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Abstract. In the context of Confirm, the Irish Research Centre on
Smart Manufacturing, field demonstrators are used to show new tech-
niques to industrial partners, various kinds of students, and the gen-
eral public alike. Considering the robotics demonstrator for the Digital
Thread concept used in Confirm, which is a small cyberphysical system
based on the UR3 cobot and a web controller for it, we apply Active
Automata Learning in order to obtain a Digital Twin for it. Behavior
mining done in this fashion is nowadays uncommon, but it has various
advantages over, e.g., models obtained with popular AI techniques in that
the AAL models are accurate deterministic behavioural explanations for
the system behaviour at the chosen level of abstraction, and they may
be further amenable to formal verification, e.g., by model checking, in
order to establish properties of interest.

This extension has the effect of showcasing the Digital Twin concept,
the AAL technique, the use of model checking, and the importance of
working with formal models that are amenable to these technologies. We
then reflect on the nature of the models and their uses and meaning,
from the point of view of the comments and questions we receive in the
demonstrations. We also consider the use of a feature-based approach to
modelling the systems and their interactions, which is a further aspect
for which the demonstrator could be used, with a special attention to
the aspects of this work, like AAL and the feature based and feature
interaction research, that connect directly with the collaboration with
and the research of Bengt Jonsson.
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1 Digital Twins and CPSs

Engineering adequate Digital Twins for Cyber-Physical Systems is a complex,
multidimensional challenge. While there are many definitions of what is a digital
twin, we choose to refer to the recent, quite realistic and encompassing definition
is by Ashtari et al. [50]: “The Digital Twin is a virtual representation of a physical
asset in a Cyber-Physical Production System (CPPS), capable of mirroring its
static and dynamic characteristics. It contains and maps various models of a
physical asset, of which some are executable, called simulation models. But not all
models are executable, therefore the Digital Twin is more than just a simulation
of a physical asset. Within this context, an asset can be an entity that already
exists in the real world or can be a representation of a future entity that will be
constructed.”

In 2019 the Gartner group [43] listed digital twins in the top 10 strategic
technology trends, next to blockchain, artificial intelligence, empowered edge,
privacy and ethics, quantum computing, immersive experiences, augmented ana-
lytics, and autonomous things. While some of these technologies are evergreens,
like quantum computing and the rather generic “autonomous things”, digital
twins are a new entry, and they start to play a role, at least conceptually, well
beyond the smart manufacturing domain from which they originate. For exam-
ple, one starts to hear about initiatives to co-create digital twins for (cancer)
patients [1]. The digital twins of the future will be patient-tailored models that:

– Can be used to evaluate potential preventative and/or therapeutic plans,
– Incorporate information across length and time scales,
– Continually integrate new data and knowledge,
– Help clinicians and patients understand the risks and benefits of a particular

treatment plan that best meets the patient’s objectives.

Digital Twins are used as well for and within supply chains [21], in particular
in connection with supply chain disruption for manufacturing, as the last year
has acutely manifested. Most of these Digital Twin variants concern simulation
models that arise distinctly from the physical thing, or more realistically, the
real-world system, they model.

Cast in new words, a digital twin is an instance-level model of an entity (phys-
ical or not), that, as IBM’s Chris O’Connor puts it, is “simple, but detailed”1. A
digital twin implies a strong notion of adequacy for purpose (otherwise it is
not a “twin”, lacking sufficient sameness), a context-dependency of the pur-
pose (there can be different digital twins for the same entity if this entity serves
different purposes, and these differences of purpose matter, inducing difference
of context), and it is required to have an ability to support and guide the
design, build and operation phases of the entity it represents. It is there-
fore descriptive (like a design model), behavioural (as it must encompass what
the physical twin can do), and predictive: during operations it must be able to

1 https://youtu.be/RaOejcczPas.

https://youtu.be/RaOejcczPas
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predict maintenance needs as well as out-of-order behaviours, and serve as a
baseline to figure out their prevention and repair.

Most frequently we see digital twins of some physical entities, like manu-
facturing machines and products that are more generally abstracted as Cyber-
Physical Systems (CPSs) models. Most recently they started to include also any
kind of Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices.

At design time, the digital twin models serve the main purpose of increasing
the expected dependability of their physical counterpart. At build time they
serve to assess and monitor the faithfulness of the production processes for the
physical twin. During operation, once the physical twin has been produced and
installed, they find use to monitor the dependability of the products, for each
individual piece with its individual characteristics, aging, and anomalies.

However, many engineers still associate the concept of digital twin to a quan-
titative, mathematical simulation based model, that allows (mostly mechanical)
engineers to ask what-if questions that inform design, usage, and evolution deci-
sions for a mechanical object or mechanical forming process [12]. Statistical mod-
els, Finite Element Analysis (FEA) as the simulation of a physical phenomenon
using a numerical mathematical technique referred to as the Finite Element
Method (FEM) are the most frequent types of models, and in some application
domains they are still nearly synonyms of Digital Twins. The awareness that
software plays a role in the “fullness” of modern devices, that the behavior of
the software may go beyond a pure controller of the physical part, that there is
inherently a heterogeneity, and thus an integration problem with discrete, finite
state machine-like models are still not obvious today.

The most modern intuitive connection is with models derived by Machine
Learning (ML) from data acquired from the physical twin, retrofitting the device
(a black box) with models that are based on statistics, and incomplete knowl-
edge and descriptions. They are therefore at best approximations of the real
behaviours, thus themselves a black box model, and a blurry one.

What we are trying to achieve, on the contrary, is the systematic, and possibly
automatic, production of behavioural models for real devices, that describe
precisely the observed behaviours and are congruent to such behaviours, thus can
be used as faithful predictors, like a sosia, and are able to explain the predicted
and the observed behaviour on an execution by execution basis, i.e., use case by
use case, test run by test run.

The challenge towards this scenario is, how can one systematically enable the
well-founded engineering of such digital twins for dependable CPSs?

We are going use the simple Confirm Digital Thread prototype consisting of
1) a commercial Universal Robots cobot and 2) a Web-based remote controller
application as a small example for a concrete CPS of industrial relevance. This
mini-system of systems case study includes a Cyber part (the web application),
a Physical part (the robot), and a communication system, which is here the
internet plus a TCP socket connection to the robot. Although simple, this system
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exhibits the essential traits of many CPSs, and it is simple and small enough (i.e.,
physically transportable) that it has been repeatedly used for many teaching and
demonstration purposes.

We will show how already the simple Active Automata Learning for Mealy
machines can be an effective technique to retrofit existing CPS systems with
models that satisfy these characteristics. We then reflect on several aspects of
the system, the model, the learning, and how the model, behavior and properties
are expressed, that can be interesting from a research and practical point of view.

In the following, Sect. 2 presents the case study and Sect. 3 provides an
overview of MDD and Active Automata Learning techniques. We then explain
the setup for experiments of the Confirm Digital Thread prototype in conjunc-
tion with the robot simulator (Sect. 4), followed by a discussion of the learning
results in Sect. 5 and an application of CTL model checking for property check-
ing on the learned model in Sect. 1. In Sect. 7 we discuss the insights gained so
far, the lessons learned and our reflections along various perspectives of past
experience, collaboration with Bengt Jonsson and future work. Lastly, Sect. 8
concludes the paper.

(a) Universal Robots’ UR3 (b) Demonstrator Setup with UR 5

Fig. 1. The physical system

2 The Case Study: XMDD Steers a Cobot

The Confirm Digital Thread demonstrator, introduced in [32], showcases a MDD-
based application in the smart manufacturing context. It is a handy example that
brings together two worlds still culturally very distant and effectively disjoint:
commercial collaborative robots and advanced Model Driven Development.
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This portable demonstrator consists of a collaborative robot (cobot) pro-
duced by Universal Robots (UR) together with a web application designed to
remotely control such cobots. In the world of robotics, this is a very small instal-
lation, easy to transport and set up for demonstration and outreach purposes.
As shown in Fig. 1b, the UR5 is mounted on a portable rolling table, and the
large display shows the Web Application, running on the laptop at the right.

The UR product line consists of flexible 7 joints robotic arms that can be
equipped with a wide variety of mountable devices like a grip arm, a camera,
and various sensors and actuators. It is widely customizable and retargetable
for different applications with little effort and expense, by retooling and repro-
gramming. Cobots are particularly safe because they are equipped with special
sensors to detect whether something is in their way. This ability allows them to
operate without special work cages, opening the possibility of collaborative work
with humans. UR, the first company to produce such robots, offers four models:
UR3 (see Fig. 1a), UR5 (see Fig. 1b), UR10 and UR16. The number indicates
the maximum payload in Kg of each model. The models grow in size and weight
accordingly, but the core design and concepts, like the joints, degrees of freedom
and skills, are very similar for all models. They use for example the same API,
which allows custom programs to be interchangeable [32].

Fig. 2. The web application: The controller main page (left). Clicking the ‘Move to
Coordinates’ button leads to the coordinates input page (right)

While this describes the Physical side of the CPS demonstrator, the user-level
interactable view of the Cyber component is shown in Fig. 2. The main page of
the controller offers a set of six predisposed operations: Initial position (dark
blue button) Pause (yellow button), Test position and Move to coordinates
(light blue buttons), Stop and Shutdown (red buttons). Each of them can be
launched by clicking the corresponding GUI button. The Initial position
and Test position skills are fully predefined: clicking the respective button
brings the robot to a fixed position. For example, the Initial position button
leads to the balanced vertical “zero” position shown in Fig. 3. The Move to
coordinates button, however, allows a remote configuration of the robot: it
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Fig. 3. Interactive simulator by universal robots

leads to a second web page (Fig. 2(right)), where a mask allows the user to input
target coordinates of the tip of the arm. The choice of these skills is intentional:
it is a minimum set of skills that covers the categories Home, Move, Timing
and Manage, associated with the colour of the button as well as with a small
symbol near the skill name on the button. This is, in effect, a minimal Domain
Specific Language in the application domain of the robots, what we would call
an A-DSL for Application-specific DSL. The colours and symbols associated to
the individual skills expose the internal structure of the A-DSL, which has a
taxonomic structure.

Traditionally, the controller is programmed and tested either on-site, using
the tablet physically tethered to the machine, or by means of a simulator software
that behaves like the UR equipment, so that the program tested on the simulator
can be then uploaded with confidence to the cobot. The simulator provided by
Universal Robots shown in Fig. 3 covers the entire family of cobots. It can be
installed on a Linux system or used in a virtual machine via a provided virtual
machine image. For the purpose of this paper we choose the latter option, as
this adds a layer of separation between the now virtual robot and the rest of our
technology stack, similar to how a real cobot would be separated from the other
technologies. The simulator also offers the option to change timing parameters.
This allows the simulated robot to move like a real machine, but at accelerated
speed. This feature is going to be very useful during the automata learning
campaign that leads to the Digital Twin of this system.
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The simulator is seen by many in robotics and manufacturing as “the” model,
and effectively as the in-silico reification, of the Digital Twin in terms of soft-
ware. However, there is much more that models can do to support the deeper
understanding of a system.

With this small demonstrator we intend to showcase the use of models at
many levels: to design and validate the controller, but also to represent in a
different way the “real essence” of the Digital Twin, not just for the robot but
also for the entire CPS, including the controller. To do so, we will use some
XMDD concepts and technologies.

Fig. 4. Process model of the remote controller: App’s main workflow in DIME

3 XMDD Concepts and Technologies

We adopt the eXtreme MDD paradigm of [33,34], and use the DIME [7] tool
and platform first to model, and then to code-generate and deploy the Web
application that controls the cobot. In this section we briefly introduce XMDD
and provide a short introduction in Active Automata Learning, the approach we
use to generate the Digital Twin. We assume that model checking is known.
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Fig. 5. Overview of the active automata learning loop

3.1 XMDD in DIME

The Model Driven Design (MDD) approach breaks with the paradigm that every-
thing needs to be written in native code and puts instead models at the center of
a software development project. Those models can be textual or graphical, they
help the developer to describe what the software should be doing. Depending
on the choice of models and modelling languages, they have different levels of
expressiveness, automatic model analysis and transformation support. In most
approaches, a key advantage is that they help delegate the worry about the
“how” to a separate design granularity, and often to a separate professional
profile [11,26–28].

From a generic MDD point of view, DIME is an Integrated Modelling Envi-
ronment, i.e. a model driven design tool, specialized for the design, development
and deployment of web applications. DIME is open source, provides flexibility,
ease of extension, supports high-assurance software quality, agility, a service-
oriented approach, and also containerization. For the specific low-code support,
its model-driven approach is based on Domain Specific Languages (DSLs) at two
levels:

– Language DSLs, as a mechanism to design and implement the application
design environment itself, i.e., the Integrated Modeling Environment (IME),

– and a number of Application domain DSLs, at application design time. We
want to use Native DSLs as the means to integrate and expose collections of
capabilities offered by end devices and other sources of functionalities to the
application designers, and Process DSLs (see Fig. 4) as the means to foster
reuse of medium and large grained business logic across applications.

DIME’s DSLs cover all layers of a modern web applications, e.g. the data
model, the process models to describe the business logic, and the GUI front end
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in a way similar to a “What you see is what you get” editor. The Native DSLs
extend its capabilities with new GDLSs: new libraries of Service Independent
Blocks (SIBs) for the back or front end. The UR Control application makes use
of this functionality by introducing robotics DSLs used to create a plugin that
communicates with the UR robots [7,49].

DIME is itself created using the Cinco meta-modeling environment [37], and
it is in fact the most sophisticated Cinco-product. Cinco allows the creation
of further Eclipse based specialized editors for Language DSL tools without a
deeper knowledge about the various Eclipse graphical tooling projects.

3.2 Active Automata Learning

Active Automata Learning (AAL) [2] uses observations to infer models of a
system’s internal states and behavior. In the case of reactive systems like web
applications, those models are often Mealy machines.

Definition 1 (Mealy Machine).
A Mealy Machine is defined as a tuple (Q, q0, Σ, Λ, δ, λ), where Q is a finite
set of states, q0 ∈ Q is the initial state, Σ is a finite set of input symbols, i.e.
the input alphabet, Λ is a finite set of output symbols, i.e. the output alphabet,
δ : Q × Σ → Q is the transition function, and λ : Q × Σ → Λ is the output
function.

The core Active Automata Learning process is illustrated in Fig. 5. The learn-
ing algorithm, called the learner, interacts with the System Under Learning
(SUL) via testing and observes its behavior. Those interactions are called Mem-
bership Queries. In a Membership Query, the learner sends inputs to the SUL,
collects the corresponding observed outputs, and collects the resulting input/out-
put behaviour traces, producing a hypothesis model of the internal states of the
system. Once the learner reaches a point where it has seen enough behaviour,
along a predefined notion of “enough”, it passes the current hypothesis model
to the Equivalence (EQ) Oracle. In an ideal world, the EQ Oracle would have
perfect knowledge of the SUL and could decide this question directly. In the real
world this is impossible: instead, the EQ Oracle applies another set of criteria
to the model, and tells the learner whether the current hypothesis is correct, i.e.
satisfies all those criteria, or not. If one or more counterexamples are found, they
are passed back to the learner, which starts a new MQ campaign based on the
new insights. This leads to successive evidence-based refinement cycles of the
hypothesis model. When the deployed counter-example search strategies do not
find any counter example anymore in reasonable time, the current hypothesis
model is assumed to be correct and the learning process terminates with that
learned model.

It is important to note that every membership and equivalence query needs
to start with the same prerequisites, so a reset mechanism of the SUL to the
same initial state is needed too.
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Fig. 6. The setup of the learning experiment: AAL with LearnLib Studio

LearnLib2 [19,40] is a state of the art open source framework for AAL, which
offers a wide set of algorithms, counter examples search strategies and infrastruc-
ture components in Java. Many tools have been designed to create customized
learn experiments utilizing the LearnLib.

The Active Automata Learning Experience (ALEX) tool is built upon Learn-
Lib and allows a no-code way to learn web applications and even to mix them
with REST APIs. ALEX is itself a web application. It offers a comfortable GUI
to describe the interactions with a web application or a RESTful API. The
learning can be parameterized, but the overall learning process is fixed [19,40].
Because the UR robot itself does not offer a REST API, ALEX is unfortunately
not applicable to this case. We use instead LearnLib Studio3, a specialized Cinco-
product for defining LearnLib experiments through a custom MDD editor.

4 Automata Learning Experiments: Set Up with Learnlib
Studio

In our Digital Thread prototype, the UR Remote Control Web Application and
the robot, here a UR simulator, constitute the SUL (see Fig. 6). We wish to
automatically extract a Digital Twin of the SUL in order to find out whether
the web application interacts with the robot in the expected way. Concretely,
we wish to find out if the native SIB libraries of the UR DSL are used in the
expected way, e.g. following the correct protocol, and if the controller application

2 https://learnlib.de.
3 https://github.com/learnlib/learnlib-studio.

https://learnlib.de
https://github.com/learnlib/learnlib-studio
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is properly designed, i.e., it is doing exclusively what it is expected to do, in terms
of sewuences of actions and reaction s to unexpected inputs or commands. We
have the SUL as entire CPS on the right, and on the left we use LearnLib Studio
as the Learner, extracting a model that is the Digital Twin of the SUL.

While this experiment can show the existence of a fault, it would not be able
to determine where the fault sits, i.e., whether the implementation of the native
SIBs is faulty (code) or whether the SIBs are OK but not properly used in the
process model (application logic).

In the following we recall the preexisting components (Sect. 4.1), then we
describe the set up of the learning experiment (Sect. 4.2). Section 4.3 describes
in detail the alphabets we used, and finally Sect. 4.4 reports on performance
issues and their resolution.

4.1 Preexisting Components

Instead of connecting a real robot to the system, we use the simulator provided by
Universal Robots in a Virtual Box. As the robot is in reality also connected with
an IP Address, the Virtual Box helps to create a realistic scenario. Within this
setup, the simulator and the robot are interchangeable, as was confirmed through
tests. We parameterized the simulator with the data and coordinates for the UR3
model, but the UR scripting language and the communication with the robot are
identical for the whole UR family. To cover other models, which have different
dimensions of the arm segments, the specific coordinates for predefined positions
would need to be changed to those for the specific UR model. Using the simulator
also allowed us to speed up the robot responsiveness, significantly reducing the
overall time for our learning experiment. The robot is in fact mechanically quite
slow. We used instead a simulator setting with a near immediate response to
commands, preserving the execution traces but much faster than the real system.
As we are not examining timed behaviour or performance, this difference did not
impact the behaviour to be learned.

The UR Control Web Application, which is itself designed as a DIME appli-
cation, once compiled and deployed runs in a Docker environment and it can be
used independently of DIME. For the learning experiments, everything was thus
executed on a single local machine.

4.2 The Learning Experiment Set up

The learning experiment was described graphically using LearnLib Studio’s mod-
els, as shown in Fig. 7. The left side of the Learn Experiment Model shows the
definition of the experiment setup. It uses the TTT algorithm [18] and the Ran-
dom Word Equivalence Oracle, which is a random word counterexample search
parameterized with 20 random words with a length between 5 and 10 symbols.
The right side of the model shows the graphical definition of the SUL in terms
of the commands in its alphabet. The cycle between the TTT algorithm and the
Random Word Equivalence Oracle represents the learn loop. Both these elements
connect to the SUL via a query counter and a cache, which are filters defined
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Fig. 7. Definition of the Learning Experiment as a Learn Experiment Model

as part of the LearnLib pipeline. While the query counter provides insights on
the learning use of resources, the cache offers a potentially increased efficiency
because it directly answers known queries instead of invoking the SUL anew.
The SUL is represented as a set of 10 symbols: the learning alphabet consists
of seven symbols, and the further three are special symbols which deal with the
setup and tear down of the SUL and the connection to it.

4.3 The Learning Alphabet

The symbols defined for the learning experiment are described in Table 1. The
seven symbols Connect to Robot, Go To Initial Position, Go to Test Position, Go
to Coordinate Input, Send Coordinates, Cancel Coordinate Input and Robot Coordi-
nates constitute the learning alphabet. Their names constitute the input alphabet
to the algorithm. The output alphabet consists of their possible outputs: Success,
Success (X, Y, Z) which includes the actual robot coordinates at time of calling,
and the additional symbol ElementNotFound. The use of the robot coordinates in
this set up allows to independently observe the robot coordinates in the learning
process, and correlate them to interactions with the web application.

Beside the input and output symbols, the three helper symbols Set Up, Reset
and Tear Down described in Table 2 help manage the experiment, for example to
ensure a reliable reset.

These handling of the symbols is implemented in LearnLib Studio. It adopts
a MDD approach with a Cinco GDSL similar to the process language of DIME,
but modified to focus more on consistent outputs symbols. As an example, Fig. 8
shows the implementation of the Go To Initial Position symbol. This model is
executed every time a learning component sends to the SUL a query containing
this symbol. Starting from the Start SIB, a so-called WebDriver is needed to
emulate the user behavior in a web browser. The Start SIB grabs it from a global
context and passes it to the next SIB via the dotted data flow edge. As the Start
SIB has only one control flow successor (the solid line), the WaitForNode is
executed next. This SIB takes care of extra waiting time to ensure the page has
properly loaded. Each SIB has input (blue, top) and output (orange, bottom)
ports. Input ports can either be dynamic, i.e. they accept data flow from other
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Table 1. Overview of the Learning Alphabet

Name Outputs Description

Connect To Robot Success, ElementNotFound Tries to enter the IP address and click

‘Connect’

Go to {Initial, Test} Position Tries to click the button {initial, test}
position button, which should move the

robot accordingly

Go to Coordinate Input Tries to click the button in the web

application to navigate to the coordinate

input page

Send Coordinates Tries to enter custom coordinates and click

the move button on the coordinate input page

Cancel Coordinate Input Tries to click the cancel button on

the coordinate input page

Robot Coordinates Success (X, Y, Z) Connects to the robot and receives the

current robot coordinates, which are part

of the output

Table 2. Overview of the helper symbols

Name Description

Set Up Starts the web browser
It is called only once at the beginning of the learn experiment

Reset Opens the web app in a fresh environment
Moves the robot to the initial position Called before every
query

Tear down Closes the web browser
It is only called once at the end of the learning experiment

SIBs, or static, i.e. the value is fixed and predefined when modeling the symbol.
The next action in this symbol’s workflow, the Click SIB, actually clicks the
button, and then the symbol execution terminates with its End SIB, which in
this case is the Success output. This End SIB also updates the WebDriver in
the global context. Should any of those two execution SIBs fail, e.g., if the
WaitForNode reaches a timeout while waiting for the button in, or if the Click
SIB is unable to click the button, the alternative error path indicated by the red
dotted lines is taken. These error paths lead to the End SIB ElementNotFound,
which signals to the learn experiment that the button is missing.

The collections of symbols in Tables 1 and 2 are defined in this way. They
use a newly created custom SIB library to interact with the web application, see
Fig. 9. It is part of the example experiments included with LearnLib Studio and
deals with buttons, numeric fields, and other interactable GUI elements of web
application.

Another SIB library was used to interact with the robot directly.

4.4 Performance Issues

During the first learning experiment there were speed management issues with
the network socket of the robot: even the sped-up robot in the simulator, much
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Fig. 8. Symbol definition in LearnLib studio for the click on the Go to Initial Position
Button

faster to respond than the real robot, could not keep up with the amount of dif-
ferent commands automatically sent to it by the learning algorithm. The adopted
solution was to introduce an artificial wait time of ten seconds before querying
the coordinates from the robot, the SIB WaitForNode, even though this slowed
down the overall learning process.

A different approach would have been to poll the robot multiple times until
the reported coordinates stop changing, indicating that the robot has reached its
final position, or alternatively to instruct the robot call back once the movement
is finished. Both approaches would have requested multiple interactions and a
more complex logic, so we preferred to opt for the simpler wait solution.

5 Results: The Learned Digital Twin

The Mealy machine shown in Fig. 10 is the behavioral Digital Twin of the UR
Controller Web Application as learned through the AAL experiment. It has
seven states, based on the seven input symbols introduced with the learning
alphabet, the corresponding output symbols, i.e. Success, ElementNotFound and
the different coordinates.

The state q0 on the top left, shaded in green, is the initial state. The very
first page of the web application asks for the IP address of the robot and is
otherwise only reachable by reloading the application. This behavior is evident
in the Digital Twin model’s state q0: it is the initial state and it only allows to
move ahead with the Connect To Robot action.

Upon closer inspection, one notices that the final model is a product of the
possible states of the web application, i.e. main ’button’ page and coordinate
input page, and the three possible robot positions from the app, i.e. initial posi-
tion, test position, and custom coordinates. In the three states q0, q1 and q3 (in
the dashed oval) the robot is in the initial position. The states q2 and q5 (solid
oval) represent the robot in the test position. And in states q4 and q6 (dot-
ted oval) the robot is in the custom coordinates position. Between those areas
there are only the Go to Initial Position, Go to Test Position and Send Coordinates
transitions, and they lead always successfully to the according target state.
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Fig. 9. Selenium SIB library for interactions with web applications.

In each robot position, one state represents the main button page of the
website: q1, q2 and q4, highlighted by blue squares. Furthermore, these position-
related areas of the model include the states q3, q5 and q6 (highlighted by orange
triangles) representing the coordinate input page. Between pairs of those states
there are only transitions with Go to Coordinate Input and Cancel Coordinate
Input: these transitions are present and successful. The only exception is the
Send Coordinates transition between q6 and q4, which can be easily explained as
it is the reflexive edge within the robot position area.

Overall, the final model that emerged is structured as a product between
the states of the web application and the three chosen robot positions, with
a network of correct transitions according to the good machine behaviour we
expected.

The learning experiment was run on a Dell XPS 15 9560 (Intel Core i7-
7700HQ, 32 GB RAM, Manjaro Linux) and took 80 min of execution time. Its
production took four iterations of the learning loop, with algorithmic search and
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Fig. 10. The final model: the digital twin obtained by AAL

counterexample. The learner asked 218 Membership Queries and 34 Equivalence
Queries were posed by the counter example strategy.

6 Property Checking on the Digital Twin

The Digital Twin extraction is interesting per se, but, as we see, its interpre-
tation requires manual analysis and a good understanding of how the system
under learning functions: its architecture, its components, both individually and
in their communication patterns. This can be done for a small model. However, as
soon as systems and models grow, for example in our case when adding a camera
that observes from outside the real robot behaviour and steers adjustments to
coordinates based on precise measurements, e.g., to limit the movements within
a ‘virtual cage’, the model size grows as well, the interactions become more intri-
cate, and a different method of analysis is needed in order to properly evaluate
the model and its meaning. Property checking on the Digital Twin is a useful
technique.

We use here CTL model checking, specifically model checking with the GEAR
[3,4] tool, in order to a) express behavioural properties of the system that can
be assessed on the model, and b) automatically check them on the produced
Digital Twin model. The four properties we checked are:

Property 1: If the Go to Initial button is clickable, clicking it leads to the robot
being positioned in the initial position.
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Fig. 11. GEAR results: States Q2 and Q4, highlighted in green, fulfill the constraint.

(["Go_To_Initial_Position/Success"]

"Robot_Position/Success (-0.5,_-223.15, 293.95)")

OR

"Go_To_Initial_Position/Element_Not_Found"

Property 2: If the Go to Test button is clickable, clicking it leads to the robot
being positioned in the test position.

(["Go_To_Test_Position/Success"]

"Robot_Position/Success (243.24, -223.15, 50.79)")

OR

"Go_To_Test_Position/Element_Not_Found"

Property 3: If the Go to Coordinate Input button is clickable, clicking it does
not change the position of the robot.

(

("Robot Position/Success (-0.5, -223.15, 293.95)"

["Go To Coordinate Input/Success"]

"Robot Position/Success (-0.5, -223.15, 293.95)"

)

AND

("Robot Position/Success (243.24, -223.15, 50.79)"

["Go To Coordinate Input/Success"]

"Robot Position/Success (243.24, -223.15, 50.79)"

)

AND

("Robot Position/Success (223.0, -445.0, 15.0)"

["Go To Coordinate Input/Success"]

"Robot Position/Success (223.0, -445.0, 15.0)"
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)

)

OR

"Go To Coordinate Input/Element Not Found"

Property 4: If the Cancel Coordinate Input button is clickable, clicking it does
not change the position of the robot.

(

("Robot Position/Success (-0.5, -223.15, 293.95)"

["Cancel Coordinate Input/Success"]

"Robot Position/Success (-0.5, -223.15, 293.95)"

)

AND

("Robot Position/Success (243.24, -223.15, 50.79)"

["Cancel Coordinate Input/Success"]

"Robot Position/Success (243.24, -223.15, 50.79)"

)

AND

("Robot Position/Success (223.0, -445.0, 15.0)"

["Cancel Coordinate Input/Success"]

"Robot Position/Success (223.0, -445.0, 15.0)"

)

)

OR

"Cancel Coordinate Input/Element Not Found"

As we see from the GEAR screenshot in Fig. 11, the model checker highlights
the states satisfying a property, providing good visual feedback to the user. All
these properties are fulfilled by this model. Property checking on the digital twin
can be a useful way to validate the model, making sure that it captures those
phenomena that are known to the designers.

7 Reflections and Lessons Learned

Several considerations come upon reflection on this even simple case study, espe-
cially in the context of our conversations with people interested in Digital Twins
for Cyberphysical Systems that are not computer scientists themselves. In this
group fall the recurring questions about the role of AI (Sect. 7.1), and the fact
that there are many different kinds of software models, like design models and
behavioral models (Sect. 7.2). We follow then with some reflections on two lines
of work that are central to Bengt’s and Tiziana’s connection: the genesis and
evolution of the specific AAL technology we used here (Sect. 7.3), and their work
on features and feature interactions (Sect 7.4).

7.1 AAL vs. AI

When using AAL to extract digital twins of (software) systems, we are frequently
asked:
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Can’t you use AI instead?

Resorting to AI as the all-encompassing solution to any unknown seems to
become a reflex response to any question concerning systems and their analysis.
There are at least two fundamental differences between the models produced by
AAL and those produced in AI:

– Many popular AI techniques essentially retrofit (mostly) numerical and/or
probabilistic models based on a data set interpreted as an input/output rela-
tion, without necessarily a relation with the real system. Even Grammatical
Evolution [44], which is based on a BNF-style description of a system’s poten-
tial actions, essentially tries to match an I/O behaviour provided in a file by
first guessing and then recombining populations of alternative “programs”
that approximate the real system.
Instead, AAL systematically explores the real system (or the part of the sys-
tem one decides to observe, as this is steered through the Learning Alphabet)
and provides the minimal model that reflects faithfully all the observations.
In this sense, there is an aspect of tightness to the system that the AAL
approach has and the AI one does not.

– AI models that replicate systems are themselves mostly black boxes, and even
the typical tools used for Explainable AI, like SHAP [25], provide percentages
of correlation between certain inputs and certain outputs, but do not provide
an analyzable, even enactable model of the system itself like the model in
Fig. 10. The value of this Mealy machine as an explanation model, for any
What-If analysis, is in a totally different class of confidence and evidence.

7.2 Design Models vs. Behavioural Models

Other frequent questions are:

Isn’t the software the model itself?
Isn’t the process diagram the model?
Why do you need a digital twin of software?

There is still a widespread belief that software does not need models, that soft-
ware “is” per se modelling (because it is inherently immaterial, in contrast to the
tangible things in manufacturing and production, or even communications, as
communication tools come with apparati like transmitters, receivers, etc. In some
circles, software is met in the form of simulators, and the simulation software is
then identified itself as “the model”. The fundamental distinctions between the
simulation tool, the simulation run, the data, and the aggregated model from
many runs are more or less unconsciously blurred.

In the same line of thought:

If the software is not the model, then the diagrams “are” the model, right?
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The graphical presentation of process models and workflows induces some to see
them as fundamentally different from code, and thus from software. A recipe like
a DIME or BPMN process model is then taken as “being the model”, which is
true in a behaviour design sense, but not in the sense of exposing the semantic
effects of the execution.

The difference between design-time models of behaviour and semantic and
runtime or execution models in this guise was showcased and discussed in [38], on
the case study concerning a prior version of the Online Conference System (OCS)
published as part of the FMICS Working Group state of the art book [10]. There,
we used the AAL technologies described in [15] in order to extract by learning
the behaviour of a Web application that implements a conference management
system. In that case, AAL was applied to a purely cyber system, i.e., not physical
at all, and used to show that various properties that were requirements at design
time were indeed satisfied by the implemented and deployed system.

This brings us to the specific learning technology used, then and now, in our
work. This also brings us to the connection and collaboration with Bengt.

7.3 Learning Technology

We use here a new version of the LearnLib Studio which is now a specialized
Cinco-product for defining LearnLib experiments through a custom MDD editor.
We specifically used the TTT algorithm of [18]. However, the AAL technology
has a long history and it has benefited greatly from Bengt Jonsson’s research
and work. The original LearnLib [40] was greatly enhanced in collaboration with
Bengt and his group during the Connect EU project [41], leading to the first
applications within FMICS [31] and to dynamic testing [42]. It was then followed
by the Next Generation LearnLib (NGLL) [36], with full details described in [46],
and more recently by the Open Source Learn Lib of [19]. This LearnLib has
made school, becoming one of the most downloaded and widely used tools for
Automata Learning, with the ALEX tool and others like LearnLib Studio as
further derivatives. The LearnLib materialized in a very successful tool set the
first observations about knowledge based relevance filtering for an efficient use of
testing in order to save order of magnitudes of tests when we started to explore
model extraction based on systematic execution as a way to extract compact
models from deployed systems [17,29,30].

Specifically in AAL, or regular inferences, Bengt and his group contributed
greatly to the development of algorithms and optimizations, e.g. exploring the
connection between the connection between conformance testing and regular
inference [5] back in 2005, then working on the inferring semantic interfaces
for data structures [13] and on learning canonical register automata [16], and
here most recently combining black-box and white-box techniques [14], until the
more recent works on active learning for extended finite state machines [9], in
the quest to solve the CONNECT challenges [20] and more.
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7.4 Features and Feature Interaction

Also without addressing the topic of humans in the loop and human-machine col-
laboration that cobots address, it is clear that manufacturing systems deal with
system interactions. In the language of coordination models, some of these inter-
actions can be orchestrated, i.e. the interactions are designed in their entirety and
can be to a good extent linearized to workflow-deterministic projections onto the
individual actors, but this is not always the case. Already two UR3 that collab-
orate, e.g., to hold and weld a piece could give rise to more diverse interactions
if they are considered independent systems that happen to cooperate. This is
the realm of choreographies, akin to collections of independent (state) machines
that only loosely coordinate. Sometimes one even observes emergent behaviours,
that, from the point of view of the modelling, appear spontaneous. In this con-
text, it is frequent to observe so called feature interactions, where independent
behaviours that are individually correct and consistent become inconsistent and
face ambiguous choices if they have to coexist. In a sense, coupling due by the
fact that these behaviours are brought in the same context, often being one the
context of the other, exposes inconsistencies for which there is often no good
decision policy.

The phenomenon is observed in the robotics domain, where collisions happen
because the individual rules and policies driving one of the moving components
clash with the others. Early discovery of such interactions is one of the uses
of digital twins, ideally with the ability to identify whether such situations are
possible, and even better with the ability to reduce the model to a small or even
minimal model that models precisely and only the interference potential.

Here, the ability to produce faithful digital twins though AAL, together with
the ability to analyze the models by means of model checking is a real asset.
Having fully fledged formal models like the Mealy Machine of our case or richer
models, like the register automata, may for example help identify certain lan-
guage elements of the learning alphabet as irrelevant, and produce, either by
re-learning or by model abstraction, smaller versions that still correctly charac-
terize the problem. This is difficult and expensive to achieve both by traditional
testing and by AI. Some reinforcement learning approaches start to bear fruits,
and it is noteworthy in this context that the principle of RL, with an omniscient
teacher (mostly simulated by annotations) is similar to AAL’s oracle, with its
implementations by query-answering mechanisms.

The feature interaction problem was first discovered in the late1990 s in the
telecommunications domain. Also here we can look back at joint contributions
with Bengt and some of his students. Started with their modular specification of
telephone services within first-order linear-time temporal logic [6] and their for-
malization of Service Independent Building Blocks [39] in that style, this line of
work brought us to an intense collaboration in 1998–2001, leading to a sabbati-
cal semester in Uppsala. The approach for incremental requirement specification
for evolving systems [22] based on that modular modelling style [23]. Since 1994
we were already working on projects with Siemens concerning the use of formal
models for Intelligent Network services. They included model hierarchy [47] and
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constraint techniques to specify service properties . In particular we produced
what today would be called a DSL-based, model driven and generative design
environment for the agile development of IN Services [48]. Soon later we added
an automated service evolution technology based on constraint-driven modifica-
tion of the business logic [8], so that at the time of the cooperation with Bengt
in Uppsala both groups happened to have independent yet fully aligned mod-
elling styles and technology stacks. This made the collaboration possible, easier,
and productive. Eight years later, at the onset of service oriented computing,
an overview paper cheekily stated that we had 10 year experience in a field that
was 3 years old [35], a claim substantiated by all this experience in research and
industrial products with real impact.

Thinking in features has played a significant role in two other contexts: when
modelling, then learning and analyzing the Online Conference System already
mentioned [24], and later in the approach to constraint-based variability mod-
eling framework [45]. This framework has a much wider applicability than the
original feature models, as it targets generic (software and systems) product
lines. Families of artifacts are first described in terms of collection of features,
then composed, selected and analaysed in terms of their behavioral properties
specified as temporal logic constraints. It is this last evolution of our feature-
oriented thinking that is closest to the approach we intend to adopt and apply to
both the digital twins, in terms of behavioural models, and to the digital thread
in terms of end-to-end integration and composition of software and systems.

8 Conclusion and Outlook

In this paper we applied active automata learning experiments to a scenario in
remote robotics control, based on the UR family of collaborative robots. While
this is a small example, the capability to retrofit Digital Twin models to the
behaviour of cyberphysical systems can potentially pave the way to capturing
the behaviour of legacy (control) applications in smart manufacturing by means
of models amenable to formal analysis and model based testing. We used here
the LearnLib Studio for the Automata learning, and the GEAR model checker
to verify a few properties of the Mealy machine obtained in the learning phase.

We are currently extending the functionality of the case study by connecting
the robot also via ROS, the Robot Operating System popular in the education
and research community for CPS, with the goal to provide many versions of the
demonstrator and to be able to profile the various technologies involved, some-
times as alternatives like ROS vs. TCP socket. Thinking in features and dealing
with feature interaction when having more than one independent subsystem is
a further direction of research.

We also reflected on many dimensions of modelling and technology choice
stemming from the two contexts in which we see us immersed: the Confirm
Research Centre on Smart Manufacturing, with its challenges as a multicul-
tural, multidisciplinary and multisectoral community of research and practice,
and the personal history and experience. The Confirm context, in particular
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the conversation with excellent partners with very different background, lead us
to have to rethink, explicitly formulate, and many times tangibly demonstrate
rather than explain assumptions and facts that are not common knowledge nor
obviously accepted outside of computer science. Here we count the omnipresence
of AI as the go-to solution, with the need to justify why one is adopting a dif-
ferent approach, and the understanding of software, its facets and its role in a
wider context of production floors. On the personal experience, having worked
with many industry sectors and with many collaborators turns out to be a great
asset. Beside the familiarity with automata learning, particularly the experience
in modelling of telecommunication systems and reasoning about feature inter-
actions has proven useful in recent collaborations also in Confirm, and is a nice
benefit that we now draw, stemming from the pleasant and productive collabo-
ration with Bengt and his group in the past 23 years. It is nice to see that there
is a long term effect also for collaborations in a research that seemed to be a
niche topic at some point.
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