
Regular Model Checking Revisited

Anthony W. Lin1(B) and Philipp Rümmer2(B)

1 TU Kaiserslautern and MPI-SWS, Kaiserslautern, Germany
lin@cs.uni-kl.de

2 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. In this contribution we revisit regular model checking, a pow-
erful framework—pioneered by Bengt Jonsson et al.—that has been suc-
cessfully applied for the verification of infinite-state systems, especially
parameterized systems (concurrent systems with an arbitrary number of
processes). We provide a reformulation of regular model checking with
length-preserving transducers in terms of existential second-order theory
over automatic structures. We argue that this is a natural formulation
that enables us to tap into powerful synthesis techniques that have been
extensively studied in the software verification community. More pre-
cisely, in this formulation the first-order part represents the verification
conditions for the desired correctness property (for which we have com-
plete solvers), whereas the existentially quantified second-order variables
represent the relations to be synthesized. We show that many interest-
ing correctness properties can be formulated in this way, examples being
safety, liveness, bisimilarity, and games. More importantly, we show that
this new formulation allows new interesting benchmarks (and old reg-
ular model checking benchmarks that were previously believed to be
difficult), especially in the domain of parameterized system verification,
to be solved.

1 Introduction

Verification of infinite-state systems has been an important area of research in
the past few decades. This is one of the (many) areas to which Bengt Jonsson
has made significant research contributions. In the late 1990s and early 2000s, an
important stride advancing the verification of infinite-state systems was made
when Jonsson et al. spearheaded the development of an elegant, simple, but
powerful framework for modelling and verifying infinite-state systems, which
they dubbed regular model checking, e.g., [1–3,12,25].

Regular model checking, broadly construed, is the idea of reasoning about
infinite-state systems using regular languages as symbolic representations. This
means that configurations of the infinite systems are encoded as finite words
over some finite alphabet Σ, while other important infinite sets (e.g. of initial
and final configurations) will be represented as regular languages over Σ. The
transition relation Δ ⊆ Σ∗ × Σ∗ of the system is, then, represented as a finite-
state transducer of some sort.
c© Springer Nature Switzerland AG 2021
E.-R. Olderog et al. (Eds.): Jonsson Festschrift, LNCS 13030, pp. 97–114, 2021.
https://doi.org/10.1007/978-3-030-91384-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-91384-7_6&domain=pdf
http://orcid.org/0000-0003-4715-5096
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-030-91384-7_6

98 A. W. Lin and P. Rümmer

Example 1. As a simple illustration, we have a unidirectional token passing pro-
tocol with n processes p1, . . . , pn arranged in a linear array. Here n is a parame-
ter, regardless of whose value (so long as it is a positive integer) the correctness
property has to hold. This is also one reason why such systems are referred to
as parameterized systems. Multiple tokens might exist at any given time, but at
most one is held by a process. At each point in time, a process holding a token
can pass it to the process to its right. If a process holding a token receives a
token from its left neighbor, then it discards one of the two tokens. Each con-
figuration of the system can be encoded as a word w1 · · · wn over Σ = {�,⊥},
where wi = � (resp. wi = ⊥) denotes that process pi holds (resp. does not hold)
a token. The set of all configurations is, therefore, Σ∗, i.e., a regular language.
Various correctness properties can be mentioned for this system. An example of
a safety property is that if the system starts with a configuration in �⊥∗ (i.e.
with only one token), then it will never visit a configuration in Σ∗�Σ∗�Σ∗ (i.e.
with at least two tokens). An example of a liveness property is that it always
terminates with configurations in the regular set ⊥∗(⊥ + �). ��
This basic idea of regular model checking was already present in the work of
Pnueli et al. [27] and Boigelot and Wolper [47]. However, a lot of the major
development of regular model checking—the term which Jonsson et al. coined
in [12]—was spearheaded by Jonsson et al. These include fundamental contri-
butions to acceleration techniques (including the first [12,25]) for reachability
sets and reachability relations, which could successfully verify interesting exam-
ples from parameterized systems. His works have made the works of subsequent
researchers in regular model checking (including the authors of the present paper)
possible. A lot of the initial work in regular model checking focussed on devel-
oping scalable algorithms (mostly via acceleration and widening) for verifying
safety, while unfortunately going beyond safety (e.g. to liveness) posed a signif-
icant challenge; see [3,45]. It is now 20 years since the publication of Jonsson’s
seminal paper [12] on regular model checking. The area of computer-aided ver-
ification has undergone some paradigm shifts including the rise of SAT-solvers
and SMT-solvers (e.g. see the textbooks [13,28]), as well as synthesis algorithms
[5]. In the meantime, regular model checking was also affected by this in some
fashion. In 2013 Neider and Jansen [37] proposed an automata synthesis algo-
rithm for verifying safety in regular model checking using SAT-solvers to guide
the search of an inductive invariant. This new way of looking at regular model
checking has inspired a new class of regular model checking algorithms, which
could solve old regular model checking benchmarks that could not be solved
automatically by any known automatic techniques (e.g. liveness, even for proba-
bilistic distributed protocols [30,34]), as well as new correctness properties (e.g.
safety games [38] and probabilistic bisimulation with applications to proving
anonymity [24]). Despite these recent successes, these techniques are rather ad-
hoc, and often difficult to adapt to new correctness properties.

Contributions. We provide a new and clean reformulation of regular model
checking inspired by deductive verification. More precisely, we show how to

Regular Model Checking Revisited 99

express RMC as satisfaction of existential second-order logic (ESO) over auto-
matic structures. Among others, this new framework puts virtually all interesting
correctness properties (e.g. safety, liveness, safety games, bisimulation, etc.) in
regular model checking under one broad umbrella. We provide new automata
synthesis algorithms for solving any regular model checking problem that is
expressible in this framework.

In deductive verification, we encode correctness properties of a program as
formulas in some (first-order) logic, commonly called verification conditions, and
then check the conditions using a theorem prover. This approach provides a clean
separation of concerns between generating and checking “correctness proofs,”
and underlies several verification methodologies and systems, for instance in
deductive verification (with systems like Dafny [29] or KeY [4]) or termination
checkers (e.g., AProVE [21] or T2 [14]). For practical reasons, the most attrac-
tive case is of course the one where all verification conditions can be kept within
decidable theories. We propose to use first-order logic over universal automatic
structures [8–10,15] for the decidable theories expressing the verification con-
ditions. Furthermore, we show that the correctness properties can be shown as
satisfactions of ESO formulas over automatic structures, where the second-order
variables express the existence of proofs such that the verification conditions
are satisfied. Finally, we show that restricting to regular proofs (i.e. proofs that
can be expressed by finite automata) is sufficient in practice, and allows us to
have powerful verification algorithms that unify the recent successful automata
synthesis algorithms [24,30,34,37] for safety, liveness, reachability games, and
other interesting correctness properties.

Organization. Section 2 contains preliminaries. We provide our reformulation of
regular model checking in terms of existential second-order logic (ESO) over
automatic structures in Sect. 3. We provide a synthesis algorithm for solving
formulas in ESO over automatic structures in Sect. 4. We conclude in Sect. 5
with research challenges.

2 Preliminaries

2.1 Automata

We assume basic familiarity with finite automata (e.g. see [41]). We use Σ to
denote a finite alphabet. In this paper, we exclusively deal with automata over
finite words, but the framework and techniques extend to other classes of struc-
tures (e.g. trees) and finite automata (e.g. finite tree automata). An automaton
over Σ is a tuple A = (Q,Δ, q0, F), where Q is a finite set of states, Δ ⊆ Q × Q
is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. In this way, our automata are by default assumed to be non-deterministic.
The notion of runs of A on an input word w ∈ Σ∗ is standard (i.e., a function
π : {0, . . . , |w|} → Q so that π(0) = q0, π(|w|) ∈ F , and the transition relation
Δ is respected. We use L(A) to denote the language (i.e. subset of Σ∗) accepted
by A.

100 A. W. Lin and P. Rümmer

2.2 Regular Model Checking

Regular Model Checking (RMC) is a generic symbolic framework for modelling
and verifying infinite-state systems pioneered and advanced by Jonsson et al.
[3,12,25]. The basic principle behind the framework is to use finite automata
to represent an infinite-state system, and witnesses for a correctness property.
For example, an infinite set of states can be represented as a regular language
over Σ∗. How do we represent a transition relation → ⊆ Σ∗ × Σ∗? In the
basic setting (as described in the seminal papers [12,25] of Jonsson), we can
use length-preserving transducers for representing →. A length-preserving trans-
ducer A is simply an automaton over the alphabet Σ ×Σ. Given an input tuple
t = (u1 · · · un, v1 · · · vn) ∈ Σn × Σn, an acceptance of t by A is defined to be
the acceptance of the “product” word (u1, v1) · · · (un, vn) ∈ (Σ × Σ)n by the
automaton A. In this way, a transition relation → can now be represented by
an automaton.

In this paper, we will deal mostly with systems whose transition relations
can be represented by length-preserving transducers. This is not a problem
in practice because this is already applicable for a lot of applications, includ-
ing reasoning about distributed algorithms (arguably the most important class
of applications of RMC), where the number of processes is typically fixed at
runtime. That said, we will show how to easily extend the definition to non-
length-preserving relations (called automatic relations [8–10,15]) since they are
needed in our decidable logic. This is done by the standard trick of padding the
shorter strings with a special padding symbol. More precisely, given two words
v = v1 · · · vn and w = w1 · · · wm, we define the convolution v ⊗w to be the word
u = (u1, u

′
1) · · · (uk, u

′
k) ∈ (Σ⊥ × Σ⊥)∗ (where Σ⊥ := Σ ∪ {⊥} and ⊥ /∈ Σ) such

that k = max(n,m), ui = vi for all i ≤ |v| (for i > |v|, ui := ⊥), and u′
i = wi

for all i ≤ |w| (for all i > |w|, u′
i = ⊥). For example, ab ⊗ abba is the word

(a, a)(b, b)(⊥, b)(⊥, a). Whether (v, w) is accepted by A now is synonymous with
acceptance of v ⊗ w by A. In this way, transition relations that relate words of
different lengths can still be represented using finite automata.

2.3 Weakly-Finite Systems

In this paper, we will restrict ourselves to transition systems whose domain is a
regular subset of Σ∗, and whose transition relations can be described by length-
preserving transducers. That is, since Σ is finite, from any given configuration
w ∈ Σ∗ of the system there is a finite number of configurations that are reachable
from w (in fact, there is at most |Σ||w| reachable configurations). Such transition
systems (which can be infinite, but where the number of reachable configurations
from any given configuration is finite) are typically referred to as weakly-finite
systems [19]. As we previously mentioned, this restriction is not a big problem in
practice since many practical examples (including those from distributed algo-
rithms) can be captured. The restriction is, however, useful when developing a
clean framework that is unencumbered by a lot of extra assumptions, and at the
same time captures a lot of interesting correctness properties.

Regular Model Checking Revisited 101

2.4 Existential Second-Order Logic

In this paper, we will use Existential Second-Order Logic (ESO) to reformulate
RMC. Second-order Logic (e.g. see [31]) is an extension of first-order logic by
quantifications over relations. Let σ be a vocabulary consisting of relations (i.e.
relational vocabulary). A relational variable will be denoted by capital letters
R,X, Y , etc. Each relational variable R has an arity ar(R) ∈ Z>0. ESO over σ
is simply the fragment of second-order logic over σ consisting of formulas of the
form

ψ = ∃R1, . . . , Rn. ϕ

where ϕ is a first-order logic over the vocabulary σ′ = σ∪{Ri}ni=1, where Ri is a
relation symbol of arity ar(Ri). Given a structure S over σ and an ESO formula
ψ (as above), checking whether S |= ψ amounts to finding relations R1, . . . , Rn

over the domain of S such that ϕ is satisfied (with the standard definition of
first-order logic); in other words, extending S to a structure S′ over σ′ such that
S′ |= ϕ.

3 RMC as ESO Satisfaction over Automatic Structures

As we previously described, our new reformulation of RMC is inspired by deduc-
tive verification, which provides a separation between generating and checking
correctness proofs. The verification conditions should be describable in decidable
logical theories. As a concrete example, suppose we want to prove a safety prop-
erty for a program P . Then, a correctness proof would be a finitely-representable
inductive invariant Inv that contains all initial states of P , and is disjoint from
the set of all bad states of P . The termination of a program can similarly be
proven by finding a well-founded relation Rank that subsumes the transition
relation of a program. In both cases, a correctness proof corresponds to a solu-
tion for existentially quantified second-order variables that encode the desired
correctness property; in the spirit of Sect. 2.4, the correctness of a proof can be
verified by evaluating just the first-order part ϕ of a formula. The generation
of the candidate proofs will then be taken care of separately, which we will talk
about in the next section. Suffice to say for now that the counterexample guided
inductive synthesis (CEGIS) framework [5] would be appropriate for the proof
generation. In this section, we provide a reformulation of RMC in the aforemen-
tioned framework for software verification.

3.1 Automatic Structures

What is the right decidable theory to capture regular model checking? We ven-
ture that the answer is the first-order theory of an automatic structure [8–10,15].
An automatic structure over the vocabulary consisting of relations R1, . . . , Rn

with arities r1, . . . , rn is a structure S whose universe is the set Σ∗ of all strings
over some finite alphabet Σ, and where each relation Ri ⊆ (Σ∗)ri is regular,

102 A. W. Lin and P. Rümmer

i.e., the set {w1 ⊗ · · · ⊗ wri : (w1, . . . , wr) ∈ Ri} is regular. The following well-
known closure and algorithmic property is what makes the theory of automatic
structures appealing.

Theorem 2. There is an algorithm which, given a first-order formula ϕ(x̄) and
an automatic structure S over the vocabulary σ, computes a finite automaton
for [[ϕ]] consisting of tuples w̄ of words, such that S |= ϕ(w̄).

The algorithm is a standard automata construction (e.g. see [42] for details),
which is indeed similar to the standard automata construction from the weak
second-order theory of one successor [22]. [In fact, first-order logic over automatic
structures can be encoded (and vice versa) to weak second-order theory of one
successor via the so-called finite set interpretations [18], which would allow us
to use tools like MONA to check first-order formulas over automatic structures.]

Automatic structures are extremely powerful. We can encode the linear inte-
ger arithmetic theory 〈N; +〉 as an automatic structure [15]. In fact, we can even
add the predicate x|2y (where a|2b iff a divides b and a = 2n for some natural
number n) to 〈N; +〉, while still preserving decidability. This essentially implies
that ESO over automatic structures is undecidable; in fact, this is the case even
when formulas are restricted to monadic predicates.

We are now ready to describe our framework for RMC in ESO over automatic
structures:

(i) Specification:
Express the verification problem as a formula

ψ := ∃R1, . . . , Rn. ϕ

in ESO over automatic structures.
(ii) Specification Checking:

Search for regular witnesses for R1, . . . , Rn that satisfy ϕ.

Note that while the specification (Item (i)) would provide a complete and faithful
encoding of the verification problem, our method for checking the specification
(Item (ii)) restricts to regular proofs. It is expected that this is an incomplete
proof rule, i.e., for ψ to be satisfied, it is not sufficient in general to restrict to reg-
ular relations. Therefore, two important questions arise. Firstly, how expressive
is the framework of regular proofs? Numerous results suggest that the answer
is that it is very expressive. On the practical side, many benchmarks (espe-
cially from parameterized systems) have indicated this to be the case, e.g., see
[3,17,24,30,33,34,37–39,45]. On the theoretical side, this framework is in fact
complete for important properties like safety and liveness for many classes of
infinite-state systems that can be captured by regular model checking, including
pushdown systems, reversal-bounded counter systems, two-dimensional vector
addition systems, communication-free Petri nets, and tree-rewrite systems (for
the extension to trees), among others, e.g., see [7,23,32,35,42,43]. In addition,
the restriction to regular proofs is also attractive since it gives rise to a sim-
ple method to enumerate all regular proofs that check ϕ. This naive method

Regular Model Checking Revisited 103

would not work in practice, but smart enumeration techniques of regular proofs
(e.g., using automata learning and CEGIS) are available, which we will discuss
in Sect. 4.

3.2 Safety

We start with the most straightforward example: safety. We assume that our
transition system is represented by a length-preserving system with domain
Dom ⊆ Σ∗ and a transition relation Δ ⊆ Dom × Dom given by a length-
preserving transducer. Furthermore, we assume that the system contains two
regular languages Init ,Bad ⊆ Dom, representing the set of initial and bad states.
As we mentioned earlier in this section, safety amounts to checking the existence
of an invariant Inv ⊆ Dom that contains Init but is disjoint from Bad . That is,
the safety property holds iff there exists a set Inv ⊆ Dom such that:

– Init ⊆ Inv
– Inv ∩ Bad = ∅
– Inv is inductive, i.e., for every configuration s ∈ Inv , if (s, s′) ∈ Δ, then

s′ ∈ Inv .

The above formulation immediately leads to a first-order formula ϕ over the
vocabulary of 〈Δ, Init ,Bad , Inv〉. Therefore, the desired ESO formula over the
original vocabulary (i.e. 〈Δ, Init ,Bad〉) is

∃Inv . ϕ,

where ϕ is a conjunction of the three properties above.

Example 3. Fix Σ = {0, 1}. Consider the transition relation Δ ⊆ Σ∗ × Σ∗

generated by the regular expression ((0, 0) + (1, 1))∗(1, 0)(0, 1)((0, 0) + (1, 1))∗.
Intuitively, Δ nondeterministically picks a substring 10 in an input word w and
rewrites it to 01. Let Init = 0Σ∗1 and Bad = 1∗0∗. Observe that there is a
regular proof Inv for this safety property: Inv = Init . Note that this is despite
the fact that post∗(Init) in general is not a regular set.

3.3 Liveness

A second class of properties are liveness properties, for instance checking whether
a program is guaranteed to terminate, guaranteed to answer requests eventually,
or guaranteed to visit certain states infinitely often. In the context of RMC, live-
ness has been studied a lot less than safety, and methods successful for proving
safety usually do not lend themselves to an easy generalisation to liveness.

For simplicity, the special case of program termination is consider, which can
be generalized to full liveness. As before, we assume that a transition system is
defined by a domain Dom ⊆ Σ∗, a transition relation Δ ⊆ Dom × Dom, and a
set Init ⊆ Dom of initial states. Proving termination amounts to showing that
no infinite runs starting from a state in Init exist; to this end, we can search
for a pair 〈Inv ,Rank〉 consisting of an inductive invariant and a well-founded
ranking relation:

104 A. W. Lin and P. Rümmer

Fig. 1. Lexicographic ranking relation for Example 4

– Init ⊆ Inv ;
– Inv is inductive (as in Sect. 3.2);
– the relation Rank covers the reachable transitions: Δ ∩ (Inv × Inv) ⊆ Rank ;
– Rank is transitive: (s, s′) ∈ Rank and (s′, s′′) ∈ Rank imply (s, s′′) ∈ Rank ;
– Rank is irreflexive: (s, s) �∈ Rank for every s ∈ Dom.

The last two conditions ensure that Rank is a strict partial order, and therefore
is even well-founded on fixed-length subsets Dom ∩ Σn of the domain. All five
conditions can easily be expressed by a first-order formula ϕ over the relations
〈Δ, Init , Inv ,Rank〉. Now, for length-preserving relations R, expressing in first-
order logic that a transitive relation is well-founded is simple: it is not the case
that there are words x, y such that (x, y) ∈ R and (y, y) ∈ R. This “lasso” shape
is owing to the fact that in every finite system every infinite path always leads
to one state that is visited infinitely often. In summary, termination of a system
is therefore captured by the following ESO formula:

∃Inv ,Rank . ϕ

where ϕ is the first-order part that encodes the aforementioned verification con-
ditions.

Example 4. We consider here the same example as Example 3, but we instead
want to prove termination. It is quite easy to see that every configuration will
always lead to a configuration of the form 0∗1∗, which is a dead end. Termination
of the system can be proven using the trivial inductive invariant Inv = Dom,
and a lexicographic ranking relation Rank , represented as a transducer with two
states and shown in Fig. 1. Using the algorithms proposed in Sect. 4, this ranking
relation can be computed fully automatically in a few milliseconds.

3.4 Winning Strategies for Two-Player Games on Infinite Graphs

We only need to slightly modify the ESO formula for program termination, given
in the previous section, to reason about the existence of winning strategies in
a reachability game. Instead of a single transition relation Δ, for a two-player
game we assume that two relations Δ1,Δ2 ⊆ Dom×Dom are given, encoding the
possible moves of Player 1 and Player 2, respectively. A reachability game starts

Regular Model Checking Revisited 105

in any configuration in the set Init ⊆ Dom. The players move in alternation, with
Player 2 winning if the game eventually reaches a configuration in Final ⊆ Dom,
whereas Player 1 wins if the game never enters Final . The first move in a game
is always done by Player 1.

As in the previous section, we formulate the existence of a winning strategy
for Player 2 (for any initial configuration in Init) in terms of a pair 〈Inv ,Rank〉
of relations. The set Inv now represents the possible configurations that Player 1
visits during games, whereas the ranking relation Rank expresses progress made
by Player 2 towards the region Final .

– Init ⊆ Inv ;
– Rank is transitive and irreflexive (as in Sect. 3.3);
– Player 2 can force the game to progress: for every s ∈ Inv \ Final , and every

move (s, s′) ∈ Δ1 of Player 1 with s′ �∈ Final , there is a move (s′, s′′) ∈ Δ2

of Player 2 such that s′′ ∈ Inv and (s, s′′) ∈ Rank .

It is again easy to see that all conditions can be expressed by a first-order formula
over the relations 〈Δ1,Δ2, Init ,Final , Inv ,Rank〉, and the existence of a winning
strategy as an ESO formula:

∃Inv ,Rank . ϕ.

A similar encoding has been used in previous work of the authors to reason
about almost-sure termination of parameterised probabilistic systems [30,34]. In
this setting, the two players characterise non-determinism (demonic choice, e.g.,
the scheduler) and probabilistic choice (angelic choice, e.g., randomisation).

Example 5. We consider a classical take-away game [20] with two players. In the
beginning of the game, there are n chips on the table. In alternating moves, with
Player 1 starting, each player can take 1, 2, or 3 chips from the table. The first
player who has no more chips to take loses. It can be observed that Player 2 has
a winning strategy whenever the initial number n is a multiple of 4.

Configurations of this game can be modelled as words (p1+p2)1∗0∗, in which
the first letter (p1 or p2) indicates the next player to make a move, and the
number of 1s represents the number of chips left. To prove that Player 2 can
win whenever n = 4k, we choose Init = p1(1111)∗0∗ as the initial states, and
Final = p10∗, i.e., we check whether Player 2 can move first to a configuration
in which no chips are left. The transitions of the two players are described by
the regular expressions

Δ1 = (p1, p2) (1, 1)∗ (
(1, 0) + (11, 00) + (111, 000)

)
(0, 0)∗

Δ2 = (p2, p1) (1, 1)∗ (
(1, 0) + (11, 00) + (111, 000)

)
(0, 0)∗

The witnesses proving that Player 2 indeed has a winning strategy are shown
in Fig. 2 and Fig. 3, respectively. The ranking relation Rank in Fig. 3 is similar to
the one proving termination in Example 4, and expresses that the number of 1s
is monotonically decreasing. The invariant Inv in Fig. 2 expresses that Player 2

106 A. W. Lin and P. Rümmer

Fig. 2. Set Inv of reachable configura-
tions of the take-away game in Exam-
ple 5

Fig. 3. Relation Rank in Example 5

should move in such a way that the number of chips on the table remains divisible
by 4; Rank and Inv in combination encode the strategy that Player 2 should
follow to win. The witness relations were found by the tool SLRP, presented in
[34], in around 3 s on an Intel Core i5 computer with 3.2 GHz.

3.5 Isomorphism and Bisimulation

We now describe how we can compare the behaviour of two given systems
described by length-preserving transducers. There are many natural notions of
“similarity”, but we target isomorphism, bisimulation, and probabilistic bisimu-
lation (or variants thereof). All of these are important properties since they show
indistinguishability of two systems, which are applicable to proving anonymity,
e.g., in the case of the Dining Cryptographer Protocol [16]. Isomorphism can also
be used to detect symmetries in systems, which can be used to speed up regular
model checking [33]. Here, we only describe how to express isomorphism of two
systems. Encoding bisimulation and probabilistic bisimulation for parameterized
systems is a bit trickier since we will need infinitely many action labels (i.e. to
distinguish the action of the ith process), but this can also be encoded in our
framework; see the first-order proof rules over automatic structures in the recent
paper [24].

We are given two systems S1, S2, whose domains are Dom1,Dom2 ⊆ Σ∗ and
whose transition relations R1 and R2 are described by transducers. We would
like to show that S1 and S2 are the same up to isomorphism. The desired ESO
formula is of the form

∃F.ϕ

where ϕ says that F ⊆ Dom1 × Dom2 describes the desired isomorphism
between S1 and S2. To this end, we will first need to say that F is a bijective
function. This can easily be described in first-order logic over the vocabulary
〈Dom1,Dom2, R1, R2〉. For example, F is a function can be described as

∀x, y, z. (F (x, y) ∧ F (x, z) → y = z).

Note that y = z can be described by a simple transducer, so this is a valid
first-order formula over automatic structures. We then need to add some more

Regular Model Checking Revisited 107

conjuncts in ϕ saying that F is a homomorphism and its reverse is also a homo-
morphism. This is also easily described in first-order logic, e.g.,

∀x, x′, y, y′. (R1(x, y) ∧ F (x, x′) ∧ F (y, y′) → R2(x′, y′))

says that F is a homomorphism.

Example 6. We describe the Dining Cryptographer example [16], and how to
prove this by reasoning about isomorphism. [There is a cleaner way to do this
using probabilistic bisimulation [24].] In this protocol there are n cryptographers
sitting at a round table. The cryptographers knew that the dinner was paid by
NSA, or exactly one of the cryptographers at the table. The protocol aims to
determine which one of these without revealing the identity of the cryptographer
who pays. The ith cryptographer is in state ci = 0 (resp. ci = 1) if he did not
pay for the dinner. Any two neighbouring cryptographers keep a private fair
coin (that is only visible to themselves). There is a transition to toss any of the
coins (in this case, probability is replaced by non-determinism). Let us use pi
to denote the value of the coin that is shared by the ith and i + 1 (mod n)st
cryptographers. If the ith cryptographer paid, it will announce pi−1 ⊕pi (here ⊕
is the XOR operator); otherwise, it will announce the negation of this. We call
the value announced by the ith cryptographer ai. At the end, we take the XOR
of a1, . . . , an, which is 0 iff none of the cryptographers paid.

This example can easily be encoded by a length-preserving transducer R. For
example, the domain is a word of the form

(c1p1a1) . . . (cnpnan)

where ci ∈ {0, 1} and pi, ai ∈ {?, 0, 1}. Here, the symbol ‘?’ is used to denote that
the value of pi is not yet determined. In the case of ai, the symbol ‘?’ means
that it is not yet announced. Although it is a bit cumbersome, it is possible
to describe the dynamics of the system by a transducer. The desired property
to prove then is whether there is an isomorphism between 0100m and 0010m

for every m ∈ N, i.e., that the first cryptographer, who did not pay, cannot
distinguish if it were the second or the third cryptographer who paid. There is
a transducer R′ describing the isomorphism that maps 0100m to 0010m, which
is done by inverting the value of p2.

4 How to Satisfy Existential Second-Order Quantifiers

We have given several examples for the Specification step in Sect. 3.1, but
the question remains how one can solve the Specification Checking step and
automatically compute witnesses R1, . . . , Rn for the existential quantifiers in
a formula ∃R1, . . . , Rn. ϕ (where the matrix ϕ is first-order, as introduced in
Sect. 2.4). We present two solutions for this problem, two approaches to automata
learning whose respective applicability depends on the shape of the matrix ϕ.
Both methods have in previous work proven to be useful for analysing complex

108 A. W. Lin and P. Rümmer

parameterised systems. On the one hand, it has been shown that automata
learning is competitive with tailor-made algorithms, for instance with Abstract
Regular Model Checking (ARMC) [11], for safety proofs [17,44]; on the other
hand, automata learning is general and can help to automate the verification of
properties for which no bespoke approaches exist, for instance liveness properties
or properties of games.

4.1 Active Automata Learning

The more efficient, though also more restricted approach is to use classical
automata learning, for instance Angluin’s L∗ algorithm [6], or one of its vari-
ants (e.g., [26,40]), to compute witnesses for R1, . . . , Rn. In all those algorithms,
a learner attempts to reconstruct a regular language L known to the teacher
by repeatedly asking two kinds of queries: membership, i.e., whether a word w
should be in L; and equivalence, i.e., whether L coincides with some candidate
language H constructed by the learner. When equivalence fails, the teacher pro-
vides a positive or negative counterexample, which is a word in the symmetric
difference between L and H.

This leads to the question how membership and equivalence can be imple-
mented in the ESO setting, in order to let a learner search for R1, . . . , Rn. In
general, it is clearly not possible to answer membership queries about R1, . . . , Rn,
since there can be many choices of relations satisfying ϕ, some of which might
contain a word, while others do not; in other words, the relations are in general
not uniquely determined by ϕ. We need to make additional assumptions.

As the simplest case, active automata learning can be used if two properties
are satisfied: (i) the relations R1, . . . , Rn are uniquely defined by ϕ and the struc-
ture S; and (ii) for any k ∈ N, the sub-relations Rk

i = {w ∈ Ri | |w| ≤ k} can
be effectively computed from ϕ and S. Given those two assumptions, automata
learning can be used to approximate the genuine solution R1, . . . , Rn up to any
length bound k, resulting in a candidate solution RH

1 , . . . , RH
n . It can also be

verified whether RH
1 , . . . , RH

n coincide with the genuine solution by evaluating
ϕ, i.e., by checking whether S, RH

1 , . . . , RH
n |= ϕ. If this check succeeds, learn-

ing has been successful; if it fails, the bound k can be increased and a better
approximation computed. Whenever the unique solution R1, . . . , Rn exists and is
regular, this algorithm is guaranteed to terminate and produce a correct answer.

In the setting of weakly-finite systems, assumption (ii) is usually satisfied,
since only finitely many configurations are reachable for any k ∈ N. In particular,
for the examples in Sect. 3, the sub-relations Rk

1 , . . . , R
k
n can be computed using

standard methods such as symbolic model checking [36]. Assumption (i) is less
realistic, because witnesses to be computed in verification are often not uniquely
defined. For instance, a safe system (Sect. 3.2) will normally have many inductive
invariants, each of which is sufficient to demonstrate safety.

What can be done when assumption (i) does not hold, and the relations
R1, . . . , Rn are not unique? Depending on the shape of ϕ, a simple trick can
be applicable, namely the learning algorithm can be generalised to search for

Regular Model Checking Revisited 109

a unique smallest or unique largest solution (in the set-theoretic sense) of ϕ,
provided those solutions exist. This is the case in particular when ϕ can be
rephrased as a fixed-point equation

〈R1, . . . , Rn〉 = F (R1, . . . , Rn)

for some monotonic function F ; for instance, if ϕ can be written as a set of Horn
clauses. We still require property (ii), however, and need to be able to compute
sub-relations Rk

i = {w ∈ Ri | |w| ≤ k} of the smallest or largest solution to
answer membership queries.

In order to check whether a solution candidate RH
1 , . . . , RH

n is correct (for
equivalence queries), we can as before evaluate ϕ, and terminate the search if
ϕ is satisfied. In general, however, there is no way to verify that RH

1 , . . . , RH
n is

indeed the smallest solution of ϕ, which affects termination and completeness in
a somewhat subtle way. If the smallest solution of ϕ exists and is regular, then
termination of the overall search is guaranteed, and the produced solution will
indeed satisfy ϕ; but what is found is not necessarily the smallest solution of ϕ.

This method has been implemented in particular for proving safety [17,44]
and probabilistic bisimulations [24] of length-preserving systems, cases in which
ϕ is naturally monotonic, and where active learning methods are able to compute
witnesses with hundreds (sometimes thousands) of states within minutes.

4.2 SAT-Based Automata Learning

L∗-style learning is not applicable if the matrix of an ESO formula ∃R1, . . . , Rn. ϕ
does not have a smallest or largest solution, or if the sub-relations Rk

1 , . . . , R
k
n

(for some k ∈ N) cannot be computed because a system is not weakly finite. An
example of such non-monotonic formulas are the formulas characterising winning
strategies of reachability games presented in Sect. 3.4; indeed, multiple minimal
but incomparable strategies can exist to win a game, so that in general there
is no smallest solution. A more general learning strategy to solve ESO formulas
in the non-monotonic case is SAT-based learning, i.e., using a Boolean encoding
of finite-state automata to systematically search for solutions of ϕ [34,37,46].
SAT-based learning is a more general solution than active automata learning for
constructing ESO proofs, although experiments show that it is also a lot slower
for simpler analysis tasks like safety proofs [17].

We outline how a SAT solver can be used to construct deterministic finite-
state automata (DFAs), following the encoding used in [34]. The encoding
assumes that a finite alphabet Σ and the number n of states of the automaton
are fixed. The states of the automaton are assumed to be q1, . . . , qn, and without
loss of generality q1 is the unique initial state. The Boolean decision variables
of the encoding are (i) variables {zi} that determine which of the states are
accepting; and (ii) variables {xi,a,j} that determine, for any letter a ∈ Σ and
states qi, qj , whether the automaton has a transition from qi to qj with label a.

A number of Boolean constraints are then asserted to ensure that only well-
formed DFAs are considered: determinism; reachability of every automaton state

110 A. W. Lin and P. Rümmer

from the initial state; reachability of an accepting state from every state; and
symmetry-breaking constraints.

Next, the formula ϕ can be translated to Boolean constraints over the decision
variables. This translation can be done eagerly for all conjuncts of ϕ that can
be represented succinctly:

– a positive atom x ∈ R in which the length of x is bounded can be translated
to constraints that assert the existence of a run accepting x;

– a negative atom x �∈ R can similarly be encoded as a run ending in a non-
accepting state, thanks to the determinism of the automaton;

– for automata representing binary relations R(x, y), several universally quanti-
fied formulas can be encoded as a polynomial-size Boolean constraint as well,
including:

Reflexivity: ∀x.R(x, x)
Irreflexivity: ∀x.¬R(x, x)

Functional consistency: ∀x, y, z. (R(x, y) ∧ R(x, z) → y = z)
Transitivity: ∀x, y, z. (R(x, y) ∧ R(y, z) → R(x, z))

Other conjuncts in ϕ can be encoded lazily with the help of a refinement
loop, resembling the classical CEGAR approach. The SAT solver is first queried
to produce a candidate automaton H that satisfies a partial encoding of ϕ. It
is then checked whether the candidate H indeed satisfies ϕ; if this is the case,
SAT-based learning has been successful and terminates; otherwise, a blocking
constraint is asserted that rules out the candidate H in subsequent queries.

It should be noted that this approach can in principle be implemented for
any formula ϕ, since it is always possible to generate a näıve blocking constraint
that blocks exactly the observed assignment of the variables {zi, xi,a,j}, i.e.,
that exactly matches the automaton H. It is well-known in Satisfiability Modulo
Theories, however, that good blocking constraints are those which eliminate as
many similar candidate solutions as possible, and need to be designed carefully
and specifically for a theory (or, in our case, based on the shape of ϕ).

Several implementations of SAT-based learning have been described in the
literature, for instance for computing inductive invariants [37], synthesising state
machines satisfying given properties [46], computing symmetries of parameter-
ized systems [33], and for solving various kinds of games [34]. Experiments show
that the automata that can be computed using SAT-based learning tend to be
several order of magnitudes smaller than with active automata learning methods
(typically, at most 10–20 states), but that SAT-based learning can solve a more
general class of synthesis problems as well.

4.3 Stratification of ESO Formulas

The two approaches to compute regular languages can sometimes be combined.
For instance, in [34] active automata learning is used to approximate the reach-
able configurations of a two-player game (in the sense of computing an inductive

Regular Model Checking Revisited 111

invariant), whereas SAT-based learning is used to compute winning strategies;
the results of the two procedures in combination represent a solution of an ESO
formula ∃A,Rank . ϕ with two second-order quantifiers.

More generally, since the active automata learning approach in Sect. 4.1 is
able to compute smallest or greatest solutions of formulas, a combined approach
is possible when the matrix ϕ of an ESO formula ∃R1, . . . , Rn. ϕ can be stratified.
Suppose ϕ can be decomposed into ϕ1[R1] ∧ ϕ2[R1, . . . , Rn] in such a way that
(i) ϕ1 has a unique smallest solution in R1, and (ii) ϕ2 contains R1 only in liter-
als x ∈ R1 in negative positions, i.e., underneath an odd number of negations. In
this situation, one can clearly proceed by first computing a smallest relation R1

satisfying ϕ1, using the methods in Sect. 4.1, and then solve the remaining for-
mula ∃R2, . . . , Rn. ϕ2 given this fixed solution for R1. The case where ϕ1 has a
greatest solution, and ϕ2 contains R1 only positively can be handled similarly.

We believe that this combined form of automata learning is promising, and
in [34] it turned out to be the most efficient method to solve reachability games
as introduced in Sect. 3.4. Further research is needed, however, to evaluate the
approach for other verification problems.

5 Conclusions

In this paper, we have proposed existential second-order logic (ESO) over auto-
matic structures as an umbrella covering a large number of regular model check-
ing tasks, continuing a research programme that was initiated by Bengt Jonsson
20 years ago. We have shown that many important correctness properties can
be represented elegantly in ESO, and developed unified algorithms that can be
applied to any correctness property captured using ESO. Experiments showing
the practicality of this approach have been presented in several recent publica-
tions, including computation of inductive invariants [17,37,44], of symmetries
and simulation relations of parameterised systems [33], of winning strategies of
games [30,34], and of probabilistic bisimulations [24].

Several challenges remain. One bottleneck that has been identified in several
of the studies is the size of alphabets necessary to model systems, to which the
algorithms presented in Sect. 4 are very sensitive. This indicates that some anal-
ysis tasks require more compact or more expressive automata representations,
for instance symbolic automata, and generalised learning methods; or abstrac-
tion to reduce the size of alphabets. Another less-than-satisfactory point is the
handling of well-foundedness in the ESO framework. When restricting the class
of considered systems to weakly finite systems, as done here, well-foundedness
of relations can be replaced by acyclicity, which can be expressed easily in ESO
(as shown in Sect. 3.3). It is not obvious, however, in which way ESO should be
extended to also handle systems that are not weakly finite, without sacrificing
the elegance of the approach.

Acknowledgment. First and foremost, we thank Bengt Jonsson for a source of inspi-
ration for our research for many years, as well as for being the best colleague and friend

112 A. W. Lin and P. Rümmer

one could wish for. We also thank our numerous collaborators in our work on regular
model checking that led to this work, including Parosh Abdulla, Yu-Fang Chen, Lukas
Holik, Chih-Duo Hong, Ondrej Lengal, Leonid Libkin, Rupak Majumdar, and Tomas
Vojnar. This research was sponsored in part by the ERC Starting Grant 759969 (AV-
SMP), Max-Planck Fellowship, the Swedish Research Council (VR) under grant 2018-
04727, and by the Swedish Foundation for Strategic Research (SSF) under the project
WebSec (Ref. RIT17-0011).

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B., Nilsson, M.: Handling global conditions
in parametrized system verification. In: Halbwachs, N., Peled, D. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 134–145. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48683-6 14

2. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 47

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. Lec-
ture Notes in Computer Science., vol. 10001. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49812-6

5. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013, pp. 1–8 (2013)

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

7. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005). https://doi.org/10.1007/11562948 35

8. Benedikt, M., Libkin, L., Schwentick, T., Segoufin, L.: Definable relations and
first-order query languages over strings. J. ACM 50(5), 694–751 (2003)

9. Blumensath, A., Grädel, E.: Automatic structures. In: Proceedings of the 15th
Annual IEEE Symposium on Logic in Computer Science, pp. 51–62. IEEE (2000)

10. Blumensath, A., Grädel, E.: Finite presentations of infinite structures: automata
and interpretations. Theory Comput. Syst. 37(6), 641–674 (2004)

11. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 29

12. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

13. Bradley, A.R., Manna, Z.: The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74113-8

14. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 387–393. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 22

https://doi.org/10.1007/3-540-48683-6_14
https://doi.org/10.1007/3-540-48683-6_14
https://doi.org/10.1007/3-540-45657-0_47
https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/11562948_35
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22

Regular Model Checking Revisited 113

15. Bruyere, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belg. Math. Soc. 1, 191–238 (1994)

16. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

17. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: 2017 Formal Methods in Computer Aided Design,
FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 76–83 (2017)

18. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Log.
Methods Comput. Sci. 3(2), (2007)

19. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31424-7 14

20. Ferguson, T.S.: Game Theory. Online Book, 2nd edn (2014)
21. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination

proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp.
210–220. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-
4 15

22. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research. Lecture Notes in Computer Science, vol. 2500.
Springer, Cham (2002). https://doi.org/10.1007/3-540-36387-4. Outcome of a
Dagstuhl Seminar, February 2001

23. Hague, M., Lin, A.W., Ong, C.L.: Detecting redundant CSS rules in HTML5 appli-
cations: a tree rewriting approach. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, Part of SPLASH 2015, Pittsburgh, PA, USA,
25–30 October 2015, pp. 1–19 (2015)

24. Hong, C.-D., Lin, A.W., Majumdar, R., Rümmer, P.: Probabilistic bisimulation
for parameterized systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 455–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 27

25. Jonsson, B., Nilsson, M.: Transitive closures of regular relations for verifying
infinite-state systems. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS,
vol. 1785, pp. 220–235. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-46419-0 16

26. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

27. Resten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254,
pp. 424–435. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-
6 41

28. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View,
1st edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74105-3

29. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4 20

30. Lengál, O., Lin, A.W., Majumdar, R., Rümmer, P.: Fair termination for parame-
terized probabilistic concurrent systems. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10205, pp. 499–517. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54577-5 29

https://doi.org/10.1007/978-3-642-31424-7_14
https://doi.org/10.1007/978-3-642-31424-7_14
https://doi.org/10.1007/978-3-540-25979-4_15
https://doi.org/10.1007/978-3-540-25979-4_15
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/978-3-030-25540-4_27
https://doi.org/10.1007/978-3-030-25540-4_27
https://doi.org/10.1007/3-540-46419-0_16
https://doi.org/10.1007/3-540-46419-0_16
https://doi.org/10.1007/3-540-63166-6_41
https://doi.org/10.1007/3-540-63166-6_41
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-662-54577-5_29
https://doi.org/10.1007/978-3-662-54577-5_29

114 A. W. Lin and P. Rümmer

31. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

32. Lin, A.W.: Accelerating tree-automatic relations. In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS
2012, Hyderabad, India, 15–17 December 2012, pp. 313–324 (2012)

33. Lin, A.W., Nguyen, T.K., Rümmer, P., Sun, J.: Regular symmetry patterns. In:
Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 455–475.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5 22

34. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under arbi-
trary schedulers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780,
pp. 112–133. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 7

35. Löding, C., Spelten, A.: Transition graphs of rewriting systems over unranked
trees. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 67–77.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74456-6 8

36. McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht (1993)
37. Neider, D., Jansen, N.: Regular model checking using solver technologies and

automata learning. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 16–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38088-4 2

38. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 12

39. Nilsson, M.: Regular model checking. Ph.D. thesis, Uppsala Universitet (2005)
40. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.

Inf. Comput. 103(2), 299–347 (1993)
41. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,

Boston (1997)
42. To, A.W.: Model checking infinite-state systems: generic and specific approaches.

Ph.D. thesis, School of Informatics, University of Edinburgh (2010)
43. To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking

over infinite systems. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 221–
236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9 16

44. Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Learning to verify safety prop-
erties. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol.
3308, pp. 274–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30482-1 26

45. Vojnar, T.: Cut-offs and automata in formal verification of infinite-state systems.
Habilitation thesis, Faculty of Information Technology, Brno University of Tech-
nology (2007)

46. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Empir. Softw. Eng. 21(3), 811–853 (2016)

47. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 88–97. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0028736

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-49122-5_22
https://doi.org/10.1007/978-3-319-41540-6_7
https://doi.org/10.1007/978-3-540-74456-6_8
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-642-12032-9_16
https://doi.org/10.1007/978-3-540-30482-1_26
https://doi.org/10.1007/978-3-540-30482-1_26
https://doi.org/10.1007/BFb0028736

	Regular Model Checking Revisited
	1 Introduction
	2 Preliminaries
	2.1 Automata
	2.2 Regular Model Checking
	2.3 Weakly-Finite Systems
	2.4 Existential Second-Order Logic

	3 RMC as ESO Satisfaction over Automatic Structures
	3.1 Automatic Structures
	3.2 Safety
	3.3 Liveness
	3.4 Winning Strategies for Two-Player Games on Infinite Graphs
	3.5 Isomorphism and Bisimulation

	4 How to Satisfy Existential Second-Order Quantifiers
	4.1 Active Automata Learning
	4.2 SAT-Based Automata Learning
	4.3 Stratification of ESO Formulas

	5 Conclusions
	References

