the computed allocations
the algorithm is highly parallelized. While the actual computation of allocation
may last hundreds of milliseconds, to actuate the allocations a set of HTTP calls
are required. Thus, the control period of KVPA was set to 5 s to accommodate
enough time to complete the whole process.

5 Kubernetes distinguishes between Custom Resources and Monitored Resource;
herein we omit this distinction for simplicity.
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KOSMOS is not limited to only vertical scaling and provides a component
KOSMOS Horizontal Pod Autoscaler (KHPA) to also scale pods horizontally.
Component KHPA is designed to work as a complement of component KVPA.
KVPA is considered the main autoscaling component; it is based on a robust
theoretical foundation and provides formal guarantees6. When KVPA is unable
to stabilize the system, or the nodes are poorly utilized, component KHPA comes
into play. KHPA works with a larger control period (the default value is set to 5
min) compared to KVPA, to allow KVPA to have enough time to stabilize the
control process.

Component KHPA offers three different heuristics to compute the number of
replicas needed for each service.

– PROP. This heuristic, similar to the one used by Kubernetes HPA, com-
putes the amount of replicas needed by comparing the monitored response
time (at the service-level) and the set-point one following the equation:
desiredReplicas = �currentReplicas ∗ RT

α∗RTSLA �. In this case, the monitored
response time (RT) refers to the aggregated response time of the service
(resource Service Metrics). PROP is the default heuristic of KOSMOS .

– CONT. Whenever a contention is detected by component ContentionMan-
ager, this heuristic is activated and a set of replicas that allows to satisfy the
desired allocations are created. This way the load will be distributed across
more application instances and a bigger resource pool will be provided to
KVPA.

– UTIL. This heuristic behaves similarly to the previous one, but instead of
looking for resource scenarios it tries to prevent them. This mechanism keeps
on watching the resources available on the nodes, and once they fall below a
certain percentage, it creates new replicas for the most demanding services.

To avoid frequent, undesired, changes to the amount of replicas, component
KHPA employs a stabilization period, a time window larger than the control
period during which KHPA remains idle waiting for i) new replicas to be sched-
uled and booted, and for ii) component KVPA to stabilize the system.

4 Related Work

In the literature, one can find multiple works regarding autoscaling systems for
containerized applications and/or Kubernetes [8,13].

Knative7 is a platform that provides a set of Kubernetes components that
enrich Kubernetes with serverless capabilities. Compared to KOSMOS , Knative
has two limitations: i) it does not provide vertical scaling ii) its control algorithm
is based on simple threshold based rules as VPA and HPA.

6 An in-depth assessment of the formal guarantees provided by our control-theoretical
planners is omitted for lack of space.

7 https://knative.dev.

https://knative.dev
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Balla et al. [7] presented Libra, an autoscaling system for Kubernetes that
provides both vertical and horizontal resource provisioning. Compared to KOS-
MOS , Libra is not capable of performing in-place vertical scaling, which signifi-
cantly slow down the adaptation process, and they rely on static loadbalancing
policies.

RUBAS [11], similarly to COCOS [8], do not uses the native Kubernetes
API but it exploits external components that communicate directly with the
low-level container runtime. Finally, compared to KOSMOS , RUBAS does not
handle horizontal autoscaling and does not exploit application-level metrics (e.g.,
response time).

5 Conclusions

This paper presents KOSMOS , a new autoscaling system that is integrated in
Kubernetes and that is able to provide both vertical and horizontal resource
allocation. KOSMOS exploits control-theory to vertically scale containers and
heuristics to solve resource contention scenarios, to horizontally scale containers,
and to properly distribute the traffic among different container replicas. In our
future work we plan to carry out an extensive empirical evaluation to assess the
benefits of KOSMOS .
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Abstract. As microservices become the reference architecture for many
practitioners, decomposing an application into microservices remain
a challenge. This paper tackles the problem with Pangaea, a semi-
automatic tool to decompose a software system into microservices. Pan-
gaea (i) takes in input a high-level model of the system; (ii) formulates
decomposition as an optimization problem, and (iii) outputs a proposed
placement of functionalities and data onto microservices, using a visual
representation that helps reasoning on the overall architecture. Pangaea
evaluates design concerns, communication overheads, data management
requirements, opportunities and costs of data replication. Our evalua-
tion on a real-world application shows that Pangaea consistently deliv-
ers more efficient solutions than simple heuristics and state-of-the-art
approaches, and provides useful insights to developers.

Keywords: Microservices architectures · Service decomposition ·
Service modeling · Software architectures

1 Introduction and Motivations

The increasing need to evolve software systems quickly and efficiently made
many IT practitioners migrate from monolithic to microservices architectures.
Microservices architectures define an application as a composition of independent
units. Microservices contain a subset of logically-related application functional-
ities, and are developed, deployed, and maintained independently from each
others. Microservice can be developed using a different technology stacks, they
run as independent processes that only interact through network protocols such
as HTTP or MQTT, they can be scaled independently, and faults do not make
the whole system unresponsive, since there is no single point-of-failure. A key
challenge to embrace a microservices approach is how to decompose an appli-
cation into microservices. Indeed, the adoption of microservices architectures
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encompasses both technical and managerial concerns, which should be carefully
considered in the decomposition process. In general, we may classify the desired
characteristic of a successful decomposition as organization, communication, and
data management aspects.

Organization. Microservices are organized around business capabilities: the
decomposition needs to produce microservices that are highly cohesive and
include all the data and processing components to implement a given capability.

Communication. Microservices are developed as independent executables that
communicate using remote procedure calls or asynchronous propagation of mes-
sages. Frequent communication across microservices may increase the overall
response time of the application: the decomposition needs to produce microser-
vices that are loosely-coupled.

Data Management. Microservices decentralize data management by design.
Each microservice has its local, partial view of the application domain. Data
integrity in the presence of concurrent operations and replication is enforced
at application level, and may require coordination protocols that are complex,
introduce coupling, and may degrade performance. An effective decomposition
should be aware of integrity requirements and avoid costly coordination by co-
locating related data elements within the same microservice.

In summary, a decomposition always represents a compromise between het-
erogeneous and conflicting forces. Without any tool to support their reasoning,
developers may incorrectly evaluate the possible alternatives, leading to inac-
curate decompositions that affect development, operations, and maintenance
costs. Given the complexity of this problem, some approaches were presented
in the literature to assist engineers in the decomposition process [5,6]. They
range from theoretical frameworks that provide principles and guidelines [1,3]
to completely automated tools [2,4]. Manual tools still require considerable effort
from developers. Automated tools are often limited to specific application types,
and generate decompositions that may be inadequate to the developers actual
needs. Moving from these premises, this paper introduces Pangaea (Sect. 2), a
semi-automatic tool to decompose a monolith into microservices. Pangaea takes
in input a high-level model of the application. It formulates an optimization
problem that evaluates design concerns (coupling and cohesion), communication
overhead, data management requirements, opportunities and costs of data repli-
cation, and searches for the optimal placement of data and operations across a set
of microservices. Developers can prioritize certain requirements over the others
through a set of parameters in the model. Our evaluation on a real-world applica-
tion (Sect. 3) shows the effectiveness of Pangaea compared to simple heuristics,
a manual decomposition, and a state-of-the-art decomposition approach.

2 Pangaea

This section presents Pangaea in details. Figure 1 overviews its workflow, where
developers provide (i) a system model, which defines the data entities and oper-
ations that build the application, together with their characteristics and mutual
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Fig. 1. Pangaea: overview of the workflow.

relations; (ii) a set of input parameters that configure the tool and steer the
decomposition process based on user preferences. Given these inputs Pangaea
works in three steps: (1) a parser translates the system model into an optimiza-
tion problem; (2) a solver outputs a solution to the problem: a possible allocation
of data entities and operations onto microservices; (3) a visualizer produces a
visual representation of the proposed decomposition together with a detailed
analysis of the costs it incurs. Developers evaluate the decomposition and decide
if accepting it or refining the system model and input parameters.

2.1 System Model

Pangaea builds on an expressive yet easy-to-use modeling framework. Developers
model an application in terms of data entities and operations, both characterized
by a set of attributes. They specify data entities and operations as annotations
in YAML, using the @Entity and @Operation tags, respectively. Tags can be
placed in the source code of the application, as comments next to the definition
of the data elements and functionalities they model, or they can be placed in a
single or multiple dedicated files.

Data Entities. Data entities are basic elements of data that Pangaea treats
as atomic units. The concept of data entity is independent of the specific data
model and level of granularity, allowing developers to adapt the framework to
their needs. For instance, in a relational data model, a data entity can be used
to model a single table: Pangaea will treat the table as an unbreakable unit
and map it to microservices accordingly. Developers may also decide to model
multiple related tables as a single data entity or to split a table into multiple
data entities. In the first case, Pangaea will not distinguish individual tables
and will consider them as a whole. In the second case, Pangaea will have the
opportunity to assign the various parts of the table to different microservices. A
data entity e is characterized by the following properties.

Name: a label that uniquely identifies e in the model.

Implementation: an optional string that developers can use to map e to concrete
elements in the application (for instance, the database tables e refers to).

Relations: a list of the other data entities e depends on. The use of relations
makes Pangaea aware of semantic connections between data entities, which it
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may exploit to increase cohesion and reduce coupling. Developers may also spec-
ify the strength of each relation, which can be either strong or weak. For instance,
in the case of relational tables, developers may model foreign key constraints
between tables as strong relations.

Replication Overhead: a number indicating the expected overhead of replicating
e within multiple microservices. Indeed, replication may involve a coordination
overhead to keep replicas consistent, which depends on the desired level of con-
sistency and the frequency of updates.

Operations. Operations represent units of execution, which are candidate to
become logic functionalities exposed by microservices. Each operation accesses
data entities and is associated to a single microservice. In Pangaea, an operation
o is characterized by the following properties.

Name: a label that uniquely identifies o in the model.

Entities: the list of data entities accessed by o. For each data entity, developers
can specify if the access is read-only or read-write. Pangaea interprets accesses
as a dependency relation between operations and data entities, and attempts to
co-locate on the same microservice an operation and the data entities it accesses.
Placing a data entity e and an operation o that accesses e on different microser-
vices incurs a cost in terms of communication (greater for read-write access and
lower for read-only access) and it may increase coupling, as it indicates that a
microservice is requesting data with remote invocations to another microservice
rather than accessing it locally.

Frequency: a number that indicates how frequently o is invoked. In the decompo-
sition process, Pangaea will prioritize reducing the costs associated to operations
that are invoked more frequently.

Integrity: represents the requirements of o in terms of data integrity. It can be
either low or high. For instance, integrity may include isolation policies to coor-
dinate concurrent invocations, such that developers may distinguish between a
high level of isolation (stronger, but more expensive to enforce, such as serial-
izable isolation) and a low level of isolation (weaker, but less expensive, such
as monotonic atomic view isolation). Enforcing integrity requirements is more
expensive in distributed settings, that is, when o needs to access remote data
elements. Accordingly, Pangaea will favor decomposition choices that maximize
local data access for operations that require (high) integrity.

Forced Entities: list of data entities that need to be located on the same microser-
vice as o. For instance, developers may enforce a single microservice being respon-
sible for updating a data entity e. Also, developers can use forced entities to
encode application-specific concerns such as access control policies.

2.2 Optimization Problem

Pangaea formulates an optimization problem that aims to find an allocation
of data entities and operations onto a set of microservices that minimizes three
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costs: (i) Coupling cost is the (design) cost for placing non-related data entities in
the same microservice, which decreases cohesion. (ii) Communication cost is the
overhead of communication across microservices due to dependencies between
operations and data entities that are not placed in the same microservice. (iii)
Replication cost is the overhead of replication. While replication may reduce the
communication cost, keeping replicated data entities consistent requires addi-
tional coordination and it may result in increased response times. We denote E
the set of data entities, O the set of operations, and M a set of microservices.
Two decision binary variables x and y encode the placement of operations and
data entities onto microservices, respectively:

xo∈O,m∈M = 1 iff o is placed on m, ye∈E,m∈M = 1 iff e is placed on m

Input Parameters. Pangaea takes in input a small number of parameters that
guide the decomposition process based on the requirements of developers.

Number of Microservices: is the cardinality of M and indicates the maximum
number of microservices that the decomposition can use. The solver may use only
a subset of microservices, resulting in a decomposition into fewer microservices.

Organization-Communication Ratio: an integer number α that indicates the
importance developers attribute to organization concerns (coupling cost) over
communication concerns (communication and replication costs), on a scale
between 0 and 100 (default: 50).

Relation Weight: an integer number wrel used to weight the cost of placing on
the same microservice two unrelated data entities in comparison with the same
cost for weakly related entities (default: 2).

Access Weight: an integer number wacc that represents the overhead of read-write
access with respect to read-only access to data entities (default: 2).

Integrity Weight: an integer number wint that represents the overhead of enforc-
ing high integrity with respect to low integrity for operations (default: 2).

Coupling Cost. The coupling cost is the cost associated to placing two unre-
lated entities on the same microservice, defined for each microservice m ∈ M
as:

CPcostm =
∑

e1∈E,e2∈E

ye1,m · ye2,m · CPe1,e2

where ye1,m ·ye2,m is 1 if both e1 and e2 are placed on m, and 0 otherwise, while
CPe1,e2 is a measure of the dependencies between e1 and e2. A strong dependency
leads to a small coupling cost: coupling the two entities in the same microservice
is acceptable as it does not decrease the cohesion of the microservice. We compute
CPe1,e2 based on the relation attributes expressed in the system model: it is 0
if e1 and e2 are the same entity or if there is a strong relation between them, it
is 1 if there is a weak relation, and it equals wrel if they are unrelated.
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Communication Cost. The communication cost measures the overhead of
placing an operation o and a data entity e accessed by o on two different microser-
vices, defined for each microservice m ∈ M as:

COMMcostm =
∑

o∈O,e∈E

xo,m · (1 − ye,m) · COMMo,e

where xo,m · (1 − ye,m) is 1 if o is placed on m but e is not, and 0 otherwise,
while COMMo,e evaluates the weight of communication between e and o, and
is defined as: COMMo,e = acco,e · into · freqo where acco,e is the access cost,
which is 0 if o does not access e, 1 if o accesses e in read-only mode and wacc if o
accesses e in read-write mode; into is the integrity cost, which is 1 if o has weak
integrity requirements and wint if o has strong integrity requirements; finally,
freqo is the frequency of o, as indicated by the developers in the system model.

Replication Cost. The replication cost is the overhead of replication, defined
for each data entity e ∈ E as:

REPLcoste =
∑

m∈M

ye,m · REPLe

where the summation indicates that the cost for replicating a data entity is
proportional to the number of replicas (the number of microservices that holds
a replica of e), while REPLe is the replication overhead, as indicated by the
developers in the system model.

Objective Function. The goal is to minimize the total cost, expressed as the
sum of coupling, communication, and replication costs, weighted by the ratio α:

TOTcost = α·
∑

m∈M

CPcostm+(100−α)·(
∑

m∈M

COMMcostm+
∑

e∈E

REPLcoste)

under the constraints that an operation is assigned to a single microservice, while
an entity may be replicated to multiple microservices:

∀o∈O

∑

m∈M

xo,m = 1, ∀e∈E

∑

m∈M

ye,m ≥ 1

Notice that the above problem is not linear (the coupling cost requires mul-
tiplying y by y, and the communication cost requires multiplying x by y). To
linearize the product of any two binary variables a, b, we introduce a new binary
variable c = a ·b. We observe that c �= 0 ⇐⇒ a = b = 1, which can be expressed
with the following linear constraints: c ≤ a, c ≤ b, c ≤ a + b − 1.

2.3 Presenting the Output

We conceive Pangaea as a decision support tool that should help developers
reasoning on the system and evaluate the consequences of a given decomposition
choice in terms of design and operational costs. Accordingly, we built a visualizer
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component that offers a graphical representation of the proposed decomposition
as a dynamic Web page. The visualizer shows entities and operations associated
to microservices, as well as remote invocations across microservices, labeled with
their communication cost. In addition, Pangaea outputs a detailed report with
the individual contributions to the total cost of the proposed solution. Developers
may use the report to evaluate the trade-offs of the solution and to refine their
system model or choice of input parameters.

3 Evaluation

We evaluated Pangaea on a real-world case study provided by Tutored (https://
www.tutored.me/), a tech startup that works in the education sector. The case
study consists of a REST API developed with Node.js, Express, and Type-
script. Once modelled in Pangaea, it includes 45 data entities and 71 operations.
The evaluation aims to answer the following research questions: (RQ1) How
do the decompositions proposed by Pangaea compare with alternative ones?
(RQ2) How do practitioners benefit from the usage of Pangaea?

Approach Cost (comm) Diff
Manual 140.6k (77.65k) +206%
Pangaea (4) 52.4k (5.6k) +14%
Pangaea (5) 45.5k (7k) -
Monolith 193.15k (0) +320%
Distributed 73.75k (71.5k) +60%
SC GN (4) 160k (0) +248%
SC GN (5) 152.1k (0) +231%
SC Leung 217.2k (0) +373%
SC CW 89.8k (27k) +95%

Fig. 2. Costs with α = 50 Fig. 3. Total costs by varying α.

To answer RQ1, we compared Pangaea with four alternative approaches:
(i) a manual decomposition produced at Tutored; (ii) ServiceCutter (SC), a
state-of-the-art tool for microservices decomposition that uses a graph cluster-
ing approach; (iii) a fully distributed solution (each entity is placed on a separate
microservice); (iv) the original monolith. The manual solution was produced by
software engineers at Tutored who work on the application. It is based on their
knowledge of the domain without the help of any decision support tool. Tutored’s
software engineers also produced the input system model for Pangaea. As the
manual solution included four microservices, we evaluated Pangaea with two
configurations: |M | = 4 and |M | = 5. All our experiments are performed with
the default input parameters presented in Sect. 2, unless otherwise specified. As
a solver, we used Gurobi 9, with a maximum timeout of 7 min.

We compare the total cost of each solution using the cost function of Pangaea,
based on the system model provided by the developers. Figure 2 shows the results
in terms of total cost of each solution and the fraction of it that is due to
communication (the remaining part being organization). We configure SC with
different graph algorithms (Girvan-Newman – GN, Leung, Chinese Whispers –
CW). When a tool can be configured with an expected number of microservices,

https://www.tutored.me/
https://www.tutored.me/
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we indicate the number of microservices set as input in parenthesis. Pangaea (5)
provides the solution with the lower total cost, and Pangaea (4), which uses the
same number of microservices as the manual decomposition, has a cost that is
only 14% higher. Interestingly, the total cost of the manual solution is about
3 times higher, and its communication cost is almost one order of magnitude
higher than in Pangaea. Our interpretation is that developers tend to be more
biased towards organization aspects, such as semantic affinities of data entities.
As expected, the monolith solution incurs no communication cost but has a high
total cost due to organization concerns (coupling), while the distributed solution
results in a high communication cost. In terms of usability, SC provides disparate
solutions depending on the selected algorithm, thus it requires developers to
understand the details and differences between clustering algorithms. In absolute
terms, SC solutions are between 95% and 373% more expensive than Pangaea.

Figure 3 shows how the total cost of each solution changes with the
organization-communication ratio α. Higher values of α linearly increase the
cost of centralized solutions, such as the monolith and SC GN. Conversely, the
cost linearly decreases for the distributed solution and SC Leung. The total cost
of Pangaea is consistently lower than any other solution, the only exception
being the distributed solution with low communication cost: however, this is an
extreme case that artificially avoids coupling by creating an unrealistically high
number of microservices. In conclusion, Pangaea solutions are the ones with the
lowest total cost with balanced organization-communication ratio and outper-
form the other approaches even when the ratio changes.

To gether a better insight on the proposed decompositions, we manually
analyzed their quality. The analysis offered a strong evidence that alternative
approaches could not meet the expectations of developers, leading to decompo-
sitions that fall into two extremes: large microservices that cluster many func-
tionalities with low cohesion or very small microservices that require frequent
communication and do not justify a separate development and deployment.

To answer RQ2, we asked the developers at Tutored to provide an experience
report. The time needed to produce the manual decomposition was between 6
and 8 h, against the 2 h needed to annotate the source code for Pangaea. In
line with our objective, the developers described Pangaea as a support tool that
can guide users in improving decomposition in an iterative fashion. The most
important insights were the ones related to the communication cost, which is
much harder to reason about and optimize with respect to organization aspects.

4 Conclusions

This paper introduced Pangaea, a semi-automated tool for decomposing a mono-
lith into microservices. Pangaea uses a simple model of the application to formu-
late an optimization problem that balances organization, communication, and
data management requirements. It outputs a graphical representation of the pro-
posed decomposition together with detailed information on the costs it incurs.
Our evaluation on a real-world application shows that Pangaea offers useful
insights to developers.
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Abstract. OpenMPapplications have beenmostly executed on high-performance
devices. As problem size expands and users’ demands for performance increase,
whether to purchase higher-performance computers has become a problem faced
by the organizations. Cloud offers a new way to solve this problem, which can
automatically allocate elastic resources to meet different workload demands. In
this paper, a vertical elastic solution forOpenMPapplications is proposed,which is
a combination of exponential smoothing and fuzzy logic control. According to the
solution, an elasticity controller ECOMP was implemented, and the experimental
verification was conducted from performance and accuracy. The results show that
the controller can complete vertical elasticity scaling of resources, shorten the
execution time of the program and improve the resource utilisation efficiency.

Keywords: Cloud computing · OpenMP · Resource prediction · Vertical scaling

1 Introduction

OpenMP (Open Multi-Processing) is an application programming interface for writ-
ing parallel programs for Shared memory. In accordance with the compilation instruc-
tion #pragma added in the source code, the compiler will automatically parallelise the
program [1]. OpenMP is widely used in high performance computing because of its
advantages of simple use, good portability and high scalability.

In the past, OpenMP application was executed on high-performance infrastructure,
which required users to purchase expensive machine clusters and high machine main-
tenance costs. With the changes of user needs, users also need to purchase higher-
performance computers to adapt to the increasing problem scale and performance expec-
tation. This method not only requires a large investment, but also results in a waste of
resources when the workload is low.

Elasticity is the ability of a system to dynamically add and remove resources to
accommodate real-time load changes [2]. This means that the application’s computing
resources can vary with requirements without service outages. Elasticity can be divided
into horizontal elasticity and vertical elasticity [3]. In general, horizontal elasticity is
coarse-grained, and vertical elasticity is fine-grained. Horizontal elasticity applies to
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multi-process parallel programs that can improve performance by adding computational
instances, but not to multithreaded parallel programs such as OpenMP. OpenMP appli-
cation makes use of all available resources of the machine where it is running, but cannot
detect or use the VM allocated horizontally. Providing fine-grained resources with ver-
tical elasticity is a key factor in implementing the elastic resource scaling for OpenMP
application.

This paper proposes a non-intrusive approach that combines OpenMP application
with the vertical elasticity of cloud computing to achieve the elastic scaling of resources
during the operation of OpenMP program. In addition, an elasticity controller ECOMP
for the scaling of resources of OpenMP application is designed and implemented, which
is a middleware that supports the interaction between OpenMP applications and cloud
platforms.

The remainder of this paper is structured as follows. Section 2 presents a review
of the related work. Section 3 introduces the division strategy of the elasticity domain.
The resource prediction model based on Holt exponential smoothing is introduced in
Sect. 4. Section 5 explains the design of resource decider based on fuzzy logic in detail.
The elasticity controller ECOMP are introduced in Sect. 6, and the analysis of the
experimental results is conducted. Finally, the conclusion and future work are introduced
in Sect. 7.

2 Related Work

2.1 Elastic Solutions

In the past decade or so, due to the limitation of hypervisor, elastic research has been con-
ducted around horizontal elasticity. The horizontal elasticity is coarse-grained, and the
VM configuration needs to be defined before allocation and always remains unchanged,
which results in the cloud platform being unable to provide dynamic resource alloca-
tion according to the needs of application. Currently, virtual machine hypervisors such
as Xen and KVM already support vertical elasticity of resources. With the support of
hypervisors, there has been a lot of research dedicated to achieving vertical elastic-
ity of applications. In [4], two vertical self-configuration methods of cloud computing
infrastructure are discussed. Elastic VM, a fine-grained vertical scaling architecture,
is proposed in [5]. An embedded elasticity controller is proposed in [6]. Embedding
the elastic primitives into application source code enables the application to adapt its
resources to the changes in runtime requirements or execution flow.

Due to themultithread nature of OpenMP applications and the specific internal struc-
ture, the existed elastic solutions cannot be applied for OpenMP application. Elastic
solutions for OpenMP applications must consider their internal structure and behavior.
OpenMR execution model, a new model based on MapReduce and OpenMP, automati-
cally parallelises the execution of programs through specific compilation instructions [7].
In [8], the authors propose a method for refactoring OpenMP applications into MapRe-
duce program. Galante et al. propose an elasticity support mechanism for OpenMP
application, which can dynamically schedule cloud resources according to the internal
structure of program and runtime requirements [9].
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2.2 Elastic Technology

Lorido-Botran et al. divide the application’s elastic scaling technology into five cate-
gories [10]. By analysing these categories, it is concluded that control theory has great
potential for automatic scaling especially when combined with resource prediction, and
time series analysis is highly effective in resource prediction and is the main driving
force of proactive scaling technology. Exponential smoothing method is a time series
analysis and prediction method developed on the basis of moving average method. It has
the advantages of flexibility, simple calculation, and ease of use. Huang et al. present a
resource prediction model based on double exponential smoothing to predict the amount
of resources required by customers in the future [11]. The scheme in [12] uses double
exponential smoothing to predict the future CPU usage of virtual machines, and is sup-
plemented by genetic algorithms to find the optimal virtual machine configuration. In
[13], the authors use the ultra-short-term load forecasting method to realise real-time
dispatching and security warning of power grid.

The dynamic resource allocation in cloud computing depends on various parameters,
which are not interrelated, so a new model that integrates and displays the influence of
these parameters in a unifiedmanner is needed. An autonomous resource allocation elas-
ticity controller combining fuzzy logic control and autonomous computing is proposed
in [14]. Soodeh et al. use fuzzy logic to design a fuzzy controller, which served as the
coordinator of memory and CPU controller to meet the response time requirements of
the application program [15].

The existed approach and tools are designed to achieve performance promotion
by changing programming model or modifying source code. It is difficult to apply in
complex business scenes. Therefore, a non-intrusive elasticity controller is designed to
achieve the vertical resource expansion for OpenMP application to reduce the resource
idle rate and resource waste.

3 Elasticity Domain Division

In OpenMP, whether a thread group can execute a program in parallel depends on the
usage of instructions in program code. During the execution of program, according to
the use of the internal instructions of OpenMP program, we can perceive changes in
resource requirements in advance and make corresponding elastic actions, which can
effectively reduce resource waste.

According to the functions and characteristics of each instruction in the OpenMP 4.5
standard, this paper draws the rules for dividing the elasticity domain of each instruction,
as shown in Table 1. There are three scaling states of resources, namely Allocation,
Release, and Adjustment. The program resources are adjusted accompanying with the
state change of the threads. N_thread is one of the determinants of the scaling ofOpenMP
application resources. It represents the number of busy threads in each parallel region.
“—” means that the elasticity domain is not divided here, so the area code belongs to
the previous elasticity domain, and the scaling of resources is adjusted according to the
real-time requirements of the program.
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Table 1. Correspondence table of start and end tags and resource scaling for main instruction

Instructions/Clauses Tag ThreadState
(Busy: Active)

Resource
scaling

Nthread

Parallel enter_parallel [barr/nbarr] n:n Allocation n

exit_parallel [barr/nbarr] 1:1 Release 1

For enter_for [barr/nbarr] n:n
— —

exit_for [barr/nbarr] n:n
— —

Single enter_single [barr] 1:n Release 1

exit_single [barr] n:n Allocation n

Single nowait enter_single [nbarr] n:n Adjustment n

exit_single [nbarr] n:n
— —

Sections enter_sections [barr/nbarr] m:n Adjustment m

exit_sections [barr/nbarr] n:n Adjustment n

Parallel for enter_parallelfor [barr/nbarr] n:n Allocation n

exit_parallelfor [barr/nbarr] 1:1 Release 1

Parallel sections enter_parallelsections[barr/nbarr] m:m Allocation m

exit_parallelsections [barr/nbarr] 1:1 Release 1

Master enter_master [] n:n Adjustment n

exit_master [] n:n
— —

Ordered enter_ordered [] 1:n Release 1

exit_ordered [] n:n Allocation n

Critical enter_critical [barr] 1:n Release 1

exit_critical [barr] n:n Allocation n

Critical nowait enter_critical [nbarr] n:n Adjustment n

exit_critical [nbarr] n:n
— —

4 Resource Prediction

Exponential smoothing method is a time series analysis prediction method developed on
the basis of moving average method. It is suitable for fitting and predicting sequences
without obvious trends and seasonal fluctuations. This paper uses Holt non-seasonal
smoothingmodel to complete resource predication for each elastic domain in the process.

The basic idea of the Holt smoothing model is to decompose time series with linear
trend, seasonal variation and random fluctuation, and combine them with exponential
smoothing method to estimate long-term trend and trend increment respectively, and
then establish a predictive model and extrapolate the predicted values. Its prediction
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formula is:

Ft+m = at + mbt (1)

Ft+m represents the prediction value of t+m period, at is the stable component of period
t, bt represents the linear component of period t, andm represents the number of periods
to be predicted. When the module partition point (instruction/clause) is encountered in
the prediction process, t is set to 0 to conduct the prediction of the new stage.

at = αyt + (1 − α)(at−1 + bt−1) (2)

bt = β(at − at−1) + (1 − β)bt−1 (3)

yt is the observed value of time series in period t, and α, β ∈ [0, 1] are the smoothing
factors. Exponential smoothing methods are all based on recursive relationships, which
mean that the initial values must be set before usage. The choice of the initial value is not
particularly important because the exponential decay law suggests that all exponential
smoothing methods have a very short memory capability, and the effect of the initial
value becomesnegligible only after a few timeperiods. Themost commonand reasonable
initial value setting method used in this paper is as follows:

a0 = y1, b0 = y5 − y1
4

(4)

The α, β provided in the Holt smoothing algorithm correspond to the current point
level and trend respectively. The parameter values range from 0 to 1, and the influence
weight of the recent observations will be smaller when the parameter is close to 0. The
determination of these two smoothing factors is very important in exponential smoothing,
which has become a factor considered in this paper. It is related to the accuracy of future
resource prediction and the method how to measure the prediction accuracy. In order
to measure the pros and cons of the prediction method, a variety of metrics have been
defined such asMeanAbsolute Error (MAE),MeanAbsolute Percentage Error (MAPE),
Root Mean Square Error (RMSE).

This paper adopts the optimisation method, which is an important branch of math-
ematics. It mainly studies how to select a scheme to achieve the optimal goal under
certain conditions. To establish an optimal value model for parameter determination,
we can assign the smoothing parameter [α, β] = [x1, x2] = x. The goal is to minimise
the prediction error. The condition is to ensure that the parameter values are within the
interval [0,1].

For the solution of the above problems, the Augmented Lagrange Method (ALM)
is used to optimise the parameters. Its basic idea is to transform the constraint problem
into unconstrained problem, and constantly adjust the penalty factor (Mk) and multiplier
vector (λ(k)) in the iterative process, so as to make the Hesse matrix of the objective
function in a positive definite state at all times, and obtain the optimal solution of the
problem.

The establishment of the predictionmodel is divided into four steps. First, the param-
eters are substituted into the parameter estimation formula (2) (3) to form a parameter
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estimation model. Second, the initial value calculated by (4) is then substituted into the
parameter estimation model. Next, the exponential smoothing values at and bt are cal-
culated each time successively and recursively, and finally the exponential smoothing
values are substituted into the prediction formula (1) to calculate the predicted value.

5 Resource Decision

How to accurately determine the degree of impact of different factors on application
performance degradation, and how to determine how many resources should be pro-
vided to alleviate this performance problem, are the key issues to consider in designing
an elasticity resource controller. If the controller cannot solve these problems, it will
produce inaccurate resource allocation, resulting in problems such as over-allocation
or under-allocation of resources. In order to solve these problems, this paper designs
a resource determiner based on fuzzy logic. It uses highly expressive language to per-
form uncertainty reasoning based on the output of the elasticity domain divider and
resource predictor, and completes the decision and allocation of resources in a natural
and effective manner.

One of the most typical applications of fuzzy logic is fuzzy control. The calculation
process of fuzzy control is roughly divided into four steps: determining input and output
variables, fuzziness of input, fuzzy reasoning and certainty of outputs. A multi input
single output (MISO) resource decider is designed. The input variables are the predicted
value of CPU utilization (UCPU ), the number of application threads (Nthread ), the ratio
of the number of threads to the number of CPU cores (T/C). The output variable is the
number of CPU cores (cores). UCPU is determined by the resource predictor based on
the time series of CPU utilisation observations and the elasticity domain information
prediction. In the resource decider, UCPU = Ft+1. Nthread is determined according to
the internal structure of the OpenMP program. According to the OpenMP compilation
principle and the execution mode of instructions and clauses, we divide the program into
different elasticity domains, and then determine the number of threads to start in this
area. Fuzzy control uses membership functions (MFs) to define each linguistic term for
input and output variables. There are 12 MFs in this study, and we used trapezoidal MF,
as is shown in Fig. 1.

Fuzzy reasoning is the process of obtaining fuzzy conclusions based on knowledge
base and membership function. The fuzzy knowledge base is based on a set of language
rules to determine how to best expand the target system. In order to design fuzzy rules,
we designed all possible input scenarios, and invited a number of experts with in-depth
knowledge of cloud resource allocation and performance modeling to discuss. The main
responsibility of the experts is to determine the reasonable output value according to
each prerequisite, and then conduct a collective discussion on the disputed part. We have
prepared several questions to extract the required knowledge, such as

IF (UcpuISM) AND (T/C IS L) AND (Nthread ISH)THEN (cores IS?)

In order to reduce the calculation amount of fuzzy relationship synthesis, some redundant
rules are merged. At the same time, the average values of the information fed back
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Fig. 1. Membership functions for each linguistic term

Table 2. Fuzzy rule set

Rule number Rule

RULE 1 IF (Ucpu IS H) AND (T/C IS H) THEN (cores IS H)

RULE 2 IF (Ucpu IS H) AND (T/C IS M) AND (Nthread IS H) THEN (cores IS H)

RULE 3 IF (Ucpu IS H) AND (T/C IS M) AND (Nthread IS M) THEN (cores IS H)

RULE 4 IF (Ucpu IS H) AND (T/C IS M) AND (Nthread IS L) THEN (cores IS M)

RULE 5 IF (Ucpu IS H) AND (T/C IS L) THEN (cores IS H)

RULE 6 IF (Ucpu IS M) AND (T/C IS H) AND (Nthread IS H) THEN (cores IS H)

RULE 7 IF (Ucpu IS M) AND (T/C IS H) AND (Nthread IS M) THEN (cores IS M)

RULE 8 IF (Ucpu IS M) AND (T/C IS H) AND (Nthread IS L) THEN (cores IS L)

RULE 9 IF (Ucpu IS M) AND (T/C IS M) AND (Nthread IS H) THEN (cores IS H)

RULE 10 IF (Ucpu IS M) AND (T/C IS M) AND (Nthread IS M) THEN (cores IS M)

RULE 11 IF (Ucpu IS M) AND (T/C IS M) AND (Nthread IS L) THEN (cores IS L)

RULE 12 IF (Ucpu IS M) AND (T/C IS L) THEN (cores IS M)

RULE 13 IF (Ucpu IS L) AND (Nthread IS H) THEN (cores IS M)

RULE 14 IF (Ucpu IS L) AND (Nthread IS M) THEN (cores IS L)

RULE 15 IF (Ucpu IS L) AND (Nthread IS L) THEN (cores IS L)

by experts are adjusted according to the behavior of the fuzzy controller obtained by
monitoring to finally obtain a fuzzy control rule table, as shown in Table 2.

The result of fuzzy inference is a fuzzy set. In actual fuzzy control, there must be a
certain output value to control or drive the actuator. Clarification or anti-fuzzification is
the process of converting fuzzy conclusions derived from fuzzy reasoning into accurate
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output. Common clarification methods for continuous domains are the maximum mem-
bership method and the center-of-gravity method. In this paper, the center-of-gravity
method is used as a method to clarify the fuzzy conclusion, and the final control quantity
CPU core number Ncore is obtained.

6 Tool Implementation and Evaluation

6.1 Elasticity Controller ECOMP

In order to effectively realise the vertical elastic scaling of OpenMP application
resources, an autonomic resource controller ECOMP is designed. ECOMP is a middle-
ware that supports the interaction between OpenMP application and the cloud platform,
enabling the cloud platform to adapt to OpenMP application with variable workload,
allocating appropriate number of CPU cores to application according to the internal
structure of OpenMP program and real-time requirements without human intervention,
to avoid insufficient and over-provisioned resources. Figure 2 shows the architecture of
ECOMP.

Elasticity Domain 
Divider

Resource
Predictor

Resource DeciderResource 
Provisioner

OpenMP 
Application

Cloud 
Infrastructure

Resource Monitoring 
Software

Pin
OpenMP 

Compilation
Instruction

CPU Utilization

Elasticity 
Domain 

Monitor

Fuzzy Knowledge Base

ECOMP

Fig. 2. The architecture of ECOMP

6.2 Experimental Evaluation

To emulate a typical cloud environment and easily perform vertical elasticity, we used
Xen Hypervisor. Three OpenMP applications are selected for experimental evaluation,
namely Nearest Neighbor (NN), Speckle Reducing Anisotropic Diffusion (SRAD) and
Breadth-First Search (BFS), which are all from the parallel computing benchmark test
suite Rodinia.

In order to verify whether the elasticity controller ECOMP has improved the perfor-
mance of the OpenMP application and made full use of resources, this paper compares
the execution results of the OpenMP application before and after applying ECOMP, as
show in Table 3. Time represents the execution time of the program, Total represents the
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amount of resources consumed by the execution of the application, and Acc represents
the accuracy rate of the resources provided by the cloud platform for the program. The
calculation formulas (5) and (6) are shown, where n represents the total number of sam-
ples, Ct represents the number of CPU cores of the server at time t, CountAcc represents
the CPU utilisation in the interval [0.75, 0.8], which is the value range of UCPU with a
membership of 1 for fuzzy set M.

Total =
∑n

t=1
Ct (5)

Acc = CountAcc
n

(6)

As can be seen fromTable 3, ECOMPcan provide an appropriate amount of resources
according to the needs of the application to balance the load of the VM, improve the
accuracy of resource provision, increase execution speed, and reduce waste of resources.
However, the advantages of ECOMP cannot be clearly highlighted for SRAD program
with high fluctuation frequency and the relatively stable program BFS. To study what
types of programs can benefit more from ECOMP is where we need to improve in the
future.

Figure 3 shows the execution results of the NN before and after the application of
ECOMP. It can be seen from the figure that the data value of the CPU utilization rate

Table 3. Comparison of raw and elastic results of the experimental evaluation program

NN SRAD BFS

Inelastic Elastic Inelastic Elastic Inelastic Elastic

Time(s) 684.10 601.39 732.64 677.43 443.09 486.77

Total 272 199 292 350 180 100

Acc 0.2059 0.7833 0.0822 0.9852 0 1.0000

Fig. 3. Comparison of inelastic and elastic results of program NN
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is around 80% after using ECOMP, which effectively improves the resource utilization
rate.

7 Conclusion and Future Work

With the development of computing technology and the change of user demand, it
is worth considering how to deploy OpenMP applications to the cloud platform. Due
to the multithread character of OpenMP application, a vertical elasticity solution for
OpenMP applications is proposed in this paper, which can infer the number of required
processor cores based on the internal structure of OpenMP application and the prediction
information of virtual machine resource utilization, and the virtual resources can be
dynamically allocated from cloud, so as to realise the automatic scaling of resources
for OpenMP application without modifying the source code. In addition, ECOMP, an
elasticity controller forOpenMPprogram is developed. The effectiveness of the proposed
elastic solution and elasticity controller is verified through experiments. In the future,
we will analyse more OpenMP instructions/clauses to improve module division rules,
and consider memory analysis to realise vertical elastic scaling of CPU and memory
simultaneously.
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Abstract. Microservices Architecture (MSA) style is a promising
design approach to develop software applications consisting of multi-
ple small and independently deployable services. Over the past few
years, researchers and practitioners have proposed many MSA patterns
and strategies covering various aspects of microservices design, such as
application decomposition. However, selecting appropriate patterns and
strategies can entail various challenges for practitioners. To this end, this
study proposes a decision model for selecting patterns and strategies to
decompose applications into microservices. We used peer-reviewed and
grey literature to collect the patterns, strategies, and quality attributes
for creating this decision model.

Keywords: Microservices system · Microservices architecture ·
Decision model · Microservices pattern · Quality attribute

1 Introduction

Microservices Architecture (MSA) inspired by Service-Oriented Architecture
(SOA) has gained immense popularity in the past few years [1]. With MSA, an
application is designed as a set of business-driven microservices that can be devel-
oped, deployed, tested, and scaled independently [15]. Organizations adopt MSA
due to better availability, scalability, productivity, performance, fault-tolerance,
and cloud support compared with SOA or monolithic applications. It is argued
that MSA can also help build autonomous development teams [15].

Microservices systems entail a significant degree of complexity at the design
phase and runtime configurations from an architecture perspective [12]. Hasel-
bock et al. [7] identified several design areas for microservices systems, such
c© Springer Nature Switzerland AG 2021
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as application decomposition, microservices security, and communication. On
the other hand, literature reviews (e.g., [17]), existing practices (e.g., [19]),
and exploratory studies (e.g., [18]) indicate several challenges related to the
design areas mentioned in [7], for instance, clearly defining the boundaries of
microservices, addressing their security concerns, and managing the communi-
cation between a large number of microservices.

Both academia and industry have presented reusable solutions for microser-
vices systems in the form of patterns and strategies. These patterns and strate-
gies are currently distributed across different publications (e.g., scientific and
grey literature). The practitioners need to navigate pattern to pattern (and strat-
egy) until a suitable combination of patterns (and strategies) that can address
the challenges is found. Moreover, the practitioners cannot find a holistic view
of the patterns and strategies for a trade-off analysis (e.g., patterns influence
Quality Attributes (QAs)). According to the recent studies (e.g., [17–19]), most
of the design, development, monitoring and testing challenges are raised when
application is decomposed into microservices. To this end, we present a decision
model that assists practitioners in selecting appropriate patterns and strategies
for decomposing applications into microservices. Decision models are a struc-
tured way of exploring the problem and solution space to achieve the design
goal [10]. The proposed decision model has been developed based on a mini
multivocal literature review through reviewing the scientific and grey literature.

Paper Organization: Section 2 describes decision models and modeling
nations; Sect. 3 presents the details of the application decomposition decision
model; Sect. 4 discusses the threats to validity; Sect. 5 presents related work;
Sect. 6 concludes this work with future research directions.

2 Modeling Decision Model

The decision models in software architecture are used to map elements of the
problem space to elements of the solution space [10]. The problem space rep-
resents functional and non-functional requirements, whereas the solution space
represents design elements [10]. To create decision models for microservices sys-
tems, we represent the problem space as a set of QAs and the solution space as
a set of microservices patterns and strategies. We developed the decision model
for application decomposition because most of the design, development, moni-
toring, testing, and deployment challenges in microservices systems are rooted
in this area [17–19]. We collected required patterns, strategies, QAs, and impact
of patterns on QAs for creating the decision model based on a mini multivocal
literature review.

Figure 1 presents the notations used in the decision model presented in this
paper. We used Inclusive, Exclusive, and Parallel gateways of Business Process
Model and Notation (BPMN) for indicating the decision flow. An MSA design
area is represented through grey box. A circle is used to denote the start of a
decision process. An Inclusive gateway is used to trigger more than one outgoing
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Design Area Pattern or Strategy 1

Pattern or Strategy 2

Pattern or Strategy 3

Pattern or Strategy 4

+ QA 1
- QA 2

+ QA 3
- QA 4

+ QA 5
- QA 6

Parallel
gateway

[condition]Inclusive
gateway

Exclusive
gateway

+ QA 7
- QA 8

Constraint

complements

Fig. 1. Notations used in the decision models

paths within a decision process. An Exclusive gateway is used to trigger one of the
outgoing paths. In contrast, A Parallel gateway represents the multiple parallel
outgoing paths within a decision process. We used rounded rectangle to represent
the patterns and strategies belong to an MSA design area. A double-headed
arrow shows a “complements” relationship between two patterns or strategies.
An octagon and dashed arrow is used to represent the constraints of each pattern
or strategy. Finally, plus (+) and minus (−) signs indicate the positive and
negative impact of each pattern or strategy on the QAs.

3 Application Decomposition Decision Model

Monolithic applications need to be decomposed into small, independent, and
loosely coupled microservices to achieve the benefits (e.g., improved scalability,
independent deployment). There are several ways to break down an application
into microservices. The patterns and strategies collected (see Table 1) are used
to create the application decomposition decision model (see Fig. 2). The decision
process for application decomposition into microservices is based on the team
size and impact of patterns and strategies on QAs. If the application needs to be
decomposed into microservices for the team of 5–9 people to increase Availability,
Scalability, Cohesion, Deployment, Performance, and Maintainability, we can
use one among five illustrated patterns (see Fig. 2). In the following, we further
explain the other conditions, impact on QAs, and constraints for each pattern.

To increase Flexibility, Granularity, Reliability, Reusability, Security, Func-
tional suitability, and Portability, Decomposed by subdomains pattern can
be used. This pattern guides practitioners in defining each microservice respon-
sibility, boundaries, and relationships with other microservices. To successfully
implement this pattern, practitioners need to understand the overall business
(see Fig. 2). In contrast, if microservices need to be defined with respect to busi-
ness capabilities, Decomposed by business capabilities pattern can be used.
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Table 1. Application decomposition patterns and strategies

Name Summary

Decomposed by subdomains
[3,14]

Define services corresponding to Domain-Driven Design
(DDD) subdomains

Decomposed by business
capabilities [3,14]

Define services corresponding to business capabilities

Service per team [3,14] Break down the application into microservices that
individual teams can manage

Decomposed by transactions [3] An application typically needs to call multiple
microservices to complete one business transaction. To
avoid latency issues, services can be defined based on
business transactions

Scenario analysis [16] Identify the business capabilities by analyzing the nouns
and verbs from given business scenarios

Graph-based approach [8] Identify microservices from the source code of existing
monolithic applications by graph clustering and
visualization techniques

Data Flow-Driven (DFD)
approach [11]

Follow a top-down approach in which data flow
diagrams contain the business requirements that are
later partitioned through a formal algebra algorithm for
identifying microservices

Normally, business capabilities are organized into a multi-level hierarchy and
generate business value. This pattern improves the Granularity, Performance,
and Security of microservices if the business capabilities are identified by under-
standing the client organization’s structure, purposes, and business processes.
However, this pattern reduces Flexibility as the application design is tightly cou-
pled with the business model. Another option that we can use for decomposing
applications is Service per team pattern. This pattern enables practitioners to
break applications into microservices that individual teams can manage. It also
complements Decomposed by subdomains and Decomposed by business
capabilities patterns. A constraint of Service per team pattern is that only
one small team (e.g., 5–9 people) owns one microservice, meaning that each team
independently develops, tests, deploys, and scales individual microservice. The
teams also interact with other teams to negotiate APIs. Service per team pat-
tern increases Availability, Scalability, Cohesion, Deployment, and Performance,
and Maintainability. If the project is large and needs to hire more people, Ser-
vice per team pattern negatively impacts the development cost of microser-
vices.

Another exclusive pattern option in decomposition patterns is Decompose
by transactions, in which applications are decomposed based on business trans-
actions. Each business transaction carries one task, and each microservice has the
functionalities for several business transactions (e.g., sales, marketing). This pat-
tern allows grouping multiple microservices to avoid latency issues. Decompose
by transactions pattern can help to improve Response time, Data consistency,
and Availability of microservices. Meanwhile, decomposing applications based
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Fig. 2. Decision model for application decomposition

on transactions also increases Execution cost and Coupling of microservices
due to multiple functionalities being implemented in one microservice. Another
option to decompose an application is Scenario-based analysis which consists
of several steps, such as developing scenarios, describing MSA, and evaluat-
ing scenarios. During the evaluation process of scenarios, practitioners identify
the microservices and interactions between them. This pattern is appropriate if
practitioners have enough time to develop and describe the scenarios and MSA,
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respectively. This strategy can also be used to identify the business capabili-
ties of systems by analyzing the nouns and verbs from given business scenarios.
The identified nouns represent the microservices, and the verbs describe the
relationship among them. While this strategy increases Scalability, Performance
and Coupling could be compromised because of the imprecise boundaries of
microservices.

Suppose that the team size is not defined for designing and developing
microservices, and we need to identify the microservices from the code of legacy
applications. In that case, we can choose Graph-based approach. This app-
roach uses the SArF clustering algorithm to decompose the system for compre-
hension [9] and the city metaphor techniques for visualizing the system structure
[8]. Graph-based approach helps to identify microservices from the source
code of existing monolithic applications. The use of this approach increases the
Reusability of the existing code. Graph-based approach also visualizes the
extracted microservices and their relationships along with the structure of the
whole system. Hence, it also increases the Understandability about the MSA
design. Finally, if the team size is not defined and applications need to be
decomposed by using DFDs, in that case, Data flow-driven approach can be
used, which consists of several steps, such as eliciting and analyzing the business
requirements for identifying use cases and business logic specifications, creating
fine-grained DFDs, identifying the dependencies between processes and data-
stores, and identifying microservices by clustering processes and related data
stores. Data flow-driven approach increases Availability, Scalability, and Flex-
ibility. In contrast, it decreases Performance and Reusability mainly because of
complex DFDs.

4 Threats to Validity

The threats to construct validity are related to taking correct operational mea-
sures for collecting the data in this study. One potential threat is the inadequate
use of the primary constructs of the decision model (i.e., MSA patterns and
strategies, QAs, impact of the patterns on QAs). To mitigate this threat, we
adopted the following operational measures: (i) we conducted a pilot search
to ensure the correctness and appropriateness of the search terms, (ii) we used
eight databases (i.e., ACM Digital Library, IEEE Explore, Springer Link, Science
Direct, Wiley Online, Engineering Village, Web of Science, and Google Scholar)
in software engineering research for retrieving the scientific studies, and (iii)
we used Google for searching the grey literature. Additionally, we followed the
guidelines [2] to review and extract data from the scientific and grey literature.

The threats to internal validity represent circumstances that could influence
the results obtained from the research. We tried to mitigate this threat through
collaborative work between the authors of this work. Regarding the collabora-
tive work, one author proposed the decision model and the rest of the authors
contributed to improving the models based on their knowledge and expertise.
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5 Related Work

Decision Models for Architecting Microservices Systems: The study in [6] exam-
ines existing literature and provides guidance models for microservices discovery
and fault tolerance. The study in [5] reports decision guidance models about
generating, processing, and managing monitoring data, and disseminating mon-
itoring data to stakeholders in the process automation domain. On the other
hand, the study in [4] analyzes the strategies and provides guidelines to support
architects in selecting suitable frontend architecture(s) for microservices systems.

Practitioners’ Perspectives and Recommendations for Architecting Microservices
Systems: The research in [13] derives a formal architecture decision model con-
taining 325 elements and relations that can help to reduce the (i) efforts needed
to understand the architectural decisions and (ii) uncertainty in the design pro-
cess. An empirical study in [7] interviewed 10 microservices experts to find out
the answers to (i) which design areas are relevant for microservices, (ii) how
important they are, and (iii) why they are important.

Decision Models for Architectural Patterns Selection : The study [7] proposes
a decision model that assists developers and architects in selecting appropriate
patterns for blockchain-based applications. In a similar study [10], the authors
present decision models for cyber-foraging systems that map functional and non-
functional requirements to architectural tactics for designing and developing
cyber-foraging systems.

Conclusive Summary: Our review of the related work suggests that there is a
lack of research on decision models that can leverage patterns and strategies as
reusable knowledge to address specific design area of microservices systems (i.e.,
application decomposition). To the best of our knowledge, our proposed decision
model that supports decomposing applications into microservices is not covered
in any existing studies. This decision model also provides an initial foundation to
the research and practice in pattern-based architecting of microservices systems.

6 Conclusions

The paper proposes a decision model for selecting patterns and strategies to
decompose applications into microservices. The proposed model is constructed
by reviewing scientific and grey literature. The decision model provides MSA
patterns, strategies, and their impact on QAs for selecting patterns and strategies
in decomposing applications into microservices. In the next step, we aim to
(1) propose decision models for other design areas, e.g., microservices security,
communication, and service discovery, (2) validate the proposed decision models
in an industrial setting, and (3) develop a recommendation system for selecting
patterns and strategies for microservices systems.
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Abstract. To combine multiple services together using technologies such
as mashup to produce a composite service has become a popular practice.
However, with the increasing number of services and the diversification
of service types, how to select suitable services and ensure these service
combinations meet the needs of users has become an increasingly chal-
lenging topic. At present, although there are many recommendation algo-
rithms for service selection, the semantics of the composed Web services
have not been sufficiently modeled. This paper proposes an API pack-
age recommendation model based on the graph representation learning
method (API-PROGRAM) which uses the historical data to learn more
comprehensive semantics of Web APIs, construct the composite features of
Web API collaborations and then recommend Web API packages for new
mashups. The experimental results show that, compared with the existing
algorithms, API-PROGRAM achieves better performance.

Keywords: Web API · Mashup · Service composition · Graph
representation learning · Attention mechanism

1 Introduction

Web service is an important part of modern information systems. As a form of
Web services, the number of Web APIs (Web Application Programming Inter-
faces) has grown exponentially on the network. The value of Web APIs not
only comes from itself, but also from the potential to enable new and unique
applications to be created from a mashup of several Web APIs.

When developing a mashup, we have to search for and select appropriate
APIs. However, due to the huge number of APIs available on the Internet, it
is a challenging task to select the Web APIs we need, especially when many
Web APIs have similar functions. It is necessary to deliver personalized and
customized services to users so developing applications which rely on composing
Web APIs is becoming increasingly popular. Therefore, in recent years, a large
number of mashups have been created. As a result, recommending Web APIs for
mashup developers is necessary and has become a hot research topic [1].
c© Springer Nature Switzerland AG 2021
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Currently, most Web API recommendation approaches rely on the matching
degree between the descriptions of the mashup to be developed and the descrip-
tions of the Web APIs. Unfortunately, these methods only return related APIs
with similar functions and developers must choose the most suitable API from
them, which is still a difficult job. Moreover, when building mashups, we need
to consider the compatibility between Web APIs and ideally, the selected Web
APIs can satisfy the needs of the mashup in a complimentary way. Therefore,
it is better to recommend multiple sets of APIs that can cooperate with each
other, and each API set can cover the requirements of the target mashup. These
sets of collaborative APIs are often referred to as API packages and each of them
can be adopted entirely as a candidate solution to mashup development.

In this paper, we propose an API Package Recommendation mOdel based
on the Graph Representation leArning M ethod (API-PROGRAM). API-
PROGRAM uses a graph neural network to learn the latent representations
of Web APIs and mashups, which tries to capture more comprehensive seman-
tics of Web APIs. Then, we apply another neural network with the attention
mechanism to predict the adoption probability of a Web API in a new mashup
based on the composite features of Web API pairs. Finally, Web API packages
are generated and recommended. The experiment results show API-PROGRAM
achieves better performance compared with other approaches.

2 Related Work

When publishing a Web API, the developer usually provides information includ-
ing its name, description or tags. Therefore, traditional information retrieval
methods, including distance calculation, the vector space model and TF-IDF
methods for similarity evaluation between texts, can be applied to information
retrieval-based Web API recommendation. Furthermore, services can be grouped
into categories to enhance the recommendation process. Since Web APIs have
a history of collaboration in many mashups, they are likely to collaborate again
in the future so that this information can be used in recommendation. However,
this approach cannot recommend Web APIs that have never cooperated before.

With the development of natural language processing technology, researchers
began to use more advanced methods to extract the semantic relationship
between mashups and Web APIs. Some researchers [2] explored the semantic
relationship between mashups and Web APIs based on the topic model. How-
ever, these methods fail to learn the integral semantics of the composed services.

Moreover, most approaches only recommend an API list to users rather than
a complementary API package that can meet their needs. Some researchers pro-
posed a Multi-level Relational Network (MRN) method for mashup development
by capturing the deep relationship between services on latent topics, tags and
service networks [3]. However, this method ignored the semantic information of
interactions from the perspective of service. API-Prefer [4] tries to model the
interaction semantics of Web API pairs, which is similar to our research. But in
API-Prefer, the semantics of Web APIs are derived from their own descriptions.
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Differently, we apply a graph neural network to learn more informative
embeddings of Web APIs in this paper. Furthermore, our model learns the
semantic interactions of API pairs and applies a neural network with the atten-
tion mechanism to predict the adoption probability of Web API pairs, and finally
to propose an API package recommendation method.

3 API-PROGRAM: An API Package Recommendation
Model Based on the Graph Representation Learning
Method

3.1 Model Structure

API-PROGRAM comprises three parts. The first part is a graph neural network
where the embeddings of mashups and Web APIs can be learned. The second
part is an adoption possibility prediction model for a pair of Web APIs based on
a multi-layer neural network. The third part is the API package recommendation
component which is responsible for generating potential API packages.

3.2 Graph Neural Network for Mashup and Web API Embeddings

The descriptions of Web APIs are not sufficient to describe their semantics for
many reasons. Firstly, the descriptions provided by the Web API developers are
often not detailed. Secondly, new functions can be discovered when a Web API
is put into real applications. Thirdly, new functions can also emerge when it is
used with other Web APIs. Therefore, in addition to learning semantics from
descriptions, it is necessary to learn their semantics from their applications.

Mashups are applications of APIs and their descriptions are sources that can
be applied to the process of learning the semantics of APIs. Compared with the
semantic information contained only in the topic vector, graph embedded rep-
resentation can contain both the semantic and the graph structure information.

Graph Network Construction In our model, four types of nodes are consid-
ered, namely Web API, mashup, category and word. Then, we define six kinds
of edges according to the different relationships between nodes:

– <Mashup, Word>: The TF-IDF value between mashup and word used in its
description text.

– <API, Word>: The TF-IDF value between API and word used in its descrip-
tion text.

– <Word1, Word2>: The weighted frequency value of word1 and word2 co-
occur in a certain size of sliding window.

– <Mashup, API>: The weighted value of API usage frequency by mashup.
– <Mashup, Category>: The category of mashup.
– <API, Category>: The category of API.
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Node Embeddings. After constructing the entire graph, our goal is to use a
convolutional neural network to get the node representation of Web APIs and
mashups, which can be used for the training and application of the API pair
adoption probability prediction model. As shown in Fig. 1, we use a node repre-
sentation learning model including a two-layer graph convolution neural network,
and finally get the node embeddings of mashups and Web APIs. The prediction
task of links between APIs and mashups is used to learn the node representations
and determine whether a mashup uses an API which is represented by a link
between them in the graph. The input is the node representation of mashups and
Web APIs, and the output is the prediction result. We select binary accuracy to
evaluate our results.

Fig. 1. Node representation learning based on link prediction.

3.3 Adoption Possibility Prediction for Web API Pairs

Figure 2 shows the process of adoption possibility prediction for Web API pairs.
The vector of API1, API2 and target mashup can be represented as Ta1 , Ta2

and TM . We need to extract more features from these representations to not only
consider the interactions between Web APIs, but also the interactions between
Web APIs and the target mashup. The attention mechanism [5] is a mainstream
method which is inspired by the way that people receive information and is
applied to deep learning. We make use of the attention mechanism to optimize
the prediction model. The attention mechanism can be applied to the matrix
after feature interactions. An attention network can be used to learn its related
parameters, mainly using multi-layer perceptron (MLP) for learning. The input
of the attention network is a combination of two feature vectors encoded in the
embedding space. The attention network is defined as: a′

ij = hTReLU(W (vi �
vj)xixj+b). The normalized attention scores can be calculated using the softmax

function: aij = exp(a′
ij)∑

(i,j)∈Rx
exp(a′

ij)
, where, W ∈ Rt×k, b ∈ Rt, and h ∈ Rt are the

parameters of the model, and t represents the size of the hidden layer of the
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Fig. 2. Prediction model.

attention network, and vi denotes the embedding vector of feature i. The input
is the two interaction vectors of the pair-wise interaction layer, and the output
is the attention score corresponding to the combined features. The attention-
based pooling layer finally outputs a k dimensional vector, which is the result of
considering the importance of different combinations of features.

We concatenate the semantic feature vector of Web APIs and the target
mashup, then obtain an interactive matrix containing more information, which
aims to provide a perspective of target mashup for the extraction of combined
features. We use the attention mechanism on the basis of this matrix and then
transform it to a fixed-length vector for later prediction. A max polling filter is
used to get the API interaction feature matrix MTF and then transform it to
a vector. Then we take the feature vector of target mashup TM and API inter-
action feature TIF as the input of the multiple hidden layers. For each layer i,
fLi

(Tx) = σLi
(WLi

Tx + biasLi
), where Tx is the processed composition vector of

API interaction and target mashup features, W is the corresponding weight vec-
tor. After three hidden layers, we use a sigmoid function to predict the adoption
probability of the API pairs in the output layer, P (Tx) = Sigmoid(tT fL3(Tx)).
The prediction score P is from 0 to 1.

3.4 API Package Recommendation

We trained a network to predict the probability that a Web API pair can be
adopted by this mashup. Therefore, to develop mashup TM , we can test all API
pairs for it. However, there are two problems. The first problem is there are too
many Web APIs, so it is not possible for us to test all Web API pairs. The second
problem is a mashup may need more than two APIs.

For the first problem, we try to select a Web API candidate set for mashup
TM . We can sort other mashups using their cosine similarities of embedding
vectors with mashup TM . Then, an appropriate number of Web APIs can be
obtained from the most similar mashups.

For the second problem, we make an assumption that for a Web API package
to be recommended to a mashup, any API pair in it must have a high adoption
probability. Therefore, we can construct a graph whose nodes are APIs and
edges are the adoption possibility predicted by the neural network. This can be
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represented as a complete graph identification problem. For a restriction, if the
possibility of an API pair is larger than the edge between any API and itself,
then this edge will remain, otherwise it will be removed. Then the nodes in each
complete sub-graph form a Web API package.

4 Experiments

4.1 Datasets and Experimental Settings

Our data is from Programmable Web, the largest online repository of information
on Web APIs and mashups. After screening, we finally crawled the information
of 6,424 mashups and 20,541 Web APIs. Morever, we find that each mashup
contains two Web APIs and each Web API has been used by eight mashups on
average, indicating the cooperation of APIs are common.

In the node embedding process, we use the 200 dimensional vector represen-
tation. The interaction feature extraction layer units are 400× 400. The config-
uration of the three hidden layers is (200, 100, 20). L2 regularization is used to
avoid overfitting and the regularization strength is 0.001.

4.2 Evaluation Metrics

In this experiment, we use recall to measure how many previously adopted APIs
are recommended to the mashup from the total number of adopted Web APIs.
Recall = TP

TP+FN . Higher values indicate better performance.

4.3 Comparative Methods

We selected some existing methods and compared them with our methods.

– Word Vector Similarity Model (WVSM) is a recommendation method based
on word level similarity.

– WJaccard is a word vector similarity model using Jaccard similarity. The
collaborative filtering method (CF) recommends the APIs used by the mashup
that are the most similar to the target mashup in the historical data.

– The enhanced relational topic model (ERTM) [6] method mixes and matches
the relationship between mashup and API to extract the functional attributes
of the API and then make recommendations.

– The TopicCF method [7] is a combination of the topic model and collaborative
filtering.

– Social-aware service recommendation (SASR) [8] conducts in-depth explo-
ration in the social relationship dimension to build a comprehensive service
recommendation model.

– The multi-level relational network (MRN) method [3] is a mashup service
recommendation method that builds a deep relationship network between
services based on potential topics, tags, and service networks.

– API-Prefer model [4] is an API Package recommender system based on com-
position feature learning.



API-PROGRAM: An API Package Recommendation Model 865

4.4 Results

Node Representation Learning Results. In the experiment, we divide the
training set, verification set and test set in the ratio of 6:2:2. The results are
shown in Fig. 3. After training 1000 epochs, the mean binary accuracy of link
prediction is 0.8, which shows that node representation learning is effective in
extracting the relationship between mashup and API.

Fig. 3. Evaluation of node representation learning.

API Recommendation Results. The comparison of the recall results of the
different models (the number of recommended APIs ranges from 10 to 50) is
shown in Fig. 4.

Fig. 4. Recommendation recall result.

It can be seen that the results of the three traditional algorithms, namely
WVSM, WJaccard and CF, and the results of the ERTM and TopicCF meth-
ods which only consider simple features are not satisfactory. In contrast, the
recommendation results of the in-depth mining method of relational networks
have been greatly improved. Of these, API-PROGRAM replaces the LDA topic
vector in API-Prefer with a graph to represent the effect of learning and also
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improves the interaction by adding an attention network. It can be seen that
with the improvement of the method, the recall rate has also been improved.
We observe that the results achieved by our method using graph representation
learning and the attention mechanism are better than all the other methods.
This verifies the effectiveness of our method and shows that our improvement
direction is correct. It also indicates that our thinking and optimization of the
deficiencies of the previous models in this section are effective.

5 Conclusion

In this paper, we use graph representation learning to mine the semantic features
of mashup and API description texts and their network relationships. Then, the
attention network is added. The attention score is obtained by using the atten-
tion network and the interaction matrix is weighted to obtain the final combined
feature vector. The feature vector of the target mashup in the interaction layer
is added to achieve the purpose of adding the perspective of the mashup in the
extraction process of the combined features. After the aforementioned improve-
ments, we compare the recommendation recall results of the different models
and find that our results are the best of all the other methods.
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Abstract. This paper introduces H-STREAM, a framework that pro-
poses microservices to support the analytics of streams produced by
systems collecting data stemming from IoT (Internet of Things) envi-
ronments. Microservices implement operators that can be composed
for implementing specific analytics pipelines as queries using a declar-
ative language. Queries (i.e., microservices compositions) can synchro-
nise online streams and histories to provide a continuous and evolving
understanding of the environments they come from.

Keywords: Stream processing · Cloud · Microservices

1 Introduction

The Internet of Things (IoT) enables the construction of smart environments
(grids, homes, and cities) where streams are produced at different paces. Ana-
lytics tasks must combine streams and persistent historical data to understand
thoroughly, model, and predict smart environments behaviour. For example, “at
9:00, start computing the average number of people entering a shopping mall
every morning and identify points of interest (POI) according to peoples flow in
the last month”. Answering this query is challenging because it implies deter-
mining: (i) the streams that must be discarded or persist into histories (do we
store the average/hour or every event representing a person entering the mall? or
the person visiting an area in the mall?); (ii) how to properly combine histories
with streams within analytics tasks (do we combine the whole history with the
average observation/hour? do we compute POIs of the last month and correlate
them with new computed POIs observed online?). Existing stream platforms pro-
vide efficient solutions for collecting and processing streams with parallel execu-
tion backends. Programmers rely on these platforms to define stream processing

This work has been partially funded by the International emerging Action on DAta
centred intelligent GEOsciences (ADAGEO), https://adageo.github.io.
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operations that consume “mini”-batches of streams observed through temporal
windows thanks to query engines. These engines use a list of passive queries
to analyze and to storage or use by other processors. Analytics-based applica-
tions must build ad-hoc programs that process postmortem data and streams
to perform online analytics tasks. Since programs are ad-hoc and queries are
passive, the use of specific processing operations (e.g., clustering, windowing,
aggregation) are (hard)coded, and they should be modified and calibrated if
new requirements come up.

This paper introduces H-STREAM,1 an analytics pipelines’ enactment
engine. It wraps operators as self-contained services and composes them into
pipelines of analytics tasks as queries. Queries can continuously deliver aggre-
gated streams/historical data to target applications. Accordingly, the remainder
of the paper is organised as follows. Section 2 introduces related work regarding
stream processing. Section 3 describes the general architecture of H-STREAM
and its operators as microservices that are deployed on high-performance under-
lying infrastructures. Section 4 introduces the core of our contribution, a stream
processing microservice and discusses experimental results. Section 5 concludes
the paper.

2 Related Work

Stream processing refers to data processing in motion or computing on data
directly as it is produced or received. In the early 2000s, academic and commer-
cial approaches proposed stream operators for defining continuous queries (win-
dows, joins, aggregation) that dealt with streams [3]. These solutions evolved
towards stream processors that receive and send the data streams and execute
the application or analytics logic. A stream processor ensures that data flows
efficiently and the computation scales and is fault-tolerant. We analyse stream
processing systems that emerged to process (i.e., query) streams from continuous
data providers (e.g. sensors, things).

Apache Storm,2 Apache Flink,3 Apache Kafka,4 Spring Cloud Data Flow,5

Amazon Kinesis Streams,6 Cloud Dataflow,7 Apache Beam SDK,8 Apache Pul-
sar,9 IBM Streams10 are distributed stream processing computation frameworks.
Most of them enable the design of topologies of consuming and processing nodes
represented as acyclic graphs that implement pipelines. These frameworks are

1 https://github.com/javieraespinosa/hstream.
2 https://storm.apache.org.
3 https://flink.apache.org.
4 https://kafka.apache.org.
5 https://spring.io/projects/spring-cloud-dataflow.
6 http://aws.amazon.com/kinesis/data-streams/.
7 https://cloud.google.com/dataflow.
8 https://beam.apache.org.
9 https://pulsar.apache.org/.

10 https://www.ibm.com/cloud/streaming-analytics.

https://github.com/javieraespinosa/hstream
https://storm.apache.org
https://flink.apache.org
https://kafka.apache.org
https://spring.io/projects/spring-cloud-dataflow
http://aws.amazon.com/kinesis/data-streams/
https://cloud.google.com/dataflow
https://beam.apache.org
https://pulsar.apache.org/
https://www.ibm.com/cloud/streaming-analytics
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often stateful to enable database integration and the event-driven/reactive appli-
cation or analytics logic. Streams from many sources can be ingested, processed,
and distributed across various nodes. The exchange of streams across nodes often
adopt a publish and subscribe strategy. Many of these frameworks implement
microservices that enable batch and continuous stream processing. Event stream
query engines like Elasticsearch, Amazon Athena, Amazon Redshift, Cassandra
define queries to analyze and sequence data for storage or use by other pro-
cessors. They rely on “classic” ETL (extraction, transformation and loading)
processes and use query engines to execute online search and aggregation. The
real-time stream processing engines rely on distributed processing models, where
unbounded data streams are processed. Much data are of no interest, and they
can be filtered and compressed by orders of magnitude [5,6]. Stream querying
and analytics are often performed after the complete scanning of representative
data sets. Processing techniques must process streams on the fly and combine
them with historical data to provide past and current analytics of observed
environments. Despite solid platforms, solutions do not let programmers design
their analytics pipelines without caring about the conditions in which streams
are collected and stored. H-STREAM is a cartridge for defining stream analytics
pipelines and enacting them by composing microservices that hide the underly-
ing platforms dealing with low-level tasks for collecting and storing streams.

3 H-STREAM for Building and Querying Pipelines
for Analysing Streams

We propose H-STREAM, an analytics’ pipelines enactment engine with
microservices composed for processing streams (see Fig. 1). H-STREAM opera-
tors implement aggregation, descriptive statistics, filtering, clustering, and visu-
alisation wrapped as microservices. Microservices can be composed to define
pipelines as queries that apply a series of analytics operations to streams col-
lected by stream processing systems and stream histories. H-STREAM relies
on (i) message queues for collecting streams online from IoT farms; and (ii)
a backend execution environment that provides high-performance computing
infrastructure (e.g., a virtual data centre [1], a cloud) with resources allocation
strategies necessary for executing costly processes.

Composing Microservices. Microservices can work alone or be composed to
implement simple or complex analytics pipelines (e.g., fetch, sliding window,
average, etc.). A query is implemented by composing microservices. For example,
consider observing download and upload speed variations within users’ connec-
tions when working on different networks. Assume that observations are moni-
tored online but that previous observations are also stored before the query is
issued. A network analyst willing to determine if she obtains the expected band-
width according to her subscription to a provider can ask every two minutes
give me the fastest download speed of the last 8min (see a) in Figure 2). Figure 2
b) shows the composition implementing this query example that starts calling
a Fetch, and a Filter operators that retrieve respectively the streams produced
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Fig. 1. H-STREAM general architecture.

online with a history filtering the download speed collected the last 8min. Results
produced by these services are integrated by the operator MAX that synchronises
the streams with the history to look for the maximum speed. The result is stored
by a service Sink that contacts Grafana. This query is executed every two minutes
by an operator window. The operator Fetch interacts with a RabbitMQ service
that collects streams from devices and with a service that contacts InfluxDB11

to store the streams for building a history. Finally, an operator window triggers
the execution of the query every two minutes.

Fig. 2. Microservices composition example.

11 https://www.influxdata.com.

https://www.influxdata.com
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The approach for composing microservices is based on a composition opera-
tion that connects them by expressing a data flow (IN/OUT data). We currently
compose aggregation services (min, max, mean) with temporal windowing ser-
vices (landmark, sliding) that receive input data from storage support or a con-
tinuous data producer. We propose connectors, namely Fetch and Sink microser-
vices that determine the way microservices exchange data from/to things, storage
systems, or other microservices.

We proposed a simple query language used to express stream processing
queries. A query expression is processed to generate a query-workflow that imple-
ments it (see Fig. 2). Activities represent calls to microservices; they are con-
nected according to a control flow that defines the order they should be executed
(i.e., in sequence or parallel). The control flow respects a data flow that defines
data Input/Output dependencies. H-STREAM enacts the query-workflow coor-
dinating the execution of microservices, retrieving partial output that serves as
input or a result (see Fig. 2).

4 Stream Processing Microservice

Figure 3 shows the general architecture of a stream microservice operator with
its components Buffer Manager, Fetch and Sink, and OperatorLogic. The microser-
vice logic is based on a scheduler that ensures the recurrence rate in which the
analytics operation implemented by the microservice is executed. Stream pro-
cessing is based on “unlimited” consumption of data ensured by the component
Fetch that works if a producer notifies streams. This specification is contained in
the logic of the components OperatorLogic and Fetch.

Fig. 3. Architecture of a stream processing microservice for processing data streams.

As shown in Fig. 3, a microservice communicates asynchronously with other
microservices using a message-oriented middleware. As data is produced, the
microservice fetches and copies the data to an internal buffer. Then, depending
on its logic, it applies a processing algorithm and sends it to the microservices
connected to it. The microservices adopt the tuple oriented data model as a
stream exchange model among the IoT environment producing streams and other
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microservices. The general architecture of a microservice is specialised in con-
crete microservices processing streams using well-known window-based stream
processing strategies: tumbling, sliding and landmark [4]. Microservices can also
combine stream histories with continuous flows of streams of the same type (the
average number of connections to the Internet by Bob of the last month until
the next hour). Since RAM assigned to a microservice might be limited, every
microservice implements a data management strategy by collaborating with the
communication middleware to exploit buffer space, avoiding losing data and
generating results on time. As data is produced, the microservice fetches and
copies the data to an internal buffer. Then, depending on its logic, it applies a
processing algorithm and sends it to the microservices connected to it. There
are two possibilities: (i) on-line processing using tree window-based strategies [4]
(tumbling, sliding and landmark) well known in the stream processing systems
domain; (ii) combine stream histories with continuous flows of streams of the
same type (the average number of connections to the Internet by Bob of the last
month until the next hour).

4.1 Interval Oriented Storage Support for Consuming Streams

A microservice that aggregates historical data and streams includes a compo-
nent named HistoricFetch. This component is responsible for performing a one-
shot query for retrieving stored data according to an input query (for example,
by a user or application). As described above, we have implemented a gen-
eral/abstract microservice that contains a Fetch and Sink microservices. The
historical fetch component has been specialized to interact with two stores:
InfluxDB12 and Cassandra13.

Consider the query introduced previously every two minutes give me the
fastest download speed of the last 8 min. It combines the history of observations
of the last 8min with those produced continuously and this every two minutes.
In technical terms, the query implies looking for the maximum down load speed
by defining windows of 8 min for observing the download speed in the connec-
tions. To get the fastest speed every 2 min (as stated in the query), we divide the
8 min into buckets of 2 min and look within the window for the max value, that
is, the fastest download speed (i.e., the fastest speed within the 2 min buckets),
and keep it as the “local” maximum speed. We combine every bucket with the
historical data filtered according to the corresponding time interval. This strat-
egy is valid only if the production timeliness of the stream producers and the
operator microservice are synchronised. Finally, the global max will be the max-
imum of all this set of local maximum speeds that will be the fastest download
speed in the last 8 min.

12 InfluxDB is a time series system accepting temporal queries, useful for computing
time-tagged tuples (https://www.influxdata.com).

13 Cassandra is a key-value store that provides non-temporal read/write operations that
might be interesting for storing vast quantities of data (http://cassandra.apache.
org).

https://www.influxdata.com
http://cassandra.apache.org
http://cassandra.apache.org
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4.2 Microservices Execution

Microservices are executed on top of a Spark infrastructure deployed on a virtual
machine provided by the cloud provider Microsoft Azure. A microservice exports
two interfaces: the operator interface as a SpepsIoT Component with methods to
manage it (e.g., start/stop, bind/unbind) and to produce results in a push/pull
mode; the DB interface to connect and send temporal queries to a tempo-
ral database management system (e.g., Cassandra, InfluxDB). The microser-
vice wraps the logic of a data processing operator that consumes time-stamped
stream collections represented as series of tuples. We assume that it is possible
to navigate through the tuple structure for accessing attribute values where one
of the tuple attributes corresponds to its time-stamp. The time-stamp repre-
sents the arrival time of the stream to the communication infrastructure (i.e.,
rabbitMQ queue). The operator logic is implemented as a Spark program. Spark
performs its parallel execution. Produced results can be collected by interacting
with the operator through its interface; it can be connected to another microser-
vice (e.g., the operator sink) as shown in the left part of Fig. 3.

4.3 Experimental Validation

We conducted experiments for validating the use of our microservices. For
deploying our experiment, we built an IoT farm using our Azure Grant14 and
implemented a distributed version of the IoT environment to test a clustered
version of RabbitMQ. Therefore, we address the scaling-up problem regarding
the number of data producers (things) for our microservices. Using Azure Vir-
tual Machines (VM), we implemented a realistic scenario for testing scalability
in terms of: (i) Initial MOM (RabbitMQ) installed in the VM2; (ii) Producers
(Things) installed in the VM1; (iii) microservices installed in the VM3.

In this experiment, microservices and testbeds were running on separate
VMs. This experiment leads to several cases scaling up to several machines
hosting until 800 things with a clustered version of Rabbit using several nodes
and queues that could consume millions of messages produced at rates in the
order of milliseconds. Observations showed the behaviour of the IoT environ-
ment regarding the message-based communication middleware when the num-
ber of things increased, when the production rate varies and when it uses one or
several queues for each consuming microservice. We also observed the behaviour
of the IoT environment when several microservices were consuming and pro-
cessing the data. The most agile behaviour is when nodes and virtual machines
increase independently of the number of things. Indeed, the performance of 800
things against 3 things does not change a lot by increasing nodes, machines and
queues. Note also that devoting one queue per thing does not lead to essential
changes in performance. This scenario concerns an experiment conducted in the
Neuroscience Laboratory at CINVESTAV Mexico (details can be found in [2]).
14 The MS Azure Grant was associated with a project to perform data analytics on

crowds flows in cities. It consisted of credits for using cloud resources for performing
high-performance data processing.
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Regarding connectivity in cities, with many people willing to connect devices
in different networks available in different urban spaces, we configured more
things and queues and nodes. The use case scenario gives insight into the way
microservices can be composed to answer continuous queries15. The execution
time of these queries is compared according to two settings: 800 things producing
streams through 3 queues and 800 things and 1 queue deployed on one node.
The query execution cost depends on its recurrence and the history size. The
overhead implied by the streams’ production pace is delegated to the message
passing middleware. Through queries implemented by H-STREAM queries, we
prove that it is possible to provide a hybrid post-mortem and online analytics.

5 Conclusions and Future Work

This paper proposed H-STREAM that composes microservices deployed on high-
performance computing backends (e.g., cloud, HPC) to process data produced
by farms of things producing streams at different paces. Microservices composi-
tions can tailor data processing functions personalised to the requirements of the
applications and IoT environments. Future work consists of developing a com-
position language used for expressing data processing workflows to be weaved
within target application logics [1]. Current work includes two urban computing
projects modelling and managing crowds and smart energy management.
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Abstract. API misuse has become an important factor restricting the
quality of software services. Existing API misuse detectors based on the
API-constraint knowledge graph can not intuitively assist developers
in fixing the API misuse. Correct code examples are more direct and
straightforward for developers to modify and debug code. Therefore, we
first enrich the API-constraint knowledge graph. Besides, we publish a
service called KG2Code, which can map the API-constraint Knowledge
Graph to the Correct Code examples. According to the different types of
constraint relations in the API-constraint knowledge graph, we design a
code snippet mining framework that extracts the corresponding correct
API usage pattern from over 9528K Java repositories GitHub. KG2Code
is implemented by the interactive visualization website. It helped users
(1) learn how to use an unfamiliar API or fix an API misuse and (2)
understand why API misuse occurs.

Keywords: Quality of software services · API-constraint knowledge
graph · Mining software repositories

1 Introduction

If developers do not comply with API usage constraints in the actual soft-
ware development, it will lead to API misuse or even software crash, which
causes the software to be unreliable. For example, when using the File in
Java, File.createNewFile(String) can only be called after File.exist() to avoid
FileNotFoundException. Therefore, developers are often concerned with the
solution to API misuse. In fact, whether in Github, in StackOverflow(SO), or the
API reference documentation, there will be much implicit or explicit information
to fix the API misuse.

The API reference documentation includes a wealth of knowledge in different
aspects of the API, such as functionalities, constraints, directives, caveats, and
resource specifications. The knowledge of constraint descriptions helps develop-
ers understand the correct usage of the API, making it easy to use the API.
However, the constraint knowledge is scattered within the document of the API
c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 875–882, 2021.
https://doi.org/10.1007/978-3-030-91431-8_65
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elements (e.g., class), leading to many challenges for API constraint knowledge
discovery and summarization. The Q&A knowledge forum (e.g., StackOverflow)
also provides related API misuse questions and answers, but questions about API
misuse are not necessarily correct, and many answers are not clear [1]. There
are a large number of API usage examples in Github. Through these examples,
developers can quickly understand the code and modify the incorrect usage of
the API. However, it is difficult to locate the API we need from the massive
Github repositories. Therefore, fixing the API misuse through the above three
ways is not feasible in practice.

Inspired by the SO platform, we consider that correct code examples can
better improve the efficiency and effectiveness of developers than API misuse
description. Therefore, We publish a service called KG2Code, which can map
an API-constraint knowledge graph to correct code examples. For a given API
constraint triple, we extract correct code examples from the Java Github repos-
itories. First, we crawl Java repositories and filter low-quality repositories by
distributed software mining infrastructure [2]. And according to the class name
and method name, each method in the repository can be found. Next, traverse
the Abstract Syntax Trees (ASTs) of the two APIs with different constraint rela-
tions, and capture the correct code pattern of the API by converting different
data such as control structure, calling sequence, guard conditions, etc. Finally,
remove the part that we are not interested in by program slicing.

This paper makes the following contributions:

1. We expand the original API-constraint knowledge graph by adding constraint
relations and merging more data;

2. We conduct an empirical study that reveals that correct code examples can
effectively assist developers. We firstly propose an approach that can extract
correct code examples from Github based on API-constraint knowledge graph,
and we implement it as a visualization website;

3. Our manual inspection confirms the high quality of the correct examples
mined by KG2Code.

2 Related Work

API pattern mining is our significant part of KG2Code. API pattern mining is
divided into three parts: (1) By modeling the program as a code sequence or item
set and inferring programming rules by mining frequent sequences, or frequent
itemsets [3,4]. (2) Researchers apply formal concept analysis [5] to extract the
call sequence in the program [6]. (3) Researchers mine the guard conditions of
APIs by applying predicate mining technology [7].

Inspired by examplecheck [7], KG2code also mines the Github software code
repositories, but the difference is that we mine through specific patterns in the
knowledge graph. According to the knowledge graph, the calling sequence, guard
conditions, and specific conditions of the control structure of the APIs correspond
to different types of constraint relations. Besides, the SMT Solver [8] is used to
determine the equivalence of the guard conditions.
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3 Construction of API-Constraint Knowledge Graph

To mine correct code examples, we first need to construct the API constraint
knowledge graph. Expect the four API constraint relations, which include call-
order, state-checking, value-checking, and trigger, we add three types of fine-
grained constraint relationships: redundant-checking, duplicate-checking, and
synchronized-checking, which also corresponds to the frequent API misuse types
in the MuBench [9]. We define the seven constraint relations which extend the
prior work [10] for the first time. As the construction of the API constraint
knowledge graph is similar to the prior work, A detailed description will not be
given here. The overall construction framework of the API constraint knowledge
graph is shown in Fig. 1.

Fig. 1. The construction of API-constraint knowledge graph

The entity of knowledge graph consists of API elements: package, class,
method, exception, parameter, return value, and value literals. Literal values
such as null, −1, true, negative numbers, or a range such as [0, 9]. The knowl-
edge graph contains two types of relations: declaration relations and constraint
relations. Declare relations such as a package contains a class, a class contains a
method, a method returns a numeric literal, or a method throws an exception. In
terms of the constraint relations, by referring to the most frequent API misuse
types of the MuBench, we added three fine-grained constraint relationships, and
we expanded the constraint types to seven types. Now let’s discuss the specific
usage of these seven constraint types in the knowledge graph. (see Fig. 2.)

Call-Order: API misuse caused by missing an API call or incorrect call order.
It means the method has to be called before a certain method or the method has
to be called after a certain method to avoid API misuse. For example, the file
should be closed after being written to prevent resource leakage, which means
like PrintWriter.close() should be called after the PrintWriter method (close
the PrintWriter after writing to avoid resource leak). The knowledge graph can
also express chain calls through multi-hop relations.

State-Checking: API misuse caused by missing state-checking or incorrect
state-checking. For example, we need to check the boolean value of hasnext()
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Fig. 2. The constraint relations with the corresponding knowledge graph and code
example

or isempty() before Iterator.next(). It is correct when hasnext() is true, or
isempty() is false. Otherwise, it will cause API misuse, which leads to NosuchEle-
mentexception. It is worth noting that it is very easy to confuse call-order because
it seems to be an order relation between the two methods. We have to pay
attention to that state-checking requiring state-checking on the method’s return
boolean value, while call-order does not need it.

Value-Checking: Determine whether the value of the parameter in the API fol-
lows API usage constraints of the method. For example: for the ArrayList.Get()
method, and it is necessary to check if the index is out of bounds.

Trigger: Trigger is to check whether the exception handling is missing in the
code, which leads to the API misuse. For example, Interge.parseInt(). If the
string does not contain a parsable integer, Interge.parseInt() may throw a Num-
berFormatException.

Duplicate-Checking: If some APIs are called multiple times, they will be mis-
used. For example, cipher.init() is called twice along one possible execution path,
which causes an infinite loop.

Redundant-Checking: A method does a redundant checking, which prevents
a necessary part of a usage and is executed along a certain execution path. One
case is redundant null checks. For example: UnionTypeBuilder.build() returns
a JSType that can never be null. Branching on a null check, therefore, results in
dead code.

Synchronized-Checking: In multi-threaded environments, some container
classes must be the thread-unsafe condition. For example, the HashMap in
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JDK1.8 is thread-unsafe if a usage does not obtain a lock before updating a
HashMap that is accessed from multiple threads.

4 KG2Code

KG2Code consists of two phases. One is the offline phase, which extracts the
constraint triples in the knowledge graph and mines correct code examples
from Github’s high-quality repositories. While the other is the online phase,
which generates the KG2Code results by the visualizing website. The KG2Code
overview is shown in Fig. 3.

Fig. 3. Overview of KG2Code

4.1 Extract the Subgraph

It’s simple to extract the subgraph from the API constraint knowledge graph.
We extract the subgraph from neo4j by different relation types. However, we only
extract the subgraph for four API constraint types of relations: call-order, state-
checking, synchronized-checking, and trigger. This is because the relationship
type needs to correspond to the code pattern that can be extracted-such as
value-checking, the variables involved in a program change dynamically during
the actual running of the program, and in some value-checking examples, getting
the correct code structure requires checking if the variables are in an interval.
However, it is represented by another variable in the range of the program, and
it is difficult to ensure that the code snippet meets the requirements of value-
checking.

4.2 Extract the Structure of the API

We only extract the subgraph for four API constraint types of relations: call-
order, state-checking, synchronized-checking, and trigger.

For a given API, we search for code snippets on GitHub based on the con-
strained triples, which are from the knowledge graph. We used a distributed
software mining infrastructure to filter out some of the low-quality Java repos-
itories by some limits, such as the number of repository contributors and the
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number of version updates. We only consider repositories with at least 100 revi-
sions and 2 contributors. Then we use the relevant syntax to traverse ASTs of
Java files and match the methods and classes of interest by the name of the
class and the name of the method. In order to extract API-specific patterns,
KG2Code models each program as a structured call sequence, which extracts
variable names, but still retains the call sequence, control structure, guard con-
ditions. Furthermore, we extracted different API patterns for different constraint
types.

For the call-order relation, we need to record the order of API calls prop-
erly. In some cases, the methods are not called sequentially, for example,
code().addContent(getSpace()); this expression is a case of nested calls, we
assume that the method inside the parentheses will complete the call first when
it is run so that this sentence will be processed as ’code -> getSpace -> add-
Content’.

For the state-checking relation, we need to keep the guard condition of each
API call. We use the conjunction of the lifted predicates in all relevant control
structures. In other words, we record all the branching conditions on the method
call path and connect them with &. We then use the Z3 solver to determine
whether the two conditions are equivalent. We will formalize the equivalence of
two guard conditions as a satisfiability problem.

For the synchronized-checking and trigger relation, we traverse the abstract
syntax tree to retrain the method’s control structure, including try-catch, switch-
case, synchronized, return, various loops, and so on. For the synchronized-
checking relation, we need to record whether the synchronized modifier is added.
For the trigger relation, we need to check whether the API is contained within
the associated try-catch block.

Finally, we matched the correct code pattern for each API by the constraint
relation type and counted the number of correct code patterns conforming to
each API. The GitHub link of this file is reserved.

4.3 Program Slicing

We need to do static code slicing to filter out any statements that are not
related to the API method of interest. In this step, we retain the control struc-
ture of the method obtained in the previous step. On this basis, we record
the variables involved in the API of interest, including the caller of the API,
the receiver of the API, and the parameters used by the API. We use these
variables for static code slicing.For example (see Fig. 3.), ‘Contentmodifier =
newStringContent(mods.nextToken());’, this sentence contains the method of
interest: nextToken(), so the variables we use to slice are ‘mods’ and ‘modifier’.
All statements that contain these two variables before and after this statement
will be retained. The resulting statement and associated control structures make
up the result of the slice.
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5 Tool Implementation and Evaluation

We built an API knowledge graph for JDK 1.81. The API constraint knowl-
edge graph includes 52,754 entities and 85,196 relationships, which includes
2,397 classes, 26,902 API methods, 50,711 parameters, 648 exceptions. There
are 58025 declared relationships and 27,171 constraint relationships, including
1586 call-order relations, 24,395 value-checking relations, 890 state-checking rela-
tions, 109 duplicate-checking relations, 85 redundant-checking relations, and 106
synchronized-checking relations. These API-constraint relations involve 19,385
methods, 6,823 parameters, and 5,347 return and 10,289 throw relations.

We scanned more than 9 million Java repositories on the 2019 October
GitHub dataset. We have implemented KG2Code as an online website. The
website front-end is implemented by using D3.js, and the back-end is imple-
mented by built-in python and nodeJS. Developers can enter a search query of
the required API. when querying java.swing. StringTokenizer.nextToken, it
shows a description of the API, the display of the API constraint subgraph from
the knowledge graph, the corresponding code example, and the number of code
examples with the same pattern. Each API can also be accessed through the
link to the original Github repository (see Fig. 4.).

Fig. 4. A snapshot of the KG2Code website

We can map 108 API-constraint relations in the MuBench to correct examples
that correspond to the API pattern. To check whether the correct examples
mined by KG2Code indeed conform to the desirable API usage. We manually
check 300 random code snippets mined by KG2code involving 30 API misuses
from the MuBench. Each API misuse contains 10 correct examples. They all
match the correct usage Java file provided. These results demonstrate that our
proposed approach the correct examples mined by KG2Code are effective.

1 https://docs.oracle.com/javase/8/docs/api.

https://docs.oracle.com/javase/8/docs/api
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6 Conclusions and Future Work

This paper first proposes a service named KG2Code, a mining framework based
on API-constraint knowledge graph for correct code examples in Github. Fur-
thermore, we expand the previous API-constraint knowledge graph with three
more fine-grained types of constraint relations, derived from API reference doc-
umentation and the MuBench. The quality of correct examples has been demon-
strated by manual inspection. In the future, we will tackle the challenges that
the API reference documentation and Github code repositories will continue to
evolve and update as time goes on.
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Abstract. Fraud, waste, abuse and error (FWAE) incidents lead to higher co-
payments and premiums and other costs that can significantly impact the quality
of care one receives. Curbing such incidents of overpayment in claims settlement
is a major organizational goal for healthcare companies. As claims are settled
by examining the combination of clinical codes assigned, the task at hand is to
predict if a new claim would lead to overpayment. This prediction task can be
solved by building a classification model that would accept a representation of
the clinical codes (which form an ontology graph among themselves) and other
feature vectors appearing in claims data. In this work, we learn the embedded
representation of these clinical nodes and relations among them in the ontology
graph (excerpts from Unified Medical Language System (UMLS)) by incorpo-
rating knowledge from the semantics of code descriptions and edge relations.
We combine the Paragraph Vector (PV) model with translation-based models in
a framework of multi-relational learning. We carry out intrinsic evaluations of
these embedding models on different tasks. Finally, we apply this representation
learning by detecting overpayment on claims in healthcare application and by
computing the savings achieved in fraud prevention in healthcare.

Keywords: Healthcare systems · Fraud · Waste · Abuse and Error (FWAE) ·
Clinical codes · Embedding · Paragraph Vector Model · Ontology graph ·
Multi-relational learning

1 Introduction

FWAE incidents lead to pilferage of significant resources away from necessary health
care services resulting in higher co-payments and premiums, and other costs. It can
also impact the quality of care one receives and even deprive one of legitimate health
benefits the person is entitled to. Billions of dollars are lost each year to healthcare fraud
in the United States. In Payment Integrity Operations of a healthcare organization, one
of the major aims is to reduce the amount of overpayment in claims settlement as a
prevention measure to mitigate the effects of FWAE. Normally claims are settled by
examining the combinations of clinical codes assigned to them. Let us consider the
following collection of claim records as shown in Table 1. Here clm id is a unique

c© Springer Nature Switzerland AG 2021
H. Hacid et al. (Eds.): ICSOC 2021, LNCS 13121, pp. 885–899, 2021.
https://doi.org/10.1007/978-3-030-91431-8_66
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identifier for a claim, drg bil the drug code for which the provider has billed Optum,
drg pd the drug code that is used to pay the claim. Further dx1, . . . , dx5 are the ICD-
10-CM Diagnosis Codes, icd proc1 and icd proc2 the CPT codes, mbr age at dos the
age of the member, mbr gender the gender of the member and amt pd the amount paid
for this particular claim. In addition, we can assume that we have a label (over pmt) for
each claim in the training data set, – it equals Y (1) if it is found to be an over-payment,
N (0) if not. The task is to determine whether a new claim results in overpayment. In a
supervised approach we can train a classification model, e.g., a Deep Neural Network
(DNN) to learn a label (1 or 0) with an appropriate input feature vector for each claim.
This feature vector can be an embedded representation to be learned from the assigned
clinical codes appended with other (categorical/continuous) features. However learning
the vector representation for the clinical codes can be challenging, not only we need
to consider the semantics of the short texts associated with each code, the relations
between the codes in a code family and those between different code families also need
to be taken into account. In this work we aim to learn the embedded representation of
such ontology graph on these clinical nodes by incorporating knowledge originating
from the semantics of the description of codes and their relations on the graph.

Table 1. A sample claim data in Payment Integrity application

clm id opt proc cd drg bil drg pd dx1 dx2 dx3 dx4 dx5 icd proc1 icd proc2 mbr age at dos mbr gender amt pd ($) over pmt

73237341601 None 00765 785 034211 01002 2302 23A38 2370 10D0021 OUT7022 20.0 F 7342.40 N

709375925701 None 00455 455 M4727 M5117 M532X7 G8929 K279 0SG30AJ 0SG3071 43.0 F 40215.44 Y

748308776301 None 00807 807 099824 Z370 09902 D649 0701 10EOx22 DKQMOZZ 28.0 F 8698.14 N

733395256901 None 00949 949 S065X9D Z431 SQ020XXD S2220XD S32432D OSPCX5Z 000000 21.0 M 36530.00 Y

756108875501 None 00807 807 O700 Z37D Z3A38 None None 10EQXZZ DHQ9XZZ 37.0 F 4324.80 N

853629913502 None 00003 3 S36031A S24103A S24104A R402312 R402112 02HV332 07TPOZZ 23.0 M 5977.50 N

840262672701 None 00755 755 O414 09912 Z6843 O102213 O34211 10DQQZ1 OUB70ZZ 37.0 F 15375.94 Y

The representation learning is based on the idea of integrating extra knowledge from
ontology graph (built from the knowledge source in UMLS) into paragraph vector (PV)
models for healthcare NLP tasks. In Paragraph Vector approach [10] paragraphs/texts
are learned by training the vector representation of words in a paragraph. Because of the
short nature of the texts and limited context information we feel bag of words models
like PV models, would be adequate rather than using sequence to sequence models or
transformer-based models which can lead to over-fitting. In the proposed approach we
explore the idea of jointly learning texts (that describe the clinical codes) using paragraph
vector models, and relations in a graph embedding framework. Thus we embed both the
code descriptions and relations in low-dimensional vector spaces. We view the onto-
logical graph structure on clinical codes as multi-relation data and integrate this extra
knowledge into PV embedding to generate vector representations for both code enti-
ties and relations. For this we adopt TransH model (translation on hyperplanes) [22] for
capturing multi-relational structure on clinical codes for illustration purposes although
almost any translationmodel can be easily fitted into this framework.We carry out exten-
sive experimentation to evaluate the quality of embedding produced for a certain com-
bination of a few particular clinical codes. First, we undertake intrinsic evaluations of
these embedding models on different tasks. We also demonstrate the utility of this rep-
resentation learning by detecting overpayment on claims in a healthcare application and
computing the savings achieved on labeled claims in healthcare fraud prevention.
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Contribution of this Work: We contribute to the research work of embedding rep-
resentation of short texts in many ways. It simultaneously learns the representation of
codes as well as the representation of relations. It also exploits both semantical (descrip-
tion of codes) knowledge and syntactical information (ontological relations) to generate
embedding representations.

Reproducibility: For reproducing our research we have uploaded all the codes into an
anonymized repository https://github.com/DSRnD/UMLs.

1.1 Related Work

There are very few pieces of work available on multi-relational data model which, given
an ontology graph/knowledge graph, learns the representation of textual description of
each node (if any) and also the representation of relations. In [23] Weston et al. have
introduced an approach to extract relation from free text which leverages text men-
tion data and triples from a known KB. Although this method uses a function which
embeds words and features into n-dimensional real vector space, it does not learn any
representation of the textual content of a node in the KB. The authors [24] present a
joint learning approach to embed entities of knowledge graph by leveraging resources
of both text data and graph knowledge, however, the loss function for joint learning is
not analyzed deeply. In [7] a novel framework is proposed to embed words, entities and
relations in a knowledge graph into the same vector space, but it may not be applica-
ble in translation models like TransR/TransC [11] which embeds texts and relations in
different vector spaces. The idea of integrating knowledge from knowledge graph1 to
improve word embedding models in biomedical tasks is put forth by Ling et al. in [12].
They assume the existence of a knowledge graph and integrate this knowledge in the
form of graph regularizer to the popular word embedding models. Mai et al. [15] com-
bine paragraph vector and knowledge graph embedding to learn the representation of
(academic) papers and entities for the purpose of searching papers in academics. They
use these embeddings to learn the semantic similarity of papers and entities, however,
they do not design any method to compute the combined loss function for paragraph
vector and relational learning model. The other available prior art is discussed in two
parts, text embedding and multi-relational learning for knowledge graph embedding.

Text Embedding. In recent past there have been lot of work of learning texts/documents.
Recursive Deep Neural Network (RNN) has been the first approach using word vectors
to generate paragraph vector representation from texts through the use of a parse tree
called Sentiment Treebank [19]. Socher et al. [13,18] have proposed distributed repre-
sentations of phrases and sentences for sentence level representations through parsing.
However, these methods are supervised and require more labeled data for efficient oper-
ation. Also it works for just one sentence. On the other hand, the approach of paragraph
vector representation due to Le et al. [10] mostly uses unsupervised learning and can
work well with less labeled data for learning fixed-length feature representation from
variable-length pieces of texts such as sentences, paragraphs and documents.

1 we use knowledge graph and ontology graph interchangeably.

https://github.com/DSRnD/UMLs
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Knowledge Graph Embedding. The models in knowledge graph embedding can be
divided into three categories [14]: translation-based models, bi-linear models and exter-
nal information learning models. In this work we mainly consider translation-based
models. In one of these original models TransE [4], one regards a relation r as a trans-
lation from node t to node s for a triple (t, r, s) in the training set. This can model
one-to-one relations very efficiently, but fails to adequately capture reflexive/one-to-
many/many-to-one/many-to-many relationships. The TransH model [22] removes most
of these drawbacks by treating relation r as a translation on hyperplane with ur as the
normal vector. However there are some issues with TransH model as it cannot capture
the fact that some entities (nodes/relations) are similar in the entity space but compa-
rably different in other specific aspects. These are addressed in TranR/TransC [11]. A
transfer matrix Mr is defined for each relation r to map entity embedding to relation
vector space. There is another translation-based model proposed in [9], viz. TransD,
which considers different types of entities and relations at the same time. A mapping
matrixMre is assumed for each relation-entity pair (r, e) in order to map entity embed-
ding into relation vector space. Many other translation-based models are proposed in
the recent past, a survey of which can be found in [21].

2 Data Sets Used: Metathesaurus Ontology from UMLS

The Unified Medical Language System (UMLS [2]) consists of a collection of files
and software that brings together many health and biomedical vocabularies and stan-
dards which can be used to enhance or develop applications, such as electronic health
records, classification tools, dictionaries and language translators2 etc. In healthcare
industry UMLS is commonly employed in linking health information, medical terms,
drug names, and billing codes across different computer systems through the knowl-
edge source Metathesaurus. The Metathesaurus3 is a very large, multi-purpose, and
multi-lingual vocabulary database including clinical codes such as CPT, ICD-10-CM,
LOINC, MeSH, RxNorm, and SNOMED-CT and so on, which contains information
about biomedical and health related concepts, their various names, and the relation-
ships among them. For our internal claim data occurring in Payment Integrity System
the vocabulary consists of clinical codes, ICD-9/10-CM (International Classification
of Diseases), ICD-10-PCS (Procedure Codes), and CPT (Current Procedural Terminol-
ogy) codes, each of these codes are associated with a short description (a sample of them
is shown in Table 2). Also each of them will be called a code family/code resource. For
this purpose the scope of the Metathesaurus that will be used for representational learn-
ing of knowledge source entities will be restricted to the vocabulary of those clinical
codes only and relations between them.

The Metathesaurus contains (not all possible) non-synonymous relationships
between concepts from the same source vocabulary (intra-source/internal vocabulary
relationships) and between concepts in different vocabularies (inter-source/external
vocabulary relationships). In our case we consider all the original relationships enlisted
in the code vocabularies that we describe, and additionally some intra/inter-source rela-
tions as listed by the Metathesaurus on them.

2 Also see https://www.nlm.nih.gov/research/umls/quickstart.html.
3 For more details see https://www.ncbi.nlm.nih.gov/books/NBK9684/.

https://www.nlm.nih.gov/research/umls/quickstart.html
https://www.ncbi.nlm.nih.gov/books/NBK9684/
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Table 2. A sample of clinical codes

Code family Code name Description

CPT CPT-77013 Computed tomography guidance for, and
monitoring of, parenchymal tissue ablation

CPT CPT-1006116 Electrophysiologic Operative Procedures on the
Heart and Pericardium

ICD10PCS ICD10PCS-2W3PX1Z Immobilization of Left Upper Leg using Splint

ICD10PCS ICD10PCS-0PPQ Medical and Surgical Upper Bones Removal
Metacarpal, Left

ICD10CM ICD10CM-Z82.61 Family history of arthritis

ICD10CM ICD10CM-E13.1 Other specified diabetes mellitus with
ketoacidosis

We consider a total of
about 300k codes consist-
ing of 94833 ICD-10-CM,
190390 ICD-10-PCS, and
13869 CPT codes. The
ICD-10-CM codes are
organized in a hierarchical
structure along a tree, thus
the edges between codes
can be labeled as Par (Par-
ent), Chd (Child) and Sib
(Sibling), and additionally
as is similar to for this code family. The ICD-10-PCS codes form a tree structure in
which nodes are connected with edges with the same labels as that of ICD-10-CM.
The Current Procedural Terminology (CPT) code, from the American Medical Asso-
ciation (maintained by CPT Editorial Panel [1]), contain edges with 11 labels such
as Par, Chd, Sib (Sibling), is similar to, RO/do not code with, RO/has add on code,
RO/add on code for and so on. In Metathesaurus on this vocabulary there is only one
external relation, viz. is similar to between the nodes of ICD-10-PCS and CPT codes
(which has got 27 instances).

Notation. In rest of the discussion we adopt these notations. We use [x]` “̂ max(0, x),
where x is any number/variable. We denote t, t1, t2, . . . , s, s1, s2, . . . as texts (will be
also called nodes later), these nodes together with relations to be introduced subse-
quently will also be referred to as entities. There are n number of such texts in our
disposal, call this set T “ {t1, . . . , tn}. Each such text ti is represented as a m-
dimensional real-valued vector, written as ti P R

m. We assume that we have a fixed
vocabulary represented in the form of the word-embedding matrix D P R

vˆm, where
each row j denotes the m dimensional vector representing the word wj ; the size of the
vocabulary being v. Note that text representations and word representations are both
captured using the same m dimensional space, although this is not necessary.

3 Paragraph Vector Models

There are twomodels for learning paragraph vectors [16], DistributedMemory model of
Paragraph Vector (PV-DM) (it uses skip-gram approach) and Distributed Bag of Words
model of Paragraph Vector (PV-DBoW) (uses distributed bag-of-words (DBoW) app-
roach). We briefly describe them to facilitate the introduction of joint text and relation
learning in Sect. 5.

PV-DMModel. In the PV-DM model one needs a ‘predictor model’ which utilizes the
representation of a paragraph (also called text) and its constituent words for the task
of predicting the center/next word in a window of length k. In our case we adopt a
neural network with Wp P R

vˆ(2k`1)m and bp P R
v as weight and bias parameters

respectively. The input to this network is a vector representation of text ti concatenated
with the word representation of k words which are placed to the left and to the right
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of the center word. This can be written as as
(

ti, w
i
h−k−1 · · · wi

h−1wh`1 . . . wi
h`k`1

) P
R

(2k`1)m, where wi
h−k−1 · · · wi

h−1w
i
h`1 . . . wi

h`k`1 is the context of length 2k around
the center word wi

h, which we abbreviate as ci
h, also here wi

h is the index of hth word
in the text ti from the vocabulary D.

We represent the text ti as a sequence of words wi
1, w

i
2, . . . , w

i
li
which is of length

li. Let Pr(wi
h|ti : ci

h) be the probability of the occurrence of the center word wi
h under

the text representation ti along with context vector ci
h. We use the softmax function

Pr(wi
h|ti : ci

h) “ σ(Wp[ti : ci
h] ` bp) |wi

h
,where σ(z)|i “ ezi

∑v
k“1 ezk

and z “
(z1, · · · , zv). Then the cross-entropy loss (log-loss) for text i at window location h will
be losspr(ti, h) “ − ln(Pr(wi

h|ti : ci
h)).

Hence, the total loss for the model will be the sum of average loss per window. For
a training set of size n this will be given as

Losspvdm(t1, t2, . . . , tn,D,Wp,bp) “
n

∑

i“1

1
li − 2k

li−k
∑

h“k`1

losspr(ti, h) (1)

For the purpose of training we minimize the loss function given by Eq. 1 over all
variables, Wp,bp,D and t1, t2, . . . , tn. In the testing phase one random row vector is
used for the representation of text for each test case and the optimization is carried out
only over this representation for the same loss function.

PV-DBoW Model. In PV-DBoW model one sets up a ‘classification model’ which
utilizes this representation of a paragraph and its constituent words for the task of pre-
dicting a word sampled from the text. For our purpose we take a neural network-based
classifier with Wc P R

vˆm and bc P R
v as weight and bias parameters respectively.

This is used to predict a word wh (in the vocabulary) sampled from the input text. The
input to this network is a vector representation of the ith text ti P R

m. The text rep-
resentation acts as a paragraph vector for this model. The cross-entropy loss (log-loss)
for ti at window location h will be lossc(ti, h) “ − ln(Pr(wi

h|ti)).
Again we use softmax as the activation function on the cross-entropy loss (log-loss)

for this model as before. The total loss for the model will be the sum of average loss per
window. For a training set of size n this will be given as:

Losspvdbow(t1, t2, . . . , tn,D,Wc,bc) “
n

∑

i“1

1
li

li
∑

h“1

lossc(ti, h) (2)

For the purpose of training we minimize this loss function given by Eq. 2 over all
variables Wc,bc,D and t1, t2, . . . , tn.

4 Translating Embedding Modeling for Multi-relational Data

A typical embedding of multi-relational data represents an entity as a k-dimensional
vector t (or s) and formulates a scoring function fr(t, s) to measure the plausibil-
ity of the triplet (t, r, s) in the embedding space, which denotes a transformation r
characterising the relation r P R (R is the set of all relations) on the pair of entities
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t and s. For instance, in the translation-based method TransE [4], the authors define
fr(t, s) “ ‖t` r − s‖2. Different translation transformations vary with different scor-
ing functions [3–6,8,17,20]. There are other multi-relational learning models like struc-
tured embedding (SE) [5] or semantic matching energy (SME) [3], but we shall not
employ them here as they involve multiple matrix multiplications and Hadamard prod-
ucts which can be quite time consuming. Among translation transformation-based mod-
els, TransE [4] provides a simple and efficient formalism which produces satisfactory
predictive performance, However, TransE has shortcomings when it comes to dealing
with relations capturing reflexive/one-to-many/may-to-one/many-to-many mappings.
To address these issues Wang et al. have proposed TransH [22] which models a rela-
tion as a hyperplane with a translation operation on it and makes a good trade-off
between model complexity and efficiency. For illustration of our embedding learning
using multi-relational learning we shall use the TransH model only as discussed below.
Other models can be fitted seamlessly in this framework.

In TransH model, for a triplet (t, r, s) the embedding vectors t and s are first pro-
jected onto the hyperplane ur as t⊥ and s⊥ respectively. The embedded vectors t⊥ and
s⊥ are expected to be connected by a translation vector hr on the hyperplane with low
error if (t, r, s) is a true triplet, also called a golden triplet. Subsequently one defines a
scoring function as: fr(t⊥, s⊥) “ ‖t⊥ ` hr − s⊥‖2. Assuming ‖ur‖2 “ 1 it is easy
to deduce t⊥ “ t − uT

r tur and s⊥ “ s − uT
r uhr. Thus the scoring function now

becomes, fr(t⊥, s⊥) “
∥

∥(t − uT
r tur)` hr − (s − uT

r sur)
∥

∥

2
. The model parameters

are all the entities {ei}|E|
i“1 (ei can be ti, si or ri etc.), and the hyperplanes and trans-

lation vectors of all the relations, {(ur,hr)}|R|
r“1. During training one works with the

loss function that discriminates between positive (golden) and negative triplets by using
margin-based ranking loss. Moreover some more constraints are added to the loss func-
tion as soft constraints while it is minimized in order to capture the following: all the
entity vectors are scaled below 1, the translation vector is in the hyperplane, and normal
vector should have length 1.

Losstransh(t, r, s,ur,hr) “
∑

(t,r,s)PΔ

∑

(t′,r′,s′)PΔ′
(t,r,s)

[

[fr(t⊥, s⊥)` γ − f ′
r(t

′
⊥, s′

⊥)]`

ă
η

{

∑

ePE
[‖e‖2 − 1]` `

∑

rPR

[

(ur
Thr)2

‖hr‖22
− ε2

]

`

}]

“
∑

(t,r,s)PΔ

∑

(t′,r′,s′)PΔ′
(t,r,s)

(

losshplane

ă
η lossconstr

)

(3)

Above Δ is the set of positive (golden) triplets, Δ′
(t,r,s) is the set of negative triplets

created by corrupting the triple (t, r, s), γ is the margin separating positive and negative
triplets, and η is a hyper parameter weighing the importance of soft constraints (new
notations are self-explanatory).

One constructs the set of corrupted triplets (as in Eq. 3) by replacing the head or tail
of a true triplet with a random entity (but not both at the same time). The set of golden
triplets (in the knowledge graph) is randomly traversed multiple times, in the process a
corrupt triplet is randomly constructed. For details see [22].
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5 Learning Texts and Relations Jointly

Finally we learn the representation of the description of entities (using the paragraph
vector approach) together with the relations on these entities (using TransH approach)
for multi-relational data. For that we formulate the loss function as a convex combina-
tion of loss due to paragraph vector model and that due to TransH model. We call them
as PV-TransH learning models.

In the PV-DMmodel we use the predictor model to compute the loss function while
predicting the center/next word in a window of length k for an entity text t. Along with
this we embed text (in terms of node) t, and each text (captured as node only) s that are
connected with t through the relation r in the TransH model, call this PV-DM-TransH
model. The loss function for this combined model will be given as:

Losspvdm−transh(t1, . . . , tn,D,Wp,bp, r1, . . . , r|R|,h1, . . . ,h|R|,u1, . . . ,u|R|)

“
∑

tiP{t1,...,tn}

⎡

⎣ 1

li − 2k

li−k∑

h“k`1

losspr(ti, h)

` 1

|ti|
|ti|∑

p“1

∑

(rj ,s
p
k
):(ti,rj ,s

p
k
)PΔ

∑

(r′
j ,s′p

k
):(ti,r′

j ,s′p
k
)PΔti (rj ,s

p
k
)

(
lossp

hplane ` η lossconstr

)
⎤

⎥⎦

(4)

Recall Δ is the set of positive (golden) triplets, Δt
(r,s) is the set of negative (corrupt)

triplets created from the triplet (t, r, s) by changing the tail s of the original triplet while
keeping its head t unchanged. For each window wrt a word in the text |ti| in the PV-DM
model, we choose a negative triplet (where |ti| is the length of the text ti) and

lossp
hplane “ [

fr(t⊥, sp⊥)` γ − fr′(t⊥, s′p⊥)
]

`

As usual we use stochastic gradient descent to minimize the loss function. In this
we fix text t, update the parameters and repeat the process for all other texts. For a fixed
text t we randomly choose a golden triplet and correspondingly choose a corrupt triplet
by changing the tail of the triplet keeping the head t unchanged. For every mini-batch
we compute the gradient and update the model parameters. See Algorithm 1 for details.

When we combine PV-DBoWwith TransH (call this PV-DBoW-TransH) we use the
classification model to predict a word sampled from an text entity t and also employ the
TransH model which aids in learning the text t and the relations {ri}iPR. Similarly one
can formulate the loss function Losspvdbow−transh(·, . . . , ·) along the lines of Eq. 4.

We describe how we reduce false negative labels in Algorithm 1. In our method for
a fixed head t of a triplet (t, r, s) we corrupt the tail t and choose a node t′ by random
sampling of the collection of nodes. However, the knowledge graph on clinical nodes is
not complete and this random sampling may introduce many false negative labels into
training. We adopt a simple approach to solve this. For a fixed head t P T we construct
a set of pair of relations and nodes, Γt “ {(r, s) : (t, r, s) P Δ for some r P R, s P
T}. Now we randomly pick any (r′, s′) �P Γt and construct a negative/corrupt triplet
(t, r′, s′).
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Algorithm 1: Learning with PV-TransH models
Input : Training set; Set of texts T “ {t1, . . . tn}, set of relations R, set of golden

triplets Δ “ {(t, r, s) : t, s P T, r P R} in the knowledge graph, hyperplane
vector ur , translation vector hr , Word embedding matrix D, margin γ,
hyperparamater for modeling constraints η, embedding dimension v, Parameters
for paragraph vector models Wp, and bp

Initialization : r Ð uniform(− 5√
v
, 5√

v
), r Ð r

‖r‖ , for each relation r P R,

t Ð uniform(− 5√
v
, 5√

v
) for each text t P T ,D Ð rand(1),

ur Ð randint(),hr Ð randint(),
ur Ð ur

‖ur‖ ,hr Ð hr
‖hr‖

1 for t “ t1, . . . , tn do
2 ti Ð ti

‖ti‖ ;
3 Δbatch Ð sample(Δ, b); // sample of mini-batch size b

4 Γbatch Ð H; // initialize the set of pairs of gold and corrupt triplets
5 for (t, r, s) P Δbatch do
6 (t, r, s′) Ð sample(Δt(r, s)); // sample a corrupt triplet
7 Γbatch Ð Γbatch ∪ {(t, r, s), (t, r, s′)};
8 end
9 update parameters wrt 1

li−2k

∑li−k
h“k`1 lossp(ti, h) `

1
|ti|

∑|ti|
p“1

∑

(rj,s
p
k
):(ti,rj ,s

p
k
)PΔ

∑

(r′
j

,s′p
k
):(ti,r′

j
,s′p

k
)PΔti (rj,s

p
k
)

(
loss

p
hplane

` η lossconstr

)

/* PV-DM-TransH model */
10 or, update parameters wrt PV-DBoW-TransH model
11 end

6 Experiments

We evaluate our approach on two kinds of tasks, intrinsic and extrinsic. We produce the
experimental results and the subsequent analysis on them. For experimental purposes
we use the Metathesaurus Ontology clinical code vocabulary from UMLS as described
in Sect. 2.

6.1 Baseline Methods Used

For experimental purposes, we use a few knowledge graph embedding models involving
relations for learning embedding of codes and relations in ontology like TransH [22],
TransR [11] and TransD [9]. Further we use Paragraph Vector Models (PV-DM and PV-
DBoW) [16] and combine them with these embedding models. So in all, we use the fol-
lowing methods for benchmarking purposes, PV-DM, PM-DBoW, TransH, TransR and
TransD, PV-DM-TransH, PV-DM-TransR, PV-DM-TransD, PV-DBoW-TransH, PV-
DBoW-TransR, PV-DBoW-TransD etc.
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Table 3. Experimental results on triplets classification

SI Method Accuracy F-1 measure

1 PV-DBow 0.5 0.65

2 PV-DM 0.5 0.67

3 TransH 0.6 0.68

4 TransR 0.7 0.71

5 TransD 0.75 0.72

6 PV-DBoW-TransH 0.65 0.68

7 PV-DM-TransH 0.7 0.68

8 PV-DBoW-TransR 0.8 0.72

9 PV-DM-TransR 0.76 0.68

10 PV-DBoW-TransD 0.79 0.73

11 PV-DM-TransD 0.77 0.71

We implement our joint text
and relation learning models on
all those baselines and evaluate
on our Metathesaurus ontology on
clinical codes in UMLS data set
and compare the performance of
these models. We are not able to
use other data sets as most of them
either do not contain much textual
description for the nodes or do not
incorporate a graph ontology.

6.2 Intrinsic Evaluation

We perform intrinsic evaluation
on the following tasks, - triplet classification and link prediction on Metathesaurus
ontology only. We produce the embedding from the combined loss function involv-
ing texts and relations as given by Eq. 4. Most of the cases the models converge in less
than 25 epochs. We exhibit one such convergence plot for PV-DM-TRansH model in
Fig. 1. Both the training and validation losses converge after 17 epochs.

Fig. 1. Loss function for PV-DM-TransH
model at optimal parameters

Triplets Classification
By the task of triplets classification [11,17,
22] one tries to judge whether a given triplet
(t, r, s) is correct or not, which is a binary
classification task. A part of the Metathe-
saurus ontology on clinical code vocabulary
is used for training. The test set contains
only correct triplets, but for the evaluation
of binary classification we need to construct
negative triplets. In this case we create nega-
tive (incorrect) triplets by randomly choosing
a tail s for a fixed head t in a correct triplet as
described in Sect. 5.

We adopt the commonly used decision rule for triplets classification [11,22]. We
first set a threshold δr for each relation r, which is obtained by maximizing the accuracy
values for classification on the valid set. For the given triplet if the score (using the
scoring function fr) is lower than δr we mark it as positive, otherwise it is negative.

For training TransH model we use the learning rate λ for SGD to be among
{0.1, 0.01, 0, 001}, the margin γ among {0.5, 1, 2}, the dimensions d of both entity and
relations embedding among {50, 100, 150, 200, 250}, the importance of soft constraints
η P {0.0156, 0.0625, 0.25, 1.0} and the batch size B among {64, 128, 256, 512}. The
window size (on both sides of the context word) for PV-DMmodel is chosen in between
2k P {2, 4, 6}. The best configuration is chosen according to the accuracy in the test set.
The optimal hyper parameters for TransH are as follows: the learning rate λ is 0.001,
embedding dimension d “ 200, margin γ “ 1, the importance of soft constraints
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η “ 0.25, and the batch size B “ 512. For TransR we select the parameters in the same
range, however, we vary the margin separating positive and negative triplets γe, the
margin for subclass triples γc and the margin for relational triples γl [14]: γl, γe, γc P
{0.1.03, 0.5, 1}, the dimension of entity embedding d P {50, 100, 150, 200, 250}, and
the dimension of relation embedding d′ P {25, 50, 100}. In TransR we get the best
configuration as: the learning rate λ “ 0.001, the margins γl “ 1, γe “ 0.1, γc “ 1,
the dimension of entity embedding d “ 200 and the dimension of relation embedding
d′ “ 20, and the batch size B “ 256, also we take L1 as the dissimilarity. In case of
TransD we arrive at the following optimal parameters: For all other cases, the learning
rate λ “ 0.001, the margin γ “ 1, the dimension of entity embedding d “ 200 and the
dimension of relation embedding d′ “ 50, and the batch size B “ 256, and we chose
L2 as the dissimilarity.

The results of triplets classification are reported in Table 3 wherein we use metrics,
accuracy and F1-measure. The combination of models PV-DBoW and TransD perform
the best followed by PV-DM with TransD. In general, TransD models are performing
well and DBoW models are better than DM models. And also when we are jointly
learning entities and relations the accuracy and F-1 measure improve.

Fig. 2. Classification accuracies of different relations on three code families: ICD-10-CM, ICD-
PCS and CPT

The prediction accuracy of different relations for the PV-DM-TransH model is
shown in Fig. 2. We plot all the 5 relations available in ICD-10-CM and ICD-10-PCS
codes. The CHD relation has the best accuracy followed by SIB for ICD-10-CM codes
(almost 80%). Same phenomenon is observed for CHD and SIB relations in case of
ICD-10-PCS codes, which have prediction accuracy close to 67% and 76% respec-
tively. But the maximum accuracy of 81% is shown in case of is similar to relation
which means synonyms for procedure codes are easier to predict. For CPT codes we
focus on the relations which have higher accuracy values. The maximum accuracy is
produced by RO/has add on code which is close to 83%; it means that lot of CPT codes
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do have add on codes. Further CHD and PAR relations have nearby prediction accuracy
values as PAR is the inverse of CHD relation.

Link Prediction. The task of link prediction is to predict a missing head h or tail t
for a triplet (t, r, s), this task is originally proposed in [4,5]. In this task one attaches
more importance to ranking a set of candidate entities from the ontology graph rather
than requiring a unique answer saying which is the best. We follow the same evaluation
protocol that is used for TransE modeling [4]. For each testing triplet (t, r, s)we replace
tail s by each node e, different from s in the ontology graph and calculate the score on
the corrupted triplet (t, r, e) using the scoring function fr. By ranking these scores and
aggregating over all the testing triplets in ascending order, we can obtain the rank of the
correct triplet.

Table 4. Experimental results on link prediction

SI Method MR MRR Hits@10

1 PV-DBoW 28.52 0.28 0.78

2 PV-DM 28.92 0.23 0.74

3 TransH 28.86 0.24 0.74

4 TransR 28.68 0.21 0.71

5 TransD 28.34 0.19 0.72

6 PV-DBoW-TransH 27.03 0.34 0.82

7 PV-DM-TransH 27.26 0.31 0.82

8 PV-DBoW-TransR 27.02 0.31 0.85

9 PV-DM-TransR 27.13 0.29 0.80

10 PV-DBoW-TransD 27.73 0.27 0.76

11 PV-DM-TransD 27.12 0.25 0.78

We report three measures as our eval-
uation metrics: the average rank of all
correct entities (Mean Rank (MR)),Mean
Reciprocal Rank (MRR) and the propor-
tion of correct entities ranked in top 10
(Hits@10). These metrics are defined as
follows [25]. MR is computed by aver-
aging over the number of ranks avail-
able. MRR is the mean of the recipro-
cal of ranks available. Further Hits@N is
the proportion of correct entities in top-
N ranked entities. A good embedding
would yield a low MR, a high MRR and
a high Hits@10 values. Note that for
this data set all the triplets present in the
ontology graph are real word triplets and
hence are not corrupted. So we do not need to distinguish between two settings, ‘raw’
and ‘filtered’ (see Table 4).

For obvious reasons we use almost the same hyper parameters that we use for
triplets classification. For training TransH model we use the learning rate λ for
SGD to be among {0.1, 0.01, 0, 001}, the margin γ among {1, 2, 4}, the dimen-
sions of entity and relations embedding among {50, 100, 150, 200, 250}, the impor-
tance of soft constraints η P {0.0156, 0.0625, 0.25, 1.0} and the batch size B among
{64, 128, 256, 512}. The window size (on both sides of the context word) for PV-DM
model is chosen in between 2k P {2, 4, 6, 8}. The best configuration is determined
according to the MR in the validation set. For TransH the optimal hyper parameters are
as follows: the learning rate λ is 0.01, margin γ “ 1, embedding dimension d “ 100,
the importance of soft constraints η “ 0.25, and the batch size B “ 512, and the
window size for PV-DM model to be 2 (for all the cases). For TransR we select the
parameters in the same range, however, we vary the margin separating positive and
negative triplets γe, the margin for subclass triples γc and the margin for relational
triples γl [14] as: γl, γe, γc P {0.1.03, 0.5, 1, 2}, the dimension of entity embedding
d P {50, 100, 150, 200, 250}; other parameters are: the dimension of relation embed-
ding d′ P {25, 50, 100}. We arrive at best configuration for TransR as: the learning
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rate λ “ 0.01, the margins γl “ 1, γe “ 0.1, γc “ 1, the dimension of entity embed-
ding d “ 100 and the dimension of relation embedding d′ “ 100, and the batch size
B “ 512, we take L2 as the dissimilarity. In case of TransD [9] by fixing the range
of hyper parameters as in TransH, we arrive at the following optimal parameters: the
learning rate λ “ 0.01, the margin γ “ 1, the dimension of entity embedding d “ 100
and the dimension of relation embedding d′ “ 50, and the batch size B “ 256, and we
chose L2 as the dissimilarity.

Table 5. An extrinsic evaluation on internal claim data

SI Method Precision Recall AUC Savings σ (in USD)

1 PV-DBoW 0.246 0.418 0.623 8,312,089

2 PV-DM 0.235 0.554 0.621 8,349,657

3 TransH 0.257 0.345 0.629 8,056,294

4 TransR 0.231 0.523 0.629 8,435,095

5 TransD 0.239 0.504 0.628 8,227,509

6 PV-DBoW-TransH 0.247 0.489 0.633 8,809,780

7 PV-DM-TransH 0.234 0.564 0.634 8,863,804

8 PV-DBoW-TransR 0.244 0.572 0.635 8,927,542

9 PV-DM-TransR 0.265 0.528 0.638 9,037,456

10 PV-DBoW-TransD 0.273 0.614 0.634 9,153,498

11 PV-DM-TransD 0.278 0.629 0.632 9,267, 376

The results are depicted
in Table 5. The simplest mod-
els like PV-DBow and PV-
DM under-perform in compar-
ison to other combined mod-
els. Also other plain transla-
tion models like TransH, TransR
and TransD perform no bet-
ter than the combined models
for obvious reasons. Overall,
combined TransH and TransR
models seem to be perform-
ing well. Also DBoW models
consistently perform better than
DM models meaning that context would play little role in embedding models here.
However, the improvements in performance for the combined models is not that appre-
ciable which may be due to the fact that relations probably do not play much role in this
particular data set.

6.3 Extrinsic Evaluation

We use internal claims data (courtesy Optum Global Advantage Payment Integrity
Team) for extrinsic evaluation. These data sets contain a combination of 13k ICD-10-
CM and 10k ICD-10-PCS codes. We use 188k claims (appearing from 2016-Q1 until
2017-Q4) with over-payment labels (0 or 1) as training data while test set contains
22k claims (from 2018-Q1 until 2018-Q2). We fit a feed forward deep neural network
(FFDN) (with a threshold value of 0.5) for predicting if a new claim will lead to over-
payment. We use the same hyper parameters that we employ for triplets classification
and link prediction. We use the metrics, precision, recall and AUC for judging the effi-
cacy of our approach. Further we formulate a savings metric σ which is computed as the
sum of maximum savings on 1000 claims. The best configuration for different models
are picked by examining the maximum amount of savings σ. The best configuration for
FFDFN across the models has 4 layers with 300ˆ1500ˆ750ˆ1 node sizes at different
layers with dropout ratios of 0.5, 0.5 and 0.3. The best configuration for TransH model
turns to be as follows, the learning rate λ “ 0.001, embedding dimension = 100, margin
γ “ 2, η “ 0.25 and batch size = 20.

The results are shown in Table 5. Joint learning of entities and relations improves the
savings in case all combined TransH, TransR and TransD models. Using these models
one is able to predict claims which result in higher savings. Also the prediction ability
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remains almost the same for all the methods as witnessed by AUC metrics. The results
could have been better if we had access to context historical data for claims and more
number of clinical codes (only five ICD-10-CM codes and two ICD-10-PCS codes are
used for each claim) would have been made available for classification purposes.

7 Conclusion

In this work we propose a new graph embedding model which jointly learns the rep-
resentation of the texts describing the nodes in the graph and the representation of the
relations connecting the nodes. Thus it exploits both semantic knowledge and syntac-
tical information to generate embedding. Also the framework can adept to any trans-
lation model with Paragraph Vector models. This method is integrated within payment
integrity solutions framework and is live now. This research can be used in other appli-
cations of representation learning beyond healthcare, specifically in classification of
texts (containing short texts or domain specific abbreviation with hierarchical relation-
ships between the texts), for example, using multi-relational data sets like WordNet
(WN11 and WN18 [17]), although the texts embedded therein will consist of a single
word without any context information in which case quality of embedding cannot be
guaranteed.
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Abstract. Multivariate temporal data generally exists in the whole
manufacturing process and forecasting lays the foundation for many
intelligent services in industry. In this paper, we propose an end-to-end
deep learning framework named dual-dimensional attention-based net-
work (DANet) to solve the multivariate time series forecasting problem
in industry. It leverages the strengths of recurrent neural network (RNN)
structures to discover the underlying temporal patterns of the multi-
dimensional input. A recurrent module is used for capturing sequen-
tial relationships between adjacent timesteps and embedding the original
observations. Then, we apply a novel dual-dimensional attention mech-
anism to cope with the intrinsic characteristics of industrial big data.
Feature-wise self-attention enables the network to adaptively learn the
correlations between features, while time-wise attention captures com-
plex long and short-term temporal dependencies. Our model shows its
advantages over the baseline methods and a more stable and robust
performance in the experiments on several real-world manufacturing
datasets.

Keywords: Multivariate time series prediction · Recurrent neural
network · Attention mechanism

1 Introduction

Nowadays, the deeper integration of new information technology and manufac-
turing is exerting a profound influence on industrial innovation [5], enabling
the automatic collection and recording of massive sensor data in chronologi-
cal order [8]. Multivariate temporal data generally exists in the whole man-
ufacturing, warehousing, and marketing process. Making accurate predictions
in advance lays the foundation for many intelligent services targeted at spe-
cific applications, such as enhancing productivity, monitoring equipment health,
warning performance degradation and reducing costs. Therefore, it makes sense
that multivariate time series forecasting can provide a real-time insight and fore-
sight for process monitoring, which has become a fundamental and important
subject of data mining in both academia and industry ever since [13].
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Since the manufacturing industry has high requirements for model reliabil-
ity, data mining techniques commonly used in the industry are still traditional
mathematical and statistical methods (e.g., time series analysis and linear regres-
sion [4]) for their robustness and consistency. However, it is difficult for these
models to discover the underlying correlations and causality when faced with
huge data with noise and high dimensionality. On the other hand, data-driven
deep learning models, despite weaker interpretability, have been explored as an
effective approach to discovering complex nonlinear relationships between mul-
tivariate time series. Nevertheless, the following distinct characteristics of indus-
trial time series make it challenging for existing forecasting models to be directly
applied to.

– Relevance: Some models only focus on learning time-varying features in dif-
ferent steps and stages [13], caring little about variable-wise data associations.

– Variety: Some models consist of complex feature selection operations or need
additional priori knowledge when tuning parameters [11], which makes them
not scalable enough to handle multi-source heterogeneity in the complicated
and noisy production environment.

– Velocity: Fast data generating and processing speed requires the model to
generate accurate results under longer prediction horizon in order to reserve
sufficient reaction time in applications. The capability of some models are not
strong enough to maintain satisfactory performance when the forecast range
is long [9].

In this paper, we propose an end-to-end deep learning framework named dual-
dimensional attention-based network (DANet) to address the multivariate time
series forecasting problem with the aforementioned characteristics. It mainly
leverages the strengths of recurrent neural network (RNN) structures to dis-
cover the underlying temporal patterns of the multi-dimensional input. Firstly,
the recurrent module is used for capturing sequential relationships between adja-
cent timesteps and embedding the original observations. Then, we apply a novel
dual-dimensional attention mechanism to cope with the intrinsic characteristics
of industrial big data. Feature-wise self-attention computed on the row vec-
tors of hidden states enables the network to adaptively learn the correlations
between features, while time-wise attention calculated on the hidden states of
each timestep captures complex long and short-term temporal dependencies.
Additionally, the DANet connects a conventional autoregressive linear model in
parallel. The linear AR part captures scale and trend while the nonlinear neural
network part captures fluctuations. They together make the overall model more
robust when processing non-stationary time series with scale change.

Our contributions are summarized as follows:

– We proposed DANet, an end-to-end deep learning framework solving the mul-
tivariate time series forecasting problem in industry.

– We apply a novel dual-dimensional attention mechanism which helps the net-
work to adaptively learns useful correlations between variables and better
modeling long and short-term temporal dependencies.
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– Our model shows its advantages over the baseline methods and a more stable
and robust performance in the experiments on several real-world manufac-
turing datasets.

2 Related Work

2.1 Smart Manufacturing Applications

In the latest industrial revolution, namely Industry 4.0, the development of
industrial internet of things (IIOT), machine learning (ML), and artificial intel-
ligence (AI) technology is bringing new vitality to the manufacturing industry.
As one of the most common types of sensor data in industrial environment, time
series data contains rich information which can benefit research topics such as
scheduling, monitoring, quality, and failure detection [3]. For example, supervised
ML methods have been widely used to develop defect diagnosis and prognosis
models in order to improve machine reliability [19]; Machine health monitor-
ing involves predicting the occurrence time, duration and probability of equip-
ment failure and performance degradation [12]; Management of product quality
needs to identify key performance indicators (KPIs) and predict the final outputs
according to intermediate results [20]. Therefore, time series forecasting plays an
important role in laying the foundation for more sophisticated tasks in industry.

2.2 Time Series Prediction Models

Parametric Models. Conventional parametric model for time series forecast
takes regression function as a premise and usually targets at univariate time
series forecasting. The most popular models are autoregressive (AR) models and
more advanced autoregressive integrated moving average models (ARIMA) [14],
which determines the parameters by fitting the observations into a linear regres-
sion function. Vector autoregression (VAR) [7] models naturally extend AR mod-
els to the multivariate setting. Nevertheless, large parameter space of VAR is easy
to cause overfitting due to insufficient sample size when dealing with long-term
temporal patterns. These models have been successfully applied the economic
and financial fields, but it is difficult for these models to overcome the interfer-
ence of random events and model the nonlinear and uncertain characteristics of
spatial-temporal data.

Deep Learning Models. In recent years, with the strengthening of computing
power and the development of deep learning theory, the research of neural net-
work models for time series prediction has become a hot spot. These data-driven
methods do not analyze the physical properties and dynamic behaviors of the
system. Instead, it infers future trend and tendency through the statistical reg-
ularity of data, thus having high flexibility. Recurrent neural network (RNN) is
born to solve the time series forecasting problems. Its variants long short-term
memory (LSTM) [6,15] and gated recurrent unit (GRU) [2] are so popular that
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they gradually take the place of RNN. Such self-circulation mechanism enables
them to learn temporal dependencies well and get better prediction results.

Currently, a hot direction is to combine convolutional neural network
(CNN) [16] and sequential models to acquire better predictions. LSTNet [11]
performs a one-dimensional convolution to capture short-term local information
and uses an RNN layer to capture long-term macro information. It improves
RNNs by adding skip connections to distant cells to directly utilizes the periodic
information. However, in order to take full advantage of this novel structure, the
skip length need to be carefully selected, which may require additional manual
effort or priori knowledge. TPA-LSTM [17] makes further improvements on the
basis of LSTNet by changing the order of convolution and recurrence and pro-
poses a novel attention mechanism to integrate information of one feature at
all timesteps for multivariate forecasting. Nevertheless, more complex structure
also introduces a great amount of hyperparameters which brings inconvenience
under different real-world scenarios.

The attention mechanism was firstly applied to the field of natural language
processing (NLP) and improved the word alignment of the encoder-decoder
architecture in the translation task [1]. Many researchers have taken advantage
of its sequence alignment ability and leveraged it in the time series forecasting
problem. Informer [21] is a successful attempt to apply the popular self-attention
structure Transformer to increase the prediction capacity and deal with the long
sequence time series forecasting problem.

3 Preliminary

In this section, we give a formal definition of the multivariate time series (MTS)
forecasting problem. Assume a fixed-size window is sliding over multiple observed
time series, and the model input at time stamp t can be denoted as:

Xt = {x1, x2, · · · , xT } ∈ R
d×T (1)

where T is the window size, xi = {x1
i , x

2
i , · · · , xm

i | xm+1
i , · · · , xd

i } ∈ R
d×1 repre-

sents d different variables observed at time stamp i, and xj
i is the j-th variable

of xi. These variables are classified into two types and is divided by |. The last
(d − m) dimensions are the variables we are interested in and they are called
target variables, such as key metrics and crucial stage outputs of the produc-
tion line. The front m dimensions are called external variables, which may have
potential relationship with target variables or among themselves. Our goal is to
predict:

xT+Δ = {x1
T+Δ, x2

T+Δ, · · · , xm
T+Δ | xm+1

T+Δ, · · · , xd
T+Δ} ∈ R

d×1 (2)

where Δ is a changeable horizon ahead of current time stamp. The determination
of Δ depends on specific application scenarios. For example, measurements of
machines on the production line are usually timed accurately to a second, while
statistics about production rate or energy consumption are often recorded once
an hour.
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4 Methodology

In this section, we describe the structure of the proposed deep learning frame-
work. Figure 1 shows an overview of DANet architecture.

Fig. 1. An overview of the dual-dimensional attention network (DANet).

Statistics sampled from the industrial process are gathered and preprocessed
to form a multivariate input. The MTS are firstly sent to a recurrent mod-
ule and is embedded into a hidden state matrix. The row vectors are called
feature vectors which incorporate dependencies of adjacent timesteps. The fol-
lowing is a dual-dimensional attention module, which consists of feature wise
multi-head self-attention and time-wise dot product attention structures. The
feature vectors enter a self-attention module to adaptively capture and aggre-
gate the correlations between features and updates the hidden state matrix.
After that, time-wise attention is calculated on the column vectors of hidden
states to dynamically select timesteps mostly related to the last hidden state.
We also connect an autoregressive module in parallel which is sensitive to the
scale change in the input to add robustness to the whole structure. Finally, the
forecasting results from both nonlinear part and linear part of the network are
added up together to generate a final prediction, which can serve as a feedback
for high-level optimization services for the industrial process.

4.1 Recurrent Module

The input time series containing d variables are split into snippets of the same
length as the window size. The first layer of DANet utilizes LSTM cells to extract
information and encode the original observations of variables into an embedding
matrix Ht = {h1, h2, · · · , hT } ∈ R

f×T , where f is the number of hidden state
features. An LSTM cell has four inputs and one output at each timestep. The
vector xt and a previous hidden state vector ht−1 is transformed by specific
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weight matrices to provide different input for each gate. For each element in Xt,
the hidden state is calculated as:

it = σ(Wxixt + Whiht−1)
ft = σ(Wxfxt + Whfht−1)
ot = σ(Wxoxt + Whoht−1) (3)
ct = it � tanh(Wxgxt + Whght−1) + ft � ct−1

ht = ot � tanh(ct)

where it, ft, ot, ct, ht ∈ R
f×1 represent the value of input gate, forget gate,

output gate, memory cell and hidden state at timestep t, respectively. Wxi,
Wxf , Wxo, Wxg ∈ R

f×d and Whi, Whf , Who, Whg ∈ R
f×f are the weight matrix

to transform the input and hidden state. σ stands for the sigmoid function, and
� means element-wise multiplication.

4.2 Attention Module

The forecasting model should meet more requirements in terms of the inherent
characteristics of industrial time series. The feature selection problem in time
series can be seen from two perspectives. In the time dimension, there usually
exists continuity or periodic temporal patterns in the feature sequence of a sin-
gle variable. Generally, the shorter the time interval, the smaller the difference
between the adjacent values. While in the variable dimension, most of the time
the features are heterogeneous. Therefore, we design two kinds of attention struc-
ture to better model inter- and intra-variable temporal patterns in multivariate
time series respectively.

The attention mechanism [18] is a general technique which maps a query
and a set of key-value pairs to compute a weighted average of the values. The
calculation process can be summarized as the following three steps:

1. Use a scoring function F to evaluate relevance between query q and keys K.

relevance = F (q,Ki), i = 1, 2, · · · ,m (4)

2. Obtain the attention value by normalizing the scoring function by softmax
so that each element of the vector represents a probability of considering Ki

to be relevant to the query.

αi = softmax(F (q,Ki)), i = 1, 2, · · · ,m (5)

3. Perform a weighted summation on all the values in V to obtain the context
vector. Just as its name implies, the context vector incorporates historical
information that is helpful in accomplishing subsequent tasks.

context =
m∑

i=1

αiVi (6)
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Feature-Wise Attention. Although processing multivariate input brings more
challenges compared with univariate time series, the prediction performance of
one single variable can also benefit from its dependencies with other variables.
For example, changes of environmental parameters of the former stages in an
assembly line are likely to affect the measurements in the following process.
Therefore, it is vital for a single variable to distinguish which features have
causal effect on or synchronous relationship with itself. Otherwise, mixing and
predicting features together may only introduce unnecessary noise to the result.

The row vectors of the hidden state matrix Ht has embedded input variables
into feature vectors. Then, we perform self-attention among them to attend to
hidden state features which are the most relevant to and helpful in forecast-
ing each variable. We use the row vectors of Ht as query, key and value of
each feature. They are divided into s parallel parts (or called heads) and each
part performs self-attention individually to learn attention weights from different
positions. We denote a feature vector in one part as zi ∈ R

1×T/s, i = 1, 2, · · · , f
and Fig. 2 illustrates the calculation process.

Fig. 2. Calculation process of feature-wise attention.

Feature-wise attention uses scaled dot product to evaluate the relevance
between each feature and another. In most cases, the number of features is
smaller than the length of representation vector. Scaling dot product by the
square root of dimension of keys can prevent it from data overflow in magni-
tude. The left part of Fig. 2 takes z1 as an example to show how to calculate
z′
1. The computation results are normalized by a softmax function to obtain

attention weights.

αj
i = softmax(

ziz
T
j√

T/s
) (7)

Then, weights and values are multiplied and added together to form an
updated feature vector z′

i, which encodes underlying data associations.

z′
i =

f∑

j=1

αj
i zj (8)

After that, we concatenate all z′
i as the representation of one head. The multi-

head output H ′
t ∈ R

f×T is the concatenation of all heads and multiplied by a
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transform matrix Wo ∈ R
T×T .

headi = concat(z′
1, z

′
2, · · · , z′

f ) (9)

H ′
t = concat(head1, head2, · · · , heads)Wo (10)

Feature-wise attention structure enables each feature to pay attention to
those who are most correlated with itself instead of equally taking other features
into consideration.

Time-Wise Attention. After weighting the importance of features, time-wise
attention layer pays attention on the updated hidden states to select history
information that are most related to the current timestep, so that it can extract
more useful information from previous timesteps when the prediction horizon is
longer.

Dot product is the most direct way to establish mapping between query and
keys. Its advantage is that no parameter is required so the calculation complexity
is greatly reduced and it demands that the number of dimensions of queries and
keys should be the same. We use dot product as the scoring function measuring
relevance between one hidden state and ht. Then, the output of the scoring
function goes through a softmax layer to acquire the time-wise attention. After
that, values at corresponding locations of columns of Ht and time-wise attention
are multiplied and added together. In other words, the column vectors of Ht are
weighted by attention to obtain the time-wise context vector vt ∈ R

f×1.

vt =
∑

i exp(hT
t hi)hi∑

j exp(hT
t hj)

(11)

At last, we integrate the last hidden state vector ht and time-wise context
vector vt through a set of weight matrices to yield the prediction from the non-
linear network, which is denoted as x̂N

T+Δ ∈ R
d×1, where Wh and Wt ∈ R

d×f .

x̂N
T+Δ = Whht + Wtvt (12)

4.3 Autoregressive Module

The manufacturing environment constantly changes in a non-periodic manner
when some controllable parameters are altered by engineers. The scale of target
variables is closely connected with externalities. As is explored in the literature,
nonlinear neural network components such as RNNs and CNNs are not sensitive
enough to recognize the scale fluctuations of inputs [11], which significantly low-
ers the forecast accuracy. An effective approach to address this deficiency is to
add a linear module which primarily focuses on capturing the local scale change.
We bring the AR component in LSTNet to our model. The value at timestep t is
a linear combination of the values in the immediately preceding window with size
δ, which is usually smaller than the length of all timesteps. The prediction from
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linear AR module denoted as x̂L
T+Δ is formulated as follows, where War ∈ R

δ×1,
bar ∈ R

δ×1, and � denotes the element-wise multiplication.

x̂L
T+Δ =

δ∑

i=1

War � xT−i + bar (13)

The final prediction result is the combination of nonlinear and linear part.

x̂T+Δ = x̂N
T+Δ + x̂L

T+Δ (14)

5 Experiment

In this section, we conduct extensive experiments with five methods (including
DANet) on three real-world industrial datasets for model evaluation.

5.1 Experimental Settings

Datasets

– MP [10] (Multi-stage continuous flow manufacturing process) was taken from
an actual production line which contains high-speed, continuous manufactur-
ing process with parallel and series stages. The input data includes pressure
of different zones in the manufacturing environment, parameters of raw mate-
rial feeders, amperage and revolutions per minute (RPM) of motors, etc. The
forecast goal is to predict certain measurements of the line’s output after
going through a processing stage. We preprocessed the original dataset by
filling in missing values and eliminating some unaltered series such as the
material properties.

– ETT [21] (Electricity transformer temperature) is donated by the researchers
of Informer for long sequence time series problem. We use the dataset ETTh1
and ETTm1, which contains the data of one electricity transformer at
one station. Measurement at each timestep consists of one target variable
oil temperature, which is a crucial indicator in the electric power long-term
deployment, and 6 power load features including quantity of useful load and
useless load.

Table 1 lists the detailed statistics of all datasets, where Ne is the number of
external variables and Nt is the number of target variables.

Table 1. Statistics of datasets

Dataset Length Ne Nt Sample rate

MP 4377 9 2 1 s

ETTh1 17420 6 1 1 h

ETTm1 69680 6 1 1 min
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All datasets are split in chronological order and the ratio of training, valida-
tion and test set is 60%, 20% and 20%, respectively. The training set is zero-mean
normalized. Then, the validation and test set are normalized by the mean and
standard deviation of training set.

Baselines. We compare the performance of our model with VAR [7], LSTM [6],
LSTNet [11] and TPA-LSTM [17], which are the state-of-the-art models solv-
ing multivariate time series forecasting problems. Details of baselines have been
discussed in Sect. 2.

Evaluation Metrics. We use three conventional evaluation metrics. Denote xt

as the truth value at timestep t, x̂t as the predicted value and d as the variable
dimension, these metrics can be formulated as:

– Mean absolute error (MAE). It measures the mean of absolute value of dif-
ference between xt and x̂t, which is the lower the better.

MAE =
1
d

d∑

j=1

|xj
t − x̂j

t | (15)

– Mean square error (MSE). It measures the mean of square of difference
between xt and x̂t, which is the lower the better.

MSE =
1
d

d∑

j=1

||xj
t − x̂j

t ||
2

(16)

– Pearson correlation coefficient (CORR). It reflects the strength and direction
of linear correlation between two variables. The closer the CORR is to 1, the
stronger the positive correlation.

CORR =

∑d
j=1(x

j
t − xt)(x̂

j
t − x̂t)√∑d

j=1(x
j
t − xt)2

√∑d
j=1(x̂

j
t − x̂t)2

(17)

Experimental Details

Objective Function: Mean absolute error (MAE) is one of the most commonly
used objective function in time series forecast and we choose it as the default
loss function of our model. Hyper-parameter tuning: We conduct grid search
over all tunable hyperparameters on the validation set for each method and
dataset. In light of different sample rates, the window size T of dataset MP
and ETTm1 is chosen from {60, 120, 180, 240, 300} and that of ETTh1 is chosen
from {24, 48, 96, 168, 336}, respectively. All baseline models incorporate an RNN
module. The number of hidden state features ranges in {23, 24, · · · , 27}. Search
of other hyperparameters of LSTNet and TPA-LSTM follows the way in the
original papers. The default batch size is 128. We use stochastic gradient descent
(SGD) algorithm to optimize the parameters of our model, and the learning rate
is set to 1e-05. Platform: All models were trained and tested on a Nvidia K80
24 GB GPU.
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5.2 Results and Analysis

Tables 2 and 3 summarize the multivariate evaluation results of five methods on
three datasets. MAE, MSE and CORR are the metric values of all variables,
while *MAE, *MSE and *CORR are the metric values of only target variables.
We gradually prolong the prediction horizon to judge the change of performance
with the growth of prediction capacity, which ranges in {12, 24, 48, 96}. The best
results of each metric are highlighted in boldface.

The training process of deep neural networks is supervised learning. Assume
that the horizon is Δ, the training set is transformed into batches where each
batch contains multiple (input, output) pairs, namely input Xt of size T and
xT+Δ as label.

From the result tables, when the horizon is relatively small, the accuracy of
LSTNet sometimes achieves the best. However, as the horizon gets longer and
longer, DANet gradually surpasses the other methods. In addition, as horizon
prolongs, the performance of all methods decreases as the condition of under-
fitting and time delay gets worse, which accords with our common sense. The
network can no longer generate accurate predictions of peaks and valleys and
only produces smooth values shrinking in the upper and lower bounds of true
values. Generally, our proposed model outperforms other approaches most of

Table 2. Prediction results of five methods on all variables in three datasets. The best
performance of one experiment instance is highlighted in boldface.

Horizon Method MP ETTh1 ETTm1

MAE MSE CORR MAE MSE CORR MAE MSE CORR

12 AR 0.6860 0.8756 0.3016 0.4014 0.3929 0.7732 0.5235 0.6688 0.6853

LSTM 0.5864 0.6292 0.4370 0.6417 0.8247 0.5781 0.4617 0.4987 0.7331

LSTNet 0.5400 0.5640 0.4874 0.4065 0.3809 0.7725 0.4447 0.4518 0.7637

TPA 0.6832 0.8627 0.3103 0.3917 0.3925 0.7733 0.5221 0.6604 0.6864

DANet 0.5747 0.6114 0.4421 0.3911 0.3912 0.7790 0.4574 0.5590 0.7309

24 AR 0.7154 0.9656 0.2638 0.3872 0.3852 0.7760 0.7565 1.2484 0.3591

LSTM 0.5657 0.6093 0.4504 0.4883 0.5053 0.6836 0.5653 0.7815 0.5864

LSTNet 0.5610 0.6175 0.4533 0.4011 0.3841 0.7753 0.5461 0.5796 0.6757

TPA 0.7153 0.9705 0.2630 0.3875 0.3853 0.7759 0.7564 1.2495 0.3609

DANet 0.5558 0.5807 0.4910 0.3926 0.3862 0.7735 0.5582 0.6855 0.6272

48 AR 0.7221 0.8671 0.1515 0.4497 0.5086 0.7034 0.7938 1.3038 0.2743

LSTM 0.6991 0.8581 0.3262 0.5214 0.5720 0.6812 0.5774 0.7191 0.5807

LSTNet 0.6808 0.7558 0.3232 0.4637 0.5088 0.7000 0.5566 0.6701 0.6190

TPA 0.7209 0.8644 0.1517 0.4528 0.5124 0.7022 0.7914 1.2855 0.2768

DANet 0.6708 0.6903 0.3454 0.4496 0.5084 0.7032 0.5630 0.6900 0.6247

96 AR 0.7599 0.9447 0.1180 0.5085 0.5815 0.6287 0.3987 0.4050 0.7700

LSTM 0.6546 0.8154 0.2963 0.5772 0.6732 0.6004 0.4176 0.4141 0.7646

LSTNet 0.6488 0.7718 0.3623 0.5246 0.5804 0.6268 0.4189 0.4155 0.7617

TPA 0.7596 0.9434 0.1331 0.4960 0.5694 0.6366 0.3883 0.4026 0.7705

DANet 0.6444 0.7236 0.3681 0.4958 0.5659 0.6368 0.3886 0.4018 0.7709
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Table 3. Prediction results of five methods on target variables in three datasets. The
best performance of one experiment instance is highlighted in boldface.

Horizon Method MP ETTh1 ETTm1

*MAE *MSE *CORR *MAE *MSE *CORR *MAE *MSE *CORR

12 AR 0.2674 0.1598 0.2109 0.1857 0.0627 0.8100 0.1200 0.0244 0.9431

LSTM 0.2630 0.1498 0.1959 0.3532 0.1813 0.7728 0.1065 0.0224 0.9423

LSTNet 0.2527 0.1386 0.2460 0.1878 0.0666 0.8190 0.1070 0.0185 0.9457

TPA 0.2653 0.1557 0.2239 0.1852 0.0624 0.8100 0.1323 0.0282 0.9427

DANet 0.2489 0.1326 0.2543 0.1801 0.0591 0.8253 0.1145 0.0316 0.9363

24 AR 0.2847 0.1659 0.1661 0.1992 0.0696 0.7788 0.2591 0.0935 0.8865

LSTM 0.2611 0.1465 0.1540 0.3177 0.1635 0.7215 0.1710 0.0498 0.8772

LSTNet 0.2639 0.1627 0.1979 0.2178 0.0861 0.7768 0.1673 0.0503 0.8881

TPA 0.2830 0.1655 0.1665 0.1993 0.0698 0.7789 0.2616 0.0951 0.8861

DANet 0.2541 0.1358 0.2005 0.1997 0.0649 0.7790 0.1579 0.0463 0.8954

48 AR 0.3541 0.2237 0.0623 0.2674 0.1182 0.6237 0.3319 0.1548 0.8156

LSTM 0.2807 0.1662 0.0705 0.4209 0.2629 0.5713 0.1909 0.0618 0.8036

LSTNet 0.2861 0.1564 0.1129 0.2726 0.1258 0.6255 0.2391 0.0964 0.7875

TPA 0.3505 0.2191 0.0695 0.2672 0.1179 0.6241 0.3302 0.1572 0.8148

DANet 0.2704 0.1387 0.1139 0.2629 0.1142 0.6222 0.1898 0.0617 0.8337

96 AR 0.3617 0.2298 0.0463 0.3163 0.1656 0.4690 0.2420 0.1014 0.7848

LSTM 0.3363 0.1909 0.1375 0.4171 0.2677 0.4233 0.2051 0.0732 0.7644

LSTNet 0.3646 0.2015 0.1369 0.3736 0.2190 0.4176 0.2272 0.0915 0.7814

TPA 0.3591 0.2276 0.0508 0.3150 0.1648 0.4689 0.1999 0.0736 0.7889

DANet 0.3288 0.1406 0.1484 0.3091 0.1585 0.4818 0.1976 0.0715 0.7892

the times, especially when it comes to target variables. It shows that DANet is
good at discovering relationships among multiple heterogeneous input series and
previous timesteps, especially at capturing useful patterns in forecasting target
variables.

5.3 Ablation Study

In this section, we carry out an ablation study to analyze the effectiveness of
modules in our network. Table 4 compares the prediction results of DANet with
its sub-models which have omitted some modules. Feature-wise and Time-
wise are the models which only adopts a single kind of attention. woAR denotes
that the network does not include the autoregression module. The horizon is
12 and hyperparameters are the same as when the model achieves the best
performance.

Influence of Dual-Dimensional Attention. Results show that merely
attends to one dimension cannot fully leverage the underlying correlations
between different features and timesteps. Combining these two methods together
boosts the forecast accuracy of the network and make the framework more robust
when encountering different circumstances.
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Table 4. Ablation study

Method
MP ETTh1 ETTm1

MAE MSE CORR MAE MSE CORR MAE MSE CORR

Feature-wise 0.5816 0.6195 0.4304 0.3924 0.3873 0.7765 0.4696 0.5249 0.7358

Time-wise 0.5870 0.6206 0.4397 0.3958 0.3898 0.7762 0.4692 0.4976 0.7436

woAR 0.5877 0.6224 0.4372 0.5782 0.6947 0.5778 0.4698 0.4989 0.7402

DANet 0.5747 0.6114 0.4421 0.3911 0.3912 0.7790 0.4574 0.5590 0.7309

Method
MP ETTh1 ETTm1

*MAE *MSE *CORR *MAE *MSE *CORR *MAE *MSE *CORR

Feature-wise 0.2664 0.1460 0.1563 0.1832 0.0692 0.8205 0.1224 0.0374 0.9323

Time-wise 0.2719 0.1401 0.1862 0.2356 0.1092 0.7884 0.1205 0.0335 0.9281

woAR 0.2617 0.1461 0.1833 0.3285 0.1855 0.7076 0.2155 0.1006 0.8386

DANet 0.2489 0.1326 0.2543 0.1801 0.0591 0.8253 0.1145 0.0316 0.9363

Influence of Autoregressive Module. Removing the AR module from the
DANet causes the most significant drops in performance on all of the datasets,
showing that AR module plays a crucial role in ensuring high accuracy. This is
because the time series in the dataset are non-stationary. The simple linear AR
layer is sensitive and flexible enough to quickly react to the scale change in data.
The linear part mainly captures the general scale and trend of data, while the
deep learning neural network aims to discover nonlinear fluctuations. They take
on different roles and work together to produce an accurate result.

Figure 3 compares the prediction accuracy of the target variable on the test
set of ETTh1. The blue line is the true value and red line is the predicted
sequence. Among all methods, DANet shows the smallest gap and time delay
between real observations and predictions.

Fig. 3. The prediction value of target variable in ETTh1 from four models.
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In summary, the ablation study adds interpretability to our work. It shows
that all modules in our framework have a place and they altogether contribute
to a robust and accurate time series forecasting model.

6 Conclusion

In this paper, we propose an end-to-end deep learning framework named dual-
dimensional attention-based network (DANet) to solve the multivariate time
series forecasting problem in industry. It mainly leverages the strengths of RNN
structures to discover the underlying temporal patterns of the multi-dimensional
input. We apply a novel dual-dimensional attention mechanism to cope with the
intrinsic characteristics of industrial big data, where feature-wise self-attention
enables the network to adaptively learn the correlations between features, and
time-wise attention captures complex long and short-term temporal dependen-
cies. We conduct extensive experiments on several real-world manufacturing
datasets. Our model achieves smaller error, especially on target variables com-
pared with other baseline methods, and shows a more robust performance when
dealing with different datasets.
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