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Abstract. In many sectors, there is a large amount of data collected and stored,
which is not analyzed. The health area is a good example. This situation is not
desirable, as the data can provide historical information or trends that may help
to improve organizations performance in the future. Process mining allows the
extractionof knowledge fromdata generated and stored in the information systems.

This work aims to contribute to the aforementioned knowledge extraction,
comparing different algorithms in process mining techniques, using health care
processes and data. The results showed that Inductive Miner and Heuristic Miner
are the algorithms with better results. Considering the execution times, Petri Net
is the type of model that takes longer, but it is the one that allows a better analysis.

Keywords: Big data in healthcare · PM4Py · Process mining · Process
discovery · Conformance checking

1 Introduction

Health processes are complex and involve steps performed by people from various
disciplines and sub-areas. This complexity makes this area interesting, but difficult to
analyze and understand. These processes make use of information systems that record
large volumes of data, but which are difficult to exploit.

Process mining intends to gain knowledge about a particular running process and
allows to have an accuratemodel of its behavior. The purpose is to improve the implemen-
tation and evaluation of health care processes. Moreover, the model can help configuring
any additional requirements not included in the system [1].

To evaluate the feasibility of some process mining algorithms, using health care
processes, each one will be tested to understand its limitations and advantages. For this
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purpose, the ProcessMining for Python framework (PM4Py) [2] will be used, as it allows
an algorithmic customization that other tools do not allow. Furthermore, it has a good
variety of other features of interest.

Usually, the event logs used for analysis provide timestamps for the steps/activities
that compose the process, as well as their description and other information. The dataset
used was extracted from the MIMIC-III database [3].

Subsequently, specific scenarios with certain characteristics are created in order to
test different situations that may expose limitations of the algorithms. In addition, the
variants are analyzed [4]: select the variants with more occurrences and exclude specific
cases that could generate noise in the process analysis. It is also interesting to filter the
dataset, taking into account features that make sense in the set of logs. Finally, we intend
to test techniques and tools to verify the conformance of the generated model.

It is also possible to calculate different statistics on the event logs of the dataset, as
well as to create graphs that allow to understand various aspects of the dataset.

This document is organized into 6 sections. In Sect. 2, the main process discovery
algorithms are presented. Section 3 analyzes PM4Py, justifying the choice of this tool.
Section 4 explains the experimental scenarios. Section 5 shows the results. Finally, Sect. 6
presents conclusions about this work and future work.

2 Process Mining Algorithms

In the last decade, process mining has emerged as a new field of research that focuses
on process analysis, using event data. Classic data mining techniques do not focus on
business process models [5]. Thus, process mining focuses on processes, step by step,
because the availability of event data and new techniques are increasing, allowing the
discovery and the conformance verification of the processes [6].

Processmodels are used to analyze process execution throughBusiness ProcessMan-
agement (BPM) systems. These process management tools are widely used to support
operational process administration. However, they do not use event data [7].

The activities performed by people, machines, and software leave traces in the so
called event logs [5]. Process mining techniques use these logs to discover, analyze and
improve business processes [8].

Process mining is used to find patterns and understand the causes of certain process
behaviors. On the other hand, process mining helps to understand how processes are
being performed. For this purpose, specialized mining algorithms are applied to identify
patterns from event data recorded in the information management systems [9].

There are several algorithms for process mining. The internal local relations between
the activity data are modeled by the Heuristic Miner algorithm. This is the most widely
used algorithm,mainly due to its ability to dealwith noisy1 and incomplete data, common
in the health area. Global or external relationships between activities are modeled by
Genetic Miner algorithms [10] and Fuzzy Miner [11].

Alfa Miner algorithm examines the event log for specific patterns. This algorithm
works, simultaneously, a set of sequences of events, following a certain activities order

1 Noise is the result of data quality problems, such as registration errors, which infrequently
manifest themselves in the behavior of the process [13].
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in the event log, and shows the result in a Petri Net2 project diagram. For example, if
activity X is followed by Y, but Y is never followed by X, then it is assumed that there
is a causal dependency between X and Y. However, Alpha Miner is unable to highlight
the bottlenecks of the process [12].

Most business process mining tools use Directly-Follows Graph (DFGs) as a first
approach of exploring event data. To deal with complexity, DFGs are simplified by
removing nodes and edges based on frequency restrictions. This simplicity can make
these DFGs misleading, as they can be misinterpreted, leading to different conclusions.
In addition, bottleneck information can be misleading, especially after simplifying the
model. This can lead to all kinds of interpretation problems, due to “invisible gaps” in
the model [15].

Heuristic algorithms use the order or sequence of activities and the events frequency.
They find the frequent and infrequent paths in the process. In this sense, they are more
robust relatively to the process frequencies [16]. HeuristicMiner is very similar to Alpha
algorithm, because it deals with similar problems. Furthermore, it catches more real
problems. The Heuristic Miner uses logical XOR and AND connectors of dependency
relationships. The result of this miner is a heuristic network that helps to visualize the
process and predict the flow [12].

Inductive Miner is used widely in different areas, with very promising results. This
algorithm has an improvement over the Alpha and Heuristics Miners, as it explore easily
an event log. It ensures solidity, as it is able to deal with infrequent behaviors and large
event logs. The basic concept of Inductive Miner is to detect a pattern in the logs and
then search for that pattern until a base case is found [17].

Table 1 shows the algorithms comparison, according to their characteristics and
limitations [18].

3 Process Mining for Python (PM4Py)

Process Mining for Python framework (PM4Py) [2] is a process mining software, easily
extensible. It allows conducting large scale experiments easily, and also algorithmic
customization. In addition, it is possible to integrate large-scale applications, through a
new process mining library. Other libraries can be integrated, such as pandas, numpy,
scipy and scikit-learn [20].

The main advantages of the PM4Py library are:

• Allows algorithmic development and customization more easily, when compared to
existing tools like ProM [21], RapidProM [21], Disco [22] or Celonis [23];

• Enables easy integration of process mining algorithms with algorithms from other
areas of data science, implemented in several state-of-the-art Python packages.

• PM4Py provides support for different types of event data structures, namely event
logs, where each line is a list of events. Events are structured as key-value maps;

2 A Petri net has two types of elements, positions and transitions. A position can contain one or
more tokens. A transition is enabled if all inputs (positions connected to itself) contain, at least,
one token [14].
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Table 1. Comparison of Process Mining algorithms.

Alpha Miner Directly-Follows
Graph Heuristic Miner Inductive Miner

Description

First mining ap-
proach that allows 
discovering a Work-
flow network from 
event logs.

Used as a first approach to 
exploit event data but can 
be misleading.

Generates a process 
model based on 
different frequency 
metrics.

It is an improve-
ment over Alpha 
Miner and Heuristic 
Miner.

Output Workflow network. Directly-Follows Graph 
(DFGa).

Heuristic/casual 
network.

It can generate 
several types of 
models.

Challenges

Noise; Data incom-
plete; Loop involv-
ing one or two 
stages; Choose not 
free.

Activities that have a 
flexible order lead to Spa-
ghettib DFGs with loops

Split and join rules 
are only considered 
locally, which re-
sults in networks 
that are not solid.

Generates a solid 
model from a recur-
sive pattern search.

Result Extensions can face 
some challenges.

Performance information
can be misleading; Inter-
pretation problems due to 
gaps in the model.

Can mine long 
outbuildings suc-
cessfully; Some-
times it generates 
many dependencies.

Generates a model 
that guarantees 
solidity.

Event logs
Does not deal with 
incomplete data or 
noise.

Does not handle long 
processes, due to its fre-
quency limit.

Possibly, it can
handle with incom-
plete data.

Handles with infre-
quent behavior and 
large event logs.

a Directly Follows are graphs where nodes represent events/activities in the log. Directed links 
between nodes exist if there is at least one trace in the log where the originating 
event/activity is followed by the target event/activity. On the top of these targeted links, 
metrics, such as frequency (counting the number of times the source event/activity is fol-
lowed by the target event/activity) and performance (the average time between the two 
events/activities ), are represented [15]. 

b For processes that are not well structured and have many different behaviors, existing process 
mining techniques generate highly complex models that are often difficult to understand; 
these models are called spaghetti models, or spaghetti [19]. 

• Provides conversion features to transform event data objects from one format to
another. Also, PM4Py supports the use of Pandas data frames, which are efficient in
case of using larger event data. Other objects currently supported by PM4Py include
heuristic networks, Petri networks, process trees3 and transition systems4.

PM4Py provides several main process mining techniques, including:

• Process discovery, based on Alpha Miner algorithms [24], Directly-Follows Graph
[15], Heuristic Miner [16] and Inductive Miner [17];

• Conformance verification, through token-based alignment and reproduction [25];
• Measurement of suitability, precision, generalization, and simplicity of process
models [26];

3 Process tree is a tree-structured process model, where leaf nodes represent activities, and non-
leaf nodes represent control flow operators [28].

4 Transitional system is used to describe the potential behavior of discrete systems. It consists of
states and transitions between states [29].
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• Filtering based on time interval, case performance, input and output events, variants,
attributes, and paths;

• Case management: statistics on variants and cases;
• Graphs: duration of the case, events by time, distribution of numeric attribute values;
• Social Network Analysis [27]: work handover, joint work, subcontracting and
networks of related activities.

PM4Py also provides Python visualization libraries, such as:

• GraphViz: representation of direct sequence graphs, Petri Nets, transition systems,
process trees;

• NetworkX: static representation of social networks;
• Pyvis: dynamic web-based social network representation.

4 Data and Experimental Scenario

For the experimental scenarios, data was selected and processed, from the MIMIC-III
database. Then, data was converted into the necessary format for the process discovery
algorithms of PM4Py application. Finally, for a better analysis of the algorithms, certain
test scenarios were defined in order to expose them to different challenges.

4.1 Data Processing

The table schema of the MIMIC-III database (demo version) was analyzed to find the
desired information for the test dataset. A subset of tables was selected satisfying the
proposed requirements, Fig. 1.

Fig. 1. Scheme of test data.

Analyzing the scheme, the main table is TRANSFERS. It contains the physical
locations of patients during hospitalization. The main attributes of this table are: the care
unit (CURR_CAREUNIT), if it is a specialty; the entry date and time (INTIME) and
the exit date and time (OUTTIME); the type of event (EVENTTYPE) which can be one
of three: admit, for procedures performed in the patient’s admission/evaluation phase;
transef for the patient’s transfer/stay phases and discharge for the patient’s discharge
phases.
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Note that, when there is no specialty, the acronym GCUwas inserted, translated into
General Care Unit. The description of the remaining acronyms of the specialized care
units are presented in the Table 2.

Table 2. Description of care units (Adapted from https://mimic.physionet.org/mimictables/transf
ers/).

Care unit Description
CCU Coronary care unit

CSRU Cardiac surgery recovery unit
MICU Medical intensive care unit
NICU Neonatal intensive care unit

NWARD Neonatal ward
SICU Surgical intensive care unit

TSICU Trauma/surgical intensive care unit

The SUBJECT_ID attribute connects to the PATIENTS table, which has information
about the patients, namely the attributes gender (GENDER) and date of birth (DOB).

Subsequently, HADM_ID attribute is used to access the ADMISSIONS table that
contains information about the patient’s admission. Using this table, it is possible to
collect information about the type/place of admission (ADMISSION_LOCATION) and
date of discharge (DISCHTIME) or death (DEATHTIME). It also allows accessing to
the PROCEDUREEVENTS_MV table to obtain data related to the events performed in
each admission.

The PROCEDUREEVENTS_MV table includes the name of the process (ORDER-
CATEGORYNAME) and the date and time of start (STARTTIME) and end (ENDTIME)
of the process. Notice that, at this stage, the processes are synchronized with the physical
locations, by the respective start/entry and end/exit dates.

4.2 Preparation of the Dataset

From the excel data importation, the respective treatment was made to obtain the dataset
format required for the application of the PM4Py process discovery algorithms.

The required format consists in 3 types of information:

• Case ID - a unique identifier for each process;
• Event - a step in the process, any activity that is part of the process;
• Timestamp - date and time for a given event.

The HADM_ID was used as a case identifier, because it is unique. For each stage of
the process, the type of event (admission, transfer, or discharge), the care unit (an iden-
tifying acronym) and the name of the process performed were added. For the timestamp
of the stage, the start date of the process was used or, in cases where a process was not
identified, the date of entry into the care unit.

Moreover, other information was used, such as the type of admission, the type of exit
(death or discharge), the patient’s date of birth, the gender, and the day of the week on

https://mimic.physionet.org/mimictables/transfers/
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which the event has occurred. In the end, possible duplications were removed from the
synchronization of processes with physical locations. Notice that, to use the algorithms
in this dataset, the dataset was converted into log format, ordered by timestamp, getting
a total of 1163 logs.

4.3 Test Scenarios for the Algorithms

Through the algorithm’s analysis and comparison, it was verified that loops between
steps and duplications may arise. Thus, admissions were selected to allow testing all
these scenarios in isolation.

In an initial scenario, simple admissions were chosen, where none of the cases
described above were verified. This scenario, Fig. 2, has, as main objective, a first
interaction to test algorithms and their models.

Fig. 2. Simple scenario.

Next, a scenario with duplicate steps, Fig. 3, was selected: there is a step that occurs
repeatedly.

Fig. 3. Scenario with duplicate steps.

In the last scenario, the algorithms were exposed to loops between steps. Figure 4
shows a loop occurrence between 2 steps.

Fig. 4. Scenario with loops between stages.

5 Results

In this section, the results of the tests are presented. Themodels generated for each tested
scenario, execution times, analysis of the log set variants, log set, log set statistics and
conformance verification are presented and analyzed.

5.1 Models Analysis for Each Test Scenario

Table 3 presents the models results from the test scenarios. Alpha Miner is unable
to create a valid Petri Net model, because it isolates duplicate steps. This result was
predictable because this algorithm, admittedly, does not support duplicate steps, neither
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Table 3. Models for each test scenario.

Algorithm Scenario Result Models

Alpha
Miner

Simple Valid

With duplicate steps Invalid

With loops between 2 steps Invalid

Directly- 
Follows
Graph

Simple Valid

With duplicate steps Valid

With loops between 2 steps Valid

For all logs Invalid [Spaghetti models]

Heuristic
Miner

Simple Valid

With duplicate steps Valid

With loops between 2 steps Valid

For all logs Valid [Spaghetti models]

Inductive
Miner

Simple Valid

With duplicate steps Valid

With loops between 2 steps Valid

For all logs Valid [Spaghetti models]
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loops of length one or two [18]. For loops between 2 steps, it generates an invalid Petri
Net model, isolating one of the loop steps.

For all logs, Directly-Follows Graph generated a log too large, a spaghetti model.
Despite generating this DFG model, it is not a valid one, as the admissions are broken.
This result can be justified due the fact that the DFGs are simplified, removing nodes
and connections based on frequency limits [15]. However, for other scenarios, the DFG
model performance can be considered good.

Heuristic Miner allows the presentation of the frequency of the stages and connec-
tions, but it does not mark the most frequent stages and connections [16], which is a
disadvantage relatively to Petri Net. This algorithm is compatible with duplicate steps
and loop challenges. When the algorithm was converted to Petri Net, the model showed
hidden transactions. For a larger number of logs the resultingmodel is difficult to analyze,
as it has created spaghetti models.

Considering all logs, Inductive Miner seems to generate a smaller model, with fewer
steps and connections. An explanation of this result may be the improvement that this
algorithm has in the search for splits/patterns in the logs. Moreover, it uses many hidden
transactions to overcome loops in parts of the model [26].

5.2 Execution Times

Table 4 shows the average of the execution times, in seconds, of the Heuristic Miner
and Inductive Miner algorithms for the entire set of logs. These algorithms were able to
present a valid model. Notice that each algorithm and model were tested 5 times, under
the same conditions, and the average time was calculated after removing the maximum
and minimum times. The execution times correspond to the execution of the algorithms,
because all logs were already loaded into memory.

Table 4. Execution times for the entire set of logs.

Heuristic
Miner

Heuristics Net Petri Net Inductive
Miner

Process Tree Petri Net
4.655 83,254 14,967 34,700

5.3 Variant Analysis

The analysis of variants is extremely important, as it considers the number of occurrences
of the variants. This analysis allows to remove the least relevant variants. A variant is a
set of cases that share the same perspective of control flow, therefore, a set of cases that
share the same events/activities, in the same order [4].

Inductive Miner algorithm was used in this analysis. The results are in Table 5 and
contain the description of the variant, the number of occurrences and the respective
percentage. Table 6 presents the models generated for different frequencies of variants.
The remaining variants have a lower number of occurrences and were discharged. If they
were considered, all logs were included, which could turn the analysis impossible and
inefficient.
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Table 5. Variants.

Variant Number of 
occurrences Percentage

0 admit-MICU, transfer-GCU, discharge 10 7.75%
1 admit-MICU, discharge 5 3.88%
2 admit-TSICU, discharge 4 3.10%
3 admit-MICU, transfer-GCU, transfer-GCU, discharge 3 2.33%
4 admit-MICU-Peripheral Lines, transfer-GCU, discharge 2 1.55%

5 admit-GCU, transfer-SICU, transfer-GCU, transfer-GCU, transfer-
GCU, discharge 2 1.55%

6 admit-GCU, transfer-GCU, transfer-SICU, transfer-GCU, discharge 2 1.55%

7 admit-GCU, transfer-GCU, transfer-GCU, transfer-MICU, transfer-
GCU, discharge 2 1.55%

8 admit-GCU, transfer-GCU, transfer-GCU, transfer-MICU, discharge 2 1.55%
9 admit-CCU, transfer-GCU, transfer-GCU, discharge 2 1.55%

10… 104 … 1 0.78%

Table 6. Models of different frequencies of variants.

Number of
occurrences

Number of
Variants Model

10 or more 1                            
5 or more 2 

4 or more 3 

3 or more 4 

2 or more 10

5.4 Filtering Event Data

In this section, filtrations were tested, Table 7, in the most frequent variants, in order to
analyze the process in a different detail. Inductive Miner algorithm was used with the
result in a Petri Net model.

5.5 Log Set Statistics

In PM4Py, it is possible to calculate different statistics on the event logs. At Table 8 two
statistics can be analyzed using the dataset: average case duration and case dispersion
ratio. This last is the average distance between the completion of two consecutive cases
in the log.

It is also possible to create graphics, Table 9, to understand various aspects of the
dataset used in the model, such as, for example, the distribution of a numeric attribute,
the distribution of the case duration, or the distribution of events over time.
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Table 7. Filtering models.

Filtering Value Model

Timeframe "2161-09-19 17:54:42";
"2163-11-21 19:01:00"

Start
activity

“admit-TSICU”; “admit-
MICU-Peripheral Lines”

Attributes
values

Type of admission:
“TRANSFER FROM 

SKILLED NUR”

Table 8. Statistics results to dataset.

Statistics
Average duration of cases Average distance

571283.0 93077625.03

Table 9. Event distribution graphs.

Distribution of the 
duration of the case

Distribution of events over time Distribution of events by day of 
the week

5.6 Conformance Verification for Test Logs

Conformance verification is a technique to compare the predicted/expected model of
the process with the real model of the process, that is, the set of real event logs for that
process. The objective is to verify if the logs are in accordance with the model and vice
versa [30]. In PM4Py, two fundamental techniques can be implemented: token-based
reproduction and alignments [26].

For this analysis, Inductive Miner algorithm was used with the result in a Petri Net
model. Variants with one occurrence were removed. Furthermore, when necessary, a set
of two logs was used, where one of them belongs to the predictive model and the other
does not.

Token-Based Repetition
The token-based replay corresponds to a Petri Net tracking model, starting from the
initial location, to find out which transitions are performed and in which locations there
are remaining or missing tokens for the tested log instance. A log conforms to the model
if, during its execution, transitions can be triggeredwithout the need to insert anymissing
tokens [31].
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For the model and the set of logs tested, the result is represented in Fig. 5. In the first
log, it is clear that the model was unable to satisfy it. The attribute trace_is_fit is False,
because, in the attribute transitions_with_problems, there was a transition in which the
path was unable to follow. Hence, 9 produced tokens were consumed and 1 token was
missing. Since it managed to satisfy a large part of the route, trace_fitness ends up being
close to 1, being approximately 0.889.

For the second log, trace_is_fit is True. Thus, the model satisfied all the transitions
of the log, having consumed all tokens produced, 10, and with no remaining or missing
tokens.

Fig. 5. Conformance results using token-based repetition.

Alignments
Alignment-based reproduction aims to find one of the best alignments between the log
and the model. For each log, the output of an alignment is a list of pairs where the first
element is a log event and the second element is a model transition. For each pair, the
following classification can be provided [32]:

• Synchronization movement: the classification of the event corresponds to the name
of the transition; in this case, the log and the model advance in the same way during
the replay;

• Move in the record: pairs where the second element is». This symbol in the second
element corresponds to a repetition movement in the log that is not similar in the
model. This type of movement is inappropriate and there is a deviation between the
log and the model;

• Move in the model: pairs where the first element is». This situation corresponds to a
repetition movement in the model that is not similar in the log. For movements in the
model, we can make the following distinction:

– Movements in the model involving hidden transitions: in this case, even if it is not
a synchronized movement, the movement is adequate;

– Movements in the model that do not involve hidden transitions: in this case, the
movement is inappropriate and means a deviation between the log and the model.

Each log conformance check is associated with a dictionary, containing, among
others, the following information:
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• Alignment: contains the alignment (synchronization movements, movements in the
register, movements in the model);

• Cost: contains the cost of the alignment according to the cost function provided, which
can be customized;

• Fitness: is equal to 1 if the log is perfectly adequate.

For the model and the set of logs tested, the first log had a fitness close to 1, that is,
there is an adaptation to the model close to 1 (but lower than 1), indicating that it was
not able to complete the entire process path from the model. On the other hand, in the
second log, the process was able to finalize the log path, Fig. 6.

Fig. 6. Results of alignments.

Overall Assessment of the Model by the Set of Test Logs
In PM4Py, it is possible to obtain different information on the comparison between the
behavior contained in the test logs and the behavior contained in the model, to verify if
and how they correspond. There are four different dimensions of conformance in Process
Mining: the measurement of the adequacy of the replay, the measurement of precision,
the measurement of generalization and the measurement of simplicity.

The calculation of the adequacy of the replay aims to calculate how much of the
behavior in the log is admitted by the process model. Two methods are proposed to
calculate the adequacy of replay: replay and alignments, both based on token, previously
used for isolated logs.

For precision or accuracy, the set of transitions in the process model is compared
with the set of activities logs that follow the model [26]. For that, unvisited branches are
counted. Unvisited branches are decisions that are possible in the model and not in the
event log. If not, the accuracy is perfect. This analysis can also be obtained from the two
methodsmentioned in the previous subsection, where token-based reproduction is faster,
but based on heuristics. Therefore, the result may not be accurate [31]. Alignments are
accurate, work on any type of network, but can be slow [32].

Generalization is the third dimension to analyze how the log and the process model
coincide. Basically, a model is general if the elements of the model are visited often
enough during a reproduction operation.

Finally, simplicity is the fourth dimension for analyzing a process model. In this
case, simplicity is defined considering only the Petri Net model. This metric considers
the number of incoming and outgoing connections that each transition has [33]. For all
these metrics, the resulting value varies between 0 and 1.

Figure 7 describes those evaluations, showing that, according to the calculation of the
adequacy of the replay, the adaptation of the set of logs tested to the model was high, but
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not complete. Precision, on the other hand, proved to be quite low, for both approaches.
The using of hidden transactions and the fact of one of the logs had not completed the
path can explain this result. The set of logs tested has many repeated steps, leading to a
low generalization. Besides, it was considered a few steps in the model. As the model
has hidden transactions and loops, simplicity is low, since there are situations of join or
split in steps.

Fig. 7. Results of the evaluation of the Log-Model.

6 Conclusion

From the results with the experience scenarios, Alpha Miner was not able to deal with
duplicated steps and loops between two steps. Directly-Follows Graph achieved that,
but in turn, for a larger set of logs, the generated model was invalid, not being able to
represent cases with more than 5 steps.

For the other algorithms, they were really able to deal with challenges and larger
volumes of logs. Inductive Miner was the algorithm that better handled with duplicated
steps and loops between 2 steps. It uses hidden steps more recurrently, mainly in loop
parts.

Considering the models tested, the Process Trees are the most difficult to analyze
due to their syntax. The Petri Net models proved to be more efficient and structured.
Based on the execution times, Petri Net is the type of model that takes longer to run for
a larger volume of logs but allows a better analysis.

For large amounts of data, the Petri Net model of Inductive Miner was the one that
had the longest execution time, but it was also the one that had the best result. Due to
the improvement that this algorithm has, the model, in general, is more organized and
easier to analyze [26].

Table 10 summarizes the results achieved where the comparison parameters are
presented in order of priority. If an algorithm has limitations to challenges, it is no longer
analyzed in the next parameters. Thus, themost suitable algorithm is the InductiveMiner.

Table 10. Summary of the conclusions.

Algorithm Limita ons on challenges Petri Net model simplicity Run me 
Alpha Miner -   

Directly-Follows Graph -   
Heuris c Miner + - - 
Induc ve Miner + + + 
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For future work it is intended to expand these experiences to different areas and
types of dataset. Another important aspect would be the execution of these same tests
in other existing tools, as they may have different implementations of algorithms and
functionalities.
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